xref: /openbmc/linux/mm/memory_hotplug.c (revision 8e9356c6)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/highmem.h>
22 #include <linux/vmalloc.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/migrate.h>
26 #include <linux/page-isolation.h>
27 #include <linux/pfn.h>
28 #include <linux/suspend.h>
29 #include <linux/mm_inline.h>
30 #include <linux/firmware-map.h>
31 #include <linux/stop_machine.h>
32 #include <linux/hugetlb.h>
33 #include <linux/memblock.h>
34 
35 #include <asm/tlbflush.h>
36 
37 #include "internal.h"
38 
39 /*
40  * online_page_callback contains pointer to current page onlining function.
41  * Initially it is generic_online_page(). If it is required it could be
42  * changed by calling set_online_page_callback() for callback registration
43  * and restore_online_page_callback() for generic callback restore.
44  */
45 
46 static void generic_online_page(struct page *page);
47 
48 static online_page_callback_t online_page_callback = generic_online_page;
49 
50 DEFINE_MUTEX(mem_hotplug_mutex);
51 
52 void lock_memory_hotplug(void)
53 {
54 	mutex_lock(&mem_hotplug_mutex);
55 }
56 
57 void unlock_memory_hotplug(void)
58 {
59 	mutex_unlock(&mem_hotplug_mutex);
60 }
61 
62 
63 /* add this memory to iomem resource */
64 static struct resource *register_memory_resource(u64 start, u64 size)
65 {
66 	struct resource *res;
67 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
68 	BUG_ON(!res);
69 
70 	res->name = "System RAM";
71 	res->start = start;
72 	res->end = start + size - 1;
73 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
74 	if (request_resource(&iomem_resource, res) < 0) {
75 		pr_debug("System RAM resource %pR cannot be added\n", res);
76 		kfree(res);
77 		res = NULL;
78 	}
79 	return res;
80 }
81 
82 static void release_memory_resource(struct resource *res)
83 {
84 	if (!res)
85 		return;
86 	release_resource(res);
87 	kfree(res);
88 	return;
89 }
90 
91 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
92 void get_page_bootmem(unsigned long info,  struct page *page,
93 		      unsigned long type)
94 {
95 	page->lru.next = (struct list_head *) type;
96 	SetPagePrivate(page);
97 	set_page_private(page, info);
98 	atomic_inc(&page->_count);
99 }
100 
101 void put_page_bootmem(struct page *page)
102 {
103 	unsigned long type;
104 
105 	type = (unsigned long) page->lru.next;
106 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
107 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
108 
109 	if (atomic_dec_return(&page->_count) == 1) {
110 		ClearPagePrivate(page);
111 		set_page_private(page, 0);
112 		INIT_LIST_HEAD(&page->lru);
113 		free_reserved_page(page);
114 	}
115 }
116 
117 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
118 #ifndef CONFIG_SPARSEMEM_VMEMMAP
119 static void register_page_bootmem_info_section(unsigned long start_pfn)
120 {
121 	unsigned long *usemap, mapsize, section_nr, i;
122 	struct mem_section *ms;
123 	struct page *page, *memmap;
124 
125 	section_nr = pfn_to_section_nr(start_pfn);
126 	ms = __nr_to_section(section_nr);
127 
128 	/* Get section's memmap address */
129 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
130 
131 	/*
132 	 * Get page for the memmap's phys address
133 	 * XXX: need more consideration for sparse_vmemmap...
134 	 */
135 	page = virt_to_page(memmap);
136 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
137 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
138 
139 	/* remember memmap's page */
140 	for (i = 0; i < mapsize; i++, page++)
141 		get_page_bootmem(section_nr, page, SECTION_INFO);
142 
143 	usemap = __nr_to_section(section_nr)->pageblock_flags;
144 	page = virt_to_page(usemap);
145 
146 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
147 
148 	for (i = 0; i < mapsize; i++, page++)
149 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
150 
151 }
152 #else /* CONFIG_SPARSEMEM_VMEMMAP */
153 static void register_page_bootmem_info_section(unsigned long start_pfn)
154 {
155 	unsigned long *usemap, mapsize, section_nr, i;
156 	struct mem_section *ms;
157 	struct page *page, *memmap;
158 
159 	if (!pfn_valid(start_pfn))
160 		return;
161 
162 	section_nr = pfn_to_section_nr(start_pfn);
163 	ms = __nr_to_section(section_nr);
164 
165 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
166 
167 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
168 
169 	usemap = __nr_to_section(section_nr)->pageblock_flags;
170 	page = virt_to_page(usemap);
171 
172 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
173 
174 	for (i = 0; i < mapsize; i++, page++)
175 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
176 }
177 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
178 
179 void register_page_bootmem_info_node(struct pglist_data *pgdat)
180 {
181 	unsigned long i, pfn, end_pfn, nr_pages;
182 	int node = pgdat->node_id;
183 	struct page *page;
184 	struct zone *zone;
185 
186 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
187 	page = virt_to_page(pgdat);
188 
189 	for (i = 0; i < nr_pages; i++, page++)
190 		get_page_bootmem(node, page, NODE_INFO);
191 
192 	zone = &pgdat->node_zones[0];
193 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
194 		if (zone_is_initialized(zone)) {
195 			nr_pages = zone->wait_table_hash_nr_entries
196 				* sizeof(wait_queue_head_t);
197 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
198 			page = virt_to_page(zone->wait_table);
199 
200 			for (i = 0; i < nr_pages; i++, page++)
201 				get_page_bootmem(node, page, NODE_INFO);
202 		}
203 	}
204 
205 	pfn = pgdat->node_start_pfn;
206 	end_pfn = pgdat_end_pfn(pgdat);
207 
208 	/* register section info */
209 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
210 		/*
211 		 * Some platforms can assign the same pfn to multiple nodes - on
212 		 * node0 as well as nodeN.  To avoid registering a pfn against
213 		 * multiple nodes we check that this pfn does not already
214 		 * reside in some other nodes.
215 		 */
216 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
217 			register_page_bootmem_info_section(pfn);
218 	}
219 }
220 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
221 
222 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
223 			   unsigned long end_pfn)
224 {
225 	unsigned long old_zone_end_pfn;
226 
227 	zone_span_writelock(zone);
228 
229 	old_zone_end_pfn = zone_end_pfn(zone);
230 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
231 		zone->zone_start_pfn = start_pfn;
232 
233 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
234 				zone->zone_start_pfn;
235 
236 	zone_span_writeunlock(zone);
237 }
238 
239 static void resize_zone(struct zone *zone, unsigned long start_pfn,
240 		unsigned long end_pfn)
241 {
242 	zone_span_writelock(zone);
243 
244 	if (end_pfn - start_pfn) {
245 		zone->zone_start_pfn = start_pfn;
246 		zone->spanned_pages = end_pfn - start_pfn;
247 	} else {
248 		/*
249 		 * make it consist as free_area_init_core(),
250 		 * if spanned_pages = 0, then keep start_pfn = 0
251 		 */
252 		zone->zone_start_pfn = 0;
253 		zone->spanned_pages = 0;
254 	}
255 
256 	zone_span_writeunlock(zone);
257 }
258 
259 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
260 		unsigned long end_pfn)
261 {
262 	enum zone_type zid = zone_idx(zone);
263 	int nid = zone->zone_pgdat->node_id;
264 	unsigned long pfn;
265 
266 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
267 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
268 }
269 
270 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
271  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
272 static int __ref ensure_zone_is_initialized(struct zone *zone,
273 			unsigned long start_pfn, unsigned long num_pages)
274 {
275 	if (!zone_is_initialized(zone))
276 		return init_currently_empty_zone(zone, start_pfn, num_pages,
277 						 MEMMAP_HOTPLUG);
278 	return 0;
279 }
280 
281 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
282 		unsigned long start_pfn, unsigned long end_pfn)
283 {
284 	int ret;
285 	unsigned long flags;
286 	unsigned long z1_start_pfn;
287 
288 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
289 	if (ret)
290 		return ret;
291 
292 	pgdat_resize_lock(z1->zone_pgdat, &flags);
293 
294 	/* can't move pfns which are higher than @z2 */
295 	if (end_pfn > zone_end_pfn(z2))
296 		goto out_fail;
297 	/* the move out part must be at the left most of @z2 */
298 	if (start_pfn > z2->zone_start_pfn)
299 		goto out_fail;
300 	/* must included/overlap */
301 	if (end_pfn <= z2->zone_start_pfn)
302 		goto out_fail;
303 
304 	/* use start_pfn for z1's start_pfn if z1 is empty */
305 	if (!zone_is_empty(z1))
306 		z1_start_pfn = z1->zone_start_pfn;
307 	else
308 		z1_start_pfn = start_pfn;
309 
310 	resize_zone(z1, z1_start_pfn, end_pfn);
311 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
312 
313 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
314 
315 	fix_zone_id(z1, start_pfn, end_pfn);
316 
317 	return 0;
318 out_fail:
319 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
320 	return -1;
321 }
322 
323 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
324 		unsigned long start_pfn, unsigned long end_pfn)
325 {
326 	int ret;
327 	unsigned long flags;
328 	unsigned long z2_end_pfn;
329 
330 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
331 	if (ret)
332 		return ret;
333 
334 	pgdat_resize_lock(z1->zone_pgdat, &flags);
335 
336 	/* can't move pfns which are lower than @z1 */
337 	if (z1->zone_start_pfn > start_pfn)
338 		goto out_fail;
339 	/* the move out part mast at the right most of @z1 */
340 	if (zone_end_pfn(z1) >  end_pfn)
341 		goto out_fail;
342 	/* must included/overlap */
343 	if (start_pfn >= zone_end_pfn(z1))
344 		goto out_fail;
345 
346 	/* use end_pfn for z2's end_pfn if z2 is empty */
347 	if (!zone_is_empty(z2))
348 		z2_end_pfn = zone_end_pfn(z2);
349 	else
350 		z2_end_pfn = end_pfn;
351 
352 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
353 	resize_zone(z2, start_pfn, z2_end_pfn);
354 
355 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
356 
357 	fix_zone_id(z2, start_pfn, end_pfn);
358 
359 	return 0;
360 out_fail:
361 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
362 	return -1;
363 }
364 
365 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
366 			    unsigned long end_pfn)
367 {
368 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
369 
370 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
371 		pgdat->node_start_pfn = start_pfn;
372 
373 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
374 					pgdat->node_start_pfn;
375 }
376 
377 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
378 {
379 	struct pglist_data *pgdat = zone->zone_pgdat;
380 	int nr_pages = PAGES_PER_SECTION;
381 	int nid = pgdat->node_id;
382 	int zone_type;
383 	unsigned long flags;
384 	int ret;
385 
386 	zone_type = zone - pgdat->node_zones;
387 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
388 	if (ret)
389 		return ret;
390 
391 	pgdat_resize_lock(zone->zone_pgdat, &flags);
392 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
393 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
394 			phys_start_pfn + nr_pages);
395 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
396 	memmap_init_zone(nr_pages, nid, zone_type,
397 			 phys_start_pfn, MEMMAP_HOTPLUG);
398 	return 0;
399 }
400 
401 static int __meminit __add_section(int nid, struct zone *zone,
402 					unsigned long phys_start_pfn)
403 {
404 	int ret;
405 
406 	if (pfn_valid(phys_start_pfn))
407 		return -EEXIST;
408 
409 	ret = sparse_add_one_section(zone, phys_start_pfn);
410 
411 	if (ret < 0)
412 		return ret;
413 
414 	ret = __add_zone(zone, phys_start_pfn);
415 
416 	if (ret < 0)
417 		return ret;
418 
419 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
420 }
421 
422 /*
423  * Reasonably generic function for adding memory.  It is
424  * expected that archs that support memory hotplug will
425  * call this function after deciding the zone to which to
426  * add the new pages.
427  */
428 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
429 			unsigned long nr_pages)
430 {
431 	unsigned long i;
432 	int err = 0;
433 	int start_sec, end_sec;
434 	/* during initialize mem_map, align hot-added range to section */
435 	start_sec = pfn_to_section_nr(phys_start_pfn);
436 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
437 
438 	for (i = start_sec; i <= end_sec; i++) {
439 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
440 
441 		/*
442 		 * EEXIST is finally dealt with by ioresource collision
443 		 * check. see add_memory() => register_memory_resource()
444 		 * Warning will be printed if there is collision.
445 		 */
446 		if (err && (err != -EEXIST))
447 			break;
448 		err = 0;
449 	}
450 
451 	return err;
452 }
453 EXPORT_SYMBOL_GPL(__add_pages);
454 
455 #ifdef CONFIG_MEMORY_HOTREMOVE
456 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
457 static int find_smallest_section_pfn(int nid, struct zone *zone,
458 				     unsigned long start_pfn,
459 				     unsigned long end_pfn)
460 {
461 	struct mem_section *ms;
462 
463 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
464 		ms = __pfn_to_section(start_pfn);
465 
466 		if (unlikely(!valid_section(ms)))
467 			continue;
468 
469 		if (unlikely(pfn_to_nid(start_pfn) != nid))
470 			continue;
471 
472 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
473 			continue;
474 
475 		return start_pfn;
476 	}
477 
478 	return 0;
479 }
480 
481 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
482 static int find_biggest_section_pfn(int nid, struct zone *zone,
483 				    unsigned long start_pfn,
484 				    unsigned long end_pfn)
485 {
486 	struct mem_section *ms;
487 	unsigned long pfn;
488 
489 	/* pfn is the end pfn of a memory section. */
490 	pfn = end_pfn - 1;
491 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
492 		ms = __pfn_to_section(pfn);
493 
494 		if (unlikely(!valid_section(ms)))
495 			continue;
496 
497 		if (unlikely(pfn_to_nid(pfn) != nid))
498 			continue;
499 
500 		if (zone && zone != page_zone(pfn_to_page(pfn)))
501 			continue;
502 
503 		return pfn;
504 	}
505 
506 	return 0;
507 }
508 
509 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
510 			     unsigned long end_pfn)
511 {
512 	unsigned long zone_start_pfn = zone->zone_start_pfn;
513 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
514 	unsigned long zone_end_pfn = z;
515 	unsigned long pfn;
516 	struct mem_section *ms;
517 	int nid = zone_to_nid(zone);
518 
519 	zone_span_writelock(zone);
520 	if (zone_start_pfn == start_pfn) {
521 		/*
522 		 * If the section is smallest section in the zone, it need
523 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
524 		 * In this case, we find second smallest valid mem_section
525 		 * for shrinking zone.
526 		 */
527 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
528 						zone_end_pfn);
529 		if (pfn) {
530 			zone->zone_start_pfn = pfn;
531 			zone->spanned_pages = zone_end_pfn - pfn;
532 		}
533 	} else if (zone_end_pfn == end_pfn) {
534 		/*
535 		 * If the section is biggest section in the zone, it need
536 		 * shrink zone->spanned_pages.
537 		 * In this case, we find second biggest valid mem_section for
538 		 * shrinking zone.
539 		 */
540 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
541 					       start_pfn);
542 		if (pfn)
543 			zone->spanned_pages = pfn - zone_start_pfn + 1;
544 	}
545 
546 	/*
547 	 * The section is not biggest or smallest mem_section in the zone, it
548 	 * only creates a hole in the zone. So in this case, we need not
549 	 * change the zone. But perhaps, the zone has only hole data. Thus
550 	 * it check the zone has only hole or not.
551 	 */
552 	pfn = zone_start_pfn;
553 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
554 		ms = __pfn_to_section(pfn);
555 
556 		if (unlikely(!valid_section(ms)))
557 			continue;
558 
559 		if (page_zone(pfn_to_page(pfn)) != zone)
560 			continue;
561 
562 		 /* If the section is current section, it continues the loop */
563 		if (start_pfn == pfn)
564 			continue;
565 
566 		/* If we find valid section, we have nothing to do */
567 		zone_span_writeunlock(zone);
568 		return;
569 	}
570 
571 	/* The zone has no valid section */
572 	zone->zone_start_pfn = 0;
573 	zone->spanned_pages = 0;
574 	zone_span_writeunlock(zone);
575 }
576 
577 static void shrink_pgdat_span(struct pglist_data *pgdat,
578 			      unsigned long start_pfn, unsigned long end_pfn)
579 {
580 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
581 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
582 	unsigned long pgdat_end_pfn = p;
583 	unsigned long pfn;
584 	struct mem_section *ms;
585 	int nid = pgdat->node_id;
586 
587 	if (pgdat_start_pfn == start_pfn) {
588 		/*
589 		 * If the section is smallest section in the pgdat, it need
590 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
591 		 * In this case, we find second smallest valid mem_section
592 		 * for shrinking zone.
593 		 */
594 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
595 						pgdat_end_pfn);
596 		if (pfn) {
597 			pgdat->node_start_pfn = pfn;
598 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
599 		}
600 	} else if (pgdat_end_pfn == end_pfn) {
601 		/*
602 		 * If the section is biggest section in the pgdat, it need
603 		 * shrink pgdat->node_spanned_pages.
604 		 * In this case, we find second biggest valid mem_section for
605 		 * shrinking zone.
606 		 */
607 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
608 					       start_pfn);
609 		if (pfn)
610 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
611 	}
612 
613 	/*
614 	 * If the section is not biggest or smallest mem_section in the pgdat,
615 	 * it only creates a hole in the pgdat. So in this case, we need not
616 	 * change the pgdat.
617 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
618 	 * has only hole or not.
619 	 */
620 	pfn = pgdat_start_pfn;
621 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
622 		ms = __pfn_to_section(pfn);
623 
624 		if (unlikely(!valid_section(ms)))
625 			continue;
626 
627 		if (pfn_to_nid(pfn) != nid)
628 			continue;
629 
630 		 /* If the section is current section, it continues the loop */
631 		if (start_pfn == pfn)
632 			continue;
633 
634 		/* If we find valid section, we have nothing to do */
635 		return;
636 	}
637 
638 	/* The pgdat has no valid section */
639 	pgdat->node_start_pfn = 0;
640 	pgdat->node_spanned_pages = 0;
641 }
642 
643 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
644 {
645 	struct pglist_data *pgdat = zone->zone_pgdat;
646 	int nr_pages = PAGES_PER_SECTION;
647 	int zone_type;
648 	unsigned long flags;
649 
650 	zone_type = zone - pgdat->node_zones;
651 
652 	pgdat_resize_lock(zone->zone_pgdat, &flags);
653 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
654 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
655 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
656 }
657 
658 static int __remove_section(struct zone *zone, struct mem_section *ms)
659 {
660 	unsigned long start_pfn;
661 	int scn_nr;
662 	int ret = -EINVAL;
663 
664 	if (!valid_section(ms))
665 		return ret;
666 
667 	ret = unregister_memory_section(ms);
668 	if (ret)
669 		return ret;
670 
671 	scn_nr = __section_nr(ms);
672 	start_pfn = section_nr_to_pfn(scn_nr);
673 	__remove_zone(zone, start_pfn);
674 
675 	sparse_remove_one_section(zone, ms);
676 	return 0;
677 }
678 
679 /**
680  * __remove_pages() - remove sections of pages from a zone
681  * @zone: zone from which pages need to be removed
682  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
683  * @nr_pages: number of pages to remove (must be multiple of section size)
684  *
685  * Generic helper function to remove section mappings and sysfs entries
686  * for the section of the memory we are removing. Caller needs to make
687  * sure that pages are marked reserved and zones are adjust properly by
688  * calling offline_pages().
689  */
690 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
691 		 unsigned long nr_pages)
692 {
693 	unsigned long i;
694 	int sections_to_remove;
695 	resource_size_t start, size;
696 	int ret = 0;
697 
698 	/*
699 	 * We can only remove entire sections
700 	 */
701 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
702 	BUG_ON(nr_pages % PAGES_PER_SECTION);
703 
704 	start = phys_start_pfn << PAGE_SHIFT;
705 	size = nr_pages * PAGE_SIZE;
706 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
707 	if (ret) {
708 		resource_size_t endres = start + size - 1;
709 
710 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
711 				&start, &endres, ret);
712 	}
713 
714 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
715 	for (i = 0; i < sections_to_remove; i++) {
716 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
717 		ret = __remove_section(zone, __pfn_to_section(pfn));
718 		if (ret)
719 			break;
720 	}
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(__remove_pages);
724 #endif /* CONFIG_MEMORY_HOTREMOVE */
725 
726 int set_online_page_callback(online_page_callback_t callback)
727 {
728 	int rc = -EINVAL;
729 
730 	lock_memory_hotplug();
731 
732 	if (online_page_callback == generic_online_page) {
733 		online_page_callback = callback;
734 		rc = 0;
735 	}
736 
737 	unlock_memory_hotplug();
738 
739 	return rc;
740 }
741 EXPORT_SYMBOL_GPL(set_online_page_callback);
742 
743 int restore_online_page_callback(online_page_callback_t callback)
744 {
745 	int rc = -EINVAL;
746 
747 	lock_memory_hotplug();
748 
749 	if (online_page_callback == callback) {
750 		online_page_callback = generic_online_page;
751 		rc = 0;
752 	}
753 
754 	unlock_memory_hotplug();
755 
756 	return rc;
757 }
758 EXPORT_SYMBOL_GPL(restore_online_page_callback);
759 
760 void __online_page_set_limits(struct page *page)
761 {
762 }
763 EXPORT_SYMBOL_GPL(__online_page_set_limits);
764 
765 void __online_page_increment_counters(struct page *page)
766 {
767 	adjust_managed_page_count(page, 1);
768 }
769 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
770 
771 void __online_page_free(struct page *page)
772 {
773 	__free_reserved_page(page);
774 }
775 EXPORT_SYMBOL_GPL(__online_page_free);
776 
777 static void generic_online_page(struct page *page)
778 {
779 	__online_page_set_limits(page);
780 	__online_page_increment_counters(page);
781 	__online_page_free(page);
782 }
783 
784 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
785 			void *arg)
786 {
787 	unsigned long i;
788 	unsigned long onlined_pages = *(unsigned long *)arg;
789 	struct page *page;
790 	if (PageReserved(pfn_to_page(start_pfn)))
791 		for (i = 0; i < nr_pages; i++) {
792 			page = pfn_to_page(start_pfn + i);
793 			(*online_page_callback)(page);
794 			onlined_pages++;
795 		}
796 	*(unsigned long *)arg = onlined_pages;
797 	return 0;
798 }
799 
800 #ifdef CONFIG_MOVABLE_NODE
801 /*
802  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
803  * normal memory.
804  */
805 static bool can_online_high_movable(struct zone *zone)
806 {
807 	return true;
808 }
809 #else /* CONFIG_MOVABLE_NODE */
810 /* ensure every online node has NORMAL memory */
811 static bool can_online_high_movable(struct zone *zone)
812 {
813 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
814 }
815 #endif /* CONFIG_MOVABLE_NODE */
816 
817 /* check which state of node_states will be changed when online memory */
818 static void node_states_check_changes_online(unsigned long nr_pages,
819 	struct zone *zone, struct memory_notify *arg)
820 {
821 	int nid = zone_to_nid(zone);
822 	enum zone_type zone_last = ZONE_NORMAL;
823 
824 	/*
825 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
826 	 * contains nodes which have zones of 0...ZONE_NORMAL,
827 	 * set zone_last to ZONE_NORMAL.
828 	 *
829 	 * If we don't have HIGHMEM nor movable node,
830 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
831 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
832 	 */
833 	if (N_MEMORY == N_NORMAL_MEMORY)
834 		zone_last = ZONE_MOVABLE;
835 
836 	/*
837 	 * if the memory to be online is in a zone of 0...zone_last, and
838 	 * the zones of 0...zone_last don't have memory before online, we will
839 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
840 	 * the memory is online.
841 	 */
842 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
843 		arg->status_change_nid_normal = nid;
844 	else
845 		arg->status_change_nid_normal = -1;
846 
847 #ifdef CONFIG_HIGHMEM
848 	/*
849 	 * If we have movable node, node_states[N_HIGH_MEMORY]
850 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
851 	 * set zone_last to ZONE_HIGHMEM.
852 	 *
853 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
854 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
855 	 * set zone_last to ZONE_MOVABLE.
856 	 */
857 	zone_last = ZONE_HIGHMEM;
858 	if (N_MEMORY == N_HIGH_MEMORY)
859 		zone_last = ZONE_MOVABLE;
860 
861 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
862 		arg->status_change_nid_high = nid;
863 	else
864 		arg->status_change_nid_high = -1;
865 #else
866 	arg->status_change_nid_high = arg->status_change_nid_normal;
867 #endif
868 
869 	/*
870 	 * if the node don't have memory befor online, we will need to
871 	 * set the node to node_states[N_MEMORY] after the memory
872 	 * is online.
873 	 */
874 	if (!node_state(nid, N_MEMORY))
875 		arg->status_change_nid = nid;
876 	else
877 		arg->status_change_nid = -1;
878 }
879 
880 static void node_states_set_node(int node, struct memory_notify *arg)
881 {
882 	if (arg->status_change_nid_normal >= 0)
883 		node_set_state(node, N_NORMAL_MEMORY);
884 
885 	if (arg->status_change_nid_high >= 0)
886 		node_set_state(node, N_HIGH_MEMORY);
887 
888 	node_set_state(node, N_MEMORY);
889 }
890 
891 
892 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
893 {
894 	unsigned long flags;
895 	unsigned long onlined_pages = 0;
896 	struct zone *zone;
897 	int need_zonelists_rebuild = 0;
898 	int nid;
899 	int ret;
900 	struct memory_notify arg;
901 
902 	lock_memory_hotplug();
903 	/*
904 	 * This doesn't need a lock to do pfn_to_page().
905 	 * The section can't be removed here because of the
906 	 * memory_block->state_mutex.
907 	 */
908 	zone = page_zone(pfn_to_page(pfn));
909 
910 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
911 	    !can_online_high_movable(zone)) {
912 		unlock_memory_hotplug();
913 		return -EINVAL;
914 	}
915 
916 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
917 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
918 			unlock_memory_hotplug();
919 			return -EINVAL;
920 		}
921 	}
922 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
923 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
924 			unlock_memory_hotplug();
925 			return -EINVAL;
926 		}
927 	}
928 
929 	/* Previous code may changed the zone of the pfn range */
930 	zone = page_zone(pfn_to_page(pfn));
931 
932 	arg.start_pfn = pfn;
933 	arg.nr_pages = nr_pages;
934 	node_states_check_changes_online(nr_pages, zone, &arg);
935 
936 	nid = pfn_to_nid(pfn);
937 
938 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
939 	ret = notifier_to_errno(ret);
940 	if (ret) {
941 		memory_notify(MEM_CANCEL_ONLINE, &arg);
942 		unlock_memory_hotplug();
943 		return ret;
944 	}
945 	/*
946 	 * If this zone is not populated, then it is not in zonelist.
947 	 * This means the page allocator ignores this zone.
948 	 * So, zonelist must be updated after online.
949 	 */
950 	mutex_lock(&zonelists_mutex);
951 	if (!populated_zone(zone)) {
952 		need_zonelists_rebuild = 1;
953 		build_all_zonelists(NULL, zone);
954 	}
955 
956 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
957 		online_pages_range);
958 	if (ret) {
959 		if (need_zonelists_rebuild)
960 			zone_pcp_reset(zone);
961 		mutex_unlock(&zonelists_mutex);
962 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
963 		       (unsigned long long) pfn << PAGE_SHIFT,
964 		       (((unsigned long long) pfn + nr_pages)
965 			    << PAGE_SHIFT) - 1);
966 		memory_notify(MEM_CANCEL_ONLINE, &arg);
967 		unlock_memory_hotplug();
968 		return ret;
969 	}
970 
971 	zone->present_pages += onlined_pages;
972 
973 	pgdat_resize_lock(zone->zone_pgdat, &flags);
974 	zone->zone_pgdat->node_present_pages += onlined_pages;
975 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
976 
977 	if (onlined_pages) {
978 		node_states_set_node(zone_to_nid(zone), &arg);
979 		if (need_zonelists_rebuild)
980 			build_all_zonelists(NULL, NULL);
981 		else
982 			zone_pcp_update(zone);
983 	}
984 
985 	mutex_unlock(&zonelists_mutex);
986 
987 	init_per_zone_wmark_min();
988 
989 	if (onlined_pages)
990 		kswapd_run(zone_to_nid(zone));
991 
992 	vm_total_pages = nr_free_pagecache_pages();
993 
994 	writeback_set_ratelimit();
995 
996 	if (onlined_pages)
997 		memory_notify(MEM_ONLINE, &arg);
998 	unlock_memory_hotplug();
999 
1000 	return 0;
1001 }
1002 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1003 
1004 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1005 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1006 {
1007 	struct pglist_data *pgdat;
1008 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1009 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1010 	unsigned long start_pfn = start >> PAGE_SHIFT;
1011 
1012 	pgdat = NODE_DATA(nid);
1013 	if (!pgdat) {
1014 		pgdat = arch_alloc_nodedata(nid);
1015 		if (!pgdat)
1016 			return NULL;
1017 
1018 		arch_refresh_nodedata(nid, pgdat);
1019 	}
1020 
1021 	/* we can use NODE_DATA(nid) from here */
1022 
1023 	/* init node's zones as empty zones, we don't have any present pages.*/
1024 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1025 
1026 	/*
1027 	 * The node we allocated has no zone fallback lists. For avoiding
1028 	 * to access not-initialized zonelist, build here.
1029 	 */
1030 	mutex_lock(&zonelists_mutex);
1031 	build_all_zonelists(pgdat, NULL);
1032 	mutex_unlock(&zonelists_mutex);
1033 
1034 	return pgdat;
1035 }
1036 
1037 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1038 {
1039 	arch_refresh_nodedata(nid, NULL);
1040 	arch_free_nodedata(pgdat);
1041 	return;
1042 }
1043 
1044 
1045 /**
1046  * try_online_node - online a node if offlined
1047  *
1048  * called by cpu_up() to online a node without onlined memory.
1049  */
1050 int try_online_node(int nid)
1051 {
1052 	pg_data_t	*pgdat;
1053 	int	ret;
1054 
1055 	if (node_online(nid))
1056 		return 0;
1057 
1058 	lock_memory_hotplug();
1059 	pgdat = hotadd_new_pgdat(nid, 0);
1060 	if (!pgdat) {
1061 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1062 		ret = -ENOMEM;
1063 		goto out;
1064 	}
1065 	node_set_online(nid);
1066 	ret = register_one_node(nid);
1067 	BUG_ON(ret);
1068 
1069 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1070 		mutex_lock(&zonelists_mutex);
1071 		build_all_zonelists(NULL, NULL);
1072 		mutex_unlock(&zonelists_mutex);
1073 	}
1074 
1075 out:
1076 	unlock_memory_hotplug();
1077 	return ret;
1078 }
1079 
1080 static int check_hotplug_memory_range(u64 start, u64 size)
1081 {
1082 	u64 start_pfn = start >> PAGE_SHIFT;
1083 	u64 nr_pages = size >> PAGE_SHIFT;
1084 
1085 	/* Memory range must be aligned with section */
1086 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1087 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1088 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1089 				(unsigned long long)start,
1090 				(unsigned long long)size);
1091 		return -EINVAL;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1098 int __ref add_memory(int nid, u64 start, u64 size)
1099 {
1100 	pg_data_t *pgdat = NULL;
1101 	bool new_pgdat;
1102 	bool new_node;
1103 	struct resource *res;
1104 	int ret;
1105 
1106 	ret = check_hotplug_memory_range(start, size);
1107 	if (ret)
1108 		return ret;
1109 
1110 	res = register_memory_resource(start, size);
1111 	ret = -EEXIST;
1112 	if (!res)
1113 		return ret;
1114 
1115 	{	/* Stupid hack to suppress address-never-null warning */
1116 		void *p = NODE_DATA(nid);
1117 		new_pgdat = !p;
1118 	}
1119 
1120 	lock_memory_hotplug();
1121 
1122 	new_node = !node_online(nid);
1123 	if (new_node) {
1124 		pgdat = hotadd_new_pgdat(nid, start);
1125 		ret = -ENOMEM;
1126 		if (!pgdat)
1127 			goto error;
1128 	}
1129 
1130 	/* call arch's memory hotadd */
1131 	ret = arch_add_memory(nid, start, size);
1132 
1133 	if (ret < 0)
1134 		goto error;
1135 
1136 	/* we online node here. we can't roll back from here. */
1137 	node_set_online(nid);
1138 
1139 	if (new_node) {
1140 		ret = register_one_node(nid);
1141 		/*
1142 		 * If sysfs file of new node can't create, cpu on the node
1143 		 * can't be hot-added. There is no rollback way now.
1144 		 * So, check by BUG_ON() to catch it reluctantly..
1145 		 */
1146 		BUG_ON(ret);
1147 	}
1148 
1149 	/* create new memmap entry */
1150 	firmware_map_add_hotplug(start, start + size, "System RAM");
1151 
1152 	goto out;
1153 
1154 error:
1155 	/* rollback pgdat allocation and others */
1156 	if (new_pgdat)
1157 		rollback_node_hotadd(nid, pgdat);
1158 	release_memory_resource(res);
1159 
1160 out:
1161 	unlock_memory_hotplug();
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(add_memory);
1165 
1166 #ifdef CONFIG_MEMORY_HOTREMOVE
1167 /*
1168  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1169  * set and the size of the free page is given by page_order(). Using this,
1170  * the function determines if the pageblock contains only free pages.
1171  * Due to buddy contraints, a free page at least the size of a pageblock will
1172  * be located at the start of the pageblock
1173  */
1174 static inline int pageblock_free(struct page *page)
1175 {
1176 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1177 }
1178 
1179 /* Return the start of the next active pageblock after a given page */
1180 static struct page *next_active_pageblock(struct page *page)
1181 {
1182 	/* Ensure the starting page is pageblock-aligned */
1183 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1184 
1185 	/* If the entire pageblock is free, move to the end of free page */
1186 	if (pageblock_free(page)) {
1187 		int order;
1188 		/* be careful. we don't have locks, page_order can be changed.*/
1189 		order = page_order(page);
1190 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1191 			return page + (1 << order);
1192 	}
1193 
1194 	return page + pageblock_nr_pages;
1195 }
1196 
1197 /* Checks if this range of memory is likely to be hot-removable. */
1198 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1199 {
1200 	struct page *page = pfn_to_page(start_pfn);
1201 	struct page *end_page = page + nr_pages;
1202 
1203 	/* Check the starting page of each pageblock within the range */
1204 	for (; page < end_page; page = next_active_pageblock(page)) {
1205 		if (!is_pageblock_removable_nolock(page))
1206 			return 0;
1207 		cond_resched();
1208 	}
1209 
1210 	/* All pageblocks in the memory block are likely to be hot-removable */
1211 	return 1;
1212 }
1213 
1214 /*
1215  * Confirm all pages in a range [start, end) is belongs to the same zone.
1216  */
1217 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1218 {
1219 	unsigned long pfn;
1220 	struct zone *zone = NULL;
1221 	struct page *page;
1222 	int i;
1223 	for (pfn = start_pfn;
1224 	     pfn < end_pfn;
1225 	     pfn += MAX_ORDER_NR_PAGES) {
1226 		i = 0;
1227 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1228 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1229 			i++;
1230 		if (i == MAX_ORDER_NR_PAGES)
1231 			continue;
1232 		page = pfn_to_page(pfn + i);
1233 		if (zone && page_zone(page) != zone)
1234 			return 0;
1235 		zone = page_zone(page);
1236 	}
1237 	return 1;
1238 }
1239 
1240 /*
1241  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1242  * and hugepages). We scan pfn because it's much easier than scanning over
1243  * linked list. This function returns the pfn of the first found movable
1244  * page if it's found, otherwise 0.
1245  */
1246 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1247 {
1248 	unsigned long pfn;
1249 	struct page *page;
1250 	for (pfn = start; pfn < end; pfn++) {
1251 		if (pfn_valid(pfn)) {
1252 			page = pfn_to_page(pfn);
1253 			if (PageLRU(page))
1254 				return pfn;
1255 			if (PageHuge(page)) {
1256 				if (is_hugepage_active(page))
1257 					return pfn;
1258 				else
1259 					pfn = round_up(pfn + 1,
1260 						1 << compound_order(page)) - 1;
1261 			}
1262 		}
1263 	}
1264 	return 0;
1265 }
1266 
1267 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1268 static int
1269 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1270 {
1271 	unsigned long pfn;
1272 	struct page *page;
1273 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1274 	int not_managed = 0;
1275 	int ret = 0;
1276 	LIST_HEAD(source);
1277 
1278 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1279 		if (!pfn_valid(pfn))
1280 			continue;
1281 		page = pfn_to_page(pfn);
1282 
1283 		if (PageHuge(page)) {
1284 			struct page *head = compound_head(page);
1285 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1286 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1287 				ret = -EBUSY;
1288 				break;
1289 			}
1290 			if (isolate_huge_page(page, &source))
1291 				move_pages -= 1 << compound_order(head);
1292 			continue;
1293 		}
1294 
1295 		if (!get_page_unless_zero(page))
1296 			continue;
1297 		/*
1298 		 * We can skip free pages. And we can only deal with pages on
1299 		 * LRU.
1300 		 */
1301 		ret = isolate_lru_page(page);
1302 		if (!ret) { /* Success */
1303 			put_page(page);
1304 			list_add_tail(&page->lru, &source);
1305 			move_pages--;
1306 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 					    page_is_file_cache(page));
1308 
1309 		} else {
1310 #ifdef CONFIG_DEBUG_VM
1311 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1312 			       pfn);
1313 			dump_page(page, "failed to remove from LRU");
1314 #endif
1315 			put_page(page);
1316 			/* Because we don't have big zone->lock. we should
1317 			   check this again here. */
1318 			if (page_count(page)) {
1319 				not_managed++;
1320 				ret = -EBUSY;
1321 				break;
1322 			}
1323 		}
1324 	}
1325 	if (!list_empty(&source)) {
1326 		if (not_managed) {
1327 			putback_movable_pages(&source);
1328 			goto out;
1329 		}
1330 
1331 		/*
1332 		 * alloc_migrate_target should be improooooved!!
1333 		 * migrate_pages returns # of failed pages.
1334 		 */
1335 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1336 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1337 		if (ret)
1338 			putback_movable_pages(&source);
1339 	}
1340 out:
1341 	return ret;
1342 }
1343 
1344 /*
1345  * remove from free_area[] and mark all as Reserved.
1346  */
1347 static int
1348 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1349 			void *data)
1350 {
1351 	__offline_isolated_pages(start, start + nr_pages);
1352 	return 0;
1353 }
1354 
1355 static void
1356 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1357 {
1358 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1359 				offline_isolated_pages_cb);
1360 }
1361 
1362 /*
1363  * Check all pages in range, recoreded as memory resource, are isolated.
1364  */
1365 static int
1366 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367 			void *data)
1368 {
1369 	int ret;
1370 	long offlined = *(long *)data;
1371 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1372 	offlined = nr_pages;
1373 	if (!ret)
1374 		*(long *)data += offlined;
1375 	return ret;
1376 }
1377 
1378 static long
1379 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1380 {
1381 	long offlined = 0;
1382 	int ret;
1383 
1384 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1385 			check_pages_isolated_cb);
1386 	if (ret < 0)
1387 		offlined = (long)ret;
1388 	return offlined;
1389 }
1390 
1391 #ifdef CONFIG_MOVABLE_NODE
1392 /*
1393  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1394  * normal memory.
1395  */
1396 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1397 {
1398 	return true;
1399 }
1400 #else /* CONFIG_MOVABLE_NODE */
1401 /* ensure the node has NORMAL memory if it is still online */
1402 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1403 {
1404 	struct pglist_data *pgdat = zone->zone_pgdat;
1405 	unsigned long present_pages = 0;
1406 	enum zone_type zt;
1407 
1408 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1409 		present_pages += pgdat->node_zones[zt].present_pages;
1410 
1411 	if (present_pages > nr_pages)
1412 		return true;
1413 
1414 	present_pages = 0;
1415 	for (; zt <= ZONE_MOVABLE; zt++)
1416 		present_pages += pgdat->node_zones[zt].present_pages;
1417 
1418 	/*
1419 	 * we can't offline the last normal memory until all
1420 	 * higher memory is offlined.
1421 	 */
1422 	return present_pages == 0;
1423 }
1424 #endif /* CONFIG_MOVABLE_NODE */
1425 
1426 static int __init cmdline_parse_movable_node(char *p)
1427 {
1428 #ifdef CONFIG_MOVABLE_NODE
1429 	/*
1430 	 * Memory used by the kernel cannot be hot-removed because Linux
1431 	 * cannot migrate the kernel pages. When memory hotplug is
1432 	 * enabled, we should prevent memblock from allocating memory
1433 	 * for the kernel.
1434 	 *
1435 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1436 	 * SRAT is parsed, we don't know about it.
1437 	 *
1438 	 * The kernel image is loaded into memory at very early time. We
1439 	 * cannot prevent this anyway. So on NUMA system, we set any
1440 	 * node the kernel resides in as un-hotpluggable.
1441 	 *
1442 	 * Since on modern servers, one node could have double-digit
1443 	 * gigabytes memory, we can assume the memory around the kernel
1444 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1445 	 * allocate memory near the kernel image to try the best to keep
1446 	 * the kernel away from hotpluggable memory.
1447 	 */
1448 	memblock_set_bottom_up(true);
1449 	movable_node_enabled = true;
1450 #else
1451 	pr_warn("movable_node option not supported\n");
1452 #endif
1453 	return 0;
1454 }
1455 early_param("movable_node", cmdline_parse_movable_node);
1456 
1457 /* check which state of node_states will be changed when offline memory */
1458 static void node_states_check_changes_offline(unsigned long nr_pages,
1459 		struct zone *zone, struct memory_notify *arg)
1460 {
1461 	struct pglist_data *pgdat = zone->zone_pgdat;
1462 	unsigned long present_pages = 0;
1463 	enum zone_type zt, zone_last = ZONE_NORMAL;
1464 
1465 	/*
1466 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1467 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1468 	 * set zone_last to ZONE_NORMAL.
1469 	 *
1470 	 * If we don't have HIGHMEM nor movable node,
1471 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1472 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1473 	 */
1474 	if (N_MEMORY == N_NORMAL_MEMORY)
1475 		zone_last = ZONE_MOVABLE;
1476 
1477 	/*
1478 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1479 	 * If the memory to be offline is in a zone of 0...zone_last,
1480 	 * and it is the last present memory, 0...zone_last will
1481 	 * become empty after offline , thus we can determind we will
1482 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1483 	 */
1484 	for (zt = 0; zt <= zone_last; zt++)
1485 		present_pages += pgdat->node_zones[zt].present_pages;
1486 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1487 		arg->status_change_nid_normal = zone_to_nid(zone);
1488 	else
1489 		arg->status_change_nid_normal = -1;
1490 
1491 #ifdef CONFIG_HIGHMEM
1492 	/*
1493 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1494 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1495 	 * set zone_last to ZONE_HIGHMEM.
1496 	 *
1497 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1498 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1499 	 * set zone_last to ZONE_MOVABLE.
1500 	 */
1501 	zone_last = ZONE_HIGHMEM;
1502 	if (N_MEMORY == N_HIGH_MEMORY)
1503 		zone_last = ZONE_MOVABLE;
1504 
1505 	for (; zt <= zone_last; zt++)
1506 		present_pages += pgdat->node_zones[zt].present_pages;
1507 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1508 		arg->status_change_nid_high = zone_to_nid(zone);
1509 	else
1510 		arg->status_change_nid_high = -1;
1511 #else
1512 	arg->status_change_nid_high = arg->status_change_nid_normal;
1513 #endif
1514 
1515 	/*
1516 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1517 	 */
1518 	zone_last = ZONE_MOVABLE;
1519 
1520 	/*
1521 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1522 	 * If we try to offline the last present @nr_pages from the node,
1523 	 * we can determind we will need to clear the node from
1524 	 * node_states[N_HIGH_MEMORY].
1525 	 */
1526 	for (; zt <= zone_last; zt++)
1527 		present_pages += pgdat->node_zones[zt].present_pages;
1528 	if (nr_pages >= present_pages)
1529 		arg->status_change_nid = zone_to_nid(zone);
1530 	else
1531 		arg->status_change_nid = -1;
1532 }
1533 
1534 static void node_states_clear_node(int node, struct memory_notify *arg)
1535 {
1536 	if (arg->status_change_nid_normal >= 0)
1537 		node_clear_state(node, N_NORMAL_MEMORY);
1538 
1539 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1540 	    (arg->status_change_nid_high >= 0))
1541 		node_clear_state(node, N_HIGH_MEMORY);
1542 
1543 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1544 	    (arg->status_change_nid >= 0))
1545 		node_clear_state(node, N_MEMORY);
1546 }
1547 
1548 static int __ref __offline_pages(unsigned long start_pfn,
1549 		  unsigned long end_pfn, unsigned long timeout)
1550 {
1551 	unsigned long pfn, nr_pages, expire;
1552 	long offlined_pages;
1553 	int ret, drain, retry_max, node;
1554 	unsigned long flags;
1555 	struct zone *zone;
1556 	struct memory_notify arg;
1557 
1558 	/* at least, alignment against pageblock is necessary */
1559 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1560 		return -EINVAL;
1561 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1562 		return -EINVAL;
1563 	/* This makes hotplug much easier...and readable.
1564 	   we assume this for now. .*/
1565 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1566 		return -EINVAL;
1567 
1568 	lock_memory_hotplug();
1569 
1570 	zone = page_zone(pfn_to_page(start_pfn));
1571 	node = zone_to_nid(zone);
1572 	nr_pages = end_pfn - start_pfn;
1573 
1574 	ret = -EINVAL;
1575 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1576 		goto out;
1577 
1578 	/* set above range as isolated */
1579 	ret = start_isolate_page_range(start_pfn, end_pfn,
1580 				       MIGRATE_MOVABLE, true);
1581 	if (ret)
1582 		goto out;
1583 
1584 	arg.start_pfn = start_pfn;
1585 	arg.nr_pages = nr_pages;
1586 	node_states_check_changes_offline(nr_pages, zone, &arg);
1587 
1588 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1589 	ret = notifier_to_errno(ret);
1590 	if (ret)
1591 		goto failed_removal;
1592 
1593 	pfn = start_pfn;
1594 	expire = jiffies + timeout;
1595 	drain = 0;
1596 	retry_max = 5;
1597 repeat:
1598 	/* start memory hot removal */
1599 	ret = -EAGAIN;
1600 	if (time_after(jiffies, expire))
1601 		goto failed_removal;
1602 	ret = -EINTR;
1603 	if (signal_pending(current))
1604 		goto failed_removal;
1605 	ret = 0;
1606 	if (drain) {
1607 		lru_add_drain_all();
1608 		cond_resched();
1609 		drain_all_pages();
1610 	}
1611 
1612 	pfn = scan_movable_pages(start_pfn, end_pfn);
1613 	if (pfn) { /* We have movable pages */
1614 		ret = do_migrate_range(pfn, end_pfn);
1615 		if (!ret) {
1616 			drain = 1;
1617 			goto repeat;
1618 		} else {
1619 			if (ret < 0)
1620 				if (--retry_max == 0)
1621 					goto failed_removal;
1622 			yield();
1623 			drain = 1;
1624 			goto repeat;
1625 		}
1626 	}
1627 	/* drain all zone's lru pagevec, this is asynchronous... */
1628 	lru_add_drain_all();
1629 	yield();
1630 	/* drain pcp pages, this is synchronous. */
1631 	drain_all_pages();
1632 	/*
1633 	 * dissolve free hugepages in the memory block before doing offlining
1634 	 * actually in order to make hugetlbfs's object counting consistent.
1635 	 */
1636 	dissolve_free_huge_pages(start_pfn, end_pfn);
1637 	/* check again */
1638 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1639 	if (offlined_pages < 0) {
1640 		ret = -EBUSY;
1641 		goto failed_removal;
1642 	}
1643 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1644 	/* Ok, all of our target is isolated.
1645 	   We cannot do rollback at this point. */
1646 	offline_isolated_pages(start_pfn, end_pfn);
1647 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1648 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1649 	/* removal success */
1650 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1651 	zone->present_pages -= offlined_pages;
1652 
1653 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1654 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1655 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1656 
1657 	init_per_zone_wmark_min();
1658 
1659 	if (!populated_zone(zone)) {
1660 		zone_pcp_reset(zone);
1661 		mutex_lock(&zonelists_mutex);
1662 		build_all_zonelists(NULL, NULL);
1663 		mutex_unlock(&zonelists_mutex);
1664 	} else
1665 		zone_pcp_update(zone);
1666 
1667 	node_states_clear_node(node, &arg);
1668 	if (arg.status_change_nid >= 0)
1669 		kswapd_stop(node);
1670 
1671 	vm_total_pages = nr_free_pagecache_pages();
1672 	writeback_set_ratelimit();
1673 
1674 	memory_notify(MEM_OFFLINE, &arg);
1675 	unlock_memory_hotplug();
1676 	return 0;
1677 
1678 failed_removal:
1679 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1680 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1681 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1682 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1683 	/* pushback to free area */
1684 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1685 
1686 out:
1687 	unlock_memory_hotplug();
1688 	return ret;
1689 }
1690 
1691 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1692 {
1693 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1694 }
1695 #endif /* CONFIG_MEMORY_HOTREMOVE */
1696 
1697 /**
1698  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1699  * @start_pfn: start pfn of the memory range
1700  * @end_pfn: end pfn of the memory range
1701  * @arg: argument passed to func
1702  * @func: callback for each memory section walked
1703  *
1704  * This function walks through all present mem sections in range
1705  * [start_pfn, end_pfn) and call func on each mem section.
1706  *
1707  * Returns the return value of func.
1708  */
1709 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1710 		void *arg, int (*func)(struct memory_block *, void *))
1711 {
1712 	struct memory_block *mem = NULL;
1713 	struct mem_section *section;
1714 	unsigned long pfn, section_nr;
1715 	int ret;
1716 
1717 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1718 		section_nr = pfn_to_section_nr(pfn);
1719 		if (!present_section_nr(section_nr))
1720 			continue;
1721 
1722 		section = __nr_to_section(section_nr);
1723 		/* same memblock? */
1724 		if (mem)
1725 			if ((section_nr >= mem->start_section_nr) &&
1726 			    (section_nr <= mem->end_section_nr))
1727 				continue;
1728 
1729 		mem = find_memory_block_hinted(section, mem);
1730 		if (!mem)
1731 			continue;
1732 
1733 		ret = func(mem, arg);
1734 		if (ret) {
1735 			kobject_put(&mem->dev.kobj);
1736 			return ret;
1737 		}
1738 	}
1739 
1740 	if (mem)
1741 		kobject_put(&mem->dev.kobj);
1742 
1743 	return 0;
1744 }
1745 
1746 #ifdef CONFIG_MEMORY_HOTREMOVE
1747 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1748 {
1749 	int ret = !is_memblock_offlined(mem);
1750 
1751 	if (unlikely(ret)) {
1752 		phys_addr_t beginpa, endpa;
1753 
1754 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1755 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1756 		pr_warn("removing memory fails, because memory "
1757 			"[%pa-%pa] is onlined\n",
1758 			&beginpa, &endpa);
1759 	}
1760 
1761 	return ret;
1762 }
1763 
1764 static int check_cpu_on_node(pg_data_t *pgdat)
1765 {
1766 	int cpu;
1767 
1768 	for_each_present_cpu(cpu) {
1769 		if (cpu_to_node(cpu) == pgdat->node_id)
1770 			/*
1771 			 * the cpu on this node isn't removed, and we can't
1772 			 * offline this node.
1773 			 */
1774 			return -EBUSY;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static void unmap_cpu_on_node(pg_data_t *pgdat)
1781 {
1782 #ifdef CONFIG_ACPI_NUMA
1783 	int cpu;
1784 
1785 	for_each_possible_cpu(cpu)
1786 		if (cpu_to_node(cpu) == pgdat->node_id)
1787 			numa_clear_node(cpu);
1788 #endif
1789 }
1790 
1791 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1792 {
1793 	int ret;
1794 
1795 	ret = check_cpu_on_node(pgdat);
1796 	if (ret)
1797 		return ret;
1798 
1799 	/*
1800 	 * the node will be offlined when we come here, so we can clear
1801 	 * the cpu_to_node() now.
1802 	 */
1803 
1804 	unmap_cpu_on_node(pgdat);
1805 	return 0;
1806 }
1807 
1808 /**
1809  * try_offline_node
1810  *
1811  * Offline a node if all memory sections and cpus of the node are removed.
1812  *
1813  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1814  * and online/offline operations before this call.
1815  */
1816 void try_offline_node(int nid)
1817 {
1818 	pg_data_t *pgdat = NODE_DATA(nid);
1819 	unsigned long start_pfn = pgdat->node_start_pfn;
1820 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1821 	unsigned long pfn;
1822 	struct page *pgdat_page = virt_to_page(pgdat);
1823 	int i;
1824 
1825 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1826 		unsigned long section_nr = pfn_to_section_nr(pfn);
1827 
1828 		if (!present_section_nr(section_nr))
1829 			continue;
1830 
1831 		if (pfn_to_nid(pfn) != nid)
1832 			continue;
1833 
1834 		/*
1835 		 * some memory sections of this node are not removed, and we
1836 		 * can't offline node now.
1837 		 */
1838 		return;
1839 	}
1840 
1841 	if (check_and_unmap_cpu_on_node(pgdat))
1842 		return;
1843 
1844 	/*
1845 	 * all memory/cpu of this node are removed, we can offline this
1846 	 * node now.
1847 	 */
1848 	node_set_offline(nid);
1849 	unregister_one_node(nid);
1850 
1851 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1852 		/* node data is allocated from boot memory */
1853 		return;
1854 
1855 	/* free waittable in each zone */
1856 	for (i = 0; i < MAX_NR_ZONES; i++) {
1857 		struct zone *zone = pgdat->node_zones + i;
1858 
1859 		/*
1860 		 * wait_table may be allocated from boot memory,
1861 		 * here only free if it's allocated by vmalloc.
1862 		 */
1863 		if (is_vmalloc_addr(zone->wait_table))
1864 			vfree(zone->wait_table);
1865 	}
1866 
1867 	/*
1868 	 * Since there is no way to guarentee the address of pgdat/zone is not
1869 	 * on stack of any kernel threads or used by other kernel objects
1870 	 * without reference counting or other symchronizing method, do not
1871 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1872 	 * the memory when the node is online again.
1873 	 */
1874 	memset(pgdat, 0, sizeof(*pgdat));
1875 }
1876 EXPORT_SYMBOL(try_offline_node);
1877 
1878 /**
1879  * remove_memory
1880  *
1881  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1882  * and online/offline operations before this call, as required by
1883  * try_offline_node().
1884  */
1885 void __ref remove_memory(int nid, u64 start, u64 size)
1886 {
1887 	int ret;
1888 
1889 	BUG_ON(check_hotplug_memory_range(start, size));
1890 
1891 	lock_memory_hotplug();
1892 
1893 	/*
1894 	 * All memory blocks must be offlined before removing memory.  Check
1895 	 * whether all memory blocks in question are offline and trigger a BUG()
1896 	 * if this is not the case.
1897 	 */
1898 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1899 				check_memblock_offlined_cb);
1900 	if (ret) {
1901 		unlock_memory_hotplug();
1902 		BUG();
1903 	}
1904 
1905 	/* remove memmap entry */
1906 	firmware_map_remove(start, start + size, "System RAM");
1907 
1908 	arch_remove_memory(start, size);
1909 
1910 	try_offline_node(nid);
1911 
1912 	unlock_memory_hotplug();
1913 }
1914 EXPORT_SYMBOL_GPL(remove_memory);
1915 #endif /* CONFIG_MEMORY_HOTREMOVE */
1916