xref: /openbmc/linux/mm/memory_hotplug.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 enum {
56 	ONLINE_POLICY_CONTIG_ZONES = 0,
57 	ONLINE_POLICY_AUTO_MOVABLE,
58 };
59 
60 static const char * const online_policy_to_str[] = {
61 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
63 };
64 
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
66 {
67 	int ret = sysfs_match_string(online_policy_to_str, val);
68 
69 	if (ret < 0)
70 		return ret;
71 	*((int *)kp->arg) = ret;
72 	return 0;
73 }
74 
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
76 {
77 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
78 }
79 
80 /*
81  * memory_hotplug.online_policy: configure online behavior when onlining without
82  * specifying a zone (MMOP_ONLINE)
83  *
84  * "contig-zones": keep zone contiguous
85  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
87  */
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 	.set = set_online_policy,
91 	.get = get_online_policy,
92 };
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
96 		"Default: \"contig-zones\"");
97 
98 /*
99  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
100  *
101  * The ratio represent an upper limit and the kernel might decide to not
102  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103  * doesn't allow for more MOVABLE memory.
104  */
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 		"in percent for \"auto-movable\" online policy. Default: 301");
110 
111 /*
112  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
113  */
114 #ifdef CONFIG_NUMA
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 		"Consider numa node stats in addition to global stats in "
119 		"\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
121 
122 /*
123  * online_page_callback contains pointer to current page onlining function.
124  * Initially it is generic_online_page(). If it is required it could be
125  * changed by calling set_online_page_callback() for callback registration
126  * and restore_online_page_callback() for generic callback restore.
127  */
128 
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
131 
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
133 
134 void get_online_mems(void)
135 {
136 	percpu_down_read(&mem_hotplug_lock);
137 }
138 
139 void put_online_mems(void)
140 {
141 	percpu_up_read(&mem_hotplug_lock);
142 }
143 
144 bool movable_node_enabled = false;
145 
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
148 #else
149 int mhp_default_online_type = MMOP_ONLINE;
150 #endif
151 
152 static int __init setup_memhp_default_state(char *str)
153 {
154 	const int online_type = mhp_online_type_from_str(str);
155 
156 	if (online_type >= 0)
157 		mhp_default_online_type = online_type;
158 
159 	return 1;
160 }
161 __setup("memhp_default_state=", setup_memhp_default_state);
162 
163 void mem_hotplug_begin(void)
164 {
165 	cpus_read_lock();
166 	percpu_down_write(&mem_hotplug_lock);
167 }
168 
169 void mem_hotplug_done(void)
170 {
171 	percpu_up_write(&mem_hotplug_lock);
172 	cpus_read_unlock();
173 }
174 
175 u64 max_mem_size = U64_MAX;
176 
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 						 const char *resource_name)
180 {
181 	struct resource *res;
182 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
183 
184 	if (strcmp(resource_name, "System RAM"))
185 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
186 
187 	if (!mhp_range_allowed(start, size, true))
188 		return ERR_PTR(-E2BIG);
189 
190 	/*
191 	 * Make sure value parsed from 'mem=' only restricts memory adding
192 	 * while booting, so that memory hotplug won't be impacted. Please
193 	 * refer to document of 'mem=' in kernel-parameters.txt for more
194 	 * details.
195 	 */
196 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Request ownership of the new memory range.  This might be
201 	 * a child of an existing resource that was present but
202 	 * not marked as busy.
203 	 */
204 	res = __request_region(&iomem_resource, start, size,
205 			       resource_name, flags);
206 
207 	if (!res) {
208 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 				start, start + size);
210 		return ERR_PTR(-EEXIST);
211 	}
212 	return res;
213 }
214 
215 static void release_memory_resource(struct resource *res)
216 {
217 	if (!res)
218 		return;
219 	release_resource(res);
220 	kfree(res);
221 }
222 
223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
224 		const char *reason)
225 {
226 	/*
227 	 * Disallow all operations smaller than a sub-section and only
228 	 * allow operations smaller than a section for
229 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
230 	 * enforces a larger memory_block_size_bytes() granularity for
231 	 * memory that will be marked online, so this check should only
232 	 * fire for direct arch_{add,remove}_memory() users outside of
233 	 * add_memory_resource().
234 	 */
235 	unsigned long min_align;
236 
237 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
238 		min_align = PAGES_PER_SUBSECTION;
239 	else
240 		min_align = PAGES_PER_SECTION;
241 	if (!IS_ALIGNED(pfn, min_align)
242 			|| !IS_ALIGNED(nr_pages, min_align)) {
243 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
244 				reason, pfn, pfn + nr_pages - 1);
245 		return -EINVAL;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Return page for the valid pfn only if the page is online. All pfn
252  * walkers which rely on the fully initialized page->flags and others
253  * should use this rather than pfn_valid && pfn_to_page
254  */
255 struct page *pfn_to_online_page(unsigned long pfn)
256 {
257 	unsigned long nr = pfn_to_section_nr(pfn);
258 	struct dev_pagemap *pgmap;
259 	struct mem_section *ms;
260 
261 	if (nr >= NR_MEM_SECTIONS)
262 		return NULL;
263 
264 	ms = __nr_to_section(nr);
265 	if (!online_section(ms))
266 		return NULL;
267 
268 	/*
269 	 * Save some code text when online_section() +
270 	 * pfn_section_valid() are sufficient.
271 	 */
272 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
273 		return NULL;
274 
275 	if (!pfn_section_valid(ms, pfn))
276 		return NULL;
277 
278 	if (!online_device_section(ms))
279 		return pfn_to_page(pfn);
280 
281 	/*
282 	 * Slowpath: when ZONE_DEVICE collides with
283 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
284 	 * the section may be 'offline' but 'valid'. Only
285 	 * get_dev_pagemap() can determine sub-section online status.
286 	 */
287 	pgmap = get_dev_pagemap(pfn, NULL);
288 	put_dev_pagemap(pgmap);
289 
290 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
291 	if (pgmap)
292 		return NULL;
293 
294 	return pfn_to_page(pfn);
295 }
296 EXPORT_SYMBOL_GPL(pfn_to_online_page);
297 
298 /*
299  * Reasonably generic function for adding memory.  It is
300  * expected that archs that support memory hotplug will
301  * call this function after deciding the zone to which to
302  * add the new pages.
303  */
304 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
305 		struct mhp_params *params)
306 {
307 	const unsigned long end_pfn = pfn + nr_pages;
308 	unsigned long cur_nr_pages;
309 	int err;
310 	struct vmem_altmap *altmap = params->altmap;
311 
312 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
313 		return -EINVAL;
314 
315 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
316 
317 	if (altmap) {
318 		/*
319 		 * Validate altmap is within bounds of the total request
320 		 */
321 		if (altmap->base_pfn != pfn
322 				|| vmem_altmap_offset(altmap) > nr_pages) {
323 			pr_warn_once("memory add fail, invalid altmap\n");
324 			return -EINVAL;
325 		}
326 		altmap->alloc = 0;
327 	}
328 
329 	err = check_pfn_span(pfn, nr_pages, "add");
330 	if (err)
331 		return err;
332 
333 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
334 		/* Select all remaining pages up to the next section boundary */
335 		cur_nr_pages = min(end_pfn - pfn,
336 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
337 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
338 		if (err)
339 			break;
340 		cond_resched();
341 	}
342 	vmemmap_populate_print_last();
343 	return err;
344 }
345 
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 				     unsigned long start_pfn,
349 				     unsigned long end_pfn)
350 {
351 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 		if (unlikely(!pfn_to_online_page(start_pfn)))
353 			continue;
354 
355 		if (unlikely(pfn_to_nid(start_pfn) != nid))
356 			continue;
357 
358 		if (zone != page_zone(pfn_to_page(start_pfn)))
359 			continue;
360 
361 		return start_pfn;
362 	}
363 
364 	return 0;
365 }
366 
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 				    unsigned long start_pfn,
370 				    unsigned long end_pfn)
371 {
372 	unsigned long pfn;
373 
374 	/* pfn is the end pfn of a memory section. */
375 	pfn = end_pfn - 1;
376 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(pfn)))
384 			continue;
385 
386 		return pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 			     unsigned long end_pfn)
394 {
395 	unsigned long pfn;
396 	int nid = zone_to_nid(zone);
397 
398 	if (zone->zone_start_pfn == start_pfn) {
399 		/*
400 		 * If the section is smallest section in the zone, it need
401 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
402 		 * In this case, we find second smallest valid mem_section
403 		 * for shrinking zone.
404 		 */
405 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
406 						zone_end_pfn(zone));
407 		if (pfn) {
408 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
409 			zone->zone_start_pfn = pfn;
410 		} else {
411 			zone->zone_start_pfn = 0;
412 			zone->spanned_pages = 0;
413 		}
414 	} else if (zone_end_pfn(zone) == end_pfn) {
415 		/*
416 		 * If the section is biggest section in the zone, it need
417 		 * shrink zone->spanned_pages.
418 		 * In this case, we find second biggest valid mem_section for
419 		 * shrinking zone.
420 		 */
421 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
422 					       start_pfn);
423 		if (pfn)
424 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
425 		else {
426 			zone->zone_start_pfn = 0;
427 			zone->spanned_pages = 0;
428 		}
429 	}
430 }
431 
432 static void update_pgdat_span(struct pglist_data *pgdat)
433 {
434 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
435 	struct zone *zone;
436 
437 	for (zone = pgdat->node_zones;
438 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
439 		unsigned long end_pfn = zone_end_pfn(zone);
440 
441 		/* No need to lock the zones, they can't change. */
442 		if (!zone->spanned_pages)
443 			continue;
444 		if (!node_end_pfn) {
445 			node_start_pfn = zone->zone_start_pfn;
446 			node_end_pfn = end_pfn;
447 			continue;
448 		}
449 
450 		if (end_pfn > node_end_pfn)
451 			node_end_pfn = end_pfn;
452 		if (zone->zone_start_pfn < node_start_pfn)
453 			node_start_pfn = zone->zone_start_pfn;
454 	}
455 
456 	pgdat->node_start_pfn = node_start_pfn;
457 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458 }
459 
460 void __ref remove_pfn_range_from_zone(struct zone *zone,
461 				      unsigned long start_pfn,
462 				      unsigned long nr_pages)
463 {
464 	const unsigned long end_pfn = start_pfn + nr_pages;
465 	struct pglist_data *pgdat = zone->zone_pgdat;
466 	unsigned long pfn, cur_nr_pages;
467 
468 	/* Poison struct pages because they are now uninitialized again. */
469 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
470 		cond_resched();
471 
472 		/* Select all remaining pages up to the next section boundary */
473 		cur_nr_pages =
474 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
475 		page_init_poison(pfn_to_page(pfn),
476 				 sizeof(struct page) * cur_nr_pages);
477 	}
478 
479 	/*
480 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
481 	 * we will not try to shrink the zones - which is okay as
482 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
483 	 */
484 	if (zone_is_zone_device(zone))
485 		return;
486 
487 	clear_zone_contiguous(zone);
488 
489 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
490 	update_pgdat_span(pgdat);
491 
492 	set_zone_contiguous(zone);
493 }
494 
495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496 			     unsigned long map_offset,
497 			     struct vmem_altmap *altmap)
498 {
499 	struct mem_section *ms = __pfn_to_section(pfn);
500 
501 	if (WARN_ON_ONCE(!valid_section(ms)))
502 		return;
503 
504 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505 }
506 
507 /**
508  * __remove_pages() - remove sections of pages
509  * @pfn: starting pageframe (must be aligned to start of a section)
510  * @nr_pages: number of pages to remove (must be multiple of section size)
511  * @altmap: alternative device page map or %NULL if default memmap is used
512  *
513  * Generic helper function to remove section mappings and sysfs entries
514  * for the section of the memory we are removing. Caller needs to make
515  * sure that pages are marked reserved and zones are adjust properly by
516  * calling offline_pages().
517  */
518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519 		    struct vmem_altmap *altmap)
520 {
521 	const unsigned long end_pfn = pfn + nr_pages;
522 	unsigned long cur_nr_pages;
523 	unsigned long map_offset = 0;
524 
525 	map_offset = vmem_altmap_offset(altmap);
526 
527 	if (check_pfn_span(pfn, nr_pages, "remove"))
528 		return;
529 
530 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
531 		cond_resched();
532 		/* Select all remaining pages up to the next section boundary */
533 		cur_nr_pages = min(end_pfn - pfn,
534 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
535 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
536 		map_offset = 0;
537 	}
538 }
539 
540 int set_online_page_callback(online_page_callback_t callback)
541 {
542 	int rc = -EINVAL;
543 
544 	get_online_mems();
545 	mutex_lock(&online_page_callback_lock);
546 
547 	if (online_page_callback == generic_online_page) {
548 		online_page_callback = callback;
549 		rc = 0;
550 	}
551 
552 	mutex_unlock(&online_page_callback_lock);
553 	put_online_mems();
554 
555 	return rc;
556 }
557 EXPORT_SYMBOL_GPL(set_online_page_callback);
558 
559 int restore_online_page_callback(online_page_callback_t callback)
560 {
561 	int rc = -EINVAL;
562 
563 	get_online_mems();
564 	mutex_lock(&online_page_callback_lock);
565 
566 	if (online_page_callback == callback) {
567 		online_page_callback = generic_online_page;
568 		rc = 0;
569 	}
570 
571 	mutex_unlock(&online_page_callback_lock);
572 	put_online_mems();
573 
574 	return rc;
575 }
576 EXPORT_SYMBOL_GPL(restore_online_page_callback);
577 
578 void generic_online_page(struct page *page, unsigned int order)
579 {
580 	/*
581 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
582 	 * so we should map it first. This is better than introducing a special
583 	 * case in page freeing fast path.
584 	 */
585 	debug_pagealloc_map_pages(page, 1 << order);
586 	__free_pages_core(page, order);
587 	totalram_pages_add(1UL << order);
588 }
589 EXPORT_SYMBOL_GPL(generic_online_page);
590 
591 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
592 {
593 	const unsigned long end_pfn = start_pfn + nr_pages;
594 	unsigned long pfn;
595 
596 	/*
597 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
598 	 * decide to not expose all pages to the buddy (e.g., expose them
599 	 * later). We account all pages as being online and belonging to this
600 	 * zone ("present").
601 	 * When using memmap_on_memory, the range might not be aligned to
602 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
603 	 * this and the first chunk to online will be pageblock_nr_pages.
604 	 */
605 	for (pfn = start_pfn; pfn < end_pfn;) {
606 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
607 
608 		(*online_page_callback)(pfn_to_page(pfn), order);
609 		pfn += (1UL << order);
610 	}
611 
612 	/* mark all involved sections as online */
613 	online_mem_sections(start_pfn, end_pfn);
614 }
615 
616 /* check which state of node_states will be changed when online memory */
617 static void node_states_check_changes_online(unsigned long nr_pages,
618 	struct zone *zone, struct memory_notify *arg)
619 {
620 	int nid = zone_to_nid(zone);
621 
622 	arg->status_change_nid = NUMA_NO_NODE;
623 	arg->status_change_nid_normal = NUMA_NO_NODE;
624 
625 	if (!node_state(nid, N_MEMORY))
626 		arg->status_change_nid = nid;
627 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
628 		arg->status_change_nid_normal = nid;
629 }
630 
631 static void node_states_set_node(int node, struct memory_notify *arg)
632 {
633 	if (arg->status_change_nid_normal >= 0)
634 		node_set_state(node, N_NORMAL_MEMORY);
635 
636 	if (arg->status_change_nid >= 0)
637 		node_set_state(node, N_MEMORY);
638 }
639 
640 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
641 		unsigned long nr_pages)
642 {
643 	unsigned long old_end_pfn = zone_end_pfn(zone);
644 
645 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
646 		zone->zone_start_pfn = start_pfn;
647 
648 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
649 }
650 
651 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
652                                      unsigned long nr_pages)
653 {
654 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
655 
656 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
657 		pgdat->node_start_pfn = start_pfn;
658 
659 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
660 
661 }
662 
663 static void section_taint_zone_device(unsigned long pfn)
664 {
665 	struct mem_section *ms = __pfn_to_section(pfn);
666 
667 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
668 }
669 
670 /*
671  * Associate the pfn range with the given zone, initializing the memmaps
672  * and resizing the pgdat/zone data to span the added pages. After this
673  * call, all affected pages are PG_reserved.
674  *
675  * All aligned pageblocks are initialized to the specified migratetype
676  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
677  * zone stats (e.g., nr_isolate_pageblock) are touched.
678  */
679 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
680 				  unsigned long nr_pages,
681 				  struct vmem_altmap *altmap, int migratetype)
682 {
683 	struct pglist_data *pgdat = zone->zone_pgdat;
684 	int nid = pgdat->node_id;
685 
686 	clear_zone_contiguous(zone);
687 
688 	if (zone_is_empty(zone))
689 		init_currently_empty_zone(zone, start_pfn, nr_pages);
690 	resize_zone_range(zone, start_pfn, nr_pages);
691 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
692 
693 	/*
694 	 * Subsection population requires care in pfn_to_online_page().
695 	 * Set the taint to enable the slow path detection of
696 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
697 	 * section.
698 	 */
699 	if (zone_is_zone_device(zone)) {
700 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
701 			section_taint_zone_device(start_pfn);
702 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
703 			section_taint_zone_device(start_pfn + nr_pages);
704 	}
705 
706 	/*
707 	 * TODO now we have a visible range of pages which are not associated
708 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
709 	 * expects the zone spans the pfn range. All the pages in the range
710 	 * are reserved so nobody should be touching them so we should be safe
711 	 */
712 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
713 			 MEMINIT_HOTPLUG, altmap, migratetype);
714 
715 	set_zone_contiguous(zone);
716 }
717 
718 struct auto_movable_stats {
719 	unsigned long kernel_early_pages;
720 	unsigned long movable_pages;
721 };
722 
723 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
724 					    struct zone *zone)
725 {
726 	if (zone_idx(zone) == ZONE_MOVABLE) {
727 		stats->movable_pages += zone->present_pages;
728 	} else {
729 		stats->kernel_early_pages += zone->present_early_pages;
730 #ifdef CONFIG_CMA
731 		/*
732 		 * CMA pages (never on hotplugged memory) behave like
733 		 * ZONE_MOVABLE.
734 		 */
735 		stats->movable_pages += zone->cma_pages;
736 		stats->kernel_early_pages -= zone->cma_pages;
737 #endif /* CONFIG_CMA */
738 	}
739 }
740 struct auto_movable_group_stats {
741 	unsigned long movable_pages;
742 	unsigned long req_kernel_early_pages;
743 };
744 
745 static int auto_movable_stats_account_group(struct memory_group *group,
746 					   void *arg)
747 {
748 	const int ratio = READ_ONCE(auto_movable_ratio);
749 	struct auto_movable_group_stats *stats = arg;
750 	long pages;
751 
752 	/*
753 	 * We don't support modifying the config while the auto-movable online
754 	 * policy is already enabled. Just avoid the division by zero below.
755 	 */
756 	if (!ratio)
757 		return 0;
758 
759 	/*
760 	 * Calculate how many early kernel pages this group requires to
761 	 * satisfy the configured zone ratio.
762 	 */
763 	pages = group->present_movable_pages * 100 / ratio;
764 	pages -= group->present_kernel_pages;
765 
766 	if (pages > 0)
767 		stats->req_kernel_early_pages += pages;
768 	stats->movable_pages += group->present_movable_pages;
769 	return 0;
770 }
771 
772 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
773 					    unsigned long nr_pages)
774 {
775 	unsigned long kernel_early_pages, movable_pages;
776 	struct auto_movable_group_stats group_stats = {};
777 	struct auto_movable_stats stats = {};
778 	pg_data_t *pgdat = NODE_DATA(nid);
779 	struct zone *zone;
780 	int i;
781 
782 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
783 	if (nid == NUMA_NO_NODE) {
784 		/* TODO: cache values */
785 		for_each_populated_zone(zone)
786 			auto_movable_stats_account_zone(&stats, zone);
787 	} else {
788 		for (i = 0; i < MAX_NR_ZONES; i++) {
789 			zone = pgdat->node_zones + i;
790 			if (populated_zone(zone))
791 				auto_movable_stats_account_zone(&stats, zone);
792 		}
793 	}
794 
795 	kernel_early_pages = stats.kernel_early_pages;
796 	movable_pages = stats.movable_pages;
797 
798 	/*
799 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
800 	 * memory within the same group. Remove the effect of all but the
801 	 * current group from the stats.
802 	 */
803 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
804 				   group, &group_stats);
805 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
806 		return false;
807 	kernel_early_pages -= group_stats.req_kernel_early_pages;
808 	movable_pages -= group_stats.movable_pages;
809 
810 	if (group && group->is_dynamic)
811 		kernel_early_pages += group->present_kernel_pages;
812 
813 	/*
814 	 * Test if we could online the given number of pages to ZONE_MOVABLE
815 	 * and still stay in the configured ratio.
816 	 */
817 	movable_pages += nr_pages;
818 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
819 }
820 
821 /*
822  * Returns a default kernel memory zone for the given pfn range.
823  * If no kernel zone covers this pfn range it will automatically go
824  * to the ZONE_NORMAL.
825  */
826 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
827 		unsigned long nr_pages)
828 {
829 	struct pglist_data *pgdat = NODE_DATA(nid);
830 	int zid;
831 
832 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
833 		struct zone *zone = &pgdat->node_zones[zid];
834 
835 		if (zone_intersects(zone, start_pfn, nr_pages))
836 			return zone;
837 	}
838 
839 	return &pgdat->node_zones[ZONE_NORMAL];
840 }
841 
842 /*
843  * Determine to which zone to online memory dynamically based on user
844  * configuration and system stats. We care about the following ratio:
845  *
846  *   MOVABLE : KERNEL
847  *
848  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
849  * one of the kernel zones. CMA pages inside one of the kernel zones really
850  * behaves like ZONE_MOVABLE, so we treat them accordingly.
851  *
852  * We don't allow for hotplugged memory in a KERNEL zone to increase the
853  * amount of MOVABLE memory we can have, so we end up with:
854  *
855  *   MOVABLE : KERNEL_EARLY
856  *
857  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
858  * boot. We base our calculation on KERNEL_EARLY internally, because:
859  *
860  * a) Hotplugged memory in one of the kernel zones can sometimes still get
861  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
862  *    There is no coordination across memory devices, therefore "automatic"
863  *    hotunplugging, as implemented in hypervisors, could result in zone
864  *    imbalances.
865  * b) Early/boot memory in one of the kernel zones can usually not get
866  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
867  *    with unmovable allocations). While there are corner cases where it might
868  *    still work, it is barely relevant in practice.
869  *
870  * Exceptions are dynamic memory groups, which allow for more MOVABLE
871  * memory within the same memory group -- because in that case, there is
872  * coordination within the single memory device managed by a single driver.
873  *
874  * We rely on "present pages" instead of "managed pages", as the latter is
875  * highly unreliable and dynamic in virtualized environments, and does not
876  * consider boot time allocations. For example, memory ballooning adjusts the
877  * managed pages when inflating/deflating the balloon, and balloon compaction
878  * can even migrate inflated pages between zones.
879  *
880  * Using "present pages" is better but some things to keep in mind are:
881  *
882  * a) Some memblock allocations, such as for the crashkernel area, are
883  *    effectively unused by the kernel, yet they account to "present pages".
884  *    Fortunately, these allocations are comparatively small in relevant setups
885  *    (e.g., fraction of system memory).
886  * b) Some hotplugged memory blocks in virtualized environments, esecially
887  *    hotplugged by virtio-mem, look like they are completely present, however,
888  *    only parts of the memory block are actually currently usable.
889  *    "present pages" is an upper limit that can get reached at runtime. As
890  *    we base our calculations on KERNEL_EARLY, this is not an issue.
891  */
892 static struct zone *auto_movable_zone_for_pfn(int nid,
893 					      struct memory_group *group,
894 					      unsigned long pfn,
895 					      unsigned long nr_pages)
896 {
897 	unsigned long online_pages = 0, max_pages, end_pfn;
898 	struct page *page;
899 
900 	if (!auto_movable_ratio)
901 		goto kernel_zone;
902 
903 	if (group && !group->is_dynamic) {
904 		max_pages = group->s.max_pages;
905 		online_pages = group->present_movable_pages;
906 
907 		/* If anything is !MOVABLE online the rest !MOVABLE. */
908 		if (group->present_kernel_pages)
909 			goto kernel_zone;
910 	} else if (!group || group->d.unit_pages == nr_pages) {
911 		max_pages = nr_pages;
912 	} else {
913 		max_pages = group->d.unit_pages;
914 		/*
915 		 * Take a look at all online sections in the current unit.
916 		 * We can safely assume that all pages within a section belong
917 		 * to the same zone, because dynamic memory groups only deal
918 		 * with hotplugged memory.
919 		 */
920 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
921 		end_pfn = pfn + group->d.unit_pages;
922 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
923 			page = pfn_to_online_page(pfn);
924 			if (!page)
925 				continue;
926 			/* If anything is !MOVABLE online the rest !MOVABLE. */
927 			if (page_zonenum(page) != ZONE_MOVABLE)
928 				goto kernel_zone;
929 			online_pages += PAGES_PER_SECTION;
930 		}
931 	}
932 
933 	/*
934 	 * Online MOVABLE if we could *currently* online all remaining parts
935 	 * MOVABLE. We expect to (add+) online them immediately next, so if
936 	 * nobody interferes, all will be MOVABLE if possible.
937 	 */
938 	nr_pages = max_pages - online_pages;
939 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
940 		goto kernel_zone;
941 
942 #ifdef CONFIG_NUMA
943 	if (auto_movable_numa_aware &&
944 	    !auto_movable_can_online_movable(nid, group, nr_pages))
945 		goto kernel_zone;
946 #endif /* CONFIG_NUMA */
947 
948 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
949 kernel_zone:
950 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
951 }
952 
953 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
954 		unsigned long nr_pages)
955 {
956 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
957 			nr_pages);
958 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
959 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
960 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
961 
962 	/*
963 	 * We inherit the existing zone in a simple case where zones do not
964 	 * overlap in the given range
965 	 */
966 	if (in_kernel ^ in_movable)
967 		return (in_kernel) ? kernel_zone : movable_zone;
968 
969 	/*
970 	 * If the range doesn't belong to any zone or two zones overlap in the
971 	 * given range then we use movable zone only if movable_node is
972 	 * enabled because we always online to a kernel zone by default.
973 	 */
974 	return movable_node_enabled ? movable_zone : kernel_zone;
975 }
976 
977 struct zone *zone_for_pfn_range(int online_type, int nid,
978 		struct memory_group *group, unsigned long start_pfn,
979 		unsigned long nr_pages)
980 {
981 	if (online_type == MMOP_ONLINE_KERNEL)
982 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
983 
984 	if (online_type == MMOP_ONLINE_MOVABLE)
985 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
986 
987 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
988 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
989 
990 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
991 }
992 
993 /*
994  * This function should only be called by memory_block_{online,offline},
995  * and {online,offline}_pages.
996  */
997 void adjust_present_page_count(struct page *page, struct memory_group *group,
998 			       long nr_pages)
999 {
1000 	struct zone *zone = page_zone(page);
1001 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1002 
1003 	/*
1004 	 * We only support onlining/offlining/adding/removing of complete
1005 	 * memory blocks; therefore, either all is either early or hotplugged.
1006 	 */
1007 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1008 		zone->present_early_pages += nr_pages;
1009 	zone->present_pages += nr_pages;
1010 	zone->zone_pgdat->node_present_pages += nr_pages;
1011 
1012 	if (group && movable)
1013 		group->present_movable_pages += nr_pages;
1014 	else if (group && !movable)
1015 		group->present_kernel_pages += nr_pages;
1016 }
1017 
1018 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1019 			      struct zone *zone)
1020 {
1021 	unsigned long end_pfn = pfn + nr_pages;
1022 	int ret;
1023 
1024 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1025 	if (ret)
1026 		return ret;
1027 
1028 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1029 
1030 	/*
1031 	 * It might be that the vmemmap_pages fully span sections. If that is
1032 	 * the case, mark those sections online here as otherwise they will be
1033 	 * left offline.
1034 	 */
1035 	if (nr_pages >= PAGES_PER_SECTION)
1036 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1037 
1038 	return ret;
1039 }
1040 
1041 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1042 {
1043 	unsigned long end_pfn = pfn + nr_pages;
1044 
1045 	/*
1046 	 * It might be that the vmemmap_pages fully span sections. If that is
1047 	 * the case, mark those sections offline here as otherwise they will be
1048 	 * left online.
1049 	 */
1050 	if (nr_pages >= PAGES_PER_SECTION)
1051 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1052 
1053         /*
1054 	 * The pages associated with this vmemmap have been offlined, so
1055 	 * we can reset its state here.
1056 	 */
1057 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1058 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1059 }
1060 
1061 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1062 		       struct zone *zone, struct memory_group *group)
1063 {
1064 	unsigned long flags;
1065 	int need_zonelists_rebuild = 0;
1066 	const int nid = zone_to_nid(zone);
1067 	int ret;
1068 	struct memory_notify arg;
1069 
1070 	/*
1071 	 * {on,off}lining is constrained to full memory sections (or more
1072 	 * precisely to memory blocks from the user space POV).
1073 	 * memmap_on_memory is an exception because it reserves initial part
1074 	 * of the physical memory space for vmemmaps. That space is pageblock
1075 	 * aligned.
1076 	 */
1077 	if (WARN_ON_ONCE(!nr_pages ||
1078 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1079 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1080 		return -EINVAL;
1081 
1082 	mem_hotplug_begin();
1083 
1084 	/* associate pfn range with the zone */
1085 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1086 
1087 	arg.start_pfn = pfn;
1088 	arg.nr_pages = nr_pages;
1089 	node_states_check_changes_online(nr_pages, zone, &arg);
1090 
1091 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1092 	ret = notifier_to_errno(ret);
1093 	if (ret)
1094 		goto failed_addition;
1095 
1096 	/*
1097 	 * Fixup the number of isolated pageblocks before marking the sections
1098 	 * onlining, such that undo_isolate_page_range() works correctly.
1099 	 */
1100 	spin_lock_irqsave(&zone->lock, flags);
1101 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1102 	spin_unlock_irqrestore(&zone->lock, flags);
1103 
1104 	/*
1105 	 * If this zone is not populated, then it is not in zonelist.
1106 	 * This means the page allocator ignores this zone.
1107 	 * So, zonelist must be updated after online.
1108 	 */
1109 	if (!populated_zone(zone)) {
1110 		need_zonelists_rebuild = 1;
1111 		setup_zone_pageset(zone);
1112 	}
1113 
1114 	online_pages_range(pfn, nr_pages);
1115 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1116 
1117 	node_states_set_node(nid, &arg);
1118 	if (need_zonelists_rebuild)
1119 		build_all_zonelists(NULL);
1120 
1121 	/* Basic onlining is complete, allow allocation of onlined pages. */
1122 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1123 
1124 	/*
1125 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1126 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1127 	 * zone to make sure the just onlined pages are properly distributed
1128 	 * across the whole freelist - to create an initial shuffle.
1129 	 */
1130 	shuffle_zone(zone);
1131 
1132 	/* reinitialise watermarks and update pcp limits */
1133 	init_per_zone_wmark_min();
1134 
1135 	kswapd_run(nid);
1136 	kcompactd_run(nid);
1137 
1138 	writeback_set_ratelimit();
1139 
1140 	memory_notify(MEM_ONLINE, &arg);
1141 	mem_hotplug_done();
1142 	return 0;
1143 
1144 failed_addition:
1145 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1146 		 (unsigned long long) pfn << PAGE_SHIFT,
1147 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1148 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1149 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1150 	mem_hotplug_done();
1151 	return ret;
1152 }
1153 
1154 static void reset_node_present_pages(pg_data_t *pgdat)
1155 {
1156 	struct zone *z;
1157 
1158 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1159 		z->present_pages = 0;
1160 
1161 	pgdat->node_present_pages = 0;
1162 }
1163 
1164 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1165 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1166 {
1167 	struct pglist_data *pgdat;
1168 
1169 	pgdat = NODE_DATA(nid);
1170 	if (!pgdat) {
1171 		pgdat = arch_alloc_nodedata(nid);
1172 		if (!pgdat)
1173 			return NULL;
1174 
1175 		pgdat->per_cpu_nodestats =
1176 			alloc_percpu(struct per_cpu_nodestat);
1177 		arch_refresh_nodedata(nid, pgdat);
1178 	} else {
1179 		int cpu;
1180 		/*
1181 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
1182 		 * Note that kswapd will init kswapd_highest_zoneidx properly
1183 		 * when it starts in the near future.
1184 		 */
1185 		pgdat->nr_zones = 0;
1186 		pgdat->kswapd_order = 0;
1187 		pgdat->kswapd_highest_zoneidx = 0;
1188 		for_each_online_cpu(cpu) {
1189 			struct per_cpu_nodestat *p;
1190 
1191 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1192 			memset(p, 0, sizeof(*p));
1193 		}
1194 	}
1195 
1196 	/* we can use NODE_DATA(nid) from here */
1197 	pgdat->node_id = nid;
1198 	pgdat->node_start_pfn = 0;
1199 
1200 	/* init node's zones as empty zones, we don't have any present pages.*/
1201 	free_area_init_core_hotplug(nid);
1202 
1203 	/*
1204 	 * The node we allocated has no zone fallback lists. For avoiding
1205 	 * to access not-initialized zonelist, build here.
1206 	 */
1207 	build_all_zonelists(pgdat);
1208 
1209 	/*
1210 	 * When memory is hot-added, all the memory is in offline state. So
1211 	 * clear all zones' present_pages because they will be updated in
1212 	 * online_pages() and offline_pages().
1213 	 */
1214 	reset_node_managed_pages(pgdat);
1215 	reset_node_present_pages(pgdat);
1216 
1217 	return pgdat;
1218 }
1219 
1220 static void rollback_node_hotadd(int nid)
1221 {
1222 	pg_data_t *pgdat = NODE_DATA(nid);
1223 
1224 	arch_refresh_nodedata(nid, NULL);
1225 	free_percpu(pgdat->per_cpu_nodestats);
1226 	arch_free_nodedata(pgdat);
1227 }
1228 
1229 
1230 /*
1231  * __try_online_node - online a node if offlined
1232  * @nid: the node ID
1233  * @set_node_online: Whether we want to online the node
1234  * called by cpu_up() to online a node without onlined memory.
1235  *
1236  * Returns:
1237  * 1 -> a new node has been allocated
1238  * 0 -> the node is already online
1239  * -ENOMEM -> the node could not be allocated
1240  */
1241 static int __try_online_node(int nid, bool set_node_online)
1242 {
1243 	pg_data_t *pgdat;
1244 	int ret = 1;
1245 
1246 	if (node_online(nid))
1247 		return 0;
1248 
1249 	pgdat = hotadd_new_pgdat(nid);
1250 	if (!pgdat) {
1251 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1252 		ret = -ENOMEM;
1253 		goto out;
1254 	}
1255 
1256 	if (set_node_online) {
1257 		node_set_online(nid);
1258 		ret = register_one_node(nid);
1259 		BUG_ON(ret);
1260 	}
1261 out:
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Users of this function always want to online/register the node
1267  */
1268 int try_online_node(int nid)
1269 {
1270 	int ret;
1271 
1272 	mem_hotplug_begin();
1273 	ret =  __try_online_node(nid, true);
1274 	mem_hotplug_done();
1275 	return ret;
1276 }
1277 
1278 static int check_hotplug_memory_range(u64 start, u64 size)
1279 {
1280 	/* memory range must be block size aligned */
1281 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1282 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1283 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1284 		       memory_block_size_bytes(), start, size);
1285 		return -EINVAL;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 static int online_memory_block(struct memory_block *mem, void *arg)
1292 {
1293 	mem->online_type = mhp_default_online_type;
1294 	return device_online(&mem->dev);
1295 }
1296 
1297 bool mhp_supports_memmap_on_memory(unsigned long size)
1298 {
1299 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1300 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1301 	unsigned long remaining_size = size - vmemmap_size;
1302 
1303 	/*
1304 	 * Besides having arch support and the feature enabled at runtime, we
1305 	 * need a few more assumptions to hold true:
1306 	 *
1307 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1308 	 *    in memory block granularity. We don't want the vmemmap of online
1309 	 *    memory blocks to reside on offline memory blocks. In the future,
1310 	 *    we might want to support variable-sized memory blocks to make the
1311 	 *    feature more versatile.
1312 	 *
1313 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1314 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1315 	 *    other memory blocks)
1316 	 *
1317 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1318 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1319 	 *    code requires applicable ranges to be page-aligned, for example, to
1320 	 *    set the migratetypes properly.
1321 	 *
1322 	 * TODO: Although we have a check here to make sure that vmemmap pages
1323 	 *       fully populate a PMD, it is not the right place to check for
1324 	 *       this. A much better solution involves improving vmemmap code
1325 	 *       to fallback to base pages when trying to populate vmemmap using
1326 	 *       altmap as an alternative source of memory, and we do not exactly
1327 	 *       populate a single PMD.
1328 	 */
1329 	return memmap_on_memory &&
1330 	       !hugetlb_free_vmemmap_enabled &&
1331 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1332 	       size == memory_block_size_bytes() &&
1333 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1334 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1335 }
1336 
1337 /*
1338  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1339  * and online/offline operations (triggered e.g. by sysfs).
1340  *
1341  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1342  */
1343 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1344 {
1345 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1346 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1347 	struct vmem_altmap mhp_altmap = {};
1348 	struct memory_group *group = NULL;
1349 	u64 start, size;
1350 	bool new_node = false;
1351 	int ret;
1352 
1353 	start = res->start;
1354 	size = resource_size(res);
1355 
1356 	ret = check_hotplug_memory_range(start, size);
1357 	if (ret)
1358 		return ret;
1359 
1360 	if (mhp_flags & MHP_NID_IS_MGID) {
1361 		group = memory_group_find_by_id(nid);
1362 		if (!group)
1363 			return -EINVAL;
1364 		nid = group->nid;
1365 	}
1366 
1367 	if (!node_possible(nid)) {
1368 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1369 		return -EINVAL;
1370 	}
1371 
1372 	mem_hotplug_begin();
1373 
1374 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1375 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1376 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1377 		ret = memblock_add_node(start, size, nid, memblock_flags);
1378 		if (ret)
1379 			goto error_mem_hotplug_end;
1380 	}
1381 
1382 	ret = __try_online_node(nid, false);
1383 	if (ret < 0)
1384 		goto error;
1385 	new_node = ret;
1386 
1387 	/*
1388 	 * Self hosted memmap array
1389 	 */
1390 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1391 		if (!mhp_supports_memmap_on_memory(size)) {
1392 			ret = -EINVAL;
1393 			goto error;
1394 		}
1395 		mhp_altmap.free = PHYS_PFN(size);
1396 		mhp_altmap.base_pfn = PHYS_PFN(start);
1397 		params.altmap = &mhp_altmap;
1398 	}
1399 
1400 	/* call arch's memory hotadd */
1401 	ret = arch_add_memory(nid, start, size, &params);
1402 	if (ret < 0)
1403 		goto error;
1404 
1405 	/* create memory block devices after memory was added */
1406 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1407 					  group);
1408 	if (ret) {
1409 		arch_remove_memory(start, size, NULL);
1410 		goto error;
1411 	}
1412 
1413 	if (new_node) {
1414 		/* If sysfs file of new node can't be created, cpu on the node
1415 		 * can't be hot-added. There is no rollback way now.
1416 		 * So, check by BUG_ON() to catch it reluctantly..
1417 		 * We online node here. We can't roll back from here.
1418 		 */
1419 		node_set_online(nid);
1420 		ret = __register_one_node(nid);
1421 		BUG_ON(ret);
1422 	}
1423 
1424 	/* link memory sections under this node.*/
1425 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1426 			  MEMINIT_HOTPLUG);
1427 
1428 	/* create new memmap entry */
1429 	if (!strcmp(res->name, "System RAM"))
1430 		firmware_map_add_hotplug(start, start + size, "System RAM");
1431 
1432 	/* device_online() will take the lock when calling online_pages() */
1433 	mem_hotplug_done();
1434 
1435 	/*
1436 	 * In case we're allowed to merge the resource, flag it and trigger
1437 	 * merging now that adding succeeded.
1438 	 */
1439 	if (mhp_flags & MHP_MERGE_RESOURCE)
1440 		merge_system_ram_resource(res);
1441 
1442 	/* online pages if requested */
1443 	if (mhp_default_online_type != MMOP_OFFLINE)
1444 		walk_memory_blocks(start, size, NULL, online_memory_block);
1445 
1446 	return ret;
1447 error:
1448 	/* rollback pgdat allocation and others */
1449 	if (new_node)
1450 		rollback_node_hotadd(nid);
1451 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1452 		memblock_remove(start, size);
1453 error_mem_hotplug_end:
1454 	mem_hotplug_done();
1455 	return ret;
1456 }
1457 
1458 /* requires device_hotplug_lock, see add_memory_resource() */
1459 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1460 {
1461 	struct resource *res;
1462 	int ret;
1463 
1464 	res = register_memory_resource(start, size, "System RAM");
1465 	if (IS_ERR(res))
1466 		return PTR_ERR(res);
1467 
1468 	ret = add_memory_resource(nid, res, mhp_flags);
1469 	if (ret < 0)
1470 		release_memory_resource(res);
1471 	return ret;
1472 }
1473 
1474 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1475 {
1476 	int rc;
1477 
1478 	lock_device_hotplug();
1479 	rc = __add_memory(nid, start, size, mhp_flags);
1480 	unlock_device_hotplug();
1481 
1482 	return rc;
1483 }
1484 EXPORT_SYMBOL_GPL(add_memory);
1485 
1486 /*
1487  * Add special, driver-managed memory to the system as system RAM. Such
1488  * memory is not exposed via the raw firmware-provided memmap as system
1489  * RAM, instead, it is detected and added by a driver - during cold boot,
1490  * after a reboot, and after kexec.
1491  *
1492  * Reasons why this memory should not be used for the initial memmap of a
1493  * kexec kernel or for placing kexec images:
1494  * - The booting kernel is in charge of determining how this memory will be
1495  *   used (e.g., use persistent memory as system RAM)
1496  * - Coordination with a hypervisor is required before this memory
1497  *   can be used (e.g., inaccessible parts).
1498  *
1499  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1500  * memory map") are created. Also, the created memory resource is flagged
1501  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1502  * this memory as well (esp., not place kexec images onto it).
1503  *
1504  * The resource_name (visible via /proc/iomem) has to have the format
1505  * "System RAM ($DRIVER)".
1506  */
1507 int add_memory_driver_managed(int nid, u64 start, u64 size,
1508 			      const char *resource_name, mhp_t mhp_flags)
1509 {
1510 	struct resource *res;
1511 	int rc;
1512 
1513 	if (!resource_name ||
1514 	    strstr(resource_name, "System RAM (") != resource_name ||
1515 	    resource_name[strlen(resource_name) - 1] != ')')
1516 		return -EINVAL;
1517 
1518 	lock_device_hotplug();
1519 
1520 	res = register_memory_resource(start, size, resource_name);
1521 	if (IS_ERR(res)) {
1522 		rc = PTR_ERR(res);
1523 		goto out_unlock;
1524 	}
1525 
1526 	rc = add_memory_resource(nid, res, mhp_flags);
1527 	if (rc < 0)
1528 		release_memory_resource(res);
1529 
1530 out_unlock:
1531 	unlock_device_hotplug();
1532 	return rc;
1533 }
1534 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1535 
1536 /*
1537  * Platforms should define arch_get_mappable_range() that provides
1538  * maximum possible addressable physical memory range for which the
1539  * linear mapping could be created. The platform returned address
1540  * range must adhere to these following semantics.
1541  *
1542  * - range.start <= range.end
1543  * - Range includes both end points [range.start..range.end]
1544  *
1545  * There is also a fallback definition provided here, allowing the
1546  * entire possible physical address range in case any platform does
1547  * not define arch_get_mappable_range().
1548  */
1549 struct range __weak arch_get_mappable_range(void)
1550 {
1551 	struct range mhp_range = {
1552 		.start = 0UL,
1553 		.end = -1ULL,
1554 	};
1555 	return mhp_range;
1556 }
1557 
1558 struct range mhp_get_pluggable_range(bool need_mapping)
1559 {
1560 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1561 	struct range mhp_range;
1562 
1563 	if (need_mapping) {
1564 		mhp_range = arch_get_mappable_range();
1565 		if (mhp_range.start > max_phys) {
1566 			mhp_range.start = 0;
1567 			mhp_range.end = 0;
1568 		}
1569 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1570 	} else {
1571 		mhp_range.start = 0;
1572 		mhp_range.end = max_phys;
1573 	}
1574 	return mhp_range;
1575 }
1576 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1577 
1578 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1579 {
1580 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1581 	u64 end = start + size;
1582 
1583 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1584 		return true;
1585 
1586 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1587 		start, end, mhp_range.start, mhp_range.end);
1588 	return false;
1589 }
1590 
1591 #ifdef CONFIG_MEMORY_HOTREMOVE
1592 /*
1593  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1594  * memory holes). When true, return the zone.
1595  */
1596 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1597 				  unsigned long end_pfn)
1598 {
1599 	unsigned long pfn, sec_end_pfn;
1600 	struct zone *zone = NULL;
1601 	struct page *page;
1602 
1603 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1604 	     pfn < end_pfn;
1605 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1606 		/* Make sure the memory section is present first */
1607 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1608 			continue;
1609 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1610 		     pfn += MAX_ORDER_NR_PAGES) {
1611 			/* Check if we got outside of the zone */
1612 			if (zone && !zone_spans_pfn(zone, pfn))
1613 				return NULL;
1614 			page = pfn_to_page(pfn);
1615 			if (zone && page_zone(page) != zone)
1616 				return NULL;
1617 			zone = page_zone(page);
1618 		}
1619 	}
1620 
1621 	return zone;
1622 }
1623 
1624 /*
1625  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1626  * non-lru movable pages and hugepages). Will skip over most unmovable
1627  * pages (esp., pages that can be skipped when offlining), but bail out on
1628  * definitely unmovable pages.
1629  *
1630  * Returns:
1631  *	0 in case a movable page is found and movable_pfn was updated.
1632  *	-ENOENT in case no movable page was found.
1633  *	-EBUSY in case a definitely unmovable page was found.
1634  */
1635 static int scan_movable_pages(unsigned long start, unsigned long end,
1636 			      unsigned long *movable_pfn)
1637 {
1638 	unsigned long pfn;
1639 
1640 	for (pfn = start; pfn < end; pfn++) {
1641 		struct page *page, *head;
1642 		unsigned long skip;
1643 
1644 		if (!pfn_valid(pfn))
1645 			continue;
1646 		page = pfn_to_page(pfn);
1647 		if (PageLRU(page))
1648 			goto found;
1649 		if (__PageMovable(page))
1650 			goto found;
1651 
1652 		/*
1653 		 * PageOffline() pages that are not marked __PageMovable() and
1654 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1655 		 * definitely unmovable. If their reference count would be 0,
1656 		 * they could at least be skipped when offlining memory.
1657 		 */
1658 		if (PageOffline(page) && page_count(page))
1659 			return -EBUSY;
1660 
1661 		if (!PageHuge(page))
1662 			continue;
1663 		head = compound_head(page);
1664 		/*
1665 		 * This test is racy as we hold no reference or lock.  The
1666 		 * hugetlb page could have been free'ed and head is no longer
1667 		 * a hugetlb page before the following check.  In such unlikely
1668 		 * cases false positives and negatives are possible.  Calling
1669 		 * code must deal with these scenarios.
1670 		 */
1671 		if (HPageMigratable(head))
1672 			goto found;
1673 		skip = compound_nr(head) - (page - head);
1674 		pfn += skip - 1;
1675 	}
1676 	return -ENOENT;
1677 found:
1678 	*movable_pfn = pfn;
1679 	return 0;
1680 }
1681 
1682 static int
1683 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1684 {
1685 	unsigned long pfn;
1686 	struct page *page, *head;
1687 	int ret = 0;
1688 	LIST_HEAD(source);
1689 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1690 				      DEFAULT_RATELIMIT_BURST);
1691 
1692 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1693 		if (!pfn_valid(pfn))
1694 			continue;
1695 		page = pfn_to_page(pfn);
1696 		head = compound_head(page);
1697 
1698 		if (PageHuge(page)) {
1699 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1700 			isolate_huge_page(head, &source);
1701 			continue;
1702 		} else if (PageTransHuge(page))
1703 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1704 
1705 		/*
1706 		 * HWPoison pages have elevated reference counts so the migration would
1707 		 * fail on them. It also doesn't make any sense to migrate them in the
1708 		 * first place. Still try to unmap such a page in case it is still mapped
1709 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1710 		 * the unmap as the catch all safety net).
1711 		 */
1712 		if (PageHWPoison(page)) {
1713 			if (WARN_ON(PageLRU(page)))
1714 				isolate_lru_page(page);
1715 			if (page_mapped(page))
1716 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1717 			continue;
1718 		}
1719 
1720 		if (!get_page_unless_zero(page))
1721 			continue;
1722 		/*
1723 		 * We can skip free pages. And we can deal with pages on
1724 		 * LRU and non-lru movable pages.
1725 		 */
1726 		if (PageLRU(page))
1727 			ret = isolate_lru_page(page);
1728 		else
1729 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1730 		if (!ret) { /* Success */
1731 			list_add_tail(&page->lru, &source);
1732 			if (!__PageMovable(page))
1733 				inc_node_page_state(page, NR_ISOLATED_ANON +
1734 						    page_is_file_lru(page));
1735 
1736 		} else {
1737 			if (__ratelimit(&migrate_rs)) {
1738 				pr_warn("failed to isolate pfn %lx\n", pfn);
1739 				dump_page(page, "isolation failed");
1740 			}
1741 		}
1742 		put_page(page);
1743 	}
1744 	if (!list_empty(&source)) {
1745 		nodemask_t nmask = node_states[N_MEMORY];
1746 		struct migration_target_control mtc = {
1747 			.nmask = &nmask,
1748 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1749 		};
1750 
1751 		/*
1752 		 * We have checked that migration range is on a single zone so
1753 		 * we can use the nid of the first page to all the others.
1754 		 */
1755 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1756 
1757 		/*
1758 		 * try to allocate from a different node but reuse this node
1759 		 * if there are no other online nodes to be used (e.g. we are
1760 		 * offlining a part of the only existing node)
1761 		 */
1762 		node_clear(mtc.nid, nmask);
1763 		if (nodes_empty(nmask))
1764 			node_set(mtc.nid, nmask);
1765 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1766 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1767 		if (ret) {
1768 			list_for_each_entry(page, &source, lru) {
1769 				if (__ratelimit(&migrate_rs)) {
1770 					pr_warn("migrating pfn %lx failed ret:%d\n",
1771 						page_to_pfn(page), ret);
1772 					dump_page(page, "migration failure");
1773 				}
1774 			}
1775 			putback_movable_pages(&source);
1776 		}
1777 	}
1778 
1779 	return ret;
1780 }
1781 
1782 static int __init cmdline_parse_movable_node(char *p)
1783 {
1784 	movable_node_enabled = true;
1785 	return 0;
1786 }
1787 early_param("movable_node", cmdline_parse_movable_node);
1788 
1789 /* check which state of node_states will be changed when offline memory */
1790 static void node_states_check_changes_offline(unsigned long nr_pages,
1791 		struct zone *zone, struct memory_notify *arg)
1792 {
1793 	struct pglist_data *pgdat = zone->zone_pgdat;
1794 	unsigned long present_pages = 0;
1795 	enum zone_type zt;
1796 
1797 	arg->status_change_nid = NUMA_NO_NODE;
1798 	arg->status_change_nid_normal = NUMA_NO_NODE;
1799 
1800 	/*
1801 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1802 	 * If the memory to be offline is within the range
1803 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1804 	 * the zones in that range will become empty after the offlining,
1805 	 * thus we can determine that we need to clear the node from
1806 	 * node_states[N_NORMAL_MEMORY].
1807 	 */
1808 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1809 		present_pages += pgdat->node_zones[zt].present_pages;
1810 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1811 		arg->status_change_nid_normal = zone_to_nid(zone);
1812 
1813 	/*
1814 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1815 	 * does not apply as we don't support 32bit.
1816 	 * Here we count the possible pages from ZONE_MOVABLE.
1817 	 * If after having accounted all the pages, we see that the nr_pages
1818 	 * to be offlined is over or equal to the accounted pages,
1819 	 * we know that the node will become empty, and so, we can clear
1820 	 * it for N_MEMORY as well.
1821 	 */
1822 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1823 
1824 	if (nr_pages >= present_pages)
1825 		arg->status_change_nid = zone_to_nid(zone);
1826 }
1827 
1828 static void node_states_clear_node(int node, struct memory_notify *arg)
1829 {
1830 	if (arg->status_change_nid_normal >= 0)
1831 		node_clear_state(node, N_NORMAL_MEMORY);
1832 
1833 	if (arg->status_change_nid >= 0)
1834 		node_clear_state(node, N_MEMORY);
1835 }
1836 
1837 static int count_system_ram_pages_cb(unsigned long start_pfn,
1838 				     unsigned long nr_pages, void *data)
1839 {
1840 	unsigned long *nr_system_ram_pages = data;
1841 
1842 	*nr_system_ram_pages += nr_pages;
1843 	return 0;
1844 }
1845 
1846 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1847 			struct memory_group *group)
1848 {
1849 	const unsigned long end_pfn = start_pfn + nr_pages;
1850 	unsigned long pfn, system_ram_pages = 0;
1851 	unsigned long flags;
1852 	struct zone *zone;
1853 	struct memory_notify arg;
1854 	int ret, node;
1855 	char *reason;
1856 
1857 	/*
1858 	 * {on,off}lining is constrained to full memory sections (or more
1859 	 * precisely to memory blocks from the user space POV).
1860 	 * memmap_on_memory is an exception because it reserves initial part
1861 	 * of the physical memory space for vmemmaps. That space is pageblock
1862 	 * aligned.
1863 	 */
1864 	if (WARN_ON_ONCE(!nr_pages ||
1865 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1866 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1867 		return -EINVAL;
1868 
1869 	mem_hotplug_begin();
1870 
1871 	/*
1872 	 * Don't allow to offline memory blocks that contain holes.
1873 	 * Consequently, memory blocks with holes can never get onlined
1874 	 * via the hotplug path - online_pages() - as hotplugged memory has
1875 	 * no holes. This way, we e.g., don't have to worry about marking
1876 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1877 	 * avoid using walk_system_ram_range() later.
1878 	 */
1879 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1880 			      count_system_ram_pages_cb);
1881 	if (system_ram_pages != nr_pages) {
1882 		ret = -EINVAL;
1883 		reason = "memory holes";
1884 		goto failed_removal;
1885 	}
1886 
1887 	/* This makes hotplug much easier...and readable.
1888 	   we assume this for now. .*/
1889 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1890 	if (!zone) {
1891 		ret = -EINVAL;
1892 		reason = "multizone range";
1893 		goto failed_removal;
1894 	}
1895 	node = zone_to_nid(zone);
1896 
1897 	/*
1898 	 * Disable pcplists so that page isolation cannot race with freeing
1899 	 * in a way that pages from isolated pageblock are left on pcplists.
1900 	 */
1901 	zone_pcp_disable(zone);
1902 	lru_cache_disable();
1903 
1904 	/* set above range as isolated */
1905 	ret = start_isolate_page_range(start_pfn, end_pfn,
1906 				       MIGRATE_MOVABLE,
1907 				       MEMORY_OFFLINE | REPORT_FAILURE);
1908 	if (ret) {
1909 		reason = "failure to isolate range";
1910 		goto failed_removal_pcplists_disabled;
1911 	}
1912 
1913 	arg.start_pfn = start_pfn;
1914 	arg.nr_pages = nr_pages;
1915 	node_states_check_changes_offline(nr_pages, zone, &arg);
1916 
1917 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1918 	ret = notifier_to_errno(ret);
1919 	if (ret) {
1920 		reason = "notifier failure";
1921 		goto failed_removal_isolated;
1922 	}
1923 
1924 	do {
1925 		pfn = start_pfn;
1926 		do {
1927 			if (signal_pending(current)) {
1928 				ret = -EINTR;
1929 				reason = "signal backoff";
1930 				goto failed_removal_isolated;
1931 			}
1932 
1933 			cond_resched();
1934 
1935 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1936 			if (!ret) {
1937 				/*
1938 				 * TODO: fatal migration failures should bail
1939 				 * out
1940 				 */
1941 				do_migrate_range(pfn, end_pfn);
1942 			}
1943 		} while (!ret);
1944 
1945 		if (ret != -ENOENT) {
1946 			reason = "unmovable page";
1947 			goto failed_removal_isolated;
1948 		}
1949 
1950 		/*
1951 		 * Dissolve free hugepages in the memory block before doing
1952 		 * offlining actually in order to make hugetlbfs's object
1953 		 * counting consistent.
1954 		 */
1955 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1956 		if (ret) {
1957 			reason = "failure to dissolve huge pages";
1958 			goto failed_removal_isolated;
1959 		}
1960 
1961 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1962 
1963 	} while (ret);
1964 
1965 	/* Mark all sections offline and remove free pages from the buddy. */
1966 	__offline_isolated_pages(start_pfn, end_pfn);
1967 	pr_debug("Offlined Pages %ld\n", nr_pages);
1968 
1969 	/*
1970 	 * The memory sections are marked offline, and the pageblock flags
1971 	 * effectively stale; nobody should be touching them. Fixup the number
1972 	 * of isolated pageblocks, memory onlining will properly revert this.
1973 	 */
1974 	spin_lock_irqsave(&zone->lock, flags);
1975 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1976 	spin_unlock_irqrestore(&zone->lock, flags);
1977 
1978 	lru_cache_enable();
1979 	zone_pcp_enable(zone);
1980 
1981 	/* removal success */
1982 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1983 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1984 
1985 	/* reinitialise watermarks and update pcp limits */
1986 	init_per_zone_wmark_min();
1987 
1988 	if (!populated_zone(zone)) {
1989 		zone_pcp_reset(zone);
1990 		build_all_zonelists(NULL);
1991 	}
1992 
1993 	node_states_clear_node(node, &arg);
1994 	if (arg.status_change_nid >= 0) {
1995 		kswapd_stop(node);
1996 		kcompactd_stop(node);
1997 	}
1998 
1999 	writeback_set_ratelimit();
2000 
2001 	memory_notify(MEM_OFFLINE, &arg);
2002 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2003 	mem_hotplug_done();
2004 	return 0;
2005 
2006 failed_removal_isolated:
2007 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2008 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2009 failed_removal_pcplists_disabled:
2010 	lru_cache_enable();
2011 	zone_pcp_enable(zone);
2012 failed_removal:
2013 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2014 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2015 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2016 		 reason);
2017 	/* pushback to free area */
2018 	mem_hotplug_done();
2019 	return ret;
2020 }
2021 
2022 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2023 {
2024 	int ret = !is_memblock_offlined(mem);
2025 	int *nid = arg;
2026 
2027 	*nid = mem->nid;
2028 	if (unlikely(ret)) {
2029 		phys_addr_t beginpa, endpa;
2030 
2031 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2032 		endpa = beginpa + memory_block_size_bytes() - 1;
2033 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2034 			&beginpa, &endpa);
2035 
2036 		return -EBUSY;
2037 	}
2038 	return 0;
2039 }
2040 
2041 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2042 {
2043 	/*
2044 	 * If not set, continue with the next block.
2045 	 */
2046 	return mem->nr_vmemmap_pages;
2047 }
2048 
2049 static int check_cpu_on_node(pg_data_t *pgdat)
2050 {
2051 	int cpu;
2052 
2053 	for_each_present_cpu(cpu) {
2054 		if (cpu_to_node(cpu) == pgdat->node_id)
2055 			/*
2056 			 * the cpu on this node isn't removed, and we can't
2057 			 * offline this node.
2058 			 */
2059 			return -EBUSY;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2066 {
2067 	int nid = *(int *)arg;
2068 
2069 	/*
2070 	 * If a memory block belongs to multiple nodes, the stored nid is not
2071 	 * reliable. However, such blocks are always online (e.g., cannot get
2072 	 * offlined) and, therefore, are still spanned by the node.
2073 	 */
2074 	return mem->nid == nid ? -EEXIST : 0;
2075 }
2076 
2077 /**
2078  * try_offline_node
2079  * @nid: the node ID
2080  *
2081  * Offline a node if all memory sections and cpus of the node are removed.
2082  *
2083  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2084  * and online/offline operations before this call.
2085  */
2086 void try_offline_node(int nid)
2087 {
2088 	pg_data_t *pgdat = NODE_DATA(nid);
2089 	int rc;
2090 
2091 	/*
2092 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2093 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2094 	 * e.g., after the memory block was onlined.
2095 	 */
2096 	if (pgdat->node_spanned_pages)
2097 		return;
2098 
2099 	/*
2100 	 * Especially offline memory blocks might not be spanned by the
2101 	 * node. They will get spanned by the node once they get onlined.
2102 	 * However, they link to the node in sysfs and can get onlined later.
2103 	 */
2104 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2105 	if (rc)
2106 		return;
2107 
2108 	if (check_cpu_on_node(pgdat))
2109 		return;
2110 
2111 	/*
2112 	 * all memory/cpu of this node are removed, we can offline this
2113 	 * node now.
2114 	 */
2115 	node_set_offline(nid);
2116 	unregister_one_node(nid);
2117 }
2118 EXPORT_SYMBOL(try_offline_node);
2119 
2120 static int __ref try_remove_memory(u64 start, u64 size)
2121 {
2122 	struct vmem_altmap mhp_altmap = {};
2123 	struct vmem_altmap *altmap = NULL;
2124 	unsigned long nr_vmemmap_pages;
2125 	int rc = 0, nid = NUMA_NO_NODE;
2126 
2127 	BUG_ON(check_hotplug_memory_range(start, size));
2128 
2129 	/*
2130 	 * All memory blocks must be offlined before removing memory.  Check
2131 	 * whether all memory blocks in question are offline and return error
2132 	 * if this is not the case.
2133 	 *
2134 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2135 	 * we'd only try to offline the last determined one -- which is good
2136 	 * enough for the cases we care about.
2137 	 */
2138 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2139 	if (rc)
2140 		return rc;
2141 
2142 	/*
2143 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2144 	 * the same granularity it was added - a single memory block.
2145 	 */
2146 	if (memmap_on_memory) {
2147 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2148 						      get_nr_vmemmap_pages_cb);
2149 		if (nr_vmemmap_pages) {
2150 			if (size != memory_block_size_bytes()) {
2151 				pr_warn("Refuse to remove %#llx - %#llx,"
2152 					"wrong granularity\n",
2153 					start, start + size);
2154 				return -EINVAL;
2155 			}
2156 
2157 			/*
2158 			 * Let remove_pmd_table->free_hugepage_table do the
2159 			 * right thing if we used vmem_altmap when hot-adding
2160 			 * the range.
2161 			 */
2162 			mhp_altmap.alloc = nr_vmemmap_pages;
2163 			altmap = &mhp_altmap;
2164 		}
2165 	}
2166 
2167 	/* remove memmap entry */
2168 	firmware_map_remove(start, start + size, "System RAM");
2169 
2170 	/*
2171 	 * Memory block device removal under the device_hotplug_lock is
2172 	 * a barrier against racing online attempts.
2173 	 */
2174 	remove_memory_block_devices(start, size);
2175 
2176 	mem_hotplug_begin();
2177 
2178 	arch_remove_memory(start, size, altmap);
2179 
2180 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2181 		memblock_phys_free(start, size);
2182 		memblock_remove(start, size);
2183 	}
2184 
2185 	release_mem_region_adjustable(start, size);
2186 
2187 	if (nid != NUMA_NO_NODE)
2188 		try_offline_node(nid);
2189 
2190 	mem_hotplug_done();
2191 	return 0;
2192 }
2193 
2194 /**
2195  * __remove_memory - Remove memory if every memory block is offline
2196  * @start: physical address of the region to remove
2197  * @size: size of the region to remove
2198  *
2199  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2200  * and online/offline operations before this call, as required by
2201  * try_offline_node().
2202  */
2203 void __remove_memory(u64 start, u64 size)
2204 {
2205 
2206 	/*
2207 	 * trigger BUG() if some memory is not offlined prior to calling this
2208 	 * function
2209 	 */
2210 	if (try_remove_memory(start, size))
2211 		BUG();
2212 }
2213 
2214 /*
2215  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2216  * some memory is not offline
2217  */
2218 int remove_memory(u64 start, u64 size)
2219 {
2220 	int rc;
2221 
2222 	lock_device_hotplug();
2223 	rc = try_remove_memory(start, size);
2224 	unlock_device_hotplug();
2225 
2226 	return rc;
2227 }
2228 EXPORT_SYMBOL_GPL(remove_memory);
2229 
2230 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2231 {
2232 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2233 	uint8_t **online_types = arg;
2234 	struct page *page;
2235 	int rc;
2236 
2237 	/*
2238 	 * Sense the online_type via the zone of the memory block. Offlining
2239 	 * with multiple zones within one memory block will be rejected
2240 	 * by offlining code ... so we don't care about that.
2241 	 */
2242 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2243 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2244 		online_type = MMOP_ONLINE_MOVABLE;
2245 
2246 	rc = device_offline(&mem->dev);
2247 	/*
2248 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2249 	 * so try_reonline_memory_block() can do the right thing.
2250 	 */
2251 	if (!rc)
2252 		**online_types = online_type;
2253 
2254 	(*online_types)++;
2255 	/* Ignore if already offline. */
2256 	return rc < 0 ? rc : 0;
2257 }
2258 
2259 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2260 {
2261 	uint8_t **online_types = arg;
2262 	int rc;
2263 
2264 	if (**online_types != MMOP_OFFLINE) {
2265 		mem->online_type = **online_types;
2266 		rc = device_online(&mem->dev);
2267 		if (rc < 0)
2268 			pr_warn("%s: Failed to re-online memory: %d",
2269 				__func__, rc);
2270 	}
2271 
2272 	/* Continue processing all remaining memory blocks. */
2273 	(*online_types)++;
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Try to offline and remove memory. Might take a long time to finish in case
2279  * memory is still in use. Primarily useful for memory devices that logically
2280  * unplugged all memory (so it's no longer in use) and want to offline + remove
2281  * that memory.
2282  */
2283 int offline_and_remove_memory(u64 start, u64 size)
2284 {
2285 	const unsigned long mb_count = size / memory_block_size_bytes();
2286 	uint8_t *online_types, *tmp;
2287 	int rc;
2288 
2289 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2290 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2291 		return -EINVAL;
2292 
2293 	/*
2294 	 * We'll remember the old online type of each memory block, so we can
2295 	 * try to revert whatever we did when offlining one memory block fails
2296 	 * after offlining some others succeeded.
2297 	 */
2298 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2299 				     GFP_KERNEL);
2300 	if (!online_types)
2301 		return -ENOMEM;
2302 	/*
2303 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2304 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2305 	 * try_reonline_memory_block().
2306 	 */
2307 	memset(online_types, MMOP_OFFLINE, mb_count);
2308 
2309 	lock_device_hotplug();
2310 
2311 	tmp = online_types;
2312 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2313 
2314 	/*
2315 	 * In case we succeeded to offline all memory, remove it.
2316 	 * This cannot fail as it cannot get onlined in the meantime.
2317 	 */
2318 	if (!rc) {
2319 		rc = try_remove_memory(start, size);
2320 		if (rc)
2321 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2322 	}
2323 
2324 	/*
2325 	 * Rollback what we did. While memory onlining might theoretically fail
2326 	 * (nacked by a notifier), it barely ever happens.
2327 	 */
2328 	if (rc) {
2329 		tmp = online_types;
2330 		walk_memory_blocks(start, size, &tmp,
2331 				   try_reonline_memory_block);
2332 	}
2333 	unlock_device_hotplug();
2334 
2335 	kfree(online_types);
2336 	return rc;
2337 }
2338 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2339 #endif /* CONFIG_MEMORY_HOTREMOVE */
2340