xref: /openbmc/linux/mm/memory_hotplug.c (revision 890f0b0d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 u64 max_mem_size = U64_MAX;
100 
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 	char *resource_name = "System RAM";
107 
108 	if (start + size > max_mem_size)
109 		return ERR_PTR(-E2BIG);
110 
111 	/*
112 	 * Request ownership of the new memory range.  This might be
113 	 * a child of an existing resource that was present but
114 	 * not marked as busy.
115 	 */
116 	res = __request_region(&iomem_resource, start, size,
117 			       resource_name, flags);
118 
119 	if (!res) {
120 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
121 				start, start + size);
122 		return ERR_PTR(-EEXIST);
123 	}
124 	return res;
125 }
126 
127 static void release_memory_resource(struct resource *res)
128 {
129 	if (!res)
130 		return;
131 	release_resource(res);
132 	kfree(res);
133 }
134 
135 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
136 void get_page_bootmem(unsigned long info,  struct page *page,
137 		      unsigned long type)
138 {
139 	page->freelist = (void *)type;
140 	SetPagePrivate(page);
141 	set_page_private(page, info);
142 	page_ref_inc(page);
143 }
144 
145 void put_page_bootmem(struct page *page)
146 {
147 	unsigned long type;
148 
149 	type = (unsigned long) page->freelist;
150 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
151 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
152 
153 	if (page_ref_dec_return(page) == 1) {
154 		page->freelist = NULL;
155 		ClearPagePrivate(page);
156 		set_page_private(page, 0);
157 		INIT_LIST_HEAD(&page->lru);
158 		free_reserved_page(page);
159 	}
160 }
161 
162 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
163 #ifndef CONFIG_SPARSEMEM_VMEMMAP
164 static void register_page_bootmem_info_section(unsigned long start_pfn)
165 {
166 	unsigned long mapsize, section_nr, i;
167 	struct mem_section *ms;
168 	struct page *page, *memmap;
169 	struct mem_section_usage *usage;
170 
171 	section_nr = pfn_to_section_nr(start_pfn);
172 	ms = __nr_to_section(section_nr);
173 
174 	/* Get section's memmap address */
175 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176 
177 	/*
178 	 * Get page for the memmap's phys address
179 	 * XXX: need more consideration for sparse_vmemmap...
180 	 */
181 	page = virt_to_page(memmap);
182 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
183 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
184 
185 	/* remember memmap's page */
186 	for (i = 0; i < mapsize; i++, page++)
187 		get_page_bootmem(section_nr, page, SECTION_INFO);
188 
189 	usage = ms->usage;
190 	page = virt_to_page(usage);
191 
192 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
193 
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196 
197 }
198 #else /* CONFIG_SPARSEMEM_VMEMMAP */
199 static void register_page_bootmem_info_section(unsigned long start_pfn)
200 {
201 	unsigned long mapsize, section_nr, i;
202 	struct mem_section *ms;
203 	struct page *page, *memmap;
204 	struct mem_section_usage *usage;
205 
206 	section_nr = pfn_to_section_nr(start_pfn);
207 	ms = __nr_to_section(section_nr);
208 
209 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
210 
211 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
212 
213 	usage = ms->usage;
214 	page = virt_to_page(usage);
215 
216 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
217 
218 	for (i = 0; i < mapsize; i++, page++)
219 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
220 }
221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
222 
223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
224 {
225 	unsigned long i, pfn, end_pfn, nr_pages;
226 	int node = pgdat->node_id;
227 	struct page *page;
228 
229 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
230 	page = virt_to_page(pgdat);
231 
232 	for (i = 0; i < nr_pages; i++, page++)
233 		get_page_bootmem(node, page, NODE_INFO);
234 
235 	pfn = pgdat->node_start_pfn;
236 	end_pfn = pgdat_end_pfn(pgdat);
237 
238 	/* register section info */
239 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 		/*
241 		 * Some platforms can assign the same pfn to multiple nodes - on
242 		 * node0 as well as nodeN.  To avoid registering a pfn against
243 		 * multiple nodes we check that this pfn does not already
244 		 * reside in some other nodes.
245 		 */
246 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
247 			register_page_bootmem_info_section(pfn);
248 	}
249 }
250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
251 
252 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
253 		const char *reason)
254 {
255 	/*
256 	 * Disallow all operations smaller than a sub-section and only
257 	 * allow operations smaller than a section for
258 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
259 	 * enforces a larger memory_block_size_bytes() granularity for
260 	 * memory that will be marked online, so this check should only
261 	 * fire for direct arch_{add,remove}_memory() users outside of
262 	 * add_memory_resource().
263 	 */
264 	unsigned long min_align;
265 
266 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
267 		min_align = PAGES_PER_SUBSECTION;
268 	else
269 		min_align = PAGES_PER_SECTION;
270 	if (!IS_ALIGNED(pfn, min_align)
271 			|| !IS_ALIGNED(nr_pages, min_align)) {
272 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
273 				reason, pfn, pfn + nr_pages - 1);
274 		return -EINVAL;
275 	}
276 	return 0;
277 }
278 
279 static int check_hotplug_memory_addressable(unsigned long pfn,
280 					    unsigned long nr_pages)
281 {
282 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
283 
284 	if (max_addr >> MAX_PHYSMEM_BITS) {
285 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
286 		WARN(1,
287 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
288 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
289 		return -E2BIG;
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * Reasonably generic function for adding memory.  It is
297  * expected that archs that support memory hotplug will
298  * call this function after deciding the zone to which to
299  * add the new pages.
300  */
301 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
302 		struct mhp_restrictions *restrictions)
303 {
304 	int err;
305 	unsigned long nr, start_sec, end_sec;
306 	struct vmem_altmap *altmap = restrictions->altmap;
307 
308 	err = check_hotplug_memory_addressable(pfn, nr_pages);
309 	if (err)
310 		return err;
311 
312 	if (altmap) {
313 		/*
314 		 * Validate altmap is within bounds of the total request
315 		 */
316 		if (altmap->base_pfn != pfn
317 				|| vmem_altmap_offset(altmap) > nr_pages) {
318 			pr_warn_once("memory add fail, invalid altmap\n");
319 			return -EINVAL;
320 		}
321 		altmap->alloc = 0;
322 	}
323 
324 	err = check_pfn_span(pfn, nr_pages, "add");
325 	if (err)
326 		return err;
327 
328 	start_sec = pfn_to_section_nr(pfn);
329 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
330 	for (nr = start_sec; nr <= end_sec; nr++) {
331 		unsigned long pfns;
332 
333 		pfns = min(nr_pages, PAGES_PER_SECTION
334 				- (pfn & ~PAGE_SECTION_MASK));
335 		err = sparse_add_section(nid, pfn, pfns, altmap);
336 		if (err)
337 			break;
338 		pfn += pfns;
339 		nr_pages -= pfns;
340 		cond_resched();
341 	}
342 	vmemmap_populate_print_last();
343 	return err;
344 }
345 
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 				     unsigned long start_pfn,
349 				     unsigned long end_pfn)
350 {
351 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 		if (unlikely(!pfn_to_online_page(start_pfn)))
353 			continue;
354 
355 		if (unlikely(pfn_to_nid(start_pfn) != nid))
356 			continue;
357 
358 		if (zone != page_zone(pfn_to_page(start_pfn)))
359 			continue;
360 
361 		return start_pfn;
362 	}
363 
364 	return 0;
365 }
366 
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 				    unsigned long start_pfn,
370 				    unsigned long end_pfn)
371 {
372 	unsigned long pfn;
373 
374 	/* pfn is the end pfn of a memory section. */
375 	pfn = end_pfn - 1;
376 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(pfn)))
384 			continue;
385 
386 		return pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 			     unsigned long end_pfn)
394 {
395 	unsigned long pfn;
396 	int nid = zone_to_nid(zone);
397 
398 	zone_span_writelock(zone);
399 	if (zone->zone_start_pfn == start_pfn) {
400 		/*
401 		 * If the section is smallest section in the zone, it need
402 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
403 		 * In this case, we find second smallest valid mem_section
404 		 * for shrinking zone.
405 		 */
406 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
407 						zone_end_pfn(zone));
408 		if (pfn) {
409 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
410 			zone->zone_start_pfn = pfn;
411 		} else {
412 			zone->zone_start_pfn = 0;
413 			zone->spanned_pages = 0;
414 		}
415 	} else if (zone_end_pfn(zone) == end_pfn) {
416 		/*
417 		 * If the section is biggest section in the zone, it need
418 		 * shrink zone->spanned_pages.
419 		 * In this case, we find second biggest valid mem_section for
420 		 * shrinking zone.
421 		 */
422 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
423 					       start_pfn);
424 		if (pfn)
425 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
426 		else {
427 			zone->zone_start_pfn = 0;
428 			zone->spanned_pages = 0;
429 		}
430 	}
431 	zone_span_writeunlock(zone);
432 }
433 
434 static void update_pgdat_span(struct pglist_data *pgdat)
435 {
436 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
437 	struct zone *zone;
438 
439 	for (zone = pgdat->node_zones;
440 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
441 		unsigned long zone_end_pfn = zone->zone_start_pfn +
442 					     zone->spanned_pages;
443 
444 		/* No need to lock the zones, they can't change. */
445 		if (!zone->spanned_pages)
446 			continue;
447 		if (!node_end_pfn) {
448 			node_start_pfn = zone->zone_start_pfn;
449 			node_end_pfn = zone_end_pfn;
450 			continue;
451 		}
452 
453 		if (zone_end_pfn > node_end_pfn)
454 			node_end_pfn = zone_end_pfn;
455 		if (zone->zone_start_pfn < node_start_pfn)
456 			node_start_pfn = zone->zone_start_pfn;
457 	}
458 
459 	pgdat->node_start_pfn = node_start_pfn;
460 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
461 }
462 
463 void __ref remove_pfn_range_from_zone(struct zone *zone,
464 				      unsigned long start_pfn,
465 				      unsigned long nr_pages)
466 {
467 	struct pglist_data *pgdat = zone->zone_pgdat;
468 	unsigned long flags;
469 
470 	/* Poison struct pages because they are now uninitialized again. */
471 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
472 
473 #ifdef CONFIG_ZONE_DEVICE
474 	/*
475 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
476 	 * we will not try to shrink the zones - which is okay as
477 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
478 	 */
479 	if (zone_idx(zone) == ZONE_DEVICE)
480 		return;
481 #endif
482 
483 	clear_zone_contiguous(zone);
484 
485 	pgdat_resize_lock(zone->zone_pgdat, &flags);
486 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
487 	update_pgdat_span(pgdat);
488 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
489 
490 	set_zone_contiguous(zone);
491 }
492 
493 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
494 			     unsigned long map_offset,
495 			     struct vmem_altmap *altmap)
496 {
497 	struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
498 
499 	if (WARN_ON_ONCE(!valid_section(ms)))
500 		return;
501 
502 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
503 }
504 
505 /**
506  * __remove_pages() - remove sections of pages
507  * @pfn: starting pageframe (must be aligned to start of a section)
508  * @nr_pages: number of pages to remove (must be multiple of section size)
509  * @altmap: alternative device page map or %NULL if default memmap is used
510  *
511  * Generic helper function to remove section mappings and sysfs entries
512  * for the section of the memory we are removing. Caller needs to make
513  * sure that pages are marked reserved and zones are adjust properly by
514  * calling offline_pages().
515  */
516 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
517 		    struct vmem_altmap *altmap)
518 {
519 	const unsigned long end_pfn = pfn + nr_pages;
520 	unsigned long cur_nr_pages;
521 	unsigned long map_offset = 0;
522 
523 	map_offset = vmem_altmap_offset(altmap);
524 
525 	if (check_pfn_span(pfn, nr_pages, "remove"))
526 		return;
527 
528 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
529 		cond_resched();
530 		/* Select all remaining pages up to the next section boundary */
531 		cur_nr_pages = min(end_pfn - pfn, -(pfn | PAGE_SECTION_MASK));
532 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
533 		map_offset = 0;
534 	}
535 }
536 
537 int set_online_page_callback(online_page_callback_t callback)
538 {
539 	int rc = -EINVAL;
540 
541 	get_online_mems();
542 	mutex_lock(&online_page_callback_lock);
543 
544 	if (online_page_callback == generic_online_page) {
545 		online_page_callback = callback;
546 		rc = 0;
547 	}
548 
549 	mutex_unlock(&online_page_callback_lock);
550 	put_online_mems();
551 
552 	return rc;
553 }
554 EXPORT_SYMBOL_GPL(set_online_page_callback);
555 
556 int restore_online_page_callback(online_page_callback_t callback)
557 {
558 	int rc = -EINVAL;
559 
560 	get_online_mems();
561 	mutex_lock(&online_page_callback_lock);
562 
563 	if (online_page_callback == callback) {
564 		online_page_callback = generic_online_page;
565 		rc = 0;
566 	}
567 
568 	mutex_unlock(&online_page_callback_lock);
569 	put_online_mems();
570 
571 	return rc;
572 }
573 EXPORT_SYMBOL_GPL(restore_online_page_callback);
574 
575 void generic_online_page(struct page *page, unsigned int order)
576 {
577 	/*
578 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
579 	 * so we should map it first. This is better than introducing a special
580 	 * case in page freeing fast path.
581 	 */
582 	if (debug_pagealloc_enabled_static())
583 		kernel_map_pages(page, 1 << order, 1);
584 	__free_pages_core(page, order);
585 	totalram_pages_add(1UL << order);
586 #ifdef CONFIG_HIGHMEM
587 	if (PageHighMem(page))
588 		totalhigh_pages_add(1UL << order);
589 #endif
590 }
591 EXPORT_SYMBOL_GPL(generic_online_page);
592 
593 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
594 			void *arg)
595 {
596 	const unsigned long end_pfn = start_pfn + nr_pages;
597 	unsigned long pfn;
598 	int order;
599 
600 	/*
601 	 * Online the pages. The callback might decide to keep some pages
602 	 * PG_reserved (to add them to the buddy later), but we still account
603 	 * them as being online/belonging to this zone ("present").
604 	 */
605 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
606 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
607 		/* __free_pages_core() wants pfns to be aligned to the order */
608 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
609 			order = 0;
610 		(*online_page_callback)(pfn_to_page(pfn), order);
611 	}
612 
613 	/* mark all involved sections as online */
614 	online_mem_sections(start_pfn, end_pfn);
615 
616 	*(unsigned long *)arg += nr_pages;
617 	return 0;
618 }
619 
620 /* check which state of node_states will be changed when online memory */
621 static void node_states_check_changes_online(unsigned long nr_pages,
622 	struct zone *zone, struct memory_notify *arg)
623 {
624 	int nid = zone_to_nid(zone);
625 
626 	arg->status_change_nid = NUMA_NO_NODE;
627 	arg->status_change_nid_normal = NUMA_NO_NODE;
628 	arg->status_change_nid_high = NUMA_NO_NODE;
629 
630 	if (!node_state(nid, N_MEMORY))
631 		arg->status_change_nid = nid;
632 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
633 		arg->status_change_nid_normal = nid;
634 #ifdef CONFIG_HIGHMEM
635 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
636 		arg->status_change_nid_high = nid;
637 #endif
638 }
639 
640 static void node_states_set_node(int node, struct memory_notify *arg)
641 {
642 	if (arg->status_change_nid_normal >= 0)
643 		node_set_state(node, N_NORMAL_MEMORY);
644 
645 	if (arg->status_change_nid_high >= 0)
646 		node_set_state(node, N_HIGH_MEMORY);
647 
648 	if (arg->status_change_nid >= 0)
649 		node_set_state(node, N_MEMORY);
650 }
651 
652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
653 		unsigned long nr_pages)
654 {
655 	unsigned long old_end_pfn = zone_end_pfn(zone);
656 
657 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
658 		zone->zone_start_pfn = start_pfn;
659 
660 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
661 }
662 
663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
664                                      unsigned long nr_pages)
665 {
666 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
667 
668 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
669 		pgdat->node_start_pfn = start_pfn;
670 
671 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
672 
673 }
674 /*
675  * Associate the pfn range with the given zone, initializing the memmaps
676  * and resizing the pgdat/zone data to span the added pages. After this
677  * call, all affected pages are PG_reserved.
678  */
679 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
680 		unsigned long nr_pages, struct vmem_altmap *altmap)
681 {
682 	struct pglist_data *pgdat = zone->zone_pgdat;
683 	int nid = pgdat->node_id;
684 	unsigned long flags;
685 
686 	clear_zone_contiguous(zone);
687 
688 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
689 	pgdat_resize_lock(pgdat, &flags);
690 	zone_span_writelock(zone);
691 	if (zone_is_empty(zone))
692 		init_currently_empty_zone(zone, start_pfn, nr_pages);
693 	resize_zone_range(zone, start_pfn, nr_pages);
694 	zone_span_writeunlock(zone);
695 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
696 	pgdat_resize_unlock(pgdat, &flags);
697 
698 	/*
699 	 * TODO now we have a visible range of pages which are not associated
700 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
701 	 * expects the zone spans the pfn range. All the pages in the range
702 	 * are reserved so nobody should be touching them so we should be safe
703 	 */
704 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
705 			MEMMAP_HOTPLUG, altmap);
706 
707 	set_zone_contiguous(zone);
708 }
709 
710 /*
711  * Returns a default kernel memory zone for the given pfn range.
712  * If no kernel zone covers this pfn range it will automatically go
713  * to the ZONE_NORMAL.
714  */
715 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
716 		unsigned long nr_pages)
717 {
718 	struct pglist_data *pgdat = NODE_DATA(nid);
719 	int zid;
720 
721 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
722 		struct zone *zone = &pgdat->node_zones[zid];
723 
724 		if (zone_intersects(zone, start_pfn, nr_pages))
725 			return zone;
726 	}
727 
728 	return &pgdat->node_zones[ZONE_NORMAL];
729 }
730 
731 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
732 		unsigned long nr_pages)
733 {
734 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
735 			nr_pages);
736 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
737 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
738 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
739 
740 	/*
741 	 * We inherit the existing zone in a simple case where zones do not
742 	 * overlap in the given range
743 	 */
744 	if (in_kernel ^ in_movable)
745 		return (in_kernel) ? kernel_zone : movable_zone;
746 
747 	/*
748 	 * If the range doesn't belong to any zone or two zones overlap in the
749 	 * given range then we use movable zone only if movable_node is
750 	 * enabled because we always online to a kernel zone by default.
751 	 */
752 	return movable_node_enabled ? movable_zone : kernel_zone;
753 }
754 
755 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
756 		unsigned long nr_pages)
757 {
758 	if (online_type == MMOP_ONLINE_KERNEL)
759 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
760 
761 	if (online_type == MMOP_ONLINE_MOVABLE)
762 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
763 
764 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
765 }
766 
767 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
768 		       int online_type, int nid)
769 {
770 	unsigned long flags;
771 	unsigned long onlined_pages = 0;
772 	struct zone *zone;
773 	int need_zonelists_rebuild = 0;
774 	int ret;
775 	struct memory_notify arg;
776 
777 	mem_hotplug_begin();
778 
779 	/* associate pfn range with the zone */
780 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
781 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
782 
783 	arg.start_pfn = pfn;
784 	arg.nr_pages = nr_pages;
785 	node_states_check_changes_online(nr_pages, zone, &arg);
786 
787 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
788 	ret = notifier_to_errno(ret);
789 	if (ret)
790 		goto failed_addition;
791 
792 	/*
793 	 * If this zone is not populated, then it is not in zonelist.
794 	 * This means the page allocator ignores this zone.
795 	 * So, zonelist must be updated after online.
796 	 */
797 	if (!populated_zone(zone)) {
798 		need_zonelists_rebuild = 1;
799 		setup_zone_pageset(zone);
800 	}
801 
802 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
803 		online_pages_range);
804 	if (ret) {
805 		/* not a single memory resource was applicable */
806 		if (need_zonelists_rebuild)
807 			zone_pcp_reset(zone);
808 		goto failed_addition;
809 	}
810 
811 	zone->present_pages += onlined_pages;
812 
813 	pgdat_resize_lock(zone->zone_pgdat, &flags);
814 	zone->zone_pgdat->node_present_pages += onlined_pages;
815 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
816 
817 	shuffle_zone(zone);
818 
819 	node_states_set_node(nid, &arg);
820 	if (need_zonelists_rebuild)
821 		build_all_zonelists(NULL);
822 	else
823 		zone_pcp_update(zone);
824 
825 	init_per_zone_wmark_min();
826 
827 	kswapd_run(nid);
828 	kcompactd_run(nid);
829 
830 	vm_total_pages = nr_free_pagecache_pages();
831 
832 	writeback_set_ratelimit();
833 
834 	memory_notify(MEM_ONLINE, &arg);
835 	mem_hotplug_done();
836 	return 0;
837 
838 failed_addition:
839 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
840 		 (unsigned long long) pfn << PAGE_SHIFT,
841 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
842 	memory_notify(MEM_CANCEL_ONLINE, &arg);
843 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
844 	mem_hotplug_done();
845 	return ret;
846 }
847 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
848 
849 static void reset_node_present_pages(pg_data_t *pgdat)
850 {
851 	struct zone *z;
852 
853 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
854 		z->present_pages = 0;
855 
856 	pgdat->node_present_pages = 0;
857 }
858 
859 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
860 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
861 {
862 	struct pglist_data *pgdat;
863 	unsigned long start_pfn = PFN_DOWN(start);
864 
865 	pgdat = NODE_DATA(nid);
866 	if (!pgdat) {
867 		pgdat = arch_alloc_nodedata(nid);
868 		if (!pgdat)
869 			return NULL;
870 
871 		pgdat->per_cpu_nodestats =
872 			alloc_percpu(struct per_cpu_nodestat);
873 		arch_refresh_nodedata(nid, pgdat);
874 	} else {
875 		int cpu;
876 		/*
877 		 * Reset the nr_zones, order and classzone_idx before reuse.
878 		 * Note that kswapd will init kswapd_classzone_idx properly
879 		 * when it starts in the near future.
880 		 */
881 		pgdat->nr_zones = 0;
882 		pgdat->kswapd_order = 0;
883 		pgdat->kswapd_classzone_idx = 0;
884 		for_each_online_cpu(cpu) {
885 			struct per_cpu_nodestat *p;
886 
887 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
888 			memset(p, 0, sizeof(*p));
889 		}
890 	}
891 
892 	/* we can use NODE_DATA(nid) from here */
893 
894 	pgdat->node_id = nid;
895 	pgdat->node_start_pfn = start_pfn;
896 
897 	/* init node's zones as empty zones, we don't have any present pages.*/
898 	free_area_init_core_hotplug(nid);
899 
900 	/*
901 	 * The node we allocated has no zone fallback lists. For avoiding
902 	 * to access not-initialized zonelist, build here.
903 	 */
904 	build_all_zonelists(pgdat);
905 
906 	/*
907 	 * When memory is hot-added, all the memory is in offline state. So
908 	 * clear all zones' present_pages because they will be updated in
909 	 * online_pages() and offline_pages().
910 	 */
911 	reset_node_managed_pages(pgdat);
912 	reset_node_present_pages(pgdat);
913 
914 	return pgdat;
915 }
916 
917 static void rollback_node_hotadd(int nid)
918 {
919 	pg_data_t *pgdat = NODE_DATA(nid);
920 
921 	arch_refresh_nodedata(nid, NULL);
922 	free_percpu(pgdat->per_cpu_nodestats);
923 	arch_free_nodedata(pgdat);
924 }
925 
926 
927 /**
928  * try_online_node - online a node if offlined
929  * @nid: the node ID
930  * @start: start addr of the node
931  * @set_node_online: Whether we want to online the node
932  * called by cpu_up() to online a node without onlined memory.
933  *
934  * Returns:
935  * 1 -> a new node has been allocated
936  * 0 -> the node is already online
937  * -ENOMEM -> the node could not be allocated
938  */
939 static int __try_online_node(int nid, u64 start, bool set_node_online)
940 {
941 	pg_data_t *pgdat;
942 	int ret = 1;
943 
944 	if (node_online(nid))
945 		return 0;
946 
947 	pgdat = hotadd_new_pgdat(nid, start);
948 	if (!pgdat) {
949 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
950 		ret = -ENOMEM;
951 		goto out;
952 	}
953 
954 	if (set_node_online) {
955 		node_set_online(nid);
956 		ret = register_one_node(nid);
957 		BUG_ON(ret);
958 	}
959 out:
960 	return ret;
961 }
962 
963 /*
964  * Users of this function always want to online/register the node
965  */
966 int try_online_node(int nid)
967 {
968 	int ret;
969 
970 	mem_hotplug_begin();
971 	ret =  __try_online_node(nid, 0, true);
972 	mem_hotplug_done();
973 	return ret;
974 }
975 
976 static int check_hotplug_memory_range(u64 start, u64 size)
977 {
978 	/* memory range must be block size aligned */
979 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
980 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
981 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
982 		       memory_block_size_bytes(), start, size);
983 		return -EINVAL;
984 	}
985 
986 	return 0;
987 }
988 
989 static int online_memory_block(struct memory_block *mem, void *arg)
990 {
991 	return device_online(&mem->dev);
992 }
993 
994 /*
995  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
996  * and online/offline operations (triggered e.g. by sysfs).
997  *
998  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
999  */
1000 int __ref add_memory_resource(int nid, struct resource *res)
1001 {
1002 	struct mhp_restrictions restrictions = {};
1003 	u64 start, size;
1004 	bool new_node = false;
1005 	int ret;
1006 
1007 	start = res->start;
1008 	size = resource_size(res);
1009 
1010 	ret = check_hotplug_memory_range(start, size);
1011 	if (ret)
1012 		return ret;
1013 
1014 	mem_hotplug_begin();
1015 
1016 	/*
1017 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1018 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1019 	 * this new range and calculate total pages correctly.  The range will
1020 	 * be removed at hot-remove time.
1021 	 */
1022 	memblock_add_node(start, size, nid);
1023 
1024 	ret = __try_online_node(nid, start, false);
1025 	if (ret < 0)
1026 		goto error;
1027 	new_node = ret;
1028 
1029 	/* call arch's memory hotadd */
1030 	ret = arch_add_memory(nid, start, size, &restrictions);
1031 	if (ret < 0)
1032 		goto error;
1033 
1034 	/* create memory block devices after memory was added */
1035 	ret = create_memory_block_devices(start, size);
1036 	if (ret) {
1037 		arch_remove_memory(nid, start, size, NULL);
1038 		goto error;
1039 	}
1040 
1041 	if (new_node) {
1042 		/* If sysfs file of new node can't be created, cpu on the node
1043 		 * can't be hot-added. There is no rollback way now.
1044 		 * So, check by BUG_ON() to catch it reluctantly..
1045 		 * We online node here. We can't roll back from here.
1046 		 */
1047 		node_set_online(nid);
1048 		ret = __register_one_node(nid);
1049 		BUG_ON(ret);
1050 	}
1051 
1052 	/* link memory sections under this node.*/
1053 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1054 	BUG_ON(ret);
1055 
1056 	/* create new memmap entry */
1057 	firmware_map_add_hotplug(start, start + size, "System RAM");
1058 
1059 	/* device_online() will take the lock when calling online_pages() */
1060 	mem_hotplug_done();
1061 
1062 	/* online pages if requested */
1063 	if (memhp_auto_online)
1064 		walk_memory_blocks(start, size, NULL, online_memory_block);
1065 
1066 	return ret;
1067 error:
1068 	/* rollback pgdat allocation and others */
1069 	if (new_node)
1070 		rollback_node_hotadd(nid);
1071 	memblock_remove(start, size);
1072 	mem_hotplug_done();
1073 	return ret;
1074 }
1075 
1076 /* requires device_hotplug_lock, see add_memory_resource() */
1077 int __ref __add_memory(int nid, u64 start, u64 size)
1078 {
1079 	struct resource *res;
1080 	int ret;
1081 
1082 	res = register_memory_resource(start, size);
1083 	if (IS_ERR(res))
1084 		return PTR_ERR(res);
1085 
1086 	ret = add_memory_resource(nid, res);
1087 	if (ret < 0)
1088 		release_memory_resource(res);
1089 	return ret;
1090 }
1091 
1092 int add_memory(int nid, u64 start, u64 size)
1093 {
1094 	int rc;
1095 
1096 	lock_device_hotplug();
1097 	rc = __add_memory(nid, start, size);
1098 	unlock_device_hotplug();
1099 
1100 	return rc;
1101 }
1102 EXPORT_SYMBOL_GPL(add_memory);
1103 
1104 #ifdef CONFIG_MEMORY_HOTREMOVE
1105 /*
1106  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1107  * set and the size of the free page is given by page_order(). Using this,
1108  * the function determines if the pageblock contains only free pages.
1109  * Due to buddy contraints, a free page at least the size of a pageblock will
1110  * be located at the start of the pageblock
1111  */
1112 static inline int pageblock_free(struct page *page)
1113 {
1114 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1115 }
1116 
1117 /* Return the pfn of the start of the next active pageblock after a given pfn */
1118 static unsigned long next_active_pageblock(unsigned long pfn)
1119 {
1120 	struct page *page = pfn_to_page(pfn);
1121 
1122 	/* Ensure the starting page is pageblock-aligned */
1123 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1124 
1125 	/* If the entire pageblock is free, move to the end of free page */
1126 	if (pageblock_free(page)) {
1127 		int order;
1128 		/* be careful. we don't have locks, page_order can be changed.*/
1129 		order = page_order(page);
1130 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1131 			return pfn + (1 << order);
1132 	}
1133 
1134 	return pfn + pageblock_nr_pages;
1135 }
1136 
1137 static bool is_pageblock_removable_nolock(unsigned long pfn)
1138 {
1139 	struct page *page = pfn_to_page(pfn);
1140 	struct zone *zone;
1141 
1142 	/*
1143 	 * We have to be careful here because we are iterating over memory
1144 	 * sections which are not zone aware so we might end up outside of
1145 	 * the zone but still within the section.
1146 	 * We have to take care about the node as well. If the node is offline
1147 	 * its NODE_DATA will be NULL - see page_zone.
1148 	 */
1149 	if (!node_online(page_to_nid(page)))
1150 		return false;
1151 
1152 	zone = page_zone(page);
1153 	pfn = page_to_pfn(page);
1154 	if (!zone_spans_pfn(zone, pfn))
1155 		return false;
1156 
1157 	return !has_unmovable_pages(zone, page, MIGRATE_MOVABLE,
1158 				    MEMORY_OFFLINE);
1159 }
1160 
1161 /* Checks if this range of memory is likely to be hot-removable. */
1162 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1163 {
1164 	unsigned long end_pfn, pfn;
1165 
1166 	end_pfn = min(start_pfn + nr_pages,
1167 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1168 
1169 	/* Check the starting page of each pageblock within the range */
1170 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1171 		if (!is_pageblock_removable_nolock(pfn))
1172 			return false;
1173 		cond_resched();
1174 	}
1175 
1176 	/* All pageblocks in the memory block are likely to be hot-removable */
1177 	return true;
1178 }
1179 
1180 /*
1181  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1182  * memory holes). When true, return the zone.
1183  */
1184 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1185 				  unsigned long end_pfn)
1186 {
1187 	unsigned long pfn, sec_end_pfn;
1188 	struct zone *zone = NULL;
1189 	struct page *page;
1190 	int i;
1191 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1192 	     pfn < end_pfn;
1193 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1194 		/* Make sure the memory section is present first */
1195 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1196 			continue;
1197 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1198 		     pfn += MAX_ORDER_NR_PAGES) {
1199 			i = 0;
1200 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1201 			while ((i < MAX_ORDER_NR_PAGES) &&
1202 				!pfn_valid_within(pfn + i))
1203 				i++;
1204 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1205 				continue;
1206 			/* Check if we got outside of the zone */
1207 			if (zone && !zone_spans_pfn(zone, pfn + i))
1208 				return NULL;
1209 			page = pfn_to_page(pfn + i);
1210 			if (zone && page_zone(page) != zone)
1211 				return NULL;
1212 			zone = page_zone(page);
1213 		}
1214 	}
1215 
1216 	return zone;
1217 }
1218 
1219 /*
1220  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1221  * non-lru movable pages and hugepages). We scan pfn because it's much
1222  * easier than scanning over linked list. This function returns the pfn
1223  * of the first found movable page if it's found, otherwise 0.
1224  */
1225 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1226 {
1227 	unsigned long pfn;
1228 
1229 	for (pfn = start; pfn < end; pfn++) {
1230 		struct page *page, *head;
1231 		unsigned long skip;
1232 
1233 		if (!pfn_valid(pfn))
1234 			continue;
1235 		page = pfn_to_page(pfn);
1236 		if (PageLRU(page))
1237 			return pfn;
1238 		if (__PageMovable(page))
1239 			return pfn;
1240 
1241 		if (!PageHuge(page))
1242 			continue;
1243 		head = compound_head(page);
1244 		if (page_huge_active(head))
1245 			return pfn;
1246 		skip = compound_nr(head) - (page - head);
1247 		pfn += skip - 1;
1248 	}
1249 	return 0;
1250 }
1251 
1252 static struct page *new_node_page(struct page *page, unsigned long private)
1253 {
1254 	int nid = page_to_nid(page);
1255 	nodemask_t nmask = node_states[N_MEMORY];
1256 
1257 	/*
1258 	 * try to allocate from a different node but reuse this node if there
1259 	 * are no other online nodes to be used (e.g. we are offlining a part
1260 	 * of the only existing node)
1261 	 */
1262 	node_clear(nid, nmask);
1263 	if (nodes_empty(nmask))
1264 		node_set(nid, nmask);
1265 
1266 	return new_page_nodemask(page, nid, &nmask);
1267 }
1268 
1269 static int
1270 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1271 {
1272 	unsigned long pfn;
1273 	struct page *page;
1274 	int ret = 0;
1275 	LIST_HEAD(source);
1276 
1277 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1278 		if (!pfn_valid(pfn))
1279 			continue;
1280 		page = pfn_to_page(pfn);
1281 
1282 		if (PageHuge(page)) {
1283 			struct page *head = compound_head(page);
1284 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1285 			isolate_huge_page(head, &source);
1286 			continue;
1287 		} else if (PageTransHuge(page))
1288 			pfn = page_to_pfn(compound_head(page))
1289 				+ hpage_nr_pages(page) - 1;
1290 
1291 		/*
1292 		 * HWPoison pages have elevated reference counts so the migration would
1293 		 * fail on them. It also doesn't make any sense to migrate them in the
1294 		 * first place. Still try to unmap such a page in case it is still mapped
1295 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1296 		 * the unmap as the catch all safety net).
1297 		 */
1298 		if (PageHWPoison(page)) {
1299 			if (WARN_ON(PageLRU(page)))
1300 				isolate_lru_page(page);
1301 			if (page_mapped(page))
1302 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1303 			continue;
1304 		}
1305 
1306 		if (!get_page_unless_zero(page))
1307 			continue;
1308 		/*
1309 		 * We can skip free pages. And we can deal with pages on
1310 		 * LRU and non-lru movable pages.
1311 		 */
1312 		if (PageLRU(page))
1313 			ret = isolate_lru_page(page);
1314 		else
1315 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1316 		if (!ret) { /* Success */
1317 			list_add_tail(&page->lru, &source);
1318 			if (!__PageMovable(page))
1319 				inc_node_page_state(page, NR_ISOLATED_ANON +
1320 						    page_is_file_cache(page));
1321 
1322 		} else {
1323 			pr_warn("failed to isolate pfn %lx\n", pfn);
1324 			dump_page(page, "isolation failed");
1325 		}
1326 		put_page(page);
1327 	}
1328 	if (!list_empty(&source)) {
1329 		/* Allocate a new page from the nearest neighbor node */
1330 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1331 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1332 		if (ret) {
1333 			list_for_each_entry(page, &source, lru) {
1334 				pr_warn("migrating pfn %lx failed ret:%d ",
1335 				       page_to_pfn(page), ret);
1336 				dump_page(page, "migration failure");
1337 			}
1338 			putback_movable_pages(&source);
1339 		}
1340 	}
1341 
1342 	return ret;
1343 }
1344 
1345 /* Mark all sections offline and remove all free pages from the buddy. */
1346 static int
1347 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1348 			void *data)
1349 {
1350 	unsigned long *offlined_pages = (unsigned long *)data;
1351 
1352 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Check all pages in range, recoreded as memory resource, are isolated.
1358  */
1359 static int
1360 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1361 			void *data)
1362 {
1363 	return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1364 				   MEMORY_OFFLINE);
1365 }
1366 
1367 static int __init cmdline_parse_movable_node(char *p)
1368 {
1369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1370 	movable_node_enabled = true;
1371 #else
1372 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1373 #endif
1374 	return 0;
1375 }
1376 early_param("movable_node", cmdline_parse_movable_node);
1377 
1378 /* check which state of node_states will be changed when offline memory */
1379 static void node_states_check_changes_offline(unsigned long nr_pages,
1380 		struct zone *zone, struct memory_notify *arg)
1381 {
1382 	struct pglist_data *pgdat = zone->zone_pgdat;
1383 	unsigned long present_pages = 0;
1384 	enum zone_type zt;
1385 
1386 	arg->status_change_nid = NUMA_NO_NODE;
1387 	arg->status_change_nid_normal = NUMA_NO_NODE;
1388 	arg->status_change_nid_high = NUMA_NO_NODE;
1389 
1390 	/*
1391 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1392 	 * If the memory to be offline is within the range
1393 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1394 	 * the zones in that range will become empty after the offlining,
1395 	 * thus we can determine that we need to clear the node from
1396 	 * node_states[N_NORMAL_MEMORY].
1397 	 */
1398 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1399 		present_pages += pgdat->node_zones[zt].present_pages;
1400 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1401 		arg->status_change_nid_normal = zone_to_nid(zone);
1402 
1403 #ifdef CONFIG_HIGHMEM
1404 	/*
1405 	 * node_states[N_HIGH_MEMORY] contains nodes which
1406 	 * have normal memory or high memory.
1407 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1408 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1409 	 * we determine that the zones in that range become empty,
1410 	 * we need to clear the node for N_HIGH_MEMORY.
1411 	 */
1412 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1413 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1414 		arg->status_change_nid_high = zone_to_nid(zone);
1415 #endif
1416 
1417 	/*
1418 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1419 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1420 	 * as well.
1421 	 * Here we count the possible pages from ZONE_MOVABLE.
1422 	 * If after having accounted all the pages, we see that the nr_pages
1423 	 * to be offlined is over or equal to the accounted pages,
1424 	 * we know that the node will become empty, and so, we can clear
1425 	 * it for N_MEMORY as well.
1426 	 */
1427 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1428 
1429 	if (nr_pages >= present_pages)
1430 		arg->status_change_nid = zone_to_nid(zone);
1431 }
1432 
1433 static void node_states_clear_node(int node, struct memory_notify *arg)
1434 {
1435 	if (arg->status_change_nid_normal >= 0)
1436 		node_clear_state(node, N_NORMAL_MEMORY);
1437 
1438 	if (arg->status_change_nid_high >= 0)
1439 		node_clear_state(node, N_HIGH_MEMORY);
1440 
1441 	if (arg->status_change_nid >= 0)
1442 		node_clear_state(node, N_MEMORY);
1443 }
1444 
1445 static int count_system_ram_pages_cb(unsigned long start_pfn,
1446 				     unsigned long nr_pages, void *data)
1447 {
1448 	unsigned long *nr_system_ram_pages = data;
1449 
1450 	*nr_system_ram_pages += nr_pages;
1451 	return 0;
1452 }
1453 
1454 static int __ref __offline_pages(unsigned long start_pfn,
1455 		  unsigned long end_pfn)
1456 {
1457 	unsigned long pfn, nr_pages = 0;
1458 	unsigned long offlined_pages = 0;
1459 	int ret, node, nr_isolate_pageblock;
1460 	unsigned long flags;
1461 	struct zone *zone;
1462 	struct memory_notify arg;
1463 	char *reason;
1464 
1465 	mem_hotplug_begin();
1466 
1467 	/*
1468 	 * Don't allow to offline memory blocks that contain holes.
1469 	 * Consequently, memory blocks with holes can never get onlined
1470 	 * via the hotplug path - online_pages() - as hotplugged memory has
1471 	 * no holes. This way, we e.g., don't have to worry about marking
1472 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1473 	 * avoid using walk_system_ram_range() later.
1474 	 */
1475 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1476 			      count_system_ram_pages_cb);
1477 	if (nr_pages != end_pfn - start_pfn) {
1478 		ret = -EINVAL;
1479 		reason = "memory holes";
1480 		goto failed_removal;
1481 	}
1482 
1483 	/* This makes hotplug much easier...and readable.
1484 	   we assume this for now. .*/
1485 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1486 	if (!zone) {
1487 		ret = -EINVAL;
1488 		reason = "multizone range";
1489 		goto failed_removal;
1490 	}
1491 	node = zone_to_nid(zone);
1492 
1493 	/* set above range as isolated */
1494 	ret = start_isolate_page_range(start_pfn, end_pfn,
1495 				       MIGRATE_MOVABLE,
1496 				       MEMORY_OFFLINE | REPORT_FAILURE);
1497 	if (ret < 0) {
1498 		reason = "failure to isolate range";
1499 		goto failed_removal;
1500 	}
1501 	nr_isolate_pageblock = ret;
1502 
1503 	arg.start_pfn = start_pfn;
1504 	arg.nr_pages = nr_pages;
1505 	node_states_check_changes_offline(nr_pages, zone, &arg);
1506 
1507 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1508 	ret = notifier_to_errno(ret);
1509 	if (ret) {
1510 		reason = "notifier failure";
1511 		goto failed_removal_isolated;
1512 	}
1513 
1514 	do {
1515 		for (pfn = start_pfn; pfn;) {
1516 			if (signal_pending(current)) {
1517 				ret = -EINTR;
1518 				reason = "signal backoff";
1519 				goto failed_removal_isolated;
1520 			}
1521 
1522 			cond_resched();
1523 			lru_add_drain_all();
1524 
1525 			pfn = scan_movable_pages(pfn, end_pfn);
1526 			if (pfn) {
1527 				/*
1528 				 * TODO: fatal migration failures should bail
1529 				 * out
1530 				 */
1531 				do_migrate_range(pfn, end_pfn);
1532 			}
1533 		}
1534 
1535 		/*
1536 		 * Dissolve free hugepages in the memory block before doing
1537 		 * offlining actually in order to make hugetlbfs's object
1538 		 * counting consistent.
1539 		 */
1540 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1541 		if (ret) {
1542 			reason = "failure to dissolve huge pages";
1543 			goto failed_removal_isolated;
1544 		}
1545 		/* check again */
1546 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1547 					    NULL, check_pages_isolated_cb);
1548 	} while (ret);
1549 
1550 	/* Ok, all of our target is isolated.
1551 	   We cannot do rollback at this point. */
1552 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1553 			      &offlined_pages, offline_isolated_pages_cb);
1554 	pr_info("Offlined Pages %ld\n", offlined_pages);
1555 	/*
1556 	 * Onlining will reset pagetype flags and makes migrate type
1557 	 * MOVABLE, so just need to decrease the number of isolated
1558 	 * pageblocks zone counter here.
1559 	 */
1560 	spin_lock_irqsave(&zone->lock, flags);
1561 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1562 	spin_unlock_irqrestore(&zone->lock, flags);
1563 
1564 	/* removal success */
1565 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1566 	zone->present_pages -= offlined_pages;
1567 
1568 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1569 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1570 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1571 
1572 	init_per_zone_wmark_min();
1573 
1574 	if (!populated_zone(zone)) {
1575 		zone_pcp_reset(zone);
1576 		build_all_zonelists(NULL);
1577 	} else
1578 		zone_pcp_update(zone);
1579 
1580 	node_states_clear_node(node, &arg);
1581 	if (arg.status_change_nid >= 0) {
1582 		kswapd_stop(node);
1583 		kcompactd_stop(node);
1584 	}
1585 
1586 	vm_total_pages = nr_free_pagecache_pages();
1587 	writeback_set_ratelimit();
1588 
1589 	memory_notify(MEM_OFFLINE, &arg);
1590 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1591 	mem_hotplug_done();
1592 	return 0;
1593 
1594 failed_removal_isolated:
1595 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1596 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1597 failed_removal:
1598 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1599 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1600 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1601 		 reason);
1602 	/* pushback to free area */
1603 	mem_hotplug_done();
1604 	return ret;
1605 }
1606 
1607 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1608 {
1609 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1610 }
1611 
1612 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1613 {
1614 	int ret = !is_memblock_offlined(mem);
1615 
1616 	if (unlikely(ret)) {
1617 		phys_addr_t beginpa, endpa;
1618 
1619 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1620 		endpa = beginpa + memory_block_size_bytes() - 1;
1621 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1622 			&beginpa, &endpa);
1623 
1624 		return -EBUSY;
1625 	}
1626 	return 0;
1627 }
1628 
1629 static int check_cpu_on_node(pg_data_t *pgdat)
1630 {
1631 	int cpu;
1632 
1633 	for_each_present_cpu(cpu) {
1634 		if (cpu_to_node(cpu) == pgdat->node_id)
1635 			/*
1636 			 * the cpu on this node isn't removed, and we can't
1637 			 * offline this node.
1638 			 */
1639 			return -EBUSY;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1646 {
1647 	int nid = *(int *)arg;
1648 
1649 	/*
1650 	 * If a memory block belongs to multiple nodes, the stored nid is not
1651 	 * reliable. However, such blocks are always online (e.g., cannot get
1652 	 * offlined) and, therefore, are still spanned by the node.
1653 	 */
1654 	return mem->nid == nid ? -EEXIST : 0;
1655 }
1656 
1657 /**
1658  * try_offline_node
1659  * @nid: the node ID
1660  *
1661  * Offline a node if all memory sections and cpus of the node are removed.
1662  *
1663  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1664  * and online/offline operations before this call.
1665  */
1666 void try_offline_node(int nid)
1667 {
1668 	pg_data_t *pgdat = NODE_DATA(nid);
1669 	int rc;
1670 
1671 	/*
1672 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1673 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1674 	 * e.g., after the memory block was onlined.
1675 	 */
1676 	if (pgdat->node_spanned_pages)
1677 		return;
1678 
1679 	/*
1680 	 * Especially offline memory blocks might not be spanned by the
1681 	 * node. They will get spanned by the node once they get onlined.
1682 	 * However, they link to the node in sysfs and can get onlined later.
1683 	 */
1684 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1685 	if (rc)
1686 		return;
1687 
1688 	if (check_cpu_on_node(pgdat))
1689 		return;
1690 
1691 	/*
1692 	 * all memory/cpu of this node are removed, we can offline this
1693 	 * node now.
1694 	 */
1695 	node_set_offline(nid);
1696 	unregister_one_node(nid);
1697 }
1698 EXPORT_SYMBOL(try_offline_node);
1699 
1700 static void __release_memory_resource(resource_size_t start,
1701 				      resource_size_t size)
1702 {
1703 	int ret;
1704 
1705 	/*
1706 	 * When removing memory in the same granularity as it was added,
1707 	 * this function never fails. It might only fail if resources
1708 	 * have to be adjusted or split. We'll ignore the error, as
1709 	 * removing of memory cannot fail.
1710 	 */
1711 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1712 	if (ret) {
1713 		resource_size_t endres = start + size - 1;
1714 
1715 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1716 			&start, &endres, ret);
1717 	}
1718 }
1719 
1720 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1721 {
1722 	int rc = 0;
1723 
1724 	BUG_ON(check_hotplug_memory_range(start, size));
1725 
1726 	/*
1727 	 * All memory blocks must be offlined before removing memory.  Check
1728 	 * whether all memory blocks in question are offline and return error
1729 	 * if this is not the case.
1730 	 */
1731 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1732 	if (rc)
1733 		goto done;
1734 
1735 	/* remove memmap entry */
1736 	firmware_map_remove(start, start + size, "System RAM");
1737 
1738 	/*
1739 	 * Memory block device removal under the device_hotplug_lock is
1740 	 * a barrier against racing online attempts.
1741 	 */
1742 	remove_memory_block_devices(start, size);
1743 
1744 	mem_hotplug_begin();
1745 
1746 	arch_remove_memory(nid, start, size, NULL);
1747 	memblock_free(start, size);
1748 	memblock_remove(start, size);
1749 	__release_memory_resource(start, size);
1750 
1751 	try_offline_node(nid);
1752 
1753 done:
1754 	mem_hotplug_done();
1755 	return rc;
1756 }
1757 
1758 /**
1759  * remove_memory
1760  * @nid: the node ID
1761  * @start: physical address of the region to remove
1762  * @size: size of the region to remove
1763  *
1764  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1765  * and online/offline operations before this call, as required by
1766  * try_offline_node().
1767  */
1768 void __remove_memory(int nid, u64 start, u64 size)
1769 {
1770 
1771 	/*
1772 	 * trigger BUG() if some memory is not offlined prior to calling this
1773 	 * function
1774 	 */
1775 	if (try_remove_memory(nid, start, size))
1776 		BUG();
1777 }
1778 
1779 /*
1780  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1781  * some memory is not offline
1782  */
1783 int remove_memory(int nid, u64 start, u64 size)
1784 {
1785 	int rc;
1786 
1787 	lock_device_hotplug();
1788 	rc  = try_remove_memory(nid, start, size);
1789 	unlock_device_hotplug();
1790 
1791 	return rc;
1792 }
1793 EXPORT_SYMBOL_GPL(remove_memory);
1794 #endif /* CONFIG_MEMORY_HOTREMOVE */
1795