xref: /openbmc/linux/mm/memory_hotplug.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = memhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		memhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 						 const char *resource_name)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 
107 	if (strcmp(resource_name, "System RAM"))
108 		flags |= IORESOURCE_MEM_DRIVER_MANAGED;
109 
110 	/*
111 	 * Make sure value parsed from 'mem=' only restricts memory adding
112 	 * while booting, so that memory hotplug won't be impacted. Please
113 	 * refer to document of 'mem=' in kernel-parameters.txt for more
114 	 * details.
115 	 */
116 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 		return ERR_PTR(-E2BIG);
118 
119 	/*
120 	 * Request ownership of the new memory range.  This might be
121 	 * a child of an existing resource that was present but
122 	 * not marked as busy.
123 	 */
124 	res = __request_region(&iomem_resource, start, size,
125 			       resource_name, flags);
126 
127 	if (!res) {
128 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 				start, start + size);
130 		return ERR_PTR(-EEXIST);
131 	}
132 	return res;
133 }
134 
135 static void release_memory_resource(struct resource *res)
136 {
137 	if (!res)
138 		return;
139 	release_resource(res);
140 	kfree(res);
141 }
142 
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144 void get_page_bootmem(unsigned long info,  struct page *page,
145 		      unsigned long type)
146 {
147 	page->freelist = (void *)type;
148 	SetPagePrivate(page);
149 	set_page_private(page, info);
150 	page_ref_inc(page);
151 }
152 
153 void put_page_bootmem(struct page *page)
154 {
155 	unsigned long type;
156 
157 	type = (unsigned long) page->freelist;
158 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160 
161 	if (page_ref_dec_return(page) == 1) {
162 		page->freelist = NULL;
163 		ClearPagePrivate(page);
164 		set_page_private(page, 0);
165 		INIT_LIST_HEAD(&page->lru);
166 		free_reserved_page(page);
167 	}
168 }
169 
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
172 static void register_page_bootmem_info_section(unsigned long start_pfn)
173 {
174 	unsigned long mapsize, section_nr, i;
175 	struct mem_section *ms;
176 	struct page *page, *memmap;
177 	struct mem_section_usage *usage;
178 
179 	section_nr = pfn_to_section_nr(start_pfn);
180 	ms = __nr_to_section(section_nr);
181 
182 	/* Get section's memmap address */
183 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184 
185 	/*
186 	 * Get page for the memmap's phys address
187 	 * XXX: need more consideration for sparse_vmemmap...
188 	 */
189 	page = virt_to_page(memmap);
190 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192 
193 	/* remember memmap's page */
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, SECTION_INFO);
196 
197 	usage = ms->usage;
198 	page = virt_to_page(usage);
199 
200 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201 
202 	for (i = 0; i < mapsize; i++, page++)
203 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204 
205 }
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
207 static void register_page_bootmem_info_section(unsigned long start_pfn)
208 {
209 	unsigned long mapsize, section_nr, i;
210 	struct mem_section *ms;
211 	struct page *page, *memmap;
212 	struct mem_section_usage *usage;
213 
214 	section_nr = pfn_to_section_nr(start_pfn);
215 	ms = __nr_to_section(section_nr);
216 
217 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218 
219 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220 
221 	usage = ms->usage;
222 	page = virt_to_page(usage);
223 
224 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225 
226 	for (i = 0; i < mapsize; i++, page++)
227 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228 }
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230 
231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232 {
233 	unsigned long i, pfn, end_pfn, nr_pages;
234 	int node = pgdat->node_id;
235 	struct page *page;
236 
237 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 	page = virt_to_page(pgdat);
239 
240 	for (i = 0; i < nr_pages; i++, page++)
241 		get_page_bootmem(node, page, NODE_INFO);
242 
243 	pfn = pgdat->node_start_pfn;
244 	end_pfn = pgdat_end_pfn(pgdat);
245 
246 	/* register section info */
247 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 		/*
249 		 * Some platforms can assign the same pfn to multiple nodes - on
250 		 * node0 as well as nodeN.  To avoid registering a pfn against
251 		 * multiple nodes we check that this pfn does not already
252 		 * reside in some other nodes.
253 		 */
254 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 			register_page_bootmem_info_section(pfn);
256 	}
257 }
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259 
260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 		const char *reason)
262 {
263 	/*
264 	 * Disallow all operations smaller than a sub-section and only
265 	 * allow operations smaller than a section for
266 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 	 * enforces a larger memory_block_size_bytes() granularity for
268 	 * memory that will be marked online, so this check should only
269 	 * fire for direct arch_{add,remove}_memory() users outside of
270 	 * add_memory_resource().
271 	 */
272 	unsigned long min_align;
273 
274 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 		min_align = PAGES_PER_SUBSECTION;
276 	else
277 		min_align = PAGES_PER_SECTION;
278 	if (!IS_ALIGNED(pfn, min_align)
279 			|| !IS_ALIGNED(nr_pages, min_align)) {
280 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 				reason, pfn, pfn + nr_pages - 1);
282 		return -EINVAL;
283 	}
284 	return 0;
285 }
286 
287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 					    unsigned long nr_pages)
289 {
290 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291 
292 	if (max_addr >> MAX_PHYSMEM_BITS) {
293 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 		WARN(1,
295 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 		return -E2BIG;
298 	}
299 
300 	return 0;
301 }
302 
303 /*
304  * Reasonably generic function for adding memory.  It is
305  * expected that archs that support memory hotplug will
306  * call this function after deciding the zone to which to
307  * add the new pages.
308  */
309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 		struct mhp_params *params)
311 {
312 	const unsigned long end_pfn = pfn + nr_pages;
313 	unsigned long cur_nr_pages;
314 	int err;
315 	struct vmem_altmap *altmap = params->altmap;
316 
317 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 		return -EINVAL;
319 
320 	err = check_hotplug_memory_addressable(pfn, nr_pages);
321 	if (err)
322 		return err;
323 
324 	if (altmap) {
325 		/*
326 		 * Validate altmap is within bounds of the total request
327 		 */
328 		if (altmap->base_pfn != pfn
329 				|| vmem_altmap_offset(altmap) > nr_pages) {
330 			pr_warn_once("memory add fail, invalid altmap\n");
331 			return -EINVAL;
332 		}
333 		altmap->alloc = 0;
334 	}
335 
336 	err = check_pfn_span(pfn, nr_pages, "add");
337 	if (err)
338 		return err;
339 
340 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 		/* Select all remaining pages up to the next section boundary */
342 		cur_nr_pages = min(end_pfn - pfn,
343 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
344 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 		if (err)
346 			break;
347 		cond_resched();
348 	}
349 	vmemmap_populate_print_last();
350 	return err;
351 }
352 
353 #ifdef CONFIG_NUMA
354 int __weak memory_add_physaddr_to_nid(u64 start)
355 {
356 	pr_info_once("Unknown online node for memory at 0x%llx, assuming node 0\n",
357 			start);
358 	return 0;
359 }
360 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361 
362 int __weak phys_to_target_node(u64 start)
363 {
364 	pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
365 			start);
366 	return 0;
367 }
368 EXPORT_SYMBOL_GPL(phys_to_target_node);
369 #endif
370 
371 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
372 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
373 				     unsigned long start_pfn,
374 				     unsigned long end_pfn)
375 {
376 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(start_pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(start_pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(start_pfn)))
384 			continue;
385 
386 		return start_pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
393 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
394 				    unsigned long start_pfn,
395 				    unsigned long end_pfn)
396 {
397 	unsigned long pfn;
398 
399 	/* pfn is the end pfn of a memory section. */
400 	pfn = end_pfn - 1;
401 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
402 		if (unlikely(!pfn_to_online_page(pfn)))
403 			continue;
404 
405 		if (unlikely(pfn_to_nid(pfn) != nid))
406 			continue;
407 
408 		if (zone != page_zone(pfn_to_page(pfn)))
409 			continue;
410 
411 		return pfn;
412 	}
413 
414 	return 0;
415 }
416 
417 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
418 			     unsigned long end_pfn)
419 {
420 	unsigned long pfn;
421 	int nid = zone_to_nid(zone);
422 
423 	zone_span_writelock(zone);
424 	if (zone->zone_start_pfn == start_pfn) {
425 		/*
426 		 * If the section is smallest section in the zone, it need
427 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
428 		 * In this case, we find second smallest valid mem_section
429 		 * for shrinking zone.
430 		 */
431 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
432 						zone_end_pfn(zone));
433 		if (pfn) {
434 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
435 			zone->zone_start_pfn = pfn;
436 		} else {
437 			zone->zone_start_pfn = 0;
438 			zone->spanned_pages = 0;
439 		}
440 	} else if (zone_end_pfn(zone) == end_pfn) {
441 		/*
442 		 * If the section is biggest section in the zone, it need
443 		 * shrink zone->spanned_pages.
444 		 * In this case, we find second biggest valid mem_section for
445 		 * shrinking zone.
446 		 */
447 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
448 					       start_pfn);
449 		if (pfn)
450 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
451 		else {
452 			zone->zone_start_pfn = 0;
453 			zone->spanned_pages = 0;
454 		}
455 	}
456 	zone_span_writeunlock(zone);
457 }
458 
459 static void update_pgdat_span(struct pglist_data *pgdat)
460 {
461 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
462 	struct zone *zone;
463 
464 	for (zone = pgdat->node_zones;
465 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
466 		unsigned long zone_end_pfn = zone->zone_start_pfn +
467 					     zone->spanned_pages;
468 
469 		/* No need to lock the zones, they can't change. */
470 		if (!zone->spanned_pages)
471 			continue;
472 		if (!node_end_pfn) {
473 			node_start_pfn = zone->zone_start_pfn;
474 			node_end_pfn = zone_end_pfn;
475 			continue;
476 		}
477 
478 		if (zone_end_pfn > node_end_pfn)
479 			node_end_pfn = zone_end_pfn;
480 		if (zone->zone_start_pfn < node_start_pfn)
481 			node_start_pfn = zone->zone_start_pfn;
482 	}
483 
484 	pgdat->node_start_pfn = node_start_pfn;
485 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
486 }
487 
488 void __ref remove_pfn_range_from_zone(struct zone *zone,
489 				      unsigned long start_pfn,
490 				      unsigned long nr_pages)
491 {
492 	const unsigned long end_pfn = start_pfn + nr_pages;
493 	struct pglist_data *pgdat = zone->zone_pgdat;
494 	unsigned long pfn, cur_nr_pages, flags;
495 
496 	/* Poison struct pages because they are now uninitialized again. */
497 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
498 		cond_resched();
499 
500 		/* Select all remaining pages up to the next section boundary */
501 		cur_nr_pages =
502 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
503 		page_init_poison(pfn_to_page(pfn),
504 				 sizeof(struct page) * cur_nr_pages);
505 	}
506 
507 #ifdef CONFIG_ZONE_DEVICE
508 	/*
509 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
510 	 * we will not try to shrink the zones - which is okay as
511 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
512 	 */
513 	if (zone_idx(zone) == ZONE_DEVICE)
514 		return;
515 #endif
516 
517 	clear_zone_contiguous(zone);
518 
519 	pgdat_resize_lock(zone->zone_pgdat, &flags);
520 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
521 	update_pgdat_span(pgdat);
522 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
523 
524 	set_zone_contiguous(zone);
525 }
526 
527 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
528 			     unsigned long map_offset,
529 			     struct vmem_altmap *altmap)
530 {
531 	struct mem_section *ms = __pfn_to_section(pfn);
532 
533 	if (WARN_ON_ONCE(!valid_section(ms)))
534 		return;
535 
536 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages
541  * @pfn: starting pageframe (must be aligned to start of a section)
542  * @nr_pages: number of pages to remove (must be multiple of section size)
543  * @altmap: alternative device page map or %NULL if default memmap is used
544  *
545  * Generic helper function to remove section mappings and sysfs entries
546  * for the section of the memory we are removing. Caller needs to make
547  * sure that pages are marked reserved and zones are adjust properly by
548  * calling offline_pages().
549  */
550 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
551 		    struct vmem_altmap *altmap)
552 {
553 	const unsigned long end_pfn = pfn + nr_pages;
554 	unsigned long cur_nr_pages;
555 	unsigned long map_offset = 0;
556 
557 	map_offset = vmem_altmap_offset(altmap);
558 
559 	if (check_pfn_span(pfn, nr_pages, "remove"))
560 		return;
561 
562 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
563 		cond_resched();
564 		/* Select all remaining pages up to the next section boundary */
565 		cur_nr_pages = min(end_pfn - pfn,
566 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
567 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
568 		map_offset = 0;
569 	}
570 }
571 
572 int set_online_page_callback(online_page_callback_t callback)
573 {
574 	int rc = -EINVAL;
575 
576 	get_online_mems();
577 	mutex_lock(&online_page_callback_lock);
578 
579 	if (online_page_callback == generic_online_page) {
580 		online_page_callback = callback;
581 		rc = 0;
582 	}
583 
584 	mutex_unlock(&online_page_callback_lock);
585 	put_online_mems();
586 
587 	return rc;
588 }
589 EXPORT_SYMBOL_GPL(set_online_page_callback);
590 
591 int restore_online_page_callback(online_page_callback_t callback)
592 {
593 	int rc = -EINVAL;
594 
595 	get_online_mems();
596 	mutex_lock(&online_page_callback_lock);
597 
598 	if (online_page_callback == callback) {
599 		online_page_callback = generic_online_page;
600 		rc = 0;
601 	}
602 
603 	mutex_unlock(&online_page_callback_lock);
604 	put_online_mems();
605 
606 	return rc;
607 }
608 EXPORT_SYMBOL_GPL(restore_online_page_callback);
609 
610 void generic_online_page(struct page *page, unsigned int order)
611 {
612 	/*
613 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
614 	 * so we should map it first. This is better than introducing a special
615 	 * case in page freeing fast path.
616 	 */
617 	if (debug_pagealloc_enabled_static())
618 		kernel_map_pages(page, 1 << order, 1);
619 	__free_pages_core(page, order);
620 	totalram_pages_add(1UL << order);
621 #ifdef CONFIG_HIGHMEM
622 	if (PageHighMem(page))
623 		totalhigh_pages_add(1UL << order);
624 #endif
625 }
626 EXPORT_SYMBOL_GPL(generic_online_page);
627 
628 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
629 			void *arg)
630 {
631 	const unsigned long end_pfn = start_pfn + nr_pages;
632 	unsigned long pfn;
633 	int order;
634 
635 	/*
636 	 * Online the pages. The callback might decide to keep some pages
637 	 * PG_reserved (to add them to the buddy later), but we still account
638 	 * them as being online/belonging to this zone ("present").
639 	 */
640 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
641 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
642 		/* __free_pages_core() wants pfns to be aligned to the order */
643 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
644 			order = 0;
645 		(*online_page_callback)(pfn_to_page(pfn), order);
646 	}
647 
648 	/* mark all involved sections as online */
649 	online_mem_sections(start_pfn, end_pfn);
650 
651 	*(unsigned long *)arg += nr_pages;
652 	return 0;
653 }
654 
655 /* check which state of node_states will be changed when online memory */
656 static void node_states_check_changes_online(unsigned long nr_pages,
657 	struct zone *zone, struct memory_notify *arg)
658 {
659 	int nid = zone_to_nid(zone);
660 
661 	arg->status_change_nid = NUMA_NO_NODE;
662 	arg->status_change_nid_normal = NUMA_NO_NODE;
663 	arg->status_change_nid_high = NUMA_NO_NODE;
664 
665 	if (!node_state(nid, N_MEMORY))
666 		arg->status_change_nid = nid;
667 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
668 		arg->status_change_nid_normal = nid;
669 #ifdef CONFIG_HIGHMEM
670 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
671 		arg->status_change_nid_high = nid;
672 #endif
673 }
674 
675 static void node_states_set_node(int node, struct memory_notify *arg)
676 {
677 	if (arg->status_change_nid_normal >= 0)
678 		node_set_state(node, N_NORMAL_MEMORY);
679 
680 	if (arg->status_change_nid_high >= 0)
681 		node_set_state(node, N_HIGH_MEMORY);
682 
683 	if (arg->status_change_nid >= 0)
684 		node_set_state(node, N_MEMORY);
685 }
686 
687 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
688 		unsigned long nr_pages)
689 {
690 	unsigned long old_end_pfn = zone_end_pfn(zone);
691 
692 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
693 		zone->zone_start_pfn = start_pfn;
694 
695 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
696 }
697 
698 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
699                                      unsigned long nr_pages)
700 {
701 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
702 
703 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
704 		pgdat->node_start_pfn = start_pfn;
705 
706 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
707 
708 }
709 /*
710  * Associate the pfn range with the given zone, initializing the memmaps
711  * and resizing the pgdat/zone data to span the added pages. After this
712  * call, all affected pages are PG_reserved.
713  */
714 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
715 		unsigned long nr_pages, struct vmem_altmap *altmap)
716 {
717 	struct pglist_data *pgdat = zone->zone_pgdat;
718 	int nid = pgdat->node_id;
719 	unsigned long flags;
720 
721 	clear_zone_contiguous(zone);
722 
723 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
724 	pgdat_resize_lock(pgdat, &flags);
725 	zone_span_writelock(zone);
726 	if (zone_is_empty(zone))
727 		init_currently_empty_zone(zone, start_pfn, nr_pages);
728 	resize_zone_range(zone, start_pfn, nr_pages);
729 	zone_span_writeunlock(zone);
730 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
731 	pgdat_resize_unlock(pgdat, &flags);
732 
733 	/*
734 	 * TODO now we have a visible range of pages which are not associated
735 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
736 	 * expects the zone spans the pfn range. All the pages in the range
737 	 * are reserved so nobody should be touching them so we should be safe
738 	 */
739 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
740 			 MEMINIT_HOTPLUG, altmap);
741 
742 	set_zone_contiguous(zone);
743 }
744 
745 /*
746  * Returns a default kernel memory zone for the given pfn range.
747  * If no kernel zone covers this pfn range it will automatically go
748  * to the ZONE_NORMAL.
749  */
750 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
751 		unsigned long nr_pages)
752 {
753 	struct pglist_data *pgdat = NODE_DATA(nid);
754 	int zid;
755 
756 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
757 		struct zone *zone = &pgdat->node_zones[zid];
758 
759 		if (zone_intersects(zone, start_pfn, nr_pages))
760 			return zone;
761 	}
762 
763 	return &pgdat->node_zones[ZONE_NORMAL];
764 }
765 
766 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
767 		unsigned long nr_pages)
768 {
769 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
770 			nr_pages);
771 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
772 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
773 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
774 
775 	/*
776 	 * We inherit the existing zone in a simple case where zones do not
777 	 * overlap in the given range
778 	 */
779 	if (in_kernel ^ in_movable)
780 		return (in_kernel) ? kernel_zone : movable_zone;
781 
782 	/*
783 	 * If the range doesn't belong to any zone or two zones overlap in the
784 	 * given range then we use movable zone only if movable_node is
785 	 * enabled because we always online to a kernel zone by default.
786 	 */
787 	return movable_node_enabled ? movable_zone : kernel_zone;
788 }
789 
790 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
791 		unsigned long nr_pages)
792 {
793 	if (online_type == MMOP_ONLINE_KERNEL)
794 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
795 
796 	if (online_type == MMOP_ONLINE_MOVABLE)
797 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 
799 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
800 }
801 
802 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
803 		       int online_type, int nid)
804 {
805 	unsigned long flags;
806 	unsigned long onlined_pages = 0;
807 	struct zone *zone;
808 	int need_zonelists_rebuild = 0;
809 	int ret;
810 	struct memory_notify arg;
811 
812 	mem_hotplug_begin();
813 
814 	/* associate pfn range with the zone */
815 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
816 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
817 
818 	arg.start_pfn = pfn;
819 	arg.nr_pages = nr_pages;
820 	node_states_check_changes_online(nr_pages, zone, &arg);
821 
822 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
823 	ret = notifier_to_errno(ret);
824 	if (ret)
825 		goto failed_addition;
826 
827 	/*
828 	 * If this zone is not populated, then it is not in zonelist.
829 	 * This means the page allocator ignores this zone.
830 	 * So, zonelist must be updated after online.
831 	 */
832 	if (!populated_zone(zone)) {
833 		need_zonelists_rebuild = 1;
834 		setup_zone_pageset(zone);
835 	}
836 
837 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
838 		online_pages_range);
839 	if (ret) {
840 		/* not a single memory resource was applicable */
841 		if (need_zonelists_rebuild)
842 			zone_pcp_reset(zone);
843 		goto failed_addition;
844 	}
845 
846 	zone->present_pages += onlined_pages;
847 
848 	pgdat_resize_lock(zone->zone_pgdat, &flags);
849 	zone->zone_pgdat->node_present_pages += onlined_pages;
850 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
851 
852 	/*
853 	 * When exposing larger, physically contiguous memory areas to the
854 	 * buddy, shuffling in the buddy (when freeing onlined pages, putting
855 	 * them either to the head or the tail of the freelist) is only helpful
856 	 * for maintaining the shuffle, but not for creating the initial
857 	 * shuffle. Shuffle the whole zone to make sure the just onlined pages
858 	 * are properly distributed across the whole freelist.
859 	 */
860 	shuffle_zone(zone);
861 
862 	node_states_set_node(nid, &arg);
863 	if (need_zonelists_rebuild)
864 		build_all_zonelists(NULL);
865 	zone_pcp_update(zone);
866 
867 	init_per_zone_wmark_min();
868 
869 	kswapd_run(nid);
870 	kcompactd_run(nid);
871 
872 	writeback_set_ratelimit();
873 
874 	memory_notify(MEM_ONLINE, &arg);
875 	mem_hotplug_done();
876 	return 0;
877 
878 failed_addition:
879 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
880 		 (unsigned long long) pfn << PAGE_SHIFT,
881 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
882 	memory_notify(MEM_CANCEL_ONLINE, &arg);
883 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
884 	mem_hotplug_done();
885 	return ret;
886 }
887 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
888 
889 static void reset_node_present_pages(pg_data_t *pgdat)
890 {
891 	struct zone *z;
892 
893 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
894 		z->present_pages = 0;
895 
896 	pgdat->node_present_pages = 0;
897 }
898 
899 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
900 static pg_data_t __ref *hotadd_new_pgdat(int nid)
901 {
902 	struct pglist_data *pgdat;
903 
904 	pgdat = NODE_DATA(nid);
905 	if (!pgdat) {
906 		pgdat = arch_alloc_nodedata(nid);
907 		if (!pgdat)
908 			return NULL;
909 
910 		pgdat->per_cpu_nodestats =
911 			alloc_percpu(struct per_cpu_nodestat);
912 		arch_refresh_nodedata(nid, pgdat);
913 	} else {
914 		int cpu;
915 		/*
916 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
917 		 * Note that kswapd will init kswapd_highest_zoneidx properly
918 		 * when it starts in the near future.
919 		 */
920 		pgdat->nr_zones = 0;
921 		pgdat->kswapd_order = 0;
922 		pgdat->kswapd_highest_zoneidx = 0;
923 		for_each_online_cpu(cpu) {
924 			struct per_cpu_nodestat *p;
925 
926 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
927 			memset(p, 0, sizeof(*p));
928 		}
929 	}
930 
931 	/* we can use NODE_DATA(nid) from here */
932 	pgdat->node_id = nid;
933 	pgdat->node_start_pfn = 0;
934 
935 	/* init node's zones as empty zones, we don't have any present pages.*/
936 	free_area_init_core_hotplug(nid);
937 
938 	/*
939 	 * The node we allocated has no zone fallback lists. For avoiding
940 	 * to access not-initialized zonelist, build here.
941 	 */
942 	build_all_zonelists(pgdat);
943 
944 	/*
945 	 * When memory is hot-added, all the memory is in offline state. So
946 	 * clear all zones' present_pages because they will be updated in
947 	 * online_pages() and offline_pages().
948 	 */
949 	reset_node_managed_pages(pgdat);
950 	reset_node_present_pages(pgdat);
951 
952 	return pgdat;
953 }
954 
955 static void rollback_node_hotadd(int nid)
956 {
957 	pg_data_t *pgdat = NODE_DATA(nid);
958 
959 	arch_refresh_nodedata(nid, NULL);
960 	free_percpu(pgdat->per_cpu_nodestats);
961 	arch_free_nodedata(pgdat);
962 }
963 
964 
965 /**
966  * try_online_node - online a node if offlined
967  * @nid: the node ID
968  * @set_node_online: Whether we want to online the node
969  * called by cpu_up() to online a node without onlined memory.
970  *
971  * Returns:
972  * 1 -> a new node has been allocated
973  * 0 -> the node is already online
974  * -ENOMEM -> the node could not be allocated
975  */
976 static int __try_online_node(int nid, bool set_node_online)
977 {
978 	pg_data_t *pgdat;
979 	int ret = 1;
980 
981 	if (node_online(nid))
982 		return 0;
983 
984 	pgdat = hotadd_new_pgdat(nid);
985 	if (!pgdat) {
986 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
987 		ret = -ENOMEM;
988 		goto out;
989 	}
990 
991 	if (set_node_online) {
992 		node_set_online(nid);
993 		ret = register_one_node(nid);
994 		BUG_ON(ret);
995 	}
996 out:
997 	return ret;
998 }
999 
1000 /*
1001  * Users of this function always want to online/register the node
1002  */
1003 int try_online_node(int nid)
1004 {
1005 	int ret;
1006 
1007 	mem_hotplug_begin();
1008 	ret =  __try_online_node(nid, true);
1009 	mem_hotplug_done();
1010 	return ret;
1011 }
1012 
1013 static int check_hotplug_memory_range(u64 start, u64 size)
1014 {
1015 	/* memory range must be block size aligned */
1016 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1017 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1018 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1019 		       memory_block_size_bytes(), start, size);
1020 		return -EINVAL;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static int online_memory_block(struct memory_block *mem, void *arg)
1027 {
1028 	mem->online_type = memhp_default_online_type;
1029 	return device_online(&mem->dev);
1030 }
1031 
1032 /*
1033  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1034  * and online/offline operations (triggered e.g. by sysfs).
1035  *
1036  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1037  */
1038 int __ref add_memory_resource(int nid, struct resource *res)
1039 {
1040 	struct mhp_params params = { .pgprot = PAGE_KERNEL };
1041 	u64 start, size;
1042 	bool new_node = false;
1043 	int ret;
1044 
1045 	start = res->start;
1046 	size = resource_size(res);
1047 
1048 	ret = check_hotplug_memory_range(start, size);
1049 	if (ret)
1050 		return ret;
1051 
1052 	if (!node_possible(nid)) {
1053 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1054 		return -EINVAL;
1055 	}
1056 
1057 	mem_hotplug_begin();
1058 
1059 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1060 		memblock_add_node(start, size, nid);
1061 
1062 	ret = __try_online_node(nid, false);
1063 	if (ret < 0)
1064 		goto error;
1065 	new_node = ret;
1066 
1067 	/* call arch's memory hotadd */
1068 	ret = arch_add_memory(nid, start, size, &params);
1069 	if (ret < 0)
1070 		goto error;
1071 
1072 	/* create memory block devices after memory was added */
1073 	ret = create_memory_block_devices(start, size);
1074 	if (ret) {
1075 		arch_remove_memory(nid, start, size, NULL);
1076 		goto error;
1077 	}
1078 
1079 	if (new_node) {
1080 		/* If sysfs file of new node can't be created, cpu on the node
1081 		 * can't be hot-added. There is no rollback way now.
1082 		 * So, check by BUG_ON() to catch it reluctantly..
1083 		 * We online node here. We can't roll back from here.
1084 		 */
1085 		node_set_online(nid);
1086 		ret = __register_one_node(nid);
1087 		BUG_ON(ret);
1088 	}
1089 
1090 	/* link memory sections under this node.*/
1091 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1092 				MEMINIT_HOTPLUG);
1093 	BUG_ON(ret);
1094 
1095 	/* create new memmap entry */
1096 	if (!strcmp(res->name, "System RAM"))
1097 		firmware_map_add_hotplug(start, start + size, "System RAM");
1098 
1099 	/* device_online() will take the lock when calling online_pages() */
1100 	mem_hotplug_done();
1101 
1102 	/* online pages if requested */
1103 	if (memhp_default_online_type != MMOP_OFFLINE)
1104 		walk_memory_blocks(start, size, NULL, online_memory_block);
1105 
1106 	return ret;
1107 error:
1108 	/* rollback pgdat allocation and others */
1109 	if (new_node)
1110 		rollback_node_hotadd(nid);
1111 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1112 		memblock_remove(start, size);
1113 	mem_hotplug_done();
1114 	return ret;
1115 }
1116 
1117 /* requires device_hotplug_lock, see add_memory_resource() */
1118 int __ref __add_memory(int nid, u64 start, u64 size)
1119 {
1120 	struct resource *res;
1121 	int ret;
1122 
1123 	res = register_memory_resource(start, size, "System RAM");
1124 	if (IS_ERR(res))
1125 		return PTR_ERR(res);
1126 
1127 	ret = add_memory_resource(nid, res);
1128 	if (ret < 0)
1129 		release_memory_resource(res);
1130 	return ret;
1131 }
1132 
1133 int add_memory(int nid, u64 start, u64 size)
1134 {
1135 	int rc;
1136 
1137 	lock_device_hotplug();
1138 	rc = __add_memory(nid, start, size);
1139 	unlock_device_hotplug();
1140 
1141 	return rc;
1142 }
1143 EXPORT_SYMBOL_GPL(add_memory);
1144 
1145 /*
1146  * Add special, driver-managed memory to the system as system RAM. Such
1147  * memory is not exposed via the raw firmware-provided memmap as system
1148  * RAM, instead, it is detected and added by a driver - during cold boot,
1149  * after a reboot, and after kexec.
1150  *
1151  * Reasons why this memory should not be used for the initial memmap of a
1152  * kexec kernel or for placing kexec images:
1153  * - The booting kernel is in charge of determining how this memory will be
1154  *   used (e.g., use persistent memory as system RAM)
1155  * - Coordination with a hypervisor is required before this memory
1156  *   can be used (e.g., inaccessible parts).
1157  *
1158  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1159  * memory map") are created. Also, the created memory resource is flagged
1160  * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1161  * this memory as well (esp., not place kexec images onto it).
1162  *
1163  * The resource_name (visible via /proc/iomem) has to have the format
1164  * "System RAM ($DRIVER)".
1165  */
1166 int add_memory_driver_managed(int nid, u64 start, u64 size,
1167 			      const char *resource_name)
1168 {
1169 	struct resource *res;
1170 	int rc;
1171 
1172 	if (!resource_name ||
1173 	    strstr(resource_name, "System RAM (") != resource_name ||
1174 	    resource_name[strlen(resource_name) - 1] != ')')
1175 		return -EINVAL;
1176 
1177 	lock_device_hotplug();
1178 
1179 	res = register_memory_resource(start, size, resource_name);
1180 	if (IS_ERR(res)) {
1181 		rc = PTR_ERR(res);
1182 		goto out_unlock;
1183 	}
1184 
1185 	rc = add_memory_resource(nid, res);
1186 	if (rc < 0)
1187 		release_memory_resource(res);
1188 
1189 out_unlock:
1190 	unlock_device_hotplug();
1191 	return rc;
1192 }
1193 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1194 
1195 #ifdef CONFIG_MEMORY_HOTREMOVE
1196 /*
1197  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1198  * memory holes). When true, return the zone.
1199  */
1200 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1201 				  unsigned long end_pfn)
1202 {
1203 	unsigned long pfn, sec_end_pfn;
1204 	struct zone *zone = NULL;
1205 	struct page *page;
1206 	int i;
1207 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1208 	     pfn < end_pfn;
1209 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1210 		/* Make sure the memory section is present first */
1211 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1212 			continue;
1213 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1214 		     pfn += MAX_ORDER_NR_PAGES) {
1215 			i = 0;
1216 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1217 			while ((i < MAX_ORDER_NR_PAGES) &&
1218 				!pfn_valid_within(pfn + i))
1219 				i++;
1220 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1221 				continue;
1222 			/* Check if we got outside of the zone */
1223 			if (zone && !zone_spans_pfn(zone, pfn + i))
1224 				return NULL;
1225 			page = pfn_to_page(pfn + i);
1226 			if (zone && page_zone(page) != zone)
1227 				return NULL;
1228 			zone = page_zone(page);
1229 		}
1230 	}
1231 
1232 	return zone;
1233 }
1234 
1235 /*
1236  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1237  * non-lru movable pages and hugepages). Will skip over most unmovable
1238  * pages (esp., pages that can be skipped when offlining), but bail out on
1239  * definitely unmovable pages.
1240  *
1241  * Returns:
1242  *	0 in case a movable page is found and movable_pfn was updated.
1243  *	-ENOENT in case no movable page was found.
1244  *	-EBUSY in case a definitely unmovable page was found.
1245  */
1246 static int scan_movable_pages(unsigned long start, unsigned long end,
1247 			      unsigned long *movable_pfn)
1248 {
1249 	unsigned long pfn;
1250 
1251 	for (pfn = start; pfn < end; pfn++) {
1252 		struct page *page, *head;
1253 		unsigned long skip;
1254 
1255 		if (!pfn_valid(pfn))
1256 			continue;
1257 		page = pfn_to_page(pfn);
1258 		if (PageLRU(page))
1259 			goto found;
1260 		if (__PageMovable(page))
1261 			goto found;
1262 
1263 		/*
1264 		 * PageOffline() pages that are not marked __PageMovable() and
1265 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1266 		 * definitely unmovable. If their reference count would be 0,
1267 		 * they could at least be skipped when offlining memory.
1268 		 */
1269 		if (PageOffline(page) && page_count(page))
1270 			return -EBUSY;
1271 
1272 		if (!PageHuge(page))
1273 			continue;
1274 		head = compound_head(page);
1275 		if (page_huge_active(head))
1276 			goto found;
1277 		skip = compound_nr(head) - (page - head);
1278 		pfn += skip - 1;
1279 	}
1280 	return -ENOENT;
1281 found:
1282 	*movable_pfn = pfn;
1283 	return 0;
1284 }
1285 
1286 static struct page *new_node_page(struct page *page, unsigned long private)
1287 {
1288 	nodemask_t nmask = node_states[N_MEMORY];
1289 	struct migration_target_control mtc = {
1290 		.nid = page_to_nid(page),
1291 		.nmask = &nmask,
1292 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1293 	};
1294 
1295 	/*
1296 	 * try to allocate from a different node but reuse this node if there
1297 	 * are no other online nodes to be used (e.g. we are offlining a part
1298 	 * of the only existing node)
1299 	 */
1300 	node_clear(mtc.nid, nmask);
1301 	if (nodes_empty(nmask))
1302 		node_set(mtc.nid, nmask);
1303 
1304 	return alloc_migration_target(page, (unsigned long)&mtc);
1305 }
1306 
1307 static int
1308 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1309 {
1310 	unsigned long pfn;
1311 	struct page *page, *head;
1312 	int ret = 0;
1313 	LIST_HEAD(source);
1314 
1315 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1316 		if (!pfn_valid(pfn))
1317 			continue;
1318 		page = pfn_to_page(pfn);
1319 		head = compound_head(page);
1320 
1321 		if (PageHuge(page)) {
1322 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1323 			isolate_huge_page(head, &source);
1324 			continue;
1325 		} else if (PageTransHuge(page))
1326 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1327 
1328 		/*
1329 		 * HWPoison pages have elevated reference counts so the migration would
1330 		 * fail on them. It also doesn't make any sense to migrate them in the
1331 		 * first place. Still try to unmap such a page in case it is still mapped
1332 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1333 		 * the unmap as the catch all safety net).
1334 		 */
1335 		if (PageHWPoison(page)) {
1336 			if (WARN_ON(PageLRU(page)))
1337 				isolate_lru_page(page);
1338 			if (page_mapped(page))
1339 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1340 			continue;
1341 		}
1342 
1343 		if (!get_page_unless_zero(page))
1344 			continue;
1345 		/*
1346 		 * We can skip free pages. And we can deal with pages on
1347 		 * LRU and non-lru movable pages.
1348 		 */
1349 		if (PageLRU(page))
1350 			ret = isolate_lru_page(page);
1351 		else
1352 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1353 		if (!ret) { /* Success */
1354 			list_add_tail(&page->lru, &source);
1355 			if (!__PageMovable(page))
1356 				inc_node_page_state(page, NR_ISOLATED_ANON +
1357 						    page_is_file_lru(page));
1358 
1359 		} else {
1360 			pr_warn("failed to isolate pfn %lx\n", pfn);
1361 			dump_page(page, "isolation failed");
1362 		}
1363 		put_page(page);
1364 	}
1365 	if (!list_empty(&source)) {
1366 		/* Allocate a new page from the nearest neighbor node */
1367 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1368 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1369 		if (ret) {
1370 			list_for_each_entry(page, &source, lru) {
1371 				pr_warn("migrating pfn %lx failed ret:%d ",
1372 				       page_to_pfn(page), ret);
1373 				dump_page(page, "migration failure");
1374 			}
1375 			putback_movable_pages(&source);
1376 		}
1377 	}
1378 
1379 	return ret;
1380 }
1381 
1382 /* Mark all sections offline and remove all free pages from the buddy. */
1383 static int
1384 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1385 			void *data)
1386 {
1387 	unsigned long *offlined_pages = (unsigned long *)data;
1388 
1389 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Check all pages in range, recorded as memory resource, are isolated.
1395  */
1396 static int
1397 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1398 			void *data)
1399 {
1400 	return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1401 				   MEMORY_OFFLINE);
1402 }
1403 
1404 static int __init cmdline_parse_movable_node(char *p)
1405 {
1406 	movable_node_enabled = true;
1407 	return 0;
1408 }
1409 early_param("movable_node", cmdline_parse_movable_node);
1410 
1411 /* check which state of node_states will be changed when offline memory */
1412 static void node_states_check_changes_offline(unsigned long nr_pages,
1413 		struct zone *zone, struct memory_notify *arg)
1414 {
1415 	struct pglist_data *pgdat = zone->zone_pgdat;
1416 	unsigned long present_pages = 0;
1417 	enum zone_type zt;
1418 
1419 	arg->status_change_nid = NUMA_NO_NODE;
1420 	arg->status_change_nid_normal = NUMA_NO_NODE;
1421 	arg->status_change_nid_high = NUMA_NO_NODE;
1422 
1423 	/*
1424 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1425 	 * If the memory to be offline is within the range
1426 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1427 	 * the zones in that range will become empty after the offlining,
1428 	 * thus we can determine that we need to clear the node from
1429 	 * node_states[N_NORMAL_MEMORY].
1430 	 */
1431 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1432 		present_pages += pgdat->node_zones[zt].present_pages;
1433 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1434 		arg->status_change_nid_normal = zone_to_nid(zone);
1435 
1436 #ifdef CONFIG_HIGHMEM
1437 	/*
1438 	 * node_states[N_HIGH_MEMORY] contains nodes which
1439 	 * have normal memory or high memory.
1440 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1441 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1442 	 * we determine that the zones in that range become empty,
1443 	 * we need to clear the node for N_HIGH_MEMORY.
1444 	 */
1445 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1446 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1447 		arg->status_change_nid_high = zone_to_nid(zone);
1448 #endif
1449 
1450 	/*
1451 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1452 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1453 	 * as well.
1454 	 * Here we count the possible pages from ZONE_MOVABLE.
1455 	 * If after having accounted all the pages, we see that the nr_pages
1456 	 * to be offlined is over or equal to the accounted pages,
1457 	 * we know that the node will become empty, and so, we can clear
1458 	 * it for N_MEMORY as well.
1459 	 */
1460 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1461 
1462 	if (nr_pages >= present_pages)
1463 		arg->status_change_nid = zone_to_nid(zone);
1464 }
1465 
1466 static void node_states_clear_node(int node, struct memory_notify *arg)
1467 {
1468 	if (arg->status_change_nid_normal >= 0)
1469 		node_clear_state(node, N_NORMAL_MEMORY);
1470 
1471 	if (arg->status_change_nid_high >= 0)
1472 		node_clear_state(node, N_HIGH_MEMORY);
1473 
1474 	if (arg->status_change_nid >= 0)
1475 		node_clear_state(node, N_MEMORY);
1476 }
1477 
1478 static int count_system_ram_pages_cb(unsigned long start_pfn,
1479 				     unsigned long nr_pages, void *data)
1480 {
1481 	unsigned long *nr_system_ram_pages = data;
1482 
1483 	*nr_system_ram_pages += nr_pages;
1484 	return 0;
1485 }
1486 
1487 static int __ref __offline_pages(unsigned long start_pfn,
1488 		  unsigned long end_pfn)
1489 {
1490 	unsigned long pfn, nr_pages = 0;
1491 	unsigned long offlined_pages = 0;
1492 	int ret, node, nr_isolate_pageblock;
1493 	unsigned long flags;
1494 	struct zone *zone;
1495 	struct memory_notify arg;
1496 	char *reason;
1497 
1498 	mem_hotplug_begin();
1499 
1500 	/*
1501 	 * Don't allow to offline memory blocks that contain holes.
1502 	 * Consequently, memory blocks with holes can never get onlined
1503 	 * via the hotplug path - online_pages() - as hotplugged memory has
1504 	 * no holes. This way, we e.g., don't have to worry about marking
1505 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1506 	 * avoid using walk_system_ram_range() later.
1507 	 */
1508 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1509 			      count_system_ram_pages_cb);
1510 	if (nr_pages != end_pfn - start_pfn) {
1511 		ret = -EINVAL;
1512 		reason = "memory holes";
1513 		goto failed_removal;
1514 	}
1515 
1516 	/* This makes hotplug much easier...and readable.
1517 	   we assume this for now. .*/
1518 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1519 	if (!zone) {
1520 		ret = -EINVAL;
1521 		reason = "multizone range";
1522 		goto failed_removal;
1523 	}
1524 	node = zone_to_nid(zone);
1525 
1526 	/* set above range as isolated */
1527 	ret = start_isolate_page_range(start_pfn, end_pfn,
1528 				       MIGRATE_MOVABLE,
1529 				       MEMORY_OFFLINE | REPORT_FAILURE);
1530 	if (ret < 0) {
1531 		reason = "failure to isolate range";
1532 		goto failed_removal;
1533 	}
1534 	nr_isolate_pageblock = ret;
1535 
1536 	arg.start_pfn = start_pfn;
1537 	arg.nr_pages = nr_pages;
1538 	node_states_check_changes_offline(nr_pages, zone, &arg);
1539 
1540 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1541 	ret = notifier_to_errno(ret);
1542 	if (ret) {
1543 		reason = "notifier failure";
1544 		goto failed_removal_isolated;
1545 	}
1546 
1547 	do {
1548 		pfn = start_pfn;
1549 		do {
1550 			if (signal_pending(current)) {
1551 				ret = -EINTR;
1552 				reason = "signal backoff";
1553 				goto failed_removal_isolated;
1554 			}
1555 
1556 			cond_resched();
1557 			lru_add_drain_all();
1558 
1559 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1560 			if (!ret) {
1561 				/*
1562 				 * TODO: fatal migration failures should bail
1563 				 * out
1564 				 */
1565 				do_migrate_range(pfn, end_pfn);
1566 			}
1567 		} while (!ret);
1568 
1569 		if (ret != -ENOENT) {
1570 			reason = "unmovable page";
1571 			goto failed_removal_isolated;
1572 		}
1573 
1574 		/*
1575 		 * Dissolve free hugepages in the memory block before doing
1576 		 * offlining actually in order to make hugetlbfs's object
1577 		 * counting consistent.
1578 		 */
1579 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1580 		if (ret) {
1581 			reason = "failure to dissolve huge pages";
1582 			goto failed_removal_isolated;
1583 		}
1584 		/* check again */
1585 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1586 					    NULL, check_pages_isolated_cb);
1587 		/*
1588 		 * per-cpu pages are drained in start_isolate_page_range, but if
1589 		 * there are still pages that are not free, make sure that we
1590 		 * drain again, because when we isolated range we might
1591 		 * have raced with another thread that was adding pages to pcp
1592 		 * list.
1593 		 *
1594 		 * Forward progress should be still guaranteed because
1595 		 * pages on the pcp list can only belong to MOVABLE_ZONE
1596 		 * because has_unmovable_pages explicitly checks for
1597 		 * PageBuddy on freed pages on other zones.
1598 		 */
1599 		if (ret)
1600 			drain_all_pages(zone);
1601 	} while (ret);
1602 
1603 	/* Ok, all of our target is isolated.
1604 	   We cannot do rollback at this point. */
1605 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1606 			      &offlined_pages, offline_isolated_pages_cb);
1607 	pr_info("Offlined Pages %ld\n", offlined_pages);
1608 	/*
1609 	 * Onlining will reset pagetype flags and makes migrate type
1610 	 * MOVABLE, so just need to decrease the number of isolated
1611 	 * pageblocks zone counter here.
1612 	 */
1613 	spin_lock_irqsave(&zone->lock, flags);
1614 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1615 	spin_unlock_irqrestore(&zone->lock, flags);
1616 
1617 	/* removal success */
1618 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1619 	zone->present_pages -= offlined_pages;
1620 
1621 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1622 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1623 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1624 
1625 	init_per_zone_wmark_min();
1626 
1627 	if (!populated_zone(zone)) {
1628 		zone_pcp_reset(zone);
1629 		build_all_zonelists(NULL);
1630 	} else
1631 		zone_pcp_update(zone);
1632 
1633 	node_states_clear_node(node, &arg);
1634 	if (arg.status_change_nid >= 0) {
1635 		kswapd_stop(node);
1636 		kcompactd_stop(node);
1637 	}
1638 
1639 	writeback_set_ratelimit();
1640 
1641 	memory_notify(MEM_OFFLINE, &arg);
1642 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1643 	mem_hotplug_done();
1644 	return 0;
1645 
1646 failed_removal_isolated:
1647 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1648 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1649 failed_removal:
1650 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1651 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1652 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1653 		 reason);
1654 	/* pushback to free area */
1655 	mem_hotplug_done();
1656 	return ret;
1657 }
1658 
1659 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1660 {
1661 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1662 }
1663 
1664 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1665 {
1666 	int ret = !is_memblock_offlined(mem);
1667 
1668 	if (unlikely(ret)) {
1669 		phys_addr_t beginpa, endpa;
1670 
1671 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1672 		endpa = beginpa + memory_block_size_bytes() - 1;
1673 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1674 			&beginpa, &endpa);
1675 
1676 		return -EBUSY;
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int check_cpu_on_node(pg_data_t *pgdat)
1682 {
1683 	int cpu;
1684 
1685 	for_each_present_cpu(cpu) {
1686 		if (cpu_to_node(cpu) == pgdat->node_id)
1687 			/*
1688 			 * the cpu on this node isn't removed, and we can't
1689 			 * offline this node.
1690 			 */
1691 			return -EBUSY;
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1698 {
1699 	int nid = *(int *)arg;
1700 
1701 	/*
1702 	 * If a memory block belongs to multiple nodes, the stored nid is not
1703 	 * reliable. However, such blocks are always online (e.g., cannot get
1704 	 * offlined) and, therefore, are still spanned by the node.
1705 	 */
1706 	return mem->nid == nid ? -EEXIST : 0;
1707 }
1708 
1709 /**
1710  * try_offline_node
1711  * @nid: the node ID
1712  *
1713  * Offline a node if all memory sections and cpus of the node are removed.
1714  *
1715  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1716  * and online/offline operations before this call.
1717  */
1718 void try_offline_node(int nid)
1719 {
1720 	pg_data_t *pgdat = NODE_DATA(nid);
1721 	int rc;
1722 
1723 	/*
1724 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1725 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1726 	 * e.g., after the memory block was onlined.
1727 	 */
1728 	if (pgdat->node_spanned_pages)
1729 		return;
1730 
1731 	/*
1732 	 * Especially offline memory blocks might not be spanned by the
1733 	 * node. They will get spanned by the node once they get onlined.
1734 	 * However, they link to the node in sysfs and can get onlined later.
1735 	 */
1736 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1737 	if (rc)
1738 		return;
1739 
1740 	if (check_cpu_on_node(pgdat))
1741 		return;
1742 
1743 	/*
1744 	 * all memory/cpu of this node are removed, we can offline this
1745 	 * node now.
1746 	 */
1747 	node_set_offline(nid);
1748 	unregister_one_node(nid);
1749 }
1750 EXPORT_SYMBOL(try_offline_node);
1751 
1752 static void __release_memory_resource(resource_size_t start,
1753 				      resource_size_t size)
1754 {
1755 	int ret;
1756 
1757 	/*
1758 	 * When removing memory in the same granularity as it was added,
1759 	 * this function never fails. It might only fail if resources
1760 	 * have to be adjusted or split. We'll ignore the error, as
1761 	 * removing of memory cannot fail.
1762 	 */
1763 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1764 	if (ret) {
1765 		resource_size_t endres = start + size - 1;
1766 
1767 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1768 			&start, &endres, ret);
1769 	}
1770 }
1771 
1772 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1773 {
1774 	int rc = 0;
1775 
1776 	BUG_ON(check_hotplug_memory_range(start, size));
1777 
1778 	/*
1779 	 * All memory blocks must be offlined before removing memory.  Check
1780 	 * whether all memory blocks in question are offline and return error
1781 	 * if this is not the case.
1782 	 */
1783 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1784 	if (rc)
1785 		return rc;
1786 
1787 	/* remove memmap entry */
1788 	firmware_map_remove(start, start + size, "System RAM");
1789 
1790 	/*
1791 	 * Memory block device removal under the device_hotplug_lock is
1792 	 * a barrier against racing online attempts.
1793 	 */
1794 	remove_memory_block_devices(start, size);
1795 
1796 	mem_hotplug_begin();
1797 
1798 	arch_remove_memory(nid, start, size, NULL);
1799 
1800 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1801 		memblock_free(start, size);
1802 		memblock_remove(start, size);
1803 	}
1804 
1805 	__release_memory_resource(start, size);
1806 
1807 	try_offline_node(nid);
1808 
1809 	mem_hotplug_done();
1810 	return 0;
1811 }
1812 
1813 /**
1814  * remove_memory
1815  * @nid: the node ID
1816  * @start: physical address of the region to remove
1817  * @size: size of the region to remove
1818  *
1819  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1820  * and online/offline operations before this call, as required by
1821  * try_offline_node().
1822  */
1823 void __remove_memory(int nid, u64 start, u64 size)
1824 {
1825 
1826 	/*
1827 	 * trigger BUG() if some memory is not offlined prior to calling this
1828 	 * function
1829 	 */
1830 	if (try_remove_memory(nid, start, size))
1831 		BUG();
1832 }
1833 
1834 /*
1835  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1836  * some memory is not offline
1837  */
1838 int remove_memory(int nid, u64 start, u64 size)
1839 {
1840 	int rc;
1841 
1842 	lock_device_hotplug();
1843 	rc  = try_remove_memory(nid, start, size);
1844 	unlock_device_hotplug();
1845 
1846 	return rc;
1847 }
1848 EXPORT_SYMBOL_GPL(remove_memory);
1849 
1850 /*
1851  * Try to offline and remove a memory block. Might take a long time to
1852  * finish in case memory is still in use. Primarily useful for memory devices
1853  * that logically unplugged all memory (so it's no longer in use) and want to
1854  * offline + remove the memory block.
1855  */
1856 int offline_and_remove_memory(int nid, u64 start, u64 size)
1857 {
1858 	struct memory_block *mem;
1859 	int rc = -EINVAL;
1860 
1861 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1862 	    size != memory_block_size_bytes())
1863 		return rc;
1864 
1865 	lock_device_hotplug();
1866 	mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1867 	if (mem)
1868 		rc = device_offline(&mem->dev);
1869 	/* Ignore if the device is already offline. */
1870 	if (rc > 0)
1871 		rc = 0;
1872 
1873 	/*
1874 	 * In case we succeeded to offline the memory block, remove it.
1875 	 * This cannot fail as it cannot get onlined in the meantime.
1876 	 */
1877 	if (!rc) {
1878 		rc = try_remove_memory(nid, start, size);
1879 		WARN_ON_ONCE(rc);
1880 	}
1881 	unlock_device_hotplug();
1882 
1883 	return rc;
1884 }
1885 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1886 #endif /* CONFIG_MEMORY_HOTREMOVE */
1887