1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page, unsigned int order); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 u64 max_mem_size = U64_MAX; 100 101 /* add this memory to iomem resource */ 102 static struct resource *register_memory_resource(u64 start, u64 size) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 char *resource_name = "System RAM"; 107 108 if (start + size > max_mem_size) 109 return ERR_PTR(-E2BIG); 110 111 /* 112 * Request ownership of the new memory range. This might be 113 * a child of an existing resource that was present but 114 * not marked as busy. 115 */ 116 res = __request_region(&iomem_resource, start, size, 117 resource_name, flags); 118 119 if (!res) { 120 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 121 start, start + size); 122 return ERR_PTR(-EEXIST); 123 } 124 return res; 125 } 126 127 static void release_memory_resource(struct resource *res) 128 { 129 if (!res) 130 return; 131 release_resource(res); 132 kfree(res); 133 return; 134 } 135 136 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 137 void get_page_bootmem(unsigned long info, struct page *page, 138 unsigned long type) 139 { 140 page->freelist = (void *)type; 141 SetPagePrivate(page); 142 set_page_private(page, info); 143 page_ref_inc(page); 144 } 145 146 void put_page_bootmem(struct page *page) 147 { 148 unsigned long type; 149 150 type = (unsigned long) page->freelist; 151 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 152 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 153 154 if (page_ref_dec_return(page) == 1) { 155 page->freelist = NULL; 156 ClearPagePrivate(page); 157 set_page_private(page, 0); 158 INIT_LIST_HEAD(&page->lru); 159 free_reserved_page(page); 160 } 161 } 162 163 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 164 #ifndef CONFIG_SPARSEMEM_VMEMMAP 165 static void register_page_bootmem_info_section(unsigned long start_pfn) 166 { 167 unsigned long *usemap, mapsize, section_nr, i; 168 struct mem_section *ms; 169 struct page *page, *memmap; 170 171 section_nr = pfn_to_section_nr(start_pfn); 172 ms = __nr_to_section(section_nr); 173 174 /* Get section's memmap address */ 175 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 176 177 /* 178 * Get page for the memmap's phys address 179 * XXX: need more consideration for sparse_vmemmap... 180 */ 181 page = virt_to_page(memmap); 182 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 183 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 184 185 /* remember memmap's page */ 186 for (i = 0; i < mapsize; i++, page++) 187 get_page_bootmem(section_nr, page, SECTION_INFO); 188 189 usemap = ms->pageblock_flags; 190 page = virt_to_page(usemap); 191 192 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 193 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 196 197 } 198 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 199 static void register_page_bootmem_info_section(unsigned long start_pfn) 200 { 201 unsigned long *usemap, mapsize, section_nr, i; 202 struct mem_section *ms; 203 struct page *page, *memmap; 204 205 section_nr = pfn_to_section_nr(start_pfn); 206 ms = __nr_to_section(section_nr); 207 208 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 209 210 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 211 212 usemap = ms->pageblock_flags; 213 page = virt_to_page(usemap); 214 215 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 216 217 for (i = 0; i < mapsize; i++, page++) 218 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 219 } 220 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 221 222 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 223 { 224 unsigned long i, pfn, end_pfn, nr_pages; 225 int node = pgdat->node_id; 226 struct page *page; 227 228 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 229 page = virt_to_page(pgdat); 230 231 for (i = 0; i < nr_pages; i++, page++) 232 get_page_bootmem(node, page, NODE_INFO); 233 234 pfn = pgdat->node_start_pfn; 235 end_pfn = pgdat_end_pfn(pgdat); 236 237 /* register section info */ 238 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 239 /* 240 * Some platforms can assign the same pfn to multiple nodes - on 241 * node0 as well as nodeN. To avoid registering a pfn against 242 * multiple nodes we check that this pfn does not already 243 * reside in some other nodes. 244 */ 245 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 246 register_page_bootmem_info_section(pfn); 247 } 248 } 249 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 250 251 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 252 struct vmem_altmap *altmap, bool want_memblock) 253 { 254 int ret; 255 256 if (pfn_valid(phys_start_pfn)) 257 return -EEXIST; 258 259 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 260 if (ret < 0) 261 return ret; 262 263 if (!want_memblock) 264 return 0; 265 266 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 267 } 268 269 /* 270 * Reasonably generic function for adding memory. It is 271 * expected that archs that support memory hotplug will 272 * call this function after deciding the zone to which to 273 * add the new pages. 274 */ 275 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 276 unsigned long nr_pages, struct vmem_altmap *altmap, 277 bool want_memblock) 278 { 279 unsigned long i; 280 int err = 0; 281 int start_sec, end_sec; 282 283 /* during initialize mem_map, align hot-added range to section */ 284 start_sec = pfn_to_section_nr(phys_start_pfn); 285 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 286 287 if (altmap) { 288 /* 289 * Validate altmap is within bounds of the total request 290 */ 291 if (altmap->base_pfn != phys_start_pfn 292 || vmem_altmap_offset(altmap) > nr_pages) { 293 pr_warn_once("memory add fail, invalid altmap\n"); 294 err = -EINVAL; 295 goto out; 296 } 297 altmap->alloc = 0; 298 } 299 300 for (i = start_sec; i <= end_sec; i++) { 301 err = __add_section(nid, section_nr_to_pfn(i), altmap, 302 want_memblock); 303 304 /* 305 * EEXIST is finally dealt with by ioresource collision 306 * check. see add_memory() => register_memory_resource() 307 * Warning will be printed if there is collision. 308 */ 309 if (err && (err != -EEXIST)) 310 break; 311 err = 0; 312 cond_resched(); 313 } 314 vmemmap_populate_print_last(); 315 out: 316 return err; 317 } 318 319 #ifdef CONFIG_MEMORY_HOTREMOVE 320 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 321 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 322 unsigned long start_pfn, 323 unsigned long end_pfn) 324 { 325 struct mem_section *ms; 326 327 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 328 ms = __pfn_to_section(start_pfn); 329 330 if (unlikely(!valid_section(ms))) 331 continue; 332 333 if (unlikely(pfn_to_nid(start_pfn) != nid)) 334 continue; 335 336 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 337 continue; 338 339 return start_pfn; 340 } 341 342 return 0; 343 } 344 345 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 346 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 347 unsigned long start_pfn, 348 unsigned long end_pfn) 349 { 350 struct mem_section *ms; 351 unsigned long pfn; 352 353 /* pfn is the end pfn of a memory section. */ 354 pfn = end_pfn - 1; 355 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 356 ms = __pfn_to_section(pfn); 357 358 if (unlikely(!valid_section(ms))) 359 continue; 360 361 if (unlikely(pfn_to_nid(pfn) != nid)) 362 continue; 363 364 if (zone && zone != page_zone(pfn_to_page(pfn))) 365 continue; 366 367 return pfn; 368 } 369 370 return 0; 371 } 372 373 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 374 unsigned long end_pfn) 375 { 376 unsigned long zone_start_pfn = zone->zone_start_pfn; 377 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 378 unsigned long zone_end_pfn = z; 379 unsigned long pfn; 380 struct mem_section *ms; 381 int nid = zone_to_nid(zone); 382 383 zone_span_writelock(zone); 384 if (zone_start_pfn == start_pfn) { 385 /* 386 * If the section is smallest section in the zone, it need 387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 388 * In this case, we find second smallest valid mem_section 389 * for shrinking zone. 390 */ 391 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 392 zone_end_pfn); 393 if (pfn) { 394 zone->zone_start_pfn = pfn; 395 zone->spanned_pages = zone_end_pfn - pfn; 396 } 397 } else if (zone_end_pfn == end_pfn) { 398 /* 399 * If the section is biggest section in the zone, it need 400 * shrink zone->spanned_pages. 401 * In this case, we find second biggest valid mem_section for 402 * shrinking zone. 403 */ 404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 405 start_pfn); 406 if (pfn) 407 zone->spanned_pages = pfn - zone_start_pfn + 1; 408 } 409 410 /* 411 * The section is not biggest or smallest mem_section in the zone, it 412 * only creates a hole in the zone. So in this case, we need not 413 * change the zone. But perhaps, the zone has only hole data. Thus 414 * it check the zone has only hole or not. 415 */ 416 pfn = zone_start_pfn; 417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 418 ms = __pfn_to_section(pfn); 419 420 if (unlikely(!valid_section(ms))) 421 continue; 422 423 if (page_zone(pfn_to_page(pfn)) != zone) 424 continue; 425 426 /* If the section is current section, it continues the loop */ 427 if (start_pfn == pfn) 428 continue; 429 430 /* If we find valid section, we have nothing to do */ 431 zone_span_writeunlock(zone); 432 return; 433 } 434 435 /* The zone has no valid section */ 436 zone->zone_start_pfn = 0; 437 zone->spanned_pages = 0; 438 zone_span_writeunlock(zone); 439 } 440 441 static void shrink_pgdat_span(struct pglist_data *pgdat, 442 unsigned long start_pfn, unsigned long end_pfn) 443 { 444 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 445 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 446 unsigned long pgdat_end_pfn = p; 447 unsigned long pfn; 448 struct mem_section *ms; 449 int nid = pgdat->node_id; 450 451 if (pgdat_start_pfn == start_pfn) { 452 /* 453 * If the section is smallest section in the pgdat, it need 454 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 455 * In this case, we find second smallest valid mem_section 456 * for shrinking zone. 457 */ 458 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 459 pgdat_end_pfn); 460 if (pfn) { 461 pgdat->node_start_pfn = pfn; 462 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 463 } 464 } else if (pgdat_end_pfn == end_pfn) { 465 /* 466 * If the section is biggest section in the pgdat, it need 467 * shrink pgdat->node_spanned_pages. 468 * In this case, we find second biggest valid mem_section for 469 * shrinking zone. 470 */ 471 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 472 start_pfn); 473 if (pfn) 474 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 475 } 476 477 /* 478 * If the section is not biggest or smallest mem_section in the pgdat, 479 * it only creates a hole in the pgdat. So in this case, we need not 480 * change the pgdat. 481 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 482 * has only hole or not. 483 */ 484 pfn = pgdat_start_pfn; 485 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 486 ms = __pfn_to_section(pfn); 487 488 if (unlikely(!valid_section(ms))) 489 continue; 490 491 if (pfn_to_nid(pfn) != nid) 492 continue; 493 494 /* If the section is current section, it continues the loop */ 495 if (start_pfn == pfn) 496 continue; 497 498 /* If we find valid section, we have nothing to do */ 499 return; 500 } 501 502 /* The pgdat has no valid section */ 503 pgdat->node_start_pfn = 0; 504 pgdat->node_spanned_pages = 0; 505 } 506 507 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 508 { 509 struct pglist_data *pgdat = zone->zone_pgdat; 510 int nr_pages = PAGES_PER_SECTION; 511 unsigned long flags; 512 513 pgdat_resize_lock(zone->zone_pgdat, &flags); 514 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 515 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 516 pgdat_resize_unlock(zone->zone_pgdat, &flags); 517 } 518 519 static int __remove_section(struct zone *zone, struct mem_section *ms, 520 unsigned long map_offset, struct vmem_altmap *altmap) 521 { 522 unsigned long start_pfn; 523 int scn_nr; 524 int ret = -EINVAL; 525 526 if (!valid_section(ms)) 527 return ret; 528 529 ret = unregister_memory_section(ms); 530 if (ret) 531 return ret; 532 533 scn_nr = __section_nr(ms); 534 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 535 __remove_zone(zone, start_pfn); 536 537 sparse_remove_one_section(zone, ms, map_offset, altmap); 538 return 0; 539 } 540 541 /** 542 * __remove_pages() - remove sections of pages from a zone 543 * @zone: zone from which pages need to be removed 544 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 545 * @nr_pages: number of pages to remove (must be multiple of section size) 546 * @altmap: alternative device page map or %NULL if default memmap is used 547 * 548 * Generic helper function to remove section mappings and sysfs entries 549 * for the section of the memory we are removing. Caller needs to make 550 * sure that pages are marked reserved and zones are adjust properly by 551 * calling offline_pages(). 552 */ 553 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 554 unsigned long nr_pages, struct vmem_altmap *altmap) 555 { 556 unsigned long i; 557 unsigned long map_offset = 0; 558 int sections_to_remove, ret = 0; 559 560 /* In the ZONE_DEVICE case device driver owns the memory region */ 561 if (is_dev_zone(zone)) { 562 if (altmap) 563 map_offset = vmem_altmap_offset(altmap); 564 } else { 565 resource_size_t start, size; 566 567 start = phys_start_pfn << PAGE_SHIFT; 568 size = nr_pages * PAGE_SIZE; 569 570 ret = release_mem_region_adjustable(&iomem_resource, start, 571 size); 572 if (ret) { 573 resource_size_t endres = start + size - 1; 574 575 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 576 &start, &endres, ret); 577 } 578 } 579 580 clear_zone_contiguous(zone); 581 582 /* 583 * We can only remove entire sections 584 */ 585 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 586 BUG_ON(nr_pages % PAGES_PER_SECTION); 587 588 sections_to_remove = nr_pages / PAGES_PER_SECTION; 589 for (i = 0; i < sections_to_remove; i++) { 590 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 591 592 cond_resched(); 593 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 594 altmap); 595 map_offset = 0; 596 if (ret) 597 break; 598 } 599 600 set_zone_contiguous(zone); 601 602 return ret; 603 } 604 #endif /* CONFIG_MEMORY_HOTREMOVE */ 605 606 int set_online_page_callback(online_page_callback_t callback) 607 { 608 int rc = -EINVAL; 609 610 get_online_mems(); 611 mutex_lock(&online_page_callback_lock); 612 613 if (online_page_callback == generic_online_page) { 614 online_page_callback = callback; 615 rc = 0; 616 } 617 618 mutex_unlock(&online_page_callback_lock); 619 put_online_mems(); 620 621 return rc; 622 } 623 EXPORT_SYMBOL_GPL(set_online_page_callback); 624 625 int restore_online_page_callback(online_page_callback_t callback) 626 { 627 int rc = -EINVAL; 628 629 get_online_mems(); 630 mutex_lock(&online_page_callback_lock); 631 632 if (online_page_callback == callback) { 633 online_page_callback = generic_online_page; 634 rc = 0; 635 } 636 637 mutex_unlock(&online_page_callback_lock); 638 put_online_mems(); 639 640 return rc; 641 } 642 EXPORT_SYMBOL_GPL(restore_online_page_callback); 643 644 void __online_page_set_limits(struct page *page) 645 { 646 } 647 EXPORT_SYMBOL_GPL(__online_page_set_limits); 648 649 void __online_page_increment_counters(struct page *page) 650 { 651 adjust_managed_page_count(page, 1); 652 } 653 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 654 655 void __online_page_free(struct page *page) 656 { 657 __free_reserved_page(page); 658 } 659 EXPORT_SYMBOL_GPL(__online_page_free); 660 661 static void generic_online_page(struct page *page, unsigned int order) 662 { 663 kernel_map_pages(page, 1 << order, 1); 664 __free_pages_core(page, order); 665 totalram_pages_add(1UL << order); 666 #ifdef CONFIG_HIGHMEM 667 if (PageHighMem(page)) 668 totalhigh_pages_add(1UL << order); 669 #endif 670 } 671 672 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 673 { 674 unsigned long end = start + nr_pages; 675 int order, onlined_pages = 0; 676 677 while (start < end) { 678 order = min(MAX_ORDER - 1, 679 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 680 (*online_page_callback)(pfn_to_page(start), order); 681 682 onlined_pages += (1UL << order); 683 start += (1UL << order); 684 } 685 return onlined_pages; 686 } 687 688 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 689 void *arg) 690 { 691 unsigned long onlined_pages = *(unsigned long *)arg; 692 693 if (PageReserved(pfn_to_page(start_pfn))) 694 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 695 696 online_mem_sections(start_pfn, start_pfn + nr_pages); 697 698 *(unsigned long *)arg = onlined_pages; 699 return 0; 700 } 701 702 /* check which state of node_states will be changed when online memory */ 703 static void node_states_check_changes_online(unsigned long nr_pages, 704 struct zone *zone, struct memory_notify *arg) 705 { 706 int nid = zone_to_nid(zone); 707 708 arg->status_change_nid = NUMA_NO_NODE; 709 arg->status_change_nid_normal = NUMA_NO_NODE; 710 arg->status_change_nid_high = NUMA_NO_NODE; 711 712 if (!node_state(nid, N_MEMORY)) 713 arg->status_change_nid = nid; 714 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 715 arg->status_change_nid_normal = nid; 716 #ifdef CONFIG_HIGHMEM 717 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY)) 718 arg->status_change_nid_high = nid; 719 #endif 720 } 721 722 static void node_states_set_node(int node, struct memory_notify *arg) 723 { 724 if (arg->status_change_nid_normal >= 0) 725 node_set_state(node, N_NORMAL_MEMORY); 726 727 if (arg->status_change_nid_high >= 0) 728 node_set_state(node, N_HIGH_MEMORY); 729 730 if (arg->status_change_nid >= 0) 731 node_set_state(node, N_MEMORY); 732 } 733 734 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 735 unsigned long nr_pages) 736 { 737 unsigned long old_end_pfn = zone_end_pfn(zone); 738 739 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 740 zone->zone_start_pfn = start_pfn; 741 742 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 743 } 744 745 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 746 unsigned long nr_pages) 747 { 748 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 749 750 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 751 pgdat->node_start_pfn = start_pfn; 752 753 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 754 } 755 756 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 757 unsigned long nr_pages, struct vmem_altmap *altmap) 758 { 759 struct pglist_data *pgdat = zone->zone_pgdat; 760 int nid = pgdat->node_id; 761 unsigned long flags; 762 763 clear_zone_contiguous(zone); 764 765 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 766 pgdat_resize_lock(pgdat, &flags); 767 zone_span_writelock(zone); 768 if (zone_is_empty(zone)) 769 init_currently_empty_zone(zone, start_pfn, nr_pages); 770 resize_zone_range(zone, start_pfn, nr_pages); 771 zone_span_writeunlock(zone); 772 resize_pgdat_range(pgdat, start_pfn, nr_pages); 773 pgdat_resize_unlock(pgdat, &flags); 774 775 /* 776 * TODO now we have a visible range of pages which are not associated 777 * with their zone properly. Not nice but set_pfnblock_flags_mask 778 * expects the zone spans the pfn range. All the pages in the range 779 * are reserved so nobody should be touching them so we should be safe 780 */ 781 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 782 MEMMAP_HOTPLUG, altmap); 783 784 set_zone_contiguous(zone); 785 } 786 787 /* 788 * Returns a default kernel memory zone for the given pfn range. 789 * If no kernel zone covers this pfn range it will automatically go 790 * to the ZONE_NORMAL. 791 */ 792 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 793 unsigned long nr_pages) 794 { 795 struct pglist_data *pgdat = NODE_DATA(nid); 796 int zid; 797 798 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 799 struct zone *zone = &pgdat->node_zones[zid]; 800 801 if (zone_intersects(zone, start_pfn, nr_pages)) 802 return zone; 803 } 804 805 return &pgdat->node_zones[ZONE_NORMAL]; 806 } 807 808 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 809 unsigned long nr_pages) 810 { 811 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 812 nr_pages); 813 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 814 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 815 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 816 817 /* 818 * We inherit the existing zone in a simple case where zones do not 819 * overlap in the given range 820 */ 821 if (in_kernel ^ in_movable) 822 return (in_kernel) ? kernel_zone : movable_zone; 823 824 /* 825 * If the range doesn't belong to any zone or two zones overlap in the 826 * given range then we use movable zone only if movable_node is 827 * enabled because we always online to a kernel zone by default. 828 */ 829 return movable_node_enabled ? movable_zone : kernel_zone; 830 } 831 832 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 833 unsigned long nr_pages) 834 { 835 if (online_type == MMOP_ONLINE_KERNEL) 836 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 837 838 if (online_type == MMOP_ONLINE_MOVABLE) 839 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 840 841 return default_zone_for_pfn(nid, start_pfn, nr_pages); 842 } 843 844 /* 845 * Associates the given pfn range with the given node and the zone appropriate 846 * for the given online type. 847 */ 848 static struct zone * __meminit move_pfn_range(int online_type, int nid, 849 unsigned long start_pfn, unsigned long nr_pages) 850 { 851 struct zone *zone; 852 853 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 854 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 855 return zone; 856 } 857 858 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 859 { 860 unsigned long flags; 861 unsigned long onlined_pages = 0; 862 struct zone *zone; 863 int need_zonelists_rebuild = 0; 864 int nid; 865 int ret; 866 struct memory_notify arg; 867 struct memory_block *mem; 868 869 mem_hotplug_begin(); 870 871 /* 872 * We can't use pfn_to_nid() because nid might be stored in struct page 873 * which is not yet initialized. Instead, we find nid from memory block. 874 */ 875 mem = find_memory_block(__pfn_to_section(pfn)); 876 nid = mem->nid; 877 put_device(&mem->dev); 878 879 /* associate pfn range with the zone */ 880 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 881 882 arg.start_pfn = pfn; 883 arg.nr_pages = nr_pages; 884 node_states_check_changes_online(nr_pages, zone, &arg); 885 886 ret = memory_notify(MEM_GOING_ONLINE, &arg); 887 ret = notifier_to_errno(ret); 888 if (ret) 889 goto failed_addition; 890 891 /* 892 * If this zone is not populated, then it is not in zonelist. 893 * This means the page allocator ignores this zone. 894 * So, zonelist must be updated after online. 895 */ 896 if (!populated_zone(zone)) { 897 need_zonelists_rebuild = 1; 898 setup_zone_pageset(zone); 899 } 900 901 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 902 online_pages_range); 903 if (ret) { 904 if (need_zonelists_rebuild) 905 zone_pcp_reset(zone); 906 goto failed_addition; 907 } 908 909 zone->present_pages += onlined_pages; 910 911 pgdat_resize_lock(zone->zone_pgdat, &flags); 912 zone->zone_pgdat->node_present_pages += onlined_pages; 913 pgdat_resize_unlock(zone->zone_pgdat, &flags); 914 915 if (onlined_pages) { 916 node_states_set_node(nid, &arg); 917 if (need_zonelists_rebuild) 918 build_all_zonelists(NULL); 919 else 920 zone_pcp_update(zone); 921 } 922 923 init_per_zone_wmark_min(); 924 925 if (onlined_pages) { 926 kswapd_run(nid); 927 kcompactd_run(nid); 928 } 929 930 vm_total_pages = nr_free_pagecache_pages(); 931 932 writeback_set_ratelimit(); 933 934 if (onlined_pages) 935 memory_notify(MEM_ONLINE, &arg); 936 mem_hotplug_done(); 937 return 0; 938 939 failed_addition: 940 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 941 (unsigned long long) pfn << PAGE_SHIFT, 942 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 943 memory_notify(MEM_CANCEL_ONLINE, &arg); 944 mem_hotplug_done(); 945 return ret; 946 } 947 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 948 949 static void reset_node_present_pages(pg_data_t *pgdat) 950 { 951 struct zone *z; 952 953 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 954 z->present_pages = 0; 955 956 pgdat->node_present_pages = 0; 957 } 958 959 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 960 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 961 { 962 struct pglist_data *pgdat; 963 unsigned long start_pfn = PFN_DOWN(start); 964 965 pgdat = NODE_DATA(nid); 966 if (!pgdat) { 967 pgdat = arch_alloc_nodedata(nid); 968 if (!pgdat) 969 return NULL; 970 971 arch_refresh_nodedata(nid, pgdat); 972 } else { 973 /* 974 * Reset the nr_zones, order and classzone_idx before reuse. 975 * Note that kswapd will init kswapd_classzone_idx properly 976 * when it starts in the near future. 977 */ 978 pgdat->nr_zones = 0; 979 pgdat->kswapd_order = 0; 980 pgdat->kswapd_classzone_idx = 0; 981 } 982 983 /* we can use NODE_DATA(nid) from here */ 984 985 pgdat->node_id = nid; 986 pgdat->node_start_pfn = start_pfn; 987 988 /* init node's zones as empty zones, we don't have any present pages.*/ 989 free_area_init_core_hotplug(nid); 990 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 991 992 /* 993 * The node we allocated has no zone fallback lists. For avoiding 994 * to access not-initialized zonelist, build here. 995 */ 996 build_all_zonelists(pgdat); 997 998 /* 999 * When memory is hot-added, all the memory is in offline state. So 1000 * clear all zones' present_pages because they will be updated in 1001 * online_pages() and offline_pages(). 1002 */ 1003 reset_node_managed_pages(pgdat); 1004 reset_node_present_pages(pgdat); 1005 1006 return pgdat; 1007 } 1008 1009 static void rollback_node_hotadd(int nid) 1010 { 1011 pg_data_t *pgdat = NODE_DATA(nid); 1012 1013 arch_refresh_nodedata(nid, NULL); 1014 free_percpu(pgdat->per_cpu_nodestats); 1015 arch_free_nodedata(pgdat); 1016 return; 1017 } 1018 1019 1020 /** 1021 * try_online_node - online a node if offlined 1022 * @nid: the node ID 1023 * @start: start addr of the node 1024 * @set_node_online: Whether we want to online the node 1025 * called by cpu_up() to online a node without onlined memory. 1026 * 1027 * Returns: 1028 * 1 -> a new node has been allocated 1029 * 0 -> the node is already online 1030 * -ENOMEM -> the node could not be allocated 1031 */ 1032 static int __try_online_node(int nid, u64 start, bool set_node_online) 1033 { 1034 pg_data_t *pgdat; 1035 int ret = 1; 1036 1037 if (node_online(nid)) 1038 return 0; 1039 1040 pgdat = hotadd_new_pgdat(nid, start); 1041 if (!pgdat) { 1042 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1043 ret = -ENOMEM; 1044 goto out; 1045 } 1046 1047 if (set_node_online) { 1048 node_set_online(nid); 1049 ret = register_one_node(nid); 1050 BUG_ON(ret); 1051 } 1052 out: 1053 return ret; 1054 } 1055 1056 /* 1057 * Users of this function always want to online/register the node 1058 */ 1059 int try_online_node(int nid) 1060 { 1061 int ret; 1062 1063 mem_hotplug_begin(); 1064 ret = __try_online_node(nid, 0, true); 1065 mem_hotplug_done(); 1066 return ret; 1067 } 1068 1069 static int check_hotplug_memory_range(u64 start, u64 size) 1070 { 1071 unsigned long block_sz = memory_block_size_bytes(); 1072 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1073 u64 nr_pages = size >> PAGE_SHIFT; 1074 u64 start_pfn = PFN_DOWN(start); 1075 1076 /* memory range must be block size aligned */ 1077 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1078 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1079 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1080 block_sz, start, size); 1081 return -EINVAL; 1082 } 1083 1084 return 0; 1085 } 1086 1087 static int online_memory_block(struct memory_block *mem, void *arg) 1088 { 1089 return device_online(&mem->dev); 1090 } 1091 1092 /* 1093 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1094 * and online/offline operations (triggered e.g. by sysfs). 1095 * 1096 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1097 */ 1098 int __ref add_memory_resource(int nid, struct resource *res) 1099 { 1100 u64 start, size; 1101 bool new_node = false; 1102 int ret; 1103 1104 start = res->start; 1105 size = resource_size(res); 1106 1107 ret = check_hotplug_memory_range(start, size); 1108 if (ret) 1109 return ret; 1110 1111 mem_hotplug_begin(); 1112 1113 /* 1114 * Add new range to memblock so that when hotadd_new_pgdat() is called 1115 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1116 * this new range and calculate total pages correctly. The range will 1117 * be removed at hot-remove time. 1118 */ 1119 memblock_add_node(start, size, nid); 1120 1121 ret = __try_online_node(nid, start, false); 1122 if (ret < 0) 1123 goto error; 1124 new_node = ret; 1125 1126 /* call arch's memory hotadd */ 1127 ret = arch_add_memory(nid, start, size, NULL, true); 1128 if (ret < 0) 1129 goto error; 1130 1131 if (new_node) { 1132 /* If sysfs file of new node can't be created, cpu on the node 1133 * can't be hot-added. There is no rollback way now. 1134 * So, check by BUG_ON() to catch it reluctantly.. 1135 * We online node here. We can't roll back from here. 1136 */ 1137 node_set_online(nid); 1138 ret = __register_one_node(nid); 1139 BUG_ON(ret); 1140 } 1141 1142 /* link memory sections under this node.*/ 1143 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1144 BUG_ON(ret); 1145 1146 /* create new memmap entry */ 1147 firmware_map_add_hotplug(start, start + size, "System RAM"); 1148 1149 /* device_online() will take the lock when calling online_pages() */ 1150 mem_hotplug_done(); 1151 1152 /* online pages if requested */ 1153 if (memhp_auto_online) 1154 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1155 NULL, online_memory_block); 1156 1157 return ret; 1158 error: 1159 /* rollback pgdat allocation and others */ 1160 if (new_node) 1161 rollback_node_hotadd(nid); 1162 memblock_remove(start, size); 1163 mem_hotplug_done(); 1164 return ret; 1165 } 1166 1167 /* requires device_hotplug_lock, see add_memory_resource() */ 1168 int __ref __add_memory(int nid, u64 start, u64 size) 1169 { 1170 struct resource *res; 1171 int ret; 1172 1173 res = register_memory_resource(start, size); 1174 if (IS_ERR(res)) 1175 return PTR_ERR(res); 1176 1177 ret = add_memory_resource(nid, res); 1178 if (ret < 0) 1179 release_memory_resource(res); 1180 return ret; 1181 } 1182 1183 int add_memory(int nid, u64 start, u64 size) 1184 { 1185 int rc; 1186 1187 lock_device_hotplug(); 1188 rc = __add_memory(nid, start, size); 1189 unlock_device_hotplug(); 1190 1191 return rc; 1192 } 1193 EXPORT_SYMBOL_GPL(add_memory); 1194 1195 #ifdef CONFIG_MEMORY_HOTREMOVE 1196 /* 1197 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1198 * set and the size of the free page is given by page_order(). Using this, 1199 * the function determines if the pageblock contains only free pages. 1200 * Due to buddy contraints, a free page at least the size of a pageblock will 1201 * be located at the start of the pageblock 1202 */ 1203 static inline int pageblock_free(struct page *page) 1204 { 1205 return PageBuddy(page) && page_order(page) >= pageblock_order; 1206 } 1207 1208 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1209 static unsigned long next_active_pageblock(unsigned long pfn) 1210 { 1211 struct page *page = pfn_to_page(pfn); 1212 1213 /* Ensure the starting page is pageblock-aligned */ 1214 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1215 1216 /* If the entire pageblock is free, move to the end of free page */ 1217 if (pageblock_free(page)) { 1218 int order; 1219 /* be careful. we don't have locks, page_order can be changed.*/ 1220 order = page_order(page); 1221 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1222 return pfn + (1 << order); 1223 } 1224 1225 return pfn + pageblock_nr_pages; 1226 } 1227 1228 static bool is_pageblock_removable_nolock(unsigned long pfn) 1229 { 1230 struct page *page = pfn_to_page(pfn); 1231 struct zone *zone; 1232 1233 /* 1234 * We have to be careful here because we are iterating over memory 1235 * sections which are not zone aware so we might end up outside of 1236 * the zone but still within the section. 1237 * We have to take care about the node as well. If the node is offline 1238 * its NODE_DATA will be NULL - see page_zone. 1239 */ 1240 if (!node_online(page_to_nid(page))) 1241 return false; 1242 1243 zone = page_zone(page); 1244 pfn = page_to_pfn(page); 1245 if (!zone_spans_pfn(zone, pfn)) 1246 return false; 1247 1248 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1249 } 1250 1251 /* Checks if this range of memory is likely to be hot-removable. */ 1252 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1253 { 1254 unsigned long end_pfn, pfn; 1255 1256 end_pfn = min(start_pfn + nr_pages, 1257 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1258 1259 /* Check the starting page of each pageblock within the range */ 1260 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1261 if (!is_pageblock_removable_nolock(pfn)) 1262 return false; 1263 cond_resched(); 1264 } 1265 1266 /* All pageblocks in the memory block are likely to be hot-removable */ 1267 return true; 1268 } 1269 1270 /* 1271 * Confirm all pages in a range [start, end) belong to the same zone. 1272 * When true, return its valid [start, end). 1273 */ 1274 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1275 unsigned long *valid_start, unsigned long *valid_end) 1276 { 1277 unsigned long pfn, sec_end_pfn; 1278 unsigned long start, end; 1279 struct zone *zone = NULL; 1280 struct page *page; 1281 int i; 1282 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1283 pfn < end_pfn; 1284 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1285 /* Make sure the memory section is present first */ 1286 if (!present_section_nr(pfn_to_section_nr(pfn))) 1287 continue; 1288 for (; pfn < sec_end_pfn && pfn < end_pfn; 1289 pfn += MAX_ORDER_NR_PAGES) { 1290 i = 0; 1291 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1292 while ((i < MAX_ORDER_NR_PAGES) && 1293 !pfn_valid_within(pfn + i)) 1294 i++; 1295 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1296 continue; 1297 /* Check if we got outside of the zone */ 1298 if (zone && !zone_spans_pfn(zone, pfn + i)) 1299 return 0; 1300 page = pfn_to_page(pfn + i); 1301 if (zone && page_zone(page) != zone) 1302 return 0; 1303 if (!zone) 1304 start = pfn + i; 1305 zone = page_zone(page); 1306 end = pfn + MAX_ORDER_NR_PAGES; 1307 } 1308 } 1309 1310 if (zone) { 1311 *valid_start = start; 1312 *valid_end = min(end, end_pfn); 1313 return 1; 1314 } else { 1315 return 0; 1316 } 1317 } 1318 1319 /* 1320 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1321 * non-lru movable pages and hugepages). We scan pfn because it's much 1322 * easier than scanning over linked list. This function returns the pfn 1323 * of the first found movable page if it's found, otherwise 0. 1324 */ 1325 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1326 { 1327 unsigned long pfn; 1328 1329 for (pfn = start; pfn < end; pfn++) { 1330 struct page *page, *head; 1331 unsigned long skip; 1332 1333 if (!pfn_valid(pfn)) 1334 continue; 1335 page = pfn_to_page(pfn); 1336 if (PageLRU(page)) 1337 return pfn; 1338 if (__PageMovable(page)) 1339 return pfn; 1340 1341 if (!PageHuge(page)) 1342 continue; 1343 head = compound_head(page); 1344 if (hugepage_migration_supported(page_hstate(head)) && 1345 page_huge_active(head)) 1346 return pfn; 1347 skip = (1 << compound_order(head)) - (page - head); 1348 pfn += skip - 1; 1349 } 1350 return 0; 1351 } 1352 1353 static struct page *new_node_page(struct page *page, unsigned long private) 1354 { 1355 int nid = page_to_nid(page); 1356 nodemask_t nmask = node_states[N_MEMORY]; 1357 1358 /* 1359 * try to allocate from a different node but reuse this node if there 1360 * are no other online nodes to be used (e.g. we are offlining a part 1361 * of the only existing node) 1362 */ 1363 node_clear(nid, nmask); 1364 if (nodes_empty(nmask)) 1365 node_set(nid, nmask); 1366 1367 return new_page_nodemask(page, nid, &nmask); 1368 } 1369 1370 static int 1371 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1372 { 1373 unsigned long pfn; 1374 struct page *page; 1375 int ret = 0; 1376 LIST_HEAD(source); 1377 1378 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1379 if (!pfn_valid(pfn)) 1380 continue; 1381 page = pfn_to_page(pfn); 1382 1383 if (PageHuge(page)) { 1384 struct page *head = compound_head(page); 1385 if (compound_order(head) > PFN_SECTION_SHIFT) { 1386 ret = -EBUSY; 1387 break; 1388 } 1389 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1390 isolate_huge_page(head, &source); 1391 continue; 1392 } else if (PageTransHuge(page)) 1393 pfn = page_to_pfn(compound_head(page)) 1394 + hpage_nr_pages(page) - 1; 1395 1396 /* 1397 * HWPoison pages have elevated reference counts so the migration would 1398 * fail on them. It also doesn't make any sense to migrate them in the 1399 * first place. Still try to unmap such a page in case it is still mapped 1400 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1401 * the unmap as the catch all safety net). 1402 */ 1403 if (PageHWPoison(page)) { 1404 if (WARN_ON(PageLRU(page))) 1405 isolate_lru_page(page); 1406 if (page_mapped(page)) 1407 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1408 continue; 1409 } 1410 1411 if (!get_page_unless_zero(page)) 1412 continue; 1413 /* 1414 * We can skip free pages. And we can deal with pages on 1415 * LRU and non-lru movable pages. 1416 */ 1417 if (PageLRU(page)) 1418 ret = isolate_lru_page(page); 1419 else 1420 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1421 if (!ret) { /* Success */ 1422 list_add_tail(&page->lru, &source); 1423 if (!__PageMovable(page)) 1424 inc_node_page_state(page, NR_ISOLATED_ANON + 1425 page_is_file_cache(page)); 1426 1427 } else { 1428 pr_warn("failed to isolate pfn %lx\n", pfn); 1429 dump_page(page, "isolation failed"); 1430 } 1431 put_page(page); 1432 } 1433 if (!list_empty(&source)) { 1434 /* Allocate a new page from the nearest neighbor node */ 1435 ret = migrate_pages(&source, new_node_page, NULL, 0, 1436 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1437 if (ret) { 1438 list_for_each_entry(page, &source, lru) { 1439 pr_warn("migrating pfn %lx failed ret:%d ", 1440 page_to_pfn(page), ret); 1441 dump_page(page, "migration failure"); 1442 } 1443 putback_movable_pages(&source); 1444 } 1445 } 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * remove from free_area[] and mark all as Reserved. 1452 */ 1453 static int 1454 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1455 void *data) 1456 { 1457 __offline_isolated_pages(start, start + nr_pages); 1458 return 0; 1459 } 1460 1461 static void 1462 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1463 { 1464 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1465 offline_isolated_pages_cb); 1466 } 1467 1468 /* 1469 * Check all pages in range, recoreded as memory resource, are isolated. 1470 */ 1471 static int 1472 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1473 void *data) 1474 { 1475 int ret; 1476 long offlined = *(long *)data; 1477 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1478 offlined = nr_pages; 1479 if (!ret) 1480 *(long *)data += offlined; 1481 return ret; 1482 } 1483 1484 static long 1485 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1486 { 1487 long offlined = 0; 1488 int ret; 1489 1490 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1491 check_pages_isolated_cb); 1492 if (ret < 0) 1493 offlined = (long)ret; 1494 return offlined; 1495 } 1496 1497 static int __init cmdline_parse_movable_node(char *p) 1498 { 1499 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1500 movable_node_enabled = true; 1501 #else 1502 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1503 #endif 1504 return 0; 1505 } 1506 early_param("movable_node", cmdline_parse_movable_node); 1507 1508 /* check which state of node_states will be changed when offline memory */ 1509 static void node_states_check_changes_offline(unsigned long nr_pages, 1510 struct zone *zone, struct memory_notify *arg) 1511 { 1512 struct pglist_data *pgdat = zone->zone_pgdat; 1513 unsigned long present_pages = 0; 1514 enum zone_type zt; 1515 1516 arg->status_change_nid = NUMA_NO_NODE; 1517 arg->status_change_nid_normal = NUMA_NO_NODE; 1518 arg->status_change_nid_high = NUMA_NO_NODE; 1519 1520 /* 1521 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1522 * If the memory to be offline is within the range 1523 * [0..ZONE_NORMAL], and it is the last present memory there, 1524 * the zones in that range will become empty after the offlining, 1525 * thus we can determine that we need to clear the node from 1526 * node_states[N_NORMAL_MEMORY]. 1527 */ 1528 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1529 present_pages += pgdat->node_zones[zt].present_pages; 1530 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1531 arg->status_change_nid_normal = zone_to_nid(zone); 1532 1533 #ifdef CONFIG_HIGHMEM 1534 /* 1535 * node_states[N_HIGH_MEMORY] contains nodes which 1536 * have normal memory or high memory. 1537 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1538 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1539 * we determine that the zones in that range become empty, 1540 * we need to clear the node for N_HIGH_MEMORY. 1541 */ 1542 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1543 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1544 arg->status_change_nid_high = zone_to_nid(zone); 1545 #endif 1546 1547 /* 1548 * We have accounted the pages from [0..ZONE_NORMAL), and 1549 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1550 * as well. 1551 * Here we count the possible pages from ZONE_MOVABLE. 1552 * If after having accounted all the pages, we see that the nr_pages 1553 * to be offlined is over or equal to the accounted pages, 1554 * we know that the node will become empty, and so, we can clear 1555 * it for N_MEMORY as well. 1556 */ 1557 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1558 1559 if (nr_pages >= present_pages) 1560 arg->status_change_nid = zone_to_nid(zone); 1561 } 1562 1563 static void node_states_clear_node(int node, struct memory_notify *arg) 1564 { 1565 if (arg->status_change_nid_normal >= 0) 1566 node_clear_state(node, N_NORMAL_MEMORY); 1567 1568 if (arg->status_change_nid_high >= 0) 1569 node_clear_state(node, N_HIGH_MEMORY); 1570 1571 if (arg->status_change_nid >= 0) 1572 node_clear_state(node, N_MEMORY); 1573 } 1574 1575 static int __ref __offline_pages(unsigned long start_pfn, 1576 unsigned long end_pfn) 1577 { 1578 unsigned long pfn, nr_pages; 1579 long offlined_pages; 1580 int ret, node, nr_isolate_pageblock; 1581 unsigned long flags; 1582 unsigned long valid_start, valid_end; 1583 struct zone *zone; 1584 struct memory_notify arg; 1585 char *reason; 1586 1587 mem_hotplug_begin(); 1588 1589 /* This makes hotplug much easier...and readable. 1590 we assume this for now. .*/ 1591 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1592 &valid_end)) { 1593 ret = -EINVAL; 1594 reason = "multizone range"; 1595 goto failed_removal; 1596 } 1597 1598 zone = page_zone(pfn_to_page(valid_start)); 1599 node = zone_to_nid(zone); 1600 nr_pages = end_pfn - start_pfn; 1601 1602 /* set above range as isolated */ 1603 ret = start_isolate_page_range(start_pfn, end_pfn, 1604 MIGRATE_MOVABLE, 1605 SKIP_HWPOISON | REPORT_FAILURE); 1606 if (ret < 0) { 1607 reason = "failure to isolate range"; 1608 goto failed_removal; 1609 } 1610 nr_isolate_pageblock = ret; 1611 1612 arg.start_pfn = start_pfn; 1613 arg.nr_pages = nr_pages; 1614 node_states_check_changes_offline(nr_pages, zone, &arg); 1615 1616 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1617 ret = notifier_to_errno(ret); 1618 if (ret) { 1619 reason = "notifier failure"; 1620 goto failed_removal_isolated; 1621 } 1622 1623 do { 1624 for (pfn = start_pfn; pfn;) { 1625 if (signal_pending(current)) { 1626 ret = -EINTR; 1627 reason = "signal backoff"; 1628 goto failed_removal_isolated; 1629 } 1630 1631 cond_resched(); 1632 lru_add_drain_all(); 1633 1634 pfn = scan_movable_pages(pfn, end_pfn); 1635 if (pfn) { 1636 /* 1637 * TODO: fatal migration failures should bail 1638 * out 1639 */ 1640 do_migrate_range(pfn, end_pfn); 1641 } 1642 } 1643 1644 /* 1645 * Dissolve free hugepages in the memory block before doing 1646 * offlining actually in order to make hugetlbfs's object 1647 * counting consistent. 1648 */ 1649 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1650 if (ret) { 1651 reason = "failure to dissolve huge pages"; 1652 goto failed_removal_isolated; 1653 } 1654 /* check again */ 1655 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1656 } while (offlined_pages < 0); 1657 1658 pr_info("Offlined Pages %ld\n", offlined_pages); 1659 /* Ok, all of our target is isolated. 1660 We cannot do rollback at this point. */ 1661 offline_isolated_pages(start_pfn, end_pfn); 1662 1663 /* 1664 * Onlining will reset pagetype flags and makes migrate type 1665 * MOVABLE, so just need to decrease the number of isolated 1666 * pageblocks zone counter here. 1667 */ 1668 spin_lock_irqsave(&zone->lock, flags); 1669 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1670 spin_unlock_irqrestore(&zone->lock, flags); 1671 1672 /* removal success */ 1673 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1674 zone->present_pages -= offlined_pages; 1675 1676 pgdat_resize_lock(zone->zone_pgdat, &flags); 1677 zone->zone_pgdat->node_present_pages -= offlined_pages; 1678 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1679 1680 init_per_zone_wmark_min(); 1681 1682 if (!populated_zone(zone)) { 1683 zone_pcp_reset(zone); 1684 build_all_zonelists(NULL); 1685 } else 1686 zone_pcp_update(zone); 1687 1688 node_states_clear_node(node, &arg); 1689 if (arg.status_change_nid >= 0) { 1690 kswapd_stop(node); 1691 kcompactd_stop(node); 1692 } 1693 1694 vm_total_pages = nr_free_pagecache_pages(); 1695 writeback_set_ratelimit(); 1696 1697 memory_notify(MEM_OFFLINE, &arg); 1698 mem_hotplug_done(); 1699 return 0; 1700 1701 failed_removal_isolated: 1702 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1703 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1704 failed_removal: 1705 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1706 (unsigned long long) start_pfn << PAGE_SHIFT, 1707 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1708 reason); 1709 /* pushback to free area */ 1710 mem_hotplug_done(); 1711 return ret; 1712 } 1713 1714 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1715 { 1716 return __offline_pages(start_pfn, start_pfn + nr_pages); 1717 } 1718 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1719 1720 /** 1721 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1722 * @start_pfn: start pfn of the memory range 1723 * @end_pfn: end pfn of the memory range 1724 * @arg: argument passed to func 1725 * @func: callback for each memory section walked 1726 * 1727 * This function walks through all present mem sections in range 1728 * [start_pfn, end_pfn) and call func on each mem section. 1729 * 1730 * Returns the return value of func. 1731 */ 1732 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1733 void *arg, int (*func)(struct memory_block *, void *)) 1734 { 1735 struct memory_block *mem = NULL; 1736 struct mem_section *section; 1737 unsigned long pfn, section_nr; 1738 int ret; 1739 1740 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1741 section_nr = pfn_to_section_nr(pfn); 1742 if (!present_section_nr(section_nr)) 1743 continue; 1744 1745 section = __nr_to_section(section_nr); 1746 /* same memblock? */ 1747 if (mem) 1748 if ((section_nr >= mem->start_section_nr) && 1749 (section_nr <= mem->end_section_nr)) 1750 continue; 1751 1752 mem = find_memory_block_hinted(section, mem); 1753 if (!mem) 1754 continue; 1755 1756 ret = func(mem, arg); 1757 if (ret) { 1758 kobject_put(&mem->dev.kobj); 1759 return ret; 1760 } 1761 } 1762 1763 if (mem) 1764 kobject_put(&mem->dev.kobj); 1765 1766 return 0; 1767 } 1768 1769 #ifdef CONFIG_MEMORY_HOTREMOVE 1770 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1771 { 1772 int ret = !is_memblock_offlined(mem); 1773 1774 if (unlikely(ret)) { 1775 phys_addr_t beginpa, endpa; 1776 1777 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1778 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1779 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1780 &beginpa, &endpa); 1781 } 1782 1783 return ret; 1784 } 1785 1786 static int check_cpu_on_node(pg_data_t *pgdat) 1787 { 1788 int cpu; 1789 1790 for_each_present_cpu(cpu) { 1791 if (cpu_to_node(cpu) == pgdat->node_id) 1792 /* 1793 * the cpu on this node isn't removed, and we can't 1794 * offline this node. 1795 */ 1796 return -EBUSY; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * try_offline_node 1804 * @nid: the node ID 1805 * 1806 * Offline a node if all memory sections and cpus of the node are removed. 1807 * 1808 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1809 * and online/offline operations before this call. 1810 */ 1811 void try_offline_node(int nid) 1812 { 1813 pg_data_t *pgdat = NODE_DATA(nid); 1814 unsigned long start_pfn = pgdat->node_start_pfn; 1815 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1816 unsigned long pfn; 1817 1818 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1819 unsigned long section_nr = pfn_to_section_nr(pfn); 1820 1821 if (!present_section_nr(section_nr)) 1822 continue; 1823 1824 if (pfn_to_nid(pfn) != nid) 1825 continue; 1826 1827 /* 1828 * some memory sections of this node are not removed, and we 1829 * can't offline node now. 1830 */ 1831 return; 1832 } 1833 1834 if (check_cpu_on_node(pgdat)) 1835 return; 1836 1837 /* 1838 * all memory/cpu of this node are removed, we can offline this 1839 * node now. 1840 */ 1841 node_set_offline(nid); 1842 unregister_one_node(nid); 1843 } 1844 EXPORT_SYMBOL(try_offline_node); 1845 1846 /** 1847 * remove_memory 1848 * @nid: the node ID 1849 * @start: physical address of the region to remove 1850 * @size: size of the region to remove 1851 * 1852 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1853 * and online/offline operations before this call, as required by 1854 * try_offline_node(). 1855 */ 1856 void __ref __remove_memory(int nid, u64 start, u64 size) 1857 { 1858 int ret; 1859 1860 BUG_ON(check_hotplug_memory_range(start, size)); 1861 1862 mem_hotplug_begin(); 1863 1864 /* 1865 * All memory blocks must be offlined before removing memory. Check 1866 * whether all memory blocks in question are offline and trigger a BUG() 1867 * if this is not the case. 1868 */ 1869 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1870 check_memblock_offlined_cb); 1871 if (ret) 1872 BUG(); 1873 1874 /* remove memmap entry */ 1875 firmware_map_remove(start, start + size, "System RAM"); 1876 memblock_free(start, size); 1877 memblock_remove(start, size); 1878 1879 arch_remove_memory(nid, start, size, NULL); 1880 1881 try_offline_node(nid); 1882 1883 mem_hotplug_done(); 1884 } 1885 1886 void remove_memory(int nid, u64 start, u64 size) 1887 { 1888 lock_device_hotplug(); 1889 __remove_memory(nid, start, size); 1890 unlock_device_hotplug(); 1891 } 1892 EXPORT_SYMBOL_GPL(remove_memory); 1893 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1894