xref: /openbmc/linux/mm/memory_hotplug.c (revision 8fedf805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static void generic_online_page(struct page *page, unsigned int order);
53 
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56 
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58 
59 void get_online_mems(void)
60 {
61 	percpu_down_read(&mem_hotplug_lock);
62 }
63 
64 void put_online_mems(void)
65 {
66 	percpu_up_read(&mem_hotplug_lock);
67 }
68 
69 bool movable_node_enabled = false;
70 
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77 
78 static int __init setup_memhp_default_state(char *str)
79 {
80 	if (!strcmp(str, "online"))
81 		memhp_auto_online = true;
82 	else if (!strcmp(str, "offline"))
83 		memhp_auto_online = false;
84 
85 	return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88 
89 void mem_hotplug_begin(void)
90 {
91 	cpus_read_lock();
92 	percpu_down_write(&mem_hotplug_lock);
93 }
94 
95 void mem_hotplug_done(void)
96 {
97 	percpu_up_write(&mem_hotplug_lock);
98 	cpus_read_unlock();
99 }
100 
101 u64 max_mem_size = U64_MAX;
102 
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 	struct resource *res;
107 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 	char *resource_name = "System RAM";
109 
110 	if (start + size > max_mem_size)
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Request ownership of the new memory range.  This might be
115 	 * a child of an existing resource that was present but
116 	 * not marked as busy.
117 	 */
118 	res = __request_region(&iomem_resource, start, size,
119 			       resource_name, flags);
120 
121 	if (!res) {
122 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 				start, start + size);
124 		return ERR_PTR(-EEXIST);
125 	}
126 	return res;
127 }
128 
129 static void release_memory_resource(struct resource *res)
130 {
131 	if (!res)
132 		return;
133 	release_resource(res);
134 	kfree(res);
135 }
136 
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info,  struct page *page,
139 		      unsigned long type)
140 {
141 	page->freelist = (void *)type;
142 	SetPagePrivate(page);
143 	set_page_private(page, info);
144 	page_ref_inc(page);
145 }
146 
147 void put_page_bootmem(struct page *page)
148 {
149 	unsigned long type;
150 
151 	type = (unsigned long) page->freelist;
152 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154 
155 	if (page_ref_dec_return(page) == 1) {
156 		page->freelist = NULL;
157 		ClearPagePrivate(page);
158 		set_page_private(page, 0);
159 		INIT_LIST_HEAD(&page->lru);
160 		free_reserved_page(page);
161 	}
162 }
163 
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 	unsigned long mapsize, section_nr, i;
169 	struct mem_section *ms;
170 	struct page *page, *memmap;
171 	struct mem_section_usage *usage;
172 
173 	section_nr = pfn_to_section_nr(start_pfn);
174 	ms = __nr_to_section(section_nr);
175 
176 	/* Get section's memmap address */
177 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178 
179 	/*
180 	 * Get page for the memmap's phys address
181 	 * XXX: need more consideration for sparse_vmemmap...
182 	 */
183 	page = virt_to_page(memmap);
184 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186 
187 	/* remember memmap's page */
188 	for (i = 0; i < mapsize; i++, page++)
189 		get_page_bootmem(section_nr, page, SECTION_INFO);
190 
191 	usage = ms->usage;
192 	page = virt_to_page(usage);
193 
194 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195 
196 	for (i = 0; i < mapsize; i++, page++)
197 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198 
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 	unsigned long mapsize, section_nr, i;
204 	struct mem_section *ms;
205 	struct page *page, *memmap;
206 	struct mem_section_usage *usage;
207 
208 	section_nr = pfn_to_section_nr(start_pfn);
209 	ms = __nr_to_section(section_nr);
210 
211 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212 
213 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214 
215 	usage = ms->usage;
216 	page = virt_to_page(usage);
217 
218 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219 
220 	for (i = 0; i < mapsize; i++, page++)
221 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224 
225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 	unsigned long i, pfn, end_pfn, nr_pages;
228 	int node = pgdat->node_id;
229 	struct page *page;
230 
231 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 	page = virt_to_page(pgdat);
233 
234 	for (i = 0; i < nr_pages; i++, page++)
235 		get_page_bootmem(node, page, NODE_INFO);
236 
237 	pfn = pgdat->node_start_pfn;
238 	end_pfn = pgdat_end_pfn(pgdat);
239 
240 	/* register section info */
241 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 		/*
243 		 * Some platforms can assign the same pfn to multiple nodes - on
244 		 * node0 as well as nodeN.  To avoid registering a pfn against
245 		 * multiple nodes we check that this pfn does not already
246 		 * reside in some other nodes.
247 		 */
248 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 			register_page_bootmem_info_section(pfn);
250 	}
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253 
254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 		const char *reason)
256 {
257 	/*
258 	 * Disallow all operations smaller than a sub-section and only
259 	 * allow operations smaller than a section for
260 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 	 * enforces a larger memory_block_size_bytes() granularity for
262 	 * memory that will be marked online, so this check should only
263 	 * fire for direct arch_{add,remove}_memory() users outside of
264 	 * add_memory_resource().
265 	 */
266 	unsigned long min_align;
267 
268 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 		min_align = PAGES_PER_SUBSECTION;
270 	else
271 		min_align = PAGES_PER_SECTION;
272 	if (!IS_ALIGNED(pfn, min_align)
273 			|| !IS_ALIGNED(nr_pages, min_align)) {
274 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 				reason, pfn, pfn + nr_pages - 1);
276 		return -EINVAL;
277 	}
278 	return 0;
279 }
280 
281 /*
282  * Reasonably generic function for adding memory.  It is
283  * expected that archs that support memory hotplug will
284  * call this function after deciding the zone to which to
285  * add the new pages.
286  */
287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 		struct mhp_restrictions *restrictions)
289 {
290 	int err;
291 	unsigned long nr, start_sec, end_sec;
292 	struct vmem_altmap *altmap = restrictions->altmap;
293 
294 	if (altmap) {
295 		/*
296 		 * Validate altmap is within bounds of the total request
297 		 */
298 		if (altmap->base_pfn != pfn
299 				|| vmem_altmap_offset(altmap) > nr_pages) {
300 			pr_warn_once("memory add fail, invalid altmap\n");
301 			return -EINVAL;
302 		}
303 		altmap->alloc = 0;
304 	}
305 
306 	err = check_pfn_span(pfn, nr_pages, "add");
307 	if (err)
308 		return err;
309 
310 	start_sec = pfn_to_section_nr(pfn);
311 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 	for (nr = start_sec; nr <= end_sec; nr++) {
313 		unsigned long pfns;
314 
315 		pfns = min(nr_pages, PAGES_PER_SECTION
316 				- (pfn & ~PAGE_SECTION_MASK));
317 		err = sparse_add_section(nid, pfn, pfns, altmap);
318 		if (err)
319 			break;
320 		pfn += pfns;
321 		nr_pages -= pfns;
322 		cond_resched();
323 	}
324 	vmemmap_populate_print_last();
325 	return err;
326 }
327 
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 				     unsigned long start_pfn,
331 				     unsigned long end_pfn)
332 {
333 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 		if (unlikely(!pfn_valid(start_pfn)))
335 			continue;
336 
337 		if (unlikely(pfn_to_nid(start_pfn) != nid))
338 			continue;
339 
340 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 			continue;
342 
343 		return start_pfn;
344 	}
345 
346 	return 0;
347 }
348 
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 				    unsigned long start_pfn,
352 				    unsigned long end_pfn)
353 {
354 	unsigned long pfn;
355 
356 	/* pfn is the end pfn of a memory section. */
357 	pfn = end_pfn - 1;
358 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 		if (unlikely(!pfn_valid(pfn)))
360 			continue;
361 
362 		if (unlikely(pfn_to_nid(pfn) != nid))
363 			continue;
364 
365 		if (zone && zone != page_zone(pfn_to_page(pfn)))
366 			continue;
367 
368 		return pfn;
369 	}
370 
371 	return 0;
372 }
373 
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 			     unsigned long end_pfn)
376 {
377 	unsigned long zone_start_pfn = zone->zone_start_pfn;
378 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 	unsigned long zone_end_pfn = z;
380 	unsigned long pfn;
381 	int nid = zone_to_nid(zone);
382 
383 	zone_span_writelock(zone);
384 	if (zone_start_pfn == start_pfn) {
385 		/*
386 		 * If the section is smallest section in the zone, it need
387 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 		 * In this case, we find second smallest valid mem_section
389 		 * for shrinking zone.
390 		 */
391 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 						zone_end_pfn);
393 		if (pfn) {
394 			zone->zone_start_pfn = pfn;
395 			zone->spanned_pages = zone_end_pfn - pfn;
396 		}
397 	} else if (zone_end_pfn == end_pfn) {
398 		/*
399 		 * If the section is biggest section in the zone, it need
400 		 * shrink zone->spanned_pages.
401 		 * In this case, we find second biggest valid mem_section for
402 		 * shrinking zone.
403 		 */
404 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 					       start_pfn);
406 		if (pfn)
407 			zone->spanned_pages = pfn - zone_start_pfn + 1;
408 	}
409 
410 	/*
411 	 * The section is not biggest or smallest mem_section in the zone, it
412 	 * only creates a hole in the zone. So in this case, we need not
413 	 * change the zone. But perhaps, the zone has only hole data. Thus
414 	 * it check the zone has only hole or not.
415 	 */
416 	pfn = zone_start_pfn;
417 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 		if (unlikely(!pfn_valid(pfn)))
419 			continue;
420 
421 		if (page_zone(pfn_to_page(pfn)) != zone)
422 			continue;
423 
424 		/* Skip range to be removed */
425 		if (pfn >= start_pfn && pfn < end_pfn)
426 			continue;
427 
428 		/* If we find valid section, we have nothing to do */
429 		zone_span_writeunlock(zone);
430 		return;
431 	}
432 
433 	/* The zone has no valid section */
434 	zone->zone_start_pfn = 0;
435 	zone->spanned_pages = 0;
436 	zone_span_writeunlock(zone);
437 }
438 
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 			      unsigned long start_pfn, unsigned long end_pfn)
441 {
442 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 	unsigned long pgdat_end_pfn = p;
445 	unsigned long pfn;
446 	int nid = pgdat->node_id;
447 
448 	if (pgdat_start_pfn == start_pfn) {
449 		/*
450 		 * If the section is smallest section in the pgdat, it need
451 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 		 * In this case, we find second smallest valid mem_section
453 		 * for shrinking zone.
454 		 */
455 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 						pgdat_end_pfn);
457 		if (pfn) {
458 			pgdat->node_start_pfn = pfn;
459 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 		}
461 	} else if (pgdat_end_pfn == end_pfn) {
462 		/*
463 		 * If the section is biggest section in the pgdat, it need
464 		 * shrink pgdat->node_spanned_pages.
465 		 * In this case, we find second biggest valid mem_section for
466 		 * shrinking zone.
467 		 */
468 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 					       start_pfn);
470 		if (pfn)
471 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 	}
473 
474 	/*
475 	 * If the section is not biggest or smallest mem_section in the pgdat,
476 	 * it only creates a hole in the pgdat. So in this case, we need not
477 	 * change the pgdat.
478 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 	 * has only hole or not.
480 	 */
481 	pfn = pgdat_start_pfn;
482 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
483 		if (unlikely(!pfn_valid(pfn)))
484 			continue;
485 
486 		if (pfn_to_nid(pfn) != nid)
487 			continue;
488 
489 		/* Skip range to be removed */
490 		if (pfn >= start_pfn && pfn < end_pfn)
491 			continue;
492 
493 		/* If we find valid section, we have nothing to do */
494 		return;
495 	}
496 
497 	/* The pgdat has no valid section */
498 	pgdat->node_start_pfn = 0;
499 	pgdat->node_spanned_pages = 0;
500 }
501 
502 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
503 		unsigned long nr_pages)
504 {
505 	struct pglist_data *pgdat = zone->zone_pgdat;
506 	unsigned long flags;
507 
508 	pgdat_resize_lock(zone->zone_pgdat, &flags);
509 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
510 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
511 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
512 }
513 
514 static void __remove_section(struct zone *zone, unsigned long pfn,
515 		unsigned long nr_pages, unsigned long map_offset,
516 		struct vmem_altmap *altmap)
517 {
518 	struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
519 
520 	if (WARN_ON_ONCE(!valid_section(ms)))
521 		return;
522 
523 	__remove_zone(zone, pfn, nr_pages);
524 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
525 }
526 
527 /**
528  * __remove_pages() - remove sections of pages from a zone
529  * @zone: zone from which pages need to be removed
530  * @pfn: starting pageframe (must be aligned to start of a section)
531  * @nr_pages: number of pages to remove (must be multiple of section size)
532  * @altmap: alternative device page map or %NULL if default memmap is used
533  *
534  * Generic helper function to remove section mappings and sysfs entries
535  * for the section of the memory we are removing. Caller needs to make
536  * sure that pages are marked reserved and zones are adjust properly by
537  * calling offline_pages().
538  */
539 void __remove_pages(struct zone *zone, unsigned long pfn,
540 		    unsigned long nr_pages, struct vmem_altmap *altmap)
541 {
542 	unsigned long map_offset = 0;
543 	unsigned long nr, start_sec, end_sec;
544 
545 	map_offset = vmem_altmap_offset(altmap);
546 
547 	clear_zone_contiguous(zone);
548 
549 	if (check_pfn_span(pfn, nr_pages, "remove"))
550 		return;
551 
552 	start_sec = pfn_to_section_nr(pfn);
553 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
554 	for (nr = start_sec; nr <= end_sec; nr++) {
555 		unsigned long pfns;
556 
557 		cond_resched();
558 		pfns = min(nr_pages, PAGES_PER_SECTION
559 				- (pfn & ~PAGE_SECTION_MASK));
560 		__remove_section(zone, pfn, pfns, map_offset, altmap);
561 		pfn += pfns;
562 		nr_pages -= pfns;
563 		map_offset = 0;
564 	}
565 
566 	set_zone_contiguous(zone);
567 }
568 
569 int set_online_page_callback(online_page_callback_t callback)
570 {
571 	int rc = -EINVAL;
572 
573 	get_online_mems();
574 	mutex_lock(&online_page_callback_lock);
575 
576 	if (online_page_callback == generic_online_page) {
577 		online_page_callback = callback;
578 		rc = 0;
579 	}
580 
581 	mutex_unlock(&online_page_callback_lock);
582 	put_online_mems();
583 
584 	return rc;
585 }
586 EXPORT_SYMBOL_GPL(set_online_page_callback);
587 
588 int restore_online_page_callback(online_page_callback_t callback)
589 {
590 	int rc = -EINVAL;
591 
592 	get_online_mems();
593 	mutex_lock(&online_page_callback_lock);
594 
595 	if (online_page_callback == callback) {
596 		online_page_callback = generic_online_page;
597 		rc = 0;
598 	}
599 
600 	mutex_unlock(&online_page_callback_lock);
601 	put_online_mems();
602 
603 	return rc;
604 }
605 EXPORT_SYMBOL_GPL(restore_online_page_callback);
606 
607 void __online_page_set_limits(struct page *page)
608 {
609 }
610 EXPORT_SYMBOL_GPL(__online_page_set_limits);
611 
612 void __online_page_increment_counters(struct page *page)
613 {
614 	adjust_managed_page_count(page, 1);
615 }
616 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
617 
618 void __online_page_free(struct page *page)
619 {
620 	__free_reserved_page(page);
621 }
622 EXPORT_SYMBOL_GPL(__online_page_free);
623 
624 static void generic_online_page(struct page *page, unsigned int order)
625 {
626 	kernel_map_pages(page, 1 << order, 1);
627 	__free_pages_core(page, order);
628 	totalram_pages_add(1UL << order);
629 #ifdef CONFIG_HIGHMEM
630 	if (PageHighMem(page))
631 		totalhigh_pages_add(1UL << order);
632 #endif
633 }
634 
635 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
636 {
637 	unsigned long end = start + nr_pages;
638 	int order, onlined_pages = 0;
639 
640 	while (start < end) {
641 		order = min(MAX_ORDER - 1,
642 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
643 		(*online_page_callback)(pfn_to_page(start), order);
644 
645 		onlined_pages += (1UL << order);
646 		start += (1UL << order);
647 	}
648 	return onlined_pages;
649 }
650 
651 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
652 			void *arg)
653 {
654 	unsigned long onlined_pages = *(unsigned long *)arg;
655 
656 	if (PageReserved(pfn_to_page(start_pfn)))
657 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
658 
659 	online_mem_sections(start_pfn, start_pfn + nr_pages);
660 
661 	*(unsigned long *)arg = onlined_pages;
662 	return 0;
663 }
664 
665 /* check which state of node_states will be changed when online memory */
666 static void node_states_check_changes_online(unsigned long nr_pages,
667 	struct zone *zone, struct memory_notify *arg)
668 {
669 	int nid = zone_to_nid(zone);
670 
671 	arg->status_change_nid = NUMA_NO_NODE;
672 	arg->status_change_nid_normal = NUMA_NO_NODE;
673 	arg->status_change_nid_high = NUMA_NO_NODE;
674 
675 	if (!node_state(nid, N_MEMORY))
676 		arg->status_change_nid = nid;
677 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
678 		arg->status_change_nid_normal = nid;
679 #ifdef CONFIG_HIGHMEM
680 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
681 		arg->status_change_nid_high = nid;
682 #endif
683 }
684 
685 static void node_states_set_node(int node, struct memory_notify *arg)
686 {
687 	if (arg->status_change_nid_normal >= 0)
688 		node_set_state(node, N_NORMAL_MEMORY);
689 
690 	if (arg->status_change_nid_high >= 0)
691 		node_set_state(node, N_HIGH_MEMORY);
692 
693 	if (arg->status_change_nid >= 0)
694 		node_set_state(node, N_MEMORY);
695 }
696 
697 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
698 		unsigned long nr_pages)
699 {
700 	unsigned long old_end_pfn = zone_end_pfn(zone);
701 
702 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
703 		zone->zone_start_pfn = start_pfn;
704 
705 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
706 }
707 
708 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
709                                      unsigned long nr_pages)
710 {
711 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
712 
713 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
714 		pgdat->node_start_pfn = start_pfn;
715 
716 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
717 }
718 
719 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
720 		unsigned long nr_pages, struct vmem_altmap *altmap)
721 {
722 	struct pglist_data *pgdat = zone->zone_pgdat;
723 	int nid = pgdat->node_id;
724 	unsigned long flags;
725 
726 	clear_zone_contiguous(zone);
727 
728 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
729 	pgdat_resize_lock(pgdat, &flags);
730 	zone_span_writelock(zone);
731 	if (zone_is_empty(zone))
732 		init_currently_empty_zone(zone, start_pfn, nr_pages);
733 	resize_zone_range(zone, start_pfn, nr_pages);
734 	zone_span_writeunlock(zone);
735 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
736 	pgdat_resize_unlock(pgdat, &flags);
737 
738 	/*
739 	 * TODO now we have a visible range of pages which are not associated
740 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
741 	 * expects the zone spans the pfn range. All the pages in the range
742 	 * are reserved so nobody should be touching them so we should be safe
743 	 */
744 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
745 			MEMMAP_HOTPLUG, altmap);
746 
747 	set_zone_contiguous(zone);
748 }
749 
750 /*
751  * Returns a default kernel memory zone for the given pfn range.
752  * If no kernel zone covers this pfn range it will automatically go
753  * to the ZONE_NORMAL.
754  */
755 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
756 		unsigned long nr_pages)
757 {
758 	struct pglist_data *pgdat = NODE_DATA(nid);
759 	int zid;
760 
761 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
762 		struct zone *zone = &pgdat->node_zones[zid];
763 
764 		if (zone_intersects(zone, start_pfn, nr_pages))
765 			return zone;
766 	}
767 
768 	return &pgdat->node_zones[ZONE_NORMAL];
769 }
770 
771 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
772 		unsigned long nr_pages)
773 {
774 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
775 			nr_pages);
776 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
777 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
778 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
779 
780 	/*
781 	 * We inherit the existing zone in a simple case where zones do not
782 	 * overlap in the given range
783 	 */
784 	if (in_kernel ^ in_movable)
785 		return (in_kernel) ? kernel_zone : movable_zone;
786 
787 	/*
788 	 * If the range doesn't belong to any zone or two zones overlap in the
789 	 * given range then we use movable zone only if movable_node is
790 	 * enabled because we always online to a kernel zone by default.
791 	 */
792 	return movable_node_enabled ? movable_zone : kernel_zone;
793 }
794 
795 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
796 		unsigned long nr_pages)
797 {
798 	if (online_type == MMOP_ONLINE_KERNEL)
799 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
800 
801 	if (online_type == MMOP_ONLINE_MOVABLE)
802 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
803 
804 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
805 }
806 
807 /*
808  * Associates the given pfn range with the given node and the zone appropriate
809  * for the given online type.
810  */
811 static struct zone * __meminit move_pfn_range(int online_type, int nid,
812 		unsigned long start_pfn, unsigned long nr_pages)
813 {
814 	struct zone *zone;
815 
816 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
817 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
818 	return zone;
819 }
820 
821 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
822 {
823 	unsigned long flags;
824 	unsigned long onlined_pages = 0;
825 	struct zone *zone;
826 	int need_zonelists_rebuild = 0;
827 	int nid;
828 	int ret;
829 	struct memory_notify arg;
830 	struct memory_block *mem;
831 
832 	mem_hotplug_begin();
833 
834 	/*
835 	 * We can't use pfn_to_nid() because nid might be stored in struct page
836 	 * which is not yet initialized. Instead, we find nid from memory block.
837 	 */
838 	mem = find_memory_block(__pfn_to_section(pfn));
839 	nid = mem->nid;
840 	put_device(&mem->dev);
841 
842 	/* associate pfn range with the zone */
843 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
844 
845 	arg.start_pfn = pfn;
846 	arg.nr_pages = nr_pages;
847 	node_states_check_changes_online(nr_pages, zone, &arg);
848 
849 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
850 	ret = notifier_to_errno(ret);
851 	if (ret)
852 		goto failed_addition;
853 
854 	/*
855 	 * If this zone is not populated, then it is not in zonelist.
856 	 * This means the page allocator ignores this zone.
857 	 * So, zonelist must be updated after online.
858 	 */
859 	if (!populated_zone(zone)) {
860 		need_zonelists_rebuild = 1;
861 		setup_zone_pageset(zone);
862 	}
863 
864 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
865 		online_pages_range);
866 	if (ret) {
867 		if (need_zonelists_rebuild)
868 			zone_pcp_reset(zone);
869 		goto failed_addition;
870 	}
871 
872 	zone->present_pages += onlined_pages;
873 
874 	pgdat_resize_lock(zone->zone_pgdat, &flags);
875 	zone->zone_pgdat->node_present_pages += onlined_pages;
876 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
877 
878 	shuffle_zone(zone);
879 
880 	if (onlined_pages) {
881 		node_states_set_node(nid, &arg);
882 		if (need_zonelists_rebuild)
883 			build_all_zonelists(NULL);
884 		else
885 			zone_pcp_update(zone);
886 	}
887 
888 	init_per_zone_wmark_min();
889 
890 	if (onlined_pages) {
891 		kswapd_run(nid);
892 		kcompactd_run(nid);
893 	}
894 
895 	vm_total_pages = nr_free_pagecache_pages();
896 
897 	writeback_set_ratelimit();
898 
899 	if (onlined_pages)
900 		memory_notify(MEM_ONLINE, &arg);
901 	mem_hotplug_done();
902 	return 0;
903 
904 failed_addition:
905 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
906 		 (unsigned long long) pfn << PAGE_SHIFT,
907 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
908 	memory_notify(MEM_CANCEL_ONLINE, &arg);
909 	mem_hotplug_done();
910 	return ret;
911 }
912 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
913 
914 static void reset_node_present_pages(pg_data_t *pgdat)
915 {
916 	struct zone *z;
917 
918 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
919 		z->present_pages = 0;
920 
921 	pgdat->node_present_pages = 0;
922 }
923 
924 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
925 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
926 {
927 	struct pglist_data *pgdat;
928 	unsigned long start_pfn = PFN_DOWN(start);
929 
930 	pgdat = NODE_DATA(nid);
931 	if (!pgdat) {
932 		pgdat = arch_alloc_nodedata(nid);
933 		if (!pgdat)
934 			return NULL;
935 
936 		arch_refresh_nodedata(nid, pgdat);
937 	} else {
938 		/*
939 		 * Reset the nr_zones, order and classzone_idx before reuse.
940 		 * Note that kswapd will init kswapd_classzone_idx properly
941 		 * when it starts in the near future.
942 		 */
943 		pgdat->nr_zones = 0;
944 		pgdat->kswapd_order = 0;
945 		pgdat->kswapd_classzone_idx = 0;
946 	}
947 
948 	/* we can use NODE_DATA(nid) from here */
949 
950 	pgdat->node_id = nid;
951 	pgdat->node_start_pfn = start_pfn;
952 
953 	/* init node's zones as empty zones, we don't have any present pages.*/
954 	free_area_init_core_hotplug(nid);
955 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
956 
957 	/*
958 	 * The node we allocated has no zone fallback lists. For avoiding
959 	 * to access not-initialized zonelist, build here.
960 	 */
961 	build_all_zonelists(pgdat);
962 
963 	/*
964 	 * When memory is hot-added, all the memory is in offline state. So
965 	 * clear all zones' present_pages because they will be updated in
966 	 * online_pages() and offline_pages().
967 	 */
968 	reset_node_managed_pages(pgdat);
969 	reset_node_present_pages(pgdat);
970 
971 	return pgdat;
972 }
973 
974 static void rollback_node_hotadd(int nid)
975 {
976 	pg_data_t *pgdat = NODE_DATA(nid);
977 
978 	arch_refresh_nodedata(nid, NULL);
979 	free_percpu(pgdat->per_cpu_nodestats);
980 	arch_free_nodedata(pgdat);
981 }
982 
983 
984 /**
985  * try_online_node - online a node if offlined
986  * @nid: the node ID
987  * @start: start addr of the node
988  * @set_node_online: Whether we want to online the node
989  * called by cpu_up() to online a node without onlined memory.
990  *
991  * Returns:
992  * 1 -> a new node has been allocated
993  * 0 -> the node is already online
994  * -ENOMEM -> the node could not be allocated
995  */
996 static int __try_online_node(int nid, u64 start, bool set_node_online)
997 {
998 	pg_data_t *pgdat;
999 	int ret = 1;
1000 
1001 	if (node_online(nid))
1002 		return 0;
1003 
1004 	pgdat = hotadd_new_pgdat(nid, start);
1005 	if (!pgdat) {
1006 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1007 		ret = -ENOMEM;
1008 		goto out;
1009 	}
1010 
1011 	if (set_node_online) {
1012 		node_set_online(nid);
1013 		ret = register_one_node(nid);
1014 		BUG_ON(ret);
1015 	}
1016 out:
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Users of this function always want to online/register the node
1022  */
1023 int try_online_node(int nid)
1024 {
1025 	int ret;
1026 
1027 	mem_hotplug_begin();
1028 	ret =  __try_online_node(nid, 0, true);
1029 	mem_hotplug_done();
1030 	return ret;
1031 }
1032 
1033 static int check_hotplug_memory_range(u64 start, u64 size)
1034 {
1035 	/* memory range must be block size aligned */
1036 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1037 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1038 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1039 		       memory_block_size_bytes(), start, size);
1040 		return -EINVAL;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static int online_memory_block(struct memory_block *mem, void *arg)
1047 {
1048 	return device_online(&mem->dev);
1049 }
1050 
1051 /*
1052  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1053  * and online/offline operations (triggered e.g. by sysfs).
1054  *
1055  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1056  */
1057 int __ref add_memory_resource(int nid, struct resource *res)
1058 {
1059 	struct mhp_restrictions restrictions = {};
1060 	u64 start, size;
1061 	bool new_node = false;
1062 	int ret;
1063 
1064 	start = res->start;
1065 	size = resource_size(res);
1066 
1067 	ret = check_hotplug_memory_range(start, size);
1068 	if (ret)
1069 		return ret;
1070 
1071 	mem_hotplug_begin();
1072 
1073 	/*
1074 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1075 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1076 	 * this new range and calculate total pages correctly.  The range will
1077 	 * be removed at hot-remove time.
1078 	 */
1079 	memblock_add_node(start, size, nid);
1080 
1081 	ret = __try_online_node(nid, start, false);
1082 	if (ret < 0)
1083 		goto error;
1084 	new_node = ret;
1085 
1086 	/* call arch's memory hotadd */
1087 	ret = arch_add_memory(nid, start, size, &restrictions);
1088 	if (ret < 0)
1089 		goto error;
1090 
1091 	/* create memory block devices after memory was added */
1092 	ret = create_memory_block_devices(start, size);
1093 	if (ret) {
1094 		arch_remove_memory(nid, start, size, NULL);
1095 		goto error;
1096 	}
1097 
1098 	if (new_node) {
1099 		/* If sysfs file of new node can't be created, cpu on the node
1100 		 * can't be hot-added. There is no rollback way now.
1101 		 * So, check by BUG_ON() to catch it reluctantly..
1102 		 * We online node here. We can't roll back from here.
1103 		 */
1104 		node_set_online(nid);
1105 		ret = __register_one_node(nid);
1106 		BUG_ON(ret);
1107 	}
1108 
1109 	/* link memory sections under this node.*/
1110 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1111 	BUG_ON(ret);
1112 
1113 	/* create new memmap entry */
1114 	firmware_map_add_hotplug(start, start + size, "System RAM");
1115 
1116 	/* device_online() will take the lock when calling online_pages() */
1117 	mem_hotplug_done();
1118 
1119 	/* online pages if requested */
1120 	if (memhp_auto_online)
1121 		walk_memory_blocks(start, size, NULL, online_memory_block);
1122 
1123 	return ret;
1124 error:
1125 	/* rollback pgdat allocation and others */
1126 	if (new_node)
1127 		rollback_node_hotadd(nid);
1128 	memblock_remove(start, size);
1129 	mem_hotplug_done();
1130 	return ret;
1131 }
1132 
1133 /* requires device_hotplug_lock, see add_memory_resource() */
1134 int __ref __add_memory(int nid, u64 start, u64 size)
1135 {
1136 	struct resource *res;
1137 	int ret;
1138 
1139 	res = register_memory_resource(start, size);
1140 	if (IS_ERR(res))
1141 		return PTR_ERR(res);
1142 
1143 	ret = add_memory_resource(nid, res);
1144 	if (ret < 0)
1145 		release_memory_resource(res);
1146 	return ret;
1147 }
1148 
1149 int add_memory(int nid, u64 start, u64 size)
1150 {
1151 	int rc;
1152 
1153 	lock_device_hotplug();
1154 	rc = __add_memory(nid, start, size);
1155 	unlock_device_hotplug();
1156 
1157 	return rc;
1158 }
1159 EXPORT_SYMBOL_GPL(add_memory);
1160 
1161 #ifdef CONFIG_MEMORY_HOTREMOVE
1162 /*
1163  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1164  * set and the size of the free page is given by page_order(). Using this,
1165  * the function determines if the pageblock contains only free pages.
1166  * Due to buddy contraints, a free page at least the size of a pageblock will
1167  * be located at the start of the pageblock
1168  */
1169 static inline int pageblock_free(struct page *page)
1170 {
1171 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1172 }
1173 
1174 /* Return the pfn of the start of the next active pageblock after a given pfn */
1175 static unsigned long next_active_pageblock(unsigned long pfn)
1176 {
1177 	struct page *page = pfn_to_page(pfn);
1178 
1179 	/* Ensure the starting page is pageblock-aligned */
1180 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1181 
1182 	/* If the entire pageblock is free, move to the end of free page */
1183 	if (pageblock_free(page)) {
1184 		int order;
1185 		/* be careful. we don't have locks, page_order can be changed.*/
1186 		order = page_order(page);
1187 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1188 			return pfn + (1 << order);
1189 	}
1190 
1191 	return pfn + pageblock_nr_pages;
1192 }
1193 
1194 static bool is_pageblock_removable_nolock(unsigned long pfn)
1195 {
1196 	struct page *page = pfn_to_page(pfn);
1197 	struct zone *zone;
1198 
1199 	/*
1200 	 * We have to be careful here because we are iterating over memory
1201 	 * sections which are not zone aware so we might end up outside of
1202 	 * the zone but still within the section.
1203 	 * We have to take care about the node as well. If the node is offline
1204 	 * its NODE_DATA will be NULL - see page_zone.
1205 	 */
1206 	if (!node_online(page_to_nid(page)))
1207 		return false;
1208 
1209 	zone = page_zone(page);
1210 	pfn = page_to_pfn(page);
1211 	if (!zone_spans_pfn(zone, pfn))
1212 		return false;
1213 
1214 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1215 }
1216 
1217 /* Checks if this range of memory is likely to be hot-removable. */
1218 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1219 {
1220 	unsigned long end_pfn, pfn;
1221 
1222 	end_pfn = min(start_pfn + nr_pages,
1223 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1224 
1225 	/* Check the starting page of each pageblock within the range */
1226 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1227 		if (!is_pageblock_removable_nolock(pfn))
1228 			return false;
1229 		cond_resched();
1230 	}
1231 
1232 	/* All pageblocks in the memory block are likely to be hot-removable */
1233 	return true;
1234 }
1235 
1236 /*
1237  * Confirm all pages in a range [start, end) belong to the same zone.
1238  * When true, return its valid [start, end).
1239  */
1240 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1241 			 unsigned long *valid_start, unsigned long *valid_end)
1242 {
1243 	unsigned long pfn, sec_end_pfn;
1244 	unsigned long start, end;
1245 	struct zone *zone = NULL;
1246 	struct page *page;
1247 	int i;
1248 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1249 	     pfn < end_pfn;
1250 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1251 		/* Make sure the memory section is present first */
1252 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1253 			continue;
1254 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1255 		     pfn += MAX_ORDER_NR_PAGES) {
1256 			i = 0;
1257 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1258 			while ((i < MAX_ORDER_NR_PAGES) &&
1259 				!pfn_valid_within(pfn + i))
1260 				i++;
1261 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1262 				continue;
1263 			/* Check if we got outside of the zone */
1264 			if (zone && !zone_spans_pfn(zone, pfn + i))
1265 				return 0;
1266 			page = pfn_to_page(pfn + i);
1267 			if (zone && page_zone(page) != zone)
1268 				return 0;
1269 			if (!zone)
1270 				start = pfn + i;
1271 			zone = page_zone(page);
1272 			end = pfn + MAX_ORDER_NR_PAGES;
1273 		}
1274 	}
1275 
1276 	if (zone) {
1277 		*valid_start = start;
1278 		*valid_end = min(end, end_pfn);
1279 		return 1;
1280 	} else {
1281 		return 0;
1282 	}
1283 }
1284 
1285 /*
1286  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1287  * non-lru movable pages and hugepages). We scan pfn because it's much
1288  * easier than scanning over linked list. This function returns the pfn
1289  * of the first found movable page if it's found, otherwise 0.
1290  */
1291 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1292 {
1293 	unsigned long pfn;
1294 
1295 	for (pfn = start; pfn < end; pfn++) {
1296 		struct page *page, *head;
1297 		unsigned long skip;
1298 
1299 		if (!pfn_valid(pfn))
1300 			continue;
1301 		page = pfn_to_page(pfn);
1302 		if (PageLRU(page))
1303 			return pfn;
1304 		if (__PageMovable(page))
1305 			return pfn;
1306 
1307 		if (!PageHuge(page))
1308 			continue;
1309 		head = compound_head(page);
1310 		if (page_huge_active(head))
1311 			return pfn;
1312 		skip = (1 << compound_order(head)) - (page - head);
1313 		pfn += skip - 1;
1314 	}
1315 	return 0;
1316 }
1317 
1318 static struct page *new_node_page(struct page *page, unsigned long private)
1319 {
1320 	int nid = page_to_nid(page);
1321 	nodemask_t nmask = node_states[N_MEMORY];
1322 
1323 	/*
1324 	 * try to allocate from a different node but reuse this node if there
1325 	 * are no other online nodes to be used (e.g. we are offlining a part
1326 	 * of the only existing node)
1327 	 */
1328 	node_clear(nid, nmask);
1329 	if (nodes_empty(nmask))
1330 		node_set(nid, nmask);
1331 
1332 	return new_page_nodemask(page, nid, &nmask);
1333 }
1334 
1335 static int
1336 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1337 {
1338 	unsigned long pfn;
1339 	struct page *page;
1340 	int ret = 0;
1341 	LIST_HEAD(source);
1342 
1343 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344 		if (!pfn_valid(pfn))
1345 			continue;
1346 		page = pfn_to_page(pfn);
1347 
1348 		if (PageHuge(page)) {
1349 			struct page *head = compound_head(page);
1350 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1351 			isolate_huge_page(head, &source);
1352 			continue;
1353 		} else if (PageTransHuge(page))
1354 			pfn = page_to_pfn(compound_head(page))
1355 				+ hpage_nr_pages(page) - 1;
1356 
1357 		/*
1358 		 * HWPoison pages have elevated reference counts so the migration would
1359 		 * fail on them. It also doesn't make any sense to migrate them in the
1360 		 * first place. Still try to unmap such a page in case it is still mapped
1361 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1362 		 * the unmap as the catch all safety net).
1363 		 */
1364 		if (PageHWPoison(page)) {
1365 			if (WARN_ON(PageLRU(page)))
1366 				isolate_lru_page(page);
1367 			if (page_mapped(page))
1368 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1369 			continue;
1370 		}
1371 
1372 		if (!get_page_unless_zero(page))
1373 			continue;
1374 		/*
1375 		 * We can skip free pages. And we can deal with pages on
1376 		 * LRU and non-lru movable pages.
1377 		 */
1378 		if (PageLRU(page))
1379 			ret = isolate_lru_page(page);
1380 		else
1381 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382 		if (!ret) { /* Success */
1383 			list_add_tail(&page->lru, &source);
1384 			if (!__PageMovable(page))
1385 				inc_node_page_state(page, NR_ISOLATED_ANON +
1386 						    page_is_file_cache(page));
1387 
1388 		} else {
1389 			pr_warn("failed to isolate pfn %lx\n", pfn);
1390 			dump_page(page, "isolation failed");
1391 		}
1392 		put_page(page);
1393 	}
1394 	if (!list_empty(&source)) {
1395 		/* Allocate a new page from the nearest neighbor node */
1396 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1397 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1398 		if (ret) {
1399 			list_for_each_entry(page, &source, lru) {
1400 				pr_warn("migrating pfn %lx failed ret:%d ",
1401 				       page_to_pfn(page), ret);
1402 				dump_page(page, "migration failure");
1403 			}
1404 			putback_movable_pages(&source);
1405 		}
1406 	}
1407 
1408 	return ret;
1409 }
1410 
1411 /*
1412  * remove from free_area[] and mark all as Reserved.
1413  */
1414 static int
1415 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1416 			void *data)
1417 {
1418 	unsigned long *offlined_pages = (unsigned long *)data;
1419 
1420 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1421 	return 0;
1422 }
1423 
1424 /*
1425  * Check all pages in range, recoreded as memory resource, are isolated.
1426  */
1427 static int
1428 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1429 			void *data)
1430 {
1431 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1432 }
1433 
1434 static int __init cmdline_parse_movable_node(char *p)
1435 {
1436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1437 	movable_node_enabled = true;
1438 #else
1439 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1440 #endif
1441 	return 0;
1442 }
1443 early_param("movable_node", cmdline_parse_movable_node);
1444 
1445 /* check which state of node_states will be changed when offline memory */
1446 static void node_states_check_changes_offline(unsigned long nr_pages,
1447 		struct zone *zone, struct memory_notify *arg)
1448 {
1449 	struct pglist_data *pgdat = zone->zone_pgdat;
1450 	unsigned long present_pages = 0;
1451 	enum zone_type zt;
1452 
1453 	arg->status_change_nid = NUMA_NO_NODE;
1454 	arg->status_change_nid_normal = NUMA_NO_NODE;
1455 	arg->status_change_nid_high = NUMA_NO_NODE;
1456 
1457 	/*
1458 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1459 	 * If the memory to be offline is within the range
1460 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1461 	 * the zones in that range will become empty after the offlining,
1462 	 * thus we can determine that we need to clear the node from
1463 	 * node_states[N_NORMAL_MEMORY].
1464 	 */
1465 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1466 		present_pages += pgdat->node_zones[zt].present_pages;
1467 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1468 		arg->status_change_nid_normal = zone_to_nid(zone);
1469 
1470 #ifdef CONFIG_HIGHMEM
1471 	/*
1472 	 * node_states[N_HIGH_MEMORY] contains nodes which
1473 	 * have normal memory or high memory.
1474 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1475 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1476 	 * we determine that the zones in that range become empty,
1477 	 * we need to clear the node for N_HIGH_MEMORY.
1478 	 */
1479 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1480 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1481 		arg->status_change_nid_high = zone_to_nid(zone);
1482 #endif
1483 
1484 	/*
1485 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1486 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1487 	 * as well.
1488 	 * Here we count the possible pages from ZONE_MOVABLE.
1489 	 * If after having accounted all the pages, we see that the nr_pages
1490 	 * to be offlined is over or equal to the accounted pages,
1491 	 * we know that the node will become empty, and so, we can clear
1492 	 * it for N_MEMORY as well.
1493 	 */
1494 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1495 
1496 	if (nr_pages >= present_pages)
1497 		arg->status_change_nid = zone_to_nid(zone);
1498 }
1499 
1500 static void node_states_clear_node(int node, struct memory_notify *arg)
1501 {
1502 	if (arg->status_change_nid_normal >= 0)
1503 		node_clear_state(node, N_NORMAL_MEMORY);
1504 
1505 	if (arg->status_change_nid_high >= 0)
1506 		node_clear_state(node, N_HIGH_MEMORY);
1507 
1508 	if (arg->status_change_nid >= 0)
1509 		node_clear_state(node, N_MEMORY);
1510 }
1511 
1512 static int __ref __offline_pages(unsigned long start_pfn,
1513 		  unsigned long end_pfn)
1514 {
1515 	unsigned long pfn, nr_pages;
1516 	unsigned long offlined_pages = 0;
1517 	int ret, node, nr_isolate_pageblock;
1518 	unsigned long flags;
1519 	unsigned long valid_start, valid_end;
1520 	struct zone *zone;
1521 	struct memory_notify arg;
1522 	char *reason;
1523 
1524 	mem_hotplug_begin();
1525 
1526 	/* This makes hotplug much easier...and readable.
1527 	   we assume this for now. .*/
1528 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1529 				  &valid_end)) {
1530 		ret = -EINVAL;
1531 		reason = "multizone range";
1532 		goto failed_removal;
1533 	}
1534 
1535 	zone = page_zone(pfn_to_page(valid_start));
1536 	node = zone_to_nid(zone);
1537 	nr_pages = end_pfn - start_pfn;
1538 
1539 	/* set above range as isolated */
1540 	ret = start_isolate_page_range(start_pfn, end_pfn,
1541 				       MIGRATE_MOVABLE,
1542 				       SKIP_HWPOISON | REPORT_FAILURE);
1543 	if (ret < 0) {
1544 		reason = "failure to isolate range";
1545 		goto failed_removal;
1546 	}
1547 	nr_isolate_pageblock = ret;
1548 
1549 	arg.start_pfn = start_pfn;
1550 	arg.nr_pages = nr_pages;
1551 	node_states_check_changes_offline(nr_pages, zone, &arg);
1552 
1553 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1554 	ret = notifier_to_errno(ret);
1555 	if (ret) {
1556 		reason = "notifier failure";
1557 		goto failed_removal_isolated;
1558 	}
1559 
1560 	do {
1561 		for (pfn = start_pfn; pfn;) {
1562 			if (signal_pending(current)) {
1563 				ret = -EINTR;
1564 				reason = "signal backoff";
1565 				goto failed_removal_isolated;
1566 			}
1567 
1568 			cond_resched();
1569 			lru_add_drain_all();
1570 
1571 			pfn = scan_movable_pages(pfn, end_pfn);
1572 			if (pfn) {
1573 				/*
1574 				 * TODO: fatal migration failures should bail
1575 				 * out
1576 				 */
1577 				do_migrate_range(pfn, end_pfn);
1578 			}
1579 		}
1580 
1581 		/*
1582 		 * Dissolve free hugepages in the memory block before doing
1583 		 * offlining actually in order to make hugetlbfs's object
1584 		 * counting consistent.
1585 		 */
1586 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1587 		if (ret) {
1588 			reason = "failure to dissolve huge pages";
1589 			goto failed_removal_isolated;
1590 		}
1591 		/* check again */
1592 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1593 					    NULL, check_pages_isolated_cb);
1594 	} while (ret);
1595 
1596 	/* Ok, all of our target is isolated.
1597 	   We cannot do rollback at this point. */
1598 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1599 			      &offlined_pages, offline_isolated_pages_cb);
1600 	pr_info("Offlined Pages %ld\n", offlined_pages);
1601 	/*
1602 	 * Onlining will reset pagetype flags and makes migrate type
1603 	 * MOVABLE, so just need to decrease the number of isolated
1604 	 * pageblocks zone counter here.
1605 	 */
1606 	spin_lock_irqsave(&zone->lock, flags);
1607 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1608 	spin_unlock_irqrestore(&zone->lock, flags);
1609 
1610 	/* removal success */
1611 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1612 	zone->present_pages -= offlined_pages;
1613 
1614 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1615 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1616 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1617 
1618 	init_per_zone_wmark_min();
1619 
1620 	if (!populated_zone(zone)) {
1621 		zone_pcp_reset(zone);
1622 		build_all_zonelists(NULL);
1623 	} else
1624 		zone_pcp_update(zone);
1625 
1626 	node_states_clear_node(node, &arg);
1627 	if (arg.status_change_nid >= 0) {
1628 		kswapd_stop(node);
1629 		kcompactd_stop(node);
1630 	}
1631 
1632 	vm_total_pages = nr_free_pagecache_pages();
1633 	writeback_set_ratelimit();
1634 
1635 	memory_notify(MEM_OFFLINE, &arg);
1636 	mem_hotplug_done();
1637 	return 0;
1638 
1639 failed_removal_isolated:
1640 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1641 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1642 failed_removal:
1643 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1644 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1645 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1646 		 reason);
1647 	/* pushback to free area */
1648 	mem_hotplug_done();
1649 	return ret;
1650 }
1651 
1652 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1653 {
1654 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1655 }
1656 
1657 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1658 {
1659 	int ret = !is_memblock_offlined(mem);
1660 
1661 	if (unlikely(ret)) {
1662 		phys_addr_t beginpa, endpa;
1663 
1664 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1665 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1666 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1667 			&beginpa, &endpa);
1668 
1669 		return -EBUSY;
1670 	}
1671 	return 0;
1672 }
1673 
1674 static int check_cpu_on_node(pg_data_t *pgdat)
1675 {
1676 	int cpu;
1677 
1678 	for_each_present_cpu(cpu) {
1679 		if (cpu_to_node(cpu) == pgdat->node_id)
1680 			/*
1681 			 * the cpu on this node isn't removed, and we can't
1682 			 * offline this node.
1683 			 */
1684 			return -EBUSY;
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  * try_offline_node
1692  * @nid: the node ID
1693  *
1694  * Offline a node if all memory sections and cpus of the node are removed.
1695  *
1696  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1697  * and online/offline operations before this call.
1698  */
1699 void try_offline_node(int nid)
1700 {
1701 	pg_data_t *pgdat = NODE_DATA(nid);
1702 	unsigned long start_pfn = pgdat->node_start_pfn;
1703 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1704 	unsigned long pfn;
1705 
1706 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1707 		unsigned long section_nr = pfn_to_section_nr(pfn);
1708 
1709 		if (!present_section_nr(section_nr))
1710 			continue;
1711 
1712 		if (pfn_to_nid(pfn) != nid)
1713 			continue;
1714 
1715 		/*
1716 		 * some memory sections of this node are not removed, and we
1717 		 * can't offline node now.
1718 		 */
1719 		return;
1720 	}
1721 
1722 	if (check_cpu_on_node(pgdat))
1723 		return;
1724 
1725 	/*
1726 	 * all memory/cpu of this node are removed, we can offline this
1727 	 * node now.
1728 	 */
1729 	node_set_offline(nid);
1730 	unregister_one_node(nid);
1731 }
1732 EXPORT_SYMBOL(try_offline_node);
1733 
1734 static void __release_memory_resource(resource_size_t start,
1735 				      resource_size_t size)
1736 {
1737 	int ret;
1738 
1739 	/*
1740 	 * When removing memory in the same granularity as it was added,
1741 	 * this function never fails. It might only fail if resources
1742 	 * have to be adjusted or split. We'll ignore the error, as
1743 	 * removing of memory cannot fail.
1744 	 */
1745 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1746 	if (ret) {
1747 		resource_size_t endres = start + size - 1;
1748 
1749 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1750 			&start, &endres, ret);
1751 	}
1752 }
1753 
1754 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1755 {
1756 	int rc = 0;
1757 
1758 	BUG_ON(check_hotplug_memory_range(start, size));
1759 
1760 	mem_hotplug_begin();
1761 
1762 	/*
1763 	 * All memory blocks must be offlined before removing memory.  Check
1764 	 * whether all memory blocks in question are offline and return error
1765 	 * if this is not the case.
1766 	 */
1767 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1768 	if (rc)
1769 		goto done;
1770 
1771 	/* remove memmap entry */
1772 	firmware_map_remove(start, start + size, "System RAM");
1773 	memblock_free(start, size);
1774 	memblock_remove(start, size);
1775 
1776 	/* remove memory block devices before removing memory */
1777 	remove_memory_block_devices(start, size);
1778 
1779 	arch_remove_memory(nid, start, size, NULL);
1780 	__release_memory_resource(start, size);
1781 
1782 	try_offline_node(nid);
1783 
1784 done:
1785 	mem_hotplug_done();
1786 	return rc;
1787 }
1788 
1789 /**
1790  * remove_memory
1791  * @nid: the node ID
1792  * @start: physical address of the region to remove
1793  * @size: size of the region to remove
1794  *
1795  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1796  * and online/offline operations before this call, as required by
1797  * try_offline_node().
1798  */
1799 void __remove_memory(int nid, u64 start, u64 size)
1800 {
1801 
1802 	/*
1803 	 * trigger BUG() is some memory is not offlined prior to calling this
1804 	 * function
1805 	 */
1806 	if (try_remove_memory(nid, start, size))
1807 		BUG();
1808 }
1809 
1810 /*
1811  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1812  * some memory is not offline
1813  */
1814 int remove_memory(int nid, u64 start, u64 size)
1815 {
1816 	int rc;
1817 
1818 	lock_device_hotplug();
1819 	rc  = try_remove_memory(nid, start, size);
1820 	unlock_device_hotplug();
1821 
1822 	return rc;
1823 }
1824 EXPORT_SYMBOL_GPL(remove_memory);
1825 #endif /* CONFIG_MEMORY_HOTREMOVE */
1826