1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 /* 43 * online_page_callback contains pointer to current page onlining function. 44 * Initially it is generic_online_page(). If it is required it could be 45 * changed by calling set_online_page_callback() for callback registration 46 * and restore_online_page_callback() for generic callback restore. 47 */ 48 49 static void generic_online_page(struct page *page); 50 51 static online_page_callback_t online_page_callback = generic_online_page; 52 static DEFINE_MUTEX(online_page_callback_lock); 53 54 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 55 56 void get_online_mems(void) 57 { 58 percpu_down_read(&mem_hotplug_lock); 59 } 60 61 void put_online_mems(void) 62 { 63 percpu_up_read(&mem_hotplug_lock); 64 } 65 66 bool movable_node_enabled = false; 67 68 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 69 bool memhp_auto_online; 70 #else 71 bool memhp_auto_online = true; 72 #endif 73 EXPORT_SYMBOL_GPL(memhp_auto_online); 74 75 static int __init setup_memhp_default_state(char *str) 76 { 77 if (!strcmp(str, "online")) 78 memhp_auto_online = true; 79 else if (!strcmp(str, "offline")) 80 memhp_auto_online = false; 81 82 return 1; 83 } 84 __setup("memhp_default_state=", setup_memhp_default_state); 85 86 void mem_hotplug_begin(void) 87 { 88 cpus_read_lock(); 89 percpu_down_write(&mem_hotplug_lock); 90 } 91 92 void mem_hotplug_done(void) 93 { 94 percpu_up_write(&mem_hotplug_lock); 95 cpus_read_unlock(); 96 } 97 98 /* add this memory to iomem resource */ 99 static struct resource *register_memory_resource(u64 start, u64 size) 100 { 101 struct resource *res, *conflict; 102 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 103 if (!res) 104 return ERR_PTR(-ENOMEM); 105 106 res->name = "System RAM"; 107 res->start = start; 108 res->end = start + size - 1; 109 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 110 conflict = request_resource_conflict(&iomem_resource, res); 111 if (conflict) { 112 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 113 pr_debug("Device unaddressable memory block " 114 "memory hotplug at %#010llx !\n", 115 (unsigned long long)start); 116 } 117 pr_debug("System RAM resource %pR cannot be added\n", res); 118 kfree(res); 119 return ERR_PTR(-EEXIST); 120 } 121 return res; 122 } 123 124 static void release_memory_resource(struct resource *res) 125 { 126 if (!res) 127 return; 128 release_resource(res); 129 kfree(res); 130 return; 131 } 132 133 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 134 void get_page_bootmem(unsigned long info, struct page *page, 135 unsigned long type) 136 { 137 page->freelist = (void *)type; 138 SetPagePrivate(page); 139 set_page_private(page, info); 140 page_ref_inc(page); 141 } 142 143 void put_page_bootmem(struct page *page) 144 { 145 unsigned long type; 146 147 type = (unsigned long) page->freelist; 148 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 149 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 150 151 if (page_ref_dec_return(page) == 1) { 152 page->freelist = NULL; 153 ClearPagePrivate(page); 154 set_page_private(page, 0); 155 INIT_LIST_HEAD(&page->lru); 156 free_reserved_page(page); 157 } 158 } 159 160 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 161 #ifndef CONFIG_SPARSEMEM_VMEMMAP 162 static void register_page_bootmem_info_section(unsigned long start_pfn) 163 { 164 unsigned long *usemap, mapsize, section_nr, i; 165 struct mem_section *ms; 166 struct page *page, *memmap; 167 168 section_nr = pfn_to_section_nr(start_pfn); 169 ms = __nr_to_section(section_nr); 170 171 /* Get section's memmap address */ 172 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 173 174 /* 175 * Get page for the memmap's phys address 176 * XXX: need more consideration for sparse_vmemmap... 177 */ 178 page = virt_to_page(memmap); 179 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 180 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 181 182 /* remember memmap's page */ 183 for (i = 0; i < mapsize; i++, page++) 184 get_page_bootmem(section_nr, page, SECTION_INFO); 185 186 usemap = ms->pageblock_flags; 187 page = virt_to_page(usemap); 188 189 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 190 191 for (i = 0; i < mapsize; i++, page++) 192 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 193 194 } 195 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 196 static void register_page_bootmem_info_section(unsigned long start_pfn) 197 { 198 unsigned long *usemap, mapsize, section_nr, i; 199 struct mem_section *ms; 200 struct page *page, *memmap; 201 202 section_nr = pfn_to_section_nr(start_pfn); 203 ms = __nr_to_section(section_nr); 204 205 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 206 207 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 208 209 usemap = ms->pageblock_flags; 210 page = virt_to_page(usemap); 211 212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 213 214 for (i = 0; i < mapsize; i++, page++) 215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 216 } 217 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 218 219 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 220 { 221 unsigned long i, pfn, end_pfn, nr_pages; 222 int node = pgdat->node_id; 223 struct page *page; 224 225 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 226 page = virt_to_page(pgdat); 227 228 for (i = 0; i < nr_pages; i++, page++) 229 get_page_bootmem(node, page, NODE_INFO); 230 231 pfn = pgdat->node_start_pfn; 232 end_pfn = pgdat_end_pfn(pgdat); 233 234 /* register section info */ 235 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 236 /* 237 * Some platforms can assign the same pfn to multiple nodes - on 238 * node0 as well as nodeN. To avoid registering a pfn against 239 * multiple nodes we check that this pfn does not already 240 * reside in some other nodes. 241 */ 242 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 243 register_page_bootmem_info_section(pfn); 244 } 245 } 246 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 247 248 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 249 struct vmem_altmap *altmap, bool want_memblock) 250 { 251 int ret; 252 253 if (pfn_valid(phys_start_pfn)) 254 return -EEXIST; 255 256 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap); 257 if (ret < 0) 258 return ret; 259 260 if (!want_memblock) 261 return 0; 262 263 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 264 } 265 266 /* 267 * Reasonably generic function for adding memory. It is 268 * expected that archs that support memory hotplug will 269 * call this function after deciding the zone to which to 270 * add the new pages. 271 */ 272 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 273 unsigned long nr_pages, struct vmem_altmap *altmap, 274 bool want_memblock) 275 { 276 unsigned long i; 277 int err = 0; 278 int start_sec, end_sec; 279 280 /* during initialize mem_map, align hot-added range to section */ 281 start_sec = pfn_to_section_nr(phys_start_pfn); 282 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 283 284 if (altmap) { 285 /* 286 * Validate altmap is within bounds of the total request 287 */ 288 if (altmap->base_pfn != phys_start_pfn 289 || vmem_altmap_offset(altmap) > nr_pages) { 290 pr_warn_once("memory add fail, invalid altmap\n"); 291 err = -EINVAL; 292 goto out; 293 } 294 altmap->alloc = 0; 295 } 296 297 for (i = start_sec; i <= end_sec; i++) { 298 err = __add_section(nid, section_nr_to_pfn(i), altmap, 299 want_memblock); 300 301 /* 302 * EEXIST is finally dealt with by ioresource collision 303 * check. see add_memory() => register_memory_resource() 304 * Warning will be printed if there is collision. 305 */ 306 if (err && (err != -EEXIST)) 307 break; 308 err = 0; 309 cond_resched(); 310 } 311 vmemmap_populate_print_last(); 312 out: 313 return err; 314 } 315 316 #ifdef CONFIG_MEMORY_HOTREMOVE 317 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 318 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 319 unsigned long start_pfn, 320 unsigned long end_pfn) 321 { 322 struct mem_section *ms; 323 324 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 325 ms = __pfn_to_section(start_pfn); 326 327 if (unlikely(!valid_section(ms))) 328 continue; 329 330 if (unlikely(pfn_to_nid(start_pfn) != nid)) 331 continue; 332 333 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 334 continue; 335 336 return start_pfn; 337 } 338 339 return 0; 340 } 341 342 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 343 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 344 unsigned long start_pfn, 345 unsigned long end_pfn) 346 { 347 struct mem_section *ms; 348 unsigned long pfn; 349 350 /* pfn is the end pfn of a memory section. */ 351 pfn = end_pfn - 1; 352 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 353 ms = __pfn_to_section(pfn); 354 355 if (unlikely(!valid_section(ms))) 356 continue; 357 358 if (unlikely(pfn_to_nid(pfn) != nid)) 359 continue; 360 361 if (zone && zone != page_zone(pfn_to_page(pfn))) 362 continue; 363 364 return pfn; 365 } 366 367 return 0; 368 } 369 370 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 371 unsigned long end_pfn) 372 { 373 unsigned long zone_start_pfn = zone->zone_start_pfn; 374 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 375 unsigned long zone_end_pfn = z; 376 unsigned long pfn; 377 struct mem_section *ms; 378 int nid = zone_to_nid(zone); 379 380 zone_span_writelock(zone); 381 if (zone_start_pfn == start_pfn) { 382 /* 383 * If the section is smallest section in the zone, it need 384 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 385 * In this case, we find second smallest valid mem_section 386 * for shrinking zone. 387 */ 388 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 389 zone_end_pfn); 390 if (pfn) { 391 zone->zone_start_pfn = pfn; 392 zone->spanned_pages = zone_end_pfn - pfn; 393 } 394 } else if (zone_end_pfn == end_pfn) { 395 /* 396 * If the section is biggest section in the zone, it need 397 * shrink zone->spanned_pages. 398 * In this case, we find second biggest valid mem_section for 399 * shrinking zone. 400 */ 401 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 402 start_pfn); 403 if (pfn) 404 zone->spanned_pages = pfn - zone_start_pfn + 1; 405 } 406 407 /* 408 * The section is not biggest or smallest mem_section in the zone, it 409 * only creates a hole in the zone. So in this case, we need not 410 * change the zone. But perhaps, the zone has only hole data. Thus 411 * it check the zone has only hole or not. 412 */ 413 pfn = zone_start_pfn; 414 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 415 ms = __pfn_to_section(pfn); 416 417 if (unlikely(!valid_section(ms))) 418 continue; 419 420 if (page_zone(pfn_to_page(pfn)) != zone) 421 continue; 422 423 /* If the section is current section, it continues the loop */ 424 if (start_pfn == pfn) 425 continue; 426 427 /* If we find valid section, we have nothing to do */ 428 zone_span_writeunlock(zone); 429 return; 430 } 431 432 /* The zone has no valid section */ 433 zone->zone_start_pfn = 0; 434 zone->spanned_pages = 0; 435 zone_span_writeunlock(zone); 436 } 437 438 static void shrink_pgdat_span(struct pglist_data *pgdat, 439 unsigned long start_pfn, unsigned long end_pfn) 440 { 441 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 442 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 443 unsigned long pgdat_end_pfn = p; 444 unsigned long pfn; 445 struct mem_section *ms; 446 int nid = pgdat->node_id; 447 448 if (pgdat_start_pfn == start_pfn) { 449 /* 450 * If the section is smallest section in the pgdat, it need 451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 452 * In this case, we find second smallest valid mem_section 453 * for shrinking zone. 454 */ 455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 456 pgdat_end_pfn); 457 if (pfn) { 458 pgdat->node_start_pfn = pfn; 459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 460 } 461 } else if (pgdat_end_pfn == end_pfn) { 462 /* 463 * If the section is biggest section in the pgdat, it need 464 * shrink pgdat->node_spanned_pages. 465 * In this case, we find second biggest valid mem_section for 466 * shrinking zone. 467 */ 468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 469 start_pfn); 470 if (pfn) 471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 472 } 473 474 /* 475 * If the section is not biggest or smallest mem_section in the pgdat, 476 * it only creates a hole in the pgdat. So in this case, we need not 477 * change the pgdat. 478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 479 * has only hole or not. 480 */ 481 pfn = pgdat_start_pfn; 482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 483 ms = __pfn_to_section(pfn); 484 485 if (unlikely(!valid_section(ms))) 486 continue; 487 488 if (pfn_to_nid(pfn) != nid) 489 continue; 490 491 /* If the section is current section, it continues the loop */ 492 if (start_pfn == pfn) 493 continue; 494 495 /* If we find valid section, we have nothing to do */ 496 return; 497 } 498 499 /* The pgdat has no valid section */ 500 pgdat->node_start_pfn = 0; 501 pgdat->node_spanned_pages = 0; 502 } 503 504 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 505 { 506 struct pglist_data *pgdat = zone->zone_pgdat; 507 int nr_pages = PAGES_PER_SECTION; 508 unsigned long flags; 509 510 pgdat_resize_lock(zone->zone_pgdat, &flags); 511 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 512 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 513 pgdat_resize_unlock(zone->zone_pgdat, &flags); 514 } 515 516 static int __remove_section(struct zone *zone, struct mem_section *ms, 517 unsigned long map_offset, struct vmem_altmap *altmap) 518 { 519 unsigned long start_pfn; 520 int scn_nr; 521 int ret = -EINVAL; 522 523 if (!valid_section(ms)) 524 return ret; 525 526 ret = unregister_memory_section(ms); 527 if (ret) 528 return ret; 529 530 scn_nr = __section_nr(ms); 531 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 532 __remove_zone(zone, start_pfn); 533 534 sparse_remove_one_section(zone, ms, map_offset, altmap); 535 return 0; 536 } 537 538 /** 539 * __remove_pages() - remove sections of pages from a zone 540 * @zone: zone from which pages need to be removed 541 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 542 * @nr_pages: number of pages to remove (must be multiple of section size) 543 * @altmap: alternative device page map or %NULL if default memmap is used 544 * 545 * Generic helper function to remove section mappings and sysfs entries 546 * for the section of the memory we are removing. Caller needs to make 547 * sure that pages are marked reserved and zones are adjust properly by 548 * calling offline_pages(). 549 */ 550 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 551 unsigned long nr_pages, struct vmem_altmap *altmap) 552 { 553 unsigned long i; 554 unsigned long map_offset = 0; 555 int sections_to_remove, ret = 0; 556 557 /* In the ZONE_DEVICE case device driver owns the memory region */ 558 if (is_dev_zone(zone)) { 559 if (altmap) 560 map_offset = vmem_altmap_offset(altmap); 561 } else { 562 resource_size_t start, size; 563 564 start = phys_start_pfn << PAGE_SHIFT; 565 size = nr_pages * PAGE_SIZE; 566 567 ret = release_mem_region_adjustable(&iomem_resource, start, 568 size); 569 if (ret) { 570 resource_size_t endres = start + size - 1; 571 572 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 573 &start, &endres, ret); 574 } 575 } 576 577 clear_zone_contiguous(zone); 578 579 /* 580 * We can only remove entire sections 581 */ 582 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 583 BUG_ON(nr_pages % PAGES_PER_SECTION); 584 585 sections_to_remove = nr_pages / PAGES_PER_SECTION; 586 for (i = 0; i < sections_to_remove; i++) { 587 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 588 589 cond_resched(); 590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 591 altmap); 592 map_offset = 0; 593 if (ret) 594 break; 595 } 596 597 set_zone_contiguous(zone); 598 599 return ret; 600 } 601 #endif /* CONFIG_MEMORY_HOTREMOVE */ 602 603 int set_online_page_callback(online_page_callback_t callback) 604 { 605 int rc = -EINVAL; 606 607 get_online_mems(); 608 mutex_lock(&online_page_callback_lock); 609 610 if (online_page_callback == generic_online_page) { 611 online_page_callback = callback; 612 rc = 0; 613 } 614 615 mutex_unlock(&online_page_callback_lock); 616 put_online_mems(); 617 618 return rc; 619 } 620 EXPORT_SYMBOL_GPL(set_online_page_callback); 621 622 int restore_online_page_callback(online_page_callback_t callback) 623 { 624 int rc = -EINVAL; 625 626 get_online_mems(); 627 mutex_lock(&online_page_callback_lock); 628 629 if (online_page_callback == callback) { 630 online_page_callback = generic_online_page; 631 rc = 0; 632 } 633 634 mutex_unlock(&online_page_callback_lock); 635 put_online_mems(); 636 637 return rc; 638 } 639 EXPORT_SYMBOL_GPL(restore_online_page_callback); 640 641 void __online_page_set_limits(struct page *page) 642 { 643 } 644 EXPORT_SYMBOL_GPL(__online_page_set_limits); 645 646 void __online_page_increment_counters(struct page *page) 647 { 648 adjust_managed_page_count(page, 1); 649 } 650 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 651 652 void __online_page_free(struct page *page) 653 { 654 __free_reserved_page(page); 655 } 656 EXPORT_SYMBOL_GPL(__online_page_free); 657 658 static void generic_online_page(struct page *page) 659 { 660 __online_page_set_limits(page); 661 __online_page_increment_counters(page); 662 __online_page_free(page); 663 } 664 665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 666 void *arg) 667 { 668 unsigned long i; 669 unsigned long onlined_pages = *(unsigned long *)arg; 670 struct page *page; 671 672 if (PageReserved(pfn_to_page(start_pfn))) 673 for (i = 0; i < nr_pages; i++) { 674 page = pfn_to_page(start_pfn + i); 675 (*online_page_callback)(page); 676 onlined_pages++; 677 } 678 679 online_mem_sections(start_pfn, start_pfn + nr_pages); 680 681 *(unsigned long *)arg = onlined_pages; 682 return 0; 683 } 684 685 /* check which state of node_states will be changed when online memory */ 686 static void node_states_check_changes_online(unsigned long nr_pages, 687 struct zone *zone, struct memory_notify *arg) 688 { 689 int nid = zone_to_nid(zone); 690 691 arg->status_change_nid = -1; 692 arg->status_change_nid_normal = -1; 693 arg->status_change_nid_high = -1; 694 695 if (!node_state(nid, N_MEMORY)) 696 arg->status_change_nid = nid; 697 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 698 arg->status_change_nid_normal = nid; 699 #ifdef CONFIG_HIGHMEM 700 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY)) 701 arg->status_change_nid_high = nid; 702 #endif 703 } 704 705 static void node_states_set_node(int node, struct memory_notify *arg) 706 { 707 if (arg->status_change_nid_normal >= 0) 708 node_set_state(node, N_NORMAL_MEMORY); 709 710 if (arg->status_change_nid_high >= 0) 711 node_set_state(node, N_HIGH_MEMORY); 712 713 if (arg->status_change_nid >= 0) 714 node_set_state(node, N_MEMORY); 715 } 716 717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 718 unsigned long nr_pages) 719 { 720 unsigned long old_end_pfn = zone_end_pfn(zone); 721 722 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 723 zone->zone_start_pfn = start_pfn; 724 725 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 726 } 727 728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 729 unsigned long nr_pages) 730 { 731 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 732 733 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 734 pgdat->node_start_pfn = start_pfn; 735 736 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 737 } 738 739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 740 unsigned long nr_pages, struct vmem_altmap *altmap) 741 { 742 struct pglist_data *pgdat = zone->zone_pgdat; 743 int nid = pgdat->node_id; 744 unsigned long flags; 745 746 if (zone_is_empty(zone)) 747 init_currently_empty_zone(zone, start_pfn, nr_pages); 748 749 clear_zone_contiguous(zone); 750 751 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 752 pgdat_resize_lock(pgdat, &flags); 753 zone_span_writelock(zone); 754 resize_zone_range(zone, start_pfn, nr_pages); 755 zone_span_writeunlock(zone); 756 resize_pgdat_range(pgdat, start_pfn, nr_pages); 757 pgdat_resize_unlock(pgdat, &flags); 758 759 /* 760 * TODO now we have a visible range of pages which are not associated 761 * with their zone properly. Not nice but set_pfnblock_flags_mask 762 * expects the zone spans the pfn range. All the pages in the range 763 * are reserved so nobody should be touching them so we should be safe 764 */ 765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 766 MEMMAP_HOTPLUG, altmap); 767 768 set_zone_contiguous(zone); 769 } 770 771 /* 772 * Returns a default kernel memory zone for the given pfn range. 773 * If no kernel zone covers this pfn range it will automatically go 774 * to the ZONE_NORMAL. 775 */ 776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 777 unsigned long nr_pages) 778 { 779 struct pglist_data *pgdat = NODE_DATA(nid); 780 int zid; 781 782 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 783 struct zone *zone = &pgdat->node_zones[zid]; 784 785 if (zone_intersects(zone, start_pfn, nr_pages)) 786 return zone; 787 } 788 789 return &pgdat->node_zones[ZONE_NORMAL]; 790 } 791 792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 793 unsigned long nr_pages) 794 { 795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 796 nr_pages); 797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 800 801 /* 802 * We inherit the existing zone in a simple case where zones do not 803 * overlap in the given range 804 */ 805 if (in_kernel ^ in_movable) 806 return (in_kernel) ? kernel_zone : movable_zone; 807 808 /* 809 * If the range doesn't belong to any zone or two zones overlap in the 810 * given range then we use movable zone only if movable_node is 811 * enabled because we always online to a kernel zone by default. 812 */ 813 return movable_node_enabled ? movable_zone : kernel_zone; 814 } 815 816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 817 unsigned long nr_pages) 818 { 819 if (online_type == MMOP_ONLINE_KERNEL) 820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 821 822 if (online_type == MMOP_ONLINE_MOVABLE) 823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 824 825 return default_zone_for_pfn(nid, start_pfn, nr_pages); 826 } 827 828 /* 829 * Associates the given pfn range with the given node and the zone appropriate 830 * for the given online type. 831 */ 832 static struct zone * __meminit move_pfn_range(int online_type, int nid, 833 unsigned long start_pfn, unsigned long nr_pages) 834 { 835 struct zone *zone; 836 837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 839 return zone; 840 } 841 842 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 843 { 844 unsigned long flags; 845 unsigned long onlined_pages = 0; 846 struct zone *zone; 847 int need_zonelists_rebuild = 0; 848 int nid; 849 int ret; 850 struct memory_notify arg; 851 struct memory_block *mem; 852 853 mem_hotplug_begin(); 854 855 /* 856 * We can't use pfn_to_nid() because nid might be stored in struct page 857 * which is not yet initialized. Instead, we find nid from memory block. 858 */ 859 mem = find_memory_block(__pfn_to_section(pfn)); 860 nid = mem->nid; 861 862 /* associate pfn range with the zone */ 863 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 864 865 arg.start_pfn = pfn; 866 arg.nr_pages = nr_pages; 867 node_states_check_changes_online(nr_pages, zone, &arg); 868 869 ret = memory_notify(MEM_GOING_ONLINE, &arg); 870 ret = notifier_to_errno(ret); 871 if (ret) 872 goto failed_addition; 873 874 /* 875 * If this zone is not populated, then it is not in zonelist. 876 * This means the page allocator ignores this zone. 877 * So, zonelist must be updated after online. 878 */ 879 if (!populated_zone(zone)) { 880 need_zonelists_rebuild = 1; 881 setup_zone_pageset(zone); 882 } 883 884 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 885 online_pages_range); 886 if (ret) { 887 if (need_zonelists_rebuild) 888 zone_pcp_reset(zone); 889 goto failed_addition; 890 } 891 892 zone->present_pages += onlined_pages; 893 894 pgdat_resize_lock(zone->zone_pgdat, &flags); 895 zone->zone_pgdat->node_present_pages += onlined_pages; 896 pgdat_resize_unlock(zone->zone_pgdat, &flags); 897 898 if (onlined_pages) { 899 node_states_set_node(nid, &arg); 900 if (need_zonelists_rebuild) 901 build_all_zonelists(NULL); 902 else 903 zone_pcp_update(zone); 904 } 905 906 init_per_zone_wmark_min(); 907 908 if (onlined_pages) { 909 kswapd_run(nid); 910 kcompactd_run(nid); 911 } 912 913 vm_total_pages = nr_free_pagecache_pages(); 914 915 writeback_set_ratelimit(); 916 917 if (onlined_pages) 918 memory_notify(MEM_ONLINE, &arg); 919 mem_hotplug_done(); 920 return 0; 921 922 failed_addition: 923 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 924 (unsigned long long) pfn << PAGE_SHIFT, 925 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 926 memory_notify(MEM_CANCEL_ONLINE, &arg); 927 mem_hotplug_done(); 928 return ret; 929 } 930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 931 932 static void reset_node_present_pages(pg_data_t *pgdat) 933 { 934 struct zone *z; 935 936 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 937 z->present_pages = 0; 938 939 pgdat->node_present_pages = 0; 940 } 941 942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 944 { 945 struct pglist_data *pgdat; 946 unsigned long start_pfn = PFN_DOWN(start); 947 948 pgdat = NODE_DATA(nid); 949 if (!pgdat) { 950 pgdat = arch_alloc_nodedata(nid); 951 if (!pgdat) 952 return NULL; 953 954 arch_refresh_nodedata(nid, pgdat); 955 } else { 956 /* 957 * Reset the nr_zones, order and classzone_idx before reuse. 958 * Note that kswapd will init kswapd_classzone_idx properly 959 * when it starts in the near future. 960 */ 961 pgdat->nr_zones = 0; 962 pgdat->kswapd_order = 0; 963 pgdat->kswapd_classzone_idx = 0; 964 } 965 966 /* we can use NODE_DATA(nid) from here */ 967 968 pgdat->node_id = nid; 969 pgdat->node_start_pfn = start_pfn; 970 971 /* init node's zones as empty zones, we don't have any present pages.*/ 972 free_area_init_core_hotplug(nid); 973 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 974 975 /* 976 * The node we allocated has no zone fallback lists. For avoiding 977 * to access not-initialized zonelist, build here. 978 */ 979 build_all_zonelists(pgdat); 980 981 /* 982 * When memory is hot-added, all the memory is in offline state. So 983 * clear all zones' present_pages because they will be updated in 984 * online_pages() and offline_pages(). 985 */ 986 reset_node_managed_pages(pgdat); 987 reset_node_present_pages(pgdat); 988 989 return pgdat; 990 } 991 992 static void rollback_node_hotadd(int nid) 993 { 994 pg_data_t *pgdat = NODE_DATA(nid); 995 996 arch_refresh_nodedata(nid, NULL); 997 free_percpu(pgdat->per_cpu_nodestats); 998 arch_free_nodedata(pgdat); 999 return; 1000 } 1001 1002 1003 /** 1004 * try_online_node - online a node if offlined 1005 * @nid: the node ID 1006 * @start: start addr of the node 1007 * @set_node_online: Whether we want to online the node 1008 * called by cpu_up() to online a node without onlined memory. 1009 * 1010 * Returns: 1011 * 1 -> a new node has been allocated 1012 * 0 -> the node is already online 1013 * -ENOMEM -> the node could not be allocated 1014 */ 1015 static int __try_online_node(int nid, u64 start, bool set_node_online) 1016 { 1017 pg_data_t *pgdat; 1018 int ret = 1; 1019 1020 if (node_online(nid)) 1021 return 0; 1022 1023 pgdat = hotadd_new_pgdat(nid, start); 1024 if (!pgdat) { 1025 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1026 ret = -ENOMEM; 1027 goto out; 1028 } 1029 1030 if (set_node_online) { 1031 node_set_online(nid); 1032 ret = register_one_node(nid); 1033 BUG_ON(ret); 1034 } 1035 out: 1036 return ret; 1037 } 1038 1039 /* 1040 * Users of this function always want to online/register the node 1041 */ 1042 int try_online_node(int nid) 1043 { 1044 int ret; 1045 1046 mem_hotplug_begin(); 1047 ret = __try_online_node(nid, 0, true); 1048 mem_hotplug_done(); 1049 return ret; 1050 } 1051 1052 static int check_hotplug_memory_range(u64 start, u64 size) 1053 { 1054 unsigned long block_sz = memory_block_size_bytes(); 1055 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1056 u64 nr_pages = size >> PAGE_SHIFT; 1057 u64 start_pfn = PFN_DOWN(start); 1058 1059 /* memory range must be block size aligned */ 1060 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1061 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1062 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1063 block_sz, start, size); 1064 return -EINVAL; 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int online_memory_block(struct memory_block *mem, void *arg) 1071 { 1072 return device_online(&mem->dev); 1073 } 1074 1075 /* 1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1077 * and online/offline operations (triggered e.g. by sysfs). 1078 * 1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1080 */ 1081 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1082 { 1083 u64 start, size; 1084 bool new_node = false; 1085 int ret; 1086 1087 start = res->start; 1088 size = resource_size(res); 1089 1090 ret = check_hotplug_memory_range(start, size); 1091 if (ret) 1092 return ret; 1093 1094 mem_hotplug_begin(); 1095 1096 /* 1097 * Add new range to memblock so that when hotadd_new_pgdat() is called 1098 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1099 * this new range and calculate total pages correctly. The range will 1100 * be removed at hot-remove time. 1101 */ 1102 memblock_add_node(start, size, nid); 1103 1104 ret = __try_online_node(nid, start, false); 1105 if (ret < 0) 1106 goto error; 1107 new_node = ret; 1108 1109 /* call arch's memory hotadd */ 1110 ret = arch_add_memory(nid, start, size, NULL, true); 1111 if (ret < 0) 1112 goto error; 1113 1114 if (new_node) { 1115 /* If sysfs file of new node can't be created, cpu on the node 1116 * can't be hot-added. There is no rollback way now. 1117 * So, check by BUG_ON() to catch it reluctantly.. 1118 * We online node here. We can't roll back from here. 1119 */ 1120 node_set_online(nid); 1121 ret = __register_one_node(nid); 1122 BUG_ON(ret); 1123 } 1124 1125 /* link memory sections under this node.*/ 1126 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1127 BUG_ON(ret); 1128 1129 /* create new memmap entry */ 1130 firmware_map_add_hotplug(start, start + size, "System RAM"); 1131 1132 /* device_online() will take the lock when calling online_pages() */ 1133 mem_hotplug_done(); 1134 1135 /* online pages if requested */ 1136 if (online) 1137 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1138 NULL, online_memory_block); 1139 1140 return ret; 1141 error: 1142 /* rollback pgdat allocation and others */ 1143 if (new_node) 1144 rollback_node_hotadd(nid); 1145 memblock_remove(start, size); 1146 mem_hotplug_done(); 1147 return ret; 1148 } 1149 1150 /* requires device_hotplug_lock, see add_memory_resource() */ 1151 int __ref __add_memory(int nid, u64 start, u64 size) 1152 { 1153 struct resource *res; 1154 int ret; 1155 1156 res = register_memory_resource(start, size); 1157 if (IS_ERR(res)) 1158 return PTR_ERR(res); 1159 1160 ret = add_memory_resource(nid, res, memhp_auto_online); 1161 if (ret < 0) 1162 release_memory_resource(res); 1163 return ret; 1164 } 1165 1166 int add_memory(int nid, u64 start, u64 size) 1167 { 1168 int rc; 1169 1170 lock_device_hotplug(); 1171 rc = __add_memory(nid, start, size); 1172 unlock_device_hotplug(); 1173 1174 return rc; 1175 } 1176 EXPORT_SYMBOL_GPL(add_memory); 1177 1178 #ifdef CONFIG_MEMORY_HOTREMOVE 1179 /* 1180 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1181 * set and the size of the free page is given by page_order(). Using this, 1182 * the function determines if the pageblock contains only free pages. 1183 * Due to buddy contraints, a free page at least the size of a pageblock will 1184 * be located at the start of the pageblock 1185 */ 1186 static inline int pageblock_free(struct page *page) 1187 { 1188 return PageBuddy(page) && page_order(page) >= pageblock_order; 1189 } 1190 1191 /* Return the start of the next active pageblock after a given page */ 1192 static struct page *next_active_pageblock(struct page *page) 1193 { 1194 /* Ensure the starting page is pageblock-aligned */ 1195 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1196 1197 /* If the entire pageblock is free, move to the end of free page */ 1198 if (pageblock_free(page)) { 1199 int order; 1200 /* be careful. we don't have locks, page_order can be changed.*/ 1201 order = page_order(page); 1202 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1203 return page + (1 << order); 1204 } 1205 1206 return page + pageblock_nr_pages; 1207 } 1208 1209 static bool is_pageblock_removable_nolock(struct page *page) 1210 { 1211 struct zone *zone; 1212 unsigned long pfn; 1213 1214 /* 1215 * We have to be careful here because we are iterating over memory 1216 * sections which are not zone aware so we might end up outside of 1217 * the zone but still within the section. 1218 * We have to take care about the node as well. If the node is offline 1219 * its NODE_DATA will be NULL - see page_zone. 1220 */ 1221 if (!node_online(page_to_nid(page))) 1222 return false; 1223 1224 zone = page_zone(page); 1225 pfn = page_to_pfn(page); 1226 if (!zone_spans_pfn(zone, pfn)) 1227 return false; 1228 1229 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 1230 } 1231 1232 /* Checks if this range of memory is likely to be hot-removable. */ 1233 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1234 { 1235 struct page *page = pfn_to_page(start_pfn); 1236 struct page *end_page = page + nr_pages; 1237 1238 /* Check the starting page of each pageblock within the range */ 1239 for (; page < end_page; page = next_active_pageblock(page)) { 1240 if (!is_pageblock_removable_nolock(page)) 1241 return false; 1242 cond_resched(); 1243 } 1244 1245 /* All pageblocks in the memory block are likely to be hot-removable */ 1246 return true; 1247 } 1248 1249 /* 1250 * Confirm all pages in a range [start, end) belong to the same zone. 1251 * When true, return its valid [start, end). 1252 */ 1253 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1254 unsigned long *valid_start, unsigned long *valid_end) 1255 { 1256 unsigned long pfn, sec_end_pfn; 1257 unsigned long start, end; 1258 struct zone *zone = NULL; 1259 struct page *page; 1260 int i; 1261 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1262 pfn < end_pfn; 1263 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1264 /* Make sure the memory section is present first */ 1265 if (!present_section_nr(pfn_to_section_nr(pfn))) 1266 continue; 1267 for (; pfn < sec_end_pfn && pfn < end_pfn; 1268 pfn += MAX_ORDER_NR_PAGES) { 1269 i = 0; 1270 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1271 while ((i < MAX_ORDER_NR_PAGES) && 1272 !pfn_valid_within(pfn + i)) 1273 i++; 1274 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1275 continue; 1276 page = pfn_to_page(pfn + i); 1277 if (zone && page_zone(page) != zone) 1278 return 0; 1279 if (!zone) 1280 start = pfn + i; 1281 zone = page_zone(page); 1282 end = pfn + MAX_ORDER_NR_PAGES; 1283 } 1284 } 1285 1286 if (zone) { 1287 *valid_start = start; 1288 *valid_end = min(end, end_pfn); 1289 return 1; 1290 } else { 1291 return 0; 1292 } 1293 } 1294 1295 /* 1296 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1297 * non-lru movable pages and hugepages). We scan pfn because it's much 1298 * easier than scanning over linked list. This function returns the pfn 1299 * of the first found movable page if it's found, otherwise 0. 1300 */ 1301 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1302 { 1303 unsigned long pfn; 1304 struct page *page; 1305 for (pfn = start; pfn < end; pfn++) { 1306 if (pfn_valid(pfn)) { 1307 page = pfn_to_page(pfn); 1308 if (PageLRU(page)) 1309 return pfn; 1310 if (__PageMovable(page)) 1311 return pfn; 1312 if (PageHuge(page)) { 1313 if (hugepage_migration_supported(page_hstate(page)) && 1314 page_huge_active(page)) 1315 return pfn; 1316 else 1317 pfn = round_up(pfn + 1, 1318 1 << compound_order(page)) - 1; 1319 } 1320 } 1321 } 1322 return 0; 1323 } 1324 1325 static struct page *new_node_page(struct page *page, unsigned long private) 1326 { 1327 int nid = page_to_nid(page); 1328 nodemask_t nmask = node_states[N_MEMORY]; 1329 1330 /* 1331 * try to allocate from a different node but reuse this node if there 1332 * are no other online nodes to be used (e.g. we are offlining a part 1333 * of the only existing node) 1334 */ 1335 node_clear(nid, nmask); 1336 if (nodes_empty(nmask)) 1337 node_set(nid, nmask); 1338 1339 return new_page_nodemask(page, nid, &nmask); 1340 } 1341 1342 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1343 static int 1344 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1345 { 1346 unsigned long pfn; 1347 struct page *page; 1348 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1349 int not_managed = 0; 1350 int ret = 0; 1351 LIST_HEAD(source); 1352 1353 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1354 if (!pfn_valid(pfn)) 1355 continue; 1356 page = pfn_to_page(pfn); 1357 1358 if (PageHuge(page)) { 1359 struct page *head = compound_head(page); 1360 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1361 if (compound_order(head) > PFN_SECTION_SHIFT) { 1362 ret = -EBUSY; 1363 break; 1364 } 1365 if (isolate_huge_page(page, &source)) 1366 move_pages -= 1 << compound_order(head); 1367 continue; 1368 } else if (PageTransHuge(page)) 1369 pfn = page_to_pfn(compound_head(page)) 1370 + hpage_nr_pages(page) - 1; 1371 1372 if (!get_page_unless_zero(page)) 1373 continue; 1374 /* 1375 * We can skip free pages. And we can deal with pages on 1376 * LRU and non-lru movable pages. 1377 */ 1378 if (PageLRU(page)) 1379 ret = isolate_lru_page(page); 1380 else 1381 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1382 if (!ret) { /* Success */ 1383 put_page(page); 1384 list_add_tail(&page->lru, &source); 1385 move_pages--; 1386 if (!__PageMovable(page)) 1387 inc_node_page_state(page, NR_ISOLATED_ANON + 1388 page_is_file_cache(page)); 1389 1390 } else { 1391 #ifdef CONFIG_DEBUG_VM 1392 pr_alert("failed to isolate pfn %lx\n", pfn); 1393 dump_page(page, "isolation failed"); 1394 #endif 1395 put_page(page); 1396 /* Because we don't have big zone->lock. we should 1397 check this again here. */ 1398 if (page_count(page)) { 1399 not_managed++; 1400 ret = -EBUSY; 1401 break; 1402 } 1403 } 1404 } 1405 if (!list_empty(&source)) { 1406 if (not_managed) { 1407 putback_movable_pages(&source); 1408 goto out; 1409 } 1410 1411 /* Allocate a new page from the nearest neighbor node */ 1412 ret = migrate_pages(&source, new_node_page, NULL, 0, 1413 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1414 if (ret) 1415 putback_movable_pages(&source); 1416 } 1417 out: 1418 return ret; 1419 } 1420 1421 /* 1422 * remove from free_area[] and mark all as Reserved. 1423 */ 1424 static int 1425 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1426 void *data) 1427 { 1428 __offline_isolated_pages(start, start + nr_pages); 1429 return 0; 1430 } 1431 1432 static void 1433 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1434 { 1435 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1436 offline_isolated_pages_cb); 1437 } 1438 1439 /* 1440 * Check all pages in range, recoreded as memory resource, are isolated. 1441 */ 1442 static int 1443 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1444 void *data) 1445 { 1446 int ret; 1447 long offlined = *(long *)data; 1448 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1449 offlined = nr_pages; 1450 if (!ret) 1451 *(long *)data += offlined; 1452 return ret; 1453 } 1454 1455 static long 1456 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1457 { 1458 long offlined = 0; 1459 int ret; 1460 1461 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1462 check_pages_isolated_cb); 1463 if (ret < 0) 1464 offlined = (long)ret; 1465 return offlined; 1466 } 1467 1468 static int __init cmdline_parse_movable_node(char *p) 1469 { 1470 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1471 movable_node_enabled = true; 1472 #else 1473 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1474 #endif 1475 return 0; 1476 } 1477 early_param("movable_node", cmdline_parse_movable_node); 1478 1479 /* check which state of node_states will be changed when offline memory */ 1480 static void node_states_check_changes_offline(unsigned long nr_pages, 1481 struct zone *zone, struct memory_notify *arg) 1482 { 1483 struct pglist_data *pgdat = zone->zone_pgdat; 1484 unsigned long present_pages = 0; 1485 enum zone_type zt; 1486 1487 arg->status_change_nid = -1; 1488 arg->status_change_nid_normal = -1; 1489 arg->status_change_nid_high = -1; 1490 1491 /* 1492 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1493 * If the memory to be offline is within the range 1494 * [0..ZONE_NORMAL], and it is the last present memory there, 1495 * the zones in that range will become empty after the offlining, 1496 * thus we can determine that we need to clear the node from 1497 * node_states[N_NORMAL_MEMORY]. 1498 */ 1499 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1500 present_pages += pgdat->node_zones[zt].present_pages; 1501 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1502 arg->status_change_nid_normal = zone_to_nid(zone); 1503 1504 #ifdef CONFIG_HIGHMEM 1505 /* 1506 * node_states[N_HIGH_MEMORY] contains nodes which 1507 * have normal memory or high memory. 1508 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1509 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1510 * we determine that the zones in that range become empty, 1511 * we need to clear the node for N_HIGH_MEMORY. 1512 */ 1513 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1514 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1515 arg->status_change_nid_high = zone_to_nid(zone); 1516 #endif 1517 1518 /* 1519 * We have accounted the pages from [0..ZONE_NORMAL), and 1520 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1521 * as well. 1522 * Here we count the possible pages from ZONE_MOVABLE. 1523 * If after having accounted all the pages, we see that the nr_pages 1524 * to be offlined is over or equal to the accounted pages, 1525 * we know that the node will become empty, and so, we can clear 1526 * it for N_MEMORY as well. 1527 */ 1528 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1529 1530 if (nr_pages >= present_pages) 1531 arg->status_change_nid = zone_to_nid(zone); 1532 } 1533 1534 static void node_states_clear_node(int node, struct memory_notify *arg) 1535 { 1536 if (arg->status_change_nid_normal >= 0) 1537 node_clear_state(node, N_NORMAL_MEMORY); 1538 1539 if (arg->status_change_nid_high >= 0) 1540 node_clear_state(node, N_HIGH_MEMORY); 1541 1542 if (arg->status_change_nid >= 0) 1543 node_clear_state(node, N_MEMORY); 1544 } 1545 1546 static int __ref __offline_pages(unsigned long start_pfn, 1547 unsigned long end_pfn) 1548 { 1549 unsigned long pfn, nr_pages; 1550 long offlined_pages; 1551 int ret, node; 1552 unsigned long flags; 1553 unsigned long valid_start, valid_end; 1554 struct zone *zone; 1555 struct memory_notify arg; 1556 1557 /* at least, alignment against pageblock is necessary */ 1558 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1559 return -EINVAL; 1560 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1561 return -EINVAL; 1562 1563 mem_hotplug_begin(); 1564 1565 /* This makes hotplug much easier...and readable. 1566 we assume this for now. .*/ 1567 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1568 &valid_end)) { 1569 mem_hotplug_done(); 1570 return -EINVAL; 1571 } 1572 1573 zone = page_zone(pfn_to_page(valid_start)); 1574 node = zone_to_nid(zone); 1575 nr_pages = end_pfn - start_pfn; 1576 1577 /* set above range as isolated */ 1578 ret = start_isolate_page_range(start_pfn, end_pfn, 1579 MIGRATE_MOVABLE, true); 1580 if (ret) { 1581 mem_hotplug_done(); 1582 return ret; 1583 } 1584 1585 arg.start_pfn = start_pfn; 1586 arg.nr_pages = nr_pages; 1587 node_states_check_changes_offline(nr_pages, zone, &arg); 1588 1589 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1590 ret = notifier_to_errno(ret); 1591 if (ret) 1592 goto failed_removal; 1593 1594 pfn = start_pfn; 1595 repeat: 1596 /* start memory hot removal */ 1597 ret = -EINTR; 1598 if (signal_pending(current)) 1599 goto failed_removal; 1600 1601 cond_resched(); 1602 lru_add_drain_all(); 1603 drain_all_pages(zone); 1604 1605 pfn = scan_movable_pages(start_pfn, end_pfn); 1606 if (pfn) { /* We have movable pages */ 1607 ret = do_migrate_range(pfn, end_pfn); 1608 goto repeat; 1609 } 1610 1611 /* 1612 * dissolve free hugepages in the memory block before doing offlining 1613 * actually in order to make hugetlbfs's object counting consistent. 1614 */ 1615 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1616 if (ret) 1617 goto failed_removal; 1618 /* check again */ 1619 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1620 if (offlined_pages < 0) 1621 goto repeat; 1622 pr_info("Offlined Pages %ld\n", offlined_pages); 1623 /* Ok, all of our target is isolated. 1624 We cannot do rollback at this point. */ 1625 offline_isolated_pages(start_pfn, end_pfn); 1626 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1627 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1628 /* removal success */ 1629 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1630 zone->present_pages -= offlined_pages; 1631 1632 pgdat_resize_lock(zone->zone_pgdat, &flags); 1633 zone->zone_pgdat->node_present_pages -= offlined_pages; 1634 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1635 1636 init_per_zone_wmark_min(); 1637 1638 if (!populated_zone(zone)) { 1639 zone_pcp_reset(zone); 1640 build_all_zonelists(NULL); 1641 } else 1642 zone_pcp_update(zone); 1643 1644 node_states_clear_node(node, &arg); 1645 if (arg.status_change_nid >= 0) { 1646 kswapd_stop(node); 1647 kcompactd_stop(node); 1648 } 1649 1650 vm_total_pages = nr_free_pagecache_pages(); 1651 writeback_set_ratelimit(); 1652 1653 memory_notify(MEM_OFFLINE, &arg); 1654 mem_hotplug_done(); 1655 return 0; 1656 1657 failed_removal: 1658 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1659 (unsigned long long) start_pfn << PAGE_SHIFT, 1660 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1661 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1662 /* pushback to free area */ 1663 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1664 mem_hotplug_done(); 1665 return ret; 1666 } 1667 1668 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1669 { 1670 return __offline_pages(start_pfn, start_pfn + nr_pages); 1671 } 1672 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1673 1674 /** 1675 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1676 * @start_pfn: start pfn of the memory range 1677 * @end_pfn: end pfn of the memory range 1678 * @arg: argument passed to func 1679 * @func: callback for each memory section walked 1680 * 1681 * This function walks through all present mem sections in range 1682 * [start_pfn, end_pfn) and call func on each mem section. 1683 * 1684 * Returns the return value of func. 1685 */ 1686 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1687 void *arg, int (*func)(struct memory_block *, void *)) 1688 { 1689 struct memory_block *mem = NULL; 1690 struct mem_section *section; 1691 unsigned long pfn, section_nr; 1692 int ret; 1693 1694 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1695 section_nr = pfn_to_section_nr(pfn); 1696 if (!present_section_nr(section_nr)) 1697 continue; 1698 1699 section = __nr_to_section(section_nr); 1700 /* same memblock? */ 1701 if (mem) 1702 if ((section_nr >= mem->start_section_nr) && 1703 (section_nr <= mem->end_section_nr)) 1704 continue; 1705 1706 mem = find_memory_block_hinted(section, mem); 1707 if (!mem) 1708 continue; 1709 1710 ret = func(mem, arg); 1711 if (ret) { 1712 kobject_put(&mem->dev.kobj); 1713 return ret; 1714 } 1715 } 1716 1717 if (mem) 1718 kobject_put(&mem->dev.kobj); 1719 1720 return 0; 1721 } 1722 1723 #ifdef CONFIG_MEMORY_HOTREMOVE 1724 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1725 { 1726 int ret = !is_memblock_offlined(mem); 1727 1728 if (unlikely(ret)) { 1729 phys_addr_t beginpa, endpa; 1730 1731 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1732 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1733 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1734 &beginpa, &endpa); 1735 } 1736 1737 return ret; 1738 } 1739 1740 static int check_cpu_on_node(pg_data_t *pgdat) 1741 { 1742 int cpu; 1743 1744 for_each_present_cpu(cpu) { 1745 if (cpu_to_node(cpu) == pgdat->node_id) 1746 /* 1747 * the cpu on this node isn't removed, and we can't 1748 * offline this node. 1749 */ 1750 return -EBUSY; 1751 } 1752 1753 return 0; 1754 } 1755 1756 static void unmap_cpu_on_node(pg_data_t *pgdat) 1757 { 1758 #ifdef CONFIG_ACPI_NUMA 1759 int cpu; 1760 1761 for_each_possible_cpu(cpu) 1762 if (cpu_to_node(cpu) == pgdat->node_id) 1763 numa_clear_node(cpu); 1764 #endif 1765 } 1766 1767 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1768 { 1769 int ret; 1770 1771 ret = check_cpu_on_node(pgdat); 1772 if (ret) 1773 return ret; 1774 1775 /* 1776 * the node will be offlined when we come here, so we can clear 1777 * the cpu_to_node() now. 1778 */ 1779 1780 unmap_cpu_on_node(pgdat); 1781 return 0; 1782 } 1783 1784 /** 1785 * try_offline_node 1786 * @nid: the node ID 1787 * 1788 * Offline a node if all memory sections and cpus of the node are removed. 1789 * 1790 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1791 * and online/offline operations before this call. 1792 */ 1793 void try_offline_node(int nid) 1794 { 1795 pg_data_t *pgdat = NODE_DATA(nid); 1796 unsigned long start_pfn = pgdat->node_start_pfn; 1797 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1798 unsigned long pfn; 1799 1800 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1801 unsigned long section_nr = pfn_to_section_nr(pfn); 1802 1803 if (!present_section_nr(section_nr)) 1804 continue; 1805 1806 if (pfn_to_nid(pfn) != nid) 1807 continue; 1808 1809 /* 1810 * some memory sections of this node are not removed, and we 1811 * can't offline node now. 1812 */ 1813 return; 1814 } 1815 1816 if (check_and_unmap_cpu_on_node(pgdat)) 1817 return; 1818 1819 /* 1820 * all memory/cpu of this node are removed, we can offline this 1821 * node now. 1822 */ 1823 node_set_offline(nid); 1824 unregister_one_node(nid); 1825 } 1826 EXPORT_SYMBOL(try_offline_node); 1827 1828 /** 1829 * remove_memory 1830 * @nid: the node ID 1831 * @start: physical address of the region to remove 1832 * @size: size of the region to remove 1833 * 1834 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1835 * and online/offline operations before this call, as required by 1836 * try_offline_node(). 1837 */ 1838 void __ref __remove_memory(int nid, u64 start, u64 size) 1839 { 1840 int ret; 1841 1842 BUG_ON(check_hotplug_memory_range(start, size)); 1843 1844 mem_hotplug_begin(); 1845 1846 /* 1847 * All memory blocks must be offlined before removing memory. Check 1848 * whether all memory blocks in question are offline and trigger a BUG() 1849 * if this is not the case. 1850 */ 1851 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1852 check_memblock_offlined_cb); 1853 if (ret) 1854 BUG(); 1855 1856 /* remove memmap entry */ 1857 firmware_map_remove(start, start + size, "System RAM"); 1858 memblock_free(start, size); 1859 memblock_remove(start, size); 1860 1861 arch_remove_memory(start, size, NULL); 1862 1863 try_offline_node(nid); 1864 1865 mem_hotplug_done(); 1866 } 1867 1868 void remove_memory(int nid, u64 start, u64 size) 1869 { 1870 lock_device_hotplug(); 1871 __remove_memory(nid, start, size); 1872 unlock_device_hotplug(); 1873 } 1874 EXPORT_SYMBOL_GPL(remove_memory); 1875 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1876