xref: /openbmc/linux/mm/memory_hotplug.c (revision 752beb5e)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page, unsigned int order);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 u64 max_mem_size = U64_MAX;
100 
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
103 {
104 	struct resource *res;
105 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 	char *resource_name = "System RAM";
107 
108 	if (start + size > max_mem_size)
109 		return ERR_PTR(-E2BIG);
110 
111 	/*
112 	 * Request ownership of the new memory range.  This might be
113 	 * a child of an existing resource that was present but
114 	 * not marked as busy.
115 	 */
116 	res = __request_region(&iomem_resource, start, size,
117 			       resource_name, flags);
118 
119 	if (!res) {
120 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
121 				start, start + size);
122 		return ERR_PTR(-EEXIST);
123 	}
124 	return res;
125 }
126 
127 static void release_memory_resource(struct resource *res)
128 {
129 	if (!res)
130 		return;
131 	release_resource(res);
132 	kfree(res);
133 	return;
134 }
135 
136 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
137 void get_page_bootmem(unsigned long info,  struct page *page,
138 		      unsigned long type)
139 {
140 	page->freelist = (void *)type;
141 	SetPagePrivate(page);
142 	set_page_private(page, info);
143 	page_ref_inc(page);
144 }
145 
146 void put_page_bootmem(struct page *page)
147 {
148 	unsigned long type;
149 
150 	type = (unsigned long) page->freelist;
151 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
152 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
153 
154 	if (page_ref_dec_return(page) == 1) {
155 		page->freelist = NULL;
156 		ClearPagePrivate(page);
157 		set_page_private(page, 0);
158 		INIT_LIST_HEAD(&page->lru);
159 		free_reserved_page(page);
160 	}
161 }
162 
163 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
164 #ifndef CONFIG_SPARSEMEM_VMEMMAP
165 static void register_page_bootmem_info_section(unsigned long start_pfn)
166 {
167 	unsigned long *usemap, mapsize, section_nr, i;
168 	struct mem_section *ms;
169 	struct page *page, *memmap;
170 
171 	section_nr = pfn_to_section_nr(start_pfn);
172 	ms = __nr_to_section(section_nr);
173 
174 	/* Get section's memmap address */
175 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176 
177 	/*
178 	 * Get page for the memmap's phys address
179 	 * XXX: need more consideration for sparse_vmemmap...
180 	 */
181 	page = virt_to_page(memmap);
182 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
183 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
184 
185 	/* remember memmap's page */
186 	for (i = 0; i < mapsize; i++, page++)
187 		get_page_bootmem(section_nr, page, SECTION_INFO);
188 
189 	usemap = ms->pageblock_flags;
190 	page = virt_to_page(usemap);
191 
192 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
193 
194 	for (i = 0; i < mapsize; i++, page++)
195 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196 
197 }
198 #else /* CONFIG_SPARSEMEM_VMEMMAP */
199 static void register_page_bootmem_info_section(unsigned long start_pfn)
200 {
201 	unsigned long *usemap, mapsize, section_nr, i;
202 	struct mem_section *ms;
203 	struct page *page, *memmap;
204 
205 	section_nr = pfn_to_section_nr(start_pfn);
206 	ms = __nr_to_section(section_nr);
207 
208 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
209 
210 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
211 
212 	usemap = ms->pageblock_flags;
213 	page = virt_to_page(usemap);
214 
215 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
216 
217 	for (i = 0; i < mapsize; i++, page++)
218 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
219 }
220 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
221 
222 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
223 {
224 	unsigned long i, pfn, end_pfn, nr_pages;
225 	int node = pgdat->node_id;
226 	struct page *page;
227 
228 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
229 	page = virt_to_page(pgdat);
230 
231 	for (i = 0; i < nr_pages; i++, page++)
232 		get_page_bootmem(node, page, NODE_INFO);
233 
234 	pfn = pgdat->node_start_pfn;
235 	end_pfn = pgdat_end_pfn(pgdat);
236 
237 	/* register section info */
238 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
239 		/*
240 		 * Some platforms can assign the same pfn to multiple nodes - on
241 		 * node0 as well as nodeN.  To avoid registering a pfn against
242 		 * multiple nodes we check that this pfn does not already
243 		 * reside in some other nodes.
244 		 */
245 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
246 			register_page_bootmem_info_section(pfn);
247 	}
248 }
249 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
250 
251 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
252 		struct vmem_altmap *altmap, bool want_memblock)
253 {
254 	int ret;
255 
256 	if (pfn_valid(phys_start_pfn))
257 		return -EEXIST;
258 
259 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
260 	if (ret < 0)
261 		return ret;
262 
263 	if (!want_memblock)
264 		return 0;
265 
266 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
267 }
268 
269 /*
270  * Reasonably generic function for adding memory.  It is
271  * expected that archs that support memory hotplug will
272  * call this function after deciding the zone to which to
273  * add the new pages.
274  */
275 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
276 		unsigned long nr_pages, struct mhp_restrictions *restrictions)
277 {
278 	unsigned long i;
279 	int err = 0;
280 	int start_sec, end_sec;
281 	struct vmem_altmap *altmap = restrictions->altmap;
282 
283 	/* during initialize mem_map, align hot-added range to section */
284 	start_sec = pfn_to_section_nr(phys_start_pfn);
285 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
286 
287 	if (altmap) {
288 		/*
289 		 * Validate altmap is within bounds of the total request
290 		 */
291 		if (altmap->base_pfn != phys_start_pfn
292 				|| vmem_altmap_offset(altmap) > nr_pages) {
293 			pr_warn_once("memory add fail, invalid altmap\n");
294 			err = -EINVAL;
295 			goto out;
296 		}
297 		altmap->alloc = 0;
298 	}
299 
300 	for (i = start_sec; i <= end_sec; i++) {
301 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
302 				restrictions->flags & MHP_MEMBLOCK_API);
303 
304 		/*
305 		 * EEXIST is finally dealt with by ioresource collision
306 		 * check. see add_memory() => register_memory_resource()
307 		 * Warning will be printed if there is collision.
308 		 */
309 		if (err && (err != -EEXIST))
310 			break;
311 		err = 0;
312 		cond_resched();
313 	}
314 	vmemmap_populate_print_last();
315 out:
316 	return err;
317 }
318 
319 #ifdef CONFIG_MEMORY_HOTREMOVE
320 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
321 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
322 				     unsigned long start_pfn,
323 				     unsigned long end_pfn)
324 {
325 	struct mem_section *ms;
326 
327 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
328 		ms = __pfn_to_section(start_pfn);
329 
330 		if (unlikely(!valid_section(ms)))
331 			continue;
332 
333 		if (unlikely(pfn_to_nid(start_pfn) != nid))
334 			continue;
335 
336 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
337 			continue;
338 
339 		return start_pfn;
340 	}
341 
342 	return 0;
343 }
344 
345 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
346 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
347 				    unsigned long start_pfn,
348 				    unsigned long end_pfn)
349 {
350 	struct mem_section *ms;
351 	unsigned long pfn;
352 
353 	/* pfn is the end pfn of a memory section. */
354 	pfn = end_pfn - 1;
355 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
356 		ms = __pfn_to_section(pfn);
357 
358 		if (unlikely(!valid_section(ms)))
359 			continue;
360 
361 		if (unlikely(pfn_to_nid(pfn) != nid))
362 			continue;
363 
364 		if (zone && zone != page_zone(pfn_to_page(pfn)))
365 			continue;
366 
367 		return pfn;
368 	}
369 
370 	return 0;
371 }
372 
373 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
374 			     unsigned long end_pfn)
375 {
376 	unsigned long zone_start_pfn = zone->zone_start_pfn;
377 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
378 	unsigned long zone_end_pfn = z;
379 	unsigned long pfn;
380 	struct mem_section *ms;
381 	int nid = zone_to_nid(zone);
382 
383 	zone_span_writelock(zone);
384 	if (zone_start_pfn == start_pfn) {
385 		/*
386 		 * If the section is smallest section in the zone, it need
387 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 		 * In this case, we find second smallest valid mem_section
389 		 * for shrinking zone.
390 		 */
391 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 						zone_end_pfn);
393 		if (pfn) {
394 			zone->zone_start_pfn = pfn;
395 			zone->spanned_pages = zone_end_pfn - pfn;
396 		}
397 	} else if (zone_end_pfn == end_pfn) {
398 		/*
399 		 * If the section is biggest section in the zone, it need
400 		 * shrink zone->spanned_pages.
401 		 * In this case, we find second biggest valid mem_section for
402 		 * shrinking zone.
403 		 */
404 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 					       start_pfn);
406 		if (pfn)
407 			zone->spanned_pages = pfn - zone_start_pfn + 1;
408 	}
409 
410 	/*
411 	 * The section is not biggest or smallest mem_section in the zone, it
412 	 * only creates a hole in the zone. So in this case, we need not
413 	 * change the zone. But perhaps, the zone has only hole data. Thus
414 	 * it check the zone has only hole or not.
415 	 */
416 	pfn = zone_start_pfn;
417 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
418 		ms = __pfn_to_section(pfn);
419 
420 		if (unlikely(!valid_section(ms)))
421 			continue;
422 
423 		if (page_zone(pfn_to_page(pfn)) != zone)
424 			continue;
425 
426 		 /* If the section is current section, it continues the loop */
427 		if (start_pfn == pfn)
428 			continue;
429 
430 		/* If we find valid section, we have nothing to do */
431 		zone_span_writeunlock(zone);
432 		return;
433 	}
434 
435 	/* The zone has no valid section */
436 	zone->zone_start_pfn = 0;
437 	zone->spanned_pages = 0;
438 	zone_span_writeunlock(zone);
439 }
440 
441 static void shrink_pgdat_span(struct pglist_data *pgdat,
442 			      unsigned long start_pfn, unsigned long end_pfn)
443 {
444 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
445 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
446 	unsigned long pgdat_end_pfn = p;
447 	unsigned long pfn;
448 	struct mem_section *ms;
449 	int nid = pgdat->node_id;
450 
451 	if (pgdat_start_pfn == start_pfn) {
452 		/*
453 		 * If the section is smallest section in the pgdat, it need
454 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
455 		 * In this case, we find second smallest valid mem_section
456 		 * for shrinking zone.
457 		 */
458 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
459 						pgdat_end_pfn);
460 		if (pfn) {
461 			pgdat->node_start_pfn = pfn;
462 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
463 		}
464 	} else if (pgdat_end_pfn == end_pfn) {
465 		/*
466 		 * If the section is biggest section in the pgdat, it need
467 		 * shrink pgdat->node_spanned_pages.
468 		 * In this case, we find second biggest valid mem_section for
469 		 * shrinking zone.
470 		 */
471 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
472 					       start_pfn);
473 		if (pfn)
474 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
475 	}
476 
477 	/*
478 	 * If the section is not biggest or smallest mem_section in the pgdat,
479 	 * it only creates a hole in the pgdat. So in this case, we need not
480 	 * change the pgdat.
481 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
482 	 * has only hole or not.
483 	 */
484 	pfn = pgdat_start_pfn;
485 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
486 		ms = __pfn_to_section(pfn);
487 
488 		if (unlikely(!valid_section(ms)))
489 			continue;
490 
491 		if (pfn_to_nid(pfn) != nid)
492 			continue;
493 
494 		 /* If the section is current section, it continues the loop */
495 		if (start_pfn == pfn)
496 			continue;
497 
498 		/* If we find valid section, we have nothing to do */
499 		return;
500 	}
501 
502 	/* The pgdat has no valid section */
503 	pgdat->node_start_pfn = 0;
504 	pgdat->node_spanned_pages = 0;
505 }
506 
507 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
508 {
509 	struct pglist_data *pgdat = zone->zone_pgdat;
510 	int nr_pages = PAGES_PER_SECTION;
511 	unsigned long flags;
512 
513 	pgdat_resize_lock(zone->zone_pgdat, &flags);
514 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
515 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
516 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
517 }
518 
519 static void __remove_section(struct zone *zone, struct mem_section *ms,
520 			     unsigned long map_offset,
521 			     struct vmem_altmap *altmap)
522 {
523 	unsigned long start_pfn;
524 	int scn_nr;
525 
526 	if (WARN_ON_ONCE(!valid_section(ms)))
527 		return;
528 
529 	unregister_memory_section(ms);
530 
531 	scn_nr = __section_nr(ms);
532 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 	__remove_zone(zone, start_pfn);
534 
535 	sparse_remove_one_section(zone, ms, map_offset, altmap);
536 }
537 
538 /**
539  * __remove_pages() - remove sections of pages from a zone
540  * @zone: zone from which pages need to be removed
541  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
542  * @nr_pages: number of pages to remove (must be multiple of section size)
543  * @altmap: alternative device page map or %NULL if default memmap is used
544  *
545  * Generic helper function to remove section mappings and sysfs entries
546  * for the section of the memory we are removing. Caller needs to make
547  * sure that pages are marked reserved and zones are adjust properly by
548  * calling offline_pages().
549  */
550 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
551 		    unsigned long nr_pages, struct vmem_altmap *altmap)
552 {
553 	unsigned long i;
554 	unsigned long map_offset = 0;
555 	int sections_to_remove;
556 
557 	/* In the ZONE_DEVICE case device driver owns the memory region */
558 	if (is_dev_zone(zone)) {
559 		if (altmap)
560 			map_offset = vmem_altmap_offset(altmap);
561 	}
562 
563 	clear_zone_contiguous(zone);
564 
565 	/*
566 	 * We can only remove entire sections
567 	 */
568 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
569 	BUG_ON(nr_pages % PAGES_PER_SECTION);
570 
571 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
572 	for (i = 0; i < sections_to_remove; i++) {
573 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
574 
575 		cond_resched();
576 		__remove_section(zone, __pfn_to_section(pfn), map_offset,
577 				 altmap);
578 		map_offset = 0;
579 	}
580 
581 	set_zone_contiguous(zone);
582 }
583 #endif /* CONFIG_MEMORY_HOTREMOVE */
584 
585 int set_online_page_callback(online_page_callback_t callback)
586 {
587 	int rc = -EINVAL;
588 
589 	get_online_mems();
590 	mutex_lock(&online_page_callback_lock);
591 
592 	if (online_page_callback == generic_online_page) {
593 		online_page_callback = callback;
594 		rc = 0;
595 	}
596 
597 	mutex_unlock(&online_page_callback_lock);
598 	put_online_mems();
599 
600 	return rc;
601 }
602 EXPORT_SYMBOL_GPL(set_online_page_callback);
603 
604 int restore_online_page_callback(online_page_callback_t callback)
605 {
606 	int rc = -EINVAL;
607 
608 	get_online_mems();
609 	mutex_lock(&online_page_callback_lock);
610 
611 	if (online_page_callback == callback) {
612 		online_page_callback = generic_online_page;
613 		rc = 0;
614 	}
615 
616 	mutex_unlock(&online_page_callback_lock);
617 	put_online_mems();
618 
619 	return rc;
620 }
621 EXPORT_SYMBOL_GPL(restore_online_page_callback);
622 
623 void __online_page_set_limits(struct page *page)
624 {
625 }
626 EXPORT_SYMBOL_GPL(__online_page_set_limits);
627 
628 void __online_page_increment_counters(struct page *page)
629 {
630 	adjust_managed_page_count(page, 1);
631 }
632 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
633 
634 void __online_page_free(struct page *page)
635 {
636 	__free_reserved_page(page);
637 }
638 EXPORT_SYMBOL_GPL(__online_page_free);
639 
640 static void generic_online_page(struct page *page, unsigned int order)
641 {
642 	kernel_map_pages(page, 1 << order, 1);
643 	__free_pages_core(page, order);
644 	totalram_pages_add(1UL << order);
645 #ifdef CONFIG_HIGHMEM
646 	if (PageHighMem(page))
647 		totalhigh_pages_add(1UL << order);
648 #endif
649 }
650 
651 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
652 {
653 	unsigned long end = start + nr_pages;
654 	int order, onlined_pages = 0;
655 
656 	while (start < end) {
657 		order = min(MAX_ORDER - 1,
658 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
659 		(*online_page_callback)(pfn_to_page(start), order);
660 
661 		onlined_pages += (1UL << order);
662 		start += (1UL << order);
663 	}
664 	return onlined_pages;
665 }
666 
667 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
668 			void *arg)
669 {
670 	unsigned long onlined_pages = *(unsigned long *)arg;
671 
672 	if (PageReserved(pfn_to_page(start_pfn)))
673 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
674 
675 	online_mem_sections(start_pfn, start_pfn + nr_pages);
676 
677 	*(unsigned long *)arg = onlined_pages;
678 	return 0;
679 }
680 
681 /* check which state of node_states will be changed when online memory */
682 static void node_states_check_changes_online(unsigned long nr_pages,
683 	struct zone *zone, struct memory_notify *arg)
684 {
685 	int nid = zone_to_nid(zone);
686 
687 	arg->status_change_nid = NUMA_NO_NODE;
688 	arg->status_change_nid_normal = NUMA_NO_NODE;
689 	arg->status_change_nid_high = NUMA_NO_NODE;
690 
691 	if (!node_state(nid, N_MEMORY))
692 		arg->status_change_nid = nid;
693 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
694 		arg->status_change_nid_normal = nid;
695 #ifdef CONFIG_HIGHMEM
696 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
697 		arg->status_change_nid_high = nid;
698 #endif
699 }
700 
701 static void node_states_set_node(int node, struct memory_notify *arg)
702 {
703 	if (arg->status_change_nid_normal >= 0)
704 		node_set_state(node, N_NORMAL_MEMORY);
705 
706 	if (arg->status_change_nid_high >= 0)
707 		node_set_state(node, N_HIGH_MEMORY);
708 
709 	if (arg->status_change_nid >= 0)
710 		node_set_state(node, N_MEMORY);
711 }
712 
713 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
714 		unsigned long nr_pages)
715 {
716 	unsigned long old_end_pfn = zone_end_pfn(zone);
717 
718 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
719 		zone->zone_start_pfn = start_pfn;
720 
721 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
722 }
723 
724 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
725                                      unsigned long nr_pages)
726 {
727 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
728 
729 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
730 		pgdat->node_start_pfn = start_pfn;
731 
732 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
733 }
734 
735 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
736 		unsigned long nr_pages, struct vmem_altmap *altmap)
737 {
738 	struct pglist_data *pgdat = zone->zone_pgdat;
739 	int nid = pgdat->node_id;
740 	unsigned long flags;
741 
742 	clear_zone_contiguous(zone);
743 
744 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
745 	pgdat_resize_lock(pgdat, &flags);
746 	zone_span_writelock(zone);
747 	if (zone_is_empty(zone))
748 		init_currently_empty_zone(zone, start_pfn, nr_pages);
749 	resize_zone_range(zone, start_pfn, nr_pages);
750 	zone_span_writeunlock(zone);
751 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
752 	pgdat_resize_unlock(pgdat, &flags);
753 
754 	/*
755 	 * TODO now we have a visible range of pages which are not associated
756 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
757 	 * expects the zone spans the pfn range. All the pages in the range
758 	 * are reserved so nobody should be touching them so we should be safe
759 	 */
760 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
761 			MEMMAP_HOTPLUG, altmap);
762 
763 	set_zone_contiguous(zone);
764 }
765 
766 /*
767  * Returns a default kernel memory zone for the given pfn range.
768  * If no kernel zone covers this pfn range it will automatically go
769  * to the ZONE_NORMAL.
770  */
771 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
772 		unsigned long nr_pages)
773 {
774 	struct pglist_data *pgdat = NODE_DATA(nid);
775 	int zid;
776 
777 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
778 		struct zone *zone = &pgdat->node_zones[zid];
779 
780 		if (zone_intersects(zone, start_pfn, nr_pages))
781 			return zone;
782 	}
783 
784 	return &pgdat->node_zones[ZONE_NORMAL];
785 }
786 
787 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
788 		unsigned long nr_pages)
789 {
790 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
791 			nr_pages);
792 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
793 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
794 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
795 
796 	/*
797 	 * We inherit the existing zone in a simple case where zones do not
798 	 * overlap in the given range
799 	 */
800 	if (in_kernel ^ in_movable)
801 		return (in_kernel) ? kernel_zone : movable_zone;
802 
803 	/*
804 	 * If the range doesn't belong to any zone or two zones overlap in the
805 	 * given range then we use movable zone only if movable_node is
806 	 * enabled because we always online to a kernel zone by default.
807 	 */
808 	return movable_node_enabled ? movable_zone : kernel_zone;
809 }
810 
811 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
812 		unsigned long nr_pages)
813 {
814 	if (online_type == MMOP_ONLINE_KERNEL)
815 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
816 
817 	if (online_type == MMOP_ONLINE_MOVABLE)
818 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
819 
820 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
821 }
822 
823 /*
824  * Associates the given pfn range with the given node and the zone appropriate
825  * for the given online type.
826  */
827 static struct zone * __meminit move_pfn_range(int online_type, int nid,
828 		unsigned long start_pfn, unsigned long nr_pages)
829 {
830 	struct zone *zone;
831 
832 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
833 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
834 	return zone;
835 }
836 
837 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
838 {
839 	unsigned long flags;
840 	unsigned long onlined_pages = 0;
841 	struct zone *zone;
842 	int need_zonelists_rebuild = 0;
843 	int nid;
844 	int ret;
845 	struct memory_notify arg;
846 	struct memory_block *mem;
847 
848 	mem_hotplug_begin();
849 
850 	/*
851 	 * We can't use pfn_to_nid() because nid might be stored in struct page
852 	 * which is not yet initialized. Instead, we find nid from memory block.
853 	 */
854 	mem = find_memory_block(__pfn_to_section(pfn));
855 	nid = mem->nid;
856 	put_device(&mem->dev);
857 
858 	/* associate pfn range with the zone */
859 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
860 
861 	arg.start_pfn = pfn;
862 	arg.nr_pages = nr_pages;
863 	node_states_check_changes_online(nr_pages, zone, &arg);
864 
865 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
866 	ret = notifier_to_errno(ret);
867 	if (ret)
868 		goto failed_addition;
869 
870 	/*
871 	 * If this zone is not populated, then it is not in zonelist.
872 	 * This means the page allocator ignores this zone.
873 	 * So, zonelist must be updated after online.
874 	 */
875 	if (!populated_zone(zone)) {
876 		need_zonelists_rebuild = 1;
877 		setup_zone_pageset(zone);
878 	}
879 
880 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
881 		online_pages_range);
882 	if (ret) {
883 		if (need_zonelists_rebuild)
884 			zone_pcp_reset(zone);
885 		goto failed_addition;
886 	}
887 
888 	zone->present_pages += onlined_pages;
889 
890 	pgdat_resize_lock(zone->zone_pgdat, &flags);
891 	zone->zone_pgdat->node_present_pages += onlined_pages;
892 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
893 
894 	if (onlined_pages) {
895 		node_states_set_node(nid, &arg);
896 		if (need_zonelists_rebuild)
897 			build_all_zonelists(NULL);
898 		else
899 			zone_pcp_update(zone);
900 	}
901 
902 	init_per_zone_wmark_min();
903 
904 	if (onlined_pages) {
905 		kswapd_run(nid);
906 		kcompactd_run(nid);
907 	}
908 
909 	vm_total_pages = nr_free_pagecache_pages();
910 
911 	writeback_set_ratelimit();
912 
913 	if (onlined_pages)
914 		memory_notify(MEM_ONLINE, &arg);
915 	mem_hotplug_done();
916 	return 0;
917 
918 failed_addition:
919 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
920 		 (unsigned long long) pfn << PAGE_SHIFT,
921 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
922 	memory_notify(MEM_CANCEL_ONLINE, &arg);
923 	mem_hotplug_done();
924 	return ret;
925 }
926 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
927 
928 static void reset_node_present_pages(pg_data_t *pgdat)
929 {
930 	struct zone *z;
931 
932 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
933 		z->present_pages = 0;
934 
935 	pgdat->node_present_pages = 0;
936 }
937 
938 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
939 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
940 {
941 	struct pglist_data *pgdat;
942 	unsigned long start_pfn = PFN_DOWN(start);
943 
944 	pgdat = NODE_DATA(nid);
945 	if (!pgdat) {
946 		pgdat = arch_alloc_nodedata(nid);
947 		if (!pgdat)
948 			return NULL;
949 
950 		arch_refresh_nodedata(nid, pgdat);
951 	} else {
952 		/*
953 		 * Reset the nr_zones, order and classzone_idx before reuse.
954 		 * Note that kswapd will init kswapd_classzone_idx properly
955 		 * when it starts in the near future.
956 		 */
957 		pgdat->nr_zones = 0;
958 		pgdat->kswapd_order = 0;
959 		pgdat->kswapd_classzone_idx = 0;
960 	}
961 
962 	/* we can use NODE_DATA(nid) from here */
963 
964 	pgdat->node_id = nid;
965 	pgdat->node_start_pfn = start_pfn;
966 
967 	/* init node's zones as empty zones, we don't have any present pages.*/
968 	free_area_init_core_hotplug(nid);
969 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
970 
971 	/*
972 	 * The node we allocated has no zone fallback lists. For avoiding
973 	 * to access not-initialized zonelist, build here.
974 	 */
975 	build_all_zonelists(pgdat);
976 
977 	/*
978 	 * When memory is hot-added, all the memory is in offline state. So
979 	 * clear all zones' present_pages because they will be updated in
980 	 * online_pages() and offline_pages().
981 	 */
982 	reset_node_managed_pages(pgdat);
983 	reset_node_present_pages(pgdat);
984 
985 	return pgdat;
986 }
987 
988 static void rollback_node_hotadd(int nid)
989 {
990 	pg_data_t *pgdat = NODE_DATA(nid);
991 
992 	arch_refresh_nodedata(nid, NULL);
993 	free_percpu(pgdat->per_cpu_nodestats);
994 	arch_free_nodedata(pgdat);
995 	return;
996 }
997 
998 
999 /**
1000  * try_online_node - online a node if offlined
1001  * @nid: the node ID
1002  * @start: start addr of the node
1003  * @set_node_online: Whether we want to online the node
1004  * called by cpu_up() to online a node without onlined memory.
1005  *
1006  * Returns:
1007  * 1 -> a new node has been allocated
1008  * 0 -> the node is already online
1009  * -ENOMEM -> the node could not be allocated
1010  */
1011 static int __try_online_node(int nid, u64 start, bool set_node_online)
1012 {
1013 	pg_data_t *pgdat;
1014 	int ret = 1;
1015 
1016 	if (node_online(nid))
1017 		return 0;
1018 
1019 	pgdat = hotadd_new_pgdat(nid, start);
1020 	if (!pgdat) {
1021 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1022 		ret = -ENOMEM;
1023 		goto out;
1024 	}
1025 
1026 	if (set_node_online) {
1027 		node_set_online(nid);
1028 		ret = register_one_node(nid);
1029 		BUG_ON(ret);
1030 	}
1031 out:
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Users of this function always want to online/register the node
1037  */
1038 int try_online_node(int nid)
1039 {
1040 	int ret;
1041 
1042 	mem_hotplug_begin();
1043 	ret =  __try_online_node(nid, 0, true);
1044 	mem_hotplug_done();
1045 	return ret;
1046 }
1047 
1048 static int check_hotplug_memory_range(u64 start, u64 size)
1049 {
1050 	unsigned long block_sz = memory_block_size_bytes();
1051 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1052 	u64 nr_pages = size >> PAGE_SHIFT;
1053 	u64 start_pfn = PFN_DOWN(start);
1054 
1055 	/* memory range must be block size aligned */
1056 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1057 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1058 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1059 		       block_sz, start, size);
1060 		return -EINVAL;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int online_memory_block(struct memory_block *mem, void *arg)
1067 {
1068 	return device_online(&mem->dev);
1069 }
1070 
1071 /*
1072  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1073  * and online/offline operations (triggered e.g. by sysfs).
1074  *
1075  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1076  */
1077 int __ref add_memory_resource(int nid, struct resource *res)
1078 {
1079 	struct mhp_restrictions restrictions = {
1080 		.flags = MHP_MEMBLOCK_API,
1081 	};
1082 	u64 start, size;
1083 	bool new_node = false;
1084 	int ret;
1085 
1086 	start = res->start;
1087 	size = resource_size(res);
1088 
1089 	ret = check_hotplug_memory_range(start, size);
1090 	if (ret)
1091 		return ret;
1092 
1093 	mem_hotplug_begin();
1094 
1095 	/*
1096 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1097 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1098 	 * this new range and calculate total pages correctly.  The range will
1099 	 * be removed at hot-remove time.
1100 	 */
1101 	memblock_add_node(start, size, nid);
1102 
1103 	ret = __try_online_node(nid, start, false);
1104 	if (ret < 0)
1105 		goto error;
1106 	new_node = ret;
1107 
1108 	/* call arch's memory hotadd */
1109 	ret = arch_add_memory(nid, start, size, &restrictions);
1110 	if (ret < 0)
1111 		goto error;
1112 
1113 	if (new_node) {
1114 		/* If sysfs file of new node can't be created, cpu on the node
1115 		 * can't be hot-added. There is no rollback way now.
1116 		 * So, check by BUG_ON() to catch it reluctantly..
1117 		 * We online node here. We can't roll back from here.
1118 		 */
1119 		node_set_online(nid);
1120 		ret = __register_one_node(nid);
1121 		BUG_ON(ret);
1122 	}
1123 
1124 	/* link memory sections under this node.*/
1125 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1126 	BUG_ON(ret);
1127 
1128 	/* create new memmap entry */
1129 	firmware_map_add_hotplug(start, start + size, "System RAM");
1130 
1131 	/* device_online() will take the lock when calling online_pages() */
1132 	mem_hotplug_done();
1133 
1134 	/* online pages if requested */
1135 	if (memhp_auto_online)
1136 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1137 				  NULL, online_memory_block);
1138 
1139 	return ret;
1140 error:
1141 	/* rollback pgdat allocation and others */
1142 	if (new_node)
1143 		rollback_node_hotadd(nid);
1144 	memblock_remove(start, size);
1145 	mem_hotplug_done();
1146 	return ret;
1147 }
1148 
1149 /* requires device_hotplug_lock, see add_memory_resource() */
1150 int __ref __add_memory(int nid, u64 start, u64 size)
1151 {
1152 	struct resource *res;
1153 	int ret;
1154 
1155 	res = register_memory_resource(start, size);
1156 	if (IS_ERR(res))
1157 		return PTR_ERR(res);
1158 
1159 	ret = add_memory_resource(nid, res);
1160 	if (ret < 0)
1161 		release_memory_resource(res);
1162 	return ret;
1163 }
1164 
1165 int add_memory(int nid, u64 start, u64 size)
1166 {
1167 	int rc;
1168 
1169 	lock_device_hotplug();
1170 	rc = __add_memory(nid, start, size);
1171 	unlock_device_hotplug();
1172 
1173 	return rc;
1174 }
1175 EXPORT_SYMBOL_GPL(add_memory);
1176 
1177 #ifdef CONFIG_MEMORY_HOTREMOVE
1178 /*
1179  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1180  * set and the size of the free page is given by page_order(). Using this,
1181  * the function determines if the pageblock contains only free pages.
1182  * Due to buddy contraints, a free page at least the size of a pageblock will
1183  * be located at the start of the pageblock
1184  */
1185 static inline int pageblock_free(struct page *page)
1186 {
1187 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1188 }
1189 
1190 /* Return the pfn of the start of the next active pageblock after a given pfn */
1191 static unsigned long next_active_pageblock(unsigned long pfn)
1192 {
1193 	struct page *page = pfn_to_page(pfn);
1194 
1195 	/* Ensure the starting page is pageblock-aligned */
1196 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1197 
1198 	/* If the entire pageblock is free, move to the end of free page */
1199 	if (pageblock_free(page)) {
1200 		int order;
1201 		/* be careful. we don't have locks, page_order can be changed.*/
1202 		order = page_order(page);
1203 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1204 			return pfn + (1 << order);
1205 	}
1206 
1207 	return pfn + pageblock_nr_pages;
1208 }
1209 
1210 static bool is_pageblock_removable_nolock(unsigned long pfn)
1211 {
1212 	struct page *page = pfn_to_page(pfn);
1213 	struct zone *zone;
1214 
1215 	/*
1216 	 * We have to be careful here because we are iterating over memory
1217 	 * sections which are not zone aware so we might end up outside of
1218 	 * the zone but still within the section.
1219 	 * We have to take care about the node as well. If the node is offline
1220 	 * its NODE_DATA will be NULL - see page_zone.
1221 	 */
1222 	if (!node_online(page_to_nid(page)))
1223 		return false;
1224 
1225 	zone = page_zone(page);
1226 	pfn = page_to_pfn(page);
1227 	if (!zone_spans_pfn(zone, pfn))
1228 		return false;
1229 
1230 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1231 }
1232 
1233 /* Checks if this range of memory is likely to be hot-removable. */
1234 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1235 {
1236 	unsigned long end_pfn, pfn;
1237 
1238 	end_pfn = min(start_pfn + nr_pages,
1239 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1240 
1241 	/* Check the starting page of each pageblock within the range */
1242 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1243 		if (!is_pageblock_removable_nolock(pfn))
1244 			return false;
1245 		cond_resched();
1246 	}
1247 
1248 	/* All pageblocks in the memory block are likely to be hot-removable */
1249 	return true;
1250 }
1251 
1252 /*
1253  * Confirm all pages in a range [start, end) belong to the same zone.
1254  * When true, return its valid [start, end).
1255  */
1256 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1257 			 unsigned long *valid_start, unsigned long *valid_end)
1258 {
1259 	unsigned long pfn, sec_end_pfn;
1260 	unsigned long start, end;
1261 	struct zone *zone = NULL;
1262 	struct page *page;
1263 	int i;
1264 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1265 	     pfn < end_pfn;
1266 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1267 		/* Make sure the memory section is present first */
1268 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1269 			continue;
1270 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1271 		     pfn += MAX_ORDER_NR_PAGES) {
1272 			i = 0;
1273 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1274 			while ((i < MAX_ORDER_NR_PAGES) &&
1275 				!pfn_valid_within(pfn + i))
1276 				i++;
1277 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1278 				continue;
1279 			/* Check if we got outside of the zone */
1280 			if (zone && !zone_spans_pfn(zone, pfn + i))
1281 				return 0;
1282 			page = pfn_to_page(pfn + i);
1283 			if (zone && page_zone(page) != zone)
1284 				return 0;
1285 			if (!zone)
1286 				start = pfn + i;
1287 			zone = page_zone(page);
1288 			end = pfn + MAX_ORDER_NR_PAGES;
1289 		}
1290 	}
1291 
1292 	if (zone) {
1293 		*valid_start = start;
1294 		*valid_end = min(end, end_pfn);
1295 		return 1;
1296 	} else {
1297 		return 0;
1298 	}
1299 }
1300 
1301 /*
1302  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1303  * non-lru movable pages and hugepages). We scan pfn because it's much
1304  * easier than scanning over linked list. This function returns the pfn
1305  * of the first found movable page if it's found, otherwise 0.
1306  */
1307 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1308 {
1309 	unsigned long pfn;
1310 
1311 	for (pfn = start; pfn < end; pfn++) {
1312 		struct page *page, *head;
1313 		unsigned long skip;
1314 
1315 		if (!pfn_valid(pfn))
1316 			continue;
1317 		page = pfn_to_page(pfn);
1318 		if (PageLRU(page))
1319 			return pfn;
1320 		if (__PageMovable(page))
1321 			return pfn;
1322 
1323 		if (!PageHuge(page))
1324 			continue;
1325 		head = compound_head(page);
1326 		if (page_huge_active(head))
1327 			return pfn;
1328 		skip = (1 << compound_order(head)) - (page - head);
1329 		pfn += skip - 1;
1330 	}
1331 	return 0;
1332 }
1333 
1334 static struct page *new_node_page(struct page *page, unsigned long private)
1335 {
1336 	int nid = page_to_nid(page);
1337 	nodemask_t nmask = node_states[N_MEMORY];
1338 
1339 	/*
1340 	 * try to allocate from a different node but reuse this node if there
1341 	 * are no other online nodes to be used (e.g. we are offlining a part
1342 	 * of the only existing node)
1343 	 */
1344 	node_clear(nid, nmask);
1345 	if (nodes_empty(nmask))
1346 		node_set(nid, nmask);
1347 
1348 	return new_page_nodemask(page, nid, &nmask);
1349 }
1350 
1351 static int
1352 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1353 {
1354 	unsigned long pfn;
1355 	struct page *page;
1356 	int ret = 0;
1357 	LIST_HEAD(source);
1358 
1359 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1360 		if (!pfn_valid(pfn))
1361 			continue;
1362 		page = pfn_to_page(pfn);
1363 
1364 		if (PageHuge(page)) {
1365 			struct page *head = compound_head(page);
1366 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1367 			isolate_huge_page(head, &source);
1368 			continue;
1369 		} else if (PageTransHuge(page))
1370 			pfn = page_to_pfn(compound_head(page))
1371 				+ hpage_nr_pages(page) - 1;
1372 
1373 		/*
1374 		 * HWPoison pages have elevated reference counts so the migration would
1375 		 * fail on them. It also doesn't make any sense to migrate them in the
1376 		 * first place. Still try to unmap such a page in case it is still mapped
1377 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1378 		 * the unmap as the catch all safety net).
1379 		 */
1380 		if (PageHWPoison(page)) {
1381 			if (WARN_ON(PageLRU(page)))
1382 				isolate_lru_page(page);
1383 			if (page_mapped(page))
1384 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1385 			continue;
1386 		}
1387 
1388 		if (!get_page_unless_zero(page))
1389 			continue;
1390 		/*
1391 		 * We can skip free pages. And we can deal with pages on
1392 		 * LRU and non-lru movable pages.
1393 		 */
1394 		if (PageLRU(page))
1395 			ret = isolate_lru_page(page);
1396 		else
1397 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1398 		if (!ret) { /* Success */
1399 			list_add_tail(&page->lru, &source);
1400 			if (!__PageMovable(page))
1401 				inc_node_page_state(page, NR_ISOLATED_ANON +
1402 						    page_is_file_cache(page));
1403 
1404 		} else {
1405 			pr_warn("failed to isolate pfn %lx\n", pfn);
1406 			dump_page(page, "isolation failed");
1407 		}
1408 		put_page(page);
1409 	}
1410 	if (!list_empty(&source)) {
1411 		/* Allocate a new page from the nearest neighbor node */
1412 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1413 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1414 		if (ret) {
1415 			list_for_each_entry(page, &source, lru) {
1416 				pr_warn("migrating pfn %lx failed ret:%d ",
1417 				       page_to_pfn(page), ret);
1418 				dump_page(page, "migration failure");
1419 			}
1420 			putback_movable_pages(&source);
1421 		}
1422 	}
1423 
1424 	return ret;
1425 }
1426 
1427 /*
1428  * remove from free_area[] and mark all as Reserved.
1429  */
1430 static int
1431 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1432 			void *data)
1433 {
1434 	unsigned long *offlined_pages = (unsigned long *)data;
1435 
1436 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1437 	return 0;
1438 }
1439 
1440 /*
1441  * Check all pages in range, recoreded as memory resource, are isolated.
1442  */
1443 static int
1444 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1445 			void *data)
1446 {
1447 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1448 }
1449 
1450 static int __init cmdline_parse_movable_node(char *p)
1451 {
1452 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1453 	movable_node_enabled = true;
1454 #else
1455 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1456 #endif
1457 	return 0;
1458 }
1459 early_param("movable_node", cmdline_parse_movable_node);
1460 
1461 /* check which state of node_states will be changed when offline memory */
1462 static void node_states_check_changes_offline(unsigned long nr_pages,
1463 		struct zone *zone, struct memory_notify *arg)
1464 {
1465 	struct pglist_data *pgdat = zone->zone_pgdat;
1466 	unsigned long present_pages = 0;
1467 	enum zone_type zt;
1468 
1469 	arg->status_change_nid = NUMA_NO_NODE;
1470 	arg->status_change_nid_normal = NUMA_NO_NODE;
1471 	arg->status_change_nid_high = NUMA_NO_NODE;
1472 
1473 	/*
1474 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1475 	 * If the memory to be offline is within the range
1476 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1477 	 * the zones in that range will become empty after the offlining,
1478 	 * thus we can determine that we need to clear the node from
1479 	 * node_states[N_NORMAL_MEMORY].
1480 	 */
1481 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1482 		present_pages += pgdat->node_zones[zt].present_pages;
1483 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1484 		arg->status_change_nid_normal = zone_to_nid(zone);
1485 
1486 #ifdef CONFIG_HIGHMEM
1487 	/*
1488 	 * node_states[N_HIGH_MEMORY] contains nodes which
1489 	 * have normal memory or high memory.
1490 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1491 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1492 	 * we determine that the zones in that range become empty,
1493 	 * we need to clear the node for N_HIGH_MEMORY.
1494 	 */
1495 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1496 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1497 		arg->status_change_nid_high = zone_to_nid(zone);
1498 #endif
1499 
1500 	/*
1501 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1502 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1503 	 * as well.
1504 	 * Here we count the possible pages from ZONE_MOVABLE.
1505 	 * If after having accounted all the pages, we see that the nr_pages
1506 	 * to be offlined is over or equal to the accounted pages,
1507 	 * we know that the node will become empty, and so, we can clear
1508 	 * it for N_MEMORY as well.
1509 	 */
1510 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1511 
1512 	if (nr_pages >= present_pages)
1513 		arg->status_change_nid = zone_to_nid(zone);
1514 }
1515 
1516 static void node_states_clear_node(int node, struct memory_notify *arg)
1517 {
1518 	if (arg->status_change_nid_normal >= 0)
1519 		node_clear_state(node, N_NORMAL_MEMORY);
1520 
1521 	if (arg->status_change_nid_high >= 0)
1522 		node_clear_state(node, N_HIGH_MEMORY);
1523 
1524 	if (arg->status_change_nid >= 0)
1525 		node_clear_state(node, N_MEMORY);
1526 }
1527 
1528 static int __ref __offline_pages(unsigned long start_pfn,
1529 		  unsigned long end_pfn)
1530 {
1531 	unsigned long pfn, nr_pages;
1532 	unsigned long offlined_pages = 0;
1533 	int ret, node, nr_isolate_pageblock;
1534 	unsigned long flags;
1535 	unsigned long valid_start, valid_end;
1536 	struct zone *zone;
1537 	struct memory_notify arg;
1538 	char *reason;
1539 
1540 	mem_hotplug_begin();
1541 
1542 	/* This makes hotplug much easier...and readable.
1543 	   we assume this for now. .*/
1544 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1545 				  &valid_end)) {
1546 		ret = -EINVAL;
1547 		reason = "multizone range";
1548 		goto failed_removal;
1549 	}
1550 
1551 	zone = page_zone(pfn_to_page(valid_start));
1552 	node = zone_to_nid(zone);
1553 	nr_pages = end_pfn - start_pfn;
1554 
1555 	/* set above range as isolated */
1556 	ret = start_isolate_page_range(start_pfn, end_pfn,
1557 				       MIGRATE_MOVABLE,
1558 				       SKIP_HWPOISON | REPORT_FAILURE);
1559 	if (ret < 0) {
1560 		reason = "failure to isolate range";
1561 		goto failed_removal;
1562 	}
1563 	nr_isolate_pageblock = ret;
1564 
1565 	arg.start_pfn = start_pfn;
1566 	arg.nr_pages = nr_pages;
1567 	node_states_check_changes_offline(nr_pages, zone, &arg);
1568 
1569 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1570 	ret = notifier_to_errno(ret);
1571 	if (ret) {
1572 		reason = "notifier failure";
1573 		goto failed_removal_isolated;
1574 	}
1575 
1576 	do {
1577 		for (pfn = start_pfn; pfn;) {
1578 			if (signal_pending(current)) {
1579 				ret = -EINTR;
1580 				reason = "signal backoff";
1581 				goto failed_removal_isolated;
1582 			}
1583 
1584 			cond_resched();
1585 			lru_add_drain_all();
1586 
1587 			pfn = scan_movable_pages(pfn, end_pfn);
1588 			if (pfn) {
1589 				/*
1590 				 * TODO: fatal migration failures should bail
1591 				 * out
1592 				 */
1593 				do_migrate_range(pfn, end_pfn);
1594 			}
1595 		}
1596 
1597 		/*
1598 		 * Dissolve free hugepages in the memory block before doing
1599 		 * offlining actually in order to make hugetlbfs's object
1600 		 * counting consistent.
1601 		 */
1602 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1603 		if (ret) {
1604 			reason = "failure to dissolve huge pages";
1605 			goto failed_removal_isolated;
1606 		}
1607 		/* check again */
1608 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1609 					    NULL, check_pages_isolated_cb);
1610 	} while (ret);
1611 
1612 	/* Ok, all of our target is isolated.
1613 	   We cannot do rollback at this point. */
1614 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1615 			      &offlined_pages, offline_isolated_pages_cb);
1616 	pr_info("Offlined Pages %ld\n", offlined_pages);
1617 	/*
1618 	 * Onlining will reset pagetype flags and makes migrate type
1619 	 * MOVABLE, so just need to decrease the number of isolated
1620 	 * pageblocks zone counter here.
1621 	 */
1622 	spin_lock_irqsave(&zone->lock, flags);
1623 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1624 	spin_unlock_irqrestore(&zone->lock, flags);
1625 
1626 	/* removal success */
1627 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1628 	zone->present_pages -= offlined_pages;
1629 
1630 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1631 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1632 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1633 
1634 	init_per_zone_wmark_min();
1635 
1636 	if (!populated_zone(zone)) {
1637 		zone_pcp_reset(zone);
1638 		build_all_zonelists(NULL);
1639 	} else
1640 		zone_pcp_update(zone);
1641 
1642 	node_states_clear_node(node, &arg);
1643 	if (arg.status_change_nid >= 0) {
1644 		kswapd_stop(node);
1645 		kcompactd_stop(node);
1646 	}
1647 
1648 	vm_total_pages = nr_free_pagecache_pages();
1649 	writeback_set_ratelimit();
1650 
1651 	memory_notify(MEM_OFFLINE, &arg);
1652 	mem_hotplug_done();
1653 	return 0;
1654 
1655 failed_removal_isolated:
1656 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1657 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1658 failed_removal:
1659 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1660 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1661 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1662 		 reason);
1663 	/* pushback to free area */
1664 	mem_hotplug_done();
1665 	return ret;
1666 }
1667 
1668 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1669 {
1670 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1671 }
1672 #endif /* CONFIG_MEMORY_HOTREMOVE */
1673 
1674 /**
1675  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1676  * @start_pfn: start pfn of the memory range
1677  * @end_pfn: end pfn of the memory range
1678  * @arg: argument passed to func
1679  * @func: callback for each memory section walked
1680  *
1681  * This function walks through all present mem sections in range
1682  * [start_pfn, end_pfn) and call func on each mem section.
1683  *
1684  * Returns the return value of func.
1685  */
1686 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1687 		void *arg, int (*func)(struct memory_block *, void *))
1688 {
1689 	struct memory_block *mem = NULL;
1690 	struct mem_section *section;
1691 	unsigned long pfn, section_nr;
1692 	int ret;
1693 
1694 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1695 		section_nr = pfn_to_section_nr(pfn);
1696 		if (!present_section_nr(section_nr))
1697 			continue;
1698 
1699 		section = __nr_to_section(section_nr);
1700 		/* same memblock? */
1701 		if (mem)
1702 			if ((section_nr >= mem->start_section_nr) &&
1703 			    (section_nr <= mem->end_section_nr))
1704 				continue;
1705 
1706 		mem = find_memory_block_hinted(section, mem);
1707 		if (!mem)
1708 			continue;
1709 
1710 		ret = func(mem, arg);
1711 		if (ret) {
1712 			kobject_put(&mem->dev.kobj);
1713 			return ret;
1714 		}
1715 	}
1716 
1717 	if (mem)
1718 		kobject_put(&mem->dev.kobj);
1719 
1720 	return 0;
1721 }
1722 
1723 #ifdef CONFIG_MEMORY_HOTREMOVE
1724 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1725 {
1726 	int ret = !is_memblock_offlined(mem);
1727 
1728 	if (unlikely(ret)) {
1729 		phys_addr_t beginpa, endpa;
1730 
1731 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1732 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1733 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1734 			&beginpa, &endpa);
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 static int check_cpu_on_node(pg_data_t *pgdat)
1741 {
1742 	int cpu;
1743 
1744 	for_each_present_cpu(cpu) {
1745 		if (cpu_to_node(cpu) == pgdat->node_id)
1746 			/*
1747 			 * the cpu on this node isn't removed, and we can't
1748 			 * offline this node.
1749 			 */
1750 			return -EBUSY;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 /**
1757  * try_offline_node
1758  * @nid: the node ID
1759  *
1760  * Offline a node if all memory sections and cpus of the node are removed.
1761  *
1762  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1763  * and online/offline operations before this call.
1764  */
1765 void try_offline_node(int nid)
1766 {
1767 	pg_data_t *pgdat = NODE_DATA(nid);
1768 	unsigned long start_pfn = pgdat->node_start_pfn;
1769 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1770 	unsigned long pfn;
1771 
1772 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1773 		unsigned long section_nr = pfn_to_section_nr(pfn);
1774 
1775 		if (!present_section_nr(section_nr))
1776 			continue;
1777 
1778 		if (pfn_to_nid(pfn) != nid)
1779 			continue;
1780 
1781 		/*
1782 		 * some memory sections of this node are not removed, and we
1783 		 * can't offline node now.
1784 		 */
1785 		return;
1786 	}
1787 
1788 	if (check_cpu_on_node(pgdat))
1789 		return;
1790 
1791 	/*
1792 	 * all memory/cpu of this node are removed, we can offline this
1793 	 * node now.
1794 	 */
1795 	node_set_offline(nid);
1796 	unregister_one_node(nid);
1797 }
1798 EXPORT_SYMBOL(try_offline_node);
1799 
1800 static void __release_memory_resource(resource_size_t start,
1801 				      resource_size_t size)
1802 {
1803 	int ret;
1804 
1805 	/*
1806 	 * When removing memory in the same granularity as it was added,
1807 	 * this function never fails. It might only fail if resources
1808 	 * have to be adjusted or split. We'll ignore the error, as
1809 	 * removing of memory cannot fail.
1810 	 */
1811 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1812 	if (ret) {
1813 		resource_size_t endres = start + size - 1;
1814 
1815 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1816 			&start, &endres, ret);
1817 	}
1818 }
1819 
1820 /**
1821  * remove_memory
1822  * @nid: the node ID
1823  * @start: physical address of the region to remove
1824  * @size: size of the region to remove
1825  *
1826  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1827  * and online/offline operations before this call, as required by
1828  * try_offline_node().
1829  */
1830 void __ref __remove_memory(int nid, u64 start, u64 size)
1831 {
1832 	int ret;
1833 
1834 	BUG_ON(check_hotplug_memory_range(start, size));
1835 
1836 	mem_hotplug_begin();
1837 
1838 	/*
1839 	 * All memory blocks must be offlined before removing memory.  Check
1840 	 * whether all memory blocks in question are offline and trigger a BUG()
1841 	 * if this is not the case.
1842 	 */
1843 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1844 				check_memblock_offlined_cb);
1845 	if (ret)
1846 		BUG();
1847 
1848 	/* remove memmap entry */
1849 	firmware_map_remove(start, start + size, "System RAM");
1850 	memblock_free(start, size);
1851 	memblock_remove(start, size);
1852 
1853 	arch_remove_memory(nid, start, size, NULL);
1854 	__release_memory_resource(start, size);
1855 
1856 	try_offline_node(nid);
1857 
1858 	mem_hotplug_done();
1859 }
1860 
1861 void remove_memory(int nid, u64 start, u64 size)
1862 {
1863 	lock_device_hotplug();
1864 	__remove_memory(nid, start, size);
1865 	unlock_device_hotplug();
1866 }
1867 EXPORT_SYMBOL_GPL(remove_memory);
1868 #endif /* CONFIG_MEMORY_HOTREMOVE */
1869