xref: /openbmc/linux/mm/memory_hotplug.c (revision 4fc4dca8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static void generic_online_page(struct page *page, unsigned int order);
53 
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56 
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58 
59 void get_online_mems(void)
60 {
61 	percpu_down_read(&mem_hotplug_lock);
62 }
63 
64 void put_online_mems(void)
65 {
66 	percpu_up_read(&mem_hotplug_lock);
67 }
68 
69 bool movable_node_enabled = false;
70 
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77 
78 static int __init setup_memhp_default_state(char *str)
79 {
80 	if (!strcmp(str, "online"))
81 		memhp_auto_online = true;
82 	else if (!strcmp(str, "offline"))
83 		memhp_auto_online = false;
84 
85 	return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88 
89 void mem_hotplug_begin(void)
90 {
91 	cpus_read_lock();
92 	percpu_down_write(&mem_hotplug_lock);
93 }
94 
95 void mem_hotplug_done(void)
96 {
97 	percpu_up_write(&mem_hotplug_lock);
98 	cpus_read_unlock();
99 }
100 
101 u64 max_mem_size = U64_MAX;
102 
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 	struct resource *res;
107 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 	char *resource_name = "System RAM";
109 
110 	if (start + size > max_mem_size)
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Request ownership of the new memory range.  This might be
115 	 * a child of an existing resource that was present but
116 	 * not marked as busy.
117 	 */
118 	res = __request_region(&iomem_resource, start, size,
119 			       resource_name, flags);
120 
121 	if (!res) {
122 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 				start, start + size);
124 		return ERR_PTR(-EEXIST);
125 	}
126 	return res;
127 }
128 
129 static void release_memory_resource(struct resource *res)
130 {
131 	if (!res)
132 		return;
133 	release_resource(res);
134 	kfree(res);
135 	return;
136 }
137 
138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
139 void get_page_bootmem(unsigned long info,  struct page *page,
140 		      unsigned long type)
141 {
142 	page->freelist = (void *)type;
143 	SetPagePrivate(page);
144 	set_page_private(page, info);
145 	page_ref_inc(page);
146 }
147 
148 void put_page_bootmem(struct page *page)
149 {
150 	unsigned long type;
151 
152 	type = (unsigned long) page->freelist;
153 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
154 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
155 
156 	if (page_ref_dec_return(page) == 1) {
157 		page->freelist = NULL;
158 		ClearPagePrivate(page);
159 		set_page_private(page, 0);
160 		INIT_LIST_HEAD(&page->lru);
161 		free_reserved_page(page);
162 	}
163 }
164 
165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
166 #ifndef CONFIG_SPARSEMEM_VMEMMAP
167 static void register_page_bootmem_info_section(unsigned long start_pfn)
168 {
169 	unsigned long *usemap, mapsize, section_nr, i;
170 	struct mem_section *ms;
171 	struct page *page, *memmap;
172 
173 	section_nr = pfn_to_section_nr(start_pfn);
174 	ms = __nr_to_section(section_nr);
175 
176 	/* Get section's memmap address */
177 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178 
179 	/*
180 	 * Get page for the memmap's phys address
181 	 * XXX: need more consideration for sparse_vmemmap...
182 	 */
183 	page = virt_to_page(memmap);
184 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186 
187 	/* remember memmap's page */
188 	for (i = 0; i < mapsize; i++, page++)
189 		get_page_bootmem(section_nr, page, SECTION_INFO);
190 
191 	usemap = ms->pageblock_flags;
192 	page = virt_to_page(usemap);
193 
194 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
195 
196 	for (i = 0; i < mapsize; i++, page++)
197 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198 
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 	unsigned long *usemap, mapsize, section_nr, i;
204 	struct mem_section *ms;
205 	struct page *page, *memmap;
206 
207 	section_nr = pfn_to_section_nr(start_pfn);
208 	ms = __nr_to_section(section_nr);
209 
210 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
211 
212 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
213 
214 	usemap = ms->pageblock_flags;
215 	page = virt_to_page(usemap);
216 
217 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
218 
219 	for (i = 0; i < mapsize; i++, page++)
220 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
221 }
222 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
223 
224 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
225 {
226 	unsigned long i, pfn, end_pfn, nr_pages;
227 	int node = pgdat->node_id;
228 	struct page *page;
229 
230 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
231 	page = virt_to_page(pgdat);
232 
233 	for (i = 0; i < nr_pages; i++, page++)
234 		get_page_bootmem(node, page, NODE_INFO);
235 
236 	pfn = pgdat->node_start_pfn;
237 	end_pfn = pgdat_end_pfn(pgdat);
238 
239 	/* register section info */
240 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241 		/*
242 		 * Some platforms can assign the same pfn to multiple nodes - on
243 		 * node0 as well as nodeN.  To avoid registering a pfn against
244 		 * multiple nodes we check that this pfn does not already
245 		 * reside in some other nodes.
246 		 */
247 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
248 			register_page_bootmem_info_section(pfn);
249 	}
250 }
251 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
252 
253 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
254 		struct vmem_altmap *altmap, bool want_memblock)
255 {
256 	int ret;
257 
258 	if (pfn_valid(phys_start_pfn))
259 		return -EEXIST;
260 
261 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
262 	if (ret < 0)
263 		return ret;
264 
265 	if (!want_memblock)
266 		return 0;
267 
268 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
269 }
270 
271 /*
272  * Reasonably generic function for adding memory.  It is
273  * expected that archs that support memory hotplug will
274  * call this function after deciding the zone to which to
275  * add the new pages.
276  */
277 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
278 		unsigned long nr_pages, struct mhp_restrictions *restrictions)
279 {
280 	unsigned long i;
281 	int err = 0;
282 	int start_sec, end_sec;
283 	struct vmem_altmap *altmap = restrictions->altmap;
284 
285 	/* during initialize mem_map, align hot-added range to section */
286 	start_sec = pfn_to_section_nr(phys_start_pfn);
287 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
288 
289 	if (altmap) {
290 		/*
291 		 * Validate altmap is within bounds of the total request
292 		 */
293 		if (altmap->base_pfn != phys_start_pfn
294 				|| vmem_altmap_offset(altmap) > nr_pages) {
295 			pr_warn_once("memory add fail, invalid altmap\n");
296 			err = -EINVAL;
297 			goto out;
298 		}
299 		altmap->alloc = 0;
300 	}
301 
302 	for (i = start_sec; i <= end_sec; i++) {
303 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
304 				restrictions->flags & MHP_MEMBLOCK_API);
305 
306 		/*
307 		 * EEXIST is finally dealt with by ioresource collision
308 		 * check. see add_memory() => register_memory_resource()
309 		 * Warning will be printed if there is collision.
310 		 */
311 		if (err && (err != -EEXIST))
312 			break;
313 		err = 0;
314 		cond_resched();
315 	}
316 	vmemmap_populate_print_last();
317 out:
318 	return err;
319 }
320 
321 #ifdef CONFIG_MEMORY_HOTREMOVE
322 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
323 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
324 				     unsigned long start_pfn,
325 				     unsigned long end_pfn)
326 {
327 	struct mem_section *ms;
328 
329 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
330 		ms = __pfn_to_section(start_pfn);
331 
332 		if (unlikely(!valid_section(ms)))
333 			continue;
334 
335 		if (unlikely(pfn_to_nid(start_pfn) != nid))
336 			continue;
337 
338 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
339 			continue;
340 
341 		return start_pfn;
342 	}
343 
344 	return 0;
345 }
346 
347 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
348 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
349 				    unsigned long start_pfn,
350 				    unsigned long end_pfn)
351 {
352 	struct mem_section *ms;
353 	unsigned long pfn;
354 
355 	/* pfn is the end pfn of a memory section. */
356 	pfn = end_pfn - 1;
357 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
358 		ms = __pfn_to_section(pfn);
359 
360 		if (unlikely(!valid_section(ms)))
361 			continue;
362 
363 		if (unlikely(pfn_to_nid(pfn) != nid))
364 			continue;
365 
366 		if (zone && zone != page_zone(pfn_to_page(pfn)))
367 			continue;
368 
369 		return pfn;
370 	}
371 
372 	return 0;
373 }
374 
375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
376 			     unsigned long end_pfn)
377 {
378 	unsigned long zone_start_pfn = zone->zone_start_pfn;
379 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
380 	unsigned long zone_end_pfn = z;
381 	unsigned long pfn;
382 	struct mem_section *ms;
383 	int nid = zone_to_nid(zone);
384 
385 	zone_span_writelock(zone);
386 	if (zone_start_pfn == start_pfn) {
387 		/*
388 		 * If the section is smallest section in the zone, it need
389 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
390 		 * In this case, we find second smallest valid mem_section
391 		 * for shrinking zone.
392 		 */
393 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
394 						zone_end_pfn);
395 		if (pfn) {
396 			zone->zone_start_pfn = pfn;
397 			zone->spanned_pages = zone_end_pfn - pfn;
398 		}
399 	} else if (zone_end_pfn == end_pfn) {
400 		/*
401 		 * If the section is biggest section in the zone, it need
402 		 * shrink zone->spanned_pages.
403 		 * In this case, we find second biggest valid mem_section for
404 		 * shrinking zone.
405 		 */
406 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
407 					       start_pfn);
408 		if (pfn)
409 			zone->spanned_pages = pfn - zone_start_pfn + 1;
410 	}
411 
412 	/*
413 	 * The section is not biggest or smallest mem_section in the zone, it
414 	 * only creates a hole in the zone. So in this case, we need not
415 	 * change the zone. But perhaps, the zone has only hole data. Thus
416 	 * it check the zone has only hole or not.
417 	 */
418 	pfn = zone_start_pfn;
419 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
420 		ms = __pfn_to_section(pfn);
421 
422 		if (unlikely(!valid_section(ms)))
423 			continue;
424 
425 		if (page_zone(pfn_to_page(pfn)) != zone)
426 			continue;
427 
428 		 /* If the section is current section, it continues the loop */
429 		if (start_pfn == pfn)
430 			continue;
431 
432 		/* If we find valid section, we have nothing to do */
433 		zone_span_writeunlock(zone);
434 		return;
435 	}
436 
437 	/* The zone has no valid section */
438 	zone->zone_start_pfn = 0;
439 	zone->spanned_pages = 0;
440 	zone_span_writeunlock(zone);
441 }
442 
443 static void shrink_pgdat_span(struct pglist_data *pgdat,
444 			      unsigned long start_pfn, unsigned long end_pfn)
445 {
446 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
447 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
448 	unsigned long pgdat_end_pfn = p;
449 	unsigned long pfn;
450 	struct mem_section *ms;
451 	int nid = pgdat->node_id;
452 
453 	if (pgdat_start_pfn == start_pfn) {
454 		/*
455 		 * If the section is smallest section in the pgdat, it need
456 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
457 		 * In this case, we find second smallest valid mem_section
458 		 * for shrinking zone.
459 		 */
460 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
461 						pgdat_end_pfn);
462 		if (pfn) {
463 			pgdat->node_start_pfn = pfn;
464 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
465 		}
466 	} else if (pgdat_end_pfn == end_pfn) {
467 		/*
468 		 * If the section is biggest section in the pgdat, it need
469 		 * shrink pgdat->node_spanned_pages.
470 		 * In this case, we find second biggest valid mem_section for
471 		 * shrinking zone.
472 		 */
473 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
474 					       start_pfn);
475 		if (pfn)
476 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
477 	}
478 
479 	/*
480 	 * If the section is not biggest or smallest mem_section in the pgdat,
481 	 * it only creates a hole in the pgdat. So in this case, we need not
482 	 * change the pgdat.
483 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
484 	 * has only hole or not.
485 	 */
486 	pfn = pgdat_start_pfn;
487 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
488 		ms = __pfn_to_section(pfn);
489 
490 		if (unlikely(!valid_section(ms)))
491 			continue;
492 
493 		if (pfn_to_nid(pfn) != nid)
494 			continue;
495 
496 		 /* If the section is current section, it continues the loop */
497 		if (start_pfn == pfn)
498 			continue;
499 
500 		/* If we find valid section, we have nothing to do */
501 		return;
502 	}
503 
504 	/* The pgdat has no valid section */
505 	pgdat->node_start_pfn = 0;
506 	pgdat->node_spanned_pages = 0;
507 }
508 
509 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
510 {
511 	struct pglist_data *pgdat = zone->zone_pgdat;
512 	int nr_pages = PAGES_PER_SECTION;
513 	unsigned long flags;
514 
515 	pgdat_resize_lock(zone->zone_pgdat, &flags);
516 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
517 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
518 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
519 }
520 
521 static void __remove_section(struct zone *zone, struct mem_section *ms,
522 			     unsigned long map_offset,
523 			     struct vmem_altmap *altmap)
524 {
525 	unsigned long start_pfn;
526 	int scn_nr;
527 
528 	if (WARN_ON_ONCE(!valid_section(ms)))
529 		return;
530 
531 	unregister_memory_section(ms);
532 
533 	scn_nr = __section_nr(ms);
534 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
535 	__remove_zone(zone, start_pfn);
536 
537 	sparse_remove_one_section(zone, ms, map_offset, altmap);
538 }
539 
540 /**
541  * __remove_pages() - remove sections of pages from a zone
542  * @zone: zone from which pages need to be removed
543  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
544  * @nr_pages: number of pages to remove (must be multiple of section size)
545  * @altmap: alternative device page map or %NULL if default memmap is used
546  *
547  * Generic helper function to remove section mappings and sysfs entries
548  * for the section of the memory we are removing. Caller needs to make
549  * sure that pages are marked reserved and zones are adjust properly by
550  * calling offline_pages().
551  */
552 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
553 		    unsigned long nr_pages, struct vmem_altmap *altmap)
554 {
555 	unsigned long i;
556 	unsigned long map_offset = 0;
557 	int sections_to_remove;
558 
559 	/* In the ZONE_DEVICE case device driver owns the memory region */
560 	if (is_dev_zone(zone)) {
561 		if (altmap)
562 			map_offset = vmem_altmap_offset(altmap);
563 	}
564 
565 	clear_zone_contiguous(zone);
566 
567 	/*
568 	 * We can only remove entire sections
569 	 */
570 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
571 	BUG_ON(nr_pages % PAGES_PER_SECTION);
572 
573 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
574 	for (i = 0; i < sections_to_remove; i++) {
575 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
576 
577 		cond_resched();
578 		__remove_section(zone, __pfn_to_section(pfn), map_offset,
579 				 altmap);
580 		map_offset = 0;
581 	}
582 
583 	set_zone_contiguous(zone);
584 }
585 #endif /* CONFIG_MEMORY_HOTREMOVE */
586 
587 int set_online_page_callback(online_page_callback_t callback)
588 {
589 	int rc = -EINVAL;
590 
591 	get_online_mems();
592 	mutex_lock(&online_page_callback_lock);
593 
594 	if (online_page_callback == generic_online_page) {
595 		online_page_callback = callback;
596 		rc = 0;
597 	}
598 
599 	mutex_unlock(&online_page_callback_lock);
600 	put_online_mems();
601 
602 	return rc;
603 }
604 EXPORT_SYMBOL_GPL(set_online_page_callback);
605 
606 int restore_online_page_callback(online_page_callback_t callback)
607 {
608 	int rc = -EINVAL;
609 
610 	get_online_mems();
611 	mutex_lock(&online_page_callback_lock);
612 
613 	if (online_page_callback == callback) {
614 		online_page_callback = generic_online_page;
615 		rc = 0;
616 	}
617 
618 	mutex_unlock(&online_page_callback_lock);
619 	put_online_mems();
620 
621 	return rc;
622 }
623 EXPORT_SYMBOL_GPL(restore_online_page_callback);
624 
625 void __online_page_set_limits(struct page *page)
626 {
627 }
628 EXPORT_SYMBOL_GPL(__online_page_set_limits);
629 
630 void __online_page_increment_counters(struct page *page)
631 {
632 	adjust_managed_page_count(page, 1);
633 }
634 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
635 
636 void __online_page_free(struct page *page)
637 {
638 	__free_reserved_page(page);
639 }
640 EXPORT_SYMBOL_GPL(__online_page_free);
641 
642 static void generic_online_page(struct page *page, unsigned int order)
643 {
644 	kernel_map_pages(page, 1 << order, 1);
645 	__free_pages_core(page, order);
646 	totalram_pages_add(1UL << order);
647 #ifdef CONFIG_HIGHMEM
648 	if (PageHighMem(page))
649 		totalhigh_pages_add(1UL << order);
650 #endif
651 }
652 
653 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
654 {
655 	unsigned long end = start + nr_pages;
656 	int order, onlined_pages = 0;
657 
658 	while (start < end) {
659 		order = min(MAX_ORDER - 1,
660 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
661 		(*online_page_callback)(pfn_to_page(start), order);
662 
663 		onlined_pages += (1UL << order);
664 		start += (1UL << order);
665 	}
666 	return onlined_pages;
667 }
668 
669 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
670 			void *arg)
671 {
672 	unsigned long onlined_pages = *(unsigned long *)arg;
673 
674 	if (PageReserved(pfn_to_page(start_pfn)))
675 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
676 
677 	online_mem_sections(start_pfn, start_pfn + nr_pages);
678 
679 	*(unsigned long *)arg = onlined_pages;
680 	return 0;
681 }
682 
683 /* check which state of node_states will be changed when online memory */
684 static void node_states_check_changes_online(unsigned long nr_pages,
685 	struct zone *zone, struct memory_notify *arg)
686 {
687 	int nid = zone_to_nid(zone);
688 
689 	arg->status_change_nid = NUMA_NO_NODE;
690 	arg->status_change_nid_normal = NUMA_NO_NODE;
691 	arg->status_change_nid_high = NUMA_NO_NODE;
692 
693 	if (!node_state(nid, N_MEMORY))
694 		arg->status_change_nid = nid;
695 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
696 		arg->status_change_nid_normal = nid;
697 #ifdef CONFIG_HIGHMEM
698 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
699 		arg->status_change_nid_high = nid;
700 #endif
701 }
702 
703 static void node_states_set_node(int node, struct memory_notify *arg)
704 {
705 	if (arg->status_change_nid_normal >= 0)
706 		node_set_state(node, N_NORMAL_MEMORY);
707 
708 	if (arg->status_change_nid_high >= 0)
709 		node_set_state(node, N_HIGH_MEMORY);
710 
711 	if (arg->status_change_nid >= 0)
712 		node_set_state(node, N_MEMORY);
713 }
714 
715 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
716 		unsigned long nr_pages)
717 {
718 	unsigned long old_end_pfn = zone_end_pfn(zone);
719 
720 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
721 		zone->zone_start_pfn = start_pfn;
722 
723 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
724 }
725 
726 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
727                                      unsigned long nr_pages)
728 {
729 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
730 
731 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
732 		pgdat->node_start_pfn = start_pfn;
733 
734 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
735 }
736 
737 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
738 		unsigned long nr_pages, struct vmem_altmap *altmap)
739 {
740 	struct pglist_data *pgdat = zone->zone_pgdat;
741 	int nid = pgdat->node_id;
742 	unsigned long flags;
743 
744 	clear_zone_contiguous(zone);
745 
746 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
747 	pgdat_resize_lock(pgdat, &flags);
748 	zone_span_writelock(zone);
749 	if (zone_is_empty(zone))
750 		init_currently_empty_zone(zone, start_pfn, nr_pages);
751 	resize_zone_range(zone, start_pfn, nr_pages);
752 	zone_span_writeunlock(zone);
753 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
754 	pgdat_resize_unlock(pgdat, &flags);
755 
756 	/*
757 	 * TODO now we have a visible range of pages which are not associated
758 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
759 	 * expects the zone spans the pfn range. All the pages in the range
760 	 * are reserved so nobody should be touching them so we should be safe
761 	 */
762 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
763 			MEMMAP_HOTPLUG, altmap);
764 
765 	set_zone_contiguous(zone);
766 }
767 
768 /*
769  * Returns a default kernel memory zone for the given pfn range.
770  * If no kernel zone covers this pfn range it will automatically go
771  * to the ZONE_NORMAL.
772  */
773 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
774 		unsigned long nr_pages)
775 {
776 	struct pglist_data *pgdat = NODE_DATA(nid);
777 	int zid;
778 
779 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
780 		struct zone *zone = &pgdat->node_zones[zid];
781 
782 		if (zone_intersects(zone, start_pfn, nr_pages))
783 			return zone;
784 	}
785 
786 	return &pgdat->node_zones[ZONE_NORMAL];
787 }
788 
789 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
790 		unsigned long nr_pages)
791 {
792 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
793 			nr_pages);
794 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
795 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
796 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
797 
798 	/*
799 	 * We inherit the existing zone in a simple case where zones do not
800 	 * overlap in the given range
801 	 */
802 	if (in_kernel ^ in_movable)
803 		return (in_kernel) ? kernel_zone : movable_zone;
804 
805 	/*
806 	 * If the range doesn't belong to any zone or two zones overlap in the
807 	 * given range then we use movable zone only if movable_node is
808 	 * enabled because we always online to a kernel zone by default.
809 	 */
810 	return movable_node_enabled ? movable_zone : kernel_zone;
811 }
812 
813 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
814 		unsigned long nr_pages)
815 {
816 	if (online_type == MMOP_ONLINE_KERNEL)
817 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
818 
819 	if (online_type == MMOP_ONLINE_MOVABLE)
820 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
821 
822 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
823 }
824 
825 /*
826  * Associates the given pfn range with the given node and the zone appropriate
827  * for the given online type.
828  */
829 static struct zone * __meminit move_pfn_range(int online_type, int nid,
830 		unsigned long start_pfn, unsigned long nr_pages)
831 {
832 	struct zone *zone;
833 
834 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
835 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
836 	return zone;
837 }
838 
839 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
840 {
841 	unsigned long flags;
842 	unsigned long onlined_pages = 0;
843 	struct zone *zone;
844 	int need_zonelists_rebuild = 0;
845 	int nid;
846 	int ret;
847 	struct memory_notify arg;
848 	struct memory_block *mem;
849 
850 	mem_hotplug_begin();
851 
852 	/*
853 	 * We can't use pfn_to_nid() because nid might be stored in struct page
854 	 * which is not yet initialized. Instead, we find nid from memory block.
855 	 */
856 	mem = find_memory_block(__pfn_to_section(pfn));
857 	nid = mem->nid;
858 	put_device(&mem->dev);
859 
860 	/* associate pfn range with the zone */
861 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
862 
863 	arg.start_pfn = pfn;
864 	arg.nr_pages = nr_pages;
865 	node_states_check_changes_online(nr_pages, zone, &arg);
866 
867 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
868 	ret = notifier_to_errno(ret);
869 	if (ret)
870 		goto failed_addition;
871 
872 	/*
873 	 * If this zone is not populated, then it is not in zonelist.
874 	 * This means the page allocator ignores this zone.
875 	 * So, zonelist must be updated after online.
876 	 */
877 	if (!populated_zone(zone)) {
878 		need_zonelists_rebuild = 1;
879 		setup_zone_pageset(zone);
880 	}
881 
882 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
883 		online_pages_range);
884 	if (ret) {
885 		if (need_zonelists_rebuild)
886 			zone_pcp_reset(zone);
887 		goto failed_addition;
888 	}
889 
890 	zone->present_pages += onlined_pages;
891 
892 	pgdat_resize_lock(zone->zone_pgdat, &flags);
893 	zone->zone_pgdat->node_present_pages += onlined_pages;
894 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
895 
896 	shuffle_zone(zone);
897 
898 	if (onlined_pages) {
899 		node_states_set_node(nid, &arg);
900 		if (need_zonelists_rebuild)
901 			build_all_zonelists(NULL);
902 		else
903 			zone_pcp_update(zone);
904 	}
905 
906 	init_per_zone_wmark_min();
907 
908 	if (onlined_pages) {
909 		kswapd_run(nid);
910 		kcompactd_run(nid);
911 	}
912 
913 	vm_total_pages = nr_free_pagecache_pages();
914 
915 	writeback_set_ratelimit();
916 
917 	if (onlined_pages)
918 		memory_notify(MEM_ONLINE, &arg);
919 	mem_hotplug_done();
920 	return 0;
921 
922 failed_addition:
923 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
924 		 (unsigned long long) pfn << PAGE_SHIFT,
925 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
926 	memory_notify(MEM_CANCEL_ONLINE, &arg);
927 	mem_hotplug_done();
928 	return ret;
929 }
930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
931 
932 static void reset_node_present_pages(pg_data_t *pgdat)
933 {
934 	struct zone *z;
935 
936 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
937 		z->present_pages = 0;
938 
939 	pgdat->node_present_pages = 0;
940 }
941 
942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
944 {
945 	struct pglist_data *pgdat;
946 	unsigned long start_pfn = PFN_DOWN(start);
947 
948 	pgdat = NODE_DATA(nid);
949 	if (!pgdat) {
950 		pgdat = arch_alloc_nodedata(nid);
951 		if (!pgdat)
952 			return NULL;
953 
954 		arch_refresh_nodedata(nid, pgdat);
955 	} else {
956 		/*
957 		 * Reset the nr_zones, order and classzone_idx before reuse.
958 		 * Note that kswapd will init kswapd_classzone_idx properly
959 		 * when it starts in the near future.
960 		 */
961 		pgdat->nr_zones = 0;
962 		pgdat->kswapd_order = 0;
963 		pgdat->kswapd_classzone_idx = 0;
964 	}
965 
966 	/* we can use NODE_DATA(nid) from here */
967 
968 	pgdat->node_id = nid;
969 	pgdat->node_start_pfn = start_pfn;
970 
971 	/* init node's zones as empty zones, we don't have any present pages.*/
972 	free_area_init_core_hotplug(nid);
973 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
974 
975 	/*
976 	 * The node we allocated has no zone fallback lists. For avoiding
977 	 * to access not-initialized zonelist, build here.
978 	 */
979 	build_all_zonelists(pgdat);
980 
981 	/*
982 	 * When memory is hot-added, all the memory is in offline state. So
983 	 * clear all zones' present_pages because they will be updated in
984 	 * online_pages() and offline_pages().
985 	 */
986 	reset_node_managed_pages(pgdat);
987 	reset_node_present_pages(pgdat);
988 
989 	return pgdat;
990 }
991 
992 static void rollback_node_hotadd(int nid)
993 {
994 	pg_data_t *pgdat = NODE_DATA(nid);
995 
996 	arch_refresh_nodedata(nid, NULL);
997 	free_percpu(pgdat->per_cpu_nodestats);
998 	arch_free_nodedata(pgdat);
999 	return;
1000 }
1001 
1002 
1003 /**
1004  * try_online_node - online a node if offlined
1005  * @nid: the node ID
1006  * @start: start addr of the node
1007  * @set_node_online: Whether we want to online the node
1008  * called by cpu_up() to online a node without onlined memory.
1009  *
1010  * Returns:
1011  * 1 -> a new node has been allocated
1012  * 0 -> the node is already online
1013  * -ENOMEM -> the node could not be allocated
1014  */
1015 static int __try_online_node(int nid, u64 start, bool set_node_online)
1016 {
1017 	pg_data_t *pgdat;
1018 	int ret = 1;
1019 
1020 	if (node_online(nid))
1021 		return 0;
1022 
1023 	pgdat = hotadd_new_pgdat(nid, start);
1024 	if (!pgdat) {
1025 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026 		ret = -ENOMEM;
1027 		goto out;
1028 	}
1029 
1030 	if (set_node_online) {
1031 		node_set_online(nid);
1032 		ret = register_one_node(nid);
1033 		BUG_ON(ret);
1034 	}
1035 out:
1036 	return ret;
1037 }
1038 
1039 /*
1040  * Users of this function always want to online/register the node
1041  */
1042 int try_online_node(int nid)
1043 {
1044 	int ret;
1045 
1046 	mem_hotplug_begin();
1047 	ret =  __try_online_node(nid, 0, true);
1048 	mem_hotplug_done();
1049 	return ret;
1050 }
1051 
1052 static int check_hotplug_memory_range(u64 start, u64 size)
1053 {
1054 	unsigned long block_sz = memory_block_size_bytes();
1055 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056 	u64 nr_pages = size >> PAGE_SHIFT;
1057 	u64 start_pfn = PFN_DOWN(start);
1058 
1059 	/* memory range must be block size aligned */
1060 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063 		       block_sz, start, size);
1064 		return -EINVAL;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int online_memory_block(struct memory_block *mem, void *arg)
1071 {
1072 	return device_online(&mem->dev);
1073 }
1074 
1075 /*
1076  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077  * and online/offline operations (triggered e.g. by sysfs).
1078  *
1079  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1080  */
1081 int __ref add_memory_resource(int nid, struct resource *res)
1082 {
1083 	struct mhp_restrictions restrictions = {
1084 		.flags = MHP_MEMBLOCK_API,
1085 	};
1086 	u64 start, size;
1087 	bool new_node = false;
1088 	int ret;
1089 
1090 	start = res->start;
1091 	size = resource_size(res);
1092 
1093 	ret = check_hotplug_memory_range(start, size);
1094 	if (ret)
1095 		return ret;
1096 
1097 	mem_hotplug_begin();
1098 
1099 	/*
1100 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1101 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1102 	 * this new range and calculate total pages correctly.  The range will
1103 	 * be removed at hot-remove time.
1104 	 */
1105 	memblock_add_node(start, size, nid);
1106 
1107 	ret = __try_online_node(nid, start, false);
1108 	if (ret < 0)
1109 		goto error;
1110 	new_node = ret;
1111 
1112 	/* call arch's memory hotadd */
1113 	ret = arch_add_memory(nid, start, size, &restrictions);
1114 	if (ret < 0)
1115 		goto error;
1116 
1117 	if (new_node) {
1118 		/* If sysfs file of new node can't be created, cpu on the node
1119 		 * can't be hot-added. There is no rollback way now.
1120 		 * So, check by BUG_ON() to catch it reluctantly..
1121 		 * We online node here. We can't roll back from here.
1122 		 */
1123 		node_set_online(nid);
1124 		ret = __register_one_node(nid);
1125 		BUG_ON(ret);
1126 	}
1127 
1128 	/* link memory sections under this node.*/
1129 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1130 	BUG_ON(ret);
1131 
1132 	/* create new memmap entry */
1133 	firmware_map_add_hotplug(start, start + size, "System RAM");
1134 
1135 	/* device_online() will take the lock when calling online_pages() */
1136 	mem_hotplug_done();
1137 
1138 	/* online pages if requested */
1139 	if (memhp_auto_online)
1140 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1141 				  NULL, online_memory_block);
1142 
1143 	return ret;
1144 error:
1145 	/* rollback pgdat allocation and others */
1146 	if (new_node)
1147 		rollback_node_hotadd(nid);
1148 	memblock_remove(start, size);
1149 	mem_hotplug_done();
1150 	return ret;
1151 }
1152 
1153 /* requires device_hotplug_lock, see add_memory_resource() */
1154 int __ref __add_memory(int nid, u64 start, u64 size)
1155 {
1156 	struct resource *res;
1157 	int ret;
1158 
1159 	res = register_memory_resource(start, size);
1160 	if (IS_ERR(res))
1161 		return PTR_ERR(res);
1162 
1163 	ret = add_memory_resource(nid, res);
1164 	if (ret < 0)
1165 		release_memory_resource(res);
1166 	return ret;
1167 }
1168 
1169 int add_memory(int nid, u64 start, u64 size)
1170 {
1171 	int rc;
1172 
1173 	lock_device_hotplug();
1174 	rc = __add_memory(nid, start, size);
1175 	unlock_device_hotplug();
1176 
1177 	return rc;
1178 }
1179 EXPORT_SYMBOL_GPL(add_memory);
1180 
1181 #ifdef CONFIG_MEMORY_HOTREMOVE
1182 /*
1183  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1184  * set and the size of the free page is given by page_order(). Using this,
1185  * the function determines if the pageblock contains only free pages.
1186  * Due to buddy contraints, a free page at least the size of a pageblock will
1187  * be located at the start of the pageblock
1188  */
1189 static inline int pageblock_free(struct page *page)
1190 {
1191 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1192 }
1193 
1194 /* Return the pfn of the start of the next active pageblock after a given pfn */
1195 static unsigned long next_active_pageblock(unsigned long pfn)
1196 {
1197 	struct page *page = pfn_to_page(pfn);
1198 
1199 	/* Ensure the starting page is pageblock-aligned */
1200 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1201 
1202 	/* If the entire pageblock is free, move to the end of free page */
1203 	if (pageblock_free(page)) {
1204 		int order;
1205 		/* be careful. we don't have locks, page_order can be changed.*/
1206 		order = page_order(page);
1207 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1208 			return pfn + (1 << order);
1209 	}
1210 
1211 	return pfn + pageblock_nr_pages;
1212 }
1213 
1214 static bool is_pageblock_removable_nolock(unsigned long pfn)
1215 {
1216 	struct page *page = pfn_to_page(pfn);
1217 	struct zone *zone;
1218 
1219 	/*
1220 	 * We have to be careful here because we are iterating over memory
1221 	 * sections which are not zone aware so we might end up outside of
1222 	 * the zone but still within the section.
1223 	 * We have to take care about the node as well. If the node is offline
1224 	 * its NODE_DATA will be NULL - see page_zone.
1225 	 */
1226 	if (!node_online(page_to_nid(page)))
1227 		return false;
1228 
1229 	zone = page_zone(page);
1230 	pfn = page_to_pfn(page);
1231 	if (!zone_spans_pfn(zone, pfn))
1232 		return false;
1233 
1234 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1235 }
1236 
1237 /* Checks if this range of memory is likely to be hot-removable. */
1238 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1239 {
1240 	unsigned long end_pfn, pfn;
1241 
1242 	end_pfn = min(start_pfn + nr_pages,
1243 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1244 
1245 	/* Check the starting page of each pageblock within the range */
1246 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1247 		if (!is_pageblock_removable_nolock(pfn))
1248 			return false;
1249 		cond_resched();
1250 	}
1251 
1252 	/* All pageblocks in the memory block are likely to be hot-removable */
1253 	return true;
1254 }
1255 
1256 /*
1257  * Confirm all pages in a range [start, end) belong to the same zone.
1258  * When true, return its valid [start, end).
1259  */
1260 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1261 			 unsigned long *valid_start, unsigned long *valid_end)
1262 {
1263 	unsigned long pfn, sec_end_pfn;
1264 	unsigned long start, end;
1265 	struct zone *zone = NULL;
1266 	struct page *page;
1267 	int i;
1268 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1269 	     pfn < end_pfn;
1270 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1271 		/* Make sure the memory section is present first */
1272 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1273 			continue;
1274 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1275 		     pfn += MAX_ORDER_NR_PAGES) {
1276 			i = 0;
1277 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1278 			while ((i < MAX_ORDER_NR_PAGES) &&
1279 				!pfn_valid_within(pfn + i))
1280 				i++;
1281 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1282 				continue;
1283 			/* Check if we got outside of the zone */
1284 			if (zone && !zone_spans_pfn(zone, pfn + i))
1285 				return 0;
1286 			page = pfn_to_page(pfn + i);
1287 			if (zone && page_zone(page) != zone)
1288 				return 0;
1289 			if (!zone)
1290 				start = pfn + i;
1291 			zone = page_zone(page);
1292 			end = pfn + MAX_ORDER_NR_PAGES;
1293 		}
1294 	}
1295 
1296 	if (zone) {
1297 		*valid_start = start;
1298 		*valid_end = min(end, end_pfn);
1299 		return 1;
1300 	} else {
1301 		return 0;
1302 	}
1303 }
1304 
1305 /*
1306  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1307  * non-lru movable pages and hugepages). We scan pfn because it's much
1308  * easier than scanning over linked list. This function returns the pfn
1309  * of the first found movable page if it's found, otherwise 0.
1310  */
1311 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1312 {
1313 	unsigned long pfn;
1314 
1315 	for (pfn = start; pfn < end; pfn++) {
1316 		struct page *page, *head;
1317 		unsigned long skip;
1318 
1319 		if (!pfn_valid(pfn))
1320 			continue;
1321 		page = pfn_to_page(pfn);
1322 		if (PageLRU(page))
1323 			return pfn;
1324 		if (__PageMovable(page))
1325 			return pfn;
1326 
1327 		if (!PageHuge(page))
1328 			continue;
1329 		head = compound_head(page);
1330 		if (page_huge_active(head))
1331 			return pfn;
1332 		skip = (1 << compound_order(head)) - (page - head);
1333 		pfn += skip - 1;
1334 	}
1335 	return 0;
1336 }
1337 
1338 static struct page *new_node_page(struct page *page, unsigned long private)
1339 {
1340 	int nid = page_to_nid(page);
1341 	nodemask_t nmask = node_states[N_MEMORY];
1342 
1343 	/*
1344 	 * try to allocate from a different node but reuse this node if there
1345 	 * are no other online nodes to be used (e.g. we are offlining a part
1346 	 * of the only existing node)
1347 	 */
1348 	node_clear(nid, nmask);
1349 	if (nodes_empty(nmask))
1350 		node_set(nid, nmask);
1351 
1352 	return new_page_nodemask(page, nid, &nmask);
1353 }
1354 
1355 static int
1356 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1357 {
1358 	unsigned long pfn;
1359 	struct page *page;
1360 	int ret = 0;
1361 	LIST_HEAD(source);
1362 
1363 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1364 		if (!pfn_valid(pfn))
1365 			continue;
1366 		page = pfn_to_page(pfn);
1367 
1368 		if (PageHuge(page)) {
1369 			struct page *head = compound_head(page);
1370 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1371 			isolate_huge_page(head, &source);
1372 			continue;
1373 		} else if (PageTransHuge(page))
1374 			pfn = page_to_pfn(compound_head(page))
1375 				+ hpage_nr_pages(page) - 1;
1376 
1377 		/*
1378 		 * HWPoison pages have elevated reference counts so the migration would
1379 		 * fail on them. It also doesn't make any sense to migrate them in the
1380 		 * first place. Still try to unmap such a page in case it is still mapped
1381 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1382 		 * the unmap as the catch all safety net).
1383 		 */
1384 		if (PageHWPoison(page)) {
1385 			if (WARN_ON(PageLRU(page)))
1386 				isolate_lru_page(page);
1387 			if (page_mapped(page))
1388 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1389 			continue;
1390 		}
1391 
1392 		if (!get_page_unless_zero(page))
1393 			continue;
1394 		/*
1395 		 * We can skip free pages. And we can deal with pages on
1396 		 * LRU and non-lru movable pages.
1397 		 */
1398 		if (PageLRU(page))
1399 			ret = isolate_lru_page(page);
1400 		else
1401 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1402 		if (!ret) { /* Success */
1403 			list_add_tail(&page->lru, &source);
1404 			if (!__PageMovable(page))
1405 				inc_node_page_state(page, NR_ISOLATED_ANON +
1406 						    page_is_file_cache(page));
1407 
1408 		} else {
1409 			pr_warn("failed to isolate pfn %lx\n", pfn);
1410 			dump_page(page, "isolation failed");
1411 		}
1412 		put_page(page);
1413 	}
1414 	if (!list_empty(&source)) {
1415 		/* Allocate a new page from the nearest neighbor node */
1416 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1417 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1418 		if (ret) {
1419 			list_for_each_entry(page, &source, lru) {
1420 				pr_warn("migrating pfn %lx failed ret:%d ",
1421 				       page_to_pfn(page), ret);
1422 				dump_page(page, "migration failure");
1423 			}
1424 			putback_movable_pages(&source);
1425 		}
1426 	}
1427 
1428 	return ret;
1429 }
1430 
1431 /*
1432  * remove from free_area[] and mark all as Reserved.
1433  */
1434 static int
1435 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1436 			void *data)
1437 {
1438 	unsigned long *offlined_pages = (unsigned long *)data;
1439 
1440 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1441 	return 0;
1442 }
1443 
1444 /*
1445  * Check all pages in range, recoreded as memory resource, are isolated.
1446  */
1447 static int
1448 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1449 			void *data)
1450 {
1451 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1452 }
1453 
1454 static int __init cmdline_parse_movable_node(char *p)
1455 {
1456 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1457 	movable_node_enabled = true;
1458 #else
1459 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1460 #endif
1461 	return 0;
1462 }
1463 early_param("movable_node", cmdline_parse_movable_node);
1464 
1465 /* check which state of node_states will be changed when offline memory */
1466 static void node_states_check_changes_offline(unsigned long nr_pages,
1467 		struct zone *zone, struct memory_notify *arg)
1468 {
1469 	struct pglist_data *pgdat = zone->zone_pgdat;
1470 	unsigned long present_pages = 0;
1471 	enum zone_type zt;
1472 
1473 	arg->status_change_nid = NUMA_NO_NODE;
1474 	arg->status_change_nid_normal = NUMA_NO_NODE;
1475 	arg->status_change_nid_high = NUMA_NO_NODE;
1476 
1477 	/*
1478 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1479 	 * If the memory to be offline is within the range
1480 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1481 	 * the zones in that range will become empty after the offlining,
1482 	 * thus we can determine that we need to clear the node from
1483 	 * node_states[N_NORMAL_MEMORY].
1484 	 */
1485 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1486 		present_pages += pgdat->node_zones[zt].present_pages;
1487 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1488 		arg->status_change_nid_normal = zone_to_nid(zone);
1489 
1490 #ifdef CONFIG_HIGHMEM
1491 	/*
1492 	 * node_states[N_HIGH_MEMORY] contains nodes which
1493 	 * have normal memory or high memory.
1494 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1495 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1496 	 * we determine that the zones in that range become empty,
1497 	 * we need to clear the node for N_HIGH_MEMORY.
1498 	 */
1499 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1500 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1501 		arg->status_change_nid_high = zone_to_nid(zone);
1502 #endif
1503 
1504 	/*
1505 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1506 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1507 	 * as well.
1508 	 * Here we count the possible pages from ZONE_MOVABLE.
1509 	 * If after having accounted all the pages, we see that the nr_pages
1510 	 * to be offlined is over or equal to the accounted pages,
1511 	 * we know that the node will become empty, and so, we can clear
1512 	 * it for N_MEMORY as well.
1513 	 */
1514 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1515 
1516 	if (nr_pages >= present_pages)
1517 		arg->status_change_nid = zone_to_nid(zone);
1518 }
1519 
1520 static void node_states_clear_node(int node, struct memory_notify *arg)
1521 {
1522 	if (arg->status_change_nid_normal >= 0)
1523 		node_clear_state(node, N_NORMAL_MEMORY);
1524 
1525 	if (arg->status_change_nid_high >= 0)
1526 		node_clear_state(node, N_HIGH_MEMORY);
1527 
1528 	if (arg->status_change_nid >= 0)
1529 		node_clear_state(node, N_MEMORY);
1530 }
1531 
1532 static int __ref __offline_pages(unsigned long start_pfn,
1533 		  unsigned long end_pfn)
1534 {
1535 	unsigned long pfn, nr_pages;
1536 	unsigned long offlined_pages = 0;
1537 	int ret, node, nr_isolate_pageblock;
1538 	unsigned long flags;
1539 	unsigned long valid_start, valid_end;
1540 	struct zone *zone;
1541 	struct memory_notify arg;
1542 	char *reason;
1543 
1544 	mem_hotplug_begin();
1545 
1546 	/* This makes hotplug much easier...and readable.
1547 	   we assume this for now. .*/
1548 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1549 				  &valid_end)) {
1550 		ret = -EINVAL;
1551 		reason = "multizone range";
1552 		goto failed_removal;
1553 	}
1554 
1555 	zone = page_zone(pfn_to_page(valid_start));
1556 	node = zone_to_nid(zone);
1557 	nr_pages = end_pfn - start_pfn;
1558 
1559 	/* set above range as isolated */
1560 	ret = start_isolate_page_range(start_pfn, end_pfn,
1561 				       MIGRATE_MOVABLE,
1562 				       SKIP_HWPOISON | REPORT_FAILURE);
1563 	if (ret < 0) {
1564 		reason = "failure to isolate range";
1565 		goto failed_removal;
1566 	}
1567 	nr_isolate_pageblock = ret;
1568 
1569 	arg.start_pfn = start_pfn;
1570 	arg.nr_pages = nr_pages;
1571 	node_states_check_changes_offline(nr_pages, zone, &arg);
1572 
1573 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1574 	ret = notifier_to_errno(ret);
1575 	if (ret) {
1576 		reason = "notifier failure";
1577 		goto failed_removal_isolated;
1578 	}
1579 
1580 	do {
1581 		for (pfn = start_pfn; pfn;) {
1582 			if (signal_pending(current)) {
1583 				ret = -EINTR;
1584 				reason = "signal backoff";
1585 				goto failed_removal_isolated;
1586 			}
1587 
1588 			cond_resched();
1589 			lru_add_drain_all();
1590 
1591 			pfn = scan_movable_pages(pfn, end_pfn);
1592 			if (pfn) {
1593 				/*
1594 				 * TODO: fatal migration failures should bail
1595 				 * out
1596 				 */
1597 				do_migrate_range(pfn, end_pfn);
1598 			}
1599 		}
1600 
1601 		/*
1602 		 * Dissolve free hugepages in the memory block before doing
1603 		 * offlining actually in order to make hugetlbfs's object
1604 		 * counting consistent.
1605 		 */
1606 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1607 		if (ret) {
1608 			reason = "failure to dissolve huge pages";
1609 			goto failed_removal_isolated;
1610 		}
1611 		/* check again */
1612 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1613 					    NULL, check_pages_isolated_cb);
1614 	} while (ret);
1615 
1616 	/* Ok, all of our target is isolated.
1617 	   We cannot do rollback at this point. */
1618 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1619 			      &offlined_pages, offline_isolated_pages_cb);
1620 	pr_info("Offlined Pages %ld\n", offlined_pages);
1621 	/*
1622 	 * Onlining will reset pagetype flags and makes migrate type
1623 	 * MOVABLE, so just need to decrease the number of isolated
1624 	 * pageblocks zone counter here.
1625 	 */
1626 	spin_lock_irqsave(&zone->lock, flags);
1627 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1628 	spin_unlock_irqrestore(&zone->lock, flags);
1629 
1630 	/* removal success */
1631 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1632 	zone->present_pages -= offlined_pages;
1633 
1634 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1635 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1636 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1637 
1638 	init_per_zone_wmark_min();
1639 
1640 	if (!populated_zone(zone)) {
1641 		zone_pcp_reset(zone);
1642 		build_all_zonelists(NULL);
1643 	} else
1644 		zone_pcp_update(zone);
1645 
1646 	node_states_clear_node(node, &arg);
1647 	if (arg.status_change_nid >= 0) {
1648 		kswapd_stop(node);
1649 		kcompactd_stop(node);
1650 	}
1651 
1652 	vm_total_pages = nr_free_pagecache_pages();
1653 	writeback_set_ratelimit();
1654 
1655 	memory_notify(MEM_OFFLINE, &arg);
1656 	mem_hotplug_done();
1657 	return 0;
1658 
1659 failed_removal_isolated:
1660 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1661 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1662 failed_removal:
1663 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1664 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1665 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1666 		 reason);
1667 	/* pushback to free area */
1668 	mem_hotplug_done();
1669 	return ret;
1670 }
1671 
1672 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1673 {
1674 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1675 }
1676 #endif /* CONFIG_MEMORY_HOTREMOVE */
1677 
1678 /**
1679  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1680  * @start_pfn: start pfn of the memory range
1681  * @end_pfn: end pfn of the memory range
1682  * @arg: argument passed to func
1683  * @func: callback for each memory section walked
1684  *
1685  * This function walks through all present mem sections in range
1686  * [start_pfn, end_pfn) and call func on each mem section.
1687  *
1688  * Returns the return value of func.
1689  */
1690 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1691 		void *arg, int (*func)(struct memory_block *, void *))
1692 {
1693 	struct memory_block *mem = NULL;
1694 	struct mem_section *section;
1695 	unsigned long pfn, section_nr;
1696 	int ret;
1697 
1698 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1699 		section_nr = pfn_to_section_nr(pfn);
1700 		if (!present_section_nr(section_nr))
1701 			continue;
1702 
1703 		section = __nr_to_section(section_nr);
1704 		/* same memblock? */
1705 		if (mem)
1706 			if ((section_nr >= mem->start_section_nr) &&
1707 			    (section_nr <= mem->end_section_nr))
1708 				continue;
1709 
1710 		mem = find_memory_block_hinted(section, mem);
1711 		if (!mem)
1712 			continue;
1713 
1714 		ret = func(mem, arg);
1715 		if (ret) {
1716 			kobject_put(&mem->dev.kobj);
1717 			return ret;
1718 		}
1719 	}
1720 
1721 	if (mem)
1722 		kobject_put(&mem->dev.kobj);
1723 
1724 	return 0;
1725 }
1726 
1727 #ifdef CONFIG_MEMORY_HOTREMOVE
1728 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1729 {
1730 	int ret = !is_memblock_offlined(mem);
1731 
1732 	if (unlikely(ret)) {
1733 		phys_addr_t beginpa, endpa;
1734 
1735 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1736 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1737 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1738 			&beginpa, &endpa);
1739 	}
1740 
1741 	return ret;
1742 }
1743 
1744 static int check_cpu_on_node(pg_data_t *pgdat)
1745 {
1746 	int cpu;
1747 
1748 	for_each_present_cpu(cpu) {
1749 		if (cpu_to_node(cpu) == pgdat->node_id)
1750 			/*
1751 			 * the cpu on this node isn't removed, and we can't
1752 			 * offline this node.
1753 			 */
1754 			return -EBUSY;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * try_offline_node
1762  * @nid: the node ID
1763  *
1764  * Offline a node if all memory sections and cpus of the node are removed.
1765  *
1766  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1767  * and online/offline operations before this call.
1768  */
1769 void try_offline_node(int nid)
1770 {
1771 	pg_data_t *pgdat = NODE_DATA(nid);
1772 	unsigned long start_pfn = pgdat->node_start_pfn;
1773 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1774 	unsigned long pfn;
1775 
1776 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1777 		unsigned long section_nr = pfn_to_section_nr(pfn);
1778 
1779 		if (!present_section_nr(section_nr))
1780 			continue;
1781 
1782 		if (pfn_to_nid(pfn) != nid)
1783 			continue;
1784 
1785 		/*
1786 		 * some memory sections of this node are not removed, and we
1787 		 * can't offline node now.
1788 		 */
1789 		return;
1790 	}
1791 
1792 	if (check_cpu_on_node(pgdat))
1793 		return;
1794 
1795 	/*
1796 	 * all memory/cpu of this node are removed, we can offline this
1797 	 * node now.
1798 	 */
1799 	node_set_offline(nid);
1800 	unregister_one_node(nid);
1801 }
1802 EXPORT_SYMBOL(try_offline_node);
1803 
1804 static void __release_memory_resource(resource_size_t start,
1805 				      resource_size_t size)
1806 {
1807 	int ret;
1808 
1809 	/*
1810 	 * When removing memory in the same granularity as it was added,
1811 	 * this function never fails. It might only fail if resources
1812 	 * have to be adjusted or split. We'll ignore the error, as
1813 	 * removing of memory cannot fail.
1814 	 */
1815 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1816 	if (ret) {
1817 		resource_size_t endres = start + size - 1;
1818 
1819 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1820 			&start, &endres, ret);
1821 	}
1822 }
1823 
1824 /**
1825  * remove_memory
1826  * @nid: the node ID
1827  * @start: physical address of the region to remove
1828  * @size: size of the region to remove
1829  *
1830  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1831  * and online/offline operations before this call, as required by
1832  * try_offline_node().
1833  */
1834 void __ref __remove_memory(int nid, u64 start, u64 size)
1835 {
1836 	int ret;
1837 
1838 	BUG_ON(check_hotplug_memory_range(start, size));
1839 
1840 	mem_hotplug_begin();
1841 
1842 	/*
1843 	 * All memory blocks must be offlined before removing memory.  Check
1844 	 * whether all memory blocks in question are offline and trigger a BUG()
1845 	 * if this is not the case.
1846 	 */
1847 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1848 				check_memblock_offlined_cb);
1849 	if (ret)
1850 		BUG();
1851 
1852 	/* remove memmap entry */
1853 	firmware_map_remove(start, start + size, "System RAM");
1854 	memblock_free(start, size);
1855 	memblock_remove(start, size);
1856 
1857 	arch_remove_memory(nid, start, size, NULL);
1858 	__release_memory_resource(start, size);
1859 
1860 	try_offline_node(nid);
1861 
1862 	mem_hotplug_done();
1863 }
1864 
1865 void remove_memory(int nid, u64 start, u64 size)
1866 {
1867 	lock_device_hotplug();
1868 	__remove_memory(nid, start, size);
1869 	unlock_device_hotplug();
1870 }
1871 EXPORT_SYMBOL_GPL(remove_memory);
1872 #endif /* CONFIG_MEMORY_HOTREMOVE */
1873