1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 int memhp_default_online_type = MMOP_OFFLINE; 71 #else 72 int memhp_default_online_type = MMOP_ONLINE; 73 #endif 74 75 static int __init setup_memhp_default_state(char *str) 76 { 77 const int online_type = memhp_online_type_from_str(str); 78 79 if (online_type >= 0) 80 memhp_default_online_type = online_type; 81 82 return 1; 83 } 84 __setup("memhp_default_state=", setup_memhp_default_state); 85 86 void mem_hotplug_begin(void) 87 { 88 cpus_read_lock(); 89 percpu_down_write(&mem_hotplug_lock); 90 } 91 92 void mem_hotplug_done(void) 93 { 94 percpu_up_write(&mem_hotplug_lock); 95 cpus_read_unlock(); 96 } 97 98 u64 max_mem_size = U64_MAX; 99 100 /* add this memory to iomem resource */ 101 static struct resource *register_memory_resource(u64 start, u64 size, 102 const char *resource_name) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 107 if (strcmp(resource_name, "System RAM")) 108 flags |= IORESOURCE_MEM_DRIVER_MANAGED; 109 110 /* 111 * Make sure value parsed from 'mem=' only restricts memory adding 112 * while booting, so that memory hotplug won't be impacted. Please 113 * refer to document of 'mem=' in kernel-parameters.txt for more 114 * details. 115 */ 116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 117 return ERR_PTR(-E2BIG); 118 119 /* 120 * Request ownership of the new memory range. This might be 121 * a child of an existing resource that was present but 122 * not marked as busy. 123 */ 124 res = __request_region(&iomem_resource, start, size, 125 resource_name, flags); 126 127 if (!res) { 128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 129 start, start + size); 130 return ERR_PTR(-EEXIST); 131 } 132 return res; 133 } 134 135 static void release_memory_resource(struct resource *res) 136 { 137 if (!res) 138 return; 139 release_resource(res); 140 kfree(res); 141 } 142 143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 144 void get_page_bootmem(unsigned long info, struct page *page, 145 unsigned long type) 146 { 147 page->freelist = (void *)type; 148 SetPagePrivate(page); 149 set_page_private(page, info); 150 page_ref_inc(page); 151 } 152 153 void put_page_bootmem(struct page *page) 154 { 155 unsigned long type; 156 157 type = (unsigned long) page->freelist; 158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 160 161 if (page_ref_dec_return(page) == 1) { 162 page->freelist = NULL; 163 ClearPagePrivate(page); 164 set_page_private(page, 0); 165 INIT_LIST_HEAD(&page->lru); 166 free_reserved_page(page); 167 } 168 } 169 170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 171 #ifndef CONFIG_SPARSEMEM_VMEMMAP 172 static void register_page_bootmem_info_section(unsigned long start_pfn) 173 { 174 unsigned long mapsize, section_nr, i; 175 struct mem_section *ms; 176 struct page *page, *memmap; 177 struct mem_section_usage *usage; 178 179 section_nr = pfn_to_section_nr(start_pfn); 180 ms = __nr_to_section(section_nr); 181 182 /* Get section's memmap address */ 183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 184 185 /* 186 * Get page for the memmap's phys address 187 * XXX: need more consideration for sparse_vmemmap... 188 */ 189 page = virt_to_page(memmap); 190 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 192 193 /* remember memmap's page */ 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, SECTION_INFO); 196 197 usage = ms->usage; 198 page = virt_to_page(usage); 199 200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 201 202 for (i = 0; i < mapsize; i++, page++) 203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 204 205 } 206 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 207 static void register_page_bootmem_info_section(unsigned long start_pfn) 208 { 209 unsigned long mapsize, section_nr, i; 210 struct mem_section *ms; 211 struct page *page, *memmap; 212 struct mem_section_usage *usage; 213 214 section_nr = pfn_to_section_nr(start_pfn); 215 ms = __nr_to_section(section_nr); 216 217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 218 219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 220 221 usage = ms->usage; 222 page = virt_to_page(usage); 223 224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 225 226 for (i = 0; i < mapsize; i++, page++) 227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 228 } 229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 230 231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 232 { 233 unsigned long i, pfn, end_pfn, nr_pages; 234 int node = pgdat->node_id; 235 struct page *page; 236 237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 238 page = virt_to_page(pgdat); 239 240 for (i = 0; i < nr_pages; i++, page++) 241 get_page_bootmem(node, page, NODE_INFO); 242 243 pfn = pgdat->node_start_pfn; 244 end_pfn = pgdat_end_pfn(pgdat); 245 246 /* register section info */ 247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 248 /* 249 * Some platforms can assign the same pfn to multiple nodes - on 250 * node0 as well as nodeN. To avoid registering a pfn against 251 * multiple nodes we check that this pfn does not already 252 * reside in some other nodes. 253 */ 254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 255 register_page_bootmem_info_section(pfn); 256 } 257 } 258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 259 260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 261 const char *reason) 262 { 263 /* 264 * Disallow all operations smaller than a sub-section and only 265 * allow operations smaller than a section for 266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 267 * enforces a larger memory_block_size_bytes() granularity for 268 * memory that will be marked online, so this check should only 269 * fire for direct arch_{add,remove}_memory() users outside of 270 * add_memory_resource(). 271 */ 272 unsigned long min_align; 273 274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 275 min_align = PAGES_PER_SUBSECTION; 276 else 277 min_align = PAGES_PER_SECTION; 278 if (!IS_ALIGNED(pfn, min_align) 279 || !IS_ALIGNED(nr_pages, min_align)) { 280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 281 reason, pfn, pfn + nr_pages - 1); 282 return -EINVAL; 283 } 284 return 0; 285 } 286 287 static int check_hotplug_memory_addressable(unsigned long pfn, 288 unsigned long nr_pages) 289 { 290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1; 291 292 if (max_addr >> MAX_PHYSMEM_BITS) { 293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1; 294 WARN(1, 295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n", 296 (u64)PFN_PHYS(pfn), max_addr, max_allowed); 297 return -E2BIG; 298 } 299 300 return 0; 301 } 302 303 /* 304 * Reasonably generic function for adding memory. It is 305 * expected that archs that support memory hotplug will 306 * call this function after deciding the zone to which to 307 * add the new pages. 308 */ 309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 310 struct mhp_params *params) 311 { 312 const unsigned long end_pfn = pfn + nr_pages; 313 unsigned long cur_nr_pages; 314 int err; 315 struct vmem_altmap *altmap = params->altmap; 316 317 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 318 return -EINVAL; 319 320 err = check_hotplug_memory_addressable(pfn, nr_pages); 321 if (err) 322 return err; 323 324 if (altmap) { 325 /* 326 * Validate altmap is within bounds of the total request 327 */ 328 if (altmap->base_pfn != pfn 329 || vmem_altmap_offset(altmap) > nr_pages) { 330 pr_warn_once("memory add fail, invalid altmap\n"); 331 return -EINVAL; 332 } 333 altmap->alloc = 0; 334 } 335 336 err = check_pfn_span(pfn, nr_pages, "add"); 337 if (err) 338 return err; 339 340 for (; pfn < end_pfn; pfn += cur_nr_pages) { 341 /* Select all remaining pages up to the next section boundary */ 342 cur_nr_pages = min(end_pfn - pfn, 343 SECTION_ALIGN_UP(pfn + 1) - pfn); 344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 345 if (err) 346 break; 347 cond_resched(); 348 } 349 vmemmap_populate_print_last(); 350 return err; 351 } 352 353 #ifdef CONFIG_NUMA 354 int __weak memory_add_physaddr_to_nid(u64 start) 355 { 356 pr_info_once("Unknown online node for memory at 0x%llx, assuming node 0\n", 357 start); 358 return 0; 359 } 360 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); 361 362 int __weak phys_to_target_node(u64 start) 363 { 364 pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n", 365 start); 366 return 0; 367 } 368 EXPORT_SYMBOL_GPL(phys_to_target_node); 369 #endif 370 371 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 372 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 373 unsigned long start_pfn, 374 unsigned long end_pfn) 375 { 376 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 377 if (unlikely(!pfn_to_online_page(start_pfn))) 378 continue; 379 380 if (unlikely(pfn_to_nid(start_pfn) != nid)) 381 continue; 382 383 if (zone != page_zone(pfn_to_page(start_pfn))) 384 continue; 385 386 return start_pfn; 387 } 388 389 return 0; 390 } 391 392 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 393 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 394 unsigned long start_pfn, 395 unsigned long end_pfn) 396 { 397 unsigned long pfn; 398 399 /* pfn is the end pfn of a memory section. */ 400 pfn = end_pfn - 1; 401 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 402 if (unlikely(!pfn_to_online_page(pfn))) 403 continue; 404 405 if (unlikely(pfn_to_nid(pfn) != nid)) 406 continue; 407 408 if (zone != page_zone(pfn_to_page(pfn))) 409 continue; 410 411 return pfn; 412 } 413 414 return 0; 415 } 416 417 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 418 unsigned long end_pfn) 419 { 420 unsigned long pfn; 421 int nid = zone_to_nid(zone); 422 423 zone_span_writelock(zone); 424 if (zone->zone_start_pfn == start_pfn) { 425 /* 426 * If the section is smallest section in the zone, it need 427 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 428 * In this case, we find second smallest valid mem_section 429 * for shrinking zone. 430 */ 431 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 432 zone_end_pfn(zone)); 433 if (pfn) { 434 zone->spanned_pages = zone_end_pfn(zone) - pfn; 435 zone->zone_start_pfn = pfn; 436 } else { 437 zone->zone_start_pfn = 0; 438 zone->spanned_pages = 0; 439 } 440 } else if (zone_end_pfn(zone) == end_pfn) { 441 /* 442 * If the section is biggest section in the zone, it need 443 * shrink zone->spanned_pages. 444 * In this case, we find second biggest valid mem_section for 445 * shrinking zone. 446 */ 447 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 448 start_pfn); 449 if (pfn) 450 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 451 else { 452 zone->zone_start_pfn = 0; 453 zone->spanned_pages = 0; 454 } 455 } 456 zone_span_writeunlock(zone); 457 } 458 459 static void update_pgdat_span(struct pglist_data *pgdat) 460 { 461 unsigned long node_start_pfn = 0, node_end_pfn = 0; 462 struct zone *zone; 463 464 for (zone = pgdat->node_zones; 465 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 466 unsigned long zone_end_pfn = zone->zone_start_pfn + 467 zone->spanned_pages; 468 469 /* No need to lock the zones, they can't change. */ 470 if (!zone->spanned_pages) 471 continue; 472 if (!node_end_pfn) { 473 node_start_pfn = zone->zone_start_pfn; 474 node_end_pfn = zone_end_pfn; 475 continue; 476 } 477 478 if (zone_end_pfn > node_end_pfn) 479 node_end_pfn = zone_end_pfn; 480 if (zone->zone_start_pfn < node_start_pfn) 481 node_start_pfn = zone->zone_start_pfn; 482 } 483 484 pgdat->node_start_pfn = node_start_pfn; 485 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 486 } 487 488 void __ref remove_pfn_range_from_zone(struct zone *zone, 489 unsigned long start_pfn, 490 unsigned long nr_pages) 491 { 492 const unsigned long end_pfn = start_pfn + nr_pages; 493 struct pglist_data *pgdat = zone->zone_pgdat; 494 unsigned long pfn, cur_nr_pages, flags; 495 496 /* Poison struct pages because they are now uninitialized again. */ 497 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 498 cond_resched(); 499 500 /* Select all remaining pages up to the next section boundary */ 501 cur_nr_pages = 502 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 503 page_init_poison(pfn_to_page(pfn), 504 sizeof(struct page) * cur_nr_pages); 505 } 506 507 #ifdef CONFIG_ZONE_DEVICE 508 /* 509 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 510 * we will not try to shrink the zones - which is okay as 511 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 512 */ 513 if (zone_idx(zone) == ZONE_DEVICE) 514 return; 515 #endif 516 517 clear_zone_contiguous(zone); 518 519 pgdat_resize_lock(zone->zone_pgdat, &flags); 520 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 521 update_pgdat_span(pgdat); 522 pgdat_resize_unlock(zone->zone_pgdat, &flags); 523 524 set_zone_contiguous(zone); 525 } 526 527 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 528 unsigned long map_offset, 529 struct vmem_altmap *altmap) 530 { 531 struct mem_section *ms = __pfn_to_section(pfn); 532 533 if (WARN_ON_ONCE(!valid_section(ms))) 534 return; 535 536 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 537 } 538 539 /** 540 * __remove_pages() - remove sections of pages 541 * @pfn: starting pageframe (must be aligned to start of a section) 542 * @nr_pages: number of pages to remove (must be multiple of section size) 543 * @altmap: alternative device page map or %NULL if default memmap is used 544 * 545 * Generic helper function to remove section mappings and sysfs entries 546 * for the section of the memory we are removing. Caller needs to make 547 * sure that pages are marked reserved and zones are adjust properly by 548 * calling offline_pages(). 549 */ 550 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 551 struct vmem_altmap *altmap) 552 { 553 const unsigned long end_pfn = pfn + nr_pages; 554 unsigned long cur_nr_pages; 555 unsigned long map_offset = 0; 556 557 map_offset = vmem_altmap_offset(altmap); 558 559 if (check_pfn_span(pfn, nr_pages, "remove")) 560 return; 561 562 for (; pfn < end_pfn; pfn += cur_nr_pages) { 563 cond_resched(); 564 /* Select all remaining pages up to the next section boundary */ 565 cur_nr_pages = min(end_pfn - pfn, 566 SECTION_ALIGN_UP(pfn + 1) - pfn); 567 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 568 map_offset = 0; 569 } 570 } 571 572 int set_online_page_callback(online_page_callback_t callback) 573 { 574 int rc = -EINVAL; 575 576 get_online_mems(); 577 mutex_lock(&online_page_callback_lock); 578 579 if (online_page_callback == generic_online_page) { 580 online_page_callback = callback; 581 rc = 0; 582 } 583 584 mutex_unlock(&online_page_callback_lock); 585 put_online_mems(); 586 587 return rc; 588 } 589 EXPORT_SYMBOL_GPL(set_online_page_callback); 590 591 int restore_online_page_callback(online_page_callback_t callback) 592 { 593 int rc = -EINVAL; 594 595 get_online_mems(); 596 mutex_lock(&online_page_callback_lock); 597 598 if (online_page_callback == callback) { 599 online_page_callback = generic_online_page; 600 rc = 0; 601 } 602 603 mutex_unlock(&online_page_callback_lock); 604 put_online_mems(); 605 606 return rc; 607 } 608 EXPORT_SYMBOL_GPL(restore_online_page_callback); 609 610 void generic_online_page(struct page *page, unsigned int order) 611 { 612 /* 613 * Freeing the page with debug_pagealloc enabled will try to unmap it, 614 * so we should map it first. This is better than introducing a special 615 * case in page freeing fast path. 616 */ 617 if (debug_pagealloc_enabled_static()) 618 kernel_map_pages(page, 1 << order, 1); 619 __free_pages_core(page, order); 620 totalram_pages_add(1UL << order); 621 #ifdef CONFIG_HIGHMEM 622 if (PageHighMem(page)) 623 totalhigh_pages_add(1UL << order); 624 #endif 625 } 626 EXPORT_SYMBOL_GPL(generic_online_page); 627 628 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 629 void *arg) 630 { 631 const unsigned long end_pfn = start_pfn + nr_pages; 632 unsigned long pfn; 633 int order; 634 635 /* 636 * Online the pages. The callback might decide to keep some pages 637 * PG_reserved (to add them to the buddy later), but we still account 638 * them as being online/belonging to this zone ("present"). 639 */ 640 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) { 641 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn))); 642 /* __free_pages_core() wants pfns to be aligned to the order */ 643 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order))) 644 order = 0; 645 (*online_page_callback)(pfn_to_page(pfn), order); 646 } 647 648 /* mark all involved sections as online */ 649 online_mem_sections(start_pfn, end_pfn); 650 651 *(unsigned long *)arg += nr_pages; 652 return 0; 653 } 654 655 /* check which state of node_states will be changed when online memory */ 656 static void node_states_check_changes_online(unsigned long nr_pages, 657 struct zone *zone, struct memory_notify *arg) 658 { 659 int nid = zone_to_nid(zone); 660 661 arg->status_change_nid = NUMA_NO_NODE; 662 arg->status_change_nid_normal = NUMA_NO_NODE; 663 arg->status_change_nid_high = NUMA_NO_NODE; 664 665 if (!node_state(nid, N_MEMORY)) 666 arg->status_change_nid = nid; 667 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 668 arg->status_change_nid_normal = nid; 669 #ifdef CONFIG_HIGHMEM 670 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 671 arg->status_change_nid_high = nid; 672 #endif 673 } 674 675 static void node_states_set_node(int node, struct memory_notify *arg) 676 { 677 if (arg->status_change_nid_normal >= 0) 678 node_set_state(node, N_NORMAL_MEMORY); 679 680 if (arg->status_change_nid_high >= 0) 681 node_set_state(node, N_HIGH_MEMORY); 682 683 if (arg->status_change_nid >= 0) 684 node_set_state(node, N_MEMORY); 685 } 686 687 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 688 unsigned long nr_pages) 689 { 690 unsigned long old_end_pfn = zone_end_pfn(zone); 691 692 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 693 zone->zone_start_pfn = start_pfn; 694 695 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 696 } 697 698 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 699 unsigned long nr_pages) 700 { 701 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 702 703 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 704 pgdat->node_start_pfn = start_pfn; 705 706 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 707 708 } 709 /* 710 * Associate the pfn range with the given zone, initializing the memmaps 711 * and resizing the pgdat/zone data to span the added pages. After this 712 * call, all affected pages are PG_reserved. 713 */ 714 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 715 unsigned long nr_pages, struct vmem_altmap *altmap) 716 { 717 struct pglist_data *pgdat = zone->zone_pgdat; 718 int nid = pgdat->node_id; 719 unsigned long flags; 720 721 clear_zone_contiguous(zone); 722 723 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 724 pgdat_resize_lock(pgdat, &flags); 725 zone_span_writelock(zone); 726 if (zone_is_empty(zone)) 727 init_currently_empty_zone(zone, start_pfn, nr_pages); 728 resize_zone_range(zone, start_pfn, nr_pages); 729 zone_span_writeunlock(zone); 730 resize_pgdat_range(pgdat, start_pfn, nr_pages); 731 pgdat_resize_unlock(pgdat, &flags); 732 733 /* 734 * TODO now we have a visible range of pages which are not associated 735 * with their zone properly. Not nice but set_pfnblock_flags_mask 736 * expects the zone spans the pfn range. All the pages in the range 737 * are reserved so nobody should be touching them so we should be safe 738 */ 739 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 740 MEMINIT_HOTPLUG, altmap); 741 742 set_zone_contiguous(zone); 743 } 744 745 /* 746 * Returns a default kernel memory zone for the given pfn range. 747 * If no kernel zone covers this pfn range it will automatically go 748 * to the ZONE_NORMAL. 749 */ 750 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 751 unsigned long nr_pages) 752 { 753 struct pglist_data *pgdat = NODE_DATA(nid); 754 int zid; 755 756 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 757 struct zone *zone = &pgdat->node_zones[zid]; 758 759 if (zone_intersects(zone, start_pfn, nr_pages)) 760 return zone; 761 } 762 763 return &pgdat->node_zones[ZONE_NORMAL]; 764 } 765 766 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 767 unsigned long nr_pages) 768 { 769 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 770 nr_pages); 771 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 772 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 773 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 774 775 /* 776 * We inherit the existing zone in a simple case where zones do not 777 * overlap in the given range 778 */ 779 if (in_kernel ^ in_movable) 780 return (in_kernel) ? kernel_zone : movable_zone; 781 782 /* 783 * If the range doesn't belong to any zone or two zones overlap in the 784 * given range then we use movable zone only if movable_node is 785 * enabled because we always online to a kernel zone by default. 786 */ 787 return movable_node_enabled ? movable_zone : kernel_zone; 788 } 789 790 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 791 unsigned long nr_pages) 792 { 793 if (online_type == MMOP_ONLINE_KERNEL) 794 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 795 796 if (online_type == MMOP_ONLINE_MOVABLE) 797 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 798 799 return default_zone_for_pfn(nid, start_pfn, nr_pages); 800 } 801 802 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 803 int online_type, int nid) 804 { 805 unsigned long flags; 806 unsigned long onlined_pages = 0; 807 struct zone *zone; 808 int need_zonelists_rebuild = 0; 809 int ret; 810 struct memory_notify arg; 811 812 mem_hotplug_begin(); 813 814 /* associate pfn range with the zone */ 815 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 816 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL); 817 818 arg.start_pfn = pfn; 819 arg.nr_pages = nr_pages; 820 node_states_check_changes_online(nr_pages, zone, &arg); 821 822 ret = memory_notify(MEM_GOING_ONLINE, &arg); 823 ret = notifier_to_errno(ret); 824 if (ret) 825 goto failed_addition; 826 827 /* 828 * If this zone is not populated, then it is not in zonelist. 829 * This means the page allocator ignores this zone. 830 * So, zonelist must be updated after online. 831 */ 832 if (!populated_zone(zone)) { 833 need_zonelists_rebuild = 1; 834 setup_zone_pageset(zone); 835 } 836 837 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 838 online_pages_range); 839 if (ret) { 840 /* not a single memory resource was applicable */ 841 if (need_zonelists_rebuild) 842 zone_pcp_reset(zone); 843 goto failed_addition; 844 } 845 846 zone->present_pages += onlined_pages; 847 848 pgdat_resize_lock(zone->zone_pgdat, &flags); 849 zone->zone_pgdat->node_present_pages += onlined_pages; 850 pgdat_resize_unlock(zone->zone_pgdat, &flags); 851 852 /* 853 * When exposing larger, physically contiguous memory areas to the 854 * buddy, shuffling in the buddy (when freeing onlined pages, putting 855 * them either to the head or the tail of the freelist) is only helpful 856 * for maintaining the shuffle, but not for creating the initial 857 * shuffle. Shuffle the whole zone to make sure the just onlined pages 858 * are properly distributed across the whole freelist. 859 */ 860 shuffle_zone(zone); 861 862 node_states_set_node(nid, &arg); 863 if (need_zonelists_rebuild) 864 build_all_zonelists(NULL); 865 zone_pcp_update(zone); 866 867 init_per_zone_wmark_min(); 868 869 kswapd_run(nid); 870 kcompactd_run(nid); 871 872 writeback_set_ratelimit(); 873 874 memory_notify(MEM_ONLINE, &arg); 875 mem_hotplug_done(); 876 return 0; 877 878 failed_addition: 879 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 880 (unsigned long long) pfn << PAGE_SHIFT, 881 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 882 memory_notify(MEM_CANCEL_ONLINE, &arg); 883 remove_pfn_range_from_zone(zone, pfn, nr_pages); 884 mem_hotplug_done(); 885 return ret; 886 } 887 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 888 889 static void reset_node_present_pages(pg_data_t *pgdat) 890 { 891 struct zone *z; 892 893 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 894 z->present_pages = 0; 895 896 pgdat->node_present_pages = 0; 897 } 898 899 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 900 static pg_data_t __ref *hotadd_new_pgdat(int nid) 901 { 902 struct pglist_data *pgdat; 903 904 pgdat = NODE_DATA(nid); 905 if (!pgdat) { 906 pgdat = arch_alloc_nodedata(nid); 907 if (!pgdat) 908 return NULL; 909 910 pgdat->per_cpu_nodestats = 911 alloc_percpu(struct per_cpu_nodestat); 912 arch_refresh_nodedata(nid, pgdat); 913 } else { 914 int cpu; 915 /* 916 * Reset the nr_zones, order and highest_zoneidx before reuse. 917 * Note that kswapd will init kswapd_highest_zoneidx properly 918 * when it starts in the near future. 919 */ 920 pgdat->nr_zones = 0; 921 pgdat->kswapd_order = 0; 922 pgdat->kswapd_highest_zoneidx = 0; 923 for_each_online_cpu(cpu) { 924 struct per_cpu_nodestat *p; 925 926 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 927 memset(p, 0, sizeof(*p)); 928 } 929 } 930 931 /* we can use NODE_DATA(nid) from here */ 932 pgdat->node_id = nid; 933 pgdat->node_start_pfn = 0; 934 935 /* init node's zones as empty zones, we don't have any present pages.*/ 936 free_area_init_core_hotplug(nid); 937 938 /* 939 * The node we allocated has no zone fallback lists. For avoiding 940 * to access not-initialized zonelist, build here. 941 */ 942 build_all_zonelists(pgdat); 943 944 /* 945 * When memory is hot-added, all the memory is in offline state. So 946 * clear all zones' present_pages because they will be updated in 947 * online_pages() and offline_pages(). 948 */ 949 reset_node_managed_pages(pgdat); 950 reset_node_present_pages(pgdat); 951 952 return pgdat; 953 } 954 955 static void rollback_node_hotadd(int nid) 956 { 957 pg_data_t *pgdat = NODE_DATA(nid); 958 959 arch_refresh_nodedata(nid, NULL); 960 free_percpu(pgdat->per_cpu_nodestats); 961 arch_free_nodedata(pgdat); 962 } 963 964 965 /** 966 * try_online_node - online a node if offlined 967 * @nid: the node ID 968 * @set_node_online: Whether we want to online the node 969 * called by cpu_up() to online a node without onlined memory. 970 * 971 * Returns: 972 * 1 -> a new node has been allocated 973 * 0 -> the node is already online 974 * -ENOMEM -> the node could not be allocated 975 */ 976 static int __try_online_node(int nid, bool set_node_online) 977 { 978 pg_data_t *pgdat; 979 int ret = 1; 980 981 if (node_online(nid)) 982 return 0; 983 984 pgdat = hotadd_new_pgdat(nid); 985 if (!pgdat) { 986 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 987 ret = -ENOMEM; 988 goto out; 989 } 990 991 if (set_node_online) { 992 node_set_online(nid); 993 ret = register_one_node(nid); 994 BUG_ON(ret); 995 } 996 out: 997 return ret; 998 } 999 1000 /* 1001 * Users of this function always want to online/register the node 1002 */ 1003 int try_online_node(int nid) 1004 { 1005 int ret; 1006 1007 mem_hotplug_begin(); 1008 ret = __try_online_node(nid, true); 1009 mem_hotplug_done(); 1010 return ret; 1011 } 1012 1013 static int check_hotplug_memory_range(u64 start, u64 size) 1014 { 1015 /* memory range must be block size aligned */ 1016 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1017 !IS_ALIGNED(size, memory_block_size_bytes())) { 1018 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1019 memory_block_size_bytes(), start, size); 1020 return -EINVAL; 1021 } 1022 1023 return 0; 1024 } 1025 1026 static int online_memory_block(struct memory_block *mem, void *arg) 1027 { 1028 mem->online_type = memhp_default_online_type; 1029 return device_online(&mem->dev); 1030 } 1031 1032 /* 1033 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1034 * and online/offline operations (triggered e.g. by sysfs). 1035 * 1036 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1037 */ 1038 int __ref add_memory_resource(int nid, struct resource *res) 1039 { 1040 struct mhp_params params = { .pgprot = PAGE_KERNEL }; 1041 u64 start, size; 1042 bool new_node = false; 1043 int ret; 1044 1045 start = res->start; 1046 size = resource_size(res); 1047 1048 ret = check_hotplug_memory_range(start, size); 1049 if (ret) 1050 return ret; 1051 1052 if (!node_possible(nid)) { 1053 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1054 return -EINVAL; 1055 } 1056 1057 mem_hotplug_begin(); 1058 1059 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1060 memblock_add_node(start, size, nid); 1061 1062 ret = __try_online_node(nid, false); 1063 if (ret < 0) 1064 goto error; 1065 new_node = ret; 1066 1067 /* call arch's memory hotadd */ 1068 ret = arch_add_memory(nid, start, size, ¶ms); 1069 if (ret < 0) 1070 goto error; 1071 1072 /* create memory block devices after memory was added */ 1073 ret = create_memory_block_devices(start, size); 1074 if (ret) { 1075 arch_remove_memory(nid, start, size, NULL); 1076 goto error; 1077 } 1078 1079 if (new_node) { 1080 /* If sysfs file of new node can't be created, cpu on the node 1081 * can't be hot-added. There is no rollback way now. 1082 * So, check by BUG_ON() to catch it reluctantly.. 1083 * We online node here. We can't roll back from here. 1084 */ 1085 node_set_online(nid); 1086 ret = __register_one_node(nid); 1087 BUG_ON(ret); 1088 } 1089 1090 /* link memory sections under this node.*/ 1091 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1092 MEMINIT_HOTPLUG); 1093 BUG_ON(ret); 1094 1095 /* create new memmap entry */ 1096 if (!strcmp(res->name, "System RAM")) 1097 firmware_map_add_hotplug(start, start + size, "System RAM"); 1098 1099 /* device_online() will take the lock when calling online_pages() */ 1100 mem_hotplug_done(); 1101 1102 /* online pages if requested */ 1103 if (memhp_default_online_type != MMOP_OFFLINE) 1104 walk_memory_blocks(start, size, NULL, online_memory_block); 1105 1106 return ret; 1107 error: 1108 /* rollback pgdat allocation and others */ 1109 if (new_node) 1110 rollback_node_hotadd(nid); 1111 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1112 memblock_remove(start, size); 1113 mem_hotplug_done(); 1114 return ret; 1115 } 1116 1117 /* requires device_hotplug_lock, see add_memory_resource() */ 1118 int __ref __add_memory(int nid, u64 start, u64 size) 1119 { 1120 struct resource *res; 1121 int ret; 1122 1123 res = register_memory_resource(start, size, "System RAM"); 1124 if (IS_ERR(res)) 1125 return PTR_ERR(res); 1126 1127 ret = add_memory_resource(nid, res); 1128 if (ret < 0) 1129 release_memory_resource(res); 1130 return ret; 1131 } 1132 1133 int add_memory(int nid, u64 start, u64 size) 1134 { 1135 int rc; 1136 1137 lock_device_hotplug(); 1138 rc = __add_memory(nid, start, size); 1139 unlock_device_hotplug(); 1140 1141 return rc; 1142 } 1143 EXPORT_SYMBOL_GPL(add_memory); 1144 1145 /* 1146 * Add special, driver-managed memory to the system as system RAM. Such 1147 * memory is not exposed via the raw firmware-provided memmap as system 1148 * RAM, instead, it is detected and added by a driver - during cold boot, 1149 * after a reboot, and after kexec. 1150 * 1151 * Reasons why this memory should not be used for the initial memmap of a 1152 * kexec kernel or for placing kexec images: 1153 * - The booting kernel is in charge of determining how this memory will be 1154 * used (e.g., use persistent memory as system RAM) 1155 * - Coordination with a hypervisor is required before this memory 1156 * can be used (e.g., inaccessible parts). 1157 * 1158 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1159 * memory map") are created. Also, the created memory resource is flagged 1160 * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case 1161 * this memory as well (esp., not place kexec images onto it). 1162 * 1163 * The resource_name (visible via /proc/iomem) has to have the format 1164 * "System RAM ($DRIVER)". 1165 */ 1166 int add_memory_driver_managed(int nid, u64 start, u64 size, 1167 const char *resource_name) 1168 { 1169 struct resource *res; 1170 int rc; 1171 1172 if (!resource_name || 1173 strstr(resource_name, "System RAM (") != resource_name || 1174 resource_name[strlen(resource_name) - 1] != ')') 1175 return -EINVAL; 1176 1177 lock_device_hotplug(); 1178 1179 res = register_memory_resource(start, size, resource_name); 1180 if (IS_ERR(res)) { 1181 rc = PTR_ERR(res); 1182 goto out_unlock; 1183 } 1184 1185 rc = add_memory_resource(nid, res); 1186 if (rc < 0) 1187 release_memory_resource(res); 1188 1189 out_unlock: 1190 unlock_device_hotplug(); 1191 return rc; 1192 } 1193 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1194 1195 #ifdef CONFIG_MEMORY_HOTREMOVE 1196 /* 1197 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1198 * memory holes). When true, return the zone. 1199 */ 1200 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1201 unsigned long end_pfn) 1202 { 1203 unsigned long pfn, sec_end_pfn; 1204 struct zone *zone = NULL; 1205 struct page *page; 1206 int i; 1207 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1208 pfn < end_pfn; 1209 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1210 /* Make sure the memory section is present first */ 1211 if (!present_section_nr(pfn_to_section_nr(pfn))) 1212 continue; 1213 for (; pfn < sec_end_pfn && pfn < end_pfn; 1214 pfn += MAX_ORDER_NR_PAGES) { 1215 i = 0; 1216 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1217 while ((i < MAX_ORDER_NR_PAGES) && 1218 !pfn_valid_within(pfn + i)) 1219 i++; 1220 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1221 continue; 1222 /* Check if we got outside of the zone */ 1223 if (zone && !zone_spans_pfn(zone, pfn + i)) 1224 return NULL; 1225 page = pfn_to_page(pfn + i); 1226 if (zone && page_zone(page) != zone) 1227 return NULL; 1228 zone = page_zone(page); 1229 } 1230 } 1231 1232 return zone; 1233 } 1234 1235 /* 1236 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1237 * non-lru movable pages and hugepages). Will skip over most unmovable 1238 * pages (esp., pages that can be skipped when offlining), but bail out on 1239 * definitely unmovable pages. 1240 * 1241 * Returns: 1242 * 0 in case a movable page is found and movable_pfn was updated. 1243 * -ENOENT in case no movable page was found. 1244 * -EBUSY in case a definitely unmovable page was found. 1245 */ 1246 static int scan_movable_pages(unsigned long start, unsigned long end, 1247 unsigned long *movable_pfn) 1248 { 1249 unsigned long pfn; 1250 1251 for (pfn = start; pfn < end; pfn++) { 1252 struct page *page, *head; 1253 unsigned long skip; 1254 1255 if (!pfn_valid(pfn)) 1256 continue; 1257 page = pfn_to_page(pfn); 1258 if (PageLRU(page)) 1259 goto found; 1260 if (__PageMovable(page)) 1261 goto found; 1262 1263 /* 1264 * PageOffline() pages that are not marked __PageMovable() and 1265 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1266 * definitely unmovable. If their reference count would be 0, 1267 * they could at least be skipped when offlining memory. 1268 */ 1269 if (PageOffline(page) && page_count(page)) 1270 return -EBUSY; 1271 1272 if (!PageHuge(page)) 1273 continue; 1274 head = compound_head(page); 1275 if (page_huge_active(head)) 1276 goto found; 1277 skip = compound_nr(head) - (page - head); 1278 pfn += skip - 1; 1279 } 1280 return -ENOENT; 1281 found: 1282 *movable_pfn = pfn; 1283 return 0; 1284 } 1285 1286 static struct page *new_node_page(struct page *page, unsigned long private) 1287 { 1288 nodemask_t nmask = node_states[N_MEMORY]; 1289 struct migration_target_control mtc = { 1290 .nid = page_to_nid(page), 1291 .nmask = &nmask, 1292 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1293 }; 1294 1295 /* 1296 * try to allocate from a different node but reuse this node if there 1297 * are no other online nodes to be used (e.g. we are offlining a part 1298 * of the only existing node) 1299 */ 1300 node_clear(mtc.nid, nmask); 1301 if (nodes_empty(nmask)) 1302 node_set(mtc.nid, nmask); 1303 1304 return alloc_migration_target(page, (unsigned long)&mtc); 1305 } 1306 1307 static int 1308 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1309 { 1310 unsigned long pfn; 1311 struct page *page, *head; 1312 int ret = 0; 1313 LIST_HEAD(source); 1314 1315 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1316 if (!pfn_valid(pfn)) 1317 continue; 1318 page = pfn_to_page(pfn); 1319 head = compound_head(page); 1320 1321 if (PageHuge(page)) { 1322 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1323 isolate_huge_page(head, &source); 1324 continue; 1325 } else if (PageTransHuge(page)) 1326 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1327 1328 /* 1329 * HWPoison pages have elevated reference counts so the migration would 1330 * fail on them. It also doesn't make any sense to migrate them in the 1331 * first place. Still try to unmap such a page in case it is still mapped 1332 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1333 * the unmap as the catch all safety net). 1334 */ 1335 if (PageHWPoison(page)) { 1336 if (WARN_ON(PageLRU(page))) 1337 isolate_lru_page(page); 1338 if (page_mapped(page)) 1339 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1340 continue; 1341 } 1342 1343 if (!get_page_unless_zero(page)) 1344 continue; 1345 /* 1346 * We can skip free pages. And we can deal with pages on 1347 * LRU and non-lru movable pages. 1348 */ 1349 if (PageLRU(page)) 1350 ret = isolate_lru_page(page); 1351 else 1352 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1353 if (!ret) { /* Success */ 1354 list_add_tail(&page->lru, &source); 1355 if (!__PageMovable(page)) 1356 inc_node_page_state(page, NR_ISOLATED_ANON + 1357 page_is_file_lru(page)); 1358 1359 } else { 1360 pr_warn("failed to isolate pfn %lx\n", pfn); 1361 dump_page(page, "isolation failed"); 1362 } 1363 put_page(page); 1364 } 1365 if (!list_empty(&source)) { 1366 /* Allocate a new page from the nearest neighbor node */ 1367 ret = migrate_pages(&source, new_node_page, NULL, 0, 1368 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1369 if (ret) { 1370 list_for_each_entry(page, &source, lru) { 1371 pr_warn("migrating pfn %lx failed ret:%d ", 1372 page_to_pfn(page), ret); 1373 dump_page(page, "migration failure"); 1374 } 1375 putback_movable_pages(&source); 1376 } 1377 } 1378 1379 return ret; 1380 } 1381 1382 /* Mark all sections offline and remove all free pages from the buddy. */ 1383 static int 1384 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1385 void *data) 1386 { 1387 unsigned long *offlined_pages = (unsigned long *)data; 1388 1389 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1390 return 0; 1391 } 1392 1393 /* 1394 * Check all pages in range, recorded as memory resource, are isolated. 1395 */ 1396 static int 1397 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1398 void *data) 1399 { 1400 return test_pages_isolated(start_pfn, start_pfn + nr_pages, 1401 MEMORY_OFFLINE); 1402 } 1403 1404 static int __init cmdline_parse_movable_node(char *p) 1405 { 1406 movable_node_enabled = true; 1407 return 0; 1408 } 1409 early_param("movable_node", cmdline_parse_movable_node); 1410 1411 /* check which state of node_states will be changed when offline memory */ 1412 static void node_states_check_changes_offline(unsigned long nr_pages, 1413 struct zone *zone, struct memory_notify *arg) 1414 { 1415 struct pglist_data *pgdat = zone->zone_pgdat; 1416 unsigned long present_pages = 0; 1417 enum zone_type zt; 1418 1419 arg->status_change_nid = NUMA_NO_NODE; 1420 arg->status_change_nid_normal = NUMA_NO_NODE; 1421 arg->status_change_nid_high = NUMA_NO_NODE; 1422 1423 /* 1424 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1425 * If the memory to be offline is within the range 1426 * [0..ZONE_NORMAL], and it is the last present memory there, 1427 * the zones in that range will become empty after the offlining, 1428 * thus we can determine that we need to clear the node from 1429 * node_states[N_NORMAL_MEMORY]. 1430 */ 1431 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1432 present_pages += pgdat->node_zones[zt].present_pages; 1433 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1434 arg->status_change_nid_normal = zone_to_nid(zone); 1435 1436 #ifdef CONFIG_HIGHMEM 1437 /* 1438 * node_states[N_HIGH_MEMORY] contains nodes which 1439 * have normal memory or high memory. 1440 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1441 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1442 * we determine that the zones in that range become empty, 1443 * we need to clear the node for N_HIGH_MEMORY. 1444 */ 1445 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1446 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1447 arg->status_change_nid_high = zone_to_nid(zone); 1448 #endif 1449 1450 /* 1451 * We have accounted the pages from [0..ZONE_NORMAL), and 1452 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1453 * as well. 1454 * Here we count the possible pages from ZONE_MOVABLE. 1455 * If after having accounted all the pages, we see that the nr_pages 1456 * to be offlined is over or equal to the accounted pages, 1457 * we know that the node will become empty, and so, we can clear 1458 * it for N_MEMORY as well. 1459 */ 1460 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1461 1462 if (nr_pages >= present_pages) 1463 arg->status_change_nid = zone_to_nid(zone); 1464 } 1465 1466 static void node_states_clear_node(int node, struct memory_notify *arg) 1467 { 1468 if (arg->status_change_nid_normal >= 0) 1469 node_clear_state(node, N_NORMAL_MEMORY); 1470 1471 if (arg->status_change_nid_high >= 0) 1472 node_clear_state(node, N_HIGH_MEMORY); 1473 1474 if (arg->status_change_nid >= 0) 1475 node_clear_state(node, N_MEMORY); 1476 } 1477 1478 static int count_system_ram_pages_cb(unsigned long start_pfn, 1479 unsigned long nr_pages, void *data) 1480 { 1481 unsigned long *nr_system_ram_pages = data; 1482 1483 *nr_system_ram_pages += nr_pages; 1484 return 0; 1485 } 1486 1487 static int __ref __offline_pages(unsigned long start_pfn, 1488 unsigned long end_pfn) 1489 { 1490 unsigned long pfn, nr_pages = 0; 1491 unsigned long offlined_pages = 0; 1492 int ret, node, nr_isolate_pageblock; 1493 unsigned long flags; 1494 struct zone *zone; 1495 struct memory_notify arg; 1496 char *reason; 1497 1498 mem_hotplug_begin(); 1499 1500 /* 1501 * Don't allow to offline memory blocks that contain holes. 1502 * Consequently, memory blocks with holes can never get onlined 1503 * via the hotplug path - online_pages() - as hotplugged memory has 1504 * no holes. This way, we e.g., don't have to worry about marking 1505 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1506 * avoid using walk_system_ram_range() later. 1507 */ 1508 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages, 1509 count_system_ram_pages_cb); 1510 if (nr_pages != end_pfn - start_pfn) { 1511 ret = -EINVAL; 1512 reason = "memory holes"; 1513 goto failed_removal; 1514 } 1515 1516 /* This makes hotplug much easier...and readable. 1517 we assume this for now. .*/ 1518 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1519 if (!zone) { 1520 ret = -EINVAL; 1521 reason = "multizone range"; 1522 goto failed_removal; 1523 } 1524 node = zone_to_nid(zone); 1525 1526 /* set above range as isolated */ 1527 ret = start_isolate_page_range(start_pfn, end_pfn, 1528 MIGRATE_MOVABLE, 1529 MEMORY_OFFLINE | REPORT_FAILURE); 1530 if (ret < 0) { 1531 reason = "failure to isolate range"; 1532 goto failed_removal; 1533 } 1534 nr_isolate_pageblock = ret; 1535 1536 arg.start_pfn = start_pfn; 1537 arg.nr_pages = nr_pages; 1538 node_states_check_changes_offline(nr_pages, zone, &arg); 1539 1540 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1541 ret = notifier_to_errno(ret); 1542 if (ret) { 1543 reason = "notifier failure"; 1544 goto failed_removal_isolated; 1545 } 1546 1547 do { 1548 pfn = start_pfn; 1549 do { 1550 if (signal_pending(current)) { 1551 ret = -EINTR; 1552 reason = "signal backoff"; 1553 goto failed_removal_isolated; 1554 } 1555 1556 cond_resched(); 1557 lru_add_drain_all(); 1558 1559 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1560 if (!ret) { 1561 /* 1562 * TODO: fatal migration failures should bail 1563 * out 1564 */ 1565 do_migrate_range(pfn, end_pfn); 1566 } 1567 } while (!ret); 1568 1569 if (ret != -ENOENT) { 1570 reason = "unmovable page"; 1571 goto failed_removal_isolated; 1572 } 1573 1574 /* 1575 * Dissolve free hugepages in the memory block before doing 1576 * offlining actually in order to make hugetlbfs's object 1577 * counting consistent. 1578 */ 1579 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1580 if (ret) { 1581 reason = "failure to dissolve huge pages"; 1582 goto failed_removal_isolated; 1583 } 1584 /* check again */ 1585 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1586 NULL, check_pages_isolated_cb); 1587 /* 1588 * per-cpu pages are drained in start_isolate_page_range, but if 1589 * there are still pages that are not free, make sure that we 1590 * drain again, because when we isolated range we might 1591 * have raced with another thread that was adding pages to pcp 1592 * list. 1593 * 1594 * Forward progress should be still guaranteed because 1595 * pages on the pcp list can only belong to MOVABLE_ZONE 1596 * because has_unmovable_pages explicitly checks for 1597 * PageBuddy on freed pages on other zones. 1598 */ 1599 if (ret) 1600 drain_all_pages(zone); 1601 } while (ret); 1602 1603 /* Ok, all of our target is isolated. 1604 We cannot do rollback at this point. */ 1605 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1606 &offlined_pages, offline_isolated_pages_cb); 1607 pr_info("Offlined Pages %ld\n", offlined_pages); 1608 /* 1609 * Onlining will reset pagetype flags and makes migrate type 1610 * MOVABLE, so just need to decrease the number of isolated 1611 * pageblocks zone counter here. 1612 */ 1613 spin_lock_irqsave(&zone->lock, flags); 1614 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1615 spin_unlock_irqrestore(&zone->lock, flags); 1616 1617 /* removal success */ 1618 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1619 zone->present_pages -= offlined_pages; 1620 1621 pgdat_resize_lock(zone->zone_pgdat, &flags); 1622 zone->zone_pgdat->node_present_pages -= offlined_pages; 1623 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1624 1625 init_per_zone_wmark_min(); 1626 1627 if (!populated_zone(zone)) { 1628 zone_pcp_reset(zone); 1629 build_all_zonelists(NULL); 1630 } else 1631 zone_pcp_update(zone); 1632 1633 node_states_clear_node(node, &arg); 1634 if (arg.status_change_nid >= 0) { 1635 kswapd_stop(node); 1636 kcompactd_stop(node); 1637 } 1638 1639 writeback_set_ratelimit(); 1640 1641 memory_notify(MEM_OFFLINE, &arg); 1642 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1643 mem_hotplug_done(); 1644 return 0; 1645 1646 failed_removal_isolated: 1647 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1648 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1649 failed_removal: 1650 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1651 (unsigned long long) start_pfn << PAGE_SHIFT, 1652 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1653 reason); 1654 /* pushback to free area */ 1655 mem_hotplug_done(); 1656 return ret; 1657 } 1658 1659 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1660 { 1661 return __offline_pages(start_pfn, start_pfn + nr_pages); 1662 } 1663 1664 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1665 { 1666 int ret = !is_memblock_offlined(mem); 1667 1668 if (unlikely(ret)) { 1669 phys_addr_t beginpa, endpa; 1670 1671 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1672 endpa = beginpa + memory_block_size_bytes() - 1; 1673 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1674 &beginpa, &endpa); 1675 1676 return -EBUSY; 1677 } 1678 return 0; 1679 } 1680 1681 static int check_cpu_on_node(pg_data_t *pgdat) 1682 { 1683 int cpu; 1684 1685 for_each_present_cpu(cpu) { 1686 if (cpu_to_node(cpu) == pgdat->node_id) 1687 /* 1688 * the cpu on this node isn't removed, and we can't 1689 * offline this node. 1690 */ 1691 return -EBUSY; 1692 } 1693 1694 return 0; 1695 } 1696 1697 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1698 { 1699 int nid = *(int *)arg; 1700 1701 /* 1702 * If a memory block belongs to multiple nodes, the stored nid is not 1703 * reliable. However, such blocks are always online (e.g., cannot get 1704 * offlined) and, therefore, are still spanned by the node. 1705 */ 1706 return mem->nid == nid ? -EEXIST : 0; 1707 } 1708 1709 /** 1710 * try_offline_node 1711 * @nid: the node ID 1712 * 1713 * Offline a node if all memory sections and cpus of the node are removed. 1714 * 1715 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1716 * and online/offline operations before this call. 1717 */ 1718 void try_offline_node(int nid) 1719 { 1720 pg_data_t *pgdat = NODE_DATA(nid); 1721 int rc; 1722 1723 /* 1724 * If the node still spans pages (especially ZONE_DEVICE), don't 1725 * offline it. A node spans memory after move_pfn_range_to_zone(), 1726 * e.g., after the memory block was onlined. 1727 */ 1728 if (pgdat->node_spanned_pages) 1729 return; 1730 1731 /* 1732 * Especially offline memory blocks might not be spanned by the 1733 * node. They will get spanned by the node once they get onlined. 1734 * However, they link to the node in sysfs and can get onlined later. 1735 */ 1736 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 1737 if (rc) 1738 return; 1739 1740 if (check_cpu_on_node(pgdat)) 1741 return; 1742 1743 /* 1744 * all memory/cpu of this node are removed, we can offline this 1745 * node now. 1746 */ 1747 node_set_offline(nid); 1748 unregister_one_node(nid); 1749 } 1750 EXPORT_SYMBOL(try_offline_node); 1751 1752 static void __release_memory_resource(resource_size_t start, 1753 resource_size_t size) 1754 { 1755 int ret; 1756 1757 /* 1758 * When removing memory in the same granularity as it was added, 1759 * this function never fails. It might only fail if resources 1760 * have to be adjusted or split. We'll ignore the error, as 1761 * removing of memory cannot fail. 1762 */ 1763 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1764 if (ret) { 1765 resource_size_t endres = start + size - 1; 1766 1767 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1768 &start, &endres, ret); 1769 } 1770 } 1771 1772 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1773 { 1774 int rc = 0; 1775 1776 BUG_ON(check_hotplug_memory_range(start, size)); 1777 1778 /* 1779 * All memory blocks must be offlined before removing memory. Check 1780 * whether all memory blocks in question are offline and return error 1781 * if this is not the case. 1782 */ 1783 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1784 if (rc) 1785 return rc; 1786 1787 /* remove memmap entry */ 1788 firmware_map_remove(start, start + size, "System RAM"); 1789 1790 /* 1791 * Memory block device removal under the device_hotplug_lock is 1792 * a barrier against racing online attempts. 1793 */ 1794 remove_memory_block_devices(start, size); 1795 1796 mem_hotplug_begin(); 1797 1798 arch_remove_memory(nid, start, size, NULL); 1799 1800 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1801 memblock_free(start, size); 1802 memblock_remove(start, size); 1803 } 1804 1805 __release_memory_resource(start, size); 1806 1807 try_offline_node(nid); 1808 1809 mem_hotplug_done(); 1810 return 0; 1811 } 1812 1813 /** 1814 * remove_memory 1815 * @nid: the node ID 1816 * @start: physical address of the region to remove 1817 * @size: size of the region to remove 1818 * 1819 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1820 * and online/offline operations before this call, as required by 1821 * try_offline_node(). 1822 */ 1823 void __remove_memory(int nid, u64 start, u64 size) 1824 { 1825 1826 /* 1827 * trigger BUG() if some memory is not offlined prior to calling this 1828 * function 1829 */ 1830 if (try_remove_memory(nid, start, size)) 1831 BUG(); 1832 } 1833 1834 /* 1835 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1836 * some memory is not offline 1837 */ 1838 int remove_memory(int nid, u64 start, u64 size) 1839 { 1840 int rc; 1841 1842 lock_device_hotplug(); 1843 rc = try_remove_memory(nid, start, size); 1844 unlock_device_hotplug(); 1845 1846 return rc; 1847 } 1848 EXPORT_SYMBOL_GPL(remove_memory); 1849 1850 /* 1851 * Try to offline and remove a memory block. Might take a long time to 1852 * finish in case memory is still in use. Primarily useful for memory devices 1853 * that logically unplugged all memory (so it's no longer in use) and want to 1854 * offline + remove the memory block. 1855 */ 1856 int offline_and_remove_memory(int nid, u64 start, u64 size) 1857 { 1858 struct memory_block *mem; 1859 int rc = -EINVAL; 1860 1861 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 1862 size != memory_block_size_bytes()) 1863 return rc; 1864 1865 lock_device_hotplug(); 1866 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start))); 1867 if (mem) 1868 rc = device_offline(&mem->dev); 1869 /* Ignore if the device is already offline. */ 1870 if (rc > 0) 1871 rc = 0; 1872 1873 /* 1874 * In case we succeeded to offline the memory block, remove it. 1875 * This cannot fail as it cannot get onlined in the meantime. 1876 */ 1877 if (!rc) { 1878 rc = try_remove_memory(nid, start, size); 1879 WARN_ON_ONCE(rc); 1880 } 1881 unlock_device_hotplug(); 1882 1883 return rc; 1884 } 1885 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 1886 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1887