xref: /openbmc/linux/mm/memory_hotplug.c (revision 851f6657)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 
34 #include <asm/tlbflush.h>
35 
36 #include "internal.h"
37 
38 /*
39  * online_page_callback contains pointer to current page onlining function.
40  * Initially it is generic_online_page(). If it is required it could be
41  * changed by calling set_online_page_callback() for callback registration
42  * and restore_online_page_callback() for generic callback restore.
43  */
44 
45 static void generic_online_page(struct page *page);
46 
47 static online_page_callback_t online_page_callback = generic_online_page;
48 
49 DEFINE_MUTEX(mem_hotplug_mutex);
50 
51 void lock_memory_hotplug(void)
52 {
53 	mutex_lock(&mem_hotplug_mutex);
54 
55 	/* for exclusive hibernation if CONFIG_HIBERNATION=y */
56 	lock_system_sleep();
57 }
58 
59 void unlock_memory_hotplug(void)
60 {
61 	unlock_system_sleep();
62 	mutex_unlock(&mem_hotplug_mutex);
63 }
64 
65 
66 /* add this memory to iomem resource */
67 static struct resource *register_memory_resource(u64 start, u64 size)
68 {
69 	struct resource *res;
70 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
71 	BUG_ON(!res);
72 
73 	res->name = "System RAM";
74 	res->start = start;
75 	res->end = start + size - 1;
76 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
77 	if (request_resource(&iomem_resource, res) < 0) {
78 		printk("System RAM resource %pR cannot be added\n", res);
79 		kfree(res);
80 		res = NULL;
81 	}
82 	return res;
83 }
84 
85 static void release_memory_resource(struct resource *res)
86 {
87 	if (!res)
88 		return;
89 	release_resource(res);
90 	kfree(res);
91 	return;
92 }
93 
94 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
95 void get_page_bootmem(unsigned long info,  struct page *page,
96 		      unsigned long type)
97 {
98 	page->lru.next = (struct list_head *) type;
99 	SetPagePrivate(page);
100 	set_page_private(page, info);
101 	atomic_inc(&page->_count);
102 }
103 
104 /* reference to __meminit __free_pages_bootmem is valid
105  * so use __ref to tell modpost not to generate a warning */
106 void __ref put_page_bootmem(struct page *page)
107 {
108 	unsigned long type;
109 	static DEFINE_MUTEX(ppb_lock);
110 
111 	type = (unsigned long) page->lru.next;
112 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
113 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
114 
115 	if (atomic_dec_return(&page->_count) == 1) {
116 		ClearPagePrivate(page);
117 		set_page_private(page, 0);
118 		INIT_LIST_HEAD(&page->lru);
119 
120 		/*
121 		 * Please refer to comment for __free_pages_bootmem()
122 		 * for why we serialize here.
123 		 */
124 		mutex_lock(&ppb_lock);
125 		__free_pages_bootmem(page, 0);
126 		mutex_unlock(&ppb_lock);
127 		totalram_pages++;
128 	}
129 
130 }
131 
132 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
133 #ifndef CONFIG_SPARSEMEM_VMEMMAP
134 static void register_page_bootmem_info_section(unsigned long start_pfn)
135 {
136 	unsigned long *usemap, mapsize, section_nr, i;
137 	struct mem_section *ms;
138 	struct page *page, *memmap;
139 
140 	section_nr = pfn_to_section_nr(start_pfn);
141 	ms = __nr_to_section(section_nr);
142 
143 	/* Get section's memmap address */
144 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
145 
146 	/*
147 	 * Get page for the memmap's phys address
148 	 * XXX: need more consideration for sparse_vmemmap...
149 	 */
150 	page = virt_to_page(memmap);
151 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
152 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
153 
154 	/* remember memmap's page */
155 	for (i = 0; i < mapsize; i++, page++)
156 		get_page_bootmem(section_nr, page, SECTION_INFO);
157 
158 	usemap = __nr_to_section(section_nr)->pageblock_flags;
159 	page = virt_to_page(usemap);
160 
161 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
162 
163 	for (i = 0; i < mapsize; i++, page++)
164 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
165 
166 }
167 #else /* CONFIG_SPARSEMEM_VMEMMAP */
168 static void register_page_bootmem_info_section(unsigned long start_pfn)
169 {
170 	unsigned long *usemap, mapsize, section_nr, i;
171 	struct mem_section *ms;
172 	struct page *page, *memmap;
173 
174 	if (!pfn_valid(start_pfn))
175 		return;
176 
177 	section_nr = pfn_to_section_nr(start_pfn);
178 	ms = __nr_to_section(section_nr);
179 
180 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181 
182 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
183 
184 	usemap = __nr_to_section(section_nr)->pageblock_flags;
185 	page = virt_to_page(usemap);
186 
187 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
188 
189 	for (i = 0; i < mapsize; i++, page++)
190 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
191 }
192 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
193 
194 void register_page_bootmem_info_node(struct pglist_data *pgdat)
195 {
196 	unsigned long i, pfn, end_pfn, nr_pages;
197 	int node = pgdat->node_id;
198 	struct page *page;
199 	struct zone *zone;
200 
201 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
202 	page = virt_to_page(pgdat);
203 
204 	for (i = 0; i < nr_pages; i++, page++)
205 		get_page_bootmem(node, page, NODE_INFO);
206 
207 	zone = &pgdat->node_zones[0];
208 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
209 		if (zone->wait_table) {
210 			nr_pages = zone->wait_table_hash_nr_entries
211 				* sizeof(wait_queue_head_t);
212 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
213 			page = virt_to_page(zone->wait_table);
214 
215 			for (i = 0; i < nr_pages; i++, page++)
216 				get_page_bootmem(node, page, NODE_INFO);
217 		}
218 	}
219 
220 	pfn = pgdat->node_start_pfn;
221 	end_pfn = pgdat_end_pfn(pgdat);
222 
223 	/* register_section info */
224 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
225 		/*
226 		 * Some platforms can assign the same pfn to multiple nodes - on
227 		 * node0 as well as nodeN.  To avoid registering a pfn against
228 		 * multiple nodes we check that this pfn does not already
229 		 * reside in some other node.
230 		 */
231 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
232 			register_page_bootmem_info_section(pfn);
233 	}
234 }
235 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
236 
237 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
238 			   unsigned long end_pfn)
239 {
240 	unsigned long old_zone_end_pfn;
241 
242 	zone_span_writelock(zone);
243 
244 	old_zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
245 	if (!zone->spanned_pages || start_pfn < zone->zone_start_pfn)
246 		zone->zone_start_pfn = start_pfn;
247 
248 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
249 				zone->zone_start_pfn;
250 
251 	zone_span_writeunlock(zone);
252 }
253 
254 static void resize_zone(struct zone *zone, unsigned long start_pfn,
255 		unsigned long end_pfn)
256 {
257 	zone_span_writelock(zone);
258 
259 	if (end_pfn - start_pfn) {
260 		zone->zone_start_pfn = start_pfn;
261 		zone->spanned_pages = end_pfn - start_pfn;
262 	} else {
263 		/*
264 		 * make it consist as free_area_init_core(),
265 		 * if spanned_pages = 0, then keep start_pfn = 0
266 		 */
267 		zone->zone_start_pfn = 0;
268 		zone->spanned_pages = 0;
269 	}
270 
271 	zone_span_writeunlock(zone);
272 }
273 
274 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
275 		unsigned long end_pfn)
276 {
277 	enum zone_type zid = zone_idx(zone);
278 	int nid = zone->zone_pgdat->node_id;
279 	unsigned long pfn;
280 
281 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
282 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
283 }
284 
285 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
286  * alloc_bootmem_node_nopanic() */
287 static int __ref ensure_zone_is_initialized(struct zone *zone,
288 			unsigned long start_pfn, unsigned long num_pages)
289 {
290 	if (!zone_is_initialized(zone))
291 		return init_currently_empty_zone(zone, start_pfn, num_pages,
292 						 MEMMAP_HOTPLUG);
293 	return 0;
294 }
295 
296 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
297 		unsigned long start_pfn, unsigned long end_pfn)
298 {
299 	int ret;
300 	unsigned long flags;
301 	unsigned long z1_start_pfn;
302 
303 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
304 	if (ret)
305 		return ret;
306 
307 	pgdat_resize_lock(z1->zone_pgdat, &flags);
308 
309 	/* can't move pfns which are higher than @z2 */
310 	if (end_pfn > zone_end_pfn(z2))
311 		goto out_fail;
312 	/* the move out part mast at the left most of @z2 */
313 	if (start_pfn > z2->zone_start_pfn)
314 		goto out_fail;
315 	/* must included/overlap */
316 	if (end_pfn <= z2->zone_start_pfn)
317 		goto out_fail;
318 
319 	/* use start_pfn for z1's start_pfn if z1 is empty */
320 	if (z1->spanned_pages)
321 		z1_start_pfn = z1->zone_start_pfn;
322 	else
323 		z1_start_pfn = start_pfn;
324 
325 	resize_zone(z1, z1_start_pfn, end_pfn);
326 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
327 
328 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
329 
330 	fix_zone_id(z1, start_pfn, end_pfn);
331 
332 	return 0;
333 out_fail:
334 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
335 	return -1;
336 }
337 
338 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
339 		unsigned long start_pfn, unsigned long end_pfn)
340 {
341 	int ret;
342 	unsigned long flags;
343 	unsigned long z2_end_pfn;
344 
345 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
346 	if (ret)
347 		return ret;
348 
349 	pgdat_resize_lock(z1->zone_pgdat, &flags);
350 
351 	/* can't move pfns which are lower than @z1 */
352 	if (z1->zone_start_pfn > start_pfn)
353 		goto out_fail;
354 	/* the move out part mast at the right most of @z1 */
355 	if (zone_end_pfn(z1) >  end_pfn)
356 		goto out_fail;
357 	/* must included/overlap */
358 	if (start_pfn >= zone_end_pfn(z1))
359 		goto out_fail;
360 
361 	/* use end_pfn for z2's end_pfn if z2 is empty */
362 	if (z2->spanned_pages)
363 		z2_end_pfn = zone_end_pfn(z2);
364 	else
365 		z2_end_pfn = end_pfn;
366 
367 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
368 	resize_zone(z2, start_pfn, z2_end_pfn);
369 
370 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
371 
372 	fix_zone_id(z2, start_pfn, end_pfn);
373 
374 	return 0;
375 out_fail:
376 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
377 	return -1;
378 }
379 
380 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
381 			    unsigned long end_pfn)
382 {
383 	unsigned long old_pgdat_end_pfn =
384 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
385 
386 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
387 		pgdat->node_start_pfn = start_pfn;
388 
389 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
390 					pgdat->node_start_pfn;
391 }
392 
393 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
394 {
395 	struct pglist_data *pgdat = zone->zone_pgdat;
396 	int nr_pages = PAGES_PER_SECTION;
397 	int nid = pgdat->node_id;
398 	int zone_type;
399 	unsigned long flags;
400 	int ret;
401 
402 	zone_type = zone - pgdat->node_zones;
403 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
404 	if (ret)
405 		return ret;
406 
407 	pgdat_resize_lock(zone->zone_pgdat, &flags);
408 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
409 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
410 			phys_start_pfn + nr_pages);
411 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
412 	memmap_init_zone(nr_pages, nid, zone_type,
413 			 phys_start_pfn, MEMMAP_HOTPLUG);
414 	return 0;
415 }
416 
417 static int __meminit __add_section(int nid, struct zone *zone,
418 					unsigned long phys_start_pfn)
419 {
420 	int nr_pages = PAGES_PER_SECTION;
421 	int ret;
422 
423 	if (pfn_valid(phys_start_pfn))
424 		return -EEXIST;
425 
426 	ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
427 
428 	if (ret < 0)
429 		return ret;
430 
431 	ret = __add_zone(zone, phys_start_pfn);
432 
433 	if (ret < 0)
434 		return ret;
435 
436 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
437 }
438 
439 /*
440  * Reasonably generic function for adding memory.  It is
441  * expected that archs that support memory hotplug will
442  * call this function after deciding the zone to which to
443  * add the new pages.
444  */
445 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
446 			unsigned long nr_pages)
447 {
448 	unsigned long i;
449 	int err = 0;
450 	int start_sec, end_sec;
451 	/* during initialize mem_map, align hot-added range to section */
452 	start_sec = pfn_to_section_nr(phys_start_pfn);
453 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
454 
455 	for (i = start_sec; i <= end_sec; i++) {
456 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
457 
458 		/*
459 		 * EEXIST is finally dealt with by ioresource collision
460 		 * check. see add_memory() => register_memory_resource()
461 		 * Warning will be printed if there is collision.
462 		 */
463 		if (err && (err != -EEXIST))
464 			break;
465 		err = 0;
466 	}
467 
468 	return err;
469 }
470 EXPORT_SYMBOL_GPL(__add_pages);
471 
472 #ifdef CONFIG_MEMORY_HOTREMOVE
473 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
474 static int find_smallest_section_pfn(int nid, struct zone *zone,
475 				     unsigned long start_pfn,
476 				     unsigned long end_pfn)
477 {
478 	struct mem_section *ms;
479 
480 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
481 		ms = __pfn_to_section(start_pfn);
482 
483 		if (unlikely(!valid_section(ms)))
484 			continue;
485 
486 		if (unlikely(pfn_to_nid(start_pfn) != nid))
487 			continue;
488 
489 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
490 			continue;
491 
492 		return start_pfn;
493 	}
494 
495 	return 0;
496 }
497 
498 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
499 static int find_biggest_section_pfn(int nid, struct zone *zone,
500 				    unsigned long start_pfn,
501 				    unsigned long end_pfn)
502 {
503 	struct mem_section *ms;
504 	unsigned long pfn;
505 
506 	/* pfn is the end pfn of a memory section. */
507 	pfn = end_pfn - 1;
508 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
509 		ms = __pfn_to_section(pfn);
510 
511 		if (unlikely(!valid_section(ms)))
512 			continue;
513 
514 		if (unlikely(pfn_to_nid(pfn) != nid))
515 			continue;
516 
517 		if (zone && zone != page_zone(pfn_to_page(pfn)))
518 			continue;
519 
520 		return pfn;
521 	}
522 
523 	return 0;
524 }
525 
526 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
527 			     unsigned long end_pfn)
528 {
529 	unsigned long zone_start_pfn =  zone->zone_start_pfn;
530 	unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
531 	unsigned long pfn;
532 	struct mem_section *ms;
533 	int nid = zone_to_nid(zone);
534 
535 	zone_span_writelock(zone);
536 	if (zone_start_pfn == start_pfn) {
537 		/*
538 		 * If the section is smallest section in the zone, it need
539 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
540 		 * In this case, we find second smallest valid mem_section
541 		 * for shrinking zone.
542 		 */
543 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
544 						zone_end_pfn);
545 		if (pfn) {
546 			zone->zone_start_pfn = pfn;
547 			zone->spanned_pages = zone_end_pfn - pfn;
548 		}
549 	} else if (zone_end_pfn == end_pfn) {
550 		/*
551 		 * If the section is biggest section in the zone, it need
552 		 * shrink zone->spanned_pages.
553 		 * In this case, we find second biggest valid mem_section for
554 		 * shrinking zone.
555 		 */
556 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
557 					       start_pfn);
558 		if (pfn)
559 			zone->spanned_pages = pfn - zone_start_pfn + 1;
560 	}
561 
562 	/*
563 	 * The section is not biggest or smallest mem_section in the zone, it
564 	 * only creates a hole in the zone. So in this case, we need not
565 	 * change the zone. But perhaps, the zone has only hole data. Thus
566 	 * it check the zone has only hole or not.
567 	 */
568 	pfn = zone_start_pfn;
569 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
570 		ms = __pfn_to_section(pfn);
571 
572 		if (unlikely(!valid_section(ms)))
573 			continue;
574 
575 		if (page_zone(pfn_to_page(pfn)) != zone)
576 			continue;
577 
578 		 /* If the section is current section, it continues the loop */
579 		if (start_pfn == pfn)
580 			continue;
581 
582 		/* If we find valid section, we have nothing to do */
583 		zone_span_writeunlock(zone);
584 		return;
585 	}
586 
587 	/* The zone has no valid section */
588 	zone->zone_start_pfn = 0;
589 	zone->spanned_pages = 0;
590 	zone_span_writeunlock(zone);
591 }
592 
593 static void shrink_pgdat_span(struct pglist_data *pgdat,
594 			      unsigned long start_pfn, unsigned long end_pfn)
595 {
596 	unsigned long pgdat_start_pfn =  pgdat->node_start_pfn;
597 	unsigned long pgdat_end_pfn =
598 		pgdat->node_start_pfn + pgdat->node_spanned_pages;
599 	unsigned long pfn;
600 	struct mem_section *ms;
601 	int nid = pgdat->node_id;
602 
603 	if (pgdat_start_pfn == start_pfn) {
604 		/*
605 		 * If the section is smallest section in the pgdat, it need
606 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
607 		 * In this case, we find second smallest valid mem_section
608 		 * for shrinking zone.
609 		 */
610 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
611 						pgdat_end_pfn);
612 		if (pfn) {
613 			pgdat->node_start_pfn = pfn;
614 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
615 		}
616 	} else if (pgdat_end_pfn == end_pfn) {
617 		/*
618 		 * If the section is biggest section in the pgdat, it need
619 		 * shrink pgdat->node_spanned_pages.
620 		 * In this case, we find second biggest valid mem_section for
621 		 * shrinking zone.
622 		 */
623 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
624 					       start_pfn);
625 		if (pfn)
626 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
627 	}
628 
629 	/*
630 	 * If the section is not biggest or smallest mem_section in the pgdat,
631 	 * it only creates a hole in the pgdat. So in this case, we need not
632 	 * change the pgdat.
633 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
634 	 * has only hole or not.
635 	 */
636 	pfn = pgdat_start_pfn;
637 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
638 		ms = __pfn_to_section(pfn);
639 
640 		if (unlikely(!valid_section(ms)))
641 			continue;
642 
643 		if (pfn_to_nid(pfn) != nid)
644 			continue;
645 
646 		 /* If the section is current section, it continues the loop */
647 		if (start_pfn == pfn)
648 			continue;
649 
650 		/* If we find valid section, we have nothing to do */
651 		return;
652 	}
653 
654 	/* The pgdat has no valid section */
655 	pgdat->node_start_pfn = 0;
656 	pgdat->node_spanned_pages = 0;
657 }
658 
659 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
660 {
661 	struct pglist_data *pgdat = zone->zone_pgdat;
662 	int nr_pages = PAGES_PER_SECTION;
663 	int zone_type;
664 	unsigned long flags;
665 
666 	zone_type = zone - pgdat->node_zones;
667 
668 	pgdat_resize_lock(zone->zone_pgdat, &flags);
669 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
670 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
671 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
672 }
673 
674 static int __remove_section(struct zone *zone, struct mem_section *ms)
675 {
676 	unsigned long start_pfn;
677 	int scn_nr;
678 	int ret = -EINVAL;
679 
680 	if (!valid_section(ms))
681 		return ret;
682 
683 	ret = unregister_memory_section(ms);
684 	if (ret)
685 		return ret;
686 
687 	scn_nr = __section_nr(ms);
688 	start_pfn = section_nr_to_pfn(scn_nr);
689 	__remove_zone(zone, start_pfn);
690 
691 	sparse_remove_one_section(zone, ms);
692 	return 0;
693 }
694 
695 /**
696  * __remove_pages() - remove sections of pages from a zone
697  * @zone: zone from which pages need to be removed
698  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
699  * @nr_pages: number of pages to remove (must be multiple of section size)
700  *
701  * Generic helper function to remove section mappings and sysfs entries
702  * for the section of the memory we are removing. Caller needs to make
703  * sure that pages are marked reserved and zones are adjust properly by
704  * calling offline_pages().
705  */
706 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
707 		 unsigned long nr_pages)
708 {
709 	unsigned long i;
710 	int sections_to_remove;
711 	resource_size_t start, size;
712 	int ret = 0;
713 
714 	/*
715 	 * We can only remove entire sections
716 	 */
717 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
718 	BUG_ON(nr_pages % PAGES_PER_SECTION);
719 
720 	start = phys_start_pfn << PAGE_SHIFT;
721 	size = nr_pages * PAGE_SIZE;
722 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
723 	if (ret)
724 		pr_warn("Unable to release resource <%016llx-%016llx> (%d)\n",
725 				start, start + size - 1, ret);
726 
727 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
728 	for (i = 0; i < sections_to_remove; i++) {
729 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
730 		ret = __remove_section(zone, __pfn_to_section(pfn));
731 		if (ret)
732 			break;
733 	}
734 	return ret;
735 }
736 EXPORT_SYMBOL_GPL(__remove_pages);
737 #endif /* CONFIG_MEMORY_HOTREMOVE */
738 
739 int set_online_page_callback(online_page_callback_t callback)
740 {
741 	int rc = -EINVAL;
742 
743 	lock_memory_hotplug();
744 
745 	if (online_page_callback == generic_online_page) {
746 		online_page_callback = callback;
747 		rc = 0;
748 	}
749 
750 	unlock_memory_hotplug();
751 
752 	return rc;
753 }
754 EXPORT_SYMBOL_GPL(set_online_page_callback);
755 
756 int restore_online_page_callback(online_page_callback_t callback)
757 {
758 	int rc = -EINVAL;
759 
760 	lock_memory_hotplug();
761 
762 	if (online_page_callback == callback) {
763 		online_page_callback = generic_online_page;
764 		rc = 0;
765 	}
766 
767 	unlock_memory_hotplug();
768 
769 	return rc;
770 }
771 EXPORT_SYMBOL_GPL(restore_online_page_callback);
772 
773 void __online_page_set_limits(struct page *page)
774 {
775 	unsigned long pfn = page_to_pfn(page);
776 
777 	if (pfn >= num_physpages)
778 		num_physpages = pfn + 1;
779 }
780 EXPORT_SYMBOL_GPL(__online_page_set_limits);
781 
782 void __online_page_increment_counters(struct page *page)
783 {
784 	totalram_pages++;
785 
786 #ifdef CONFIG_HIGHMEM
787 	if (PageHighMem(page))
788 		totalhigh_pages++;
789 #endif
790 }
791 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
792 
793 void __online_page_free(struct page *page)
794 {
795 	ClearPageReserved(page);
796 	init_page_count(page);
797 	__free_page(page);
798 }
799 EXPORT_SYMBOL_GPL(__online_page_free);
800 
801 static void generic_online_page(struct page *page)
802 {
803 	__online_page_set_limits(page);
804 	__online_page_increment_counters(page);
805 	__online_page_free(page);
806 }
807 
808 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
809 			void *arg)
810 {
811 	unsigned long i;
812 	unsigned long onlined_pages = *(unsigned long *)arg;
813 	struct page *page;
814 	if (PageReserved(pfn_to_page(start_pfn)))
815 		for (i = 0; i < nr_pages; i++) {
816 			page = pfn_to_page(start_pfn + i);
817 			(*online_page_callback)(page);
818 			onlined_pages++;
819 		}
820 	*(unsigned long *)arg = onlined_pages;
821 	return 0;
822 }
823 
824 #ifdef CONFIG_MOVABLE_NODE
825 /*
826  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
827  * normal memory.
828  */
829 static bool can_online_high_movable(struct zone *zone)
830 {
831 	return true;
832 }
833 #else /* CONFIG_MOVABLE_NODE */
834 /* ensure every online node has NORMAL memory */
835 static bool can_online_high_movable(struct zone *zone)
836 {
837 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
838 }
839 #endif /* CONFIG_MOVABLE_NODE */
840 
841 /* check which state of node_states will be changed when online memory */
842 static void node_states_check_changes_online(unsigned long nr_pages,
843 	struct zone *zone, struct memory_notify *arg)
844 {
845 	int nid = zone_to_nid(zone);
846 	enum zone_type zone_last = ZONE_NORMAL;
847 
848 	/*
849 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
850 	 * contains nodes which have zones of 0...ZONE_NORMAL,
851 	 * set zone_last to ZONE_NORMAL.
852 	 *
853 	 * If we don't have HIGHMEM nor movable node,
854 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
855 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
856 	 */
857 	if (N_MEMORY == N_NORMAL_MEMORY)
858 		zone_last = ZONE_MOVABLE;
859 
860 	/*
861 	 * if the memory to be online is in a zone of 0...zone_last, and
862 	 * the zones of 0...zone_last don't have memory before online, we will
863 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
864 	 * the memory is online.
865 	 */
866 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
867 		arg->status_change_nid_normal = nid;
868 	else
869 		arg->status_change_nid_normal = -1;
870 
871 #ifdef CONFIG_HIGHMEM
872 	/*
873 	 * If we have movable node, node_states[N_HIGH_MEMORY]
874 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
875 	 * set zone_last to ZONE_HIGHMEM.
876 	 *
877 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
878 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
879 	 * set zone_last to ZONE_MOVABLE.
880 	 */
881 	zone_last = ZONE_HIGHMEM;
882 	if (N_MEMORY == N_HIGH_MEMORY)
883 		zone_last = ZONE_MOVABLE;
884 
885 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
886 		arg->status_change_nid_high = nid;
887 	else
888 		arg->status_change_nid_high = -1;
889 #else
890 	arg->status_change_nid_high = arg->status_change_nid_normal;
891 #endif
892 
893 	/*
894 	 * if the node don't have memory befor online, we will need to
895 	 * set the node to node_states[N_MEMORY] after the memory
896 	 * is online.
897 	 */
898 	if (!node_state(nid, N_MEMORY))
899 		arg->status_change_nid = nid;
900 	else
901 		arg->status_change_nid = -1;
902 }
903 
904 static void node_states_set_node(int node, struct memory_notify *arg)
905 {
906 	if (arg->status_change_nid_normal >= 0)
907 		node_set_state(node, N_NORMAL_MEMORY);
908 
909 	if (arg->status_change_nid_high >= 0)
910 		node_set_state(node, N_HIGH_MEMORY);
911 
912 	node_set_state(node, N_MEMORY);
913 }
914 
915 
916 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
917 {
918 	unsigned long onlined_pages = 0;
919 	struct zone *zone;
920 	int need_zonelists_rebuild = 0;
921 	int nid;
922 	int ret;
923 	struct memory_notify arg;
924 
925 	lock_memory_hotplug();
926 	/*
927 	 * This doesn't need a lock to do pfn_to_page().
928 	 * The section can't be removed here because of the
929 	 * memory_block->state_mutex.
930 	 */
931 	zone = page_zone(pfn_to_page(pfn));
932 
933 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
934 	    !can_online_high_movable(zone)) {
935 		unlock_memory_hotplug();
936 		return -1;
937 	}
938 
939 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
940 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
941 			unlock_memory_hotplug();
942 			return -1;
943 		}
944 	}
945 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
946 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
947 			unlock_memory_hotplug();
948 			return -1;
949 		}
950 	}
951 
952 	/* Previous code may changed the zone of the pfn range */
953 	zone = page_zone(pfn_to_page(pfn));
954 
955 	arg.start_pfn = pfn;
956 	arg.nr_pages = nr_pages;
957 	node_states_check_changes_online(nr_pages, zone, &arg);
958 
959 	nid = page_to_nid(pfn_to_page(pfn));
960 
961 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
962 	ret = notifier_to_errno(ret);
963 	if (ret) {
964 		memory_notify(MEM_CANCEL_ONLINE, &arg);
965 		unlock_memory_hotplug();
966 		return ret;
967 	}
968 	/*
969 	 * If this zone is not populated, then it is not in zonelist.
970 	 * This means the page allocator ignores this zone.
971 	 * So, zonelist must be updated after online.
972 	 */
973 	mutex_lock(&zonelists_mutex);
974 	if (!populated_zone(zone)) {
975 		need_zonelists_rebuild = 1;
976 		build_all_zonelists(NULL, zone);
977 	}
978 
979 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
980 		online_pages_range);
981 	if (ret) {
982 		if (need_zonelists_rebuild)
983 			zone_pcp_reset(zone);
984 		mutex_unlock(&zonelists_mutex);
985 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
986 		       (unsigned long long) pfn << PAGE_SHIFT,
987 		       (((unsigned long long) pfn + nr_pages)
988 			    << PAGE_SHIFT) - 1);
989 		memory_notify(MEM_CANCEL_ONLINE, &arg);
990 		unlock_memory_hotplug();
991 		return ret;
992 	}
993 
994 	zone->managed_pages += onlined_pages;
995 	zone->present_pages += onlined_pages;
996 	zone->zone_pgdat->node_present_pages += onlined_pages;
997 	if (onlined_pages) {
998 		node_states_set_node(zone_to_nid(zone), &arg);
999 		if (need_zonelists_rebuild)
1000 			build_all_zonelists(NULL, NULL);
1001 		else
1002 			zone_pcp_update(zone);
1003 	}
1004 
1005 	mutex_unlock(&zonelists_mutex);
1006 
1007 	init_per_zone_wmark_min();
1008 
1009 	if (onlined_pages)
1010 		kswapd_run(zone_to_nid(zone));
1011 
1012 	vm_total_pages = nr_free_pagecache_pages();
1013 
1014 	writeback_set_ratelimit();
1015 
1016 	if (onlined_pages)
1017 		memory_notify(MEM_ONLINE, &arg);
1018 	unlock_memory_hotplug();
1019 
1020 	return 0;
1021 }
1022 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1023 
1024 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1025 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1026 {
1027 	struct pglist_data *pgdat;
1028 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1029 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1030 	unsigned long start_pfn = start >> PAGE_SHIFT;
1031 
1032 	pgdat = NODE_DATA(nid);
1033 	if (!pgdat) {
1034 		pgdat = arch_alloc_nodedata(nid);
1035 		if (!pgdat)
1036 			return NULL;
1037 
1038 		arch_refresh_nodedata(nid, pgdat);
1039 	}
1040 
1041 	/* we can use NODE_DATA(nid) from here */
1042 
1043 	/* init node's zones as empty zones, we don't have any present pages.*/
1044 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1045 
1046 	/*
1047 	 * The node we allocated has no zone fallback lists. For avoiding
1048 	 * to access not-initialized zonelist, build here.
1049 	 */
1050 	mutex_lock(&zonelists_mutex);
1051 	build_all_zonelists(pgdat, NULL);
1052 	mutex_unlock(&zonelists_mutex);
1053 
1054 	return pgdat;
1055 }
1056 
1057 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1058 {
1059 	arch_refresh_nodedata(nid, NULL);
1060 	arch_free_nodedata(pgdat);
1061 	return;
1062 }
1063 
1064 
1065 /*
1066  * called by cpu_up() to online a node without onlined memory.
1067  */
1068 int mem_online_node(int nid)
1069 {
1070 	pg_data_t	*pgdat;
1071 	int	ret;
1072 
1073 	lock_memory_hotplug();
1074 	pgdat = hotadd_new_pgdat(nid, 0);
1075 	if (!pgdat) {
1076 		ret = -ENOMEM;
1077 		goto out;
1078 	}
1079 	node_set_online(nid);
1080 	ret = register_one_node(nid);
1081 	BUG_ON(ret);
1082 
1083 out:
1084 	unlock_memory_hotplug();
1085 	return ret;
1086 }
1087 
1088 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1089 int __ref add_memory(int nid, u64 start, u64 size)
1090 {
1091 	pg_data_t *pgdat = NULL;
1092 	bool new_pgdat;
1093 	bool new_node;
1094 	struct resource *res;
1095 	int ret;
1096 
1097 	lock_memory_hotplug();
1098 
1099 	res = register_memory_resource(start, size);
1100 	ret = -EEXIST;
1101 	if (!res)
1102 		goto out;
1103 
1104 	{	/* Stupid hack to suppress address-never-null warning */
1105 		void *p = NODE_DATA(nid);
1106 		new_pgdat = !p;
1107 	}
1108 	new_node = !node_online(nid);
1109 	if (new_node) {
1110 		pgdat = hotadd_new_pgdat(nid, start);
1111 		ret = -ENOMEM;
1112 		if (!pgdat)
1113 			goto error;
1114 	}
1115 
1116 	/* call arch's memory hotadd */
1117 	ret = arch_add_memory(nid, start, size);
1118 
1119 	if (ret < 0)
1120 		goto error;
1121 
1122 	/* we online node here. we can't roll back from here. */
1123 	node_set_online(nid);
1124 
1125 	if (new_node) {
1126 		ret = register_one_node(nid);
1127 		/*
1128 		 * If sysfs file of new node can't create, cpu on the node
1129 		 * can't be hot-added. There is no rollback way now.
1130 		 * So, check by BUG_ON() to catch it reluctantly..
1131 		 */
1132 		BUG_ON(ret);
1133 	}
1134 
1135 	/* create new memmap entry */
1136 	firmware_map_add_hotplug(start, start + size, "System RAM");
1137 
1138 	goto out;
1139 
1140 error:
1141 	/* rollback pgdat allocation and others */
1142 	if (new_pgdat)
1143 		rollback_node_hotadd(nid, pgdat);
1144 	release_memory_resource(res);
1145 
1146 out:
1147 	unlock_memory_hotplug();
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(add_memory);
1151 
1152 #ifdef CONFIG_MEMORY_HOTREMOVE
1153 /*
1154  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1155  * set and the size of the free page is given by page_order(). Using this,
1156  * the function determines if the pageblock contains only free pages.
1157  * Due to buddy contraints, a free page at least the size of a pageblock will
1158  * be located at the start of the pageblock
1159  */
1160 static inline int pageblock_free(struct page *page)
1161 {
1162 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1163 }
1164 
1165 /* Return the start of the next active pageblock after a given page */
1166 static struct page *next_active_pageblock(struct page *page)
1167 {
1168 	/* Ensure the starting page is pageblock-aligned */
1169 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1170 
1171 	/* If the entire pageblock is free, move to the end of free page */
1172 	if (pageblock_free(page)) {
1173 		int order;
1174 		/* be careful. we don't have locks, page_order can be changed.*/
1175 		order = page_order(page);
1176 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1177 			return page + (1 << order);
1178 	}
1179 
1180 	return page + pageblock_nr_pages;
1181 }
1182 
1183 /* Checks if this range of memory is likely to be hot-removable. */
1184 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1185 {
1186 	struct page *page = pfn_to_page(start_pfn);
1187 	struct page *end_page = page + nr_pages;
1188 
1189 	/* Check the starting page of each pageblock within the range */
1190 	for (; page < end_page; page = next_active_pageblock(page)) {
1191 		if (!is_pageblock_removable_nolock(page))
1192 			return 0;
1193 		cond_resched();
1194 	}
1195 
1196 	/* All pageblocks in the memory block are likely to be hot-removable */
1197 	return 1;
1198 }
1199 
1200 /*
1201  * Confirm all pages in a range [start, end) is belongs to the same zone.
1202  */
1203 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1204 {
1205 	unsigned long pfn;
1206 	struct zone *zone = NULL;
1207 	struct page *page;
1208 	int i;
1209 	for (pfn = start_pfn;
1210 	     pfn < end_pfn;
1211 	     pfn += MAX_ORDER_NR_PAGES) {
1212 		i = 0;
1213 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1214 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1215 			i++;
1216 		if (i == MAX_ORDER_NR_PAGES)
1217 			continue;
1218 		page = pfn_to_page(pfn + i);
1219 		if (zone && page_zone(page) != zone)
1220 			return 0;
1221 		zone = page_zone(page);
1222 	}
1223 	return 1;
1224 }
1225 
1226 /*
1227  * Scanning pfn is much easier than scanning lru list.
1228  * Scan pfn from start to end and Find LRU page.
1229  */
1230 static unsigned long scan_lru_pages(unsigned long start, unsigned long end)
1231 {
1232 	unsigned long pfn;
1233 	struct page *page;
1234 	for (pfn = start; pfn < end; pfn++) {
1235 		if (pfn_valid(pfn)) {
1236 			page = pfn_to_page(pfn);
1237 			if (PageLRU(page))
1238 				return pfn;
1239 		}
1240 	}
1241 	return 0;
1242 }
1243 
1244 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1245 static int
1246 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1247 {
1248 	unsigned long pfn;
1249 	struct page *page;
1250 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1251 	int not_managed = 0;
1252 	int ret = 0;
1253 	LIST_HEAD(source);
1254 
1255 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1256 		if (!pfn_valid(pfn))
1257 			continue;
1258 		page = pfn_to_page(pfn);
1259 		if (!get_page_unless_zero(page))
1260 			continue;
1261 		/*
1262 		 * We can skip free pages. And we can only deal with pages on
1263 		 * LRU.
1264 		 */
1265 		ret = isolate_lru_page(page);
1266 		if (!ret) { /* Success */
1267 			put_page(page);
1268 			list_add_tail(&page->lru, &source);
1269 			move_pages--;
1270 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1271 					    page_is_file_cache(page));
1272 
1273 		} else {
1274 #ifdef CONFIG_DEBUG_VM
1275 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1276 			       pfn);
1277 			dump_page(page);
1278 #endif
1279 			put_page(page);
1280 			/* Because we don't have big zone->lock. we should
1281 			   check this again here. */
1282 			if (page_count(page)) {
1283 				not_managed++;
1284 				ret = -EBUSY;
1285 				break;
1286 			}
1287 		}
1288 	}
1289 	if (!list_empty(&source)) {
1290 		if (not_managed) {
1291 			putback_lru_pages(&source);
1292 			goto out;
1293 		}
1294 
1295 		/*
1296 		 * alloc_migrate_target should be improooooved!!
1297 		 * migrate_pages returns # of failed pages.
1298 		 */
1299 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1300 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1301 		if (ret)
1302 			putback_lru_pages(&source);
1303 	}
1304 out:
1305 	return ret;
1306 }
1307 
1308 /*
1309  * remove from free_area[] and mark all as Reserved.
1310  */
1311 static int
1312 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1313 			void *data)
1314 {
1315 	__offline_isolated_pages(start, start + nr_pages);
1316 	return 0;
1317 }
1318 
1319 static void
1320 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1321 {
1322 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1323 				offline_isolated_pages_cb);
1324 }
1325 
1326 /*
1327  * Check all pages in range, recoreded as memory resource, are isolated.
1328  */
1329 static int
1330 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1331 			void *data)
1332 {
1333 	int ret;
1334 	long offlined = *(long *)data;
1335 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1336 	offlined = nr_pages;
1337 	if (!ret)
1338 		*(long *)data += offlined;
1339 	return ret;
1340 }
1341 
1342 static long
1343 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1344 {
1345 	long offlined = 0;
1346 	int ret;
1347 
1348 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1349 			check_pages_isolated_cb);
1350 	if (ret < 0)
1351 		offlined = (long)ret;
1352 	return offlined;
1353 }
1354 
1355 #ifdef CONFIG_MOVABLE_NODE
1356 /*
1357  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1358  * normal memory.
1359  */
1360 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1361 {
1362 	return true;
1363 }
1364 #else /* CONFIG_MOVABLE_NODE */
1365 /* ensure the node has NORMAL memory if it is still online */
1366 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1367 {
1368 	struct pglist_data *pgdat = zone->zone_pgdat;
1369 	unsigned long present_pages = 0;
1370 	enum zone_type zt;
1371 
1372 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1373 		present_pages += pgdat->node_zones[zt].present_pages;
1374 
1375 	if (present_pages > nr_pages)
1376 		return true;
1377 
1378 	present_pages = 0;
1379 	for (; zt <= ZONE_MOVABLE; zt++)
1380 		present_pages += pgdat->node_zones[zt].present_pages;
1381 
1382 	/*
1383 	 * we can't offline the last normal memory until all
1384 	 * higher memory is offlined.
1385 	 */
1386 	return present_pages == 0;
1387 }
1388 #endif /* CONFIG_MOVABLE_NODE */
1389 
1390 /* check which state of node_states will be changed when offline memory */
1391 static void node_states_check_changes_offline(unsigned long nr_pages,
1392 		struct zone *zone, struct memory_notify *arg)
1393 {
1394 	struct pglist_data *pgdat = zone->zone_pgdat;
1395 	unsigned long present_pages = 0;
1396 	enum zone_type zt, zone_last = ZONE_NORMAL;
1397 
1398 	/*
1399 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1400 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1401 	 * set zone_last to ZONE_NORMAL.
1402 	 *
1403 	 * If we don't have HIGHMEM nor movable node,
1404 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1405 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1406 	 */
1407 	if (N_MEMORY == N_NORMAL_MEMORY)
1408 		zone_last = ZONE_MOVABLE;
1409 
1410 	/*
1411 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1412 	 * If the memory to be offline is in a zone of 0...zone_last,
1413 	 * and it is the last present memory, 0...zone_last will
1414 	 * become empty after offline , thus we can determind we will
1415 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1416 	 */
1417 	for (zt = 0; zt <= zone_last; zt++)
1418 		present_pages += pgdat->node_zones[zt].present_pages;
1419 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1420 		arg->status_change_nid_normal = zone_to_nid(zone);
1421 	else
1422 		arg->status_change_nid_normal = -1;
1423 
1424 #ifdef CONFIG_HIGHMEM
1425 	/*
1426 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1427 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1428 	 * set zone_last to ZONE_HIGHMEM.
1429 	 *
1430 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1431 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1432 	 * set zone_last to ZONE_MOVABLE.
1433 	 */
1434 	zone_last = ZONE_HIGHMEM;
1435 	if (N_MEMORY == N_HIGH_MEMORY)
1436 		zone_last = ZONE_MOVABLE;
1437 
1438 	for (; zt <= zone_last; zt++)
1439 		present_pages += pgdat->node_zones[zt].present_pages;
1440 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1441 		arg->status_change_nid_high = zone_to_nid(zone);
1442 	else
1443 		arg->status_change_nid_high = -1;
1444 #else
1445 	arg->status_change_nid_high = arg->status_change_nid_normal;
1446 #endif
1447 
1448 	/*
1449 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1450 	 */
1451 	zone_last = ZONE_MOVABLE;
1452 
1453 	/*
1454 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1455 	 * If we try to offline the last present @nr_pages from the node,
1456 	 * we can determind we will need to clear the node from
1457 	 * node_states[N_HIGH_MEMORY].
1458 	 */
1459 	for (; zt <= zone_last; zt++)
1460 		present_pages += pgdat->node_zones[zt].present_pages;
1461 	if (nr_pages >= present_pages)
1462 		arg->status_change_nid = zone_to_nid(zone);
1463 	else
1464 		arg->status_change_nid = -1;
1465 }
1466 
1467 static void node_states_clear_node(int node, struct memory_notify *arg)
1468 {
1469 	if (arg->status_change_nid_normal >= 0)
1470 		node_clear_state(node, N_NORMAL_MEMORY);
1471 
1472 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1473 	    (arg->status_change_nid_high >= 0))
1474 		node_clear_state(node, N_HIGH_MEMORY);
1475 
1476 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1477 	    (arg->status_change_nid >= 0))
1478 		node_clear_state(node, N_MEMORY);
1479 }
1480 
1481 static int __ref __offline_pages(unsigned long start_pfn,
1482 		  unsigned long end_pfn, unsigned long timeout)
1483 {
1484 	unsigned long pfn, nr_pages, expire;
1485 	long offlined_pages;
1486 	int ret, drain, retry_max, node;
1487 	struct zone *zone;
1488 	struct memory_notify arg;
1489 
1490 	BUG_ON(start_pfn >= end_pfn);
1491 	/* at least, alignment against pageblock is necessary */
1492 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1493 		return -EINVAL;
1494 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1495 		return -EINVAL;
1496 	/* This makes hotplug much easier...and readable.
1497 	   we assume this for now. .*/
1498 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1499 		return -EINVAL;
1500 
1501 	lock_memory_hotplug();
1502 
1503 	zone = page_zone(pfn_to_page(start_pfn));
1504 	node = zone_to_nid(zone);
1505 	nr_pages = end_pfn - start_pfn;
1506 
1507 	ret = -EINVAL;
1508 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1509 		goto out;
1510 
1511 	/* set above range as isolated */
1512 	ret = start_isolate_page_range(start_pfn, end_pfn,
1513 				       MIGRATE_MOVABLE, true);
1514 	if (ret)
1515 		goto out;
1516 
1517 	arg.start_pfn = start_pfn;
1518 	arg.nr_pages = nr_pages;
1519 	node_states_check_changes_offline(nr_pages, zone, &arg);
1520 
1521 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1522 	ret = notifier_to_errno(ret);
1523 	if (ret)
1524 		goto failed_removal;
1525 
1526 	pfn = start_pfn;
1527 	expire = jiffies + timeout;
1528 	drain = 0;
1529 	retry_max = 5;
1530 repeat:
1531 	/* start memory hot removal */
1532 	ret = -EAGAIN;
1533 	if (time_after(jiffies, expire))
1534 		goto failed_removal;
1535 	ret = -EINTR;
1536 	if (signal_pending(current))
1537 		goto failed_removal;
1538 	ret = 0;
1539 	if (drain) {
1540 		lru_add_drain_all();
1541 		cond_resched();
1542 		drain_all_pages();
1543 	}
1544 
1545 	pfn = scan_lru_pages(start_pfn, end_pfn);
1546 	if (pfn) { /* We have page on LRU */
1547 		ret = do_migrate_range(pfn, end_pfn);
1548 		if (!ret) {
1549 			drain = 1;
1550 			goto repeat;
1551 		} else {
1552 			if (ret < 0)
1553 				if (--retry_max == 0)
1554 					goto failed_removal;
1555 			yield();
1556 			drain = 1;
1557 			goto repeat;
1558 		}
1559 	}
1560 	/* drain all zone's lru pagevec, this is asynchronous... */
1561 	lru_add_drain_all();
1562 	yield();
1563 	/* drain pcp pages, this is synchronous. */
1564 	drain_all_pages();
1565 	/* check again */
1566 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1567 	if (offlined_pages < 0) {
1568 		ret = -EBUSY;
1569 		goto failed_removal;
1570 	}
1571 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1572 	/* Ok, all of our target is isolated.
1573 	   We cannot do rollback at this point. */
1574 	offline_isolated_pages(start_pfn, end_pfn);
1575 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1576 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1577 	/* removal success */
1578 	zone->managed_pages -= offlined_pages;
1579 	zone->present_pages -= offlined_pages;
1580 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1581 	totalram_pages -= offlined_pages;
1582 
1583 	init_per_zone_wmark_min();
1584 
1585 	if (!populated_zone(zone)) {
1586 		zone_pcp_reset(zone);
1587 		mutex_lock(&zonelists_mutex);
1588 		build_all_zonelists(NULL, NULL);
1589 		mutex_unlock(&zonelists_mutex);
1590 	} else
1591 		zone_pcp_update(zone);
1592 
1593 	node_states_clear_node(node, &arg);
1594 	if (arg.status_change_nid >= 0)
1595 		kswapd_stop(node);
1596 
1597 	vm_total_pages = nr_free_pagecache_pages();
1598 	writeback_set_ratelimit();
1599 
1600 	memory_notify(MEM_OFFLINE, &arg);
1601 	unlock_memory_hotplug();
1602 	return 0;
1603 
1604 failed_removal:
1605 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1606 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1607 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1608 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1609 	/* pushback to free area */
1610 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1611 
1612 out:
1613 	unlock_memory_hotplug();
1614 	return ret;
1615 }
1616 
1617 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1618 {
1619 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1620 }
1621 
1622 /**
1623  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1624  * @start_pfn: start pfn of the memory range
1625  * @end_pfn: end pfn of the memory range
1626  * @arg: argument passed to func
1627  * @func: callback for each memory section walked
1628  *
1629  * This function walks through all present mem sections in range
1630  * [start_pfn, end_pfn) and call func on each mem section.
1631  *
1632  * Returns the return value of func.
1633  */
1634 static int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1635 		void *arg, int (*func)(struct memory_block *, void *))
1636 {
1637 	struct memory_block *mem = NULL;
1638 	struct mem_section *section;
1639 	unsigned long pfn, section_nr;
1640 	int ret;
1641 
1642 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1643 		section_nr = pfn_to_section_nr(pfn);
1644 		if (!present_section_nr(section_nr))
1645 			continue;
1646 
1647 		section = __nr_to_section(section_nr);
1648 		/* same memblock? */
1649 		if (mem)
1650 			if ((section_nr >= mem->start_section_nr) &&
1651 			    (section_nr <= mem->end_section_nr))
1652 				continue;
1653 
1654 		mem = find_memory_block_hinted(section, mem);
1655 		if (!mem)
1656 			continue;
1657 
1658 		ret = func(mem, arg);
1659 		if (ret) {
1660 			kobject_put(&mem->dev.kobj);
1661 			return ret;
1662 		}
1663 	}
1664 
1665 	if (mem)
1666 		kobject_put(&mem->dev.kobj);
1667 
1668 	return 0;
1669 }
1670 
1671 /**
1672  * offline_memory_block_cb - callback function for offlining memory block
1673  * @mem: the memory block to be offlined
1674  * @arg: buffer to hold error msg
1675  *
1676  * Always return 0, and put the error msg in arg if any.
1677  */
1678 static int offline_memory_block_cb(struct memory_block *mem, void *arg)
1679 {
1680 	int *ret = arg;
1681 	int error = offline_memory_block(mem);
1682 
1683 	if (error != 0 && *ret == 0)
1684 		*ret = error;
1685 
1686 	return 0;
1687 }
1688 
1689 static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
1690 {
1691 	int ret = !is_memblock_offlined(mem);
1692 
1693 	if (unlikely(ret)) {
1694 		phys_addr_t beginpa, endpa;
1695 
1696 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1697 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1698 		pr_warn("removing memory fails, because memory "
1699 			"[%pa-%pa] is onlined\n",
1700 			&beginpa, &endpa);
1701 	}
1702 
1703 	return ret;
1704 }
1705 
1706 static int check_cpu_on_node(void *data)
1707 {
1708 	struct pglist_data *pgdat = data;
1709 	int cpu;
1710 
1711 	for_each_present_cpu(cpu) {
1712 		if (cpu_to_node(cpu) == pgdat->node_id)
1713 			/*
1714 			 * the cpu on this node isn't removed, and we can't
1715 			 * offline this node.
1716 			 */
1717 			return -EBUSY;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void unmap_cpu_on_node(void *data)
1724 {
1725 #ifdef CONFIG_ACPI_NUMA
1726 	struct pglist_data *pgdat = data;
1727 	int cpu;
1728 
1729 	for_each_possible_cpu(cpu)
1730 		if (cpu_to_node(cpu) == pgdat->node_id)
1731 			numa_clear_node(cpu);
1732 #endif
1733 }
1734 
1735 static int check_and_unmap_cpu_on_node(void *data)
1736 {
1737 	int ret = check_cpu_on_node(data);
1738 
1739 	if (ret)
1740 		return ret;
1741 
1742 	/*
1743 	 * the node will be offlined when we come here, so we can clear
1744 	 * the cpu_to_node() now.
1745 	 */
1746 
1747 	unmap_cpu_on_node(data);
1748 	return 0;
1749 }
1750 
1751 /* offline the node if all memory sections of this node are removed */
1752 void try_offline_node(int nid)
1753 {
1754 	pg_data_t *pgdat = NODE_DATA(nid);
1755 	unsigned long start_pfn = pgdat->node_start_pfn;
1756 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1757 	unsigned long pfn;
1758 	struct page *pgdat_page = virt_to_page(pgdat);
1759 	int i;
1760 
1761 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1762 		unsigned long section_nr = pfn_to_section_nr(pfn);
1763 
1764 		if (!present_section_nr(section_nr))
1765 			continue;
1766 
1767 		if (pfn_to_nid(pfn) != nid)
1768 			continue;
1769 
1770 		/*
1771 		 * some memory sections of this node are not removed, and we
1772 		 * can't offline node now.
1773 		 */
1774 		return;
1775 	}
1776 
1777 	if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL))
1778 		return;
1779 
1780 	/*
1781 	 * all memory/cpu of this node are removed, we can offline this
1782 	 * node now.
1783 	 */
1784 	node_set_offline(nid);
1785 	unregister_one_node(nid);
1786 
1787 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1788 		/* node data is allocated from boot memory */
1789 		return;
1790 
1791 	/* free waittable in each zone */
1792 	for (i = 0; i < MAX_NR_ZONES; i++) {
1793 		struct zone *zone = pgdat->node_zones + i;
1794 
1795 		/*
1796 		 * wait_table may be allocated from boot memory,
1797 		 * here only free if it's allocated by vmalloc.
1798 		 */
1799 		if (is_vmalloc_addr(zone->wait_table))
1800 			vfree(zone->wait_table);
1801 	}
1802 
1803 	/*
1804 	 * Since there is no way to guarentee the address of pgdat/zone is not
1805 	 * on stack of any kernel threads or used by other kernel objects
1806 	 * without reference counting or other symchronizing method, do not
1807 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1808 	 * the memory when the node is online again.
1809 	 */
1810 	memset(pgdat, 0, sizeof(*pgdat));
1811 }
1812 EXPORT_SYMBOL(try_offline_node);
1813 
1814 int __ref remove_memory(int nid, u64 start, u64 size)
1815 {
1816 	unsigned long start_pfn, end_pfn;
1817 	int ret = 0;
1818 	int retry = 1;
1819 
1820 	start_pfn = PFN_DOWN(start);
1821 	end_pfn = PFN_UP(start + size - 1);
1822 
1823 	/*
1824 	 * When CONFIG_MEMCG is on, one memory block may be used by other
1825 	 * blocks to store page cgroup when onlining pages. But we don't know
1826 	 * in what order pages are onlined. So we iterate twice to offline
1827 	 * memory:
1828 	 * 1st iterate: offline every non primary memory block.
1829 	 * 2nd iterate: offline primary (i.e. first added) memory block.
1830 	 */
1831 repeat:
1832 	walk_memory_range(start_pfn, end_pfn, &ret,
1833 			  offline_memory_block_cb);
1834 	if (ret) {
1835 		if (!retry)
1836 			return ret;
1837 
1838 		retry = 0;
1839 		ret = 0;
1840 		goto repeat;
1841 	}
1842 
1843 	lock_memory_hotplug();
1844 
1845 	/*
1846 	 * we have offlined all memory blocks like this:
1847 	 *   1. lock memory hotplug
1848 	 *   2. offline a memory block
1849 	 *   3. unlock memory hotplug
1850 	 *
1851 	 * repeat step1-3 to offline the memory block. All memory blocks
1852 	 * must be offlined before removing memory. But we don't hold the
1853 	 * lock in the whole operation. So we should check whether all
1854 	 * memory blocks are offlined.
1855 	 */
1856 
1857 	ret = walk_memory_range(start_pfn, end_pfn, NULL,
1858 				is_memblock_offlined_cb);
1859 	if (ret) {
1860 		unlock_memory_hotplug();
1861 		return ret;
1862 	}
1863 
1864 	/* remove memmap entry */
1865 	firmware_map_remove(start, start + size, "System RAM");
1866 
1867 	arch_remove_memory(start, size);
1868 
1869 	try_offline_node(nid);
1870 
1871 	unlock_memory_hotplug();
1872 
1873 	return 0;
1874 }
1875 #else
1876 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1877 {
1878 	return -EINVAL;
1879 }
1880 int remove_memory(int nid, u64 start, u64 size)
1881 {
1882 	return -EINVAL;
1883 }
1884 #endif /* CONFIG_MEMORY_HOTREMOVE */
1885 EXPORT_SYMBOL_GPL(remove_memory);
1886