1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 46 /* 47 * memory_hotplug.memmap_on_memory parameter 48 */ 49 static bool memmap_on_memory __ro_after_init; 50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 51 module_param(memmap_on_memory, bool, 0444); 52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 53 #endif 54 55 enum { 56 ONLINE_POLICY_CONTIG_ZONES = 0, 57 ONLINE_POLICY_AUTO_MOVABLE, 58 }; 59 60 const char *online_policy_to_str[] = { 61 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 62 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 63 }; 64 65 static int set_online_policy(const char *val, const struct kernel_param *kp) 66 { 67 int ret = sysfs_match_string(online_policy_to_str, val); 68 69 if (ret < 0) 70 return ret; 71 *((int *)kp->arg) = ret; 72 return 0; 73 } 74 75 static int get_online_policy(char *buffer, const struct kernel_param *kp) 76 { 77 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 78 } 79 80 /* 81 * memory_hotplug.online_policy: configure online behavior when onlining without 82 * specifying a zone (MMOP_ONLINE) 83 * 84 * "contig-zones": keep zone contiguous 85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 86 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 87 */ 88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 89 static const struct kernel_param_ops online_policy_ops = { 90 .set = set_online_policy, 91 .get = get_online_policy, 92 }; 93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 94 MODULE_PARM_DESC(online_policy, 95 "Set the online policy (\"contig-zones\", \"auto-movable\") " 96 "Default: \"contig-zones\""); 97 98 /* 99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 100 * 101 * The ratio represent an upper limit and the kernel might decide to not 102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 103 * doesn't allow for more MOVABLE memory. 104 */ 105 static unsigned int auto_movable_ratio __read_mostly = 301; 106 module_param(auto_movable_ratio, uint, 0644); 107 MODULE_PARM_DESC(auto_movable_ratio, 108 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 109 "in percent for \"auto-movable\" online policy. Default: 301"); 110 111 /* 112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 113 */ 114 #ifdef CONFIG_NUMA 115 static bool auto_movable_numa_aware __read_mostly = true; 116 module_param(auto_movable_numa_aware, bool, 0644); 117 MODULE_PARM_DESC(auto_movable_numa_aware, 118 "Consider numa node stats in addition to global stats in " 119 "\"auto-movable\" online policy. Default: true"); 120 #endif /* CONFIG_NUMA */ 121 122 /* 123 * online_page_callback contains pointer to current page onlining function. 124 * Initially it is generic_online_page(). If it is required it could be 125 * changed by calling set_online_page_callback() for callback registration 126 * and restore_online_page_callback() for generic callback restore. 127 */ 128 129 static online_page_callback_t online_page_callback = generic_online_page; 130 static DEFINE_MUTEX(online_page_callback_lock); 131 132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 133 134 void get_online_mems(void) 135 { 136 percpu_down_read(&mem_hotplug_lock); 137 } 138 139 void put_online_mems(void) 140 { 141 percpu_up_read(&mem_hotplug_lock); 142 } 143 144 bool movable_node_enabled = false; 145 146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 147 int mhp_default_online_type = MMOP_OFFLINE; 148 #else 149 int mhp_default_online_type = MMOP_ONLINE; 150 #endif 151 152 static int __init setup_memhp_default_state(char *str) 153 { 154 const int online_type = mhp_online_type_from_str(str); 155 156 if (online_type >= 0) 157 mhp_default_online_type = online_type; 158 159 return 1; 160 } 161 __setup("memhp_default_state=", setup_memhp_default_state); 162 163 void mem_hotplug_begin(void) 164 { 165 cpus_read_lock(); 166 percpu_down_write(&mem_hotplug_lock); 167 } 168 169 void mem_hotplug_done(void) 170 { 171 percpu_up_write(&mem_hotplug_lock); 172 cpus_read_unlock(); 173 } 174 175 u64 max_mem_size = U64_MAX; 176 177 /* add this memory to iomem resource */ 178 static struct resource *register_memory_resource(u64 start, u64 size, 179 const char *resource_name) 180 { 181 struct resource *res; 182 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 183 184 if (strcmp(resource_name, "System RAM")) 185 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 186 187 if (!mhp_range_allowed(start, size, true)) 188 return ERR_PTR(-E2BIG); 189 190 /* 191 * Make sure value parsed from 'mem=' only restricts memory adding 192 * while booting, so that memory hotplug won't be impacted. Please 193 * refer to document of 'mem=' in kernel-parameters.txt for more 194 * details. 195 */ 196 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 197 return ERR_PTR(-E2BIG); 198 199 /* 200 * Request ownership of the new memory range. This might be 201 * a child of an existing resource that was present but 202 * not marked as busy. 203 */ 204 res = __request_region(&iomem_resource, start, size, 205 resource_name, flags); 206 207 if (!res) { 208 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 209 start, start + size); 210 return ERR_PTR(-EEXIST); 211 } 212 return res; 213 } 214 215 static void release_memory_resource(struct resource *res) 216 { 217 if (!res) 218 return; 219 release_resource(res); 220 kfree(res); 221 } 222 223 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 224 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 225 const char *reason) 226 { 227 /* 228 * Disallow all operations smaller than a sub-section and only 229 * allow operations smaller than a section for 230 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 231 * enforces a larger memory_block_size_bytes() granularity for 232 * memory that will be marked online, so this check should only 233 * fire for direct arch_{add,remove}_memory() users outside of 234 * add_memory_resource(). 235 */ 236 unsigned long min_align; 237 238 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 239 min_align = PAGES_PER_SUBSECTION; 240 else 241 min_align = PAGES_PER_SECTION; 242 if (!IS_ALIGNED(pfn, min_align) 243 || !IS_ALIGNED(nr_pages, min_align)) { 244 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 245 reason, pfn, pfn + nr_pages - 1); 246 return -EINVAL; 247 } 248 return 0; 249 } 250 251 /* 252 * Return page for the valid pfn only if the page is online. All pfn 253 * walkers which rely on the fully initialized page->flags and others 254 * should use this rather than pfn_valid && pfn_to_page 255 */ 256 struct page *pfn_to_online_page(unsigned long pfn) 257 { 258 unsigned long nr = pfn_to_section_nr(pfn); 259 struct dev_pagemap *pgmap; 260 struct mem_section *ms; 261 262 if (nr >= NR_MEM_SECTIONS) 263 return NULL; 264 265 ms = __nr_to_section(nr); 266 if (!online_section(ms)) 267 return NULL; 268 269 /* 270 * Save some code text when online_section() + 271 * pfn_section_valid() are sufficient. 272 */ 273 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 274 return NULL; 275 276 if (!pfn_section_valid(ms, pfn)) 277 return NULL; 278 279 if (!online_device_section(ms)) 280 return pfn_to_page(pfn); 281 282 /* 283 * Slowpath: when ZONE_DEVICE collides with 284 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 285 * the section may be 'offline' but 'valid'. Only 286 * get_dev_pagemap() can determine sub-section online status. 287 */ 288 pgmap = get_dev_pagemap(pfn, NULL); 289 put_dev_pagemap(pgmap); 290 291 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 292 if (pgmap) 293 return NULL; 294 295 return pfn_to_page(pfn); 296 } 297 EXPORT_SYMBOL_GPL(pfn_to_online_page); 298 299 /* 300 * Reasonably generic function for adding memory. It is 301 * expected that archs that support memory hotplug will 302 * call this function after deciding the zone to which to 303 * add the new pages. 304 */ 305 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 306 struct mhp_params *params) 307 { 308 const unsigned long end_pfn = pfn + nr_pages; 309 unsigned long cur_nr_pages; 310 int err; 311 struct vmem_altmap *altmap = params->altmap; 312 313 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 314 return -EINVAL; 315 316 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 317 318 if (altmap) { 319 /* 320 * Validate altmap is within bounds of the total request 321 */ 322 if (altmap->base_pfn != pfn 323 || vmem_altmap_offset(altmap) > nr_pages) { 324 pr_warn_once("memory add fail, invalid altmap\n"); 325 return -EINVAL; 326 } 327 altmap->alloc = 0; 328 } 329 330 err = check_pfn_span(pfn, nr_pages, "add"); 331 if (err) 332 return err; 333 334 for (; pfn < end_pfn; pfn += cur_nr_pages) { 335 /* Select all remaining pages up to the next section boundary */ 336 cur_nr_pages = min(end_pfn - pfn, 337 SECTION_ALIGN_UP(pfn + 1) - pfn); 338 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 339 if (err) 340 break; 341 cond_resched(); 342 } 343 vmemmap_populate_print_last(); 344 return err; 345 } 346 347 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 348 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 349 unsigned long start_pfn, 350 unsigned long end_pfn) 351 { 352 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 353 if (unlikely(!pfn_to_online_page(start_pfn))) 354 continue; 355 356 if (unlikely(pfn_to_nid(start_pfn) != nid)) 357 continue; 358 359 if (zone != page_zone(pfn_to_page(start_pfn))) 360 continue; 361 362 return start_pfn; 363 } 364 365 return 0; 366 } 367 368 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 369 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 370 unsigned long start_pfn, 371 unsigned long end_pfn) 372 { 373 unsigned long pfn; 374 375 /* pfn is the end pfn of a memory section. */ 376 pfn = end_pfn - 1; 377 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 378 if (unlikely(!pfn_to_online_page(pfn))) 379 continue; 380 381 if (unlikely(pfn_to_nid(pfn) != nid)) 382 continue; 383 384 if (zone != page_zone(pfn_to_page(pfn))) 385 continue; 386 387 return pfn; 388 } 389 390 return 0; 391 } 392 393 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 394 unsigned long end_pfn) 395 { 396 unsigned long pfn; 397 int nid = zone_to_nid(zone); 398 399 if (zone->zone_start_pfn == start_pfn) { 400 /* 401 * If the section is smallest section in the zone, it need 402 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 403 * In this case, we find second smallest valid mem_section 404 * for shrinking zone. 405 */ 406 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 407 zone_end_pfn(zone)); 408 if (pfn) { 409 zone->spanned_pages = zone_end_pfn(zone) - pfn; 410 zone->zone_start_pfn = pfn; 411 } else { 412 zone->zone_start_pfn = 0; 413 zone->spanned_pages = 0; 414 } 415 } else if (zone_end_pfn(zone) == end_pfn) { 416 /* 417 * If the section is biggest section in the zone, it need 418 * shrink zone->spanned_pages. 419 * In this case, we find second biggest valid mem_section for 420 * shrinking zone. 421 */ 422 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 423 start_pfn); 424 if (pfn) 425 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 426 else { 427 zone->zone_start_pfn = 0; 428 zone->spanned_pages = 0; 429 } 430 } 431 } 432 433 static void update_pgdat_span(struct pglist_data *pgdat) 434 { 435 unsigned long node_start_pfn = 0, node_end_pfn = 0; 436 struct zone *zone; 437 438 for (zone = pgdat->node_zones; 439 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 440 unsigned long end_pfn = zone_end_pfn(zone); 441 442 /* No need to lock the zones, they can't change. */ 443 if (!zone->spanned_pages) 444 continue; 445 if (!node_end_pfn) { 446 node_start_pfn = zone->zone_start_pfn; 447 node_end_pfn = end_pfn; 448 continue; 449 } 450 451 if (end_pfn > node_end_pfn) 452 node_end_pfn = end_pfn; 453 if (zone->zone_start_pfn < node_start_pfn) 454 node_start_pfn = zone->zone_start_pfn; 455 } 456 457 pgdat->node_start_pfn = node_start_pfn; 458 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 459 } 460 461 void __ref remove_pfn_range_from_zone(struct zone *zone, 462 unsigned long start_pfn, 463 unsigned long nr_pages) 464 { 465 const unsigned long end_pfn = start_pfn + nr_pages; 466 struct pglist_data *pgdat = zone->zone_pgdat; 467 unsigned long pfn, cur_nr_pages; 468 469 /* Poison struct pages because they are now uninitialized again. */ 470 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 471 cond_resched(); 472 473 /* Select all remaining pages up to the next section boundary */ 474 cur_nr_pages = 475 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 476 page_init_poison(pfn_to_page(pfn), 477 sizeof(struct page) * cur_nr_pages); 478 } 479 480 /* 481 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 482 * we will not try to shrink the zones - which is okay as 483 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 484 */ 485 if (zone_is_zone_device(zone)) 486 return; 487 488 clear_zone_contiguous(zone); 489 490 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 491 update_pgdat_span(pgdat); 492 493 set_zone_contiguous(zone); 494 } 495 496 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 497 unsigned long map_offset, 498 struct vmem_altmap *altmap) 499 { 500 struct mem_section *ms = __pfn_to_section(pfn); 501 502 if (WARN_ON_ONCE(!valid_section(ms))) 503 return; 504 505 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 506 } 507 508 /** 509 * __remove_pages() - remove sections of pages 510 * @pfn: starting pageframe (must be aligned to start of a section) 511 * @nr_pages: number of pages to remove (must be multiple of section size) 512 * @altmap: alternative device page map or %NULL if default memmap is used 513 * 514 * Generic helper function to remove section mappings and sysfs entries 515 * for the section of the memory we are removing. Caller needs to make 516 * sure that pages are marked reserved and zones are adjust properly by 517 * calling offline_pages(). 518 */ 519 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 520 struct vmem_altmap *altmap) 521 { 522 const unsigned long end_pfn = pfn + nr_pages; 523 unsigned long cur_nr_pages; 524 unsigned long map_offset = 0; 525 526 map_offset = vmem_altmap_offset(altmap); 527 528 if (check_pfn_span(pfn, nr_pages, "remove")) 529 return; 530 531 for (; pfn < end_pfn; pfn += cur_nr_pages) { 532 cond_resched(); 533 /* Select all remaining pages up to the next section boundary */ 534 cur_nr_pages = min(end_pfn - pfn, 535 SECTION_ALIGN_UP(pfn + 1) - pfn); 536 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 537 map_offset = 0; 538 } 539 } 540 541 int set_online_page_callback(online_page_callback_t callback) 542 { 543 int rc = -EINVAL; 544 545 get_online_mems(); 546 mutex_lock(&online_page_callback_lock); 547 548 if (online_page_callback == generic_online_page) { 549 online_page_callback = callback; 550 rc = 0; 551 } 552 553 mutex_unlock(&online_page_callback_lock); 554 put_online_mems(); 555 556 return rc; 557 } 558 EXPORT_SYMBOL_GPL(set_online_page_callback); 559 560 int restore_online_page_callback(online_page_callback_t callback) 561 { 562 int rc = -EINVAL; 563 564 get_online_mems(); 565 mutex_lock(&online_page_callback_lock); 566 567 if (online_page_callback == callback) { 568 online_page_callback = generic_online_page; 569 rc = 0; 570 } 571 572 mutex_unlock(&online_page_callback_lock); 573 put_online_mems(); 574 575 return rc; 576 } 577 EXPORT_SYMBOL_GPL(restore_online_page_callback); 578 579 void generic_online_page(struct page *page, unsigned int order) 580 { 581 /* 582 * Freeing the page with debug_pagealloc enabled will try to unmap it, 583 * so we should map it first. This is better than introducing a special 584 * case in page freeing fast path. 585 */ 586 debug_pagealloc_map_pages(page, 1 << order); 587 __free_pages_core(page, order); 588 totalram_pages_add(1UL << order); 589 #ifdef CONFIG_HIGHMEM 590 if (PageHighMem(page)) 591 totalhigh_pages_add(1UL << order); 592 #endif 593 } 594 EXPORT_SYMBOL_GPL(generic_online_page); 595 596 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 597 { 598 const unsigned long end_pfn = start_pfn + nr_pages; 599 unsigned long pfn; 600 601 /* 602 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 603 * decide to not expose all pages to the buddy (e.g., expose them 604 * later). We account all pages as being online and belonging to this 605 * zone ("present"). 606 * When using memmap_on_memory, the range might not be aligned to 607 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 608 * this and the first chunk to online will be pageblock_nr_pages. 609 */ 610 for (pfn = start_pfn; pfn < end_pfn;) { 611 int order = min(MAX_ORDER - 1UL, __ffs(pfn)); 612 613 (*online_page_callback)(pfn_to_page(pfn), order); 614 pfn += (1UL << order); 615 } 616 617 /* mark all involved sections as online */ 618 online_mem_sections(start_pfn, end_pfn); 619 } 620 621 /* check which state of node_states will be changed when online memory */ 622 static void node_states_check_changes_online(unsigned long nr_pages, 623 struct zone *zone, struct memory_notify *arg) 624 { 625 int nid = zone_to_nid(zone); 626 627 arg->status_change_nid = NUMA_NO_NODE; 628 arg->status_change_nid_normal = NUMA_NO_NODE; 629 arg->status_change_nid_high = NUMA_NO_NODE; 630 631 if (!node_state(nid, N_MEMORY)) 632 arg->status_change_nid = nid; 633 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 634 arg->status_change_nid_normal = nid; 635 #ifdef CONFIG_HIGHMEM 636 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 637 arg->status_change_nid_high = nid; 638 #endif 639 } 640 641 static void node_states_set_node(int node, struct memory_notify *arg) 642 { 643 if (arg->status_change_nid_normal >= 0) 644 node_set_state(node, N_NORMAL_MEMORY); 645 646 if (arg->status_change_nid_high >= 0) 647 node_set_state(node, N_HIGH_MEMORY); 648 649 if (arg->status_change_nid >= 0) 650 node_set_state(node, N_MEMORY); 651 } 652 653 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 654 unsigned long nr_pages) 655 { 656 unsigned long old_end_pfn = zone_end_pfn(zone); 657 658 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 659 zone->zone_start_pfn = start_pfn; 660 661 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 662 } 663 664 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 665 unsigned long nr_pages) 666 { 667 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 668 669 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 670 pgdat->node_start_pfn = start_pfn; 671 672 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 673 674 } 675 676 static void section_taint_zone_device(unsigned long pfn) 677 { 678 struct mem_section *ms = __pfn_to_section(pfn); 679 680 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 681 } 682 683 /* 684 * Associate the pfn range with the given zone, initializing the memmaps 685 * and resizing the pgdat/zone data to span the added pages. After this 686 * call, all affected pages are PG_reserved. 687 * 688 * All aligned pageblocks are initialized to the specified migratetype 689 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 690 * zone stats (e.g., nr_isolate_pageblock) are touched. 691 */ 692 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 693 unsigned long nr_pages, 694 struct vmem_altmap *altmap, int migratetype) 695 { 696 struct pglist_data *pgdat = zone->zone_pgdat; 697 int nid = pgdat->node_id; 698 699 clear_zone_contiguous(zone); 700 701 if (zone_is_empty(zone)) 702 init_currently_empty_zone(zone, start_pfn, nr_pages); 703 resize_zone_range(zone, start_pfn, nr_pages); 704 resize_pgdat_range(pgdat, start_pfn, nr_pages); 705 706 /* 707 * Subsection population requires care in pfn_to_online_page(). 708 * Set the taint to enable the slow path detection of 709 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 710 * section. 711 */ 712 if (zone_is_zone_device(zone)) { 713 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 714 section_taint_zone_device(start_pfn); 715 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 716 section_taint_zone_device(start_pfn + nr_pages); 717 } 718 719 /* 720 * TODO now we have a visible range of pages which are not associated 721 * with their zone properly. Not nice but set_pfnblock_flags_mask 722 * expects the zone spans the pfn range. All the pages in the range 723 * are reserved so nobody should be touching them so we should be safe 724 */ 725 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 726 MEMINIT_HOTPLUG, altmap, migratetype); 727 728 set_zone_contiguous(zone); 729 } 730 731 struct auto_movable_stats { 732 unsigned long kernel_early_pages; 733 unsigned long movable_pages; 734 }; 735 736 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 737 struct zone *zone) 738 { 739 if (zone_idx(zone) == ZONE_MOVABLE) { 740 stats->movable_pages += zone->present_pages; 741 } else { 742 stats->kernel_early_pages += zone->present_early_pages; 743 #ifdef CONFIG_CMA 744 /* 745 * CMA pages (never on hotplugged memory) behave like 746 * ZONE_MOVABLE. 747 */ 748 stats->movable_pages += zone->cma_pages; 749 stats->kernel_early_pages -= zone->cma_pages; 750 #endif /* CONFIG_CMA */ 751 } 752 } 753 struct auto_movable_group_stats { 754 unsigned long movable_pages; 755 unsigned long req_kernel_early_pages; 756 }; 757 758 static int auto_movable_stats_account_group(struct memory_group *group, 759 void *arg) 760 { 761 const int ratio = READ_ONCE(auto_movable_ratio); 762 struct auto_movable_group_stats *stats = arg; 763 long pages; 764 765 /* 766 * We don't support modifying the config while the auto-movable online 767 * policy is already enabled. Just avoid the division by zero below. 768 */ 769 if (!ratio) 770 return 0; 771 772 /* 773 * Calculate how many early kernel pages this group requires to 774 * satisfy the configured zone ratio. 775 */ 776 pages = group->present_movable_pages * 100 / ratio; 777 pages -= group->present_kernel_pages; 778 779 if (pages > 0) 780 stats->req_kernel_early_pages += pages; 781 stats->movable_pages += group->present_movable_pages; 782 return 0; 783 } 784 785 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 786 unsigned long nr_pages) 787 { 788 unsigned long kernel_early_pages, movable_pages; 789 struct auto_movable_group_stats group_stats = {}; 790 struct auto_movable_stats stats = {}; 791 pg_data_t *pgdat = NODE_DATA(nid); 792 struct zone *zone; 793 int i; 794 795 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 796 if (nid == NUMA_NO_NODE) { 797 /* TODO: cache values */ 798 for_each_populated_zone(zone) 799 auto_movable_stats_account_zone(&stats, zone); 800 } else { 801 for (i = 0; i < MAX_NR_ZONES; i++) { 802 zone = pgdat->node_zones + i; 803 if (populated_zone(zone)) 804 auto_movable_stats_account_zone(&stats, zone); 805 } 806 } 807 808 kernel_early_pages = stats.kernel_early_pages; 809 movable_pages = stats.movable_pages; 810 811 /* 812 * Kernel memory inside dynamic memory group allows for more MOVABLE 813 * memory within the same group. Remove the effect of all but the 814 * current group from the stats. 815 */ 816 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 817 group, &group_stats); 818 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 819 return false; 820 kernel_early_pages -= group_stats.req_kernel_early_pages; 821 movable_pages -= group_stats.movable_pages; 822 823 if (group && group->is_dynamic) 824 kernel_early_pages += group->present_kernel_pages; 825 826 /* 827 * Test if we could online the given number of pages to ZONE_MOVABLE 828 * and still stay in the configured ratio. 829 */ 830 movable_pages += nr_pages; 831 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 832 } 833 834 /* 835 * Returns a default kernel memory zone for the given pfn range. 836 * If no kernel zone covers this pfn range it will automatically go 837 * to the ZONE_NORMAL. 838 */ 839 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 840 unsigned long nr_pages) 841 { 842 struct pglist_data *pgdat = NODE_DATA(nid); 843 int zid; 844 845 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 846 struct zone *zone = &pgdat->node_zones[zid]; 847 848 if (zone_intersects(zone, start_pfn, nr_pages)) 849 return zone; 850 } 851 852 return &pgdat->node_zones[ZONE_NORMAL]; 853 } 854 855 /* 856 * Determine to which zone to online memory dynamically based on user 857 * configuration and system stats. We care about the following ratio: 858 * 859 * MOVABLE : KERNEL 860 * 861 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 862 * one of the kernel zones. CMA pages inside one of the kernel zones really 863 * behaves like ZONE_MOVABLE, so we treat them accordingly. 864 * 865 * We don't allow for hotplugged memory in a KERNEL zone to increase the 866 * amount of MOVABLE memory we can have, so we end up with: 867 * 868 * MOVABLE : KERNEL_EARLY 869 * 870 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 871 * boot. We base our calculation on KERNEL_EARLY internally, because: 872 * 873 * a) Hotplugged memory in one of the kernel zones can sometimes still get 874 * hotunplugged, especially when hot(un)plugging individual memory blocks. 875 * There is no coordination across memory devices, therefore "automatic" 876 * hotunplugging, as implemented in hypervisors, could result in zone 877 * imbalances. 878 * b) Early/boot memory in one of the kernel zones can usually not get 879 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 880 * with unmovable allocations). While there are corner cases where it might 881 * still work, it is barely relevant in practice. 882 * 883 * Exceptions are dynamic memory groups, which allow for more MOVABLE 884 * memory within the same memory group -- because in that case, there is 885 * coordination within the single memory device managed by a single driver. 886 * 887 * We rely on "present pages" instead of "managed pages", as the latter is 888 * highly unreliable and dynamic in virtualized environments, and does not 889 * consider boot time allocations. For example, memory ballooning adjusts the 890 * managed pages when inflating/deflating the balloon, and balloon compaction 891 * can even migrate inflated pages between zones. 892 * 893 * Using "present pages" is better but some things to keep in mind are: 894 * 895 * a) Some memblock allocations, such as for the crashkernel area, are 896 * effectively unused by the kernel, yet they account to "present pages". 897 * Fortunately, these allocations are comparatively small in relevant setups 898 * (e.g., fraction of system memory). 899 * b) Some hotplugged memory blocks in virtualized environments, esecially 900 * hotplugged by virtio-mem, look like they are completely present, however, 901 * only parts of the memory block are actually currently usable. 902 * "present pages" is an upper limit that can get reached at runtime. As 903 * we base our calculations on KERNEL_EARLY, this is not an issue. 904 */ 905 static struct zone *auto_movable_zone_for_pfn(int nid, 906 struct memory_group *group, 907 unsigned long pfn, 908 unsigned long nr_pages) 909 { 910 unsigned long online_pages = 0, max_pages, end_pfn; 911 struct page *page; 912 913 if (!auto_movable_ratio) 914 goto kernel_zone; 915 916 if (group && !group->is_dynamic) { 917 max_pages = group->s.max_pages; 918 online_pages = group->present_movable_pages; 919 920 /* If anything is !MOVABLE online the rest !MOVABLE. */ 921 if (group->present_kernel_pages) 922 goto kernel_zone; 923 } else if (!group || group->d.unit_pages == nr_pages) { 924 max_pages = nr_pages; 925 } else { 926 max_pages = group->d.unit_pages; 927 /* 928 * Take a look at all online sections in the current unit. 929 * We can safely assume that all pages within a section belong 930 * to the same zone, because dynamic memory groups only deal 931 * with hotplugged memory. 932 */ 933 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 934 end_pfn = pfn + group->d.unit_pages; 935 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 936 page = pfn_to_online_page(pfn); 937 if (!page) 938 continue; 939 /* If anything is !MOVABLE online the rest !MOVABLE. */ 940 if (page_zonenum(page) != ZONE_MOVABLE) 941 goto kernel_zone; 942 online_pages += PAGES_PER_SECTION; 943 } 944 } 945 946 /* 947 * Online MOVABLE if we could *currently* online all remaining parts 948 * MOVABLE. We expect to (add+) online them immediately next, so if 949 * nobody interferes, all will be MOVABLE if possible. 950 */ 951 nr_pages = max_pages - online_pages; 952 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 953 goto kernel_zone; 954 955 #ifdef CONFIG_NUMA 956 if (auto_movable_numa_aware && 957 !auto_movable_can_online_movable(nid, group, nr_pages)) 958 goto kernel_zone; 959 #endif /* CONFIG_NUMA */ 960 961 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 962 kernel_zone: 963 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 964 } 965 966 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 967 unsigned long nr_pages) 968 { 969 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 970 nr_pages); 971 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 972 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 973 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 974 975 /* 976 * We inherit the existing zone in a simple case where zones do not 977 * overlap in the given range 978 */ 979 if (in_kernel ^ in_movable) 980 return (in_kernel) ? kernel_zone : movable_zone; 981 982 /* 983 * If the range doesn't belong to any zone or two zones overlap in the 984 * given range then we use movable zone only if movable_node is 985 * enabled because we always online to a kernel zone by default. 986 */ 987 return movable_node_enabled ? movable_zone : kernel_zone; 988 } 989 990 struct zone *zone_for_pfn_range(int online_type, int nid, 991 struct memory_group *group, unsigned long start_pfn, 992 unsigned long nr_pages) 993 { 994 if (online_type == MMOP_ONLINE_KERNEL) 995 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 996 997 if (online_type == MMOP_ONLINE_MOVABLE) 998 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 999 1000 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1001 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1002 1003 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1004 } 1005 1006 /* 1007 * This function should only be called by memory_block_{online,offline}, 1008 * and {online,offline}_pages. 1009 */ 1010 void adjust_present_page_count(struct page *page, struct memory_group *group, 1011 long nr_pages) 1012 { 1013 struct zone *zone = page_zone(page); 1014 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1015 1016 /* 1017 * We only support onlining/offlining/adding/removing of complete 1018 * memory blocks; therefore, either all is either early or hotplugged. 1019 */ 1020 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1021 zone->present_early_pages += nr_pages; 1022 zone->present_pages += nr_pages; 1023 zone->zone_pgdat->node_present_pages += nr_pages; 1024 1025 if (group && movable) 1026 group->present_movable_pages += nr_pages; 1027 else if (group && !movable) 1028 group->present_kernel_pages += nr_pages; 1029 } 1030 1031 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1032 struct zone *zone) 1033 { 1034 unsigned long end_pfn = pfn + nr_pages; 1035 int ret; 1036 1037 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1038 if (ret) 1039 return ret; 1040 1041 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1042 1043 /* 1044 * It might be that the vmemmap_pages fully span sections. If that is 1045 * the case, mark those sections online here as otherwise they will be 1046 * left offline. 1047 */ 1048 if (nr_pages >= PAGES_PER_SECTION) 1049 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1050 1051 return ret; 1052 } 1053 1054 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1055 { 1056 unsigned long end_pfn = pfn + nr_pages; 1057 1058 /* 1059 * It might be that the vmemmap_pages fully span sections. If that is 1060 * the case, mark those sections offline here as otherwise they will be 1061 * left online. 1062 */ 1063 if (nr_pages >= PAGES_PER_SECTION) 1064 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1065 1066 /* 1067 * The pages associated with this vmemmap have been offlined, so 1068 * we can reset its state here. 1069 */ 1070 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1071 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1072 } 1073 1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1075 struct zone *zone, struct memory_group *group) 1076 { 1077 unsigned long flags; 1078 int need_zonelists_rebuild = 0; 1079 const int nid = zone_to_nid(zone); 1080 int ret; 1081 struct memory_notify arg; 1082 1083 /* 1084 * {on,off}lining is constrained to full memory sections (or more 1085 * precisely to memory blocks from the user space POV). 1086 * memmap_on_memory is an exception because it reserves initial part 1087 * of the physical memory space for vmemmaps. That space is pageblock 1088 * aligned. 1089 */ 1090 if (WARN_ON_ONCE(!nr_pages || 1091 !IS_ALIGNED(pfn, pageblock_nr_pages) || 1092 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1093 return -EINVAL; 1094 1095 mem_hotplug_begin(); 1096 1097 /* associate pfn range with the zone */ 1098 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1099 1100 arg.start_pfn = pfn; 1101 arg.nr_pages = nr_pages; 1102 node_states_check_changes_online(nr_pages, zone, &arg); 1103 1104 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1105 ret = notifier_to_errno(ret); 1106 if (ret) 1107 goto failed_addition; 1108 1109 /* 1110 * Fixup the number of isolated pageblocks before marking the sections 1111 * onlining, such that undo_isolate_page_range() works correctly. 1112 */ 1113 spin_lock_irqsave(&zone->lock, flags); 1114 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1115 spin_unlock_irqrestore(&zone->lock, flags); 1116 1117 /* 1118 * If this zone is not populated, then it is not in zonelist. 1119 * This means the page allocator ignores this zone. 1120 * So, zonelist must be updated after online. 1121 */ 1122 if (!populated_zone(zone)) { 1123 need_zonelists_rebuild = 1; 1124 setup_zone_pageset(zone); 1125 } 1126 1127 online_pages_range(pfn, nr_pages); 1128 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1129 1130 node_states_set_node(nid, &arg); 1131 if (need_zonelists_rebuild) 1132 build_all_zonelists(NULL); 1133 1134 /* Basic onlining is complete, allow allocation of onlined pages. */ 1135 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1136 1137 /* 1138 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1139 * the tail of the freelist when undoing isolation). Shuffle the whole 1140 * zone to make sure the just onlined pages are properly distributed 1141 * across the whole freelist - to create an initial shuffle. 1142 */ 1143 shuffle_zone(zone); 1144 1145 /* reinitialise watermarks and update pcp limits */ 1146 init_per_zone_wmark_min(); 1147 1148 kswapd_run(nid); 1149 kcompactd_run(nid); 1150 1151 writeback_set_ratelimit(); 1152 1153 memory_notify(MEM_ONLINE, &arg); 1154 mem_hotplug_done(); 1155 return 0; 1156 1157 failed_addition: 1158 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1159 (unsigned long long) pfn << PAGE_SHIFT, 1160 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1161 memory_notify(MEM_CANCEL_ONLINE, &arg); 1162 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1163 mem_hotplug_done(); 1164 return ret; 1165 } 1166 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1167 1168 static void reset_node_present_pages(pg_data_t *pgdat) 1169 { 1170 struct zone *z; 1171 1172 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1173 z->present_pages = 0; 1174 1175 pgdat->node_present_pages = 0; 1176 } 1177 1178 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1179 static pg_data_t __ref *hotadd_new_pgdat(int nid) 1180 { 1181 struct pglist_data *pgdat; 1182 1183 pgdat = NODE_DATA(nid); 1184 if (!pgdat) { 1185 pgdat = arch_alloc_nodedata(nid); 1186 if (!pgdat) 1187 return NULL; 1188 1189 pgdat->per_cpu_nodestats = 1190 alloc_percpu(struct per_cpu_nodestat); 1191 arch_refresh_nodedata(nid, pgdat); 1192 } else { 1193 int cpu; 1194 /* 1195 * Reset the nr_zones, order and highest_zoneidx before reuse. 1196 * Note that kswapd will init kswapd_highest_zoneidx properly 1197 * when it starts in the near future. 1198 */ 1199 pgdat->nr_zones = 0; 1200 pgdat->kswapd_order = 0; 1201 pgdat->kswapd_highest_zoneidx = 0; 1202 for_each_online_cpu(cpu) { 1203 struct per_cpu_nodestat *p; 1204 1205 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1206 memset(p, 0, sizeof(*p)); 1207 } 1208 } 1209 1210 /* we can use NODE_DATA(nid) from here */ 1211 pgdat->node_id = nid; 1212 pgdat->node_start_pfn = 0; 1213 1214 /* init node's zones as empty zones, we don't have any present pages.*/ 1215 free_area_init_core_hotplug(nid); 1216 1217 /* 1218 * The node we allocated has no zone fallback lists. For avoiding 1219 * to access not-initialized zonelist, build here. 1220 */ 1221 build_all_zonelists(pgdat); 1222 1223 /* 1224 * When memory is hot-added, all the memory is in offline state. So 1225 * clear all zones' present_pages because they will be updated in 1226 * online_pages() and offline_pages(). 1227 */ 1228 reset_node_managed_pages(pgdat); 1229 reset_node_present_pages(pgdat); 1230 1231 return pgdat; 1232 } 1233 1234 static void rollback_node_hotadd(int nid) 1235 { 1236 pg_data_t *pgdat = NODE_DATA(nid); 1237 1238 arch_refresh_nodedata(nid, NULL); 1239 free_percpu(pgdat->per_cpu_nodestats); 1240 arch_free_nodedata(pgdat); 1241 } 1242 1243 1244 /* 1245 * __try_online_node - online a node if offlined 1246 * @nid: the node ID 1247 * @set_node_online: Whether we want to online the node 1248 * called by cpu_up() to online a node without onlined memory. 1249 * 1250 * Returns: 1251 * 1 -> a new node has been allocated 1252 * 0 -> the node is already online 1253 * -ENOMEM -> the node could not be allocated 1254 */ 1255 static int __try_online_node(int nid, bool set_node_online) 1256 { 1257 pg_data_t *pgdat; 1258 int ret = 1; 1259 1260 if (node_online(nid)) 1261 return 0; 1262 1263 pgdat = hotadd_new_pgdat(nid); 1264 if (!pgdat) { 1265 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1266 ret = -ENOMEM; 1267 goto out; 1268 } 1269 1270 if (set_node_online) { 1271 node_set_online(nid); 1272 ret = register_one_node(nid); 1273 BUG_ON(ret); 1274 } 1275 out: 1276 return ret; 1277 } 1278 1279 /* 1280 * Users of this function always want to online/register the node 1281 */ 1282 int try_online_node(int nid) 1283 { 1284 int ret; 1285 1286 mem_hotplug_begin(); 1287 ret = __try_online_node(nid, true); 1288 mem_hotplug_done(); 1289 return ret; 1290 } 1291 1292 static int check_hotplug_memory_range(u64 start, u64 size) 1293 { 1294 /* memory range must be block size aligned */ 1295 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1296 !IS_ALIGNED(size, memory_block_size_bytes())) { 1297 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1298 memory_block_size_bytes(), start, size); 1299 return -EINVAL; 1300 } 1301 1302 return 0; 1303 } 1304 1305 static int online_memory_block(struct memory_block *mem, void *arg) 1306 { 1307 mem->online_type = mhp_default_online_type; 1308 return device_online(&mem->dev); 1309 } 1310 1311 bool mhp_supports_memmap_on_memory(unsigned long size) 1312 { 1313 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1314 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1315 unsigned long remaining_size = size - vmemmap_size; 1316 1317 /* 1318 * Besides having arch support and the feature enabled at runtime, we 1319 * need a few more assumptions to hold true: 1320 * 1321 * a) We span a single memory block: memory onlining/offlinin;g happens 1322 * in memory block granularity. We don't want the vmemmap of online 1323 * memory blocks to reside on offline memory blocks. In the future, 1324 * we might want to support variable-sized memory blocks to make the 1325 * feature more versatile. 1326 * 1327 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1328 * to populate memory from the altmap for unrelated parts (i.e., 1329 * other memory blocks) 1330 * 1331 * c) The vmemmap pages (and thereby the pages that will be exposed to 1332 * the buddy) have to cover full pageblocks: memory onlining/offlining 1333 * code requires applicable ranges to be page-aligned, for example, to 1334 * set the migratetypes properly. 1335 * 1336 * TODO: Although we have a check here to make sure that vmemmap pages 1337 * fully populate a PMD, it is not the right place to check for 1338 * this. A much better solution involves improving vmemmap code 1339 * to fallback to base pages when trying to populate vmemmap using 1340 * altmap as an alternative source of memory, and we do not exactly 1341 * populate a single PMD. 1342 */ 1343 return memmap_on_memory && 1344 !hugetlb_free_vmemmap_enabled && 1345 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) && 1346 size == memory_block_size_bytes() && 1347 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1348 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1349 } 1350 1351 /* 1352 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1353 * and online/offline operations (triggered e.g. by sysfs). 1354 * 1355 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1356 */ 1357 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1358 { 1359 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1360 struct vmem_altmap mhp_altmap = {}; 1361 struct memory_group *group = NULL; 1362 u64 start, size; 1363 bool new_node = false; 1364 int ret; 1365 1366 start = res->start; 1367 size = resource_size(res); 1368 1369 ret = check_hotplug_memory_range(start, size); 1370 if (ret) 1371 return ret; 1372 1373 if (mhp_flags & MHP_NID_IS_MGID) { 1374 group = memory_group_find_by_id(nid); 1375 if (!group) 1376 return -EINVAL; 1377 nid = group->nid; 1378 } 1379 1380 if (!node_possible(nid)) { 1381 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1382 return -EINVAL; 1383 } 1384 1385 mem_hotplug_begin(); 1386 1387 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1388 memblock_add_node(start, size, nid); 1389 1390 ret = __try_online_node(nid, false); 1391 if (ret < 0) 1392 goto error; 1393 new_node = ret; 1394 1395 /* 1396 * Self hosted memmap array 1397 */ 1398 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1399 if (!mhp_supports_memmap_on_memory(size)) { 1400 ret = -EINVAL; 1401 goto error; 1402 } 1403 mhp_altmap.free = PHYS_PFN(size); 1404 mhp_altmap.base_pfn = PHYS_PFN(start); 1405 params.altmap = &mhp_altmap; 1406 } 1407 1408 /* call arch's memory hotadd */ 1409 ret = arch_add_memory(nid, start, size, ¶ms); 1410 if (ret < 0) 1411 goto error; 1412 1413 /* create memory block devices after memory was added */ 1414 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1415 group); 1416 if (ret) { 1417 arch_remove_memory(start, size, NULL); 1418 goto error; 1419 } 1420 1421 if (new_node) { 1422 /* If sysfs file of new node can't be created, cpu on the node 1423 * can't be hot-added. There is no rollback way now. 1424 * So, check by BUG_ON() to catch it reluctantly.. 1425 * We online node here. We can't roll back from here. 1426 */ 1427 node_set_online(nid); 1428 ret = __register_one_node(nid); 1429 BUG_ON(ret); 1430 } 1431 1432 /* link memory sections under this node.*/ 1433 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1434 MEMINIT_HOTPLUG); 1435 1436 /* create new memmap entry */ 1437 if (!strcmp(res->name, "System RAM")) 1438 firmware_map_add_hotplug(start, start + size, "System RAM"); 1439 1440 /* device_online() will take the lock when calling online_pages() */ 1441 mem_hotplug_done(); 1442 1443 /* 1444 * In case we're allowed to merge the resource, flag it and trigger 1445 * merging now that adding succeeded. 1446 */ 1447 if (mhp_flags & MHP_MERGE_RESOURCE) 1448 merge_system_ram_resource(res); 1449 1450 /* online pages if requested */ 1451 if (mhp_default_online_type != MMOP_OFFLINE) 1452 walk_memory_blocks(start, size, NULL, online_memory_block); 1453 1454 return ret; 1455 error: 1456 /* rollback pgdat allocation and others */ 1457 if (new_node) 1458 rollback_node_hotadd(nid); 1459 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1460 memblock_remove(start, size); 1461 mem_hotplug_done(); 1462 return ret; 1463 } 1464 1465 /* requires device_hotplug_lock, see add_memory_resource() */ 1466 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1467 { 1468 struct resource *res; 1469 int ret; 1470 1471 res = register_memory_resource(start, size, "System RAM"); 1472 if (IS_ERR(res)) 1473 return PTR_ERR(res); 1474 1475 ret = add_memory_resource(nid, res, mhp_flags); 1476 if (ret < 0) 1477 release_memory_resource(res); 1478 return ret; 1479 } 1480 1481 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1482 { 1483 int rc; 1484 1485 lock_device_hotplug(); 1486 rc = __add_memory(nid, start, size, mhp_flags); 1487 unlock_device_hotplug(); 1488 1489 return rc; 1490 } 1491 EXPORT_SYMBOL_GPL(add_memory); 1492 1493 /* 1494 * Add special, driver-managed memory to the system as system RAM. Such 1495 * memory is not exposed via the raw firmware-provided memmap as system 1496 * RAM, instead, it is detected and added by a driver - during cold boot, 1497 * after a reboot, and after kexec. 1498 * 1499 * Reasons why this memory should not be used for the initial memmap of a 1500 * kexec kernel or for placing kexec images: 1501 * - The booting kernel is in charge of determining how this memory will be 1502 * used (e.g., use persistent memory as system RAM) 1503 * - Coordination with a hypervisor is required before this memory 1504 * can be used (e.g., inaccessible parts). 1505 * 1506 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1507 * memory map") are created. Also, the created memory resource is flagged 1508 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1509 * this memory as well (esp., not place kexec images onto it). 1510 * 1511 * The resource_name (visible via /proc/iomem) has to have the format 1512 * "System RAM ($DRIVER)". 1513 */ 1514 int add_memory_driver_managed(int nid, u64 start, u64 size, 1515 const char *resource_name, mhp_t mhp_flags) 1516 { 1517 struct resource *res; 1518 int rc; 1519 1520 if (!resource_name || 1521 strstr(resource_name, "System RAM (") != resource_name || 1522 resource_name[strlen(resource_name) - 1] != ')') 1523 return -EINVAL; 1524 1525 lock_device_hotplug(); 1526 1527 res = register_memory_resource(start, size, resource_name); 1528 if (IS_ERR(res)) { 1529 rc = PTR_ERR(res); 1530 goto out_unlock; 1531 } 1532 1533 rc = add_memory_resource(nid, res, mhp_flags); 1534 if (rc < 0) 1535 release_memory_resource(res); 1536 1537 out_unlock: 1538 unlock_device_hotplug(); 1539 return rc; 1540 } 1541 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1542 1543 /* 1544 * Platforms should define arch_get_mappable_range() that provides 1545 * maximum possible addressable physical memory range for which the 1546 * linear mapping could be created. The platform returned address 1547 * range must adhere to these following semantics. 1548 * 1549 * - range.start <= range.end 1550 * - Range includes both end points [range.start..range.end] 1551 * 1552 * There is also a fallback definition provided here, allowing the 1553 * entire possible physical address range in case any platform does 1554 * not define arch_get_mappable_range(). 1555 */ 1556 struct range __weak arch_get_mappable_range(void) 1557 { 1558 struct range mhp_range = { 1559 .start = 0UL, 1560 .end = -1ULL, 1561 }; 1562 return mhp_range; 1563 } 1564 1565 struct range mhp_get_pluggable_range(bool need_mapping) 1566 { 1567 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1568 struct range mhp_range; 1569 1570 if (need_mapping) { 1571 mhp_range = arch_get_mappable_range(); 1572 if (mhp_range.start > max_phys) { 1573 mhp_range.start = 0; 1574 mhp_range.end = 0; 1575 } 1576 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1577 } else { 1578 mhp_range.start = 0; 1579 mhp_range.end = max_phys; 1580 } 1581 return mhp_range; 1582 } 1583 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1584 1585 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1586 { 1587 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1588 u64 end = start + size; 1589 1590 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1591 return true; 1592 1593 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1594 start, end, mhp_range.start, mhp_range.end); 1595 return false; 1596 } 1597 1598 #ifdef CONFIG_MEMORY_HOTREMOVE 1599 /* 1600 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1601 * memory holes). When true, return the zone. 1602 */ 1603 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1604 unsigned long end_pfn) 1605 { 1606 unsigned long pfn, sec_end_pfn; 1607 struct zone *zone = NULL; 1608 struct page *page; 1609 1610 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1611 pfn < end_pfn; 1612 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1613 /* Make sure the memory section is present first */ 1614 if (!present_section_nr(pfn_to_section_nr(pfn))) 1615 continue; 1616 for (; pfn < sec_end_pfn && pfn < end_pfn; 1617 pfn += MAX_ORDER_NR_PAGES) { 1618 /* Check if we got outside of the zone */ 1619 if (zone && !zone_spans_pfn(zone, pfn)) 1620 return NULL; 1621 page = pfn_to_page(pfn); 1622 if (zone && page_zone(page) != zone) 1623 return NULL; 1624 zone = page_zone(page); 1625 } 1626 } 1627 1628 return zone; 1629 } 1630 1631 /* 1632 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1633 * non-lru movable pages and hugepages). Will skip over most unmovable 1634 * pages (esp., pages that can be skipped when offlining), but bail out on 1635 * definitely unmovable pages. 1636 * 1637 * Returns: 1638 * 0 in case a movable page is found and movable_pfn was updated. 1639 * -ENOENT in case no movable page was found. 1640 * -EBUSY in case a definitely unmovable page was found. 1641 */ 1642 static int scan_movable_pages(unsigned long start, unsigned long end, 1643 unsigned long *movable_pfn) 1644 { 1645 unsigned long pfn; 1646 1647 for (pfn = start; pfn < end; pfn++) { 1648 struct page *page, *head; 1649 unsigned long skip; 1650 1651 if (!pfn_valid(pfn)) 1652 continue; 1653 page = pfn_to_page(pfn); 1654 if (PageLRU(page)) 1655 goto found; 1656 if (__PageMovable(page)) 1657 goto found; 1658 1659 /* 1660 * PageOffline() pages that are not marked __PageMovable() and 1661 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1662 * definitely unmovable. If their reference count would be 0, 1663 * they could at least be skipped when offlining memory. 1664 */ 1665 if (PageOffline(page) && page_count(page)) 1666 return -EBUSY; 1667 1668 if (!PageHuge(page)) 1669 continue; 1670 head = compound_head(page); 1671 /* 1672 * This test is racy as we hold no reference or lock. The 1673 * hugetlb page could have been free'ed and head is no longer 1674 * a hugetlb page before the following check. In such unlikely 1675 * cases false positives and negatives are possible. Calling 1676 * code must deal with these scenarios. 1677 */ 1678 if (HPageMigratable(head)) 1679 goto found; 1680 skip = compound_nr(head) - (page - head); 1681 pfn += skip - 1; 1682 } 1683 return -ENOENT; 1684 found: 1685 *movable_pfn = pfn; 1686 return 0; 1687 } 1688 1689 static int 1690 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1691 { 1692 unsigned long pfn; 1693 struct page *page, *head; 1694 int ret = 0; 1695 LIST_HEAD(source); 1696 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1697 DEFAULT_RATELIMIT_BURST); 1698 1699 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1700 if (!pfn_valid(pfn)) 1701 continue; 1702 page = pfn_to_page(pfn); 1703 head = compound_head(page); 1704 1705 if (PageHuge(page)) { 1706 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1707 isolate_huge_page(head, &source); 1708 continue; 1709 } else if (PageTransHuge(page)) 1710 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1711 1712 /* 1713 * HWPoison pages have elevated reference counts so the migration would 1714 * fail on them. It also doesn't make any sense to migrate them in the 1715 * first place. Still try to unmap such a page in case it is still mapped 1716 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1717 * the unmap as the catch all safety net). 1718 */ 1719 if (PageHWPoison(page)) { 1720 if (WARN_ON(PageLRU(page))) 1721 isolate_lru_page(page); 1722 if (page_mapped(page)) 1723 try_to_unmap(page, TTU_IGNORE_MLOCK); 1724 continue; 1725 } 1726 1727 if (!get_page_unless_zero(page)) 1728 continue; 1729 /* 1730 * We can skip free pages. And we can deal with pages on 1731 * LRU and non-lru movable pages. 1732 */ 1733 if (PageLRU(page)) 1734 ret = isolate_lru_page(page); 1735 else 1736 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1737 if (!ret) { /* Success */ 1738 list_add_tail(&page->lru, &source); 1739 if (!__PageMovable(page)) 1740 inc_node_page_state(page, NR_ISOLATED_ANON + 1741 page_is_file_lru(page)); 1742 1743 } else { 1744 if (__ratelimit(&migrate_rs)) { 1745 pr_warn("failed to isolate pfn %lx\n", pfn); 1746 dump_page(page, "isolation failed"); 1747 } 1748 } 1749 put_page(page); 1750 } 1751 if (!list_empty(&source)) { 1752 nodemask_t nmask = node_states[N_MEMORY]; 1753 struct migration_target_control mtc = { 1754 .nmask = &nmask, 1755 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1756 }; 1757 1758 /* 1759 * We have checked that migration range is on a single zone so 1760 * we can use the nid of the first page to all the others. 1761 */ 1762 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1763 1764 /* 1765 * try to allocate from a different node but reuse this node 1766 * if there are no other online nodes to be used (e.g. we are 1767 * offlining a part of the only existing node) 1768 */ 1769 node_clear(mtc.nid, nmask); 1770 if (nodes_empty(nmask)) 1771 node_set(mtc.nid, nmask); 1772 ret = migrate_pages(&source, alloc_migration_target, NULL, 1773 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1774 if (ret) { 1775 list_for_each_entry(page, &source, lru) { 1776 if (__ratelimit(&migrate_rs)) { 1777 pr_warn("migrating pfn %lx failed ret:%d\n", 1778 page_to_pfn(page), ret); 1779 dump_page(page, "migration failure"); 1780 } 1781 } 1782 putback_movable_pages(&source); 1783 } 1784 } 1785 1786 return ret; 1787 } 1788 1789 static int __init cmdline_parse_movable_node(char *p) 1790 { 1791 movable_node_enabled = true; 1792 return 0; 1793 } 1794 early_param("movable_node", cmdline_parse_movable_node); 1795 1796 /* check which state of node_states will be changed when offline memory */ 1797 static void node_states_check_changes_offline(unsigned long nr_pages, 1798 struct zone *zone, struct memory_notify *arg) 1799 { 1800 struct pglist_data *pgdat = zone->zone_pgdat; 1801 unsigned long present_pages = 0; 1802 enum zone_type zt; 1803 1804 arg->status_change_nid = NUMA_NO_NODE; 1805 arg->status_change_nid_normal = NUMA_NO_NODE; 1806 arg->status_change_nid_high = NUMA_NO_NODE; 1807 1808 /* 1809 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1810 * If the memory to be offline is within the range 1811 * [0..ZONE_NORMAL], and it is the last present memory there, 1812 * the zones in that range will become empty after the offlining, 1813 * thus we can determine that we need to clear the node from 1814 * node_states[N_NORMAL_MEMORY]. 1815 */ 1816 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1817 present_pages += pgdat->node_zones[zt].present_pages; 1818 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1819 arg->status_change_nid_normal = zone_to_nid(zone); 1820 1821 #ifdef CONFIG_HIGHMEM 1822 /* 1823 * node_states[N_HIGH_MEMORY] contains nodes which 1824 * have normal memory or high memory. 1825 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1826 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1827 * we determine that the zones in that range become empty, 1828 * we need to clear the node for N_HIGH_MEMORY. 1829 */ 1830 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1831 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1832 arg->status_change_nid_high = zone_to_nid(zone); 1833 #endif 1834 1835 /* 1836 * We have accounted the pages from [0..ZONE_NORMAL), and 1837 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1838 * as well. 1839 * Here we count the possible pages from ZONE_MOVABLE. 1840 * If after having accounted all the pages, we see that the nr_pages 1841 * to be offlined is over or equal to the accounted pages, 1842 * we know that the node will become empty, and so, we can clear 1843 * it for N_MEMORY as well. 1844 */ 1845 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1846 1847 if (nr_pages >= present_pages) 1848 arg->status_change_nid = zone_to_nid(zone); 1849 } 1850 1851 static void node_states_clear_node(int node, struct memory_notify *arg) 1852 { 1853 if (arg->status_change_nid_normal >= 0) 1854 node_clear_state(node, N_NORMAL_MEMORY); 1855 1856 if (arg->status_change_nid_high >= 0) 1857 node_clear_state(node, N_HIGH_MEMORY); 1858 1859 if (arg->status_change_nid >= 0) 1860 node_clear_state(node, N_MEMORY); 1861 } 1862 1863 static int count_system_ram_pages_cb(unsigned long start_pfn, 1864 unsigned long nr_pages, void *data) 1865 { 1866 unsigned long *nr_system_ram_pages = data; 1867 1868 *nr_system_ram_pages += nr_pages; 1869 return 0; 1870 } 1871 1872 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1873 struct memory_group *group) 1874 { 1875 const unsigned long end_pfn = start_pfn + nr_pages; 1876 unsigned long pfn, system_ram_pages = 0; 1877 unsigned long flags; 1878 struct zone *zone; 1879 struct memory_notify arg; 1880 int ret, node; 1881 char *reason; 1882 1883 /* 1884 * {on,off}lining is constrained to full memory sections (or more 1885 * precisely to memory blocks from the user space POV). 1886 * memmap_on_memory is an exception because it reserves initial part 1887 * of the physical memory space for vmemmaps. That space is pageblock 1888 * aligned. 1889 */ 1890 if (WARN_ON_ONCE(!nr_pages || 1891 !IS_ALIGNED(start_pfn, pageblock_nr_pages) || 1892 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1893 return -EINVAL; 1894 1895 mem_hotplug_begin(); 1896 1897 /* 1898 * Don't allow to offline memory blocks that contain holes. 1899 * Consequently, memory blocks with holes can never get onlined 1900 * via the hotplug path - online_pages() - as hotplugged memory has 1901 * no holes. This way, we e.g., don't have to worry about marking 1902 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1903 * avoid using walk_system_ram_range() later. 1904 */ 1905 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1906 count_system_ram_pages_cb); 1907 if (system_ram_pages != nr_pages) { 1908 ret = -EINVAL; 1909 reason = "memory holes"; 1910 goto failed_removal; 1911 } 1912 1913 /* This makes hotplug much easier...and readable. 1914 we assume this for now. .*/ 1915 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1916 if (!zone) { 1917 ret = -EINVAL; 1918 reason = "multizone range"; 1919 goto failed_removal; 1920 } 1921 node = zone_to_nid(zone); 1922 1923 /* 1924 * Disable pcplists so that page isolation cannot race with freeing 1925 * in a way that pages from isolated pageblock are left on pcplists. 1926 */ 1927 zone_pcp_disable(zone); 1928 lru_cache_disable(); 1929 1930 /* set above range as isolated */ 1931 ret = start_isolate_page_range(start_pfn, end_pfn, 1932 MIGRATE_MOVABLE, 1933 MEMORY_OFFLINE | REPORT_FAILURE); 1934 if (ret) { 1935 reason = "failure to isolate range"; 1936 goto failed_removal_pcplists_disabled; 1937 } 1938 1939 arg.start_pfn = start_pfn; 1940 arg.nr_pages = nr_pages; 1941 node_states_check_changes_offline(nr_pages, zone, &arg); 1942 1943 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1944 ret = notifier_to_errno(ret); 1945 if (ret) { 1946 reason = "notifier failure"; 1947 goto failed_removal_isolated; 1948 } 1949 1950 do { 1951 pfn = start_pfn; 1952 do { 1953 if (signal_pending(current)) { 1954 ret = -EINTR; 1955 reason = "signal backoff"; 1956 goto failed_removal_isolated; 1957 } 1958 1959 cond_resched(); 1960 1961 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1962 if (!ret) { 1963 /* 1964 * TODO: fatal migration failures should bail 1965 * out 1966 */ 1967 do_migrate_range(pfn, end_pfn); 1968 } 1969 } while (!ret); 1970 1971 if (ret != -ENOENT) { 1972 reason = "unmovable page"; 1973 goto failed_removal_isolated; 1974 } 1975 1976 /* 1977 * Dissolve free hugepages in the memory block before doing 1978 * offlining actually in order to make hugetlbfs's object 1979 * counting consistent. 1980 */ 1981 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1982 if (ret) { 1983 reason = "failure to dissolve huge pages"; 1984 goto failed_removal_isolated; 1985 } 1986 1987 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1988 1989 } while (ret); 1990 1991 /* Mark all sections offline and remove free pages from the buddy. */ 1992 __offline_isolated_pages(start_pfn, end_pfn); 1993 pr_debug("Offlined Pages %ld\n", nr_pages); 1994 1995 /* 1996 * The memory sections are marked offline, and the pageblock flags 1997 * effectively stale; nobody should be touching them. Fixup the number 1998 * of isolated pageblocks, memory onlining will properly revert this. 1999 */ 2000 spin_lock_irqsave(&zone->lock, flags); 2001 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2002 spin_unlock_irqrestore(&zone->lock, flags); 2003 2004 lru_cache_enable(); 2005 zone_pcp_enable(zone); 2006 2007 /* removal success */ 2008 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2009 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2010 2011 /* reinitialise watermarks and update pcp limits */ 2012 init_per_zone_wmark_min(); 2013 2014 if (!populated_zone(zone)) { 2015 zone_pcp_reset(zone); 2016 build_all_zonelists(NULL); 2017 } 2018 2019 node_states_clear_node(node, &arg); 2020 if (arg.status_change_nid >= 0) { 2021 kswapd_stop(node); 2022 kcompactd_stop(node); 2023 } 2024 2025 writeback_set_ratelimit(); 2026 2027 memory_notify(MEM_OFFLINE, &arg); 2028 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2029 mem_hotplug_done(); 2030 return 0; 2031 2032 failed_removal_isolated: 2033 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2034 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2035 failed_removal_pcplists_disabled: 2036 lru_cache_enable(); 2037 zone_pcp_enable(zone); 2038 failed_removal: 2039 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2040 (unsigned long long) start_pfn << PAGE_SHIFT, 2041 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2042 reason); 2043 /* pushback to free area */ 2044 mem_hotplug_done(); 2045 return ret; 2046 } 2047 2048 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2049 { 2050 int ret = !is_memblock_offlined(mem); 2051 int *nid = arg; 2052 2053 *nid = mem->nid; 2054 if (unlikely(ret)) { 2055 phys_addr_t beginpa, endpa; 2056 2057 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2058 endpa = beginpa + memory_block_size_bytes() - 1; 2059 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2060 &beginpa, &endpa); 2061 2062 return -EBUSY; 2063 } 2064 return 0; 2065 } 2066 2067 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 2068 { 2069 /* 2070 * If not set, continue with the next block. 2071 */ 2072 return mem->nr_vmemmap_pages; 2073 } 2074 2075 static int check_cpu_on_node(pg_data_t *pgdat) 2076 { 2077 int cpu; 2078 2079 for_each_present_cpu(cpu) { 2080 if (cpu_to_node(cpu) == pgdat->node_id) 2081 /* 2082 * the cpu on this node isn't removed, and we can't 2083 * offline this node. 2084 */ 2085 return -EBUSY; 2086 } 2087 2088 return 0; 2089 } 2090 2091 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2092 { 2093 int nid = *(int *)arg; 2094 2095 /* 2096 * If a memory block belongs to multiple nodes, the stored nid is not 2097 * reliable. However, such blocks are always online (e.g., cannot get 2098 * offlined) and, therefore, are still spanned by the node. 2099 */ 2100 return mem->nid == nid ? -EEXIST : 0; 2101 } 2102 2103 /** 2104 * try_offline_node 2105 * @nid: the node ID 2106 * 2107 * Offline a node if all memory sections and cpus of the node are removed. 2108 * 2109 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2110 * and online/offline operations before this call. 2111 */ 2112 void try_offline_node(int nid) 2113 { 2114 pg_data_t *pgdat = NODE_DATA(nid); 2115 int rc; 2116 2117 /* 2118 * If the node still spans pages (especially ZONE_DEVICE), don't 2119 * offline it. A node spans memory after move_pfn_range_to_zone(), 2120 * e.g., after the memory block was onlined. 2121 */ 2122 if (pgdat->node_spanned_pages) 2123 return; 2124 2125 /* 2126 * Especially offline memory blocks might not be spanned by the 2127 * node. They will get spanned by the node once they get onlined. 2128 * However, they link to the node in sysfs and can get onlined later. 2129 */ 2130 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2131 if (rc) 2132 return; 2133 2134 if (check_cpu_on_node(pgdat)) 2135 return; 2136 2137 /* 2138 * all memory/cpu of this node are removed, we can offline this 2139 * node now. 2140 */ 2141 node_set_offline(nid); 2142 unregister_one_node(nid); 2143 } 2144 EXPORT_SYMBOL(try_offline_node); 2145 2146 static int __ref try_remove_memory(u64 start, u64 size) 2147 { 2148 struct vmem_altmap mhp_altmap = {}; 2149 struct vmem_altmap *altmap = NULL; 2150 unsigned long nr_vmemmap_pages; 2151 int rc = 0, nid = NUMA_NO_NODE; 2152 2153 BUG_ON(check_hotplug_memory_range(start, size)); 2154 2155 /* 2156 * All memory blocks must be offlined before removing memory. Check 2157 * whether all memory blocks in question are offline and return error 2158 * if this is not the case. 2159 * 2160 * While at it, determine the nid. Note that if we'd have mixed nodes, 2161 * we'd only try to offline the last determined one -- which is good 2162 * enough for the cases we care about. 2163 */ 2164 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2165 if (rc) 2166 return rc; 2167 2168 /* 2169 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2170 * the same granularity it was added - a single memory block. 2171 */ 2172 if (memmap_on_memory) { 2173 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2174 get_nr_vmemmap_pages_cb); 2175 if (nr_vmemmap_pages) { 2176 if (size != memory_block_size_bytes()) { 2177 pr_warn("Refuse to remove %#llx - %#llx," 2178 "wrong granularity\n", 2179 start, start + size); 2180 return -EINVAL; 2181 } 2182 2183 /* 2184 * Let remove_pmd_table->free_hugepage_table do the 2185 * right thing if we used vmem_altmap when hot-adding 2186 * the range. 2187 */ 2188 mhp_altmap.alloc = nr_vmemmap_pages; 2189 altmap = &mhp_altmap; 2190 } 2191 } 2192 2193 /* remove memmap entry */ 2194 firmware_map_remove(start, start + size, "System RAM"); 2195 2196 /* 2197 * Memory block device removal under the device_hotplug_lock is 2198 * a barrier against racing online attempts. 2199 */ 2200 remove_memory_block_devices(start, size); 2201 2202 mem_hotplug_begin(); 2203 2204 arch_remove_memory(start, size, altmap); 2205 2206 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2207 memblock_free(start, size); 2208 memblock_remove(start, size); 2209 } 2210 2211 release_mem_region_adjustable(start, size); 2212 2213 if (nid != NUMA_NO_NODE) 2214 try_offline_node(nid); 2215 2216 mem_hotplug_done(); 2217 return 0; 2218 } 2219 2220 /** 2221 * __remove_memory - Remove memory if every memory block is offline 2222 * @start: physical address of the region to remove 2223 * @size: size of the region to remove 2224 * 2225 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2226 * and online/offline operations before this call, as required by 2227 * try_offline_node(). 2228 */ 2229 void __remove_memory(u64 start, u64 size) 2230 { 2231 2232 /* 2233 * trigger BUG() if some memory is not offlined prior to calling this 2234 * function 2235 */ 2236 if (try_remove_memory(start, size)) 2237 BUG(); 2238 } 2239 2240 /* 2241 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2242 * some memory is not offline 2243 */ 2244 int remove_memory(u64 start, u64 size) 2245 { 2246 int rc; 2247 2248 lock_device_hotplug(); 2249 rc = try_remove_memory(start, size); 2250 unlock_device_hotplug(); 2251 2252 return rc; 2253 } 2254 EXPORT_SYMBOL_GPL(remove_memory); 2255 2256 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2257 { 2258 uint8_t online_type = MMOP_ONLINE_KERNEL; 2259 uint8_t **online_types = arg; 2260 struct page *page; 2261 int rc; 2262 2263 /* 2264 * Sense the online_type via the zone of the memory block. Offlining 2265 * with multiple zones within one memory block will be rejected 2266 * by offlining code ... so we don't care about that. 2267 */ 2268 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2269 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2270 online_type = MMOP_ONLINE_MOVABLE; 2271 2272 rc = device_offline(&mem->dev); 2273 /* 2274 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2275 * so try_reonline_memory_block() can do the right thing. 2276 */ 2277 if (!rc) 2278 **online_types = online_type; 2279 2280 (*online_types)++; 2281 /* Ignore if already offline. */ 2282 return rc < 0 ? rc : 0; 2283 } 2284 2285 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2286 { 2287 uint8_t **online_types = arg; 2288 int rc; 2289 2290 if (**online_types != MMOP_OFFLINE) { 2291 mem->online_type = **online_types; 2292 rc = device_online(&mem->dev); 2293 if (rc < 0) 2294 pr_warn("%s: Failed to re-online memory: %d", 2295 __func__, rc); 2296 } 2297 2298 /* Continue processing all remaining memory blocks. */ 2299 (*online_types)++; 2300 return 0; 2301 } 2302 2303 /* 2304 * Try to offline and remove memory. Might take a long time to finish in case 2305 * memory is still in use. Primarily useful for memory devices that logically 2306 * unplugged all memory (so it's no longer in use) and want to offline + remove 2307 * that memory. 2308 */ 2309 int offline_and_remove_memory(u64 start, u64 size) 2310 { 2311 const unsigned long mb_count = size / memory_block_size_bytes(); 2312 uint8_t *online_types, *tmp; 2313 int rc; 2314 2315 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2316 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2317 return -EINVAL; 2318 2319 /* 2320 * We'll remember the old online type of each memory block, so we can 2321 * try to revert whatever we did when offlining one memory block fails 2322 * after offlining some others succeeded. 2323 */ 2324 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2325 GFP_KERNEL); 2326 if (!online_types) 2327 return -ENOMEM; 2328 /* 2329 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2330 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2331 * try_reonline_memory_block(). 2332 */ 2333 memset(online_types, MMOP_OFFLINE, mb_count); 2334 2335 lock_device_hotplug(); 2336 2337 tmp = online_types; 2338 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2339 2340 /* 2341 * In case we succeeded to offline all memory, remove it. 2342 * This cannot fail as it cannot get onlined in the meantime. 2343 */ 2344 if (!rc) { 2345 rc = try_remove_memory(start, size); 2346 if (rc) 2347 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2348 } 2349 2350 /* 2351 * Rollback what we did. While memory onlining might theoretically fail 2352 * (nacked by a notifier), it barely ever happens. 2353 */ 2354 if (rc) { 2355 tmp = online_types; 2356 walk_memory_blocks(start, size, &tmp, 2357 try_reonline_memory_block); 2358 } 2359 unlock_device_hotplug(); 2360 2361 kfree(online_types); 2362 return rc; 2363 } 2364 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2365 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2366