xref: /openbmc/linux/mm/memory_hotplug.c (revision a89a501c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = memhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		memhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 						 const char *resource_name)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 
107 	if (strcmp(resource_name, "System RAM"))
108 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
109 
110 	/*
111 	 * Make sure value parsed from 'mem=' only restricts memory adding
112 	 * while booting, so that memory hotplug won't be impacted. Please
113 	 * refer to document of 'mem=' in kernel-parameters.txt for more
114 	 * details.
115 	 */
116 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 		return ERR_PTR(-E2BIG);
118 
119 	/*
120 	 * Request ownership of the new memory range.  This might be
121 	 * a child of an existing resource that was present but
122 	 * not marked as busy.
123 	 */
124 	res = __request_region(&iomem_resource, start, size,
125 			       resource_name, flags);
126 
127 	if (!res) {
128 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 				start, start + size);
130 		return ERR_PTR(-EEXIST);
131 	}
132 	return res;
133 }
134 
135 static void release_memory_resource(struct resource *res)
136 {
137 	if (!res)
138 		return;
139 	release_resource(res);
140 	kfree(res);
141 }
142 
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144 void get_page_bootmem(unsigned long info,  struct page *page,
145 		      unsigned long type)
146 {
147 	page->freelist = (void *)type;
148 	SetPagePrivate(page);
149 	set_page_private(page, info);
150 	page_ref_inc(page);
151 }
152 
153 void put_page_bootmem(struct page *page)
154 {
155 	unsigned long type;
156 
157 	type = (unsigned long) page->freelist;
158 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160 
161 	if (page_ref_dec_return(page) == 1) {
162 		page->freelist = NULL;
163 		ClearPagePrivate(page);
164 		set_page_private(page, 0);
165 		INIT_LIST_HEAD(&page->lru);
166 		free_reserved_page(page);
167 	}
168 }
169 
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
172 static void register_page_bootmem_info_section(unsigned long start_pfn)
173 {
174 	unsigned long mapsize, section_nr, i;
175 	struct mem_section *ms;
176 	struct page *page, *memmap;
177 	struct mem_section_usage *usage;
178 
179 	section_nr = pfn_to_section_nr(start_pfn);
180 	ms = __nr_to_section(section_nr);
181 
182 	/* Get section's memmap address */
183 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184 
185 	/*
186 	 * Get page for the memmap's phys address
187 	 * XXX: need more consideration for sparse_vmemmap...
188 	 */
189 	page = virt_to_page(memmap);
190 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192 
193 	/* remember memmap's page */
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, SECTION_INFO);
196 
197 	usage = ms->usage;
198 	page = virt_to_page(usage);
199 
200 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201 
202 	for (i = 0; i < mapsize; i++, page++)
203 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204 
205 }
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
207 static void register_page_bootmem_info_section(unsigned long start_pfn)
208 {
209 	unsigned long mapsize, section_nr, i;
210 	struct mem_section *ms;
211 	struct page *page, *memmap;
212 	struct mem_section_usage *usage;
213 
214 	section_nr = pfn_to_section_nr(start_pfn);
215 	ms = __nr_to_section(section_nr);
216 
217 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218 
219 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220 
221 	usage = ms->usage;
222 	page = virt_to_page(usage);
223 
224 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225 
226 	for (i = 0; i < mapsize; i++, page++)
227 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228 }
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230 
231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232 {
233 	unsigned long i, pfn, end_pfn, nr_pages;
234 	int node = pgdat->node_id;
235 	struct page *page;
236 
237 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 	page = virt_to_page(pgdat);
239 
240 	for (i = 0; i < nr_pages; i++, page++)
241 		get_page_bootmem(node, page, NODE_INFO);
242 
243 	pfn = pgdat->node_start_pfn;
244 	end_pfn = pgdat_end_pfn(pgdat);
245 
246 	/* register section info */
247 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 		/*
249 		 * Some platforms can assign the same pfn to multiple nodes - on
250 		 * node0 as well as nodeN.  To avoid registering a pfn against
251 		 * multiple nodes we check that this pfn does not already
252 		 * reside in some other nodes.
253 		 */
254 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 			register_page_bootmem_info_section(pfn);
256 	}
257 }
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259 
260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 		const char *reason)
262 {
263 	/*
264 	 * Disallow all operations smaller than a sub-section and only
265 	 * allow operations smaller than a section for
266 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 	 * enforces a larger memory_block_size_bytes() granularity for
268 	 * memory that will be marked online, so this check should only
269 	 * fire for direct arch_{add,remove}_memory() users outside of
270 	 * add_memory_resource().
271 	 */
272 	unsigned long min_align;
273 
274 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 		min_align = PAGES_PER_SUBSECTION;
276 	else
277 		min_align = PAGES_PER_SECTION;
278 	if (!IS_ALIGNED(pfn, min_align)
279 			|| !IS_ALIGNED(nr_pages, min_align)) {
280 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 				reason, pfn, pfn + nr_pages - 1);
282 		return -EINVAL;
283 	}
284 	return 0;
285 }
286 
287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 					    unsigned long nr_pages)
289 {
290 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291 
292 	if (max_addr >> MAX_PHYSMEM_BITS) {
293 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 		WARN(1,
295 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 		return -E2BIG;
298 	}
299 
300 	return 0;
301 }
302 
303 /*
304  * Reasonably generic function for adding memory.  It is
305  * expected that archs that support memory hotplug will
306  * call this function after deciding the zone to which to
307  * add the new pages.
308  */
309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 		struct mhp_params *params)
311 {
312 	const unsigned long end_pfn = pfn + nr_pages;
313 	unsigned long cur_nr_pages;
314 	int err;
315 	struct vmem_altmap *altmap = params->altmap;
316 
317 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 		return -EINVAL;
319 
320 	err = check_hotplug_memory_addressable(pfn, nr_pages);
321 	if (err)
322 		return err;
323 
324 	if (altmap) {
325 		/*
326 		 * Validate altmap is within bounds of the total request
327 		 */
328 		if (altmap->base_pfn != pfn
329 				|| vmem_altmap_offset(altmap) > nr_pages) {
330 			pr_warn_once("memory add fail, invalid altmap\n");
331 			return -EINVAL;
332 		}
333 		altmap->alloc = 0;
334 	}
335 
336 	err = check_pfn_span(pfn, nr_pages, "add");
337 	if (err)
338 		return err;
339 
340 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 		/* Select all remaining pages up to the next section boundary */
342 		cur_nr_pages = min(end_pfn - pfn,
343 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
344 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 		if (err)
346 			break;
347 		cond_resched();
348 	}
349 	vmemmap_populate_print_last();
350 	return err;
351 }
352 
353 #ifdef CONFIG_NUMA
354 int __weak memory_add_physaddr_to_nid(u64 start)
355 {
356 	pr_info_once("Unknown online node for memory at 0x%llx, assuming node 0\n",
357 			start);
358 	return 0;
359 }
360 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361 
362 int __weak phys_to_target_node(u64 start)
363 {
364 	pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
365 			start);
366 	return 0;
367 }
368 EXPORT_SYMBOL_GPL(phys_to_target_node);
369 #endif
370 
371 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
372 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
373 				     unsigned long start_pfn,
374 				     unsigned long end_pfn)
375 {
376 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(start_pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(start_pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(start_pfn)))
384 			continue;
385 
386 		return start_pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
393 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
394 				    unsigned long start_pfn,
395 				    unsigned long end_pfn)
396 {
397 	unsigned long pfn;
398 
399 	/* pfn is the end pfn of a memory section. */
400 	pfn = end_pfn - 1;
401 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
402 		if (unlikely(!pfn_to_online_page(pfn)))
403 			continue;
404 
405 		if (unlikely(pfn_to_nid(pfn) != nid))
406 			continue;
407 
408 		if (zone != page_zone(pfn_to_page(pfn)))
409 			continue;
410 
411 		return pfn;
412 	}
413 
414 	return 0;
415 }
416 
417 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
418 			     unsigned long end_pfn)
419 {
420 	unsigned long pfn;
421 	int nid = zone_to_nid(zone);
422 
423 	zone_span_writelock(zone);
424 	if (zone->zone_start_pfn == start_pfn) {
425 		/*
426 		 * If the section is smallest section in the zone, it need
427 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
428 		 * In this case, we find second smallest valid mem_section
429 		 * for shrinking zone.
430 		 */
431 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
432 						zone_end_pfn(zone));
433 		if (pfn) {
434 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
435 			zone->zone_start_pfn = pfn;
436 		} else {
437 			zone->zone_start_pfn = 0;
438 			zone->spanned_pages = 0;
439 		}
440 	} else if (zone_end_pfn(zone) == end_pfn) {
441 		/*
442 		 * If the section is biggest section in the zone, it need
443 		 * shrink zone->spanned_pages.
444 		 * In this case, we find second biggest valid mem_section for
445 		 * shrinking zone.
446 		 */
447 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
448 					       start_pfn);
449 		if (pfn)
450 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
451 		else {
452 			zone->zone_start_pfn = 0;
453 			zone->spanned_pages = 0;
454 		}
455 	}
456 	zone_span_writeunlock(zone);
457 }
458 
459 static void update_pgdat_span(struct pglist_data *pgdat)
460 {
461 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
462 	struct zone *zone;
463 
464 	for (zone = pgdat->node_zones;
465 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
466 		unsigned long zone_end_pfn = zone->zone_start_pfn +
467 					     zone->spanned_pages;
468 
469 		/* No need to lock the zones, they can't change. */
470 		if (!zone->spanned_pages)
471 			continue;
472 		if (!node_end_pfn) {
473 			node_start_pfn = zone->zone_start_pfn;
474 			node_end_pfn = zone_end_pfn;
475 			continue;
476 		}
477 
478 		if (zone_end_pfn > node_end_pfn)
479 			node_end_pfn = zone_end_pfn;
480 		if (zone->zone_start_pfn < node_start_pfn)
481 			node_start_pfn = zone->zone_start_pfn;
482 	}
483 
484 	pgdat->node_start_pfn = node_start_pfn;
485 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
486 }
487 
488 void __ref remove_pfn_range_from_zone(struct zone *zone,
489 				      unsigned long start_pfn,
490 				      unsigned long nr_pages)
491 {
492 	const unsigned long end_pfn = start_pfn + nr_pages;
493 	struct pglist_data *pgdat = zone->zone_pgdat;
494 	unsigned long pfn, cur_nr_pages, flags;
495 
496 	/* Poison struct pages because they are now uninitialized again. */
497 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
498 		cond_resched();
499 
500 		/* Select all remaining pages up to the next section boundary */
501 		cur_nr_pages =
502 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
503 		page_init_poison(pfn_to_page(pfn),
504 				 sizeof(struct page) * cur_nr_pages);
505 	}
506 
507 #ifdef CONFIG_ZONE_DEVICE
508 	/*
509 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
510 	 * we will not try to shrink the zones - which is okay as
511 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
512 	 */
513 	if (zone_idx(zone) == ZONE_DEVICE)
514 		return;
515 #endif
516 
517 	clear_zone_contiguous(zone);
518 
519 	pgdat_resize_lock(zone->zone_pgdat, &flags);
520 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
521 	update_pgdat_span(pgdat);
522 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
523 
524 	set_zone_contiguous(zone);
525 }
526 
527 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
528 			     unsigned long map_offset,
529 			     struct vmem_altmap *altmap)
530 {
531 	struct mem_section *ms = __pfn_to_section(pfn);
532 
533 	if (WARN_ON_ONCE(!valid_section(ms)))
534 		return;
535 
536 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages
541  * @pfn: starting pageframe (must be aligned to start of a section)
542  * @nr_pages: number of pages to remove (must be multiple of section size)
543  * @altmap: alternative device page map or %NULL if default memmap is used
544  *
545  * Generic helper function to remove section mappings and sysfs entries
546  * for the section of the memory we are removing. Caller needs to make
547  * sure that pages are marked reserved and zones are adjust properly by
548  * calling offline_pages().
549  */
550 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
551 		    struct vmem_altmap *altmap)
552 {
553 	const unsigned long end_pfn = pfn + nr_pages;
554 	unsigned long cur_nr_pages;
555 	unsigned long map_offset = 0;
556 
557 	map_offset = vmem_altmap_offset(altmap);
558 
559 	if (check_pfn_span(pfn, nr_pages, "remove"))
560 		return;
561 
562 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
563 		cond_resched();
564 		/* Select all remaining pages up to the next section boundary */
565 		cur_nr_pages = min(end_pfn - pfn,
566 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
567 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
568 		map_offset = 0;
569 	}
570 }
571 
572 int set_online_page_callback(online_page_callback_t callback)
573 {
574 	int rc = -EINVAL;
575 
576 	get_online_mems();
577 	mutex_lock(&online_page_callback_lock);
578 
579 	if (online_page_callback == generic_online_page) {
580 		online_page_callback = callback;
581 		rc = 0;
582 	}
583 
584 	mutex_unlock(&online_page_callback_lock);
585 	put_online_mems();
586 
587 	return rc;
588 }
589 EXPORT_SYMBOL_GPL(set_online_page_callback);
590 
591 int restore_online_page_callback(online_page_callback_t callback)
592 {
593 	int rc = -EINVAL;
594 
595 	get_online_mems();
596 	mutex_lock(&online_page_callback_lock);
597 
598 	if (online_page_callback == callback) {
599 		online_page_callback = generic_online_page;
600 		rc = 0;
601 	}
602 
603 	mutex_unlock(&online_page_callback_lock);
604 	put_online_mems();
605 
606 	return rc;
607 }
608 EXPORT_SYMBOL_GPL(restore_online_page_callback);
609 
610 void generic_online_page(struct page *page, unsigned int order)
611 {
612 	/*
613 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
614 	 * so we should map it first. This is better than introducing a special
615 	 * case in page freeing fast path.
616 	 */
617 	if (debug_pagealloc_enabled_static())
618 		kernel_map_pages(page, 1 << order, 1);
619 	__free_pages_core(page, order);
620 	totalram_pages_add(1UL << order);
621 #ifdef CONFIG_HIGHMEM
622 	if (PageHighMem(page))
623 		totalhigh_pages_add(1UL << order);
624 #endif
625 }
626 EXPORT_SYMBOL_GPL(generic_online_page);
627 
628 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
629 {
630 	const unsigned long end_pfn = start_pfn + nr_pages;
631 	unsigned long pfn;
632 
633 	/*
634 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
635 	 * decide to not expose all pages to the buddy (e.g., expose them
636 	 * later). We account all pages as being online and belonging to this
637 	 * zone ("present").
638 	 */
639 	for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES)
640 		(*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1);
641 
642 	/* mark all involved sections as online */
643 	online_mem_sections(start_pfn, end_pfn);
644 }
645 
646 /* check which state of node_states will be changed when online memory */
647 static void node_states_check_changes_online(unsigned long nr_pages,
648 	struct zone *zone, struct memory_notify *arg)
649 {
650 	int nid = zone_to_nid(zone);
651 
652 	arg->status_change_nid = NUMA_NO_NODE;
653 	arg->status_change_nid_normal = NUMA_NO_NODE;
654 	arg->status_change_nid_high = NUMA_NO_NODE;
655 
656 	if (!node_state(nid, N_MEMORY))
657 		arg->status_change_nid = nid;
658 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
659 		arg->status_change_nid_normal = nid;
660 #ifdef CONFIG_HIGHMEM
661 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
662 		arg->status_change_nid_high = nid;
663 #endif
664 }
665 
666 static void node_states_set_node(int node, struct memory_notify *arg)
667 {
668 	if (arg->status_change_nid_normal >= 0)
669 		node_set_state(node, N_NORMAL_MEMORY);
670 
671 	if (arg->status_change_nid_high >= 0)
672 		node_set_state(node, N_HIGH_MEMORY);
673 
674 	if (arg->status_change_nid >= 0)
675 		node_set_state(node, N_MEMORY);
676 }
677 
678 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
679 		unsigned long nr_pages)
680 {
681 	unsigned long old_end_pfn = zone_end_pfn(zone);
682 
683 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
684 		zone->zone_start_pfn = start_pfn;
685 
686 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
687 }
688 
689 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
690                                      unsigned long nr_pages)
691 {
692 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
693 
694 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
695 		pgdat->node_start_pfn = start_pfn;
696 
697 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
698 
699 }
700 /*
701  * Associate the pfn range with the given zone, initializing the memmaps
702  * and resizing the pgdat/zone data to span the added pages. After this
703  * call, all affected pages are PG_reserved.
704  *
705  * All aligned pageblocks are initialized to the specified migratetype
706  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
707  * zone stats (e.g., nr_isolate_pageblock) are touched.
708  */
709 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
710 				  unsigned long nr_pages,
711 				  struct vmem_altmap *altmap, int migratetype)
712 {
713 	struct pglist_data *pgdat = zone->zone_pgdat;
714 	int nid = pgdat->node_id;
715 	unsigned long flags;
716 
717 	clear_zone_contiguous(zone);
718 
719 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
720 	pgdat_resize_lock(pgdat, &flags);
721 	zone_span_writelock(zone);
722 	if (zone_is_empty(zone))
723 		init_currently_empty_zone(zone, start_pfn, nr_pages);
724 	resize_zone_range(zone, start_pfn, nr_pages);
725 	zone_span_writeunlock(zone);
726 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
727 	pgdat_resize_unlock(pgdat, &flags);
728 
729 	/*
730 	 * TODO now we have a visible range of pages which are not associated
731 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
732 	 * expects the zone spans the pfn range. All the pages in the range
733 	 * are reserved so nobody should be touching them so we should be safe
734 	 */
735 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
736 			 MEMINIT_HOTPLUG, altmap, migratetype);
737 
738 	set_zone_contiguous(zone);
739 }
740 
741 /*
742  * Returns a default kernel memory zone for the given pfn range.
743  * If no kernel zone covers this pfn range it will automatically go
744  * to the ZONE_NORMAL.
745  */
746 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
747 		unsigned long nr_pages)
748 {
749 	struct pglist_data *pgdat = NODE_DATA(nid);
750 	int zid;
751 
752 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
753 		struct zone *zone = &pgdat->node_zones[zid];
754 
755 		if (zone_intersects(zone, start_pfn, nr_pages))
756 			return zone;
757 	}
758 
759 	return &pgdat->node_zones[ZONE_NORMAL];
760 }
761 
762 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
763 		unsigned long nr_pages)
764 {
765 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
766 			nr_pages);
767 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
768 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
769 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
770 
771 	/*
772 	 * We inherit the existing zone in a simple case where zones do not
773 	 * overlap in the given range
774 	 */
775 	if (in_kernel ^ in_movable)
776 		return (in_kernel) ? kernel_zone : movable_zone;
777 
778 	/*
779 	 * If the range doesn't belong to any zone or two zones overlap in the
780 	 * given range then we use movable zone only if movable_node is
781 	 * enabled because we always online to a kernel zone by default.
782 	 */
783 	return movable_node_enabled ? movable_zone : kernel_zone;
784 }
785 
786 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
787 		unsigned long nr_pages)
788 {
789 	if (online_type == MMOP_ONLINE_KERNEL)
790 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
791 
792 	if (online_type == MMOP_ONLINE_MOVABLE)
793 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
794 
795 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
796 }
797 
798 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
799 		       int online_type, int nid)
800 {
801 	unsigned long flags;
802 	struct zone *zone;
803 	int need_zonelists_rebuild = 0;
804 	int ret;
805 	struct memory_notify arg;
806 
807 	/* We can only online full sections (e.g., SECTION_IS_ONLINE) */
808 	if (WARN_ON_ONCE(!nr_pages ||
809 			 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION)))
810 		return -EINVAL;
811 
812 	mem_hotplug_begin();
813 
814 	/* associate pfn range with the zone */
815 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
816 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
817 
818 	arg.start_pfn = pfn;
819 	arg.nr_pages = nr_pages;
820 	node_states_check_changes_online(nr_pages, zone, &arg);
821 
822 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
823 	ret = notifier_to_errno(ret);
824 	if (ret)
825 		goto failed_addition;
826 
827 	/*
828 	 * Fixup the number of isolated pageblocks before marking the sections
829 	 * onlining, such that undo_isolate_page_range() works correctly.
830 	 */
831 	spin_lock_irqsave(&zone->lock, flags);
832 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
833 	spin_unlock_irqrestore(&zone->lock, flags);
834 
835 	/*
836 	 * If this zone is not populated, then it is not in zonelist.
837 	 * This means the page allocator ignores this zone.
838 	 * So, zonelist must be updated after online.
839 	 */
840 	if (!populated_zone(zone)) {
841 		need_zonelists_rebuild = 1;
842 		setup_zone_pageset(zone);
843 	}
844 
845 	online_pages_range(pfn, nr_pages);
846 	zone->present_pages += nr_pages;
847 
848 	pgdat_resize_lock(zone->zone_pgdat, &flags);
849 	zone->zone_pgdat->node_present_pages += nr_pages;
850 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
851 
852 	node_states_set_node(nid, &arg);
853 	if (need_zonelists_rebuild)
854 		build_all_zonelists(NULL);
855 	zone_pcp_update(zone);
856 
857 	/* Basic onlining is complete, allow allocation of onlined pages. */
858 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
859 
860 	/*
861 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
862 	 * the tail of the freelist when undoing isolation). Shuffle the whole
863 	 * zone to make sure the just onlined pages are properly distributed
864 	 * across the whole freelist - to create an initial shuffle.
865 	 */
866 	shuffle_zone(zone);
867 
868 	init_per_zone_wmark_min();
869 
870 	kswapd_run(nid);
871 	kcompactd_run(nid);
872 
873 	writeback_set_ratelimit();
874 
875 	memory_notify(MEM_ONLINE, &arg);
876 	mem_hotplug_done();
877 	return 0;
878 
879 failed_addition:
880 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
881 		 (unsigned long long) pfn << PAGE_SHIFT,
882 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
883 	memory_notify(MEM_CANCEL_ONLINE, &arg);
884 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
885 	mem_hotplug_done();
886 	return ret;
887 }
888 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
889 
890 static void reset_node_present_pages(pg_data_t *pgdat)
891 {
892 	struct zone *z;
893 
894 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
895 		z->present_pages = 0;
896 
897 	pgdat->node_present_pages = 0;
898 }
899 
900 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
901 static pg_data_t __ref *hotadd_new_pgdat(int nid)
902 {
903 	struct pglist_data *pgdat;
904 
905 	pgdat = NODE_DATA(nid);
906 	if (!pgdat) {
907 		pgdat = arch_alloc_nodedata(nid);
908 		if (!pgdat)
909 			return NULL;
910 
911 		pgdat->per_cpu_nodestats =
912 			alloc_percpu(struct per_cpu_nodestat);
913 		arch_refresh_nodedata(nid, pgdat);
914 	} else {
915 		int cpu;
916 		/*
917 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
918 		 * Note that kswapd will init kswapd_highest_zoneidx properly
919 		 * when it starts in the near future.
920 		 */
921 		pgdat->nr_zones = 0;
922 		pgdat->kswapd_order = 0;
923 		pgdat->kswapd_highest_zoneidx = 0;
924 		for_each_online_cpu(cpu) {
925 			struct per_cpu_nodestat *p;
926 
927 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
928 			memset(p, 0, sizeof(*p));
929 		}
930 	}
931 
932 	/* we can use NODE_DATA(nid) from here */
933 	pgdat->node_id = nid;
934 	pgdat->node_start_pfn = 0;
935 
936 	/* init node's zones as empty zones, we don't have any present pages.*/
937 	free_area_init_core_hotplug(nid);
938 
939 	/*
940 	 * The node we allocated has no zone fallback lists. For avoiding
941 	 * to access not-initialized zonelist, build here.
942 	 */
943 	build_all_zonelists(pgdat);
944 
945 	/*
946 	 * When memory is hot-added, all the memory is in offline state. So
947 	 * clear all zones' present_pages because they will be updated in
948 	 * online_pages() and offline_pages().
949 	 */
950 	reset_node_managed_pages(pgdat);
951 	reset_node_present_pages(pgdat);
952 
953 	return pgdat;
954 }
955 
956 static void rollback_node_hotadd(int nid)
957 {
958 	pg_data_t *pgdat = NODE_DATA(nid);
959 
960 	arch_refresh_nodedata(nid, NULL);
961 	free_percpu(pgdat->per_cpu_nodestats);
962 	arch_free_nodedata(pgdat);
963 }
964 
965 
966 /**
967  * try_online_node - online a node if offlined
968  * @nid: the node ID
969  * @set_node_online: Whether we want to online the node
970  * called by cpu_up() to online a node without onlined memory.
971  *
972  * Returns:
973  * 1 -> a new node has been allocated
974  * 0 -> the node is already online
975  * -ENOMEM -> the node could not be allocated
976  */
977 static int __try_online_node(int nid, bool set_node_online)
978 {
979 	pg_data_t *pgdat;
980 	int ret = 1;
981 
982 	if (node_online(nid))
983 		return 0;
984 
985 	pgdat = hotadd_new_pgdat(nid);
986 	if (!pgdat) {
987 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
988 		ret = -ENOMEM;
989 		goto out;
990 	}
991 
992 	if (set_node_online) {
993 		node_set_online(nid);
994 		ret = register_one_node(nid);
995 		BUG_ON(ret);
996 	}
997 out:
998 	return ret;
999 }
1000 
1001 /*
1002  * Users of this function always want to online/register the node
1003  */
1004 int try_online_node(int nid)
1005 {
1006 	int ret;
1007 
1008 	mem_hotplug_begin();
1009 	ret =  __try_online_node(nid, true);
1010 	mem_hotplug_done();
1011 	return ret;
1012 }
1013 
1014 static int check_hotplug_memory_range(u64 start, u64 size)
1015 {
1016 	/* memory range must be block size aligned */
1017 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1018 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1019 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1020 		       memory_block_size_bytes(), start, size);
1021 		return -EINVAL;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int online_memory_block(struct memory_block *mem, void *arg)
1028 {
1029 	mem->online_type = memhp_default_online_type;
1030 	return device_online(&mem->dev);
1031 }
1032 
1033 /*
1034  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1035  * and online/offline operations (triggered e.g. by sysfs).
1036  *
1037  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1038  */
1039 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1040 {
1041 	struct mhp_params params = { .pgprot = PAGE_KERNEL };
1042 	u64 start, size;
1043 	bool new_node = false;
1044 	int ret;
1045 
1046 	start = res->start;
1047 	size = resource_size(res);
1048 
1049 	ret = check_hotplug_memory_range(start, size);
1050 	if (ret)
1051 		return ret;
1052 
1053 	if (!node_possible(nid)) {
1054 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1055 		return -EINVAL;
1056 	}
1057 
1058 	mem_hotplug_begin();
1059 
1060 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1061 		memblock_add_node(start, size, nid);
1062 
1063 	ret = __try_online_node(nid, false);
1064 	if (ret < 0)
1065 		goto error;
1066 	new_node = ret;
1067 
1068 	/* call arch's memory hotadd */
1069 	ret = arch_add_memory(nid, start, size, &params);
1070 	if (ret < 0)
1071 		goto error;
1072 
1073 	/* create memory block devices after memory was added */
1074 	ret = create_memory_block_devices(start, size);
1075 	if (ret) {
1076 		arch_remove_memory(nid, start, size, NULL);
1077 		goto error;
1078 	}
1079 
1080 	if (new_node) {
1081 		/* If sysfs file of new node can't be created, cpu on the node
1082 		 * can't be hot-added. There is no rollback way now.
1083 		 * So, check by BUG_ON() to catch it reluctantly..
1084 		 * We online node here. We can't roll back from here.
1085 		 */
1086 		node_set_online(nid);
1087 		ret = __register_one_node(nid);
1088 		BUG_ON(ret);
1089 	}
1090 
1091 	/* link memory sections under this node.*/
1092 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1093 			  MEMINIT_HOTPLUG);
1094 
1095 	/* create new memmap entry */
1096 	if (!strcmp(res->name, "System RAM"))
1097 		firmware_map_add_hotplug(start, start + size, "System RAM");
1098 
1099 	/* device_online() will take the lock when calling online_pages() */
1100 	mem_hotplug_done();
1101 
1102 	/*
1103 	 * In case we're allowed to merge the resource, flag it and trigger
1104 	 * merging now that adding succeeded.
1105 	 */
1106 	if (mhp_flags & MEMHP_MERGE_RESOURCE)
1107 		merge_system_ram_resource(res);
1108 
1109 	/* online pages if requested */
1110 	if (memhp_default_online_type != MMOP_OFFLINE)
1111 		walk_memory_blocks(start, size, NULL, online_memory_block);
1112 
1113 	return ret;
1114 error:
1115 	/* rollback pgdat allocation and others */
1116 	if (new_node)
1117 		rollback_node_hotadd(nid);
1118 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1119 		memblock_remove(start, size);
1120 	mem_hotplug_done();
1121 	return ret;
1122 }
1123 
1124 /* requires device_hotplug_lock, see add_memory_resource() */
1125 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1126 {
1127 	struct resource *res;
1128 	int ret;
1129 
1130 	res = register_memory_resource(start, size, "System RAM");
1131 	if (IS_ERR(res))
1132 		return PTR_ERR(res);
1133 
1134 	ret = add_memory_resource(nid, res, mhp_flags);
1135 	if (ret < 0)
1136 		release_memory_resource(res);
1137 	return ret;
1138 }
1139 
1140 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1141 {
1142 	int rc;
1143 
1144 	lock_device_hotplug();
1145 	rc = __add_memory(nid, start, size, mhp_flags);
1146 	unlock_device_hotplug();
1147 
1148 	return rc;
1149 }
1150 EXPORT_SYMBOL_GPL(add_memory);
1151 
1152 /*
1153  * Add special, driver-managed memory to the system as system RAM. Such
1154  * memory is not exposed via the raw firmware-provided memmap as system
1155  * RAM, instead, it is detected and added by a driver - during cold boot,
1156  * after a reboot, and after kexec.
1157  *
1158  * Reasons why this memory should not be used for the initial memmap of a
1159  * kexec kernel or for placing kexec images:
1160  * - The booting kernel is in charge of determining how this memory will be
1161  *   used (e.g., use persistent memory as system RAM)
1162  * - Coordination with a hypervisor is required before this memory
1163  *   can be used (e.g., inaccessible parts).
1164  *
1165  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1166  * memory map") are created. Also, the created memory resource is flagged
1167  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1168  * this memory as well (esp., not place kexec images onto it).
1169  *
1170  * The resource_name (visible via /proc/iomem) has to have the format
1171  * "System RAM ($DRIVER)".
1172  */
1173 int add_memory_driver_managed(int nid, u64 start, u64 size,
1174 			      const char *resource_name, mhp_t mhp_flags)
1175 {
1176 	struct resource *res;
1177 	int rc;
1178 
1179 	if (!resource_name ||
1180 	    strstr(resource_name, "System RAM (") != resource_name ||
1181 	    resource_name[strlen(resource_name) - 1] != ')')
1182 		return -EINVAL;
1183 
1184 	lock_device_hotplug();
1185 
1186 	res = register_memory_resource(start, size, resource_name);
1187 	if (IS_ERR(res)) {
1188 		rc = PTR_ERR(res);
1189 		goto out_unlock;
1190 	}
1191 
1192 	rc = add_memory_resource(nid, res, mhp_flags);
1193 	if (rc < 0)
1194 		release_memory_resource(res);
1195 
1196 out_unlock:
1197 	unlock_device_hotplug();
1198 	return rc;
1199 }
1200 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1201 
1202 #ifdef CONFIG_MEMORY_HOTREMOVE
1203 /*
1204  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1205  * memory holes). When true, return the zone.
1206  */
1207 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1208 				  unsigned long end_pfn)
1209 {
1210 	unsigned long pfn, sec_end_pfn;
1211 	struct zone *zone = NULL;
1212 	struct page *page;
1213 	int i;
1214 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1215 	     pfn < end_pfn;
1216 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1217 		/* Make sure the memory section is present first */
1218 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1219 			continue;
1220 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1221 		     pfn += MAX_ORDER_NR_PAGES) {
1222 			i = 0;
1223 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1224 			while ((i < MAX_ORDER_NR_PAGES) &&
1225 				!pfn_valid_within(pfn + i))
1226 				i++;
1227 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1228 				continue;
1229 			/* Check if we got outside of the zone */
1230 			if (zone && !zone_spans_pfn(zone, pfn + i))
1231 				return NULL;
1232 			page = pfn_to_page(pfn + i);
1233 			if (zone && page_zone(page) != zone)
1234 				return NULL;
1235 			zone = page_zone(page);
1236 		}
1237 	}
1238 
1239 	return zone;
1240 }
1241 
1242 /*
1243  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1244  * non-lru movable pages and hugepages). Will skip over most unmovable
1245  * pages (esp., pages that can be skipped when offlining), but bail out on
1246  * definitely unmovable pages.
1247  *
1248  * Returns:
1249  *	0 in case a movable page is found and movable_pfn was updated.
1250  *	-ENOENT in case no movable page was found.
1251  *	-EBUSY in case a definitely unmovable page was found.
1252  */
1253 static int scan_movable_pages(unsigned long start, unsigned long end,
1254 			      unsigned long *movable_pfn)
1255 {
1256 	unsigned long pfn;
1257 
1258 	for (pfn = start; pfn < end; pfn++) {
1259 		struct page *page, *head;
1260 		unsigned long skip;
1261 
1262 		if (!pfn_valid(pfn))
1263 			continue;
1264 		page = pfn_to_page(pfn);
1265 		if (PageLRU(page))
1266 			goto found;
1267 		if (__PageMovable(page))
1268 			goto found;
1269 
1270 		/*
1271 		 * PageOffline() pages that are not marked __PageMovable() and
1272 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1273 		 * definitely unmovable. If their reference count would be 0,
1274 		 * they could at least be skipped when offlining memory.
1275 		 */
1276 		if (PageOffline(page) && page_count(page))
1277 			return -EBUSY;
1278 
1279 		if (!PageHuge(page))
1280 			continue;
1281 		head = compound_head(page);
1282 		if (page_huge_active(head))
1283 			goto found;
1284 		skip = compound_nr(head) - (page - head);
1285 		pfn += skip - 1;
1286 	}
1287 	return -ENOENT;
1288 found:
1289 	*movable_pfn = pfn;
1290 	return 0;
1291 }
1292 
1293 static int
1294 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1295 {
1296 	unsigned long pfn;
1297 	struct page *page, *head;
1298 	int ret = 0;
1299 	LIST_HEAD(source);
1300 
1301 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1302 		if (!pfn_valid(pfn))
1303 			continue;
1304 		page = pfn_to_page(pfn);
1305 		head = compound_head(page);
1306 
1307 		if (PageHuge(page)) {
1308 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1309 			isolate_huge_page(head, &source);
1310 			continue;
1311 		} else if (PageTransHuge(page))
1312 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1313 
1314 		/*
1315 		 * HWPoison pages have elevated reference counts so the migration would
1316 		 * fail on them. It also doesn't make any sense to migrate them in the
1317 		 * first place. Still try to unmap such a page in case it is still mapped
1318 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1319 		 * the unmap as the catch all safety net).
1320 		 */
1321 		if (PageHWPoison(page)) {
1322 			if (WARN_ON(PageLRU(page)))
1323 				isolate_lru_page(page);
1324 			if (page_mapped(page))
1325 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1326 			continue;
1327 		}
1328 
1329 		if (!get_page_unless_zero(page))
1330 			continue;
1331 		/*
1332 		 * We can skip free pages. And we can deal with pages on
1333 		 * LRU and non-lru movable pages.
1334 		 */
1335 		if (PageLRU(page))
1336 			ret = isolate_lru_page(page);
1337 		else
1338 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1339 		if (!ret) { /* Success */
1340 			list_add_tail(&page->lru, &source);
1341 			if (!__PageMovable(page))
1342 				inc_node_page_state(page, NR_ISOLATED_ANON +
1343 						    page_is_file_lru(page));
1344 
1345 		} else {
1346 			pr_warn("failed to isolate pfn %lx\n", pfn);
1347 			dump_page(page, "isolation failed");
1348 		}
1349 		put_page(page);
1350 	}
1351 	if (!list_empty(&source)) {
1352 		nodemask_t nmask = node_states[N_MEMORY];
1353 		struct migration_target_control mtc = {
1354 			.nmask = &nmask,
1355 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1356 		};
1357 
1358 		/*
1359 		 * We have checked that migration range is on a single zone so
1360 		 * we can use the nid of the first page to all the others.
1361 		 */
1362 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1363 
1364 		/*
1365 		 * try to allocate from a different node but reuse this node
1366 		 * if there are no other online nodes to be used (e.g. we are
1367 		 * offlining a part of the only existing node)
1368 		 */
1369 		node_clear(mtc.nid, nmask);
1370 		if (nodes_empty(nmask))
1371 			node_set(mtc.nid, nmask);
1372 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1373 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1374 		if (ret) {
1375 			list_for_each_entry(page, &source, lru) {
1376 				pr_warn("migrating pfn %lx failed ret:%d ",
1377 				       page_to_pfn(page), ret);
1378 				dump_page(page, "migration failure");
1379 			}
1380 			putback_movable_pages(&source);
1381 		}
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 static int __init cmdline_parse_movable_node(char *p)
1388 {
1389 	movable_node_enabled = true;
1390 	return 0;
1391 }
1392 early_param("movable_node", cmdline_parse_movable_node);
1393 
1394 /* check which state of node_states will be changed when offline memory */
1395 static void node_states_check_changes_offline(unsigned long nr_pages,
1396 		struct zone *zone, struct memory_notify *arg)
1397 {
1398 	struct pglist_data *pgdat = zone->zone_pgdat;
1399 	unsigned long present_pages = 0;
1400 	enum zone_type zt;
1401 
1402 	arg->status_change_nid = NUMA_NO_NODE;
1403 	arg->status_change_nid_normal = NUMA_NO_NODE;
1404 	arg->status_change_nid_high = NUMA_NO_NODE;
1405 
1406 	/*
1407 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1408 	 * If the memory to be offline is within the range
1409 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1410 	 * the zones in that range will become empty after the offlining,
1411 	 * thus we can determine that we need to clear the node from
1412 	 * node_states[N_NORMAL_MEMORY].
1413 	 */
1414 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1415 		present_pages += pgdat->node_zones[zt].present_pages;
1416 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1417 		arg->status_change_nid_normal = zone_to_nid(zone);
1418 
1419 #ifdef CONFIG_HIGHMEM
1420 	/*
1421 	 * node_states[N_HIGH_MEMORY] contains nodes which
1422 	 * have normal memory or high memory.
1423 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1424 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1425 	 * we determine that the zones in that range become empty,
1426 	 * we need to clear the node for N_HIGH_MEMORY.
1427 	 */
1428 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1429 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1430 		arg->status_change_nid_high = zone_to_nid(zone);
1431 #endif
1432 
1433 	/*
1434 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1435 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1436 	 * as well.
1437 	 * Here we count the possible pages from ZONE_MOVABLE.
1438 	 * If after having accounted all the pages, we see that the nr_pages
1439 	 * to be offlined is over or equal to the accounted pages,
1440 	 * we know that the node will become empty, and so, we can clear
1441 	 * it for N_MEMORY as well.
1442 	 */
1443 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1444 
1445 	if (nr_pages >= present_pages)
1446 		arg->status_change_nid = zone_to_nid(zone);
1447 }
1448 
1449 static void node_states_clear_node(int node, struct memory_notify *arg)
1450 {
1451 	if (arg->status_change_nid_normal >= 0)
1452 		node_clear_state(node, N_NORMAL_MEMORY);
1453 
1454 	if (arg->status_change_nid_high >= 0)
1455 		node_clear_state(node, N_HIGH_MEMORY);
1456 
1457 	if (arg->status_change_nid >= 0)
1458 		node_clear_state(node, N_MEMORY);
1459 }
1460 
1461 static int count_system_ram_pages_cb(unsigned long start_pfn,
1462 				     unsigned long nr_pages, void *data)
1463 {
1464 	unsigned long *nr_system_ram_pages = data;
1465 
1466 	*nr_system_ram_pages += nr_pages;
1467 	return 0;
1468 }
1469 
1470 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1471 {
1472 	const unsigned long end_pfn = start_pfn + nr_pages;
1473 	unsigned long pfn, system_ram_pages = 0;
1474 	unsigned long flags;
1475 	struct zone *zone;
1476 	struct memory_notify arg;
1477 	int ret, node;
1478 	char *reason;
1479 
1480 	/* We can only offline full sections (e.g., SECTION_IS_ONLINE) */
1481 	if (WARN_ON_ONCE(!nr_pages ||
1482 			 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION)))
1483 		return -EINVAL;
1484 
1485 	mem_hotplug_begin();
1486 
1487 	/*
1488 	 * Don't allow to offline memory blocks that contain holes.
1489 	 * Consequently, memory blocks with holes can never get onlined
1490 	 * via the hotplug path - online_pages() - as hotplugged memory has
1491 	 * no holes. This way, we e.g., don't have to worry about marking
1492 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1493 	 * avoid using walk_system_ram_range() later.
1494 	 */
1495 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1496 			      count_system_ram_pages_cb);
1497 	if (system_ram_pages != nr_pages) {
1498 		ret = -EINVAL;
1499 		reason = "memory holes";
1500 		goto failed_removal;
1501 	}
1502 
1503 	/* This makes hotplug much easier...and readable.
1504 	   we assume this for now. .*/
1505 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1506 	if (!zone) {
1507 		ret = -EINVAL;
1508 		reason = "multizone range";
1509 		goto failed_removal;
1510 	}
1511 	node = zone_to_nid(zone);
1512 
1513 	/* set above range as isolated */
1514 	ret = start_isolate_page_range(start_pfn, end_pfn,
1515 				       MIGRATE_MOVABLE,
1516 				       MEMORY_OFFLINE | REPORT_FAILURE);
1517 	if (ret) {
1518 		reason = "failure to isolate range";
1519 		goto failed_removal;
1520 	}
1521 
1522 	arg.start_pfn = start_pfn;
1523 	arg.nr_pages = nr_pages;
1524 	node_states_check_changes_offline(nr_pages, zone, &arg);
1525 
1526 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1527 	ret = notifier_to_errno(ret);
1528 	if (ret) {
1529 		reason = "notifier failure";
1530 		goto failed_removal_isolated;
1531 	}
1532 
1533 	do {
1534 		pfn = start_pfn;
1535 		do {
1536 			if (signal_pending(current)) {
1537 				ret = -EINTR;
1538 				reason = "signal backoff";
1539 				goto failed_removal_isolated;
1540 			}
1541 
1542 			cond_resched();
1543 			lru_add_drain_all();
1544 
1545 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1546 			if (!ret) {
1547 				/*
1548 				 * TODO: fatal migration failures should bail
1549 				 * out
1550 				 */
1551 				do_migrate_range(pfn, end_pfn);
1552 			}
1553 		} while (!ret);
1554 
1555 		if (ret != -ENOENT) {
1556 			reason = "unmovable page";
1557 			goto failed_removal_isolated;
1558 		}
1559 
1560 		/*
1561 		 * Dissolve free hugepages in the memory block before doing
1562 		 * offlining actually in order to make hugetlbfs's object
1563 		 * counting consistent.
1564 		 */
1565 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1566 		if (ret) {
1567 			reason = "failure to dissolve huge pages";
1568 			goto failed_removal_isolated;
1569 		}
1570 
1571 		/*
1572 		 * per-cpu pages are drained in start_isolate_page_range, but if
1573 		 * there are still pages that are not free, make sure that we
1574 		 * drain again, because when we isolated range we might
1575 		 * have raced with another thread that was adding pages to pcp
1576 		 * list.
1577 		 *
1578 		 * Forward progress should be still guaranteed because
1579 		 * pages on the pcp list can only belong to MOVABLE_ZONE
1580 		 * because has_unmovable_pages explicitly checks for
1581 		 * PageBuddy on freed pages on other zones.
1582 		 */
1583 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1584 		if (ret)
1585 			drain_all_pages(zone);
1586 	} while (ret);
1587 
1588 	/* Mark all sections offline and remove free pages from the buddy. */
1589 	__offline_isolated_pages(start_pfn, end_pfn);
1590 	pr_info("Offlined Pages %ld\n", nr_pages);
1591 
1592 	/*
1593 	 * The memory sections are marked offline, and the pageblock flags
1594 	 * effectively stale; nobody should be touching them. Fixup the number
1595 	 * of isolated pageblocks, memory onlining will properly revert this.
1596 	 */
1597 	spin_lock_irqsave(&zone->lock, flags);
1598 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1599 	spin_unlock_irqrestore(&zone->lock, flags);
1600 
1601 	/* removal success */
1602 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1603 	zone->present_pages -= nr_pages;
1604 
1605 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1606 	zone->zone_pgdat->node_present_pages -= nr_pages;
1607 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1608 
1609 	init_per_zone_wmark_min();
1610 
1611 	if (!populated_zone(zone)) {
1612 		zone_pcp_reset(zone);
1613 		build_all_zonelists(NULL);
1614 	} else
1615 		zone_pcp_update(zone);
1616 
1617 	node_states_clear_node(node, &arg);
1618 	if (arg.status_change_nid >= 0) {
1619 		kswapd_stop(node);
1620 		kcompactd_stop(node);
1621 	}
1622 
1623 	writeback_set_ratelimit();
1624 
1625 	memory_notify(MEM_OFFLINE, &arg);
1626 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1627 	mem_hotplug_done();
1628 	return 0;
1629 
1630 failed_removal_isolated:
1631 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1632 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1633 failed_removal:
1634 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1635 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1636 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1637 		 reason);
1638 	/* pushback to free area */
1639 	mem_hotplug_done();
1640 	return ret;
1641 }
1642 
1643 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1644 {
1645 	int ret = !is_memblock_offlined(mem);
1646 
1647 	if (unlikely(ret)) {
1648 		phys_addr_t beginpa, endpa;
1649 
1650 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1651 		endpa = beginpa + memory_block_size_bytes() - 1;
1652 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1653 			&beginpa, &endpa);
1654 
1655 		return -EBUSY;
1656 	}
1657 	return 0;
1658 }
1659 
1660 static int check_cpu_on_node(pg_data_t *pgdat)
1661 {
1662 	int cpu;
1663 
1664 	for_each_present_cpu(cpu) {
1665 		if (cpu_to_node(cpu) == pgdat->node_id)
1666 			/*
1667 			 * the cpu on this node isn't removed, and we can't
1668 			 * offline this node.
1669 			 */
1670 			return -EBUSY;
1671 	}
1672 
1673 	return 0;
1674 }
1675 
1676 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1677 {
1678 	int nid = *(int *)arg;
1679 
1680 	/*
1681 	 * If a memory block belongs to multiple nodes, the stored nid is not
1682 	 * reliable. However, such blocks are always online (e.g., cannot get
1683 	 * offlined) and, therefore, are still spanned by the node.
1684 	 */
1685 	return mem->nid == nid ? -EEXIST : 0;
1686 }
1687 
1688 /**
1689  * try_offline_node
1690  * @nid: the node ID
1691  *
1692  * Offline a node if all memory sections and cpus of the node are removed.
1693  *
1694  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1695  * and online/offline operations before this call.
1696  */
1697 void try_offline_node(int nid)
1698 {
1699 	pg_data_t *pgdat = NODE_DATA(nid);
1700 	int rc;
1701 
1702 	/*
1703 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1704 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1705 	 * e.g., after the memory block was onlined.
1706 	 */
1707 	if (pgdat->node_spanned_pages)
1708 		return;
1709 
1710 	/*
1711 	 * Especially offline memory blocks might not be spanned by the
1712 	 * node. They will get spanned by the node once they get onlined.
1713 	 * However, they link to the node in sysfs and can get onlined later.
1714 	 */
1715 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1716 	if (rc)
1717 		return;
1718 
1719 	if (check_cpu_on_node(pgdat))
1720 		return;
1721 
1722 	/*
1723 	 * all memory/cpu of this node are removed, we can offline this
1724 	 * node now.
1725 	 */
1726 	node_set_offline(nid);
1727 	unregister_one_node(nid);
1728 }
1729 EXPORT_SYMBOL(try_offline_node);
1730 
1731 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1732 {
1733 	int rc = 0;
1734 
1735 	BUG_ON(check_hotplug_memory_range(start, size));
1736 
1737 	/*
1738 	 * All memory blocks must be offlined before removing memory.  Check
1739 	 * whether all memory blocks in question are offline and return error
1740 	 * if this is not the case.
1741 	 */
1742 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1743 	if (rc)
1744 		return rc;
1745 
1746 	/* remove memmap entry */
1747 	firmware_map_remove(start, start + size, "System RAM");
1748 
1749 	/*
1750 	 * Memory block device removal under the device_hotplug_lock is
1751 	 * a barrier against racing online attempts.
1752 	 */
1753 	remove_memory_block_devices(start, size);
1754 
1755 	mem_hotplug_begin();
1756 
1757 	arch_remove_memory(nid, start, size, NULL);
1758 
1759 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1760 		memblock_free(start, size);
1761 		memblock_remove(start, size);
1762 	}
1763 
1764 	release_mem_region_adjustable(start, size);
1765 
1766 	try_offline_node(nid);
1767 
1768 	mem_hotplug_done();
1769 	return 0;
1770 }
1771 
1772 /**
1773  * remove_memory
1774  * @nid: the node ID
1775  * @start: physical address of the region to remove
1776  * @size: size of the region to remove
1777  *
1778  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1779  * and online/offline operations before this call, as required by
1780  * try_offline_node().
1781  */
1782 void __remove_memory(int nid, u64 start, u64 size)
1783 {
1784 
1785 	/*
1786 	 * trigger BUG() if some memory is not offlined prior to calling this
1787 	 * function
1788 	 */
1789 	if (try_remove_memory(nid, start, size))
1790 		BUG();
1791 }
1792 
1793 /*
1794  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1795  * some memory is not offline
1796  */
1797 int remove_memory(int nid, u64 start, u64 size)
1798 {
1799 	int rc;
1800 
1801 	lock_device_hotplug();
1802 	rc  = try_remove_memory(nid, start, size);
1803 	unlock_device_hotplug();
1804 
1805 	return rc;
1806 }
1807 EXPORT_SYMBOL_GPL(remove_memory);
1808 
1809 /*
1810  * Try to offline and remove a memory block. Might take a long time to
1811  * finish in case memory is still in use. Primarily useful for memory devices
1812  * that logically unplugged all memory (so it's no longer in use) and want to
1813  * offline + remove the memory block.
1814  */
1815 int offline_and_remove_memory(int nid, u64 start, u64 size)
1816 {
1817 	struct memory_block *mem;
1818 	int rc = -EINVAL;
1819 
1820 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1821 	    size != memory_block_size_bytes())
1822 		return rc;
1823 
1824 	lock_device_hotplug();
1825 	mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1826 	if (mem)
1827 		rc = device_offline(&mem->dev);
1828 	/* Ignore if the device is already offline. */
1829 	if (rc > 0)
1830 		rc = 0;
1831 
1832 	/*
1833 	 * In case we succeeded to offline the memory block, remove it.
1834 	 * This cannot fail as it cannot get onlined in the meantime.
1835 	 */
1836 	if (!rc) {
1837 		rc = try_remove_memory(nid, start, size);
1838 		WARN_ON_ONCE(rc);
1839 	}
1840 	unlock_device_hotplug();
1841 
1842 	return rc;
1843 }
1844 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1845 #endif /* CONFIG_MEMORY_HOTREMOVE */
1846