xref: /openbmc/linux/mm/memory_hotplug.c (revision 5214cae7)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 #include <linux/compaction.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * online_page_callback contains pointer to current page onlining function.
44  * Initially it is generic_online_page(). If it is required it could be
45  * changed by calling set_online_page_callback() for callback registration
46  * and restore_online_page_callback() for generic callback restore.
47  */
48 
49 static void generic_online_page(struct page *page);
50 
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53 
54 /* The same as the cpu_hotplug lock, but for memory hotplug. */
55 static struct {
56 	struct task_struct *active_writer;
57 	struct mutex lock; /* Synchronizes accesses to refcount, */
58 	/*
59 	 * Also blocks the new readers during
60 	 * an ongoing mem hotplug operation.
61 	 */
62 	int refcount;
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 	struct lockdep_map dep_map;
66 #endif
67 } mem_hotplug = {
68 	.active_writer = NULL,
69 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 	.refcount = 0,
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 	.dep_map = {.name = "mem_hotplug.lock" },
73 #endif
74 };
75 
76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
79 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
80 
81 bool memhp_auto_online;
82 EXPORT_SYMBOL_GPL(memhp_auto_online);
83 
84 void get_online_mems(void)
85 {
86 	might_sleep();
87 	if (mem_hotplug.active_writer == current)
88 		return;
89 	memhp_lock_acquire_read();
90 	mutex_lock(&mem_hotplug.lock);
91 	mem_hotplug.refcount++;
92 	mutex_unlock(&mem_hotplug.lock);
93 
94 }
95 
96 void put_online_mems(void)
97 {
98 	if (mem_hotplug.active_writer == current)
99 		return;
100 	mutex_lock(&mem_hotplug.lock);
101 
102 	if (WARN_ON(!mem_hotplug.refcount))
103 		mem_hotplug.refcount++; /* try to fix things up */
104 
105 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
106 		wake_up_process(mem_hotplug.active_writer);
107 	mutex_unlock(&mem_hotplug.lock);
108 	memhp_lock_release();
109 
110 }
111 
112 void mem_hotplug_begin(void)
113 {
114 	mem_hotplug.active_writer = current;
115 
116 	memhp_lock_acquire();
117 	for (;;) {
118 		mutex_lock(&mem_hotplug.lock);
119 		if (likely(!mem_hotplug.refcount))
120 			break;
121 		__set_current_state(TASK_UNINTERRUPTIBLE);
122 		mutex_unlock(&mem_hotplug.lock);
123 		schedule();
124 	}
125 }
126 
127 void mem_hotplug_done(void)
128 {
129 	mem_hotplug.active_writer = NULL;
130 	mutex_unlock(&mem_hotplug.lock);
131 	memhp_lock_release();
132 }
133 
134 /* add this memory to iomem resource */
135 static struct resource *register_memory_resource(u64 start, u64 size)
136 {
137 	struct resource *res;
138 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
139 	if (!res)
140 		return ERR_PTR(-ENOMEM);
141 
142 	res->name = "System RAM";
143 	res->start = start;
144 	res->end = start + size - 1;
145 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
146 	if (request_resource(&iomem_resource, res) < 0) {
147 		pr_debug("System RAM resource %pR cannot be added\n", res);
148 		kfree(res);
149 		return ERR_PTR(-EEXIST);
150 	}
151 	return res;
152 }
153 
154 static void release_memory_resource(struct resource *res)
155 {
156 	if (!res)
157 		return;
158 	release_resource(res);
159 	kfree(res);
160 	return;
161 }
162 
163 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
164 void get_page_bootmem(unsigned long info,  struct page *page,
165 		      unsigned long type)
166 {
167 	page->lru.next = (struct list_head *) type;
168 	SetPagePrivate(page);
169 	set_page_private(page, info);
170 	page_ref_inc(page);
171 }
172 
173 void put_page_bootmem(struct page *page)
174 {
175 	unsigned long type;
176 
177 	type = (unsigned long) page->lru.next;
178 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
179 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
180 
181 	if (page_ref_dec_return(page) == 1) {
182 		ClearPagePrivate(page);
183 		set_page_private(page, 0);
184 		INIT_LIST_HEAD(&page->lru);
185 		free_reserved_page(page);
186 	}
187 }
188 
189 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
190 #ifndef CONFIG_SPARSEMEM_VMEMMAP
191 static void register_page_bootmem_info_section(unsigned long start_pfn)
192 {
193 	unsigned long *usemap, mapsize, section_nr, i;
194 	struct mem_section *ms;
195 	struct page *page, *memmap;
196 
197 	section_nr = pfn_to_section_nr(start_pfn);
198 	ms = __nr_to_section(section_nr);
199 
200 	/* Get section's memmap address */
201 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
202 
203 	/*
204 	 * Get page for the memmap's phys address
205 	 * XXX: need more consideration for sparse_vmemmap...
206 	 */
207 	page = virt_to_page(memmap);
208 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
209 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
210 
211 	/* remember memmap's page */
212 	for (i = 0; i < mapsize; i++, page++)
213 		get_page_bootmem(section_nr, page, SECTION_INFO);
214 
215 	usemap = __nr_to_section(section_nr)->pageblock_flags;
216 	page = virt_to_page(usemap);
217 
218 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
219 
220 	for (i = 0; i < mapsize; i++, page++)
221 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 
223 }
224 #else /* CONFIG_SPARSEMEM_VMEMMAP */
225 static void register_page_bootmem_info_section(unsigned long start_pfn)
226 {
227 	unsigned long *usemap, mapsize, section_nr, i;
228 	struct mem_section *ms;
229 	struct page *page, *memmap;
230 
231 	if (!pfn_valid(start_pfn))
232 		return;
233 
234 	section_nr = pfn_to_section_nr(start_pfn);
235 	ms = __nr_to_section(section_nr);
236 
237 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
238 
239 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
240 
241 	usemap = __nr_to_section(section_nr)->pageblock_flags;
242 	page = virt_to_page(usemap);
243 
244 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
245 
246 	for (i = 0; i < mapsize; i++, page++)
247 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
248 }
249 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
250 
251 void register_page_bootmem_info_node(struct pglist_data *pgdat)
252 {
253 	unsigned long i, pfn, end_pfn, nr_pages;
254 	int node = pgdat->node_id;
255 	struct page *page;
256 	struct zone *zone;
257 
258 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
259 	page = virt_to_page(pgdat);
260 
261 	for (i = 0; i < nr_pages; i++, page++)
262 		get_page_bootmem(node, page, NODE_INFO);
263 
264 	zone = &pgdat->node_zones[0];
265 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
266 		if (zone_is_initialized(zone)) {
267 			nr_pages = zone->wait_table_hash_nr_entries
268 				* sizeof(wait_queue_head_t);
269 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
270 			page = virt_to_page(zone->wait_table);
271 
272 			for (i = 0; i < nr_pages; i++, page++)
273 				get_page_bootmem(node, page, NODE_INFO);
274 		}
275 	}
276 
277 	pfn = pgdat->node_start_pfn;
278 	end_pfn = pgdat_end_pfn(pgdat);
279 
280 	/* register section info */
281 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
282 		/*
283 		 * Some platforms can assign the same pfn to multiple nodes - on
284 		 * node0 as well as nodeN.  To avoid registering a pfn against
285 		 * multiple nodes we check that this pfn does not already
286 		 * reside in some other nodes.
287 		 */
288 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
289 			register_page_bootmem_info_section(pfn);
290 	}
291 }
292 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
293 
294 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
295 				     unsigned long end_pfn)
296 {
297 	unsigned long old_zone_end_pfn;
298 
299 	zone_span_writelock(zone);
300 
301 	old_zone_end_pfn = zone_end_pfn(zone);
302 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
303 		zone->zone_start_pfn = start_pfn;
304 
305 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
306 				zone->zone_start_pfn;
307 
308 	zone_span_writeunlock(zone);
309 }
310 
311 static void resize_zone(struct zone *zone, unsigned long start_pfn,
312 		unsigned long end_pfn)
313 {
314 	zone_span_writelock(zone);
315 
316 	if (end_pfn - start_pfn) {
317 		zone->zone_start_pfn = start_pfn;
318 		zone->spanned_pages = end_pfn - start_pfn;
319 	} else {
320 		/*
321 		 * make it consist as free_area_init_core(),
322 		 * if spanned_pages = 0, then keep start_pfn = 0
323 		 */
324 		zone->zone_start_pfn = 0;
325 		zone->spanned_pages = 0;
326 	}
327 
328 	zone_span_writeunlock(zone);
329 }
330 
331 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
332 		unsigned long end_pfn)
333 {
334 	enum zone_type zid = zone_idx(zone);
335 	int nid = zone->zone_pgdat->node_id;
336 	unsigned long pfn;
337 
338 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
339 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
340 }
341 
342 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
343  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
344 static int __ref ensure_zone_is_initialized(struct zone *zone,
345 			unsigned long start_pfn, unsigned long num_pages)
346 {
347 	if (!zone_is_initialized(zone))
348 		return init_currently_empty_zone(zone, start_pfn, num_pages);
349 
350 	return 0;
351 }
352 
353 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
354 		unsigned long start_pfn, unsigned long end_pfn)
355 {
356 	int ret;
357 	unsigned long flags;
358 	unsigned long z1_start_pfn;
359 
360 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
361 	if (ret)
362 		return ret;
363 
364 	pgdat_resize_lock(z1->zone_pgdat, &flags);
365 
366 	/* can't move pfns which are higher than @z2 */
367 	if (end_pfn > zone_end_pfn(z2))
368 		goto out_fail;
369 	/* the move out part must be at the left most of @z2 */
370 	if (start_pfn > z2->zone_start_pfn)
371 		goto out_fail;
372 	/* must included/overlap */
373 	if (end_pfn <= z2->zone_start_pfn)
374 		goto out_fail;
375 
376 	/* use start_pfn for z1's start_pfn if z1 is empty */
377 	if (!zone_is_empty(z1))
378 		z1_start_pfn = z1->zone_start_pfn;
379 	else
380 		z1_start_pfn = start_pfn;
381 
382 	resize_zone(z1, z1_start_pfn, end_pfn);
383 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
384 
385 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
386 
387 	fix_zone_id(z1, start_pfn, end_pfn);
388 
389 	return 0;
390 out_fail:
391 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
392 	return -1;
393 }
394 
395 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
396 		unsigned long start_pfn, unsigned long end_pfn)
397 {
398 	int ret;
399 	unsigned long flags;
400 	unsigned long z2_end_pfn;
401 
402 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
403 	if (ret)
404 		return ret;
405 
406 	pgdat_resize_lock(z1->zone_pgdat, &flags);
407 
408 	/* can't move pfns which are lower than @z1 */
409 	if (z1->zone_start_pfn > start_pfn)
410 		goto out_fail;
411 	/* the move out part mast at the right most of @z1 */
412 	if (zone_end_pfn(z1) >  end_pfn)
413 		goto out_fail;
414 	/* must included/overlap */
415 	if (start_pfn >= zone_end_pfn(z1))
416 		goto out_fail;
417 
418 	/* use end_pfn for z2's end_pfn if z2 is empty */
419 	if (!zone_is_empty(z2))
420 		z2_end_pfn = zone_end_pfn(z2);
421 	else
422 		z2_end_pfn = end_pfn;
423 
424 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
425 	resize_zone(z2, start_pfn, z2_end_pfn);
426 
427 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
428 
429 	fix_zone_id(z2, start_pfn, end_pfn);
430 
431 	return 0;
432 out_fail:
433 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
434 	return -1;
435 }
436 
437 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
438 				      unsigned long end_pfn)
439 {
440 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
441 
442 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
443 		pgdat->node_start_pfn = start_pfn;
444 
445 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
446 					pgdat->node_start_pfn;
447 }
448 
449 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
450 {
451 	struct pglist_data *pgdat = zone->zone_pgdat;
452 	int nr_pages = PAGES_PER_SECTION;
453 	int nid = pgdat->node_id;
454 	int zone_type;
455 	unsigned long flags, pfn;
456 	int ret;
457 
458 	zone_type = zone - pgdat->node_zones;
459 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
460 	if (ret)
461 		return ret;
462 
463 	pgdat_resize_lock(zone->zone_pgdat, &flags);
464 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
465 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
466 			phys_start_pfn + nr_pages);
467 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
468 	memmap_init_zone(nr_pages, nid, zone_type,
469 			 phys_start_pfn, MEMMAP_HOTPLUG);
470 
471 	/* online_page_range is called later and expects pages reserved */
472 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
473 		if (!pfn_valid(pfn))
474 			continue;
475 
476 		SetPageReserved(pfn_to_page(pfn));
477 	}
478 	return 0;
479 }
480 
481 static int __meminit __add_section(int nid, struct zone *zone,
482 					unsigned long phys_start_pfn)
483 {
484 	int ret;
485 
486 	if (pfn_valid(phys_start_pfn))
487 		return -EEXIST;
488 
489 	ret = sparse_add_one_section(zone, phys_start_pfn);
490 
491 	if (ret < 0)
492 		return ret;
493 
494 	ret = __add_zone(zone, phys_start_pfn);
495 
496 	if (ret < 0)
497 		return ret;
498 
499 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
500 }
501 
502 /*
503  * Reasonably generic function for adding memory.  It is
504  * expected that archs that support memory hotplug will
505  * call this function after deciding the zone to which to
506  * add the new pages.
507  */
508 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
509 			unsigned long nr_pages)
510 {
511 	unsigned long i;
512 	int err = 0;
513 	int start_sec, end_sec;
514 	struct vmem_altmap *altmap;
515 
516 	clear_zone_contiguous(zone);
517 
518 	/* during initialize mem_map, align hot-added range to section */
519 	start_sec = pfn_to_section_nr(phys_start_pfn);
520 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
521 
522 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
523 	if (altmap) {
524 		/*
525 		 * Validate altmap is within bounds of the total request
526 		 */
527 		if (altmap->base_pfn != phys_start_pfn
528 				|| vmem_altmap_offset(altmap) > nr_pages) {
529 			pr_warn_once("memory add fail, invalid altmap\n");
530 			err = -EINVAL;
531 			goto out;
532 		}
533 		altmap->alloc = 0;
534 	}
535 
536 	for (i = start_sec; i <= end_sec; i++) {
537 		err = __add_section(nid, zone, section_nr_to_pfn(i));
538 
539 		/*
540 		 * EEXIST is finally dealt with by ioresource collision
541 		 * check. see add_memory() => register_memory_resource()
542 		 * Warning will be printed if there is collision.
543 		 */
544 		if (err && (err != -EEXIST))
545 			break;
546 		err = 0;
547 	}
548 	vmemmap_populate_print_last();
549 out:
550 	set_zone_contiguous(zone);
551 	return err;
552 }
553 EXPORT_SYMBOL_GPL(__add_pages);
554 
555 #ifdef CONFIG_MEMORY_HOTREMOVE
556 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
557 static int find_smallest_section_pfn(int nid, struct zone *zone,
558 				     unsigned long start_pfn,
559 				     unsigned long end_pfn)
560 {
561 	struct mem_section *ms;
562 
563 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
564 		ms = __pfn_to_section(start_pfn);
565 
566 		if (unlikely(!valid_section(ms)))
567 			continue;
568 
569 		if (unlikely(pfn_to_nid(start_pfn) != nid))
570 			continue;
571 
572 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
573 			continue;
574 
575 		return start_pfn;
576 	}
577 
578 	return 0;
579 }
580 
581 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
582 static int find_biggest_section_pfn(int nid, struct zone *zone,
583 				    unsigned long start_pfn,
584 				    unsigned long end_pfn)
585 {
586 	struct mem_section *ms;
587 	unsigned long pfn;
588 
589 	/* pfn is the end pfn of a memory section. */
590 	pfn = end_pfn - 1;
591 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
592 		ms = __pfn_to_section(pfn);
593 
594 		if (unlikely(!valid_section(ms)))
595 			continue;
596 
597 		if (unlikely(pfn_to_nid(pfn) != nid))
598 			continue;
599 
600 		if (zone && zone != page_zone(pfn_to_page(pfn)))
601 			continue;
602 
603 		return pfn;
604 	}
605 
606 	return 0;
607 }
608 
609 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
610 			     unsigned long end_pfn)
611 {
612 	unsigned long zone_start_pfn = zone->zone_start_pfn;
613 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
614 	unsigned long zone_end_pfn = z;
615 	unsigned long pfn;
616 	struct mem_section *ms;
617 	int nid = zone_to_nid(zone);
618 
619 	zone_span_writelock(zone);
620 	if (zone_start_pfn == start_pfn) {
621 		/*
622 		 * If the section is smallest section in the zone, it need
623 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
624 		 * In this case, we find second smallest valid mem_section
625 		 * for shrinking zone.
626 		 */
627 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
628 						zone_end_pfn);
629 		if (pfn) {
630 			zone->zone_start_pfn = pfn;
631 			zone->spanned_pages = zone_end_pfn - pfn;
632 		}
633 	} else if (zone_end_pfn == end_pfn) {
634 		/*
635 		 * If the section is biggest section in the zone, it need
636 		 * shrink zone->spanned_pages.
637 		 * In this case, we find second biggest valid mem_section for
638 		 * shrinking zone.
639 		 */
640 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
641 					       start_pfn);
642 		if (pfn)
643 			zone->spanned_pages = pfn - zone_start_pfn + 1;
644 	}
645 
646 	/*
647 	 * The section is not biggest or smallest mem_section in the zone, it
648 	 * only creates a hole in the zone. So in this case, we need not
649 	 * change the zone. But perhaps, the zone has only hole data. Thus
650 	 * it check the zone has only hole or not.
651 	 */
652 	pfn = zone_start_pfn;
653 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
654 		ms = __pfn_to_section(pfn);
655 
656 		if (unlikely(!valid_section(ms)))
657 			continue;
658 
659 		if (page_zone(pfn_to_page(pfn)) != zone)
660 			continue;
661 
662 		 /* If the section is current section, it continues the loop */
663 		if (start_pfn == pfn)
664 			continue;
665 
666 		/* If we find valid section, we have nothing to do */
667 		zone_span_writeunlock(zone);
668 		return;
669 	}
670 
671 	/* The zone has no valid section */
672 	zone->zone_start_pfn = 0;
673 	zone->spanned_pages = 0;
674 	zone_span_writeunlock(zone);
675 }
676 
677 static void shrink_pgdat_span(struct pglist_data *pgdat,
678 			      unsigned long start_pfn, unsigned long end_pfn)
679 {
680 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
681 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
682 	unsigned long pgdat_end_pfn = p;
683 	unsigned long pfn;
684 	struct mem_section *ms;
685 	int nid = pgdat->node_id;
686 
687 	if (pgdat_start_pfn == start_pfn) {
688 		/*
689 		 * If the section is smallest section in the pgdat, it need
690 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
691 		 * In this case, we find second smallest valid mem_section
692 		 * for shrinking zone.
693 		 */
694 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
695 						pgdat_end_pfn);
696 		if (pfn) {
697 			pgdat->node_start_pfn = pfn;
698 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
699 		}
700 	} else if (pgdat_end_pfn == end_pfn) {
701 		/*
702 		 * If the section is biggest section in the pgdat, it need
703 		 * shrink pgdat->node_spanned_pages.
704 		 * In this case, we find second biggest valid mem_section for
705 		 * shrinking zone.
706 		 */
707 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
708 					       start_pfn);
709 		if (pfn)
710 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
711 	}
712 
713 	/*
714 	 * If the section is not biggest or smallest mem_section in the pgdat,
715 	 * it only creates a hole in the pgdat. So in this case, we need not
716 	 * change the pgdat.
717 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
718 	 * has only hole or not.
719 	 */
720 	pfn = pgdat_start_pfn;
721 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
722 		ms = __pfn_to_section(pfn);
723 
724 		if (unlikely(!valid_section(ms)))
725 			continue;
726 
727 		if (pfn_to_nid(pfn) != nid)
728 			continue;
729 
730 		 /* If the section is current section, it continues the loop */
731 		if (start_pfn == pfn)
732 			continue;
733 
734 		/* If we find valid section, we have nothing to do */
735 		return;
736 	}
737 
738 	/* The pgdat has no valid section */
739 	pgdat->node_start_pfn = 0;
740 	pgdat->node_spanned_pages = 0;
741 }
742 
743 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
744 {
745 	struct pglist_data *pgdat = zone->zone_pgdat;
746 	int nr_pages = PAGES_PER_SECTION;
747 	int zone_type;
748 	unsigned long flags;
749 
750 	zone_type = zone - pgdat->node_zones;
751 
752 	pgdat_resize_lock(zone->zone_pgdat, &flags);
753 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
754 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
755 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
756 }
757 
758 static int __remove_section(struct zone *zone, struct mem_section *ms,
759 		unsigned long map_offset)
760 {
761 	unsigned long start_pfn;
762 	int scn_nr;
763 	int ret = -EINVAL;
764 
765 	if (!valid_section(ms))
766 		return ret;
767 
768 	ret = unregister_memory_section(ms);
769 	if (ret)
770 		return ret;
771 
772 	scn_nr = __section_nr(ms);
773 	start_pfn = section_nr_to_pfn(scn_nr);
774 	__remove_zone(zone, start_pfn);
775 
776 	sparse_remove_one_section(zone, ms, map_offset);
777 	return 0;
778 }
779 
780 /**
781  * __remove_pages() - remove sections of pages from a zone
782  * @zone: zone from which pages need to be removed
783  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
784  * @nr_pages: number of pages to remove (must be multiple of section size)
785  *
786  * Generic helper function to remove section mappings and sysfs entries
787  * for the section of the memory we are removing. Caller needs to make
788  * sure that pages are marked reserved and zones are adjust properly by
789  * calling offline_pages().
790  */
791 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
792 		 unsigned long nr_pages)
793 {
794 	unsigned long i;
795 	unsigned long map_offset = 0;
796 	int sections_to_remove, ret = 0;
797 
798 	/* In the ZONE_DEVICE case device driver owns the memory region */
799 	if (is_dev_zone(zone)) {
800 		struct page *page = pfn_to_page(phys_start_pfn);
801 		struct vmem_altmap *altmap;
802 
803 		altmap = to_vmem_altmap((unsigned long) page);
804 		if (altmap)
805 			map_offset = vmem_altmap_offset(altmap);
806 	} else {
807 		resource_size_t start, size;
808 
809 		start = phys_start_pfn << PAGE_SHIFT;
810 		size = nr_pages * PAGE_SIZE;
811 
812 		ret = release_mem_region_adjustable(&iomem_resource, start,
813 					size);
814 		if (ret) {
815 			resource_size_t endres = start + size - 1;
816 
817 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
818 					&start, &endres, ret);
819 		}
820 	}
821 
822 	clear_zone_contiguous(zone);
823 
824 	/*
825 	 * We can only remove entire sections
826 	 */
827 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
828 	BUG_ON(nr_pages % PAGES_PER_SECTION);
829 
830 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
831 	for (i = 0; i < sections_to_remove; i++) {
832 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
833 
834 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
835 		map_offset = 0;
836 		if (ret)
837 			break;
838 	}
839 
840 	set_zone_contiguous(zone);
841 
842 	return ret;
843 }
844 EXPORT_SYMBOL_GPL(__remove_pages);
845 #endif /* CONFIG_MEMORY_HOTREMOVE */
846 
847 int set_online_page_callback(online_page_callback_t callback)
848 {
849 	int rc = -EINVAL;
850 
851 	get_online_mems();
852 	mutex_lock(&online_page_callback_lock);
853 
854 	if (online_page_callback == generic_online_page) {
855 		online_page_callback = callback;
856 		rc = 0;
857 	}
858 
859 	mutex_unlock(&online_page_callback_lock);
860 	put_online_mems();
861 
862 	return rc;
863 }
864 EXPORT_SYMBOL_GPL(set_online_page_callback);
865 
866 int restore_online_page_callback(online_page_callback_t callback)
867 {
868 	int rc = -EINVAL;
869 
870 	get_online_mems();
871 	mutex_lock(&online_page_callback_lock);
872 
873 	if (online_page_callback == callback) {
874 		online_page_callback = generic_online_page;
875 		rc = 0;
876 	}
877 
878 	mutex_unlock(&online_page_callback_lock);
879 	put_online_mems();
880 
881 	return rc;
882 }
883 EXPORT_SYMBOL_GPL(restore_online_page_callback);
884 
885 void __online_page_set_limits(struct page *page)
886 {
887 }
888 EXPORT_SYMBOL_GPL(__online_page_set_limits);
889 
890 void __online_page_increment_counters(struct page *page)
891 {
892 	adjust_managed_page_count(page, 1);
893 }
894 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
895 
896 void __online_page_free(struct page *page)
897 {
898 	__free_reserved_page(page);
899 }
900 EXPORT_SYMBOL_GPL(__online_page_free);
901 
902 static void generic_online_page(struct page *page)
903 {
904 	__online_page_set_limits(page);
905 	__online_page_increment_counters(page);
906 	__online_page_free(page);
907 }
908 
909 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
910 			void *arg)
911 {
912 	unsigned long i;
913 	unsigned long onlined_pages = *(unsigned long *)arg;
914 	struct page *page;
915 	if (PageReserved(pfn_to_page(start_pfn)))
916 		for (i = 0; i < nr_pages; i++) {
917 			page = pfn_to_page(start_pfn + i);
918 			(*online_page_callback)(page);
919 			onlined_pages++;
920 		}
921 	*(unsigned long *)arg = onlined_pages;
922 	return 0;
923 }
924 
925 #ifdef CONFIG_MOVABLE_NODE
926 /*
927  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
928  * normal memory.
929  */
930 static bool can_online_high_movable(struct zone *zone)
931 {
932 	return true;
933 }
934 #else /* CONFIG_MOVABLE_NODE */
935 /* ensure every online node has NORMAL memory */
936 static bool can_online_high_movable(struct zone *zone)
937 {
938 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
939 }
940 #endif /* CONFIG_MOVABLE_NODE */
941 
942 /* check which state of node_states will be changed when online memory */
943 static void node_states_check_changes_online(unsigned long nr_pages,
944 	struct zone *zone, struct memory_notify *arg)
945 {
946 	int nid = zone_to_nid(zone);
947 	enum zone_type zone_last = ZONE_NORMAL;
948 
949 	/*
950 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
951 	 * contains nodes which have zones of 0...ZONE_NORMAL,
952 	 * set zone_last to ZONE_NORMAL.
953 	 *
954 	 * If we don't have HIGHMEM nor movable node,
955 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
956 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
957 	 */
958 	if (N_MEMORY == N_NORMAL_MEMORY)
959 		zone_last = ZONE_MOVABLE;
960 
961 	/*
962 	 * if the memory to be online is in a zone of 0...zone_last, and
963 	 * the zones of 0...zone_last don't have memory before online, we will
964 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
965 	 * the memory is online.
966 	 */
967 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
968 		arg->status_change_nid_normal = nid;
969 	else
970 		arg->status_change_nid_normal = -1;
971 
972 #ifdef CONFIG_HIGHMEM
973 	/*
974 	 * If we have movable node, node_states[N_HIGH_MEMORY]
975 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
976 	 * set zone_last to ZONE_HIGHMEM.
977 	 *
978 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
979 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
980 	 * set zone_last to ZONE_MOVABLE.
981 	 */
982 	zone_last = ZONE_HIGHMEM;
983 	if (N_MEMORY == N_HIGH_MEMORY)
984 		zone_last = ZONE_MOVABLE;
985 
986 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
987 		arg->status_change_nid_high = nid;
988 	else
989 		arg->status_change_nid_high = -1;
990 #else
991 	arg->status_change_nid_high = arg->status_change_nid_normal;
992 #endif
993 
994 	/*
995 	 * if the node don't have memory befor online, we will need to
996 	 * set the node to node_states[N_MEMORY] after the memory
997 	 * is online.
998 	 */
999 	if (!node_state(nid, N_MEMORY))
1000 		arg->status_change_nid = nid;
1001 	else
1002 		arg->status_change_nid = -1;
1003 }
1004 
1005 static void node_states_set_node(int node, struct memory_notify *arg)
1006 {
1007 	if (arg->status_change_nid_normal >= 0)
1008 		node_set_state(node, N_NORMAL_MEMORY);
1009 
1010 	if (arg->status_change_nid_high >= 0)
1011 		node_set_state(node, N_HIGH_MEMORY);
1012 
1013 	node_set_state(node, N_MEMORY);
1014 }
1015 
1016 
1017 /* Must be protected by mem_hotplug_begin() */
1018 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1019 {
1020 	unsigned long flags;
1021 	unsigned long onlined_pages = 0;
1022 	struct zone *zone;
1023 	int need_zonelists_rebuild = 0;
1024 	int nid;
1025 	int ret;
1026 	struct memory_notify arg;
1027 
1028 	/*
1029 	 * This doesn't need a lock to do pfn_to_page().
1030 	 * The section can't be removed here because of the
1031 	 * memory_block->state_mutex.
1032 	 */
1033 	zone = page_zone(pfn_to_page(pfn));
1034 
1035 	if ((zone_idx(zone) > ZONE_NORMAL ||
1036 	    online_type == MMOP_ONLINE_MOVABLE) &&
1037 	    !can_online_high_movable(zone))
1038 		return -EINVAL;
1039 
1040 	if (online_type == MMOP_ONLINE_KERNEL &&
1041 	    zone_idx(zone) == ZONE_MOVABLE) {
1042 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1043 			return -EINVAL;
1044 	}
1045 	if (online_type == MMOP_ONLINE_MOVABLE &&
1046 	    zone_idx(zone) == ZONE_MOVABLE - 1) {
1047 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1048 			return -EINVAL;
1049 	}
1050 
1051 	/* Previous code may changed the zone of the pfn range */
1052 	zone = page_zone(pfn_to_page(pfn));
1053 
1054 	arg.start_pfn = pfn;
1055 	arg.nr_pages = nr_pages;
1056 	node_states_check_changes_online(nr_pages, zone, &arg);
1057 
1058 	nid = zone_to_nid(zone);
1059 
1060 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1061 	ret = notifier_to_errno(ret);
1062 	if (ret)
1063 		goto failed_addition;
1064 
1065 	/*
1066 	 * If this zone is not populated, then it is not in zonelist.
1067 	 * This means the page allocator ignores this zone.
1068 	 * So, zonelist must be updated after online.
1069 	 */
1070 	mutex_lock(&zonelists_mutex);
1071 	if (!populated_zone(zone)) {
1072 		need_zonelists_rebuild = 1;
1073 		build_all_zonelists(NULL, zone);
1074 	}
1075 
1076 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1077 		online_pages_range);
1078 	if (ret) {
1079 		if (need_zonelists_rebuild)
1080 			zone_pcp_reset(zone);
1081 		mutex_unlock(&zonelists_mutex);
1082 		goto failed_addition;
1083 	}
1084 
1085 	zone->present_pages += onlined_pages;
1086 
1087 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1088 	zone->zone_pgdat->node_present_pages += onlined_pages;
1089 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1090 
1091 	if (onlined_pages) {
1092 		node_states_set_node(nid, &arg);
1093 		if (need_zonelists_rebuild)
1094 			build_all_zonelists(NULL, NULL);
1095 		else
1096 			zone_pcp_update(zone);
1097 	}
1098 
1099 	mutex_unlock(&zonelists_mutex);
1100 
1101 	init_per_zone_wmark_min();
1102 
1103 	if (onlined_pages) {
1104 		kswapd_run(nid);
1105 		kcompactd_run(nid);
1106 	}
1107 
1108 	vm_total_pages = nr_free_pagecache_pages();
1109 
1110 	writeback_set_ratelimit();
1111 
1112 	if (onlined_pages)
1113 		memory_notify(MEM_ONLINE, &arg);
1114 	return 0;
1115 
1116 failed_addition:
1117 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1118 		 (unsigned long long) pfn << PAGE_SHIFT,
1119 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1120 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1121 	return ret;
1122 }
1123 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1124 
1125 static void reset_node_present_pages(pg_data_t *pgdat)
1126 {
1127 	struct zone *z;
1128 
1129 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1130 		z->present_pages = 0;
1131 
1132 	pgdat->node_present_pages = 0;
1133 }
1134 
1135 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1136 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1137 {
1138 	struct pglist_data *pgdat;
1139 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1140 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1141 	unsigned long start_pfn = PFN_DOWN(start);
1142 
1143 	pgdat = NODE_DATA(nid);
1144 	if (!pgdat) {
1145 		pgdat = arch_alloc_nodedata(nid);
1146 		if (!pgdat)
1147 			return NULL;
1148 
1149 		arch_refresh_nodedata(nid, pgdat);
1150 	} else {
1151 		/* Reset the nr_zones and classzone_idx to 0 before reuse */
1152 		pgdat->nr_zones = 0;
1153 		pgdat->classzone_idx = 0;
1154 	}
1155 
1156 	/* we can use NODE_DATA(nid) from here */
1157 
1158 	/* init node's zones as empty zones, we don't have any present pages.*/
1159 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1160 
1161 	/*
1162 	 * The node we allocated has no zone fallback lists. For avoiding
1163 	 * to access not-initialized zonelist, build here.
1164 	 */
1165 	mutex_lock(&zonelists_mutex);
1166 	build_all_zonelists(pgdat, NULL);
1167 	mutex_unlock(&zonelists_mutex);
1168 
1169 	/*
1170 	 * zone->managed_pages is set to an approximate value in
1171 	 * free_area_init_core(), which will cause
1172 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1173 	 * So reset it to 0 before any memory is onlined.
1174 	 */
1175 	reset_node_managed_pages(pgdat);
1176 
1177 	/*
1178 	 * When memory is hot-added, all the memory is in offline state. So
1179 	 * clear all zones' present_pages because they will be updated in
1180 	 * online_pages() and offline_pages().
1181 	 */
1182 	reset_node_present_pages(pgdat);
1183 
1184 	return pgdat;
1185 }
1186 
1187 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1188 {
1189 	arch_refresh_nodedata(nid, NULL);
1190 	arch_free_nodedata(pgdat);
1191 	return;
1192 }
1193 
1194 
1195 /**
1196  * try_online_node - online a node if offlined
1197  *
1198  * called by cpu_up() to online a node without onlined memory.
1199  */
1200 int try_online_node(int nid)
1201 {
1202 	pg_data_t	*pgdat;
1203 	int	ret;
1204 
1205 	if (node_online(nid))
1206 		return 0;
1207 
1208 	mem_hotplug_begin();
1209 	pgdat = hotadd_new_pgdat(nid, 0);
1210 	if (!pgdat) {
1211 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1212 		ret = -ENOMEM;
1213 		goto out;
1214 	}
1215 	node_set_online(nid);
1216 	ret = register_one_node(nid);
1217 	BUG_ON(ret);
1218 
1219 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1220 		mutex_lock(&zonelists_mutex);
1221 		build_all_zonelists(NULL, NULL);
1222 		mutex_unlock(&zonelists_mutex);
1223 	}
1224 
1225 out:
1226 	mem_hotplug_done();
1227 	return ret;
1228 }
1229 
1230 static int check_hotplug_memory_range(u64 start, u64 size)
1231 {
1232 	u64 start_pfn = PFN_DOWN(start);
1233 	u64 nr_pages = size >> PAGE_SHIFT;
1234 
1235 	/* Memory range must be aligned with section */
1236 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1237 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1238 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1239 				(unsigned long long)start,
1240 				(unsigned long long)size);
1241 		return -EINVAL;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * If movable zone has already been setup, newly added memory should be check.
1249  * If its address is higher than movable zone, it should be added as movable.
1250  * Without this check, movable zone may overlap with other zone.
1251  */
1252 static int should_add_memory_movable(int nid, u64 start, u64 size)
1253 {
1254 	unsigned long start_pfn = start >> PAGE_SHIFT;
1255 	pg_data_t *pgdat = NODE_DATA(nid);
1256 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1257 
1258 	if (zone_is_empty(movable_zone))
1259 		return 0;
1260 
1261 	if (movable_zone->zone_start_pfn <= start_pfn)
1262 		return 1;
1263 
1264 	return 0;
1265 }
1266 
1267 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1268 		bool for_device)
1269 {
1270 #ifdef CONFIG_ZONE_DEVICE
1271 	if (for_device)
1272 		return ZONE_DEVICE;
1273 #endif
1274 	if (should_add_memory_movable(nid, start, size))
1275 		return ZONE_MOVABLE;
1276 
1277 	return zone_default;
1278 }
1279 
1280 static int online_memory_block(struct memory_block *mem, void *arg)
1281 {
1282 	return memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
1283 }
1284 
1285 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1286 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1287 {
1288 	u64 start, size;
1289 	pg_data_t *pgdat = NULL;
1290 	bool new_pgdat;
1291 	bool new_node;
1292 	int ret;
1293 
1294 	start = res->start;
1295 	size = resource_size(res);
1296 
1297 	ret = check_hotplug_memory_range(start, size);
1298 	if (ret)
1299 		return ret;
1300 
1301 	{	/* Stupid hack to suppress address-never-null warning */
1302 		void *p = NODE_DATA(nid);
1303 		new_pgdat = !p;
1304 	}
1305 
1306 	mem_hotplug_begin();
1307 
1308 	/*
1309 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1310 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1311 	 * this new range and calculate total pages correctly.  The range will
1312 	 * be removed at hot-remove time.
1313 	 */
1314 	memblock_add_node(start, size, nid);
1315 
1316 	new_node = !node_online(nid);
1317 	if (new_node) {
1318 		pgdat = hotadd_new_pgdat(nid, start);
1319 		ret = -ENOMEM;
1320 		if (!pgdat)
1321 			goto error;
1322 	}
1323 
1324 	/* call arch's memory hotadd */
1325 	ret = arch_add_memory(nid, start, size, false);
1326 
1327 	if (ret < 0)
1328 		goto error;
1329 
1330 	/* we online node here. we can't roll back from here. */
1331 	node_set_online(nid);
1332 
1333 	if (new_node) {
1334 		ret = register_one_node(nid);
1335 		/*
1336 		 * If sysfs file of new node can't create, cpu on the node
1337 		 * can't be hot-added. There is no rollback way now.
1338 		 * So, check by BUG_ON() to catch it reluctantly..
1339 		 */
1340 		BUG_ON(ret);
1341 	}
1342 
1343 	/* create new memmap entry */
1344 	firmware_map_add_hotplug(start, start + size, "System RAM");
1345 
1346 	/* online pages if requested */
1347 	if (online)
1348 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1349 				  NULL, online_memory_block);
1350 
1351 	goto out;
1352 
1353 error:
1354 	/* rollback pgdat allocation and others */
1355 	if (new_pgdat)
1356 		rollback_node_hotadd(nid, pgdat);
1357 	memblock_remove(start, size);
1358 
1359 out:
1360 	mem_hotplug_done();
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL_GPL(add_memory_resource);
1364 
1365 int __ref add_memory(int nid, u64 start, u64 size)
1366 {
1367 	struct resource *res;
1368 	int ret;
1369 
1370 	res = register_memory_resource(start, size);
1371 	if (IS_ERR(res))
1372 		return PTR_ERR(res);
1373 
1374 	ret = add_memory_resource(nid, res, memhp_auto_online);
1375 	if (ret < 0)
1376 		release_memory_resource(res);
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL_GPL(add_memory);
1380 
1381 #ifdef CONFIG_MEMORY_HOTREMOVE
1382 /*
1383  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1384  * set and the size of the free page is given by page_order(). Using this,
1385  * the function determines if the pageblock contains only free pages.
1386  * Due to buddy contraints, a free page at least the size of a pageblock will
1387  * be located at the start of the pageblock
1388  */
1389 static inline int pageblock_free(struct page *page)
1390 {
1391 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1392 }
1393 
1394 /* Return the start of the next active pageblock after a given page */
1395 static struct page *next_active_pageblock(struct page *page)
1396 {
1397 	/* Ensure the starting page is pageblock-aligned */
1398 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1399 
1400 	/* If the entire pageblock is free, move to the end of free page */
1401 	if (pageblock_free(page)) {
1402 		int order;
1403 		/* be careful. we don't have locks, page_order can be changed.*/
1404 		order = page_order(page);
1405 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1406 			return page + (1 << order);
1407 	}
1408 
1409 	return page + pageblock_nr_pages;
1410 }
1411 
1412 /* Checks if this range of memory is likely to be hot-removable. */
1413 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1414 {
1415 	struct page *page = pfn_to_page(start_pfn);
1416 	struct page *end_page = page + nr_pages;
1417 
1418 	/* Check the starting page of each pageblock within the range */
1419 	for (; page < end_page; page = next_active_pageblock(page)) {
1420 		if (!is_pageblock_removable_nolock(page))
1421 			return 0;
1422 		cond_resched();
1423 	}
1424 
1425 	/* All pageblocks in the memory block are likely to be hot-removable */
1426 	return 1;
1427 }
1428 
1429 /*
1430  * Confirm all pages in a range [start, end) is belongs to the same zone.
1431  */
1432 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1433 {
1434 	unsigned long pfn, sec_end_pfn;
1435 	struct zone *zone = NULL;
1436 	struct page *page;
1437 	int i;
1438 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1439 	     pfn < end_pfn;
1440 	     pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1441 		/* Make sure the memory section is present first */
1442 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1443 			continue;
1444 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1445 		     pfn += MAX_ORDER_NR_PAGES) {
1446 			i = 0;
1447 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1448 			while ((i < MAX_ORDER_NR_PAGES) &&
1449 				!pfn_valid_within(pfn + i))
1450 				i++;
1451 			if (i == MAX_ORDER_NR_PAGES)
1452 				continue;
1453 			page = pfn_to_page(pfn + i);
1454 			if (zone && page_zone(page) != zone)
1455 				return 0;
1456 			zone = page_zone(page);
1457 		}
1458 	}
1459 	return 1;
1460 }
1461 
1462 /*
1463  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1464  * and hugepages). We scan pfn because it's much easier than scanning over
1465  * linked list. This function returns the pfn of the first found movable
1466  * page if it's found, otherwise 0.
1467  */
1468 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1469 {
1470 	unsigned long pfn;
1471 	struct page *page;
1472 	for (pfn = start; pfn < end; pfn++) {
1473 		if (pfn_valid(pfn)) {
1474 			page = pfn_to_page(pfn);
1475 			if (PageLRU(page))
1476 				return pfn;
1477 			if (PageHuge(page)) {
1478 				if (page_huge_active(page))
1479 					return pfn;
1480 				else
1481 					pfn = round_up(pfn + 1,
1482 						1 << compound_order(page)) - 1;
1483 			}
1484 		}
1485 	}
1486 	return 0;
1487 }
1488 
1489 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1490 static int
1491 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1492 {
1493 	unsigned long pfn;
1494 	struct page *page;
1495 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1496 	int not_managed = 0;
1497 	int ret = 0;
1498 	LIST_HEAD(source);
1499 
1500 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1501 		if (!pfn_valid(pfn))
1502 			continue;
1503 		page = pfn_to_page(pfn);
1504 
1505 		if (PageHuge(page)) {
1506 			struct page *head = compound_head(page);
1507 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1508 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1509 				ret = -EBUSY;
1510 				break;
1511 			}
1512 			if (isolate_huge_page(page, &source))
1513 				move_pages -= 1 << compound_order(head);
1514 			continue;
1515 		}
1516 
1517 		if (!get_page_unless_zero(page))
1518 			continue;
1519 		/*
1520 		 * We can skip free pages. And we can only deal with pages on
1521 		 * LRU.
1522 		 */
1523 		ret = isolate_lru_page(page);
1524 		if (!ret) { /* Success */
1525 			put_page(page);
1526 			list_add_tail(&page->lru, &source);
1527 			move_pages--;
1528 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1529 					    page_is_file_cache(page));
1530 
1531 		} else {
1532 #ifdef CONFIG_DEBUG_VM
1533 			pr_alert("removing pfn %lx from LRU failed\n", pfn);
1534 			dump_page(page, "failed to remove from LRU");
1535 #endif
1536 			put_page(page);
1537 			/* Because we don't have big zone->lock. we should
1538 			   check this again here. */
1539 			if (page_count(page)) {
1540 				not_managed++;
1541 				ret = -EBUSY;
1542 				break;
1543 			}
1544 		}
1545 	}
1546 	if (!list_empty(&source)) {
1547 		if (not_managed) {
1548 			putback_movable_pages(&source);
1549 			goto out;
1550 		}
1551 
1552 		/*
1553 		 * alloc_migrate_target should be improooooved!!
1554 		 * migrate_pages returns # of failed pages.
1555 		 */
1556 		ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1557 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1558 		if (ret)
1559 			putback_movable_pages(&source);
1560 	}
1561 out:
1562 	return ret;
1563 }
1564 
1565 /*
1566  * remove from free_area[] and mark all as Reserved.
1567  */
1568 static int
1569 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1570 			void *data)
1571 {
1572 	__offline_isolated_pages(start, start + nr_pages);
1573 	return 0;
1574 }
1575 
1576 static void
1577 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1578 {
1579 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1580 				offline_isolated_pages_cb);
1581 }
1582 
1583 /*
1584  * Check all pages in range, recoreded as memory resource, are isolated.
1585  */
1586 static int
1587 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1588 			void *data)
1589 {
1590 	int ret;
1591 	long offlined = *(long *)data;
1592 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1593 	offlined = nr_pages;
1594 	if (!ret)
1595 		*(long *)data += offlined;
1596 	return ret;
1597 }
1598 
1599 static long
1600 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1601 {
1602 	long offlined = 0;
1603 	int ret;
1604 
1605 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1606 			check_pages_isolated_cb);
1607 	if (ret < 0)
1608 		offlined = (long)ret;
1609 	return offlined;
1610 }
1611 
1612 #ifdef CONFIG_MOVABLE_NODE
1613 /*
1614  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1615  * normal memory.
1616  */
1617 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1618 {
1619 	return true;
1620 }
1621 #else /* CONFIG_MOVABLE_NODE */
1622 /* ensure the node has NORMAL memory if it is still online */
1623 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1624 {
1625 	struct pglist_data *pgdat = zone->zone_pgdat;
1626 	unsigned long present_pages = 0;
1627 	enum zone_type zt;
1628 
1629 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1630 		present_pages += pgdat->node_zones[zt].present_pages;
1631 
1632 	if (present_pages > nr_pages)
1633 		return true;
1634 
1635 	present_pages = 0;
1636 	for (; zt <= ZONE_MOVABLE; zt++)
1637 		present_pages += pgdat->node_zones[zt].present_pages;
1638 
1639 	/*
1640 	 * we can't offline the last normal memory until all
1641 	 * higher memory is offlined.
1642 	 */
1643 	return present_pages == 0;
1644 }
1645 #endif /* CONFIG_MOVABLE_NODE */
1646 
1647 static int __init cmdline_parse_movable_node(char *p)
1648 {
1649 #ifdef CONFIG_MOVABLE_NODE
1650 	/*
1651 	 * Memory used by the kernel cannot be hot-removed because Linux
1652 	 * cannot migrate the kernel pages. When memory hotplug is
1653 	 * enabled, we should prevent memblock from allocating memory
1654 	 * for the kernel.
1655 	 *
1656 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1657 	 * SRAT is parsed, we don't know about it.
1658 	 *
1659 	 * The kernel image is loaded into memory at very early time. We
1660 	 * cannot prevent this anyway. So on NUMA system, we set any
1661 	 * node the kernel resides in as un-hotpluggable.
1662 	 *
1663 	 * Since on modern servers, one node could have double-digit
1664 	 * gigabytes memory, we can assume the memory around the kernel
1665 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1666 	 * allocate memory near the kernel image to try the best to keep
1667 	 * the kernel away from hotpluggable memory.
1668 	 */
1669 	memblock_set_bottom_up(true);
1670 	movable_node_enabled = true;
1671 #else
1672 	pr_warn("movable_node option not supported\n");
1673 #endif
1674 	return 0;
1675 }
1676 early_param("movable_node", cmdline_parse_movable_node);
1677 
1678 /* check which state of node_states will be changed when offline memory */
1679 static void node_states_check_changes_offline(unsigned long nr_pages,
1680 		struct zone *zone, struct memory_notify *arg)
1681 {
1682 	struct pglist_data *pgdat = zone->zone_pgdat;
1683 	unsigned long present_pages = 0;
1684 	enum zone_type zt, zone_last = ZONE_NORMAL;
1685 
1686 	/*
1687 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1688 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1689 	 * set zone_last to ZONE_NORMAL.
1690 	 *
1691 	 * If we don't have HIGHMEM nor movable node,
1692 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1693 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1694 	 */
1695 	if (N_MEMORY == N_NORMAL_MEMORY)
1696 		zone_last = ZONE_MOVABLE;
1697 
1698 	/*
1699 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1700 	 * If the memory to be offline is in a zone of 0...zone_last,
1701 	 * and it is the last present memory, 0...zone_last will
1702 	 * become empty after offline , thus we can determind we will
1703 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1704 	 */
1705 	for (zt = 0; zt <= zone_last; zt++)
1706 		present_pages += pgdat->node_zones[zt].present_pages;
1707 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1708 		arg->status_change_nid_normal = zone_to_nid(zone);
1709 	else
1710 		arg->status_change_nid_normal = -1;
1711 
1712 #ifdef CONFIG_HIGHMEM
1713 	/*
1714 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1715 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1716 	 * set zone_last to ZONE_HIGHMEM.
1717 	 *
1718 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1719 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1720 	 * set zone_last to ZONE_MOVABLE.
1721 	 */
1722 	zone_last = ZONE_HIGHMEM;
1723 	if (N_MEMORY == N_HIGH_MEMORY)
1724 		zone_last = ZONE_MOVABLE;
1725 
1726 	for (; zt <= zone_last; zt++)
1727 		present_pages += pgdat->node_zones[zt].present_pages;
1728 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1729 		arg->status_change_nid_high = zone_to_nid(zone);
1730 	else
1731 		arg->status_change_nid_high = -1;
1732 #else
1733 	arg->status_change_nid_high = arg->status_change_nid_normal;
1734 #endif
1735 
1736 	/*
1737 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1738 	 */
1739 	zone_last = ZONE_MOVABLE;
1740 
1741 	/*
1742 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1743 	 * If we try to offline the last present @nr_pages from the node,
1744 	 * we can determind we will need to clear the node from
1745 	 * node_states[N_HIGH_MEMORY].
1746 	 */
1747 	for (; zt <= zone_last; zt++)
1748 		present_pages += pgdat->node_zones[zt].present_pages;
1749 	if (nr_pages >= present_pages)
1750 		arg->status_change_nid = zone_to_nid(zone);
1751 	else
1752 		arg->status_change_nid = -1;
1753 }
1754 
1755 static void node_states_clear_node(int node, struct memory_notify *arg)
1756 {
1757 	if (arg->status_change_nid_normal >= 0)
1758 		node_clear_state(node, N_NORMAL_MEMORY);
1759 
1760 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1761 	    (arg->status_change_nid_high >= 0))
1762 		node_clear_state(node, N_HIGH_MEMORY);
1763 
1764 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1765 	    (arg->status_change_nid >= 0))
1766 		node_clear_state(node, N_MEMORY);
1767 }
1768 
1769 static int __ref __offline_pages(unsigned long start_pfn,
1770 		  unsigned long end_pfn, unsigned long timeout)
1771 {
1772 	unsigned long pfn, nr_pages, expire;
1773 	long offlined_pages;
1774 	int ret, drain, retry_max, node;
1775 	unsigned long flags;
1776 	struct zone *zone;
1777 	struct memory_notify arg;
1778 
1779 	/* at least, alignment against pageblock is necessary */
1780 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1781 		return -EINVAL;
1782 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1783 		return -EINVAL;
1784 	/* This makes hotplug much easier...and readable.
1785 	   we assume this for now. .*/
1786 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1787 		return -EINVAL;
1788 
1789 	zone = page_zone(pfn_to_page(start_pfn));
1790 	node = zone_to_nid(zone);
1791 	nr_pages = end_pfn - start_pfn;
1792 
1793 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1794 		return -EINVAL;
1795 
1796 	/* set above range as isolated */
1797 	ret = start_isolate_page_range(start_pfn, end_pfn,
1798 				       MIGRATE_MOVABLE, true);
1799 	if (ret)
1800 		return ret;
1801 
1802 	arg.start_pfn = start_pfn;
1803 	arg.nr_pages = nr_pages;
1804 	node_states_check_changes_offline(nr_pages, zone, &arg);
1805 
1806 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1807 	ret = notifier_to_errno(ret);
1808 	if (ret)
1809 		goto failed_removal;
1810 
1811 	pfn = start_pfn;
1812 	expire = jiffies + timeout;
1813 	drain = 0;
1814 	retry_max = 5;
1815 repeat:
1816 	/* start memory hot removal */
1817 	ret = -EAGAIN;
1818 	if (time_after(jiffies, expire))
1819 		goto failed_removal;
1820 	ret = -EINTR;
1821 	if (signal_pending(current))
1822 		goto failed_removal;
1823 	ret = 0;
1824 	if (drain) {
1825 		lru_add_drain_all();
1826 		cond_resched();
1827 		drain_all_pages(zone);
1828 	}
1829 
1830 	pfn = scan_movable_pages(start_pfn, end_pfn);
1831 	if (pfn) { /* We have movable pages */
1832 		ret = do_migrate_range(pfn, end_pfn);
1833 		if (!ret) {
1834 			drain = 1;
1835 			goto repeat;
1836 		} else {
1837 			if (ret < 0)
1838 				if (--retry_max == 0)
1839 					goto failed_removal;
1840 			yield();
1841 			drain = 1;
1842 			goto repeat;
1843 		}
1844 	}
1845 	/* drain all zone's lru pagevec, this is asynchronous... */
1846 	lru_add_drain_all();
1847 	yield();
1848 	/* drain pcp pages, this is synchronous. */
1849 	drain_all_pages(zone);
1850 	/*
1851 	 * dissolve free hugepages in the memory block before doing offlining
1852 	 * actually in order to make hugetlbfs's object counting consistent.
1853 	 */
1854 	dissolve_free_huge_pages(start_pfn, end_pfn);
1855 	/* check again */
1856 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1857 	if (offlined_pages < 0) {
1858 		ret = -EBUSY;
1859 		goto failed_removal;
1860 	}
1861 	pr_info("Offlined Pages %ld\n", offlined_pages);
1862 	/* Ok, all of our target is isolated.
1863 	   We cannot do rollback at this point. */
1864 	offline_isolated_pages(start_pfn, end_pfn);
1865 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1866 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1867 	/* removal success */
1868 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1869 	zone->present_pages -= offlined_pages;
1870 
1871 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1872 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1873 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1874 
1875 	init_per_zone_wmark_min();
1876 
1877 	if (!populated_zone(zone)) {
1878 		zone_pcp_reset(zone);
1879 		mutex_lock(&zonelists_mutex);
1880 		build_all_zonelists(NULL, NULL);
1881 		mutex_unlock(&zonelists_mutex);
1882 	} else
1883 		zone_pcp_update(zone);
1884 
1885 	node_states_clear_node(node, &arg);
1886 	if (arg.status_change_nid >= 0) {
1887 		kswapd_stop(node);
1888 		kcompactd_stop(node);
1889 	}
1890 
1891 	vm_total_pages = nr_free_pagecache_pages();
1892 	writeback_set_ratelimit();
1893 
1894 	memory_notify(MEM_OFFLINE, &arg);
1895 	return 0;
1896 
1897 failed_removal:
1898 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1899 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1900 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1901 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1902 	/* pushback to free area */
1903 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1904 	return ret;
1905 }
1906 
1907 /* Must be protected by mem_hotplug_begin() */
1908 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1909 {
1910 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1911 }
1912 #endif /* CONFIG_MEMORY_HOTREMOVE */
1913 
1914 /**
1915  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1916  * @start_pfn: start pfn of the memory range
1917  * @end_pfn: end pfn of the memory range
1918  * @arg: argument passed to func
1919  * @func: callback for each memory section walked
1920  *
1921  * This function walks through all present mem sections in range
1922  * [start_pfn, end_pfn) and call func on each mem section.
1923  *
1924  * Returns the return value of func.
1925  */
1926 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1927 		void *arg, int (*func)(struct memory_block *, void *))
1928 {
1929 	struct memory_block *mem = NULL;
1930 	struct mem_section *section;
1931 	unsigned long pfn, section_nr;
1932 	int ret;
1933 
1934 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1935 		section_nr = pfn_to_section_nr(pfn);
1936 		if (!present_section_nr(section_nr))
1937 			continue;
1938 
1939 		section = __nr_to_section(section_nr);
1940 		/* same memblock? */
1941 		if (mem)
1942 			if ((section_nr >= mem->start_section_nr) &&
1943 			    (section_nr <= mem->end_section_nr))
1944 				continue;
1945 
1946 		mem = find_memory_block_hinted(section, mem);
1947 		if (!mem)
1948 			continue;
1949 
1950 		ret = func(mem, arg);
1951 		if (ret) {
1952 			kobject_put(&mem->dev.kobj);
1953 			return ret;
1954 		}
1955 	}
1956 
1957 	if (mem)
1958 		kobject_put(&mem->dev.kobj);
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_MEMORY_HOTREMOVE
1964 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1965 {
1966 	int ret = !is_memblock_offlined(mem);
1967 
1968 	if (unlikely(ret)) {
1969 		phys_addr_t beginpa, endpa;
1970 
1971 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1972 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1973 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1974 			&beginpa, &endpa);
1975 	}
1976 
1977 	return ret;
1978 }
1979 
1980 static int check_cpu_on_node(pg_data_t *pgdat)
1981 {
1982 	int cpu;
1983 
1984 	for_each_present_cpu(cpu) {
1985 		if (cpu_to_node(cpu) == pgdat->node_id)
1986 			/*
1987 			 * the cpu on this node isn't removed, and we can't
1988 			 * offline this node.
1989 			 */
1990 			return -EBUSY;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 static void unmap_cpu_on_node(pg_data_t *pgdat)
1997 {
1998 #ifdef CONFIG_ACPI_NUMA
1999 	int cpu;
2000 
2001 	for_each_possible_cpu(cpu)
2002 		if (cpu_to_node(cpu) == pgdat->node_id)
2003 			numa_clear_node(cpu);
2004 #endif
2005 }
2006 
2007 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2008 {
2009 	int ret;
2010 
2011 	ret = check_cpu_on_node(pgdat);
2012 	if (ret)
2013 		return ret;
2014 
2015 	/*
2016 	 * the node will be offlined when we come here, so we can clear
2017 	 * the cpu_to_node() now.
2018 	 */
2019 
2020 	unmap_cpu_on_node(pgdat);
2021 	return 0;
2022 }
2023 
2024 /**
2025  * try_offline_node
2026  *
2027  * Offline a node if all memory sections and cpus of the node are removed.
2028  *
2029  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2030  * and online/offline operations before this call.
2031  */
2032 void try_offline_node(int nid)
2033 {
2034 	pg_data_t *pgdat = NODE_DATA(nid);
2035 	unsigned long start_pfn = pgdat->node_start_pfn;
2036 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2037 	unsigned long pfn;
2038 	int i;
2039 
2040 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2041 		unsigned long section_nr = pfn_to_section_nr(pfn);
2042 
2043 		if (!present_section_nr(section_nr))
2044 			continue;
2045 
2046 		if (pfn_to_nid(pfn) != nid)
2047 			continue;
2048 
2049 		/*
2050 		 * some memory sections of this node are not removed, and we
2051 		 * can't offline node now.
2052 		 */
2053 		return;
2054 	}
2055 
2056 	if (check_and_unmap_cpu_on_node(pgdat))
2057 		return;
2058 
2059 	/*
2060 	 * all memory/cpu of this node are removed, we can offline this
2061 	 * node now.
2062 	 */
2063 	node_set_offline(nid);
2064 	unregister_one_node(nid);
2065 
2066 	/* free waittable in each zone */
2067 	for (i = 0; i < MAX_NR_ZONES; i++) {
2068 		struct zone *zone = pgdat->node_zones + i;
2069 
2070 		/*
2071 		 * wait_table may be allocated from boot memory,
2072 		 * here only free if it's allocated by vmalloc.
2073 		 */
2074 		if (is_vmalloc_addr(zone->wait_table)) {
2075 			vfree(zone->wait_table);
2076 			zone->wait_table = NULL;
2077 		}
2078 	}
2079 }
2080 EXPORT_SYMBOL(try_offline_node);
2081 
2082 /**
2083  * remove_memory
2084  *
2085  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2086  * and online/offline operations before this call, as required by
2087  * try_offline_node().
2088  */
2089 void __ref remove_memory(int nid, u64 start, u64 size)
2090 {
2091 	int ret;
2092 
2093 	BUG_ON(check_hotplug_memory_range(start, size));
2094 
2095 	mem_hotplug_begin();
2096 
2097 	/*
2098 	 * All memory blocks must be offlined before removing memory.  Check
2099 	 * whether all memory blocks in question are offline and trigger a BUG()
2100 	 * if this is not the case.
2101 	 */
2102 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2103 				check_memblock_offlined_cb);
2104 	if (ret)
2105 		BUG();
2106 
2107 	/* remove memmap entry */
2108 	firmware_map_remove(start, start + size, "System RAM");
2109 	memblock_free(start, size);
2110 	memblock_remove(start, size);
2111 
2112 	arch_remove_memory(start, size);
2113 
2114 	try_offline_node(nid);
2115 
2116 	mem_hotplug_done();
2117 }
2118 EXPORT_SYMBOL_GPL(remove_memory);
2119 #endif /* CONFIG_MEMORY_HOTREMOVE */
2120