1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 /* add this memory to iomem resource */ 100 static struct resource *register_memory_resource(u64 start, u64 size) 101 { 102 struct resource *res, *conflict; 103 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 104 if (!res) 105 return ERR_PTR(-ENOMEM); 106 107 res->name = "System RAM"; 108 res->start = start; 109 res->end = start + size - 1; 110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 111 conflict = request_resource_conflict(&iomem_resource, res); 112 if (conflict) { 113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 114 pr_debug("Device unaddressable memory block " 115 "memory hotplug at %#010llx !\n", 116 (unsigned long long)start); 117 } 118 pr_debug("System RAM resource %pR cannot be added\n", res); 119 kfree(res); 120 return ERR_PTR(-EEXIST); 121 } 122 return res; 123 } 124 125 static void release_memory_resource(struct resource *res) 126 { 127 if (!res) 128 return; 129 release_resource(res); 130 kfree(res); 131 return; 132 } 133 134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 135 void get_page_bootmem(unsigned long info, struct page *page, 136 unsigned long type) 137 { 138 page->freelist = (void *)type; 139 SetPagePrivate(page); 140 set_page_private(page, info); 141 page_ref_inc(page); 142 } 143 144 void put_page_bootmem(struct page *page) 145 { 146 unsigned long type; 147 148 type = (unsigned long) page->freelist; 149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 151 152 if (page_ref_dec_return(page) == 1) { 153 page->freelist = NULL; 154 ClearPagePrivate(page); 155 set_page_private(page, 0); 156 INIT_LIST_HEAD(&page->lru); 157 free_reserved_page(page); 158 } 159 } 160 161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 162 #ifndef CONFIG_SPARSEMEM_VMEMMAP 163 static void register_page_bootmem_info_section(unsigned long start_pfn) 164 { 165 unsigned long *usemap, mapsize, section_nr, i; 166 struct mem_section *ms; 167 struct page *page, *memmap; 168 169 section_nr = pfn_to_section_nr(start_pfn); 170 ms = __nr_to_section(section_nr); 171 172 /* Get section's memmap address */ 173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 174 175 /* 176 * Get page for the memmap's phys address 177 * XXX: need more consideration for sparse_vmemmap... 178 */ 179 page = virt_to_page(memmap); 180 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 182 183 /* remember memmap's page */ 184 for (i = 0; i < mapsize; i++, page++) 185 get_page_bootmem(section_nr, page, SECTION_INFO); 186 187 usemap = ms->pageblock_flags; 188 page = virt_to_page(usemap); 189 190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 191 192 for (i = 0; i < mapsize; i++, page++) 193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 194 195 } 196 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 197 static void register_page_bootmem_info_section(unsigned long start_pfn) 198 { 199 unsigned long *usemap, mapsize, section_nr, i; 200 struct mem_section *ms; 201 struct page *page, *memmap; 202 203 section_nr = pfn_to_section_nr(start_pfn); 204 ms = __nr_to_section(section_nr); 205 206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 207 208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 209 210 usemap = ms->pageblock_flags; 211 page = virt_to_page(usemap); 212 213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 214 215 for (i = 0; i < mapsize; i++, page++) 216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 217 } 218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 219 220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 221 { 222 unsigned long i, pfn, end_pfn, nr_pages; 223 int node = pgdat->node_id; 224 struct page *page; 225 226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 227 page = virt_to_page(pgdat); 228 229 for (i = 0; i < nr_pages; i++, page++) 230 get_page_bootmem(node, page, NODE_INFO); 231 232 pfn = pgdat->node_start_pfn; 233 end_pfn = pgdat_end_pfn(pgdat); 234 235 /* register section info */ 236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 237 /* 238 * Some platforms can assign the same pfn to multiple nodes - on 239 * node0 as well as nodeN. To avoid registering a pfn against 240 * multiple nodes we check that this pfn does not already 241 * reside in some other nodes. 242 */ 243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 244 register_page_bootmem_info_section(pfn); 245 } 246 } 247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 248 249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 250 struct vmem_altmap *altmap, bool want_memblock) 251 { 252 int ret; 253 254 if (pfn_valid(phys_start_pfn)) 255 return -EEXIST; 256 257 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 258 if (ret < 0) 259 return ret; 260 261 if (!want_memblock) 262 return 0; 263 264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 265 } 266 267 /* 268 * Reasonably generic function for adding memory. It is 269 * expected that archs that support memory hotplug will 270 * call this function after deciding the zone to which to 271 * add the new pages. 272 */ 273 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 274 unsigned long nr_pages, struct vmem_altmap *altmap, 275 bool want_memblock) 276 { 277 unsigned long i; 278 int err = 0; 279 int start_sec, end_sec; 280 281 /* during initialize mem_map, align hot-added range to section */ 282 start_sec = pfn_to_section_nr(phys_start_pfn); 283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 284 285 if (altmap) { 286 /* 287 * Validate altmap is within bounds of the total request 288 */ 289 if (altmap->base_pfn != phys_start_pfn 290 || vmem_altmap_offset(altmap) > nr_pages) { 291 pr_warn_once("memory add fail, invalid altmap\n"); 292 err = -EINVAL; 293 goto out; 294 } 295 altmap->alloc = 0; 296 } 297 298 for (i = start_sec; i <= end_sec; i++) { 299 err = __add_section(nid, section_nr_to_pfn(i), altmap, 300 want_memblock); 301 302 /* 303 * EEXIST is finally dealt with by ioresource collision 304 * check. see add_memory() => register_memory_resource() 305 * Warning will be printed if there is collision. 306 */ 307 if (err && (err != -EEXIST)) 308 break; 309 err = 0; 310 cond_resched(); 311 } 312 vmemmap_populate_print_last(); 313 out: 314 return err; 315 } 316 317 #ifdef CONFIG_MEMORY_HOTREMOVE 318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 320 unsigned long start_pfn, 321 unsigned long end_pfn) 322 { 323 struct mem_section *ms; 324 325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 326 ms = __pfn_to_section(start_pfn); 327 328 if (unlikely(!valid_section(ms))) 329 continue; 330 331 if (unlikely(pfn_to_nid(start_pfn) != nid)) 332 continue; 333 334 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 335 continue; 336 337 return start_pfn; 338 } 339 340 return 0; 341 } 342 343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 345 unsigned long start_pfn, 346 unsigned long end_pfn) 347 { 348 struct mem_section *ms; 349 unsigned long pfn; 350 351 /* pfn is the end pfn of a memory section. */ 352 pfn = end_pfn - 1; 353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 354 ms = __pfn_to_section(pfn); 355 356 if (unlikely(!valid_section(ms))) 357 continue; 358 359 if (unlikely(pfn_to_nid(pfn) != nid)) 360 continue; 361 362 if (zone && zone != page_zone(pfn_to_page(pfn))) 363 continue; 364 365 return pfn; 366 } 367 368 return 0; 369 } 370 371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 372 unsigned long end_pfn) 373 { 374 unsigned long zone_start_pfn = zone->zone_start_pfn; 375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 376 unsigned long zone_end_pfn = z; 377 unsigned long pfn; 378 struct mem_section *ms; 379 int nid = zone_to_nid(zone); 380 381 zone_span_writelock(zone); 382 if (zone_start_pfn == start_pfn) { 383 /* 384 * If the section is smallest section in the zone, it need 385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 386 * In this case, we find second smallest valid mem_section 387 * for shrinking zone. 388 */ 389 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 390 zone_end_pfn); 391 if (pfn) { 392 zone->zone_start_pfn = pfn; 393 zone->spanned_pages = zone_end_pfn - pfn; 394 } 395 } else if (zone_end_pfn == end_pfn) { 396 /* 397 * If the section is biggest section in the zone, it need 398 * shrink zone->spanned_pages. 399 * In this case, we find second biggest valid mem_section for 400 * shrinking zone. 401 */ 402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 403 start_pfn); 404 if (pfn) 405 zone->spanned_pages = pfn - zone_start_pfn + 1; 406 } 407 408 /* 409 * The section is not biggest or smallest mem_section in the zone, it 410 * only creates a hole in the zone. So in this case, we need not 411 * change the zone. But perhaps, the zone has only hole data. Thus 412 * it check the zone has only hole or not. 413 */ 414 pfn = zone_start_pfn; 415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 416 ms = __pfn_to_section(pfn); 417 418 if (unlikely(!valid_section(ms))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* If the section is current section, it continues the loop */ 425 if (start_pfn == pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void shrink_pgdat_span(struct pglist_data *pgdat, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 444 unsigned long pgdat_end_pfn = p; 445 unsigned long pfn; 446 struct mem_section *ms; 447 int nid = pgdat->node_id; 448 449 if (pgdat_start_pfn == start_pfn) { 450 /* 451 * If the section is smallest section in the pgdat, it need 452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 453 * In this case, we find second smallest valid mem_section 454 * for shrinking zone. 455 */ 456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 457 pgdat_end_pfn); 458 if (pfn) { 459 pgdat->node_start_pfn = pfn; 460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 461 } 462 } else if (pgdat_end_pfn == end_pfn) { 463 /* 464 * If the section is biggest section in the pgdat, it need 465 * shrink pgdat->node_spanned_pages. 466 * In this case, we find second biggest valid mem_section for 467 * shrinking zone. 468 */ 469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 470 start_pfn); 471 if (pfn) 472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 473 } 474 475 /* 476 * If the section is not biggest or smallest mem_section in the pgdat, 477 * it only creates a hole in the pgdat. So in this case, we need not 478 * change the pgdat. 479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 480 * has only hole or not. 481 */ 482 pfn = pgdat_start_pfn; 483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 484 ms = __pfn_to_section(pfn); 485 486 if (unlikely(!valid_section(ms))) 487 continue; 488 489 if (pfn_to_nid(pfn) != nid) 490 continue; 491 492 /* If the section is current section, it continues the loop */ 493 if (start_pfn == pfn) 494 continue; 495 496 /* If we find valid section, we have nothing to do */ 497 return; 498 } 499 500 /* The pgdat has no valid section */ 501 pgdat->node_start_pfn = 0; 502 pgdat->node_spanned_pages = 0; 503 } 504 505 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 506 { 507 struct pglist_data *pgdat = zone->zone_pgdat; 508 int nr_pages = PAGES_PER_SECTION; 509 unsigned long flags; 510 511 pgdat_resize_lock(zone->zone_pgdat, &flags); 512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 514 pgdat_resize_unlock(zone->zone_pgdat, &flags); 515 } 516 517 static int __remove_section(struct zone *zone, struct mem_section *ms, 518 unsigned long map_offset, struct vmem_altmap *altmap) 519 { 520 unsigned long start_pfn; 521 int scn_nr; 522 int ret = -EINVAL; 523 524 if (!valid_section(ms)) 525 return ret; 526 527 ret = unregister_memory_section(ms); 528 if (ret) 529 return ret; 530 531 scn_nr = __section_nr(ms); 532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 533 __remove_zone(zone, start_pfn); 534 535 sparse_remove_one_section(zone, ms, map_offset, altmap); 536 return 0; 537 } 538 539 /** 540 * __remove_pages() - remove sections of pages from a zone 541 * @zone: zone from which pages need to be removed 542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 543 * @nr_pages: number of pages to remove (must be multiple of section size) 544 * @altmap: alternative device page map or %NULL if default memmap is used 545 * 546 * Generic helper function to remove section mappings and sysfs entries 547 * for the section of the memory we are removing. Caller needs to make 548 * sure that pages are marked reserved and zones are adjust properly by 549 * calling offline_pages(). 550 */ 551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 552 unsigned long nr_pages, struct vmem_altmap *altmap) 553 { 554 unsigned long i; 555 unsigned long map_offset = 0; 556 int sections_to_remove, ret = 0; 557 558 /* In the ZONE_DEVICE case device driver owns the memory region */ 559 if (is_dev_zone(zone)) { 560 if (altmap) 561 map_offset = vmem_altmap_offset(altmap); 562 } else { 563 resource_size_t start, size; 564 565 start = phys_start_pfn << PAGE_SHIFT; 566 size = nr_pages * PAGE_SIZE; 567 568 ret = release_mem_region_adjustable(&iomem_resource, start, 569 size); 570 if (ret) { 571 resource_size_t endres = start + size - 1; 572 573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 574 &start, &endres, ret); 575 } 576 } 577 578 clear_zone_contiguous(zone); 579 580 /* 581 * We can only remove entire sections 582 */ 583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 584 BUG_ON(nr_pages % PAGES_PER_SECTION); 585 586 sections_to_remove = nr_pages / PAGES_PER_SECTION; 587 for (i = 0; i < sections_to_remove; i++) { 588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 589 590 cond_resched(); 591 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 592 altmap); 593 map_offset = 0; 594 if (ret) 595 break; 596 } 597 598 set_zone_contiguous(zone); 599 600 return ret; 601 } 602 #endif /* CONFIG_MEMORY_HOTREMOVE */ 603 604 int set_online_page_callback(online_page_callback_t callback) 605 { 606 int rc = -EINVAL; 607 608 get_online_mems(); 609 mutex_lock(&online_page_callback_lock); 610 611 if (online_page_callback == generic_online_page) { 612 online_page_callback = callback; 613 rc = 0; 614 } 615 616 mutex_unlock(&online_page_callback_lock); 617 put_online_mems(); 618 619 return rc; 620 } 621 EXPORT_SYMBOL_GPL(set_online_page_callback); 622 623 int restore_online_page_callback(online_page_callback_t callback) 624 { 625 int rc = -EINVAL; 626 627 get_online_mems(); 628 mutex_lock(&online_page_callback_lock); 629 630 if (online_page_callback == callback) { 631 online_page_callback = generic_online_page; 632 rc = 0; 633 } 634 635 mutex_unlock(&online_page_callback_lock); 636 put_online_mems(); 637 638 return rc; 639 } 640 EXPORT_SYMBOL_GPL(restore_online_page_callback); 641 642 void __online_page_set_limits(struct page *page) 643 { 644 } 645 EXPORT_SYMBOL_GPL(__online_page_set_limits); 646 647 void __online_page_increment_counters(struct page *page) 648 { 649 adjust_managed_page_count(page, 1); 650 } 651 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 652 653 void __online_page_free(struct page *page) 654 { 655 __free_reserved_page(page); 656 } 657 EXPORT_SYMBOL_GPL(__online_page_free); 658 659 static void generic_online_page(struct page *page) 660 { 661 __online_page_set_limits(page); 662 __online_page_increment_counters(page); 663 __online_page_free(page); 664 } 665 666 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 667 void *arg) 668 { 669 unsigned long i; 670 unsigned long onlined_pages = *(unsigned long *)arg; 671 struct page *page; 672 673 if (PageReserved(pfn_to_page(start_pfn))) 674 for (i = 0; i < nr_pages; i++) { 675 page = pfn_to_page(start_pfn + i); 676 (*online_page_callback)(page); 677 onlined_pages++; 678 } 679 680 online_mem_sections(start_pfn, start_pfn + nr_pages); 681 682 *(unsigned long *)arg = onlined_pages; 683 return 0; 684 } 685 686 /* check which state of node_states will be changed when online memory */ 687 static void node_states_check_changes_online(unsigned long nr_pages, 688 struct zone *zone, struct memory_notify *arg) 689 { 690 int nid = zone_to_nid(zone); 691 692 arg->status_change_nid = -1; 693 arg->status_change_nid_normal = -1; 694 arg->status_change_nid_high = -1; 695 696 if (!node_state(nid, N_MEMORY)) 697 arg->status_change_nid = nid; 698 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 699 arg->status_change_nid_normal = nid; 700 #ifdef CONFIG_HIGHMEM 701 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY)) 702 arg->status_change_nid_high = nid; 703 #endif 704 } 705 706 static void node_states_set_node(int node, struct memory_notify *arg) 707 { 708 if (arg->status_change_nid_normal >= 0) 709 node_set_state(node, N_NORMAL_MEMORY); 710 711 if (arg->status_change_nid_high >= 0) 712 node_set_state(node, N_HIGH_MEMORY); 713 714 if (arg->status_change_nid >= 0) 715 node_set_state(node, N_MEMORY); 716 } 717 718 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 719 unsigned long nr_pages) 720 { 721 unsigned long old_end_pfn = zone_end_pfn(zone); 722 723 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 724 zone->zone_start_pfn = start_pfn; 725 726 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 727 } 728 729 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 730 unsigned long nr_pages) 731 { 732 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 733 734 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 735 pgdat->node_start_pfn = start_pfn; 736 737 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 738 } 739 740 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 741 unsigned long nr_pages, struct vmem_altmap *altmap) 742 { 743 struct pglist_data *pgdat = zone->zone_pgdat; 744 int nid = pgdat->node_id; 745 unsigned long flags; 746 747 clear_zone_contiguous(zone); 748 749 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 750 pgdat_resize_lock(pgdat, &flags); 751 zone_span_writelock(zone); 752 if (zone_is_empty(zone)) 753 init_currently_empty_zone(zone, start_pfn, nr_pages); 754 resize_zone_range(zone, start_pfn, nr_pages); 755 zone_span_writeunlock(zone); 756 resize_pgdat_range(pgdat, start_pfn, nr_pages); 757 pgdat_resize_unlock(pgdat, &flags); 758 759 /* 760 * TODO now we have a visible range of pages which are not associated 761 * with their zone properly. Not nice but set_pfnblock_flags_mask 762 * expects the zone spans the pfn range. All the pages in the range 763 * are reserved so nobody should be touching them so we should be safe 764 */ 765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 766 MEMMAP_HOTPLUG, altmap); 767 768 set_zone_contiguous(zone); 769 } 770 771 /* 772 * Returns a default kernel memory zone for the given pfn range. 773 * If no kernel zone covers this pfn range it will automatically go 774 * to the ZONE_NORMAL. 775 */ 776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 777 unsigned long nr_pages) 778 { 779 struct pglist_data *pgdat = NODE_DATA(nid); 780 int zid; 781 782 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 783 struct zone *zone = &pgdat->node_zones[zid]; 784 785 if (zone_intersects(zone, start_pfn, nr_pages)) 786 return zone; 787 } 788 789 return &pgdat->node_zones[ZONE_NORMAL]; 790 } 791 792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 793 unsigned long nr_pages) 794 { 795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 796 nr_pages); 797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 800 801 /* 802 * We inherit the existing zone in a simple case where zones do not 803 * overlap in the given range 804 */ 805 if (in_kernel ^ in_movable) 806 return (in_kernel) ? kernel_zone : movable_zone; 807 808 /* 809 * If the range doesn't belong to any zone or two zones overlap in the 810 * given range then we use movable zone only if movable_node is 811 * enabled because we always online to a kernel zone by default. 812 */ 813 return movable_node_enabled ? movable_zone : kernel_zone; 814 } 815 816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 817 unsigned long nr_pages) 818 { 819 if (online_type == MMOP_ONLINE_KERNEL) 820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 821 822 if (online_type == MMOP_ONLINE_MOVABLE) 823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 824 825 return default_zone_for_pfn(nid, start_pfn, nr_pages); 826 } 827 828 /* 829 * Associates the given pfn range with the given node and the zone appropriate 830 * for the given online type. 831 */ 832 static struct zone * __meminit move_pfn_range(int online_type, int nid, 833 unsigned long start_pfn, unsigned long nr_pages) 834 { 835 struct zone *zone; 836 837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 839 return zone; 840 } 841 842 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 843 { 844 unsigned long flags; 845 unsigned long onlined_pages = 0; 846 struct zone *zone; 847 int need_zonelists_rebuild = 0; 848 int nid; 849 int ret; 850 struct memory_notify arg; 851 struct memory_block *mem; 852 853 mem_hotplug_begin(); 854 855 /* 856 * We can't use pfn_to_nid() because nid might be stored in struct page 857 * which is not yet initialized. Instead, we find nid from memory block. 858 */ 859 mem = find_memory_block(__pfn_to_section(pfn)); 860 nid = mem->nid; 861 862 /* associate pfn range with the zone */ 863 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 864 865 arg.start_pfn = pfn; 866 arg.nr_pages = nr_pages; 867 node_states_check_changes_online(nr_pages, zone, &arg); 868 869 ret = memory_notify(MEM_GOING_ONLINE, &arg); 870 ret = notifier_to_errno(ret); 871 if (ret) 872 goto failed_addition; 873 874 /* 875 * If this zone is not populated, then it is not in zonelist. 876 * This means the page allocator ignores this zone. 877 * So, zonelist must be updated after online. 878 */ 879 if (!populated_zone(zone)) { 880 need_zonelists_rebuild = 1; 881 setup_zone_pageset(zone); 882 } 883 884 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 885 online_pages_range); 886 if (ret) { 887 if (need_zonelists_rebuild) 888 zone_pcp_reset(zone); 889 goto failed_addition; 890 } 891 892 zone->present_pages += onlined_pages; 893 894 pgdat_resize_lock(zone->zone_pgdat, &flags); 895 zone->zone_pgdat->node_present_pages += onlined_pages; 896 pgdat_resize_unlock(zone->zone_pgdat, &flags); 897 898 if (onlined_pages) { 899 node_states_set_node(nid, &arg); 900 if (need_zonelists_rebuild) 901 build_all_zonelists(NULL); 902 else 903 zone_pcp_update(zone); 904 } 905 906 init_per_zone_wmark_min(); 907 908 if (onlined_pages) { 909 kswapd_run(nid); 910 kcompactd_run(nid); 911 } 912 913 vm_total_pages = nr_free_pagecache_pages(); 914 915 writeback_set_ratelimit(); 916 917 if (onlined_pages) 918 memory_notify(MEM_ONLINE, &arg); 919 mem_hotplug_done(); 920 return 0; 921 922 failed_addition: 923 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 924 (unsigned long long) pfn << PAGE_SHIFT, 925 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 926 memory_notify(MEM_CANCEL_ONLINE, &arg); 927 mem_hotplug_done(); 928 return ret; 929 } 930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 931 932 static void reset_node_present_pages(pg_data_t *pgdat) 933 { 934 struct zone *z; 935 936 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 937 z->present_pages = 0; 938 939 pgdat->node_present_pages = 0; 940 } 941 942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 944 { 945 struct pglist_data *pgdat; 946 unsigned long start_pfn = PFN_DOWN(start); 947 948 pgdat = NODE_DATA(nid); 949 if (!pgdat) { 950 pgdat = arch_alloc_nodedata(nid); 951 if (!pgdat) 952 return NULL; 953 954 arch_refresh_nodedata(nid, pgdat); 955 } else { 956 /* 957 * Reset the nr_zones, order and classzone_idx before reuse. 958 * Note that kswapd will init kswapd_classzone_idx properly 959 * when it starts in the near future. 960 */ 961 pgdat->nr_zones = 0; 962 pgdat->kswapd_order = 0; 963 pgdat->kswapd_classzone_idx = 0; 964 } 965 966 /* we can use NODE_DATA(nid) from here */ 967 968 pgdat->node_id = nid; 969 pgdat->node_start_pfn = start_pfn; 970 971 /* init node's zones as empty zones, we don't have any present pages.*/ 972 free_area_init_core_hotplug(nid); 973 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 974 975 /* 976 * The node we allocated has no zone fallback lists. For avoiding 977 * to access not-initialized zonelist, build here. 978 */ 979 build_all_zonelists(pgdat); 980 981 /* 982 * When memory is hot-added, all the memory is in offline state. So 983 * clear all zones' present_pages because they will be updated in 984 * online_pages() and offline_pages(). 985 */ 986 reset_node_managed_pages(pgdat); 987 reset_node_present_pages(pgdat); 988 989 return pgdat; 990 } 991 992 static void rollback_node_hotadd(int nid) 993 { 994 pg_data_t *pgdat = NODE_DATA(nid); 995 996 arch_refresh_nodedata(nid, NULL); 997 free_percpu(pgdat->per_cpu_nodestats); 998 arch_free_nodedata(pgdat); 999 return; 1000 } 1001 1002 1003 /** 1004 * try_online_node - online a node if offlined 1005 * @nid: the node ID 1006 * @start: start addr of the node 1007 * @set_node_online: Whether we want to online the node 1008 * called by cpu_up() to online a node without onlined memory. 1009 * 1010 * Returns: 1011 * 1 -> a new node has been allocated 1012 * 0 -> the node is already online 1013 * -ENOMEM -> the node could not be allocated 1014 */ 1015 static int __try_online_node(int nid, u64 start, bool set_node_online) 1016 { 1017 pg_data_t *pgdat; 1018 int ret = 1; 1019 1020 if (node_online(nid)) 1021 return 0; 1022 1023 pgdat = hotadd_new_pgdat(nid, start); 1024 if (!pgdat) { 1025 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1026 ret = -ENOMEM; 1027 goto out; 1028 } 1029 1030 if (set_node_online) { 1031 node_set_online(nid); 1032 ret = register_one_node(nid); 1033 BUG_ON(ret); 1034 } 1035 out: 1036 return ret; 1037 } 1038 1039 /* 1040 * Users of this function always want to online/register the node 1041 */ 1042 int try_online_node(int nid) 1043 { 1044 int ret; 1045 1046 mem_hotplug_begin(); 1047 ret = __try_online_node(nid, 0, true); 1048 mem_hotplug_done(); 1049 return ret; 1050 } 1051 1052 static int check_hotplug_memory_range(u64 start, u64 size) 1053 { 1054 unsigned long block_sz = memory_block_size_bytes(); 1055 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1056 u64 nr_pages = size >> PAGE_SHIFT; 1057 u64 start_pfn = PFN_DOWN(start); 1058 1059 /* memory range must be block size aligned */ 1060 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1061 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1062 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1063 block_sz, start, size); 1064 return -EINVAL; 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int online_memory_block(struct memory_block *mem, void *arg) 1071 { 1072 return device_online(&mem->dev); 1073 } 1074 1075 /* 1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1077 * and online/offline operations (triggered e.g. by sysfs). 1078 * 1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1080 */ 1081 int __ref add_memory_resource(int nid, struct resource *res) 1082 { 1083 u64 start, size; 1084 bool new_node = false; 1085 int ret; 1086 1087 start = res->start; 1088 size = resource_size(res); 1089 1090 ret = check_hotplug_memory_range(start, size); 1091 if (ret) 1092 return ret; 1093 1094 mem_hotplug_begin(); 1095 1096 /* 1097 * Add new range to memblock so that when hotadd_new_pgdat() is called 1098 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1099 * this new range and calculate total pages correctly. The range will 1100 * be removed at hot-remove time. 1101 */ 1102 memblock_add_node(start, size, nid); 1103 1104 ret = __try_online_node(nid, start, false); 1105 if (ret < 0) 1106 goto error; 1107 new_node = ret; 1108 1109 /* call arch's memory hotadd */ 1110 ret = arch_add_memory(nid, start, size, NULL, true); 1111 if (ret < 0) 1112 goto error; 1113 1114 if (new_node) { 1115 /* If sysfs file of new node can't be created, cpu on the node 1116 * can't be hot-added. There is no rollback way now. 1117 * So, check by BUG_ON() to catch it reluctantly.. 1118 * We online node here. We can't roll back from here. 1119 */ 1120 node_set_online(nid); 1121 ret = __register_one_node(nid); 1122 BUG_ON(ret); 1123 } 1124 1125 /* link memory sections under this node.*/ 1126 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1127 BUG_ON(ret); 1128 1129 /* create new memmap entry */ 1130 firmware_map_add_hotplug(start, start + size, "System RAM"); 1131 1132 /* device_online() will take the lock when calling online_pages() */ 1133 mem_hotplug_done(); 1134 1135 /* online pages if requested */ 1136 if (memhp_auto_online) 1137 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1138 NULL, online_memory_block); 1139 1140 return ret; 1141 error: 1142 /* rollback pgdat allocation and others */ 1143 if (new_node) 1144 rollback_node_hotadd(nid); 1145 memblock_remove(start, size); 1146 mem_hotplug_done(); 1147 return ret; 1148 } 1149 1150 /* requires device_hotplug_lock, see add_memory_resource() */ 1151 int __ref __add_memory(int nid, u64 start, u64 size) 1152 { 1153 struct resource *res; 1154 int ret; 1155 1156 res = register_memory_resource(start, size); 1157 if (IS_ERR(res)) 1158 return PTR_ERR(res); 1159 1160 ret = add_memory_resource(nid, res); 1161 if (ret < 0) 1162 release_memory_resource(res); 1163 return ret; 1164 } 1165 1166 int add_memory(int nid, u64 start, u64 size) 1167 { 1168 int rc; 1169 1170 lock_device_hotplug(); 1171 rc = __add_memory(nid, start, size); 1172 unlock_device_hotplug(); 1173 1174 return rc; 1175 } 1176 EXPORT_SYMBOL_GPL(add_memory); 1177 1178 #ifdef CONFIG_MEMORY_HOTREMOVE 1179 /* 1180 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1181 * set and the size of the free page is given by page_order(). Using this, 1182 * the function determines if the pageblock contains only free pages. 1183 * Due to buddy contraints, a free page at least the size of a pageblock will 1184 * be located at the start of the pageblock 1185 */ 1186 static inline int pageblock_free(struct page *page) 1187 { 1188 return PageBuddy(page) && page_order(page) >= pageblock_order; 1189 } 1190 1191 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1192 static unsigned long next_active_pageblock(unsigned long pfn) 1193 { 1194 struct page *page = pfn_to_page(pfn); 1195 1196 /* Ensure the starting page is pageblock-aligned */ 1197 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1198 1199 /* If the entire pageblock is free, move to the end of free page */ 1200 if (pageblock_free(page)) { 1201 int order; 1202 /* be careful. we don't have locks, page_order can be changed.*/ 1203 order = page_order(page); 1204 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1205 return pfn + (1 << order); 1206 } 1207 1208 return pfn + pageblock_nr_pages; 1209 } 1210 1211 static bool is_pageblock_removable_nolock(unsigned long pfn) 1212 { 1213 struct page *page = pfn_to_page(pfn); 1214 struct zone *zone; 1215 1216 /* 1217 * We have to be careful here because we are iterating over memory 1218 * sections which are not zone aware so we might end up outside of 1219 * the zone but still within the section. 1220 * We have to take care about the node as well. If the node is offline 1221 * its NODE_DATA will be NULL - see page_zone. 1222 */ 1223 if (!node_online(page_to_nid(page))) 1224 return false; 1225 1226 zone = page_zone(page); 1227 pfn = page_to_pfn(page); 1228 if (!zone_spans_pfn(zone, pfn)) 1229 return false; 1230 1231 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1232 } 1233 1234 /* Checks if this range of memory is likely to be hot-removable. */ 1235 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1236 { 1237 unsigned long end_pfn, pfn; 1238 1239 end_pfn = min(start_pfn + nr_pages, 1240 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1241 1242 /* Check the starting page of each pageblock within the range */ 1243 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1244 if (!is_pageblock_removable_nolock(pfn)) 1245 return false; 1246 cond_resched(); 1247 } 1248 1249 /* All pageblocks in the memory block are likely to be hot-removable */ 1250 return true; 1251 } 1252 1253 /* 1254 * Confirm all pages in a range [start, end) belong to the same zone. 1255 * When true, return its valid [start, end). 1256 */ 1257 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1258 unsigned long *valid_start, unsigned long *valid_end) 1259 { 1260 unsigned long pfn, sec_end_pfn; 1261 unsigned long start, end; 1262 struct zone *zone = NULL; 1263 struct page *page; 1264 int i; 1265 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1266 pfn < end_pfn; 1267 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1268 /* Make sure the memory section is present first */ 1269 if (!present_section_nr(pfn_to_section_nr(pfn))) 1270 continue; 1271 for (; pfn < sec_end_pfn && pfn < end_pfn; 1272 pfn += MAX_ORDER_NR_PAGES) { 1273 i = 0; 1274 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1275 while ((i < MAX_ORDER_NR_PAGES) && 1276 !pfn_valid_within(pfn + i)) 1277 i++; 1278 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1279 continue; 1280 /* Check if we got outside of the zone */ 1281 if (zone && !zone_spans_pfn(zone, pfn + i)) 1282 return 0; 1283 page = pfn_to_page(pfn + i); 1284 if (zone && page_zone(page) != zone) 1285 return 0; 1286 if (!zone) 1287 start = pfn + i; 1288 zone = page_zone(page); 1289 end = pfn + MAX_ORDER_NR_PAGES; 1290 } 1291 } 1292 1293 if (zone) { 1294 *valid_start = start; 1295 *valid_end = min(end, end_pfn); 1296 return 1; 1297 } else { 1298 return 0; 1299 } 1300 } 1301 1302 /* 1303 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1304 * non-lru movable pages and hugepages). We scan pfn because it's much 1305 * easier than scanning over linked list. This function returns the pfn 1306 * of the first found movable page if it's found, otherwise 0. 1307 */ 1308 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1309 { 1310 unsigned long pfn; 1311 1312 for (pfn = start; pfn < end; pfn++) { 1313 struct page *page, *head; 1314 unsigned long skip; 1315 1316 if (!pfn_valid(pfn)) 1317 continue; 1318 page = pfn_to_page(pfn); 1319 if (PageLRU(page)) 1320 return pfn; 1321 if (__PageMovable(page)) 1322 return pfn; 1323 1324 if (!PageHuge(page)) 1325 continue; 1326 head = compound_head(page); 1327 if (hugepage_migration_supported(page_hstate(head)) && 1328 page_huge_active(head)) 1329 return pfn; 1330 skip = (1 << compound_order(head)) - (page - head); 1331 pfn += skip - 1; 1332 } 1333 return 0; 1334 } 1335 1336 static struct page *new_node_page(struct page *page, unsigned long private) 1337 { 1338 int nid = page_to_nid(page); 1339 nodemask_t nmask = node_states[N_MEMORY]; 1340 1341 /* 1342 * try to allocate from a different node but reuse this node if there 1343 * are no other online nodes to be used (e.g. we are offlining a part 1344 * of the only existing node) 1345 */ 1346 node_clear(nid, nmask); 1347 if (nodes_empty(nmask)) 1348 node_set(nid, nmask); 1349 1350 return new_page_nodemask(page, nid, &nmask); 1351 } 1352 1353 static int 1354 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1355 { 1356 unsigned long pfn; 1357 struct page *page; 1358 int ret = 0; 1359 LIST_HEAD(source); 1360 1361 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1362 if (!pfn_valid(pfn)) 1363 continue; 1364 page = pfn_to_page(pfn); 1365 1366 if (PageHuge(page)) { 1367 struct page *head = compound_head(page); 1368 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1369 if (compound_order(head) > PFN_SECTION_SHIFT) { 1370 ret = -EBUSY; 1371 break; 1372 } 1373 isolate_huge_page(page, &source); 1374 continue; 1375 } else if (PageTransHuge(page)) 1376 pfn = page_to_pfn(compound_head(page)) 1377 + hpage_nr_pages(page) - 1; 1378 1379 /* 1380 * HWPoison pages have elevated reference counts so the migration would 1381 * fail on them. It also doesn't make any sense to migrate them in the 1382 * first place. Still try to unmap such a page in case it is still mapped 1383 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1384 * the unmap as the catch all safety net). 1385 */ 1386 if (PageHWPoison(page)) { 1387 if (WARN_ON(PageLRU(page))) 1388 isolate_lru_page(page); 1389 if (page_mapped(page)) 1390 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1391 continue; 1392 } 1393 1394 if (!get_page_unless_zero(page)) 1395 continue; 1396 /* 1397 * We can skip free pages. And we can deal with pages on 1398 * LRU and non-lru movable pages. 1399 */ 1400 if (PageLRU(page)) 1401 ret = isolate_lru_page(page); 1402 else 1403 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1404 if (!ret) { /* Success */ 1405 list_add_tail(&page->lru, &source); 1406 if (!__PageMovable(page)) 1407 inc_node_page_state(page, NR_ISOLATED_ANON + 1408 page_is_file_cache(page)); 1409 1410 } else { 1411 pr_warn("failed to isolate pfn %lx\n", pfn); 1412 dump_page(page, "isolation failed"); 1413 } 1414 put_page(page); 1415 } 1416 if (!list_empty(&source)) { 1417 /* Allocate a new page from the nearest neighbor node */ 1418 ret = migrate_pages(&source, new_node_page, NULL, 0, 1419 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1420 if (ret) { 1421 list_for_each_entry(page, &source, lru) { 1422 pr_warn("migrating pfn %lx failed ret:%d ", 1423 page_to_pfn(page), ret); 1424 dump_page(page, "migration failure"); 1425 } 1426 putback_movable_pages(&source); 1427 } 1428 } 1429 1430 return ret; 1431 } 1432 1433 /* 1434 * remove from free_area[] and mark all as Reserved. 1435 */ 1436 static int 1437 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1438 void *data) 1439 { 1440 __offline_isolated_pages(start, start + nr_pages); 1441 return 0; 1442 } 1443 1444 static void 1445 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1446 { 1447 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1448 offline_isolated_pages_cb); 1449 } 1450 1451 /* 1452 * Check all pages in range, recoreded as memory resource, are isolated. 1453 */ 1454 static int 1455 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1456 void *data) 1457 { 1458 int ret; 1459 long offlined = *(long *)data; 1460 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1461 offlined = nr_pages; 1462 if (!ret) 1463 *(long *)data += offlined; 1464 return ret; 1465 } 1466 1467 static long 1468 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1469 { 1470 long offlined = 0; 1471 int ret; 1472 1473 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1474 check_pages_isolated_cb); 1475 if (ret < 0) 1476 offlined = (long)ret; 1477 return offlined; 1478 } 1479 1480 static int __init cmdline_parse_movable_node(char *p) 1481 { 1482 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1483 movable_node_enabled = true; 1484 #else 1485 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1486 #endif 1487 return 0; 1488 } 1489 early_param("movable_node", cmdline_parse_movable_node); 1490 1491 /* check which state of node_states will be changed when offline memory */ 1492 static void node_states_check_changes_offline(unsigned long nr_pages, 1493 struct zone *zone, struct memory_notify *arg) 1494 { 1495 struct pglist_data *pgdat = zone->zone_pgdat; 1496 unsigned long present_pages = 0; 1497 enum zone_type zt; 1498 1499 arg->status_change_nid = -1; 1500 arg->status_change_nid_normal = -1; 1501 arg->status_change_nid_high = -1; 1502 1503 /* 1504 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1505 * If the memory to be offline is within the range 1506 * [0..ZONE_NORMAL], and it is the last present memory there, 1507 * the zones in that range will become empty after the offlining, 1508 * thus we can determine that we need to clear the node from 1509 * node_states[N_NORMAL_MEMORY]. 1510 */ 1511 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1512 present_pages += pgdat->node_zones[zt].present_pages; 1513 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1514 arg->status_change_nid_normal = zone_to_nid(zone); 1515 1516 #ifdef CONFIG_HIGHMEM 1517 /* 1518 * node_states[N_HIGH_MEMORY] contains nodes which 1519 * have normal memory or high memory. 1520 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1521 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1522 * we determine that the zones in that range become empty, 1523 * we need to clear the node for N_HIGH_MEMORY. 1524 */ 1525 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1526 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1527 arg->status_change_nid_high = zone_to_nid(zone); 1528 #endif 1529 1530 /* 1531 * We have accounted the pages from [0..ZONE_NORMAL), and 1532 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1533 * as well. 1534 * Here we count the possible pages from ZONE_MOVABLE. 1535 * If after having accounted all the pages, we see that the nr_pages 1536 * to be offlined is over or equal to the accounted pages, 1537 * we know that the node will become empty, and so, we can clear 1538 * it for N_MEMORY as well. 1539 */ 1540 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1541 1542 if (nr_pages >= present_pages) 1543 arg->status_change_nid = zone_to_nid(zone); 1544 } 1545 1546 static void node_states_clear_node(int node, struct memory_notify *arg) 1547 { 1548 if (arg->status_change_nid_normal >= 0) 1549 node_clear_state(node, N_NORMAL_MEMORY); 1550 1551 if (arg->status_change_nid_high >= 0) 1552 node_clear_state(node, N_HIGH_MEMORY); 1553 1554 if (arg->status_change_nid >= 0) 1555 node_clear_state(node, N_MEMORY); 1556 } 1557 1558 static int __ref __offline_pages(unsigned long start_pfn, 1559 unsigned long end_pfn) 1560 { 1561 unsigned long pfn, nr_pages; 1562 long offlined_pages; 1563 int ret, node; 1564 unsigned long flags; 1565 unsigned long valid_start, valid_end; 1566 struct zone *zone; 1567 struct memory_notify arg; 1568 char *reason; 1569 1570 mem_hotplug_begin(); 1571 1572 /* This makes hotplug much easier...and readable. 1573 we assume this for now. .*/ 1574 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1575 &valid_end)) { 1576 ret = -EINVAL; 1577 reason = "multizone range"; 1578 goto failed_removal; 1579 } 1580 1581 zone = page_zone(pfn_to_page(valid_start)); 1582 node = zone_to_nid(zone); 1583 nr_pages = end_pfn - start_pfn; 1584 1585 /* set above range as isolated */ 1586 ret = start_isolate_page_range(start_pfn, end_pfn, 1587 MIGRATE_MOVABLE, 1588 SKIP_HWPOISON | REPORT_FAILURE); 1589 if (ret) { 1590 reason = "failure to isolate range"; 1591 goto failed_removal; 1592 } 1593 1594 arg.start_pfn = start_pfn; 1595 arg.nr_pages = nr_pages; 1596 node_states_check_changes_offline(nr_pages, zone, &arg); 1597 1598 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1599 ret = notifier_to_errno(ret); 1600 if (ret) { 1601 reason = "notifier failure"; 1602 goto failed_removal_isolated; 1603 } 1604 1605 do { 1606 for (pfn = start_pfn; pfn;) { 1607 if (signal_pending(current)) { 1608 ret = -EINTR; 1609 reason = "signal backoff"; 1610 goto failed_removal_isolated; 1611 } 1612 1613 cond_resched(); 1614 lru_add_drain_all(); 1615 drain_all_pages(zone); 1616 1617 pfn = scan_movable_pages(pfn, end_pfn); 1618 if (pfn) { 1619 /* 1620 * TODO: fatal migration failures should bail 1621 * out 1622 */ 1623 do_migrate_range(pfn, end_pfn); 1624 } 1625 } 1626 1627 /* 1628 * Dissolve free hugepages in the memory block before doing 1629 * offlining actually in order to make hugetlbfs's object 1630 * counting consistent. 1631 */ 1632 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1633 if (ret) { 1634 reason = "failure to dissolve huge pages"; 1635 goto failed_removal_isolated; 1636 } 1637 /* check again */ 1638 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1639 } while (offlined_pages < 0); 1640 1641 pr_info("Offlined Pages %ld\n", offlined_pages); 1642 /* Ok, all of our target is isolated. 1643 We cannot do rollback at this point. */ 1644 offline_isolated_pages(start_pfn, end_pfn); 1645 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1646 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1647 /* removal success */ 1648 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1649 zone->present_pages -= offlined_pages; 1650 1651 pgdat_resize_lock(zone->zone_pgdat, &flags); 1652 zone->zone_pgdat->node_present_pages -= offlined_pages; 1653 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1654 1655 init_per_zone_wmark_min(); 1656 1657 if (!populated_zone(zone)) { 1658 zone_pcp_reset(zone); 1659 build_all_zonelists(NULL); 1660 } else 1661 zone_pcp_update(zone); 1662 1663 node_states_clear_node(node, &arg); 1664 if (arg.status_change_nid >= 0) { 1665 kswapd_stop(node); 1666 kcompactd_stop(node); 1667 } 1668 1669 vm_total_pages = nr_free_pagecache_pages(); 1670 writeback_set_ratelimit(); 1671 1672 memory_notify(MEM_OFFLINE, &arg); 1673 mem_hotplug_done(); 1674 return 0; 1675 1676 failed_removal_isolated: 1677 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1678 failed_removal: 1679 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1680 (unsigned long long) start_pfn << PAGE_SHIFT, 1681 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1682 reason); 1683 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1684 /* pushback to free area */ 1685 mem_hotplug_done(); 1686 return ret; 1687 } 1688 1689 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1690 { 1691 return __offline_pages(start_pfn, start_pfn + nr_pages); 1692 } 1693 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1694 1695 /** 1696 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1697 * @start_pfn: start pfn of the memory range 1698 * @end_pfn: end pfn of the memory range 1699 * @arg: argument passed to func 1700 * @func: callback for each memory section walked 1701 * 1702 * This function walks through all present mem sections in range 1703 * [start_pfn, end_pfn) and call func on each mem section. 1704 * 1705 * Returns the return value of func. 1706 */ 1707 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1708 void *arg, int (*func)(struct memory_block *, void *)) 1709 { 1710 struct memory_block *mem = NULL; 1711 struct mem_section *section; 1712 unsigned long pfn, section_nr; 1713 int ret; 1714 1715 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1716 section_nr = pfn_to_section_nr(pfn); 1717 if (!present_section_nr(section_nr)) 1718 continue; 1719 1720 section = __nr_to_section(section_nr); 1721 /* same memblock? */ 1722 if (mem) 1723 if ((section_nr >= mem->start_section_nr) && 1724 (section_nr <= mem->end_section_nr)) 1725 continue; 1726 1727 mem = find_memory_block_hinted(section, mem); 1728 if (!mem) 1729 continue; 1730 1731 ret = func(mem, arg); 1732 if (ret) { 1733 kobject_put(&mem->dev.kobj); 1734 return ret; 1735 } 1736 } 1737 1738 if (mem) 1739 kobject_put(&mem->dev.kobj); 1740 1741 return 0; 1742 } 1743 1744 #ifdef CONFIG_MEMORY_HOTREMOVE 1745 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1746 { 1747 int ret = !is_memblock_offlined(mem); 1748 1749 if (unlikely(ret)) { 1750 phys_addr_t beginpa, endpa; 1751 1752 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1753 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1754 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1755 &beginpa, &endpa); 1756 } 1757 1758 return ret; 1759 } 1760 1761 static int check_cpu_on_node(pg_data_t *pgdat) 1762 { 1763 int cpu; 1764 1765 for_each_present_cpu(cpu) { 1766 if (cpu_to_node(cpu) == pgdat->node_id) 1767 /* 1768 * the cpu on this node isn't removed, and we can't 1769 * offline this node. 1770 */ 1771 return -EBUSY; 1772 } 1773 1774 return 0; 1775 } 1776 1777 /** 1778 * try_offline_node 1779 * @nid: the node ID 1780 * 1781 * Offline a node if all memory sections and cpus of the node are removed. 1782 * 1783 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1784 * and online/offline operations before this call. 1785 */ 1786 void try_offline_node(int nid) 1787 { 1788 pg_data_t *pgdat = NODE_DATA(nid); 1789 unsigned long start_pfn = pgdat->node_start_pfn; 1790 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1791 unsigned long pfn; 1792 1793 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1794 unsigned long section_nr = pfn_to_section_nr(pfn); 1795 1796 if (!present_section_nr(section_nr)) 1797 continue; 1798 1799 if (pfn_to_nid(pfn) != nid) 1800 continue; 1801 1802 /* 1803 * some memory sections of this node are not removed, and we 1804 * can't offline node now. 1805 */ 1806 return; 1807 } 1808 1809 if (check_cpu_on_node(pgdat)) 1810 return; 1811 1812 /* 1813 * all memory/cpu of this node are removed, we can offline this 1814 * node now. 1815 */ 1816 node_set_offline(nid); 1817 unregister_one_node(nid); 1818 } 1819 EXPORT_SYMBOL(try_offline_node); 1820 1821 /** 1822 * remove_memory 1823 * @nid: the node ID 1824 * @start: physical address of the region to remove 1825 * @size: size of the region to remove 1826 * 1827 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1828 * and online/offline operations before this call, as required by 1829 * try_offline_node(). 1830 */ 1831 void __ref __remove_memory(int nid, u64 start, u64 size) 1832 { 1833 int ret; 1834 1835 BUG_ON(check_hotplug_memory_range(start, size)); 1836 1837 mem_hotplug_begin(); 1838 1839 /* 1840 * All memory blocks must be offlined before removing memory. Check 1841 * whether all memory blocks in question are offline and trigger a BUG() 1842 * if this is not the case. 1843 */ 1844 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1845 check_memblock_offlined_cb); 1846 if (ret) 1847 BUG(); 1848 1849 /* remove memmap entry */ 1850 firmware_map_remove(start, start + size, "System RAM"); 1851 memblock_free(start, size); 1852 memblock_remove(start, size); 1853 1854 arch_remove_memory(nid, start, size, NULL); 1855 1856 try_offline_node(nid); 1857 1858 mem_hotplug_done(); 1859 } 1860 1861 void remove_memory(int nid, u64 start, u64 size) 1862 { 1863 lock_device_hotplug(); 1864 __remove_memory(nid, start, size); 1865 unlock_device_hotplug(); 1866 } 1867 EXPORT_SYMBOL_GPL(remove_memory); 1868 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1869