1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page, unsigned int order); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 u64 max_mem_size = U64_MAX; 100 101 /* add this memory to iomem resource */ 102 static struct resource *register_memory_resource(u64 start, u64 size) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 char *resource_name = "System RAM"; 107 108 if (start + size > max_mem_size) 109 return ERR_PTR(-E2BIG); 110 111 /* 112 * Request ownership of the new memory range. This might be 113 * a child of an existing resource that was present but 114 * not marked as busy. 115 */ 116 res = __request_region(&iomem_resource, start, size, 117 resource_name, flags); 118 119 if (!res) { 120 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 121 start, start + size); 122 return ERR_PTR(-EEXIST); 123 } 124 return res; 125 } 126 127 static void release_memory_resource(struct resource *res) 128 { 129 if (!res) 130 return; 131 release_resource(res); 132 kfree(res); 133 return; 134 } 135 136 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 137 void get_page_bootmem(unsigned long info, struct page *page, 138 unsigned long type) 139 { 140 page->freelist = (void *)type; 141 SetPagePrivate(page); 142 set_page_private(page, info); 143 page_ref_inc(page); 144 } 145 146 void put_page_bootmem(struct page *page) 147 { 148 unsigned long type; 149 150 type = (unsigned long) page->freelist; 151 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 152 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 153 154 if (page_ref_dec_return(page) == 1) { 155 page->freelist = NULL; 156 ClearPagePrivate(page); 157 set_page_private(page, 0); 158 INIT_LIST_HEAD(&page->lru); 159 free_reserved_page(page); 160 } 161 } 162 163 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 164 #ifndef CONFIG_SPARSEMEM_VMEMMAP 165 static void register_page_bootmem_info_section(unsigned long start_pfn) 166 { 167 unsigned long *usemap, mapsize, section_nr, i; 168 struct mem_section *ms; 169 struct page *page, *memmap; 170 171 section_nr = pfn_to_section_nr(start_pfn); 172 ms = __nr_to_section(section_nr); 173 174 /* Get section's memmap address */ 175 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 176 177 /* 178 * Get page for the memmap's phys address 179 * XXX: need more consideration for sparse_vmemmap... 180 */ 181 page = virt_to_page(memmap); 182 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 183 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 184 185 /* remember memmap's page */ 186 for (i = 0; i < mapsize; i++, page++) 187 get_page_bootmem(section_nr, page, SECTION_INFO); 188 189 usemap = ms->pageblock_flags; 190 page = virt_to_page(usemap); 191 192 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 193 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 196 197 } 198 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 199 static void register_page_bootmem_info_section(unsigned long start_pfn) 200 { 201 unsigned long *usemap, mapsize, section_nr, i; 202 struct mem_section *ms; 203 struct page *page, *memmap; 204 205 section_nr = pfn_to_section_nr(start_pfn); 206 ms = __nr_to_section(section_nr); 207 208 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 209 210 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 211 212 usemap = ms->pageblock_flags; 213 page = virt_to_page(usemap); 214 215 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 216 217 for (i = 0; i < mapsize; i++, page++) 218 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 219 } 220 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 221 222 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 223 { 224 unsigned long i, pfn, end_pfn, nr_pages; 225 int node = pgdat->node_id; 226 struct page *page; 227 228 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 229 page = virt_to_page(pgdat); 230 231 for (i = 0; i < nr_pages; i++, page++) 232 get_page_bootmem(node, page, NODE_INFO); 233 234 pfn = pgdat->node_start_pfn; 235 end_pfn = pgdat_end_pfn(pgdat); 236 237 /* register section info */ 238 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 239 /* 240 * Some platforms can assign the same pfn to multiple nodes - on 241 * node0 as well as nodeN. To avoid registering a pfn against 242 * multiple nodes we check that this pfn does not already 243 * reside in some other nodes. 244 */ 245 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 246 register_page_bootmem_info_section(pfn); 247 } 248 } 249 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 250 251 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 252 struct vmem_altmap *altmap, bool want_memblock) 253 { 254 int ret; 255 256 if (pfn_valid(phys_start_pfn)) 257 return -EEXIST; 258 259 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 260 if (ret < 0) 261 return ret; 262 263 if (!want_memblock) 264 return 0; 265 266 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 267 } 268 269 /* 270 * Reasonably generic function for adding memory. It is 271 * expected that archs that support memory hotplug will 272 * call this function after deciding the zone to which to 273 * add the new pages. 274 */ 275 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 276 unsigned long nr_pages, struct mhp_restrictions *restrictions) 277 { 278 unsigned long i; 279 int err = 0; 280 int start_sec, end_sec; 281 struct vmem_altmap *altmap = restrictions->altmap; 282 283 /* during initialize mem_map, align hot-added range to section */ 284 start_sec = pfn_to_section_nr(phys_start_pfn); 285 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 286 287 if (altmap) { 288 /* 289 * Validate altmap is within bounds of the total request 290 */ 291 if (altmap->base_pfn != phys_start_pfn 292 || vmem_altmap_offset(altmap) > nr_pages) { 293 pr_warn_once("memory add fail, invalid altmap\n"); 294 err = -EINVAL; 295 goto out; 296 } 297 altmap->alloc = 0; 298 } 299 300 for (i = start_sec; i <= end_sec; i++) { 301 err = __add_section(nid, section_nr_to_pfn(i), altmap, 302 restrictions->flags & MHP_MEMBLOCK_API); 303 304 /* 305 * EEXIST is finally dealt with by ioresource collision 306 * check. see add_memory() => register_memory_resource() 307 * Warning will be printed if there is collision. 308 */ 309 if (err && (err != -EEXIST)) 310 break; 311 err = 0; 312 cond_resched(); 313 } 314 vmemmap_populate_print_last(); 315 out: 316 return err; 317 } 318 319 #ifdef CONFIG_MEMORY_HOTREMOVE 320 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 321 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 322 unsigned long start_pfn, 323 unsigned long end_pfn) 324 { 325 struct mem_section *ms; 326 327 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 328 ms = __pfn_to_section(start_pfn); 329 330 if (unlikely(!valid_section(ms))) 331 continue; 332 333 if (unlikely(pfn_to_nid(start_pfn) != nid)) 334 continue; 335 336 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 337 continue; 338 339 return start_pfn; 340 } 341 342 return 0; 343 } 344 345 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 346 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 347 unsigned long start_pfn, 348 unsigned long end_pfn) 349 { 350 struct mem_section *ms; 351 unsigned long pfn; 352 353 /* pfn is the end pfn of a memory section. */ 354 pfn = end_pfn - 1; 355 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 356 ms = __pfn_to_section(pfn); 357 358 if (unlikely(!valid_section(ms))) 359 continue; 360 361 if (unlikely(pfn_to_nid(pfn) != nid)) 362 continue; 363 364 if (zone && zone != page_zone(pfn_to_page(pfn))) 365 continue; 366 367 return pfn; 368 } 369 370 return 0; 371 } 372 373 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 374 unsigned long end_pfn) 375 { 376 unsigned long zone_start_pfn = zone->zone_start_pfn; 377 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 378 unsigned long zone_end_pfn = z; 379 unsigned long pfn; 380 struct mem_section *ms; 381 int nid = zone_to_nid(zone); 382 383 zone_span_writelock(zone); 384 if (zone_start_pfn == start_pfn) { 385 /* 386 * If the section is smallest section in the zone, it need 387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 388 * In this case, we find second smallest valid mem_section 389 * for shrinking zone. 390 */ 391 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 392 zone_end_pfn); 393 if (pfn) { 394 zone->zone_start_pfn = pfn; 395 zone->spanned_pages = zone_end_pfn - pfn; 396 } 397 } else if (zone_end_pfn == end_pfn) { 398 /* 399 * If the section is biggest section in the zone, it need 400 * shrink zone->spanned_pages. 401 * In this case, we find second biggest valid mem_section for 402 * shrinking zone. 403 */ 404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 405 start_pfn); 406 if (pfn) 407 zone->spanned_pages = pfn - zone_start_pfn + 1; 408 } 409 410 /* 411 * The section is not biggest or smallest mem_section in the zone, it 412 * only creates a hole in the zone. So in this case, we need not 413 * change the zone. But perhaps, the zone has only hole data. Thus 414 * it check the zone has only hole or not. 415 */ 416 pfn = zone_start_pfn; 417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 418 ms = __pfn_to_section(pfn); 419 420 if (unlikely(!valid_section(ms))) 421 continue; 422 423 if (page_zone(pfn_to_page(pfn)) != zone) 424 continue; 425 426 /* If the section is current section, it continues the loop */ 427 if (start_pfn == pfn) 428 continue; 429 430 /* If we find valid section, we have nothing to do */ 431 zone_span_writeunlock(zone); 432 return; 433 } 434 435 /* The zone has no valid section */ 436 zone->zone_start_pfn = 0; 437 zone->spanned_pages = 0; 438 zone_span_writeunlock(zone); 439 } 440 441 static void shrink_pgdat_span(struct pglist_data *pgdat, 442 unsigned long start_pfn, unsigned long end_pfn) 443 { 444 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 445 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 446 unsigned long pgdat_end_pfn = p; 447 unsigned long pfn; 448 struct mem_section *ms; 449 int nid = pgdat->node_id; 450 451 if (pgdat_start_pfn == start_pfn) { 452 /* 453 * If the section is smallest section in the pgdat, it need 454 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 455 * In this case, we find second smallest valid mem_section 456 * for shrinking zone. 457 */ 458 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 459 pgdat_end_pfn); 460 if (pfn) { 461 pgdat->node_start_pfn = pfn; 462 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 463 } 464 } else if (pgdat_end_pfn == end_pfn) { 465 /* 466 * If the section is biggest section in the pgdat, it need 467 * shrink pgdat->node_spanned_pages. 468 * In this case, we find second biggest valid mem_section for 469 * shrinking zone. 470 */ 471 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 472 start_pfn); 473 if (pfn) 474 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 475 } 476 477 /* 478 * If the section is not biggest or smallest mem_section in the pgdat, 479 * it only creates a hole in the pgdat. So in this case, we need not 480 * change the pgdat. 481 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 482 * has only hole or not. 483 */ 484 pfn = pgdat_start_pfn; 485 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 486 ms = __pfn_to_section(pfn); 487 488 if (unlikely(!valid_section(ms))) 489 continue; 490 491 if (pfn_to_nid(pfn) != nid) 492 continue; 493 494 /* If the section is current section, it continues the loop */ 495 if (start_pfn == pfn) 496 continue; 497 498 /* If we find valid section, we have nothing to do */ 499 return; 500 } 501 502 /* The pgdat has no valid section */ 503 pgdat->node_start_pfn = 0; 504 pgdat->node_spanned_pages = 0; 505 } 506 507 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 508 { 509 struct pglist_data *pgdat = zone->zone_pgdat; 510 int nr_pages = PAGES_PER_SECTION; 511 unsigned long flags; 512 513 pgdat_resize_lock(zone->zone_pgdat, &flags); 514 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 515 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 516 pgdat_resize_unlock(zone->zone_pgdat, &flags); 517 } 518 519 static void __remove_section(struct zone *zone, struct mem_section *ms, 520 unsigned long map_offset, 521 struct vmem_altmap *altmap) 522 { 523 unsigned long start_pfn; 524 int scn_nr; 525 526 if (WARN_ON_ONCE(!valid_section(ms))) 527 return; 528 529 unregister_memory_section(ms); 530 531 scn_nr = __section_nr(ms); 532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 533 __remove_zone(zone, start_pfn); 534 535 sparse_remove_one_section(zone, ms, map_offset, altmap); 536 } 537 538 /** 539 * __remove_pages() - remove sections of pages from a zone 540 * @zone: zone from which pages need to be removed 541 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 542 * @nr_pages: number of pages to remove (must be multiple of section size) 543 * @altmap: alternative device page map or %NULL if default memmap is used 544 * 545 * Generic helper function to remove section mappings and sysfs entries 546 * for the section of the memory we are removing. Caller needs to make 547 * sure that pages are marked reserved and zones are adjust properly by 548 * calling offline_pages(). 549 */ 550 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 551 unsigned long nr_pages, struct vmem_altmap *altmap) 552 { 553 unsigned long i; 554 unsigned long map_offset = 0; 555 int sections_to_remove; 556 557 /* In the ZONE_DEVICE case device driver owns the memory region */ 558 if (is_dev_zone(zone)) { 559 if (altmap) 560 map_offset = vmem_altmap_offset(altmap); 561 } 562 563 clear_zone_contiguous(zone); 564 565 /* 566 * We can only remove entire sections 567 */ 568 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 569 BUG_ON(nr_pages % PAGES_PER_SECTION); 570 571 sections_to_remove = nr_pages / PAGES_PER_SECTION; 572 for (i = 0; i < sections_to_remove; i++) { 573 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 574 575 cond_resched(); 576 __remove_section(zone, __pfn_to_section(pfn), map_offset, 577 altmap); 578 map_offset = 0; 579 } 580 581 set_zone_contiguous(zone); 582 } 583 #endif /* CONFIG_MEMORY_HOTREMOVE */ 584 585 int set_online_page_callback(online_page_callback_t callback) 586 { 587 int rc = -EINVAL; 588 589 get_online_mems(); 590 mutex_lock(&online_page_callback_lock); 591 592 if (online_page_callback == generic_online_page) { 593 online_page_callback = callback; 594 rc = 0; 595 } 596 597 mutex_unlock(&online_page_callback_lock); 598 put_online_mems(); 599 600 return rc; 601 } 602 EXPORT_SYMBOL_GPL(set_online_page_callback); 603 604 int restore_online_page_callback(online_page_callback_t callback) 605 { 606 int rc = -EINVAL; 607 608 get_online_mems(); 609 mutex_lock(&online_page_callback_lock); 610 611 if (online_page_callback == callback) { 612 online_page_callback = generic_online_page; 613 rc = 0; 614 } 615 616 mutex_unlock(&online_page_callback_lock); 617 put_online_mems(); 618 619 return rc; 620 } 621 EXPORT_SYMBOL_GPL(restore_online_page_callback); 622 623 void __online_page_set_limits(struct page *page) 624 { 625 } 626 EXPORT_SYMBOL_GPL(__online_page_set_limits); 627 628 void __online_page_increment_counters(struct page *page) 629 { 630 adjust_managed_page_count(page, 1); 631 } 632 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 633 634 void __online_page_free(struct page *page) 635 { 636 __free_reserved_page(page); 637 } 638 EXPORT_SYMBOL_GPL(__online_page_free); 639 640 static void generic_online_page(struct page *page, unsigned int order) 641 { 642 kernel_map_pages(page, 1 << order, 1); 643 __free_pages_core(page, order); 644 totalram_pages_add(1UL << order); 645 #ifdef CONFIG_HIGHMEM 646 if (PageHighMem(page)) 647 totalhigh_pages_add(1UL << order); 648 #endif 649 } 650 651 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 652 { 653 unsigned long end = start + nr_pages; 654 int order, onlined_pages = 0; 655 656 while (start < end) { 657 order = min(MAX_ORDER - 1, 658 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 659 (*online_page_callback)(pfn_to_page(start), order); 660 661 onlined_pages += (1UL << order); 662 start += (1UL << order); 663 } 664 return onlined_pages; 665 } 666 667 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 668 void *arg) 669 { 670 unsigned long onlined_pages = *(unsigned long *)arg; 671 672 if (PageReserved(pfn_to_page(start_pfn))) 673 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 674 675 online_mem_sections(start_pfn, start_pfn + nr_pages); 676 677 *(unsigned long *)arg = onlined_pages; 678 return 0; 679 } 680 681 /* check which state of node_states will be changed when online memory */ 682 static void node_states_check_changes_online(unsigned long nr_pages, 683 struct zone *zone, struct memory_notify *arg) 684 { 685 int nid = zone_to_nid(zone); 686 687 arg->status_change_nid = NUMA_NO_NODE; 688 arg->status_change_nid_normal = NUMA_NO_NODE; 689 arg->status_change_nid_high = NUMA_NO_NODE; 690 691 if (!node_state(nid, N_MEMORY)) 692 arg->status_change_nid = nid; 693 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 694 arg->status_change_nid_normal = nid; 695 #ifdef CONFIG_HIGHMEM 696 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 697 arg->status_change_nid_high = nid; 698 #endif 699 } 700 701 static void node_states_set_node(int node, struct memory_notify *arg) 702 { 703 if (arg->status_change_nid_normal >= 0) 704 node_set_state(node, N_NORMAL_MEMORY); 705 706 if (arg->status_change_nid_high >= 0) 707 node_set_state(node, N_HIGH_MEMORY); 708 709 if (arg->status_change_nid >= 0) 710 node_set_state(node, N_MEMORY); 711 } 712 713 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 714 unsigned long nr_pages) 715 { 716 unsigned long old_end_pfn = zone_end_pfn(zone); 717 718 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 719 zone->zone_start_pfn = start_pfn; 720 721 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 722 } 723 724 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 725 unsigned long nr_pages) 726 { 727 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 728 729 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 730 pgdat->node_start_pfn = start_pfn; 731 732 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 733 } 734 735 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 736 unsigned long nr_pages, struct vmem_altmap *altmap) 737 { 738 struct pglist_data *pgdat = zone->zone_pgdat; 739 int nid = pgdat->node_id; 740 unsigned long flags; 741 742 clear_zone_contiguous(zone); 743 744 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 745 pgdat_resize_lock(pgdat, &flags); 746 zone_span_writelock(zone); 747 if (zone_is_empty(zone)) 748 init_currently_empty_zone(zone, start_pfn, nr_pages); 749 resize_zone_range(zone, start_pfn, nr_pages); 750 zone_span_writeunlock(zone); 751 resize_pgdat_range(pgdat, start_pfn, nr_pages); 752 pgdat_resize_unlock(pgdat, &flags); 753 754 /* 755 * TODO now we have a visible range of pages which are not associated 756 * with their zone properly. Not nice but set_pfnblock_flags_mask 757 * expects the zone spans the pfn range. All the pages in the range 758 * are reserved so nobody should be touching them so we should be safe 759 */ 760 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 761 MEMMAP_HOTPLUG, altmap); 762 763 set_zone_contiguous(zone); 764 } 765 766 /* 767 * Returns a default kernel memory zone for the given pfn range. 768 * If no kernel zone covers this pfn range it will automatically go 769 * to the ZONE_NORMAL. 770 */ 771 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 772 unsigned long nr_pages) 773 { 774 struct pglist_data *pgdat = NODE_DATA(nid); 775 int zid; 776 777 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 778 struct zone *zone = &pgdat->node_zones[zid]; 779 780 if (zone_intersects(zone, start_pfn, nr_pages)) 781 return zone; 782 } 783 784 return &pgdat->node_zones[ZONE_NORMAL]; 785 } 786 787 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 788 unsigned long nr_pages) 789 { 790 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 791 nr_pages); 792 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 793 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 794 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 795 796 /* 797 * We inherit the existing zone in a simple case where zones do not 798 * overlap in the given range 799 */ 800 if (in_kernel ^ in_movable) 801 return (in_kernel) ? kernel_zone : movable_zone; 802 803 /* 804 * If the range doesn't belong to any zone or two zones overlap in the 805 * given range then we use movable zone only if movable_node is 806 * enabled because we always online to a kernel zone by default. 807 */ 808 return movable_node_enabled ? movable_zone : kernel_zone; 809 } 810 811 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 812 unsigned long nr_pages) 813 { 814 if (online_type == MMOP_ONLINE_KERNEL) 815 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 816 817 if (online_type == MMOP_ONLINE_MOVABLE) 818 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 819 820 return default_zone_for_pfn(nid, start_pfn, nr_pages); 821 } 822 823 /* 824 * Associates the given pfn range with the given node and the zone appropriate 825 * for the given online type. 826 */ 827 static struct zone * __meminit move_pfn_range(int online_type, int nid, 828 unsigned long start_pfn, unsigned long nr_pages) 829 { 830 struct zone *zone; 831 832 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 833 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 834 return zone; 835 } 836 837 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 838 { 839 unsigned long flags; 840 unsigned long onlined_pages = 0; 841 struct zone *zone; 842 int need_zonelists_rebuild = 0; 843 int nid; 844 int ret; 845 struct memory_notify arg; 846 struct memory_block *mem; 847 848 mem_hotplug_begin(); 849 850 /* 851 * We can't use pfn_to_nid() because nid might be stored in struct page 852 * which is not yet initialized. Instead, we find nid from memory block. 853 */ 854 mem = find_memory_block(__pfn_to_section(pfn)); 855 nid = mem->nid; 856 put_device(&mem->dev); 857 858 /* associate pfn range with the zone */ 859 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 860 861 arg.start_pfn = pfn; 862 arg.nr_pages = nr_pages; 863 node_states_check_changes_online(nr_pages, zone, &arg); 864 865 ret = memory_notify(MEM_GOING_ONLINE, &arg); 866 ret = notifier_to_errno(ret); 867 if (ret) 868 goto failed_addition; 869 870 /* 871 * If this zone is not populated, then it is not in zonelist. 872 * This means the page allocator ignores this zone. 873 * So, zonelist must be updated after online. 874 */ 875 if (!populated_zone(zone)) { 876 need_zonelists_rebuild = 1; 877 setup_zone_pageset(zone); 878 } 879 880 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 881 online_pages_range); 882 if (ret) { 883 if (need_zonelists_rebuild) 884 zone_pcp_reset(zone); 885 goto failed_addition; 886 } 887 888 zone->present_pages += onlined_pages; 889 890 pgdat_resize_lock(zone->zone_pgdat, &flags); 891 zone->zone_pgdat->node_present_pages += onlined_pages; 892 pgdat_resize_unlock(zone->zone_pgdat, &flags); 893 894 if (onlined_pages) { 895 node_states_set_node(nid, &arg); 896 if (need_zonelists_rebuild) 897 build_all_zonelists(NULL); 898 else 899 zone_pcp_update(zone); 900 } 901 902 init_per_zone_wmark_min(); 903 904 if (onlined_pages) { 905 kswapd_run(nid); 906 kcompactd_run(nid); 907 } 908 909 vm_total_pages = nr_free_pagecache_pages(); 910 911 writeback_set_ratelimit(); 912 913 if (onlined_pages) 914 memory_notify(MEM_ONLINE, &arg); 915 mem_hotplug_done(); 916 return 0; 917 918 failed_addition: 919 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 920 (unsigned long long) pfn << PAGE_SHIFT, 921 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 922 memory_notify(MEM_CANCEL_ONLINE, &arg); 923 mem_hotplug_done(); 924 return ret; 925 } 926 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 927 928 static void reset_node_present_pages(pg_data_t *pgdat) 929 { 930 struct zone *z; 931 932 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 933 z->present_pages = 0; 934 935 pgdat->node_present_pages = 0; 936 } 937 938 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 939 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 940 { 941 struct pglist_data *pgdat; 942 unsigned long start_pfn = PFN_DOWN(start); 943 944 pgdat = NODE_DATA(nid); 945 if (!pgdat) { 946 pgdat = arch_alloc_nodedata(nid); 947 if (!pgdat) 948 return NULL; 949 950 arch_refresh_nodedata(nid, pgdat); 951 } else { 952 /* 953 * Reset the nr_zones, order and classzone_idx before reuse. 954 * Note that kswapd will init kswapd_classzone_idx properly 955 * when it starts in the near future. 956 */ 957 pgdat->nr_zones = 0; 958 pgdat->kswapd_order = 0; 959 pgdat->kswapd_classzone_idx = 0; 960 } 961 962 /* we can use NODE_DATA(nid) from here */ 963 964 pgdat->node_id = nid; 965 pgdat->node_start_pfn = start_pfn; 966 967 /* init node's zones as empty zones, we don't have any present pages.*/ 968 free_area_init_core_hotplug(nid); 969 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 970 971 /* 972 * The node we allocated has no zone fallback lists. For avoiding 973 * to access not-initialized zonelist, build here. 974 */ 975 build_all_zonelists(pgdat); 976 977 /* 978 * When memory is hot-added, all the memory is in offline state. So 979 * clear all zones' present_pages because they will be updated in 980 * online_pages() and offline_pages(). 981 */ 982 reset_node_managed_pages(pgdat); 983 reset_node_present_pages(pgdat); 984 985 return pgdat; 986 } 987 988 static void rollback_node_hotadd(int nid) 989 { 990 pg_data_t *pgdat = NODE_DATA(nid); 991 992 arch_refresh_nodedata(nid, NULL); 993 free_percpu(pgdat->per_cpu_nodestats); 994 arch_free_nodedata(pgdat); 995 return; 996 } 997 998 999 /** 1000 * try_online_node - online a node if offlined 1001 * @nid: the node ID 1002 * @start: start addr of the node 1003 * @set_node_online: Whether we want to online the node 1004 * called by cpu_up() to online a node without onlined memory. 1005 * 1006 * Returns: 1007 * 1 -> a new node has been allocated 1008 * 0 -> the node is already online 1009 * -ENOMEM -> the node could not be allocated 1010 */ 1011 static int __try_online_node(int nid, u64 start, bool set_node_online) 1012 { 1013 pg_data_t *pgdat; 1014 int ret = 1; 1015 1016 if (node_online(nid)) 1017 return 0; 1018 1019 pgdat = hotadd_new_pgdat(nid, start); 1020 if (!pgdat) { 1021 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1022 ret = -ENOMEM; 1023 goto out; 1024 } 1025 1026 if (set_node_online) { 1027 node_set_online(nid); 1028 ret = register_one_node(nid); 1029 BUG_ON(ret); 1030 } 1031 out: 1032 return ret; 1033 } 1034 1035 /* 1036 * Users of this function always want to online/register the node 1037 */ 1038 int try_online_node(int nid) 1039 { 1040 int ret; 1041 1042 mem_hotplug_begin(); 1043 ret = __try_online_node(nid, 0, true); 1044 mem_hotplug_done(); 1045 return ret; 1046 } 1047 1048 static int check_hotplug_memory_range(u64 start, u64 size) 1049 { 1050 unsigned long block_sz = memory_block_size_bytes(); 1051 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1052 u64 nr_pages = size >> PAGE_SHIFT; 1053 u64 start_pfn = PFN_DOWN(start); 1054 1055 /* memory range must be block size aligned */ 1056 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1057 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1058 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1059 block_sz, start, size); 1060 return -EINVAL; 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int online_memory_block(struct memory_block *mem, void *arg) 1067 { 1068 return device_online(&mem->dev); 1069 } 1070 1071 /* 1072 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1073 * and online/offline operations (triggered e.g. by sysfs). 1074 * 1075 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1076 */ 1077 int __ref add_memory_resource(int nid, struct resource *res) 1078 { 1079 struct mhp_restrictions restrictions = { 1080 .flags = MHP_MEMBLOCK_API, 1081 }; 1082 u64 start, size; 1083 bool new_node = false; 1084 int ret; 1085 1086 start = res->start; 1087 size = resource_size(res); 1088 1089 ret = check_hotplug_memory_range(start, size); 1090 if (ret) 1091 return ret; 1092 1093 mem_hotplug_begin(); 1094 1095 /* 1096 * Add new range to memblock so that when hotadd_new_pgdat() is called 1097 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1098 * this new range and calculate total pages correctly. The range will 1099 * be removed at hot-remove time. 1100 */ 1101 memblock_add_node(start, size, nid); 1102 1103 ret = __try_online_node(nid, start, false); 1104 if (ret < 0) 1105 goto error; 1106 new_node = ret; 1107 1108 /* call arch's memory hotadd */ 1109 ret = arch_add_memory(nid, start, size, &restrictions); 1110 if (ret < 0) 1111 goto error; 1112 1113 if (new_node) { 1114 /* If sysfs file of new node can't be created, cpu on the node 1115 * can't be hot-added. There is no rollback way now. 1116 * So, check by BUG_ON() to catch it reluctantly.. 1117 * We online node here. We can't roll back from here. 1118 */ 1119 node_set_online(nid); 1120 ret = __register_one_node(nid); 1121 BUG_ON(ret); 1122 } 1123 1124 /* link memory sections under this node.*/ 1125 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1126 BUG_ON(ret); 1127 1128 /* create new memmap entry */ 1129 firmware_map_add_hotplug(start, start + size, "System RAM"); 1130 1131 /* device_online() will take the lock when calling online_pages() */ 1132 mem_hotplug_done(); 1133 1134 /* online pages if requested */ 1135 if (memhp_auto_online) 1136 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1137 NULL, online_memory_block); 1138 1139 return ret; 1140 error: 1141 /* rollback pgdat allocation and others */ 1142 if (new_node) 1143 rollback_node_hotadd(nid); 1144 memblock_remove(start, size); 1145 mem_hotplug_done(); 1146 return ret; 1147 } 1148 1149 /* requires device_hotplug_lock, see add_memory_resource() */ 1150 int __ref __add_memory(int nid, u64 start, u64 size) 1151 { 1152 struct resource *res; 1153 int ret; 1154 1155 res = register_memory_resource(start, size); 1156 if (IS_ERR(res)) 1157 return PTR_ERR(res); 1158 1159 ret = add_memory_resource(nid, res); 1160 if (ret < 0) 1161 release_memory_resource(res); 1162 return ret; 1163 } 1164 1165 int add_memory(int nid, u64 start, u64 size) 1166 { 1167 int rc; 1168 1169 lock_device_hotplug(); 1170 rc = __add_memory(nid, start, size); 1171 unlock_device_hotplug(); 1172 1173 return rc; 1174 } 1175 EXPORT_SYMBOL_GPL(add_memory); 1176 1177 #ifdef CONFIG_MEMORY_HOTREMOVE 1178 /* 1179 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1180 * set and the size of the free page is given by page_order(). Using this, 1181 * the function determines if the pageblock contains only free pages. 1182 * Due to buddy contraints, a free page at least the size of a pageblock will 1183 * be located at the start of the pageblock 1184 */ 1185 static inline int pageblock_free(struct page *page) 1186 { 1187 return PageBuddy(page) && page_order(page) >= pageblock_order; 1188 } 1189 1190 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1191 static unsigned long next_active_pageblock(unsigned long pfn) 1192 { 1193 struct page *page = pfn_to_page(pfn); 1194 1195 /* Ensure the starting page is pageblock-aligned */ 1196 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1197 1198 /* If the entire pageblock is free, move to the end of free page */ 1199 if (pageblock_free(page)) { 1200 int order; 1201 /* be careful. we don't have locks, page_order can be changed.*/ 1202 order = page_order(page); 1203 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1204 return pfn + (1 << order); 1205 } 1206 1207 return pfn + pageblock_nr_pages; 1208 } 1209 1210 static bool is_pageblock_removable_nolock(unsigned long pfn) 1211 { 1212 struct page *page = pfn_to_page(pfn); 1213 struct zone *zone; 1214 1215 /* 1216 * We have to be careful here because we are iterating over memory 1217 * sections which are not zone aware so we might end up outside of 1218 * the zone but still within the section. 1219 * We have to take care about the node as well. If the node is offline 1220 * its NODE_DATA will be NULL - see page_zone. 1221 */ 1222 if (!node_online(page_to_nid(page))) 1223 return false; 1224 1225 zone = page_zone(page); 1226 pfn = page_to_pfn(page); 1227 if (!zone_spans_pfn(zone, pfn)) 1228 return false; 1229 1230 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1231 } 1232 1233 /* Checks if this range of memory is likely to be hot-removable. */ 1234 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1235 { 1236 unsigned long end_pfn, pfn; 1237 1238 end_pfn = min(start_pfn + nr_pages, 1239 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1240 1241 /* Check the starting page of each pageblock within the range */ 1242 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1243 if (!is_pageblock_removable_nolock(pfn)) 1244 return false; 1245 cond_resched(); 1246 } 1247 1248 /* All pageblocks in the memory block are likely to be hot-removable */ 1249 return true; 1250 } 1251 1252 /* 1253 * Confirm all pages in a range [start, end) belong to the same zone. 1254 * When true, return its valid [start, end). 1255 */ 1256 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1257 unsigned long *valid_start, unsigned long *valid_end) 1258 { 1259 unsigned long pfn, sec_end_pfn; 1260 unsigned long start, end; 1261 struct zone *zone = NULL; 1262 struct page *page; 1263 int i; 1264 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1265 pfn < end_pfn; 1266 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1267 /* Make sure the memory section is present first */ 1268 if (!present_section_nr(pfn_to_section_nr(pfn))) 1269 continue; 1270 for (; pfn < sec_end_pfn && pfn < end_pfn; 1271 pfn += MAX_ORDER_NR_PAGES) { 1272 i = 0; 1273 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1274 while ((i < MAX_ORDER_NR_PAGES) && 1275 !pfn_valid_within(pfn + i)) 1276 i++; 1277 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1278 continue; 1279 /* Check if we got outside of the zone */ 1280 if (zone && !zone_spans_pfn(zone, pfn + i)) 1281 return 0; 1282 page = pfn_to_page(pfn + i); 1283 if (zone && page_zone(page) != zone) 1284 return 0; 1285 if (!zone) 1286 start = pfn + i; 1287 zone = page_zone(page); 1288 end = pfn + MAX_ORDER_NR_PAGES; 1289 } 1290 } 1291 1292 if (zone) { 1293 *valid_start = start; 1294 *valid_end = min(end, end_pfn); 1295 return 1; 1296 } else { 1297 return 0; 1298 } 1299 } 1300 1301 /* 1302 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1303 * non-lru movable pages and hugepages). We scan pfn because it's much 1304 * easier than scanning over linked list. This function returns the pfn 1305 * of the first found movable page if it's found, otherwise 0. 1306 */ 1307 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1308 { 1309 unsigned long pfn; 1310 1311 for (pfn = start; pfn < end; pfn++) { 1312 struct page *page, *head; 1313 unsigned long skip; 1314 1315 if (!pfn_valid(pfn)) 1316 continue; 1317 page = pfn_to_page(pfn); 1318 if (PageLRU(page)) 1319 return pfn; 1320 if (__PageMovable(page)) 1321 return pfn; 1322 1323 if (!PageHuge(page)) 1324 continue; 1325 head = compound_head(page); 1326 if (page_huge_active(head)) 1327 return pfn; 1328 skip = (1 << compound_order(head)) - (page - head); 1329 pfn += skip - 1; 1330 } 1331 return 0; 1332 } 1333 1334 static struct page *new_node_page(struct page *page, unsigned long private) 1335 { 1336 int nid = page_to_nid(page); 1337 nodemask_t nmask = node_states[N_MEMORY]; 1338 1339 /* 1340 * try to allocate from a different node but reuse this node if there 1341 * are no other online nodes to be used (e.g. we are offlining a part 1342 * of the only existing node) 1343 */ 1344 node_clear(nid, nmask); 1345 if (nodes_empty(nmask)) 1346 node_set(nid, nmask); 1347 1348 return new_page_nodemask(page, nid, &nmask); 1349 } 1350 1351 static int 1352 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1353 { 1354 unsigned long pfn; 1355 struct page *page; 1356 int ret = 0; 1357 LIST_HEAD(source); 1358 1359 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1360 if (!pfn_valid(pfn)) 1361 continue; 1362 page = pfn_to_page(pfn); 1363 1364 if (PageHuge(page)) { 1365 struct page *head = compound_head(page); 1366 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1367 isolate_huge_page(head, &source); 1368 continue; 1369 } else if (PageTransHuge(page)) 1370 pfn = page_to_pfn(compound_head(page)) 1371 + hpage_nr_pages(page) - 1; 1372 1373 /* 1374 * HWPoison pages have elevated reference counts so the migration would 1375 * fail on them. It also doesn't make any sense to migrate them in the 1376 * first place. Still try to unmap such a page in case it is still mapped 1377 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1378 * the unmap as the catch all safety net). 1379 */ 1380 if (PageHWPoison(page)) { 1381 if (WARN_ON(PageLRU(page))) 1382 isolate_lru_page(page); 1383 if (page_mapped(page)) 1384 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1385 continue; 1386 } 1387 1388 if (!get_page_unless_zero(page)) 1389 continue; 1390 /* 1391 * We can skip free pages. And we can deal with pages on 1392 * LRU and non-lru movable pages. 1393 */ 1394 if (PageLRU(page)) 1395 ret = isolate_lru_page(page); 1396 else 1397 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1398 if (!ret) { /* Success */ 1399 list_add_tail(&page->lru, &source); 1400 if (!__PageMovable(page)) 1401 inc_node_page_state(page, NR_ISOLATED_ANON + 1402 page_is_file_cache(page)); 1403 1404 } else { 1405 pr_warn("failed to isolate pfn %lx\n", pfn); 1406 dump_page(page, "isolation failed"); 1407 } 1408 put_page(page); 1409 } 1410 if (!list_empty(&source)) { 1411 /* Allocate a new page from the nearest neighbor node */ 1412 ret = migrate_pages(&source, new_node_page, NULL, 0, 1413 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1414 if (ret) { 1415 list_for_each_entry(page, &source, lru) { 1416 pr_warn("migrating pfn %lx failed ret:%d ", 1417 page_to_pfn(page), ret); 1418 dump_page(page, "migration failure"); 1419 } 1420 putback_movable_pages(&source); 1421 } 1422 } 1423 1424 return ret; 1425 } 1426 1427 /* 1428 * remove from free_area[] and mark all as Reserved. 1429 */ 1430 static int 1431 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1432 void *data) 1433 { 1434 unsigned long *offlined_pages = (unsigned long *)data; 1435 1436 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1437 return 0; 1438 } 1439 1440 /* 1441 * Check all pages in range, recoreded as memory resource, are isolated. 1442 */ 1443 static int 1444 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1445 void *data) 1446 { 1447 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1448 } 1449 1450 static int __init cmdline_parse_movable_node(char *p) 1451 { 1452 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1453 movable_node_enabled = true; 1454 #else 1455 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1456 #endif 1457 return 0; 1458 } 1459 early_param("movable_node", cmdline_parse_movable_node); 1460 1461 /* check which state of node_states will be changed when offline memory */ 1462 static void node_states_check_changes_offline(unsigned long nr_pages, 1463 struct zone *zone, struct memory_notify *arg) 1464 { 1465 struct pglist_data *pgdat = zone->zone_pgdat; 1466 unsigned long present_pages = 0; 1467 enum zone_type zt; 1468 1469 arg->status_change_nid = NUMA_NO_NODE; 1470 arg->status_change_nid_normal = NUMA_NO_NODE; 1471 arg->status_change_nid_high = NUMA_NO_NODE; 1472 1473 /* 1474 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1475 * If the memory to be offline is within the range 1476 * [0..ZONE_NORMAL], and it is the last present memory there, 1477 * the zones in that range will become empty after the offlining, 1478 * thus we can determine that we need to clear the node from 1479 * node_states[N_NORMAL_MEMORY]. 1480 */ 1481 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1482 present_pages += pgdat->node_zones[zt].present_pages; 1483 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1484 arg->status_change_nid_normal = zone_to_nid(zone); 1485 1486 #ifdef CONFIG_HIGHMEM 1487 /* 1488 * node_states[N_HIGH_MEMORY] contains nodes which 1489 * have normal memory or high memory. 1490 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1491 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1492 * we determine that the zones in that range become empty, 1493 * we need to clear the node for N_HIGH_MEMORY. 1494 */ 1495 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1496 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1497 arg->status_change_nid_high = zone_to_nid(zone); 1498 #endif 1499 1500 /* 1501 * We have accounted the pages from [0..ZONE_NORMAL), and 1502 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1503 * as well. 1504 * Here we count the possible pages from ZONE_MOVABLE. 1505 * If after having accounted all the pages, we see that the nr_pages 1506 * to be offlined is over or equal to the accounted pages, 1507 * we know that the node will become empty, and so, we can clear 1508 * it for N_MEMORY as well. 1509 */ 1510 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1511 1512 if (nr_pages >= present_pages) 1513 arg->status_change_nid = zone_to_nid(zone); 1514 } 1515 1516 static void node_states_clear_node(int node, struct memory_notify *arg) 1517 { 1518 if (arg->status_change_nid_normal >= 0) 1519 node_clear_state(node, N_NORMAL_MEMORY); 1520 1521 if (arg->status_change_nid_high >= 0) 1522 node_clear_state(node, N_HIGH_MEMORY); 1523 1524 if (arg->status_change_nid >= 0) 1525 node_clear_state(node, N_MEMORY); 1526 } 1527 1528 static int __ref __offline_pages(unsigned long start_pfn, 1529 unsigned long end_pfn) 1530 { 1531 unsigned long pfn, nr_pages; 1532 unsigned long offlined_pages = 0; 1533 int ret, node, nr_isolate_pageblock; 1534 unsigned long flags; 1535 unsigned long valid_start, valid_end; 1536 struct zone *zone; 1537 struct memory_notify arg; 1538 char *reason; 1539 1540 mem_hotplug_begin(); 1541 1542 /* This makes hotplug much easier...and readable. 1543 we assume this for now. .*/ 1544 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1545 &valid_end)) { 1546 ret = -EINVAL; 1547 reason = "multizone range"; 1548 goto failed_removal; 1549 } 1550 1551 zone = page_zone(pfn_to_page(valid_start)); 1552 node = zone_to_nid(zone); 1553 nr_pages = end_pfn - start_pfn; 1554 1555 /* set above range as isolated */ 1556 ret = start_isolate_page_range(start_pfn, end_pfn, 1557 MIGRATE_MOVABLE, 1558 SKIP_HWPOISON | REPORT_FAILURE); 1559 if (ret < 0) { 1560 reason = "failure to isolate range"; 1561 goto failed_removal; 1562 } 1563 nr_isolate_pageblock = ret; 1564 1565 arg.start_pfn = start_pfn; 1566 arg.nr_pages = nr_pages; 1567 node_states_check_changes_offline(nr_pages, zone, &arg); 1568 1569 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1570 ret = notifier_to_errno(ret); 1571 if (ret) { 1572 reason = "notifier failure"; 1573 goto failed_removal_isolated; 1574 } 1575 1576 do { 1577 for (pfn = start_pfn; pfn;) { 1578 if (signal_pending(current)) { 1579 ret = -EINTR; 1580 reason = "signal backoff"; 1581 goto failed_removal_isolated; 1582 } 1583 1584 cond_resched(); 1585 lru_add_drain_all(); 1586 1587 pfn = scan_movable_pages(pfn, end_pfn); 1588 if (pfn) { 1589 /* 1590 * TODO: fatal migration failures should bail 1591 * out 1592 */ 1593 do_migrate_range(pfn, end_pfn); 1594 } 1595 } 1596 1597 /* 1598 * Dissolve free hugepages in the memory block before doing 1599 * offlining actually in order to make hugetlbfs's object 1600 * counting consistent. 1601 */ 1602 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1603 if (ret) { 1604 reason = "failure to dissolve huge pages"; 1605 goto failed_removal_isolated; 1606 } 1607 /* check again */ 1608 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1609 NULL, check_pages_isolated_cb); 1610 } while (ret); 1611 1612 /* Ok, all of our target is isolated. 1613 We cannot do rollback at this point. */ 1614 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1615 &offlined_pages, offline_isolated_pages_cb); 1616 pr_info("Offlined Pages %ld\n", offlined_pages); 1617 /* 1618 * Onlining will reset pagetype flags and makes migrate type 1619 * MOVABLE, so just need to decrease the number of isolated 1620 * pageblocks zone counter here. 1621 */ 1622 spin_lock_irqsave(&zone->lock, flags); 1623 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1624 spin_unlock_irqrestore(&zone->lock, flags); 1625 1626 /* removal success */ 1627 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1628 zone->present_pages -= offlined_pages; 1629 1630 pgdat_resize_lock(zone->zone_pgdat, &flags); 1631 zone->zone_pgdat->node_present_pages -= offlined_pages; 1632 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1633 1634 init_per_zone_wmark_min(); 1635 1636 if (!populated_zone(zone)) { 1637 zone_pcp_reset(zone); 1638 build_all_zonelists(NULL); 1639 } else 1640 zone_pcp_update(zone); 1641 1642 node_states_clear_node(node, &arg); 1643 if (arg.status_change_nid >= 0) { 1644 kswapd_stop(node); 1645 kcompactd_stop(node); 1646 } 1647 1648 vm_total_pages = nr_free_pagecache_pages(); 1649 writeback_set_ratelimit(); 1650 1651 memory_notify(MEM_OFFLINE, &arg); 1652 mem_hotplug_done(); 1653 return 0; 1654 1655 failed_removal_isolated: 1656 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1657 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1658 failed_removal: 1659 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1660 (unsigned long long) start_pfn << PAGE_SHIFT, 1661 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1662 reason); 1663 /* pushback to free area */ 1664 mem_hotplug_done(); 1665 return ret; 1666 } 1667 1668 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1669 { 1670 return __offline_pages(start_pfn, start_pfn + nr_pages); 1671 } 1672 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1673 1674 /** 1675 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1676 * @start_pfn: start pfn of the memory range 1677 * @end_pfn: end pfn of the memory range 1678 * @arg: argument passed to func 1679 * @func: callback for each memory section walked 1680 * 1681 * This function walks through all present mem sections in range 1682 * [start_pfn, end_pfn) and call func on each mem section. 1683 * 1684 * Returns the return value of func. 1685 */ 1686 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1687 void *arg, int (*func)(struct memory_block *, void *)) 1688 { 1689 struct memory_block *mem = NULL; 1690 struct mem_section *section; 1691 unsigned long pfn, section_nr; 1692 int ret; 1693 1694 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1695 section_nr = pfn_to_section_nr(pfn); 1696 if (!present_section_nr(section_nr)) 1697 continue; 1698 1699 section = __nr_to_section(section_nr); 1700 /* same memblock? */ 1701 if (mem) 1702 if ((section_nr >= mem->start_section_nr) && 1703 (section_nr <= mem->end_section_nr)) 1704 continue; 1705 1706 mem = find_memory_block_hinted(section, mem); 1707 if (!mem) 1708 continue; 1709 1710 ret = func(mem, arg); 1711 if (ret) { 1712 kobject_put(&mem->dev.kobj); 1713 return ret; 1714 } 1715 } 1716 1717 if (mem) 1718 kobject_put(&mem->dev.kobj); 1719 1720 return 0; 1721 } 1722 1723 #ifdef CONFIG_MEMORY_HOTREMOVE 1724 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1725 { 1726 int ret = !is_memblock_offlined(mem); 1727 1728 if (unlikely(ret)) { 1729 phys_addr_t beginpa, endpa; 1730 1731 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1732 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1733 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1734 &beginpa, &endpa); 1735 } 1736 1737 return ret; 1738 } 1739 1740 static int check_cpu_on_node(pg_data_t *pgdat) 1741 { 1742 int cpu; 1743 1744 for_each_present_cpu(cpu) { 1745 if (cpu_to_node(cpu) == pgdat->node_id) 1746 /* 1747 * the cpu on this node isn't removed, and we can't 1748 * offline this node. 1749 */ 1750 return -EBUSY; 1751 } 1752 1753 return 0; 1754 } 1755 1756 /** 1757 * try_offline_node 1758 * @nid: the node ID 1759 * 1760 * Offline a node if all memory sections and cpus of the node are removed. 1761 * 1762 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1763 * and online/offline operations before this call. 1764 */ 1765 void try_offline_node(int nid) 1766 { 1767 pg_data_t *pgdat = NODE_DATA(nid); 1768 unsigned long start_pfn = pgdat->node_start_pfn; 1769 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1770 unsigned long pfn; 1771 1772 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1773 unsigned long section_nr = pfn_to_section_nr(pfn); 1774 1775 if (!present_section_nr(section_nr)) 1776 continue; 1777 1778 if (pfn_to_nid(pfn) != nid) 1779 continue; 1780 1781 /* 1782 * some memory sections of this node are not removed, and we 1783 * can't offline node now. 1784 */ 1785 return; 1786 } 1787 1788 if (check_cpu_on_node(pgdat)) 1789 return; 1790 1791 /* 1792 * all memory/cpu of this node are removed, we can offline this 1793 * node now. 1794 */ 1795 node_set_offline(nid); 1796 unregister_one_node(nid); 1797 } 1798 EXPORT_SYMBOL(try_offline_node); 1799 1800 static void __release_memory_resource(resource_size_t start, 1801 resource_size_t size) 1802 { 1803 int ret; 1804 1805 /* 1806 * When removing memory in the same granularity as it was added, 1807 * this function never fails. It might only fail if resources 1808 * have to be adjusted or split. We'll ignore the error, as 1809 * removing of memory cannot fail. 1810 */ 1811 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1812 if (ret) { 1813 resource_size_t endres = start + size - 1; 1814 1815 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1816 &start, &endres, ret); 1817 } 1818 } 1819 1820 /** 1821 * remove_memory 1822 * @nid: the node ID 1823 * @start: physical address of the region to remove 1824 * @size: size of the region to remove 1825 * 1826 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1827 * and online/offline operations before this call, as required by 1828 * try_offline_node(). 1829 */ 1830 void __ref __remove_memory(int nid, u64 start, u64 size) 1831 { 1832 int ret; 1833 1834 BUG_ON(check_hotplug_memory_range(start, size)); 1835 1836 mem_hotplug_begin(); 1837 1838 /* 1839 * All memory blocks must be offlined before removing memory. Check 1840 * whether all memory blocks in question are offline and trigger a BUG() 1841 * if this is not the case. 1842 */ 1843 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1844 check_memblock_offlined_cb); 1845 if (ret) 1846 BUG(); 1847 1848 /* remove memmap entry */ 1849 firmware_map_remove(start, start + size, "System RAM"); 1850 memblock_free(start, size); 1851 memblock_remove(start, size); 1852 1853 arch_remove_memory(nid, start, size, NULL); 1854 __release_memory_resource(start, size); 1855 1856 try_offline_node(nid); 1857 1858 mem_hotplug_done(); 1859 } 1860 1861 void remove_memory(int nid, u64 start, u64 size) 1862 { 1863 lock_device_hotplug(); 1864 __remove_memory(nid, start, size); 1865 unlock_device_hotplug(); 1866 } 1867 EXPORT_SYMBOL_GPL(remove_memory); 1868 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1869