1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 return; 136 } 137 138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 139 void get_page_bootmem(unsigned long info, struct page *page, 140 unsigned long type) 141 { 142 page->freelist = (void *)type; 143 SetPagePrivate(page); 144 set_page_private(page, info); 145 page_ref_inc(page); 146 } 147 148 void put_page_bootmem(struct page *page) 149 { 150 unsigned long type; 151 152 type = (unsigned long) page->freelist; 153 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 154 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 155 156 if (page_ref_dec_return(page) == 1) { 157 page->freelist = NULL; 158 ClearPagePrivate(page); 159 set_page_private(page, 0); 160 INIT_LIST_HEAD(&page->lru); 161 free_reserved_page(page); 162 } 163 } 164 165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 166 #ifndef CONFIG_SPARSEMEM_VMEMMAP 167 static void register_page_bootmem_info_section(unsigned long start_pfn) 168 { 169 unsigned long *usemap, mapsize, section_nr, i; 170 struct mem_section *ms; 171 struct page *page, *memmap; 172 173 section_nr = pfn_to_section_nr(start_pfn); 174 ms = __nr_to_section(section_nr); 175 176 /* Get section's memmap address */ 177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 178 179 /* 180 * Get page for the memmap's phys address 181 * XXX: need more consideration for sparse_vmemmap... 182 */ 183 page = virt_to_page(memmap); 184 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 186 187 /* remember memmap's page */ 188 for (i = 0; i < mapsize; i++, page++) 189 get_page_bootmem(section_nr, page, SECTION_INFO); 190 191 usemap = ms->pageblock_flags; 192 page = virt_to_page(usemap); 193 194 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 195 196 for (i = 0; i < mapsize; i++, page++) 197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 198 199 } 200 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 201 static void register_page_bootmem_info_section(unsigned long start_pfn) 202 { 203 unsigned long *usemap, mapsize, section_nr, i; 204 struct mem_section *ms; 205 struct page *page, *memmap; 206 207 section_nr = pfn_to_section_nr(start_pfn); 208 ms = __nr_to_section(section_nr); 209 210 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 211 212 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 213 214 usemap = ms->pageblock_flags; 215 page = virt_to_page(usemap); 216 217 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 218 219 for (i = 0; i < mapsize; i++, page++) 220 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 221 } 222 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 223 224 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 225 { 226 unsigned long i, pfn, end_pfn, nr_pages; 227 int node = pgdat->node_id; 228 struct page *page; 229 230 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 231 page = virt_to_page(pgdat); 232 233 for (i = 0; i < nr_pages; i++, page++) 234 get_page_bootmem(node, page, NODE_INFO); 235 236 pfn = pgdat->node_start_pfn; 237 end_pfn = pgdat_end_pfn(pgdat); 238 239 /* register section info */ 240 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 241 /* 242 * Some platforms can assign the same pfn to multiple nodes - on 243 * node0 as well as nodeN. To avoid registering a pfn against 244 * multiple nodes we check that this pfn does not already 245 * reside in some other nodes. 246 */ 247 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 248 register_page_bootmem_info_section(pfn); 249 } 250 } 251 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 252 253 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 254 struct vmem_altmap *altmap, bool want_memblock) 255 { 256 int ret; 257 258 if (pfn_valid(phys_start_pfn)) 259 return -EEXIST; 260 261 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 262 if (ret < 0) 263 return ret; 264 265 if (!want_memblock) 266 return 0; 267 268 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 269 } 270 271 /* 272 * Reasonably generic function for adding memory. It is 273 * expected that archs that support memory hotplug will 274 * call this function after deciding the zone to which to 275 * add the new pages. 276 */ 277 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 278 unsigned long nr_pages, struct mhp_restrictions *restrictions) 279 { 280 unsigned long i; 281 int err = 0; 282 int start_sec, end_sec; 283 struct vmem_altmap *altmap = restrictions->altmap; 284 285 /* during initialize mem_map, align hot-added range to section */ 286 start_sec = pfn_to_section_nr(phys_start_pfn); 287 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 288 289 if (altmap) { 290 /* 291 * Validate altmap is within bounds of the total request 292 */ 293 if (altmap->base_pfn != phys_start_pfn 294 || vmem_altmap_offset(altmap) > nr_pages) { 295 pr_warn_once("memory add fail, invalid altmap\n"); 296 err = -EINVAL; 297 goto out; 298 } 299 altmap->alloc = 0; 300 } 301 302 for (i = start_sec; i <= end_sec; i++) { 303 err = __add_section(nid, section_nr_to_pfn(i), altmap, 304 restrictions->flags & MHP_MEMBLOCK_API); 305 306 /* 307 * EEXIST is finally dealt with by ioresource collision 308 * check. see add_memory() => register_memory_resource() 309 * Warning will be printed if there is collision. 310 */ 311 if (err && (err != -EEXIST)) 312 break; 313 err = 0; 314 cond_resched(); 315 } 316 vmemmap_populate_print_last(); 317 out: 318 return err; 319 } 320 321 #ifdef CONFIG_MEMORY_HOTREMOVE 322 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 323 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 324 unsigned long start_pfn, 325 unsigned long end_pfn) 326 { 327 struct mem_section *ms; 328 329 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 330 ms = __pfn_to_section(start_pfn); 331 332 if (unlikely(!valid_section(ms))) 333 continue; 334 335 if (unlikely(pfn_to_nid(start_pfn) != nid)) 336 continue; 337 338 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 339 continue; 340 341 return start_pfn; 342 } 343 344 return 0; 345 } 346 347 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 348 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 349 unsigned long start_pfn, 350 unsigned long end_pfn) 351 { 352 struct mem_section *ms; 353 unsigned long pfn; 354 355 /* pfn is the end pfn of a memory section. */ 356 pfn = end_pfn - 1; 357 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 358 ms = __pfn_to_section(pfn); 359 360 if (unlikely(!valid_section(ms))) 361 continue; 362 363 if (unlikely(pfn_to_nid(pfn) != nid)) 364 continue; 365 366 if (zone && zone != page_zone(pfn_to_page(pfn))) 367 continue; 368 369 return pfn; 370 } 371 372 return 0; 373 } 374 375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 376 unsigned long end_pfn) 377 { 378 unsigned long zone_start_pfn = zone->zone_start_pfn; 379 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 380 unsigned long zone_end_pfn = z; 381 unsigned long pfn; 382 struct mem_section *ms; 383 int nid = zone_to_nid(zone); 384 385 zone_span_writelock(zone); 386 if (zone_start_pfn == start_pfn) { 387 /* 388 * If the section is smallest section in the zone, it need 389 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 390 * In this case, we find second smallest valid mem_section 391 * for shrinking zone. 392 */ 393 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 394 zone_end_pfn); 395 if (pfn) { 396 zone->zone_start_pfn = pfn; 397 zone->spanned_pages = zone_end_pfn - pfn; 398 } 399 } else if (zone_end_pfn == end_pfn) { 400 /* 401 * If the section is biggest section in the zone, it need 402 * shrink zone->spanned_pages. 403 * In this case, we find second biggest valid mem_section for 404 * shrinking zone. 405 */ 406 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 407 start_pfn); 408 if (pfn) 409 zone->spanned_pages = pfn - zone_start_pfn + 1; 410 } 411 412 /* 413 * The section is not biggest or smallest mem_section in the zone, it 414 * only creates a hole in the zone. So in this case, we need not 415 * change the zone. But perhaps, the zone has only hole data. Thus 416 * it check the zone has only hole or not. 417 */ 418 pfn = zone_start_pfn; 419 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 420 ms = __pfn_to_section(pfn); 421 422 if (unlikely(!valid_section(ms))) 423 continue; 424 425 if (page_zone(pfn_to_page(pfn)) != zone) 426 continue; 427 428 /* If the section is current section, it continues the loop */ 429 if (start_pfn == pfn) 430 continue; 431 432 /* If we find valid section, we have nothing to do */ 433 zone_span_writeunlock(zone); 434 return; 435 } 436 437 /* The zone has no valid section */ 438 zone->zone_start_pfn = 0; 439 zone->spanned_pages = 0; 440 zone_span_writeunlock(zone); 441 } 442 443 static void shrink_pgdat_span(struct pglist_data *pgdat, 444 unsigned long start_pfn, unsigned long end_pfn) 445 { 446 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 447 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 448 unsigned long pgdat_end_pfn = p; 449 unsigned long pfn; 450 struct mem_section *ms; 451 int nid = pgdat->node_id; 452 453 if (pgdat_start_pfn == start_pfn) { 454 /* 455 * If the section is smallest section in the pgdat, it need 456 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 457 * In this case, we find second smallest valid mem_section 458 * for shrinking zone. 459 */ 460 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 461 pgdat_end_pfn); 462 if (pfn) { 463 pgdat->node_start_pfn = pfn; 464 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 465 } 466 } else if (pgdat_end_pfn == end_pfn) { 467 /* 468 * If the section is biggest section in the pgdat, it need 469 * shrink pgdat->node_spanned_pages. 470 * In this case, we find second biggest valid mem_section for 471 * shrinking zone. 472 */ 473 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 474 start_pfn); 475 if (pfn) 476 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 477 } 478 479 /* 480 * If the section is not biggest or smallest mem_section in the pgdat, 481 * it only creates a hole in the pgdat. So in this case, we need not 482 * change the pgdat. 483 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 484 * has only hole or not. 485 */ 486 pfn = pgdat_start_pfn; 487 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 488 ms = __pfn_to_section(pfn); 489 490 if (unlikely(!valid_section(ms))) 491 continue; 492 493 if (pfn_to_nid(pfn) != nid) 494 continue; 495 496 /* If the section is current section, it continues the loop */ 497 if (start_pfn == pfn) 498 continue; 499 500 /* If we find valid section, we have nothing to do */ 501 return; 502 } 503 504 /* The pgdat has no valid section */ 505 pgdat->node_start_pfn = 0; 506 pgdat->node_spanned_pages = 0; 507 } 508 509 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 510 { 511 struct pglist_data *pgdat = zone->zone_pgdat; 512 int nr_pages = PAGES_PER_SECTION; 513 unsigned long flags; 514 515 pgdat_resize_lock(zone->zone_pgdat, &flags); 516 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 517 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 518 pgdat_resize_unlock(zone->zone_pgdat, &flags); 519 } 520 521 static void __remove_section(struct zone *zone, struct mem_section *ms, 522 unsigned long map_offset, 523 struct vmem_altmap *altmap) 524 { 525 unsigned long start_pfn; 526 int scn_nr; 527 528 if (WARN_ON_ONCE(!valid_section(ms))) 529 return; 530 531 unregister_memory_section(ms); 532 533 scn_nr = __section_nr(ms); 534 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 535 __remove_zone(zone, start_pfn); 536 537 sparse_remove_one_section(zone, ms, map_offset, altmap); 538 } 539 540 /** 541 * __remove_pages() - remove sections of pages from a zone 542 * @zone: zone from which pages need to be removed 543 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 544 * @nr_pages: number of pages to remove (must be multiple of section size) 545 * @altmap: alternative device page map or %NULL if default memmap is used 546 * 547 * Generic helper function to remove section mappings and sysfs entries 548 * for the section of the memory we are removing. Caller needs to make 549 * sure that pages are marked reserved and zones are adjust properly by 550 * calling offline_pages(). 551 */ 552 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 553 unsigned long nr_pages, struct vmem_altmap *altmap) 554 { 555 unsigned long i; 556 unsigned long map_offset = 0; 557 int sections_to_remove; 558 559 /* In the ZONE_DEVICE case device driver owns the memory region */ 560 if (is_dev_zone(zone)) { 561 if (altmap) 562 map_offset = vmem_altmap_offset(altmap); 563 } 564 565 clear_zone_contiguous(zone); 566 567 /* 568 * We can only remove entire sections 569 */ 570 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 571 BUG_ON(nr_pages % PAGES_PER_SECTION); 572 573 sections_to_remove = nr_pages / PAGES_PER_SECTION; 574 for (i = 0; i < sections_to_remove; i++) { 575 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 576 577 cond_resched(); 578 __remove_section(zone, __pfn_to_section(pfn), map_offset, 579 altmap); 580 map_offset = 0; 581 } 582 583 set_zone_contiguous(zone); 584 } 585 #endif /* CONFIG_MEMORY_HOTREMOVE */ 586 587 int set_online_page_callback(online_page_callback_t callback) 588 { 589 int rc = -EINVAL; 590 591 get_online_mems(); 592 mutex_lock(&online_page_callback_lock); 593 594 if (online_page_callback == generic_online_page) { 595 online_page_callback = callback; 596 rc = 0; 597 } 598 599 mutex_unlock(&online_page_callback_lock); 600 put_online_mems(); 601 602 return rc; 603 } 604 EXPORT_SYMBOL_GPL(set_online_page_callback); 605 606 int restore_online_page_callback(online_page_callback_t callback) 607 { 608 int rc = -EINVAL; 609 610 get_online_mems(); 611 mutex_lock(&online_page_callback_lock); 612 613 if (online_page_callback == callback) { 614 online_page_callback = generic_online_page; 615 rc = 0; 616 } 617 618 mutex_unlock(&online_page_callback_lock); 619 put_online_mems(); 620 621 return rc; 622 } 623 EXPORT_SYMBOL_GPL(restore_online_page_callback); 624 625 void __online_page_set_limits(struct page *page) 626 { 627 } 628 EXPORT_SYMBOL_GPL(__online_page_set_limits); 629 630 void __online_page_increment_counters(struct page *page) 631 { 632 adjust_managed_page_count(page, 1); 633 } 634 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 635 636 void __online_page_free(struct page *page) 637 { 638 __free_reserved_page(page); 639 } 640 EXPORT_SYMBOL_GPL(__online_page_free); 641 642 static void generic_online_page(struct page *page, unsigned int order) 643 { 644 kernel_map_pages(page, 1 << order, 1); 645 __free_pages_core(page, order); 646 totalram_pages_add(1UL << order); 647 #ifdef CONFIG_HIGHMEM 648 if (PageHighMem(page)) 649 totalhigh_pages_add(1UL << order); 650 #endif 651 } 652 653 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 654 { 655 unsigned long end = start + nr_pages; 656 int order, onlined_pages = 0; 657 658 while (start < end) { 659 order = min(MAX_ORDER - 1, 660 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 661 (*online_page_callback)(pfn_to_page(start), order); 662 663 onlined_pages += (1UL << order); 664 start += (1UL << order); 665 } 666 return onlined_pages; 667 } 668 669 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 670 void *arg) 671 { 672 unsigned long onlined_pages = *(unsigned long *)arg; 673 674 if (PageReserved(pfn_to_page(start_pfn))) 675 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 676 677 online_mem_sections(start_pfn, start_pfn + nr_pages); 678 679 *(unsigned long *)arg = onlined_pages; 680 return 0; 681 } 682 683 /* check which state of node_states will be changed when online memory */ 684 static void node_states_check_changes_online(unsigned long nr_pages, 685 struct zone *zone, struct memory_notify *arg) 686 { 687 int nid = zone_to_nid(zone); 688 689 arg->status_change_nid = NUMA_NO_NODE; 690 arg->status_change_nid_normal = NUMA_NO_NODE; 691 arg->status_change_nid_high = NUMA_NO_NODE; 692 693 if (!node_state(nid, N_MEMORY)) 694 arg->status_change_nid = nid; 695 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 696 arg->status_change_nid_normal = nid; 697 #ifdef CONFIG_HIGHMEM 698 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 699 arg->status_change_nid_high = nid; 700 #endif 701 } 702 703 static void node_states_set_node(int node, struct memory_notify *arg) 704 { 705 if (arg->status_change_nid_normal >= 0) 706 node_set_state(node, N_NORMAL_MEMORY); 707 708 if (arg->status_change_nid_high >= 0) 709 node_set_state(node, N_HIGH_MEMORY); 710 711 if (arg->status_change_nid >= 0) 712 node_set_state(node, N_MEMORY); 713 } 714 715 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 716 unsigned long nr_pages) 717 { 718 unsigned long old_end_pfn = zone_end_pfn(zone); 719 720 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 721 zone->zone_start_pfn = start_pfn; 722 723 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 724 } 725 726 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 727 unsigned long nr_pages) 728 { 729 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 730 731 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 732 pgdat->node_start_pfn = start_pfn; 733 734 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 735 } 736 737 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 738 unsigned long nr_pages, struct vmem_altmap *altmap) 739 { 740 struct pglist_data *pgdat = zone->zone_pgdat; 741 int nid = pgdat->node_id; 742 unsigned long flags; 743 744 clear_zone_contiguous(zone); 745 746 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 747 pgdat_resize_lock(pgdat, &flags); 748 zone_span_writelock(zone); 749 if (zone_is_empty(zone)) 750 init_currently_empty_zone(zone, start_pfn, nr_pages); 751 resize_zone_range(zone, start_pfn, nr_pages); 752 zone_span_writeunlock(zone); 753 resize_pgdat_range(pgdat, start_pfn, nr_pages); 754 pgdat_resize_unlock(pgdat, &flags); 755 756 /* 757 * TODO now we have a visible range of pages which are not associated 758 * with their zone properly. Not nice but set_pfnblock_flags_mask 759 * expects the zone spans the pfn range. All the pages in the range 760 * are reserved so nobody should be touching them so we should be safe 761 */ 762 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 763 MEMMAP_HOTPLUG, altmap); 764 765 set_zone_contiguous(zone); 766 } 767 768 /* 769 * Returns a default kernel memory zone for the given pfn range. 770 * If no kernel zone covers this pfn range it will automatically go 771 * to the ZONE_NORMAL. 772 */ 773 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 774 unsigned long nr_pages) 775 { 776 struct pglist_data *pgdat = NODE_DATA(nid); 777 int zid; 778 779 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 780 struct zone *zone = &pgdat->node_zones[zid]; 781 782 if (zone_intersects(zone, start_pfn, nr_pages)) 783 return zone; 784 } 785 786 return &pgdat->node_zones[ZONE_NORMAL]; 787 } 788 789 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 790 unsigned long nr_pages) 791 { 792 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 793 nr_pages); 794 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 795 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 796 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 797 798 /* 799 * We inherit the existing zone in a simple case where zones do not 800 * overlap in the given range 801 */ 802 if (in_kernel ^ in_movable) 803 return (in_kernel) ? kernel_zone : movable_zone; 804 805 /* 806 * If the range doesn't belong to any zone or two zones overlap in the 807 * given range then we use movable zone only if movable_node is 808 * enabled because we always online to a kernel zone by default. 809 */ 810 return movable_node_enabled ? movable_zone : kernel_zone; 811 } 812 813 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 814 unsigned long nr_pages) 815 { 816 if (online_type == MMOP_ONLINE_KERNEL) 817 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 818 819 if (online_type == MMOP_ONLINE_MOVABLE) 820 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 821 822 return default_zone_for_pfn(nid, start_pfn, nr_pages); 823 } 824 825 /* 826 * Associates the given pfn range with the given node and the zone appropriate 827 * for the given online type. 828 */ 829 static struct zone * __meminit move_pfn_range(int online_type, int nid, 830 unsigned long start_pfn, unsigned long nr_pages) 831 { 832 struct zone *zone; 833 834 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 835 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 836 return zone; 837 } 838 839 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 840 { 841 unsigned long flags; 842 unsigned long onlined_pages = 0; 843 struct zone *zone; 844 int need_zonelists_rebuild = 0; 845 int nid; 846 int ret; 847 struct memory_notify arg; 848 struct memory_block *mem; 849 850 mem_hotplug_begin(); 851 852 /* 853 * We can't use pfn_to_nid() because nid might be stored in struct page 854 * which is not yet initialized. Instead, we find nid from memory block. 855 */ 856 mem = find_memory_block(__pfn_to_section(pfn)); 857 nid = mem->nid; 858 put_device(&mem->dev); 859 860 /* associate pfn range with the zone */ 861 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 862 863 arg.start_pfn = pfn; 864 arg.nr_pages = nr_pages; 865 node_states_check_changes_online(nr_pages, zone, &arg); 866 867 ret = memory_notify(MEM_GOING_ONLINE, &arg); 868 ret = notifier_to_errno(ret); 869 if (ret) 870 goto failed_addition; 871 872 /* 873 * If this zone is not populated, then it is not in zonelist. 874 * This means the page allocator ignores this zone. 875 * So, zonelist must be updated after online. 876 */ 877 if (!populated_zone(zone)) { 878 need_zonelists_rebuild = 1; 879 setup_zone_pageset(zone); 880 } 881 882 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 883 online_pages_range); 884 if (ret) { 885 if (need_zonelists_rebuild) 886 zone_pcp_reset(zone); 887 goto failed_addition; 888 } 889 890 zone->present_pages += onlined_pages; 891 892 pgdat_resize_lock(zone->zone_pgdat, &flags); 893 zone->zone_pgdat->node_present_pages += onlined_pages; 894 pgdat_resize_unlock(zone->zone_pgdat, &flags); 895 896 shuffle_zone(zone); 897 898 if (onlined_pages) { 899 node_states_set_node(nid, &arg); 900 if (need_zonelists_rebuild) 901 build_all_zonelists(NULL); 902 else 903 zone_pcp_update(zone); 904 } 905 906 init_per_zone_wmark_min(); 907 908 if (onlined_pages) { 909 kswapd_run(nid); 910 kcompactd_run(nid); 911 } 912 913 vm_total_pages = nr_free_pagecache_pages(); 914 915 writeback_set_ratelimit(); 916 917 if (onlined_pages) 918 memory_notify(MEM_ONLINE, &arg); 919 mem_hotplug_done(); 920 return 0; 921 922 failed_addition: 923 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 924 (unsigned long long) pfn << PAGE_SHIFT, 925 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 926 memory_notify(MEM_CANCEL_ONLINE, &arg); 927 mem_hotplug_done(); 928 return ret; 929 } 930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 931 932 static void reset_node_present_pages(pg_data_t *pgdat) 933 { 934 struct zone *z; 935 936 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 937 z->present_pages = 0; 938 939 pgdat->node_present_pages = 0; 940 } 941 942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 944 { 945 struct pglist_data *pgdat; 946 unsigned long start_pfn = PFN_DOWN(start); 947 948 pgdat = NODE_DATA(nid); 949 if (!pgdat) { 950 pgdat = arch_alloc_nodedata(nid); 951 if (!pgdat) 952 return NULL; 953 954 arch_refresh_nodedata(nid, pgdat); 955 } else { 956 /* 957 * Reset the nr_zones, order and classzone_idx before reuse. 958 * Note that kswapd will init kswapd_classzone_idx properly 959 * when it starts in the near future. 960 */ 961 pgdat->nr_zones = 0; 962 pgdat->kswapd_order = 0; 963 pgdat->kswapd_classzone_idx = 0; 964 } 965 966 /* we can use NODE_DATA(nid) from here */ 967 968 pgdat->node_id = nid; 969 pgdat->node_start_pfn = start_pfn; 970 971 /* init node's zones as empty zones, we don't have any present pages.*/ 972 free_area_init_core_hotplug(nid); 973 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 974 975 /* 976 * The node we allocated has no zone fallback lists. For avoiding 977 * to access not-initialized zonelist, build here. 978 */ 979 build_all_zonelists(pgdat); 980 981 /* 982 * When memory is hot-added, all the memory is in offline state. So 983 * clear all zones' present_pages because they will be updated in 984 * online_pages() and offline_pages(). 985 */ 986 reset_node_managed_pages(pgdat); 987 reset_node_present_pages(pgdat); 988 989 return pgdat; 990 } 991 992 static void rollback_node_hotadd(int nid) 993 { 994 pg_data_t *pgdat = NODE_DATA(nid); 995 996 arch_refresh_nodedata(nid, NULL); 997 free_percpu(pgdat->per_cpu_nodestats); 998 arch_free_nodedata(pgdat); 999 return; 1000 } 1001 1002 1003 /** 1004 * try_online_node - online a node if offlined 1005 * @nid: the node ID 1006 * @start: start addr of the node 1007 * @set_node_online: Whether we want to online the node 1008 * called by cpu_up() to online a node without onlined memory. 1009 * 1010 * Returns: 1011 * 1 -> a new node has been allocated 1012 * 0 -> the node is already online 1013 * -ENOMEM -> the node could not be allocated 1014 */ 1015 static int __try_online_node(int nid, u64 start, bool set_node_online) 1016 { 1017 pg_data_t *pgdat; 1018 int ret = 1; 1019 1020 if (node_online(nid)) 1021 return 0; 1022 1023 pgdat = hotadd_new_pgdat(nid, start); 1024 if (!pgdat) { 1025 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1026 ret = -ENOMEM; 1027 goto out; 1028 } 1029 1030 if (set_node_online) { 1031 node_set_online(nid); 1032 ret = register_one_node(nid); 1033 BUG_ON(ret); 1034 } 1035 out: 1036 return ret; 1037 } 1038 1039 /* 1040 * Users of this function always want to online/register the node 1041 */ 1042 int try_online_node(int nid) 1043 { 1044 int ret; 1045 1046 mem_hotplug_begin(); 1047 ret = __try_online_node(nid, 0, true); 1048 mem_hotplug_done(); 1049 return ret; 1050 } 1051 1052 static int check_hotplug_memory_range(u64 start, u64 size) 1053 { 1054 unsigned long block_sz = memory_block_size_bytes(); 1055 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1056 u64 nr_pages = size >> PAGE_SHIFT; 1057 u64 start_pfn = PFN_DOWN(start); 1058 1059 /* memory range must be block size aligned */ 1060 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1061 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1062 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1063 block_sz, start, size); 1064 return -EINVAL; 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int online_memory_block(struct memory_block *mem, void *arg) 1071 { 1072 return device_online(&mem->dev); 1073 } 1074 1075 /* 1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1077 * and online/offline operations (triggered e.g. by sysfs). 1078 * 1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1080 */ 1081 int __ref add_memory_resource(int nid, struct resource *res) 1082 { 1083 struct mhp_restrictions restrictions = { 1084 .flags = MHP_MEMBLOCK_API, 1085 }; 1086 u64 start, size; 1087 bool new_node = false; 1088 int ret; 1089 1090 start = res->start; 1091 size = resource_size(res); 1092 1093 ret = check_hotplug_memory_range(start, size); 1094 if (ret) 1095 return ret; 1096 1097 mem_hotplug_begin(); 1098 1099 /* 1100 * Add new range to memblock so that when hotadd_new_pgdat() is called 1101 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1102 * this new range and calculate total pages correctly. The range will 1103 * be removed at hot-remove time. 1104 */ 1105 memblock_add_node(start, size, nid); 1106 1107 ret = __try_online_node(nid, start, false); 1108 if (ret < 0) 1109 goto error; 1110 new_node = ret; 1111 1112 /* call arch's memory hotadd */ 1113 ret = arch_add_memory(nid, start, size, &restrictions); 1114 if (ret < 0) 1115 goto error; 1116 1117 if (new_node) { 1118 /* If sysfs file of new node can't be created, cpu on the node 1119 * can't be hot-added. There is no rollback way now. 1120 * So, check by BUG_ON() to catch it reluctantly.. 1121 * We online node here. We can't roll back from here. 1122 */ 1123 node_set_online(nid); 1124 ret = __register_one_node(nid); 1125 BUG_ON(ret); 1126 } 1127 1128 /* link memory sections under this node.*/ 1129 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1130 BUG_ON(ret); 1131 1132 /* create new memmap entry */ 1133 firmware_map_add_hotplug(start, start + size, "System RAM"); 1134 1135 /* device_online() will take the lock when calling online_pages() */ 1136 mem_hotplug_done(); 1137 1138 /* online pages if requested */ 1139 if (memhp_auto_online) 1140 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1141 NULL, online_memory_block); 1142 1143 return ret; 1144 error: 1145 /* rollback pgdat allocation and others */ 1146 if (new_node) 1147 rollback_node_hotadd(nid); 1148 memblock_remove(start, size); 1149 mem_hotplug_done(); 1150 return ret; 1151 } 1152 1153 /* requires device_hotplug_lock, see add_memory_resource() */ 1154 int __ref __add_memory(int nid, u64 start, u64 size) 1155 { 1156 struct resource *res; 1157 int ret; 1158 1159 res = register_memory_resource(start, size); 1160 if (IS_ERR(res)) 1161 return PTR_ERR(res); 1162 1163 ret = add_memory_resource(nid, res); 1164 if (ret < 0) 1165 release_memory_resource(res); 1166 return ret; 1167 } 1168 1169 int add_memory(int nid, u64 start, u64 size) 1170 { 1171 int rc; 1172 1173 lock_device_hotplug(); 1174 rc = __add_memory(nid, start, size); 1175 unlock_device_hotplug(); 1176 1177 return rc; 1178 } 1179 EXPORT_SYMBOL_GPL(add_memory); 1180 1181 #ifdef CONFIG_MEMORY_HOTREMOVE 1182 /* 1183 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1184 * set and the size of the free page is given by page_order(). Using this, 1185 * the function determines if the pageblock contains only free pages. 1186 * Due to buddy contraints, a free page at least the size of a pageblock will 1187 * be located at the start of the pageblock 1188 */ 1189 static inline int pageblock_free(struct page *page) 1190 { 1191 return PageBuddy(page) && page_order(page) >= pageblock_order; 1192 } 1193 1194 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1195 static unsigned long next_active_pageblock(unsigned long pfn) 1196 { 1197 struct page *page = pfn_to_page(pfn); 1198 1199 /* Ensure the starting page is pageblock-aligned */ 1200 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1201 1202 /* If the entire pageblock is free, move to the end of free page */ 1203 if (pageblock_free(page)) { 1204 int order; 1205 /* be careful. we don't have locks, page_order can be changed.*/ 1206 order = page_order(page); 1207 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1208 return pfn + (1 << order); 1209 } 1210 1211 return pfn + pageblock_nr_pages; 1212 } 1213 1214 static bool is_pageblock_removable_nolock(unsigned long pfn) 1215 { 1216 struct page *page = pfn_to_page(pfn); 1217 struct zone *zone; 1218 1219 /* 1220 * We have to be careful here because we are iterating over memory 1221 * sections which are not zone aware so we might end up outside of 1222 * the zone but still within the section. 1223 * We have to take care about the node as well. If the node is offline 1224 * its NODE_DATA will be NULL - see page_zone. 1225 */ 1226 if (!node_online(page_to_nid(page))) 1227 return false; 1228 1229 zone = page_zone(page); 1230 pfn = page_to_pfn(page); 1231 if (!zone_spans_pfn(zone, pfn)) 1232 return false; 1233 1234 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1235 } 1236 1237 /* Checks if this range of memory is likely to be hot-removable. */ 1238 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1239 { 1240 unsigned long end_pfn, pfn; 1241 1242 end_pfn = min(start_pfn + nr_pages, 1243 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1244 1245 /* Check the starting page of each pageblock within the range */ 1246 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1247 if (!is_pageblock_removable_nolock(pfn)) 1248 return false; 1249 cond_resched(); 1250 } 1251 1252 /* All pageblocks in the memory block are likely to be hot-removable */ 1253 return true; 1254 } 1255 1256 /* 1257 * Confirm all pages in a range [start, end) belong to the same zone. 1258 * When true, return its valid [start, end). 1259 */ 1260 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1261 unsigned long *valid_start, unsigned long *valid_end) 1262 { 1263 unsigned long pfn, sec_end_pfn; 1264 unsigned long start, end; 1265 struct zone *zone = NULL; 1266 struct page *page; 1267 int i; 1268 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1269 pfn < end_pfn; 1270 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1271 /* Make sure the memory section is present first */ 1272 if (!present_section_nr(pfn_to_section_nr(pfn))) 1273 continue; 1274 for (; pfn < sec_end_pfn && pfn < end_pfn; 1275 pfn += MAX_ORDER_NR_PAGES) { 1276 i = 0; 1277 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1278 while ((i < MAX_ORDER_NR_PAGES) && 1279 !pfn_valid_within(pfn + i)) 1280 i++; 1281 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1282 continue; 1283 /* Check if we got outside of the zone */ 1284 if (zone && !zone_spans_pfn(zone, pfn + i)) 1285 return 0; 1286 page = pfn_to_page(pfn + i); 1287 if (zone && page_zone(page) != zone) 1288 return 0; 1289 if (!zone) 1290 start = pfn + i; 1291 zone = page_zone(page); 1292 end = pfn + MAX_ORDER_NR_PAGES; 1293 } 1294 } 1295 1296 if (zone) { 1297 *valid_start = start; 1298 *valid_end = min(end, end_pfn); 1299 return 1; 1300 } else { 1301 return 0; 1302 } 1303 } 1304 1305 /* 1306 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1307 * non-lru movable pages and hugepages). We scan pfn because it's much 1308 * easier than scanning over linked list. This function returns the pfn 1309 * of the first found movable page if it's found, otherwise 0. 1310 */ 1311 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1312 { 1313 unsigned long pfn; 1314 1315 for (pfn = start; pfn < end; pfn++) { 1316 struct page *page, *head; 1317 unsigned long skip; 1318 1319 if (!pfn_valid(pfn)) 1320 continue; 1321 page = pfn_to_page(pfn); 1322 if (PageLRU(page)) 1323 return pfn; 1324 if (__PageMovable(page)) 1325 return pfn; 1326 1327 if (!PageHuge(page)) 1328 continue; 1329 head = compound_head(page); 1330 if (page_huge_active(head)) 1331 return pfn; 1332 skip = (1 << compound_order(head)) - (page - head); 1333 pfn += skip - 1; 1334 } 1335 return 0; 1336 } 1337 1338 static struct page *new_node_page(struct page *page, unsigned long private) 1339 { 1340 int nid = page_to_nid(page); 1341 nodemask_t nmask = node_states[N_MEMORY]; 1342 1343 /* 1344 * try to allocate from a different node but reuse this node if there 1345 * are no other online nodes to be used (e.g. we are offlining a part 1346 * of the only existing node) 1347 */ 1348 node_clear(nid, nmask); 1349 if (nodes_empty(nmask)) 1350 node_set(nid, nmask); 1351 1352 return new_page_nodemask(page, nid, &nmask); 1353 } 1354 1355 static int 1356 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1357 { 1358 unsigned long pfn; 1359 struct page *page; 1360 int ret = 0; 1361 LIST_HEAD(source); 1362 1363 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1364 if (!pfn_valid(pfn)) 1365 continue; 1366 page = pfn_to_page(pfn); 1367 1368 if (PageHuge(page)) { 1369 struct page *head = compound_head(page); 1370 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1371 isolate_huge_page(head, &source); 1372 continue; 1373 } else if (PageTransHuge(page)) 1374 pfn = page_to_pfn(compound_head(page)) 1375 + hpage_nr_pages(page) - 1; 1376 1377 /* 1378 * HWPoison pages have elevated reference counts so the migration would 1379 * fail on them. It also doesn't make any sense to migrate them in the 1380 * first place. Still try to unmap such a page in case it is still mapped 1381 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1382 * the unmap as the catch all safety net). 1383 */ 1384 if (PageHWPoison(page)) { 1385 if (WARN_ON(PageLRU(page))) 1386 isolate_lru_page(page); 1387 if (page_mapped(page)) 1388 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1389 continue; 1390 } 1391 1392 if (!get_page_unless_zero(page)) 1393 continue; 1394 /* 1395 * We can skip free pages. And we can deal with pages on 1396 * LRU and non-lru movable pages. 1397 */ 1398 if (PageLRU(page)) 1399 ret = isolate_lru_page(page); 1400 else 1401 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1402 if (!ret) { /* Success */ 1403 list_add_tail(&page->lru, &source); 1404 if (!__PageMovable(page)) 1405 inc_node_page_state(page, NR_ISOLATED_ANON + 1406 page_is_file_cache(page)); 1407 1408 } else { 1409 pr_warn("failed to isolate pfn %lx\n", pfn); 1410 dump_page(page, "isolation failed"); 1411 } 1412 put_page(page); 1413 } 1414 if (!list_empty(&source)) { 1415 /* Allocate a new page from the nearest neighbor node */ 1416 ret = migrate_pages(&source, new_node_page, NULL, 0, 1417 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1418 if (ret) { 1419 list_for_each_entry(page, &source, lru) { 1420 pr_warn("migrating pfn %lx failed ret:%d ", 1421 page_to_pfn(page), ret); 1422 dump_page(page, "migration failure"); 1423 } 1424 putback_movable_pages(&source); 1425 } 1426 } 1427 1428 return ret; 1429 } 1430 1431 /* 1432 * remove from free_area[] and mark all as Reserved. 1433 */ 1434 static int 1435 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1436 void *data) 1437 { 1438 unsigned long *offlined_pages = (unsigned long *)data; 1439 1440 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1441 return 0; 1442 } 1443 1444 /* 1445 * Check all pages in range, recoreded as memory resource, are isolated. 1446 */ 1447 static int 1448 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1449 void *data) 1450 { 1451 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1452 } 1453 1454 static int __init cmdline_parse_movable_node(char *p) 1455 { 1456 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1457 movable_node_enabled = true; 1458 #else 1459 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1460 #endif 1461 return 0; 1462 } 1463 early_param("movable_node", cmdline_parse_movable_node); 1464 1465 /* check which state of node_states will be changed when offline memory */ 1466 static void node_states_check_changes_offline(unsigned long nr_pages, 1467 struct zone *zone, struct memory_notify *arg) 1468 { 1469 struct pglist_data *pgdat = zone->zone_pgdat; 1470 unsigned long present_pages = 0; 1471 enum zone_type zt; 1472 1473 arg->status_change_nid = NUMA_NO_NODE; 1474 arg->status_change_nid_normal = NUMA_NO_NODE; 1475 arg->status_change_nid_high = NUMA_NO_NODE; 1476 1477 /* 1478 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1479 * If the memory to be offline is within the range 1480 * [0..ZONE_NORMAL], and it is the last present memory there, 1481 * the zones in that range will become empty after the offlining, 1482 * thus we can determine that we need to clear the node from 1483 * node_states[N_NORMAL_MEMORY]. 1484 */ 1485 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1486 present_pages += pgdat->node_zones[zt].present_pages; 1487 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1488 arg->status_change_nid_normal = zone_to_nid(zone); 1489 1490 #ifdef CONFIG_HIGHMEM 1491 /* 1492 * node_states[N_HIGH_MEMORY] contains nodes which 1493 * have normal memory or high memory. 1494 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1495 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1496 * we determine that the zones in that range become empty, 1497 * we need to clear the node for N_HIGH_MEMORY. 1498 */ 1499 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1500 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1501 arg->status_change_nid_high = zone_to_nid(zone); 1502 #endif 1503 1504 /* 1505 * We have accounted the pages from [0..ZONE_NORMAL), and 1506 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1507 * as well. 1508 * Here we count the possible pages from ZONE_MOVABLE. 1509 * If after having accounted all the pages, we see that the nr_pages 1510 * to be offlined is over or equal to the accounted pages, 1511 * we know that the node will become empty, and so, we can clear 1512 * it for N_MEMORY as well. 1513 */ 1514 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1515 1516 if (nr_pages >= present_pages) 1517 arg->status_change_nid = zone_to_nid(zone); 1518 } 1519 1520 static void node_states_clear_node(int node, struct memory_notify *arg) 1521 { 1522 if (arg->status_change_nid_normal >= 0) 1523 node_clear_state(node, N_NORMAL_MEMORY); 1524 1525 if (arg->status_change_nid_high >= 0) 1526 node_clear_state(node, N_HIGH_MEMORY); 1527 1528 if (arg->status_change_nid >= 0) 1529 node_clear_state(node, N_MEMORY); 1530 } 1531 1532 static int __ref __offline_pages(unsigned long start_pfn, 1533 unsigned long end_pfn) 1534 { 1535 unsigned long pfn, nr_pages; 1536 unsigned long offlined_pages = 0; 1537 int ret, node, nr_isolate_pageblock; 1538 unsigned long flags; 1539 unsigned long valid_start, valid_end; 1540 struct zone *zone; 1541 struct memory_notify arg; 1542 char *reason; 1543 1544 mem_hotplug_begin(); 1545 1546 /* This makes hotplug much easier...and readable. 1547 we assume this for now. .*/ 1548 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1549 &valid_end)) { 1550 ret = -EINVAL; 1551 reason = "multizone range"; 1552 goto failed_removal; 1553 } 1554 1555 zone = page_zone(pfn_to_page(valid_start)); 1556 node = zone_to_nid(zone); 1557 nr_pages = end_pfn - start_pfn; 1558 1559 /* set above range as isolated */ 1560 ret = start_isolate_page_range(start_pfn, end_pfn, 1561 MIGRATE_MOVABLE, 1562 SKIP_HWPOISON | REPORT_FAILURE); 1563 if (ret < 0) { 1564 reason = "failure to isolate range"; 1565 goto failed_removal; 1566 } 1567 nr_isolate_pageblock = ret; 1568 1569 arg.start_pfn = start_pfn; 1570 arg.nr_pages = nr_pages; 1571 node_states_check_changes_offline(nr_pages, zone, &arg); 1572 1573 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1574 ret = notifier_to_errno(ret); 1575 if (ret) { 1576 reason = "notifier failure"; 1577 goto failed_removal_isolated; 1578 } 1579 1580 do { 1581 for (pfn = start_pfn; pfn;) { 1582 if (signal_pending(current)) { 1583 ret = -EINTR; 1584 reason = "signal backoff"; 1585 goto failed_removal_isolated; 1586 } 1587 1588 cond_resched(); 1589 lru_add_drain_all(); 1590 1591 pfn = scan_movable_pages(pfn, end_pfn); 1592 if (pfn) { 1593 /* 1594 * TODO: fatal migration failures should bail 1595 * out 1596 */ 1597 do_migrate_range(pfn, end_pfn); 1598 } 1599 } 1600 1601 /* 1602 * Dissolve free hugepages in the memory block before doing 1603 * offlining actually in order to make hugetlbfs's object 1604 * counting consistent. 1605 */ 1606 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1607 if (ret) { 1608 reason = "failure to dissolve huge pages"; 1609 goto failed_removal_isolated; 1610 } 1611 /* check again */ 1612 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1613 NULL, check_pages_isolated_cb); 1614 } while (ret); 1615 1616 /* Ok, all of our target is isolated. 1617 We cannot do rollback at this point. */ 1618 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1619 &offlined_pages, offline_isolated_pages_cb); 1620 pr_info("Offlined Pages %ld\n", offlined_pages); 1621 /* 1622 * Onlining will reset pagetype flags and makes migrate type 1623 * MOVABLE, so just need to decrease the number of isolated 1624 * pageblocks zone counter here. 1625 */ 1626 spin_lock_irqsave(&zone->lock, flags); 1627 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1628 spin_unlock_irqrestore(&zone->lock, flags); 1629 1630 /* removal success */ 1631 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1632 zone->present_pages -= offlined_pages; 1633 1634 pgdat_resize_lock(zone->zone_pgdat, &flags); 1635 zone->zone_pgdat->node_present_pages -= offlined_pages; 1636 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1637 1638 init_per_zone_wmark_min(); 1639 1640 if (!populated_zone(zone)) { 1641 zone_pcp_reset(zone); 1642 build_all_zonelists(NULL); 1643 } else 1644 zone_pcp_update(zone); 1645 1646 node_states_clear_node(node, &arg); 1647 if (arg.status_change_nid >= 0) { 1648 kswapd_stop(node); 1649 kcompactd_stop(node); 1650 } 1651 1652 vm_total_pages = nr_free_pagecache_pages(); 1653 writeback_set_ratelimit(); 1654 1655 memory_notify(MEM_OFFLINE, &arg); 1656 mem_hotplug_done(); 1657 return 0; 1658 1659 failed_removal_isolated: 1660 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1661 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1662 failed_removal: 1663 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1664 (unsigned long long) start_pfn << PAGE_SHIFT, 1665 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1666 reason); 1667 /* pushback to free area */ 1668 mem_hotplug_done(); 1669 return ret; 1670 } 1671 1672 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1673 { 1674 return __offline_pages(start_pfn, start_pfn + nr_pages); 1675 } 1676 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1677 1678 /** 1679 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1680 * @start_pfn: start pfn of the memory range 1681 * @end_pfn: end pfn of the memory range 1682 * @arg: argument passed to func 1683 * @func: callback for each memory section walked 1684 * 1685 * This function walks through all present mem sections in range 1686 * [start_pfn, end_pfn) and call func on each mem section. 1687 * 1688 * Returns the return value of func. 1689 */ 1690 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1691 void *arg, int (*func)(struct memory_block *, void *)) 1692 { 1693 struct memory_block *mem = NULL; 1694 struct mem_section *section; 1695 unsigned long pfn, section_nr; 1696 int ret; 1697 1698 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1699 section_nr = pfn_to_section_nr(pfn); 1700 if (!present_section_nr(section_nr)) 1701 continue; 1702 1703 section = __nr_to_section(section_nr); 1704 /* same memblock? */ 1705 if (mem) 1706 if ((section_nr >= mem->start_section_nr) && 1707 (section_nr <= mem->end_section_nr)) 1708 continue; 1709 1710 mem = find_memory_block_hinted(section, mem); 1711 if (!mem) 1712 continue; 1713 1714 ret = func(mem, arg); 1715 if (ret) { 1716 kobject_put(&mem->dev.kobj); 1717 return ret; 1718 } 1719 } 1720 1721 if (mem) 1722 kobject_put(&mem->dev.kobj); 1723 1724 return 0; 1725 } 1726 1727 #ifdef CONFIG_MEMORY_HOTREMOVE 1728 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1729 { 1730 int ret = !is_memblock_offlined(mem); 1731 1732 if (unlikely(ret)) { 1733 phys_addr_t beginpa, endpa; 1734 1735 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1736 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1737 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1738 &beginpa, &endpa); 1739 } 1740 1741 return ret; 1742 } 1743 1744 static int check_cpu_on_node(pg_data_t *pgdat) 1745 { 1746 int cpu; 1747 1748 for_each_present_cpu(cpu) { 1749 if (cpu_to_node(cpu) == pgdat->node_id) 1750 /* 1751 * the cpu on this node isn't removed, and we can't 1752 * offline this node. 1753 */ 1754 return -EBUSY; 1755 } 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * try_offline_node 1762 * @nid: the node ID 1763 * 1764 * Offline a node if all memory sections and cpus of the node are removed. 1765 * 1766 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1767 * and online/offline operations before this call. 1768 */ 1769 void try_offline_node(int nid) 1770 { 1771 pg_data_t *pgdat = NODE_DATA(nid); 1772 unsigned long start_pfn = pgdat->node_start_pfn; 1773 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1774 unsigned long pfn; 1775 1776 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1777 unsigned long section_nr = pfn_to_section_nr(pfn); 1778 1779 if (!present_section_nr(section_nr)) 1780 continue; 1781 1782 if (pfn_to_nid(pfn) != nid) 1783 continue; 1784 1785 /* 1786 * some memory sections of this node are not removed, and we 1787 * can't offline node now. 1788 */ 1789 return; 1790 } 1791 1792 if (check_cpu_on_node(pgdat)) 1793 return; 1794 1795 /* 1796 * all memory/cpu of this node are removed, we can offline this 1797 * node now. 1798 */ 1799 node_set_offline(nid); 1800 unregister_one_node(nid); 1801 } 1802 EXPORT_SYMBOL(try_offline_node); 1803 1804 static void __release_memory_resource(resource_size_t start, 1805 resource_size_t size) 1806 { 1807 int ret; 1808 1809 /* 1810 * When removing memory in the same granularity as it was added, 1811 * this function never fails. It might only fail if resources 1812 * have to be adjusted or split. We'll ignore the error, as 1813 * removing of memory cannot fail. 1814 */ 1815 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1816 if (ret) { 1817 resource_size_t endres = start + size - 1; 1818 1819 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1820 &start, &endres, ret); 1821 } 1822 } 1823 1824 /** 1825 * remove_memory 1826 * @nid: the node ID 1827 * @start: physical address of the region to remove 1828 * @size: size of the region to remove 1829 * 1830 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1831 * and online/offline operations before this call, as required by 1832 * try_offline_node(). 1833 */ 1834 void __ref __remove_memory(int nid, u64 start, u64 size) 1835 { 1836 int ret; 1837 1838 BUG_ON(check_hotplug_memory_range(start, size)); 1839 1840 mem_hotplug_begin(); 1841 1842 /* 1843 * All memory blocks must be offlined before removing memory. Check 1844 * whether all memory blocks in question are offline and trigger a BUG() 1845 * if this is not the case. 1846 */ 1847 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1848 check_memblock_offlined_cb); 1849 if (ret) 1850 BUG(); 1851 1852 /* remove memmap entry */ 1853 firmware_map_remove(start, start + size, "System RAM"); 1854 memblock_free(start, size); 1855 memblock_remove(start, size); 1856 1857 arch_remove_memory(nid, start, size, NULL); 1858 __release_memory_resource(start, size); 1859 1860 try_offline_node(nid); 1861 1862 mem_hotplug_done(); 1863 } 1864 1865 void remove_memory(int nid, u64 start, u64 size) 1866 { 1867 lock_device_hotplug(); 1868 __remove_memory(nid, start, size); 1869 unlock_device_hotplug(); 1870 } 1871 EXPORT_SYMBOL_GPL(remove_memory); 1872 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1873