xref: /openbmc/linux/mm/memory_hotplug.c (revision 4e1a33b1)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36 #include <linux/compaction.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * online_page_callback contains pointer to current page onlining function.
44  * Initially it is generic_online_page(). If it is required it could be
45  * changed by calling set_online_page_callback() for callback registration
46  * and restore_online_page_callback() for generic callback restore.
47  */
48 
49 static void generic_online_page(struct page *page);
50 
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53 
54 /* The same as the cpu_hotplug lock, but for memory hotplug. */
55 static struct {
56 	struct task_struct *active_writer;
57 	struct mutex lock; /* Synchronizes accesses to refcount, */
58 	/*
59 	 * Also blocks the new readers during
60 	 * an ongoing mem hotplug operation.
61 	 */
62 	int refcount;
63 
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 	struct lockdep_map dep_map;
66 #endif
67 } mem_hotplug = {
68 	.active_writer = NULL,
69 	.lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
70 	.refcount = 0,
71 #ifdef CONFIG_DEBUG_LOCK_ALLOC
72 	.dep_map = {.name = "mem_hotplug.lock" },
73 #endif
74 };
75 
76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
78 #define memhp_lock_acquire()      lock_map_acquire(&mem_hotplug.dep_map)
79 #define memhp_lock_release()      lock_map_release(&mem_hotplug.dep_map)
80 
81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
82 bool memhp_auto_online;
83 #else
84 bool memhp_auto_online = true;
85 #endif
86 EXPORT_SYMBOL_GPL(memhp_auto_online);
87 
88 static int __init setup_memhp_default_state(char *str)
89 {
90 	if (!strcmp(str, "online"))
91 		memhp_auto_online = true;
92 	else if (!strcmp(str, "offline"))
93 		memhp_auto_online = false;
94 
95 	return 1;
96 }
97 __setup("memhp_default_state=", setup_memhp_default_state);
98 
99 void get_online_mems(void)
100 {
101 	might_sleep();
102 	if (mem_hotplug.active_writer == current)
103 		return;
104 	memhp_lock_acquire_read();
105 	mutex_lock(&mem_hotplug.lock);
106 	mem_hotplug.refcount++;
107 	mutex_unlock(&mem_hotplug.lock);
108 
109 }
110 
111 void put_online_mems(void)
112 {
113 	if (mem_hotplug.active_writer == current)
114 		return;
115 	mutex_lock(&mem_hotplug.lock);
116 
117 	if (WARN_ON(!mem_hotplug.refcount))
118 		mem_hotplug.refcount++; /* try to fix things up */
119 
120 	if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
121 		wake_up_process(mem_hotplug.active_writer);
122 	mutex_unlock(&mem_hotplug.lock);
123 	memhp_lock_release();
124 
125 }
126 
127 void mem_hotplug_begin(void)
128 {
129 	assert_held_device_hotplug();
130 
131 	mem_hotplug.active_writer = current;
132 
133 	memhp_lock_acquire();
134 	for (;;) {
135 		mutex_lock(&mem_hotplug.lock);
136 		if (likely(!mem_hotplug.refcount))
137 			break;
138 		__set_current_state(TASK_UNINTERRUPTIBLE);
139 		mutex_unlock(&mem_hotplug.lock);
140 		schedule();
141 	}
142 }
143 
144 void mem_hotplug_done(void)
145 {
146 	mem_hotplug.active_writer = NULL;
147 	mutex_unlock(&mem_hotplug.lock);
148 	memhp_lock_release();
149 }
150 
151 /* add this memory to iomem resource */
152 static struct resource *register_memory_resource(u64 start, u64 size)
153 {
154 	struct resource *res;
155 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
156 	if (!res)
157 		return ERR_PTR(-ENOMEM);
158 
159 	res->name = "System RAM";
160 	res->start = start;
161 	res->end = start + size - 1;
162 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
163 	if (request_resource(&iomem_resource, res) < 0) {
164 		pr_debug("System RAM resource %pR cannot be added\n", res);
165 		kfree(res);
166 		return ERR_PTR(-EEXIST);
167 	}
168 	return res;
169 }
170 
171 static void release_memory_resource(struct resource *res)
172 {
173 	if (!res)
174 		return;
175 	release_resource(res);
176 	kfree(res);
177 	return;
178 }
179 
180 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
181 void get_page_bootmem(unsigned long info,  struct page *page,
182 		      unsigned long type)
183 {
184 	page->freelist = (void *)type;
185 	SetPagePrivate(page);
186 	set_page_private(page, info);
187 	page_ref_inc(page);
188 }
189 
190 void put_page_bootmem(struct page *page)
191 {
192 	unsigned long type;
193 
194 	type = (unsigned long) page->freelist;
195 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
196 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
197 
198 	if (page_ref_dec_return(page) == 1) {
199 		page->freelist = NULL;
200 		ClearPagePrivate(page);
201 		set_page_private(page, 0);
202 		INIT_LIST_HEAD(&page->lru);
203 		free_reserved_page(page);
204 	}
205 }
206 
207 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
208 #ifndef CONFIG_SPARSEMEM_VMEMMAP
209 static void register_page_bootmem_info_section(unsigned long start_pfn)
210 {
211 	unsigned long *usemap, mapsize, section_nr, i;
212 	struct mem_section *ms;
213 	struct page *page, *memmap;
214 
215 	section_nr = pfn_to_section_nr(start_pfn);
216 	ms = __nr_to_section(section_nr);
217 
218 	/* Get section's memmap address */
219 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
220 
221 	/*
222 	 * Get page for the memmap's phys address
223 	 * XXX: need more consideration for sparse_vmemmap...
224 	 */
225 	page = virt_to_page(memmap);
226 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
227 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
228 
229 	/* remember memmap's page */
230 	for (i = 0; i < mapsize; i++, page++)
231 		get_page_bootmem(section_nr, page, SECTION_INFO);
232 
233 	usemap = __nr_to_section(section_nr)->pageblock_flags;
234 	page = virt_to_page(usemap);
235 
236 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
237 
238 	for (i = 0; i < mapsize; i++, page++)
239 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
240 
241 }
242 #else /* CONFIG_SPARSEMEM_VMEMMAP */
243 static void register_page_bootmem_info_section(unsigned long start_pfn)
244 {
245 	unsigned long *usemap, mapsize, section_nr, i;
246 	struct mem_section *ms;
247 	struct page *page, *memmap;
248 
249 	if (!pfn_valid(start_pfn))
250 		return;
251 
252 	section_nr = pfn_to_section_nr(start_pfn);
253 	ms = __nr_to_section(section_nr);
254 
255 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
256 
257 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
258 
259 	usemap = __nr_to_section(section_nr)->pageblock_flags;
260 	page = virt_to_page(usemap);
261 
262 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
263 
264 	for (i = 0; i < mapsize; i++, page++)
265 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
266 }
267 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
268 
269 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
270 {
271 	unsigned long i, pfn, end_pfn, nr_pages;
272 	int node = pgdat->node_id;
273 	struct page *page;
274 
275 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
276 	page = virt_to_page(pgdat);
277 
278 	for (i = 0; i < nr_pages; i++, page++)
279 		get_page_bootmem(node, page, NODE_INFO);
280 
281 	pfn = pgdat->node_start_pfn;
282 	end_pfn = pgdat_end_pfn(pgdat);
283 
284 	/* register section info */
285 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
286 		/*
287 		 * Some platforms can assign the same pfn to multiple nodes - on
288 		 * node0 as well as nodeN.  To avoid registering a pfn against
289 		 * multiple nodes we check that this pfn does not already
290 		 * reside in some other nodes.
291 		 */
292 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
293 			register_page_bootmem_info_section(pfn);
294 	}
295 }
296 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
297 
298 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
299 				     unsigned long end_pfn)
300 {
301 	unsigned long old_zone_end_pfn;
302 
303 	zone_span_writelock(zone);
304 
305 	old_zone_end_pfn = zone_end_pfn(zone);
306 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
307 		zone->zone_start_pfn = start_pfn;
308 
309 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
310 				zone->zone_start_pfn;
311 
312 	zone_span_writeunlock(zone);
313 }
314 
315 static void resize_zone(struct zone *zone, unsigned long start_pfn,
316 		unsigned long end_pfn)
317 {
318 	zone_span_writelock(zone);
319 
320 	if (end_pfn - start_pfn) {
321 		zone->zone_start_pfn = start_pfn;
322 		zone->spanned_pages = end_pfn - start_pfn;
323 	} else {
324 		/*
325 		 * make it consist as free_area_init_core(),
326 		 * if spanned_pages = 0, then keep start_pfn = 0
327 		 */
328 		zone->zone_start_pfn = 0;
329 		zone->spanned_pages = 0;
330 	}
331 
332 	zone_span_writeunlock(zone);
333 }
334 
335 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
336 		unsigned long end_pfn)
337 {
338 	enum zone_type zid = zone_idx(zone);
339 	int nid = zone->zone_pgdat->node_id;
340 	unsigned long pfn;
341 
342 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
343 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
344 }
345 
346 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
347  * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
348 static int __ref ensure_zone_is_initialized(struct zone *zone,
349 			unsigned long start_pfn, unsigned long num_pages)
350 {
351 	if (!zone_is_initialized(zone))
352 		return init_currently_empty_zone(zone, start_pfn, num_pages);
353 
354 	return 0;
355 }
356 
357 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
358 		unsigned long start_pfn, unsigned long end_pfn)
359 {
360 	int ret;
361 	unsigned long flags;
362 	unsigned long z1_start_pfn;
363 
364 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
365 	if (ret)
366 		return ret;
367 
368 	pgdat_resize_lock(z1->zone_pgdat, &flags);
369 
370 	/* can't move pfns which are higher than @z2 */
371 	if (end_pfn > zone_end_pfn(z2))
372 		goto out_fail;
373 	/* the move out part must be at the left most of @z2 */
374 	if (start_pfn > z2->zone_start_pfn)
375 		goto out_fail;
376 	/* must included/overlap */
377 	if (end_pfn <= z2->zone_start_pfn)
378 		goto out_fail;
379 
380 	/* use start_pfn for z1's start_pfn if z1 is empty */
381 	if (!zone_is_empty(z1))
382 		z1_start_pfn = z1->zone_start_pfn;
383 	else
384 		z1_start_pfn = start_pfn;
385 
386 	resize_zone(z1, z1_start_pfn, end_pfn);
387 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
388 
389 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
390 
391 	fix_zone_id(z1, start_pfn, end_pfn);
392 
393 	return 0;
394 out_fail:
395 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
396 	return -1;
397 }
398 
399 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
400 		unsigned long start_pfn, unsigned long end_pfn)
401 {
402 	int ret;
403 	unsigned long flags;
404 	unsigned long z2_end_pfn;
405 
406 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
407 	if (ret)
408 		return ret;
409 
410 	pgdat_resize_lock(z1->zone_pgdat, &flags);
411 
412 	/* can't move pfns which are lower than @z1 */
413 	if (z1->zone_start_pfn > start_pfn)
414 		goto out_fail;
415 	/* the move out part mast at the right most of @z1 */
416 	if (zone_end_pfn(z1) >  end_pfn)
417 		goto out_fail;
418 	/* must included/overlap */
419 	if (start_pfn >= zone_end_pfn(z1))
420 		goto out_fail;
421 
422 	/* use end_pfn for z2's end_pfn if z2 is empty */
423 	if (!zone_is_empty(z2))
424 		z2_end_pfn = zone_end_pfn(z2);
425 	else
426 		z2_end_pfn = end_pfn;
427 
428 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
429 	resize_zone(z2, start_pfn, z2_end_pfn);
430 
431 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
432 
433 	fix_zone_id(z2, start_pfn, end_pfn);
434 
435 	return 0;
436 out_fail:
437 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
438 	return -1;
439 }
440 
441 static struct zone * __meminit move_pfn_range(int zone_shift,
442 		unsigned long start_pfn, unsigned long end_pfn)
443 {
444 	struct zone *zone = page_zone(pfn_to_page(start_pfn));
445 	int ret = 0;
446 
447 	if (zone_shift < 0)
448 		ret = move_pfn_range_left(zone + zone_shift, zone,
449 					  start_pfn, end_pfn);
450 	else if (zone_shift)
451 		ret = move_pfn_range_right(zone, zone + zone_shift,
452 					   start_pfn, end_pfn);
453 
454 	if (ret)
455 		return NULL;
456 
457 	return zone + zone_shift;
458 }
459 
460 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
461 				      unsigned long end_pfn)
462 {
463 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
464 
465 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
466 		pgdat->node_start_pfn = start_pfn;
467 
468 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
469 					pgdat->node_start_pfn;
470 }
471 
472 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
473 {
474 	struct pglist_data *pgdat = zone->zone_pgdat;
475 	int nr_pages = PAGES_PER_SECTION;
476 	int nid = pgdat->node_id;
477 	int zone_type;
478 	unsigned long flags, pfn;
479 	int ret;
480 
481 	zone_type = zone - pgdat->node_zones;
482 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
483 	if (ret)
484 		return ret;
485 
486 	pgdat_resize_lock(zone->zone_pgdat, &flags);
487 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
488 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
489 			phys_start_pfn + nr_pages);
490 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
491 	memmap_init_zone(nr_pages, nid, zone_type,
492 			 phys_start_pfn, MEMMAP_HOTPLUG);
493 
494 	/* online_page_range is called later and expects pages reserved */
495 	for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
496 		if (!pfn_valid(pfn))
497 			continue;
498 
499 		SetPageReserved(pfn_to_page(pfn));
500 	}
501 	return 0;
502 }
503 
504 static int __meminit __add_section(int nid, struct zone *zone,
505 					unsigned long phys_start_pfn)
506 {
507 	int ret;
508 
509 	if (pfn_valid(phys_start_pfn))
510 		return -EEXIST;
511 
512 	ret = sparse_add_one_section(zone, phys_start_pfn);
513 
514 	if (ret < 0)
515 		return ret;
516 
517 	ret = __add_zone(zone, phys_start_pfn);
518 
519 	if (ret < 0)
520 		return ret;
521 
522 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
523 }
524 
525 /*
526  * Reasonably generic function for adding memory.  It is
527  * expected that archs that support memory hotplug will
528  * call this function after deciding the zone to which to
529  * add the new pages.
530  */
531 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
532 			unsigned long nr_pages)
533 {
534 	unsigned long i;
535 	int err = 0;
536 	int start_sec, end_sec;
537 	struct vmem_altmap *altmap;
538 
539 	clear_zone_contiguous(zone);
540 
541 	/* during initialize mem_map, align hot-added range to section */
542 	start_sec = pfn_to_section_nr(phys_start_pfn);
543 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
544 
545 	altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
546 	if (altmap) {
547 		/*
548 		 * Validate altmap is within bounds of the total request
549 		 */
550 		if (altmap->base_pfn != phys_start_pfn
551 				|| vmem_altmap_offset(altmap) > nr_pages) {
552 			pr_warn_once("memory add fail, invalid altmap\n");
553 			err = -EINVAL;
554 			goto out;
555 		}
556 		altmap->alloc = 0;
557 	}
558 
559 	for (i = start_sec; i <= end_sec; i++) {
560 		err = __add_section(nid, zone, section_nr_to_pfn(i));
561 
562 		/*
563 		 * EEXIST is finally dealt with by ioresource collision
564 		 * check. see add_memory() => register_memory_resource()
565 		 * Warning will be printed if there is collision.
566 		 */
567 		if (err && (err != -EEXIST))
568 			break;
569 		err = 0;
570 	}
571 	vmemmap_populate_print_last();
572 out:
573 	set_zone_contiguous(zone);
574 	return err;
575 }
576 EXPORT_SYMBOL_GPL(__add_pages);
577 
578 #ifdef CONFIG_MEMORY_HOTREMOVE
579 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
580 static int find_smallest_section_pfn(int nid, struct zone *zone,
581 				     unsigned long start_pfn,
582 				     unsigned long end_pfn)
583 {
584 	struct mem_section *ms;
585 
586 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
587 		ms = __pfn_to_section(start_pfn);
588 
589 		if (unlikely(!valid_section(ms)))
590 			continue;
591 
592 		if (unlikely(pfn_to_nid(start_pfn) != nid))
593 			continue;
594 
595 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
596 			continue;
597 
598 		return start_pfn;
599 	}
600 
601 	return 0;
602 }
603 
604 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
605 static int find_biggest_section_pfn(int nid, struct zone *zone,
606 				    unsigned long start_pfn,
607 				    unsigned long end_pfn)
608 {
609 	struct mem_section *ms;
610 	unsigned long pfn;
611 
612 	/* pfn is the end pfn of a memory section. */
613 	pfn = end_pfn - 1;
614 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
615 		ms = __pfn_to_section(pfn);
616 
617 		if (unlikely(!valid_section(ms)))
618 			continue;
619 
620 		if (unlikely(pfn_to_nid(pfn) != nid))
621 			continue;
622 
623 		if (zone && zone != page_zone(pfn_to_page(pfn)))
624 			continue;
625 
626 		return pfn;
627 	}
628 
629 	return 0;
630 }
631 
632 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
633 			     unsigned long end_pfn)
634 {
635 	unsigned long zone_start_pfn = zone->zone_start_pfn;
636 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
637 	unsigned long zone_end_pfn = z;
638 	unsigned long pfn;
639 	struct mem_section *ms;
640 	int nid = zone_to_nid(zone);
641 
642 	zone_span_writelock(zone);
643 	if (zone_start_pfn == start_pfn) {
644 		/*
645 		 * If the section is smallest section in the zone, it need
646 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
647 		 * In this case, we find second smallest valid mem_section
648 		 * for shrinking zone.
649 		 */
650 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
651 						zone_end_pfn);
652 		if (pfn) {
653 			zone->zone_start_pfn = pfn;
654 			zone->spanned_pages = zone_end_pfn - pfn;
655 		}
656 	} else if (zone_end_pfn == end_pfn) {
657 		/*
658 		 * If the section is biggest section in the zone, it need
659 		 * shrink zone->spanned_pages.
660 		 * In this case, we find second biggest valid mem_section for
661 		 * shrinking zone.
662 		 */
663 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
664 					       start_pfn);
665 		if (pfn)
666 			zone->spanned_pages = pfn - zone_start_pfn + 1;
667 	}
668 
669 	/*
670 	 * The section is not biggest or smallest mem_section in the zone, it
671 	 * only creates a hole in the zone. So in this case, we need not
672 	 * change the zone. But perhaps, the zone has only hole data. Thus
673 	 * it check the zone has only hole or not.
674 	 */
675 	pfn = zone_start_pfn;
676 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
677 		ms = __pfn_to_section(pfn);
678 
679 		if (unlikely(!valid_section(ms)))
680 			continue;
681 
682 		if (page_zone(pfn_to_page(pfn)) != zone)
683 			continue;
684 
685 		 /* If the section is current section, it continues the loop */
686 		if (start_pfn == pfn)
687 			continue;
688 
689 		/* If we find valid section, we have nothing to do */
690 		zone_span_writeunlock(zone);
691 		return;
692 	}
693 
694 	/* The zone has no valid section */
695 	zone->zone_start_pfn = 0;
696 	zone->spanned_pages = 0;
697 	zone_span_writeunlock(zone);
698 }
699 
700 static void shrink_pgdat_span(struct pglist_data *pgdat,
701 			      unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
704 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
705 	unsigned long pgdat_end_pfn = p;
706 	unsigned long pfn;
707 	struct mem_section *ms;
708 	int nid = pgdat->node_id;
709 
710 	if (pgdat_start_pfn == start_pfn) {
711 		/*
712 		 * If the section is smallest section in the pgdat, it need
713 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
714 		 * In this case, we find second smallest valid mem_section
715 		 * for shrinking zone.
716 		 */
717 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
718 						pgdat_end_pfn);
719 		if (pfn) {
720 			pgdat->node_start_pfn = pfn;
721 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
722 		}
723 	} else if (pgdat_end_pfn == end_pfn) {
724 		/*
725 		 * If the section is biggest section in the pgdat, it need
726 		 * shrink pgdat->node_spanned_pages.
727 		 * In this case, we find second biggest valid mem_section for
728 		 * shrinking zone.
729 		 */
730 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
731 					       start_pfn);
732 		if (pfn)
733 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
734 	}
735 
736 	/*
737 	 * If the section is not biggest or smallest mem_section in the pgdat,
738 	 * it only creates a hole in the pgdat. So in this case, we need not
739 	 * change the pgdat.
740 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
741 	 * has only hole or not.
742 	 */
743 	pfn = pgdat_start_pfn;
744 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
745 		ms = __pfn_to_section(pfn);
746 
747 		if (unlikely(!valid_section(ms)))
748 			continue;
749 
750 		if (pfn_to_nid(pfn) != nid)
751 			continue;
752 
753 		 /* If the section is current section, it continues the loop */
754 		if (start_pfn == pfn)
755 			continue;
756 
757 		/* If we find valid section, we have nothing to do */
758 		return;
759 	}
760 
761 	/* The pgdat has no valid section */
762 	pgdat->node_start_pfn = 0;
763 	pgdat->node_spanned_pages = 0;
764 }
765 
766 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
767 {
768 	struct pglist_data *pgdat = zone->zone_pgdat;
769 	int nr_pages = PAGES_PER_SECTION;
770 	int zone_type;
771 	unsigned long flags;
772 
773 	zone_type = zone - pgdat->node_zones;
774 
775 	pgdat_resize_lock(zone->zone_pgdat, &flags);
776 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
777 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
778 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
779 }
780 
781 static int __remove_section(struct zone *zone, struct mem_section *ms,
782 		unsigned long map_offset)
783 {
784 	unsigned long start_pfn;
785 	int scn_nr;
786 	int ret = -EINVAL;
787 
788 	if (!valid_section(ms))
789 		return ret;
790 
791 	ret = unregister_memory_section(ms);
792 	if (ret)
793 		return ret;
794 
795 	scn_nr = __section_nr(ms);
796 	start_pfn = section_nr_to_pfn(scn_nr);
797 	__remove_zone(zone, start_pfn);
798 
799 	sparse_remove_one_section(zone, ms, map_offset);
800 	return 0;
801 }
802 
803 /**
804  * __remove_pages() - remove sections of pages from a zone
805  * @zone: zone from which pages need to be removed
806  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
807  * @nr_pages: number of pages to remove (must be multiple of section size)
808  *
809  * Generic helper function to remove section mappings and sysfs entries
810  * for the section of the memory we are removing. Caller needs to make
811  * sure that pages are marked reserved and zones are adjust properly by
812  * calling offline_pages().
813  */
814 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
815 		 unsigned long nr_pages)
816 {
817 	unsigned long i;
818 	unsigned long map_offset = 0;
819 	int sections_to_remove, ret = 0;
820 
821 	/* In the ZONE_DEVICE case device driver owns the memory region */
822 	if (is_dev_zone(zone)) {
823 		struct page *page = pfn_to_page(phys_start_pfn);
824 		struct vmem_altmap *altmap;
825 
826 		altmap = to_vmem_altmap((unsigned long) page);
827 		if (altmap)
828 			map_offset = vmem_altmap_offset(altmap);
829 	} else {
830 		resource_size_t start, size;
831 
832 		start = phys_start_pfn << PAGE_SHIFT;
833 		size = nr_pages * PAGE_SIZE;
834 
835 		ret = release_mem_region_adjustable(&iomem_resource, start,
836 					size);
837 		if (ret) {
838 			resource_size_t endres = start + size - 1;
839 
840 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
841 					&start, &endres, ret);
842 		}
843 	}
844 
845 	clear_zone_contiguous(zone);
846 
847 	/*
848 	 * We can only remove entire sections
849 	 */
850 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
851 	BUG_ON(nr_pages % PAGES_PER_SECTION);
852 
853 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
854 	for (i = 0; i < sections_to_remove; i++) {
855 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
856 
857 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
858 		map_offset = 0;
859 		if (ret)
860 			break;
861 	}
862 
863 	set_zone_contiguous(zone);
864 
865 	return ret;
866 }
867 #endif /* CONFIG_MEMORY_HOTREMOVE */
868 
869 int set_online_page_callback(online_page_callback_t callback)
870 {
871 	int rc = -EINVAL;
872 
873 	get_online_mems();
874 	mutex_lock(&online_page_callback_lock);
875 
876 	if (online_page_callback == generic_online_page) {
877 		online_page_callback = callback;
878 		rc = 0;
879 	}
880 
881 	mutex_unlock(&online_page_callback_lock);
882 	put_online_mems();
883 
884 	return rc;
885 }
886 EXPORT_SYMBOL_GPL(set_online_page_callback);
887 
888 int restore_online_page_callback(online_page_callback_t callback)
889 {
890 	int rc = -EINVAL;
891 
892 	get_online_mems();
893 	mutex_lock(&online_page_callback_lock);
894 
895 	if (online_page_callback == callback) {
896 		online_page_callback = generic_online_page;
897 		rc = 0;
898 	}
899 
900 	mutex_unlock(&online_page_callback_lock);
901 	put_online_mems();
902 
903 	return rc;
904 }
905 EXPORT_SYMBOL_GPL(restore_online_page_callback);
906 
907 void __online_page_set_limits(struct page *page)
908 {
909 }
910 EXPORT_SYMBOL_GPL(__online_page_set_limits);
911 
912 void __online_page_increment_counters(struct page *page)
913 {
914 	adjust_managed_page_count(page, 1);
915 }
916 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
917 
918 void __online_page_free(struct page *page)
919 {
920 	__free_reserved_page(page);
921 }
922 EXPORT_SYMBOL_GPL(__online_page_free);
923 
924 static void generic_online_page(struct page *page)
925 {
926 	__online_page_set_limits(page);
927 	__online_page_increment_counters(page);
928 	__online_page_free(page);
929 }
930 
931 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
932 			void *arg)
933 {
934 	unsigned long i;
935 	unsigned long onlined_pages = *(unsigned long *)arg;
936 	struct page *page;
937 	if (PageReserved(pfn_to_page(start_pfn)))
938 		for (i = 0; i < nr_pages; i++) {
939 			page = pfn_to_page(start_pfn + i);
940 			(*online_page_callback)(page);
941 			onlined_pages++;
942 		}
943 	*(unsigned long *)arg = onlined_pages;
944 	return 0;
945 }
946 
947 #ifdef CONFIG_MOVABLE_NODE
948 /*
949  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
950  * normal memory.
951  */
952 static bool can_online_high_movable(struct zone *zone)
953 {
954 	return true;
955 }
956 #else /* CONFIG_MOVABLE_NODE */
957 /* ensure every online node has NORMAL memory */
958 static bool can_online_high_movable(struct zone *zone)
959 {
960 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
961 }
962 #endif /* CONFIG_MOVABLE_NODE */
963 
964 /* check which state of node_states will be changed when online memory */
965 static void node_states_check_changes_online(unsigned long nr_pages,
966 	struct zone *zone, struct memory_notify *arg)
967 {
968 	int nid = zone_to_nid(zone);
969 	enum zone_type zone_last = ZONE_NORMAL;
970 
971 	/*
972 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
973 	 * contains nodes which have zones of 0...ZONE_NORMAL,
974 	 * set zone_last to ZONE_NORMAL.
975 	 *
976 	 * If we don't have HIGHMEM nor movable node,
977 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
978 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
979 	 */
980 	if (N_MEMORY == N_NORMAL_MEMORY)
981 		zone_last = ZONE_MOVABLE;
982 
983 	/*
984 	 * if the memory to be online is in a zone of 0...zone_last, and
985 	 * the zones of 0...zone_last don't have memory before online, we will
986 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
987 	 * the memory is online.
988 	 */
989 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
990 		arg->status_change_nid_normal = nid;
991 	else
992 		arg->status_change_nid_normal = -1;
993 
994 #ifdef CONFIG_HIGHMEM
995 	/*
996 	 * If we have movable node, node_states[N_HIGH_MEMORY]
997 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
998 	 * set zone_last to ZONE_HIGHMEM.
999 	 *
1000 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1001 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1002 	 * set zone_last to ZONE_MOVABLE.
1003 	 */
1004 	zone_last = ZONE_HIGHMEM;
1005 	if (N_MEMORY == N_HIGH_MEMORY)
1006 		zone_last = ZONE_MOVABLE;
1007 
1008 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
1009 		arg->status_change_nid_high = nid;
1010 	else
1011 		arg->status_change_nid_high = -1;
1012 #else
1013 	arg->status_change_nid_high = arg->status_change_nid_normal;
1014 #endif
1015 
1016 	/*
1017 	 * if the node don't have memory befor online, we will need to
1018 	 * set the node to node_states[N_MEMORY] after the memory
1019 	 * is online.
1020 	 */
1021 	if (!node_state(nid, N_MEMORY))
1022 		arg->status_change_nid = nid;
1023 	else
1024 		arg->status_change_nid = -1;
1025 }
1026 
1027 static void node_states_set_node(int node, struct memory_notify *arg)
1028 {
1029 	if (arg->status_change_nid_normal >= 0)
1030 		node_set_state(node, N_NORMAL_MEMORY);
1031 
1032 	if (arg->status_change_nid_high >= 0)
1033 		node_set_state(node, N_HIGH_MEMORY);
1034 
1035 	node_set_state(node, N_MEMORY);
1036 }
1037 
1038 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages,
1039 		   enum zone_type target, int *zone_shift)
1040 {
1041 	struct zone *zone = page_zone(pfn_to_page(pfn));
1042 	enum zone_type idx = zone_idx(zone);
1043 	int i;
1044 
1045 	*zone_shift = 0;
1046 
1047 	if (idx < target) {
1048 		/* pages must be at end of current zone */
1049 		if (pfn + nr_pages != zone_end_pfn(zone))
1050 			return false;
1051 
1052 		/* no zones in use between current zone and target */
1053 		for (i = idx + 1; i < target; i++)
1054 			if (zone_is_initialized(zone - idx + i))
1055 				return false;
1056 	}
1057 
1058 	if (target < idx) {
1059 		/* pages must be at beginning of current zone */
1060 		if (pfn != zone->zone_start_pfn)
1061 			return false;
1062 
1063 		/* no zones in use between current zone and target */
1064 		for (i = target + 1; i < idx; i++)
1065 			if (zone_is_initialized(zone - idx + i))
1066 				return false;
1067 	}
1068 
1069 	*zone_shift = target - idx;
1070 	return true;
1071 }
1072 
1073 /* Must be protected by mem_hotplug_begin() */
1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1075 {
1076 	unsigned long flags;
1077 	unsigned long onlined_pages = 0;
1078 	struct zone *zone;
1079 	int need_zonelists_rebuild = 0;
1080 	int nid;
1081 	int ret;
1082 	struct memory_notify arg;
1083 	int zone_shift = 0;
1084 
1085 	/*
1086 	 * This doesn't need a lock to do pfn_to_page().
1087 	 * The section can't be removed here because of the
1088 	 * memory_block->state_mutex.
1089 	 */
1090 	zone = page_zone(pfn_to_page(pfn));
1091 
1092 	if ((zone_idx(zone) > ZONE_NORMAL ||
1093 	    online_type == MMOP_ONLINE_MOVABLE) &&
1094 	    !can_online_high_movable(zone))
1095 		return -EINVAL;
1096 
1097 	if (online_type == MMOP_ONLINE_KERNEL) {
1098 		if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift))
1099 			return -EINVAL;
1100 	} else if (online_type == MMOP_ONLINE_MOVABLE) {
1101 		if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift))
1102 			return -EINVAL;
1103 	}
1104 
1105 	zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages);
1106 	if (!zone)
1107 		return -EINVAL;
1108 
1109 	arg.start_pfn = pfn;
1110 	arg.nr_pages = nr_pages;
1111 	node_states_check_changes_online(nr_pages, zone, &arg);
1112 
1113 	nid = zone_to_nid(zone);
1114 
1115 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1116 	ret = notifier_to_errno(ret);
1117 	if (ret)
1118 		goto failed_addition;
1119 
1120 	/*
1121 	 * If this zone is not populated, then it is not in zonelist.
1122 	 * This means the page allocator ignores this zone.
1123 	 * So, zonelist must be updated after online.
1124 	 */
1125 	mutex_lock(&zonelists_mutex);
1126 	if (!populated_zone(zone)) {
1127 		need_zonelists_rebuild = 1;
1128 		build_all_zonelists(NULL, zone);
1129 	}
1130 
1131 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1132 		online_pages_range);
1133 	if (ret) {
1134 		if (need_zonelists_rebuild)
1135 			zone_pcp_reset(zone);
1136 		mutex_unlock(&zonelists_mutex);
1137 		goto failed_addition;
1138 	}
1139 
1140 	zone->present_pages += onlined_pages;
1141 
1142 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1143 	zone->zone_pgdat->node_present_pages += onlined_pages;
1144 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1145 
1146 	if (onlined_pages) {
1147 		node_states_set_node(nid, &arg);
1148 		if (need_zonelists_rebuild)
1149 			build_all_zonelists(NULL, NULL);
1150 		else
1151 			zone_pcp_update(zone);
1152 	}
1153 
1154 	mutex_unlock(&zonelists_mutex);
1155 
1156 	init_per_zone_wmark_min();
1157 
1158 	if (onlined_pages) {
1159 		kswapd_run(nid);
1160 		kcompactd_run(nid);
1161 	}
1162 
1163 	vm_total_pages = nr_free_pagecache_pages();
1164 
1165 	writeback_set_ratelimit();
1166 
1167 	if (onlined_pages)
1168 		memory_notify(MEM_ONLINE, &arg);
1169 	return 0;
1170 
1171 failed_addition:
1172 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1173 		 (unsigned long long) pfn << PAGE_SHIFT,
1174 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1175 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1176 	return ret;
1177 }
1178 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1179 
1180 static void reset_node_present_pages(pg_data_t *pgdat)
1181 {
1182 	struct zone *z;
1183 
1184 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1185 		z->present_pages = 0;
1186 
1187 	pgdat->node_present_pages = 0;
1188 }
1189 
1190 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1191 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1192 {
1193 	struct pglist_data *pgdat;
1194 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1195 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1196 	unsigned long start_pfn = PFN_DOWN(start);
1197 
1198 	pgdat = NODE_DATA(nid);
1199 	if (!pgdat) {
1200 		pgdat = arch_alloc_nodedata(nid);
1201 		if (!pgdat)
1202 			return NULL;
1203 
1204 		arch_refresh_nodedata(nid, pgdat);
1205 	} else {
1206 		/* Reset the nr_zones, order and classzone_idx before reuse */
1207 		pgdat->nr_zones = 0;
1208 		pgdat->kswapd_order = 0;
1209 		pgdat->kswapd_classzone_idx = 0;
1210 	}
1211 
1212 	/* we can use NODE_DATA(nid) from here */
1213 
1214 	/* init node's zones as empty zones, we don't have any present pages.*/
1215 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1216 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1217 
1218 	/*
1219 	 * The node we allocated has no zone fallback lists. For avoiding
1220 	 * to access not-initialized zonelist, build here.
1221 	 */
1222 	mutex_lock(&zonelists_mutex);
1223 	build_all_zonelists(pgdat, NULL);
1224 	mutex_unlock(&zonelists_mutex);
1225 
1226 	/*
1227 	 * zone->managed_pages is set to an approximate value in
1228 	 * free_area_init_core(), which will cause
1229 	 * /sys/device/system/node/nodeX/meminfo has wrong data.
1230 	 * So reset it to 0 before any memory is onlined.
1231 	 */
1232 	reset_node_managed_pages(pgdat);
1233 
1234 	/*
1235 	 * When memory is hot-added, all the memory is in offline state. So
1236 	 * clear all zones' present_pages because they will be updated in
1237 	 * online_pages() and offline_pages().
1238 	 */
1239 	reset_node_present_pages(pgdat);
1240 
1241 	return pgdat;
1242 }
1243 
1244 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1245 {
1246 	arch_refresh_nodedata(nid, NULL);
1247 	free_percpu(pgdat->per_cpu_nodestats);
1248 	arch_free_nodedata(pgdat);
1249 	return;
1250 }
1251 
1252 
1253 /**
1254  * try_online_node - online a node if offlined
1255  *
1256  * called by cpu_up() to online a node without onlined memory.
1257  */
1258 int try_online_node(int nid)
1259 {
1260 	pg_data_t	*pgdat;
1261 	int	ret;
1262 
1263 	if (node_online(nid))
1264 		return 0;
1265 
1266 	mem_hotplug_begin();
1267 	pgdat = hotadd_new_pgdat(nid, 0);
1268 	if (!pgdat) {
1269 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1270 		ret = -ENOMEM;
1271 		goto out;
1272 	}
1273 	node_set_online(nid);
1274 	ret = register_one_node(nid);
1275 	BUG_ON(ret);
1276 
1277 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1278 		mutex_lock(&zonelists_mutex);
1279 		build_all_zonelists(NULL, NULL);
1280 		mutex_unlock(&zonelists_mutex);
1281 	}
1282 
1283 out:
1284 	mem_hotplug_done();
1285 	return ret;
1286 }
1287 
1288 static int check_hotplug_memory_range(u64 start, u64 size)
1289 {
1290 	u64 start_pfn = PFN_DOWN(start);
1291 	u64 nr_pages = size >> PAGE_SHIFT;
1292 
1293 	/* Memory range must be aligned with section */
1294 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1295 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1296 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1297 				(unsigned long long)start,
1298 				(unsigned long long)size);
1299 		return -EINVAL;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * If movable zone has already been setup, newly added memory should be check.
1307  * If its address is higher than movable zone, it should be added as movable.
1308  * Without this check, movable zone may overlap with other zone.
1309  */
1310 static int should_add_memory_movable(int nid, u64 start, u64 size)
1311 {
1312 	unsigned long start_pfn = start >> PAGE_SHIFT;
1313 	pg_data_t *pgdat = NODE_DATA(nid);
1314 	struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1315 
1316 	if (zone_is_empty(movable_zone))
1317 		return 0;
1318 
1319 	if (movable_zone->zone_start_pfn <= start_pfn)
1320 		return 1;
1321 
1322 	return 0;
1323 }
1324 
1325 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1326 		bool for_device)
1327 {
1328 #ifdef CONFIG_ZONE_DEVICE
1329 	if (for_device)
1330 		return ZONE_DEVICE;
1331 #endif
1332 	if (should_add_memory_movable(nid, start, size))
1333 		return ZONE_MOVABLE;
1334 
1335 	return zone_default;
1336 }
1337 
1338 static int online_memory_block(struct memory_block *mem, void *arg)
1339 {
1340 	return device_online(&mem->dev);
1341 }
1342 
1343 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1344 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1345 {
1346 	u64 start, size;
1347 	pg_data_t *pgdat = NULL;
1348 	bool new_pgdat;
1349 	bool new_node;
1350 	int ret;
1351 
1352 	start = res->start;
1353 	size = resource_size(res);
1354 
1355 	ret = check_hotplug_memory_range(start, size);
1356 	if (ret)
1357 		return ret;
1358 
1359 	{	/* Stupid hack to suppress address-never-null warning */
1360 		void *p = NODE_DATA(nid);
1361 		new_pgdat = !p;
1362 	}
1363 
1364 	mem_hotplug_begin();
1365 
1366 	/*
1367 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1368 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1369 	 * this new range and calculate total pages correctly.  The range will
1370 	 * be removed at hot-remove time.
1371 	 */
1372 	memblock_add_node(start, size, nid);
1373 
1374 	new_node = !node_online(nid);
1375 	if (new_node) {
1376 		pgdat = hotadd_new_pgdat(nid, start);
1377 		ret = -ENOMEM;
1378 		if (!pgdat)
1379 			goto error;
1380 	}
1381 
1382 	/* call arch's memory hotadd */
1383 	ret = arch_add_memory(nid, start, size, false);
1384 
1385 	if (ret < 0)
1386 		goto error;
1387 
1388 	/* we online node here. we can't roll back from here. */
1389 	node_set_online(nid);
1390 
1391 	if (new_node) {
1392 		ret = register_one_node(nid);
1393 		/*
1394 		 * If sysfs file of new node can't create, cpu on the node
1395 		 * can't be hot-added. There is no rollback way now.
1396 		 * So, check by BUG_ON() to catch it reluctantly..
1397 		 */
1398 		BUG_ON(ret);
1399 	}
1400 
1401 	/* create new memmap entry */
1402 	firmware_map_add_hotplug(start, start + size, "System RAM");
1403 
1404 	/* online pages if requested */
1405 	if (online)
1406 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1407 				  NULL, online_memory_block);
1408 
1409 	goto out;
1410 
1411 error:
1412 	/* rollback pgdat allocation and others */
1413 	if (new_pgdat)
1414 		rollback_node_hotadd(nid, pgdat);
1415 	memblock_remove(start, size);
1416 
1417 out:
1418 	mem_hotplug_done();
1419 	return ret;
1420 }
1421 EXPORT_SYMBOL_GPL(add_memory_resource);
1422 
1423 int __ref add_memory(int nid, u64 start, u64 size)
1424 {
1425 	struct resource *res;
1426 	int ret;
1427 
1428 	res = register_memory_resource(start, size);
1429 	if (IS_ERR(res))
1430 		return PTR_ERR(res);
1431 
1432 	ret = add_memory_resource(nid, res, memhp_auto_online);
1433 	if (ret < 0)
1434 		release_memory_resource(res);
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(add_memory);
1438 
1439 #ifdef CONFIG_MEMORY_HOTREMOVE
1440 /*
1441  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1442  * set and the size of the free page is given by page_order(). Using this,
1443  * the function determines if the pageblock contains only free pages.
1444  * Due to buddy contraints, a free page at least the size of a pageblock will
1445  * be located at the start of the pageblock
1446  */
1447 static inline int pageblock_free(struct page *page)
1448 {
1449 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1450 }
1451 
1452 /* Return the start of the next active pageblock after a given page */
1453 static struct page *next_active_pageblock(struct page *page)
1454 {
1455 	/* Ensure the starting page is pageblock-aligned */
1456 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1457 
1458 	/* If the entire pageblock is free, move to the end of free page */
1459 	if (pageblock_free(page)) {
1460 		int order;
1461 		/* be careful. we don't have locks, page_order can be changed.*/
1462 		order = page_order(page);
1463 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1464 			return page + (1 << order);
1465 	}
1466 
1467 	return page + pageblock_nr_pages;
1468 }
1469 
1470 /* Checks if this range of memory is likely to be hot-removable. */
1471 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1472 {
1473 	struct page *page = pfn_to_page(start_pfn);
1474 	struct page *end_page = page + nr_pages;
1475 
1476 	/* Check the starting page of each pageblock within the range */
1477 	for (; page < end_page; page = next_active_pageblock(page)) {
1478 		if (!is_pageblock_removable_nolock(page))
1479 			return false;
1480 		cond_resched();
1481 	}
1482 
1483 	/* All pageblocks in the memory block are likely to be hot-removable */
1484 	return true;
1485 }
1486 
1487 /*
1488  * Confirm all pages in a range [start, end) belong to the same zone.
1489  * When true, return its valid [start, end).
1490  */
1491 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1492 			 unsigned long *valid_start, unsigned long *valid_end)
1493 {
1494 	unsigned long pfn, sec_end_pfn;
1495 	unsigned long start, end;
1496 	struct zone *zone = NULL;
1497 	struct page *page;
1498 	int i;
1499 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1500 	     pfn < end_pfn;
1501 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1502 		/* Make sure the memory section is present first */
1503 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1504 			continue;
1505 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1506 		     pfn += MAX_ORDER_NR_PAGES) {
1507 			i = 0;
1508 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1509 			while ((i < MAX_ORDER_NR_PAGES) &&
1510 				!pfn_valid_within(pfn + i))
1511 				i++;
1512 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1513 				continue;
1514 			page = pfn_to_page(pfn + i);
1515 			if (zone && page_zone(page) != zone)
1516 				return 0;
1517 			if (!zone)
1518 				start = pfn + i;
1519 			zone = page_zone(page);
1520 			end = pfn + MAX_ORDER_NR_PAGES;
1521 		}
1522 	}
1523 
1524 	if (zone) {
1525 		*valid_start = start;
1526 		*valid_end = min(end, end_pfn);
1527 		return 1;
1528 	} else {
1529 		return 0;
1530 	}
1531 }
1532 
1533 /*
1534  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1535  * non-lru movable pages and hugepages). We scan pfn because it's much
1536  * easier than scanning over linked list. This function returns the pfn
1537  * of the first found movable page if it's found, otherwise 0.
1538  */
1539 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1540 {
1541 	unsigned long pfn;
1542 	struct page *page;
1543 	for (pfn = start; pfn < end; pfn++) {
1544 		if (pfn_valid(pfn)) {
1545 			page = pfn_to_page(pfn);
1546 			if (PageLRU(page))
1547 				return pfn;
1548 			if (__PageMovable(page))
1549 				return pfn;
1550 			if (PageHuge(page)) {
1551 				if (page_huge_active(page))
1552 					return pfn;
1553 				else
1554 					pfn = round_up(pfn + 1,
1555 						1 << compound_order(page)) - 1;
1556 			}
1557 		}
1558 	}
1559 	return 0;
1560 }
1561 
1562 static struct page *new_node_page(struct page *page, unsigned long private,
1563 		int **result)
1564 {
1565 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
1566 	int nid = page_to_nid(page);
1567 	nodemask_t nmask = node_states[N_MEMORY];
1568 	struct page *new_page = NULL;
1569 
1570 	/*
1571 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
1572 	 * accordance with memory policy of the user process if possible. For
1573 	 * now as a simple work-around, we use the next node for destination.
1574 	 */
1575 	if (PageHuge(page))
1576 		return alloc_huge_page_node(page_hstate(compound_head(page)),
1577 					next_node_in(nid, nmask));
1578 
1579 	node_clear(nid, nmask);
1580 
1581 	if (PageHighMem(page)
1582 	    || (zone_idx(page_zone(page)) == ZONE_MOVABLE))
1583 		gfp_mask |= __GFP_HIGHMEM;
1584 
1585 	if (!nodes_empty(nmask))
1586 		new_page = __alloc_pages_nodemask(gfp_mask, 0,
1587 					node_zonelist(nid, gfp_mask), &nmask);
1588 	if (!new_page)
1589 		new_page = __alloc_pages(gfp_mask, 0,
1590 					node_zonelist(nid, gfp_mask));
1591 
1592 	return new_page;
1593 }
1594 
1595 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1596 static int
1597 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1598 {
1599 	unsigned long pfn;
1600 	struct page *page;
1601 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1602 	int not_managed = 0;
1603 	int ret = 0;
1604 	LIST_HEAD(source);
1605 
1606 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1607 		if (!pfn_valid(pfn))
1608 			continue;
1609 		page = pfn_to_page(pfn);
1610 
1611 		if (PageHuge(page)) {
1612 			struct page *head = compound_head(page);
1613 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1614 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1615 				ret = -EBUSY;
1616 				break;
1617 			}
1618 			if (isolate_huge_page(page, &source))
1619 				move_pages -= 1 << compound_order(head);
1620 			continue;
1621 		}
1622 
1623 		if (!get_page_unless_zero(page))
1624 			continue;
1625 		/*
1626 		 * We can skip free pages. And we can deal with pages on
1627 		 * LRU and non-lru movable pages.
1628 		 */
1629 		if (PageLRU(page))
1630 			ret = isolate_lru_page(page);
1631 		else
1632 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1633 		if (!ret) { /* Success */
1634 			put_page(page);
1635 			list_add_tail(&page->lru, &source);
1636 			move_pages--;
1637 			if (!__PageMovable(page))
1638 				inc_node_page_state(page, NR_ISOLATED_ANON +
1639 						    page_is_file_cache(page));
1640 
1641 		} else {
1642 #ifdef CONFIG_DEBUG_VM
1643 			pr_alert("failed to isolate pfn %lx\n", pfn);
1644 			dump_page(page, "isolation failed");
1645 #endif
1646 			put_page(page);
1647 			/* Because we don't have big zone->lock. we should
1648 			   check this again here. */
1649 			if (page_count(page)) {
1650 				not_managed++;
1651 				ret = -EBUSY;
1652 				break;
1653 			}
1654 		}
1655 	}
1656 	if (!list_empty(&source)) {
1657 		if (not_managed) {
1658 			putback_movable_pages(&source);
1659 			goto out;
1660 		}
1661 
1662 		/* Allocate a new page from the nearest neighbor node */
1663 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1664 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1665 		if (ret)
1666 			putback_movable_pages(&source);
1667 	}
1668 out:
1669 	return ret;
1670 }
1671 
1672 /*
1673  * remove from free_area[] and mark all as Reserved.
1674  */
1675 static int
1676 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1677 			void *data)
1678 {
1679 	__offline_isolated_pages(start, start + nr_pages);
1680 	return 0;
1681 }
1682 
1683 static void
1684 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1685 {
1686 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1687 				offline_isolated_pages_cb);
1688 }
1689 
1690 /*
1691  * Check all pages in range, recoreded as memory resource, are isolated.
1692  */
1693 static int
1694 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1695 			void *data)
1696 {
1697 	int ret;
1698 	long offlined = *(long *)data;
1699 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1700 	offlined = nr_pages;
1701 	if (!ret)
1702 		*(long *)data += offlined;
1703 	return ret;
1704 }
1705 
1706 static long
1707 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1708 {
1709 	long offlined = 0;
1710 	int ret;
1711 
1712 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1713 			check_pages_isolated_cb);
1714 	if (ret < 0)
1715 		offlined = (long)ret;
1716 	return offlined;
1717 }
1718 
1719 #ifdef CONFIG_MOVABLE_NODE
1720 /*
1721  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1722  * normal memory.
1723  */
1724 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1725 {
1726 	return true;
1727 }
1728 #else /* CONFIG_MOVABLE_NODE */
1729 /* ensure the node has NORMAL memory if it is still online */
1730 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1731 {
1732 	struct pglist_data *pgdat = zone->zone_pgdat;
1733 	unsigned long present_pages = 0;
1734 	enum zone_type zt;
1735 
1736 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1737 		present_pages += pgdat->node_zones[zt].present_pages;
1738 
1739 	if (present_pages > nr_pages)
1740 		return true;
1741 
1742 	present_pages = 0;
1743 	for (; zt <= ZONE_MOVABLE; zt++)
1744 		present_pages += pgdat->node_zones[zt].present_pages;
1745 
1746 	/*
1747 	 * we can't offline the last normal memory until all
1748 	 * higher memory is offlined.
1749 	 */
1750 	return present_pages == 0;
1751 }
1752 #endif /* CONFIG_MOVABLE_NODE */
1753 
1754 static int __init cmdline_parse_movable_node(char *p)
1755 {
1756 #ifdef CONFIG_MOVABLE_NODE
1757 	movable_node_enabled = true;
1758 #else
1759 	pr_warn("movable_node option not supported\n");
1760 #endif
1761 	return 0;
1762 }
1763 early_param("movable_node", cmdline_parse_movable_node);
1764 
1765 /* check which state of node_states will be changed when offline memory */
1766 static void node_states_check_changes_offline(unsigned long nr_pages,
1767 		struct zone *zone, struct memory_notify *arg)
1768 {
1769 	struct pglist_data *pgdat = zone->zone_pgdat;
1770 	unsigned long present_pages = 0;
1771 	enum zone_type zt, zone_last = ZONE_NORMAL;
1772 
1773 	/*
1774 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1775 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1776 	 * set zone_last to ZONE_NORMAL.
1777 	 *
1778 	 * If we don't have HIGHMEM nor movable node,
1779 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1780 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1781 	 */
1782 	if (N_MEMORY == N_NORMAL_MEMORY)
1783 		zone_last = ZONE_MOVABLE;
1784 
1785 	/*
1786 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1787 	 * If the memory to be offline is in a zone of 0...zone_last,
1788 	 * and it is the last present memory, 0...zone_last will
1789 	 * become empty after offline , thus we can determind we will
1790 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1791 	 */
1792 	for (zt = 0; zt <= zone_last; zt++)
1793 		present_pages += pgdat->node_zones[zt].present_pages;
1794 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1795 		arg->status_change_nid_normal = zone_to_nid(zone);
1796 	else
1797 		arg->status_change_nid_normal = -1;
1798 
1799 #ifdef CONFIG_HIGHMEM
1800 	/*
1801 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1802 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1803 	 * set zone_last to ZONE_HIGHMEM.
1804 	 *
1805 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1806 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1807 	 * set zone_last to ZONE_MOVABLE.
1808 	 */
1809 	zone_last = ZONE_HIGHMEM;
1810 	if (N_MEMORY == N_HIGH_MEMORY)
1811 		zone_last = ZONE_MOVABLE;
1812 
1813 	for (; zt <= zone_last; zt++)
1814 		present_pages += pgdat->node_zones[zt].present_pages;
1815 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1816 		arg->status_change_nid_high = zone_to_nid(zone);
1817 	else
1818 		arg->status_change_nid_high = -1;
1819 #else
1820 	arg->status_change_nid_high = arg->status_change_nid_normal;
1821 #endif
1822 
1823 	/*
1824 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1825 	 */
1826 	zone_last = ZONE_MOVABLE;
1827 
1828 	/*
1829 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1830 	 * If we try to offline the last present @nr_pages from the node,
1831 	 * we can determind we will need to clear the node from
1832 	 * node_states[N_HIGH_MEMORY].
1833 	 */
1834 	for (; zt <= zone_last; zt++)
1835 		present_pages += pgdat->node_zones[zt].present_pages;
1836 	if (nr_pages >= present_pages)
1837 		arg->status_change_nid = zone_to_nid(zone);
1838 	else
1839 		arg->status_change_nid = -1;
1840 }
1841 
1842 static void node_states_clear_node(int node, struct memory_notify *arg)
1843 {
1844 	if (arg->status_change_nid_normal >= 0)
1845 		node_clear_state(node, N_NORMAL_MEMORY);
1846 
1847 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1848 	    (arg->status_change_nid_high >= 0))
1849 		node_clear_state(node, N_HIGH_MEMORY);
1850 
1851 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1852 	    (arg->status_change_nid >= 0))
1853 		node_clear_state(node, N_MEMORY);
1854 }
1855 
1856 static int __ref __offline_pages(unsigned long start_pfn,
1857 		  unsigned long end_pfn, unsigned long timeout)
1858 {
1859 	unsigned long pfn, nr_pages, expire;
1860 	long offlined_pages;
1861 	int ret, drain, retry_max, node;
1862 	unsigned long flags;
1863 	unsigned long valid_start, valid_end;
1864 	struct zone *zone;
1865 	struct memory_notify arg;
1866 
1867 	/* at least, alignment against pageblock is necessary */
1868 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1869 		return -EINVAL;
1870 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1871 		return -EINVAL;
1872 	/* This makes hotplug much easier...and readable.
1873 	   we assume this for now. .*/
1874 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1875 		return -EINVAL;
1876 
1877 	zone = page_zone(pfn_to_page(valid_start));
1878 	node = zone_to_nid(zone);
1879 	nr_pages = end_pfn - start_pfn;
1880 
1881 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1882 		return -EINVAL;
1883 
1884 	/* set above range as isolated */
1885 	ret = start_isolate_page_range(start_pfn, end_pfn,
1886 				       MIGRATE_MOVABLE, true);
1887 	if (ret)
1888 		return ret;
1889 
1890 	arg.start_pfn = start_pfn;
1891 	arg.nr_pages = nr_pages;
1892 	node_states_check_changes_offline(nr_pages, zone, &arg);
1893 
1894 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1895 	ret = notifier_to_errno(ret);
1896 	if (ret)
1897 		goto failed_removal;
1898 
1899 	pfn = start_pfn;
1900 	expire = jiffies + timeout;
1901 	drain = 0;
1902 	retry_max = 5;
1903 repeat:
1904 	/* start memory hot removal */
1905 	ret = -EAGAIN;
1906 	if (time_after(jiffies, expire))
1907 		goto failed_removal;
1908 	ret = -EINTR;
1909 	if (signal_pending(current))
1910 		goto failed_removal;
1911 	ret = 0;
1912 	if (drain) {
1913 		lru_add_drain_all();
1914 		cond_resched();
1915 		drain_all_pages(zone);
1916 	}
1917 
1918 	pfn = scan_movable_pages(start_pfn, end_pfn);
1919 	if (pfn) { /* We have movable pages */
1920 		ret = do_migrate_range(pfn, end_pfn);
1921 		if (!ret) {
1922 			drain = 1;
1923 			goto repeat;
1924 		} else {
1925 			if (ret < 0)
1926 				if (--retry_max == 0)
1927 					goto failed_removal;
1928 			yield();
1929 			drain = 1;
1930 			goto repeat;
1931 		}
1932 	}
1933 	/* drain all zone's lru pagevec, this is asynchronous... */
1934 	lru_add_drain_all();
1935 	yield();
1936 	/* drain pcp pages, this is synchronous. */
1937 	drain_all_pages(zone);
1938 	/*
1939 	 * dissolve free hugepages in the memory block before doing offlining
1940 	 * actually in order to make hugetlbfs's object counting consistent.
1941 	 */
1942 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1943 	if (ret)
1944 		goto failed_removal;
1945 	/* check again */
1946 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1947 	if (offlined_pages < 0) {
1948 		ret = -EBUSY;
1949 		goto failed_removal;
1950 	}
1951 	pr_info("Offlined Pages %ld\n", offlined_pages);
1952 	/* Ok, all of our target is isolated.
1953 	   We cannot do rollback at this point. */
1954 	offline_isolated_pages(start_pfn, end_pfn);
1955 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1956 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1957 	/* removal success */
1958 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1959 	zone->present_pages -= offlined_pages;
1960 
1961 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1962 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1963 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1964 
1965 	init_per_zone_wmark_min();
1966 
1967 	if (!populated_zone(zone)) {
1968 		zone_pcp_reset(zone);
1969 		mutex_lock(&zonelists_mutex);
1970 		build_all_zonelists(NULL, NULL);
1971 		mutex_unlock(&zonelists_mutex);
1972 	} else
1973 		zone_pcp_update(zone);
1974 
1975 	node_states_clear_node(node, &arg);
1976 	if (arg.status_change_nid >= 0) {
1977 		kswapd_stop(node);
1978 		kcompactd_stop(node);
1979 	}
1980 
1981 	vm_total_pages = nr_free_pagecache_pages();
1982 	writeback_set_ratelimit();
1983 
1984 	memory_notify(MEM_OFFLINE, &arg);
1985 	return 0;
1986 
1987 failed_removal:
1988 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1989 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1990 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1991 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1992 	/* pushback to free area */
1993 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1994 	return ret;
1995 }
1996 
1997 /* Must be protected by mem_hotplug_begin() */
1998 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1999 {
2000 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
2001 }
2002 #endif /* CONFIG_MEMORY_HOTREMOVE */
2003 
2004 /**
2005  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
2006  * @start_pfn: start pfn of the memory range
2007  * @end_pfn: end pfn of the memory range
2008  * @arg: argument passed to func
2009  * @func: callback for each memory section walked
2010  *
2011  * This function walks through all present mem sections in range
2012  * [start_pfn, end_pfn) and call func on each mem section.
2013  *
2014  * Returns the return value of func.
2015  */
2016 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
2017 		void *arg, int (*func)(struct memory_block *, void *))
2018 {
2019 	struct memory_block *mem = NULL;
2020 	struct mem_section *section;
2021 	unsigned long pfn, section_nr;
2022 	int ret;
2023 
2024 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2025 		section_nr = pfn_to_section_nr(pfn);
2026 		if (!present_section_nr(section_nr))
2027 			continue;
2028 
2029 		section = __nr_to_section(section_nr);
2030 		/* same memblock? */
2031 		if (mem)
2032 			if ((section_nr >= mem->start_section_nr) &&
2033 			    (section_nr <= mem->end_section_nr))
2034 				continue;
2035 
2036 		mem = find_memory_block_hinted(section, mem);
2037 		if (!mem)
2038 			continue;
2039 
2040 		ret = func(mem, arg);
2041 		if (ret) {
2042 			kobject_put(&mem->dev.kobj);
2043 			return ret;
2044 		}
2045 	}
2046 
2047 	if (mem)
2048 		kobject_put(&mem->dev.kobj);
2049 
2050 	return 0;
2051 }
2052 
2053 #ifdef CONFIG_MEMORY_HOTREMOVE
2054 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2055 {
2056 	int ret = !is_memblock_offlined(mem);
2057 
2058 	if (unlikely(ret)) {
2059 		phys_addr_t beginpa, endpa;
2060 
2061 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2062 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
2063 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2064 			&beginpa, &endpa);
2065 	}
2066 
2067 	return ret;
2068 }
2069 
2070 static int check_cpu_on_node(pg_data_t *pgdat)
2071 {
2072 	int cpu;
2073 
2074 	for_each_present_cpu(cpu) {
2075 		if (cpu_to_node(cpu) == pgdat->node_id)
2076 			/*
2077 			 * the cpu on this node isn't removed, and we can't
2078 			 * offline this node.
2079 			 */
2080 			return -EBUSY;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 static void unmap_cpu_on_node(pg_data_t *pgdat)
2087 {
2088 #ifdef CONFIG_ACPI_NUMA
2089 	int cpu;
2090 
2091 	for_each_possible_cpu(cpu)
2092 		if (cpu_to_node(cpu) == pgdat->node_id)
2093 			numa_clear_node(cpu);
2094 #endif
2095 }
2096 
2097 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
2098 {
2099 	int ret;
2100 
2101 	ret = check_cpu_on_node(pgdat);
2102 	if (ret)
2103 		return ret;
2104 
2105 	/*
2106 	 * the node will be offlined when we come here, so we can clear
2107 	 * the cpu_to_node() now.
2108 	 */
2109 
2110 	unmap_cpu_on_node(pgdat);
2111 	return 0;
2112 }
2113 
2114 /**
2115  * try_offline_node
2116  *
2117  * Offline a node if all memory sections and cpus of the node are removed.
2118  *
2119  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2120  * and online/offline operations before this call.
2121  */
2122 void try_offline_node(int nid)
2123 {
2124 	pg_data_t *pgdat = NODE_DATA(nid);
2125 	unsigned long start_pfn = pgdat->node_start_pfn;
2126 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2127 	unsigned long pfn;
2128 
2129 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2130 		unsigned long section_nr = pfn_to_section_nr(pfn);
2131 
2132 		if (!present_section_nr(section_nr))
2133 			continue;
2134 
2135 		if (pfn_to_nid(pfn) != nid)
2136 			continue;
2137 
2138 		/*
2139 		 * some memory sections of this node are not removed, and we
2140 		 * can't offline node now.
2141 		 */
2142 		return;
2143 	}
2144 
2145 	if (check_and_unmap_cpu_on_node(pgdat))
2146 		return;
2147 
2148 	/*
2149 	 * all memory/cpu of this node are removed, we can offline this
2150 	 * node now.
2151 	 */
2152 	node_set_offline(nid);
2153 	unregister_one_node(nid);
2154 }
2155 EXPORT_SYMBOL(try_offline_node);
2156 
2157 /**
2158  * remove_memory
2159  *
2160  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2161  * and online/offline operations before this call, as required by
2162  * try_offline_node().
2163  */
2164 void __ref remove_memory(int nid, u64 start, u64 size)
2165 {
2166 	int ret;
2167 
2168 	BUG_ON(check_hotplug_memory_range(start, size));
2169 
2170 	mem_hotplug_begin();
2171 
2172 	/*
2173 	 * All memory blocks must be offlined before removing memory.  Check
2174 	 * whether all memory blocks in question are offline and trigger a BUG()
2175 	 * if this is not the case.
2176 	 */
2177 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2178 				check_memblock_offlined_cb);
2179 	if (ret)
2180 		BUG();
2181 
2182 	/* remove memmap entry */
2183 	firmware_map_remove(start, start + size, "System RAM");
2184 	memblock_free(start, size);
2185 	memblock_remove(start, size);
2186 
2187 	arch_remove_memory(start, size);
2188 
2189 	try_offline_node(nid);
2190 
2191 	mem_hotplug_done();
2192 }
2193 EXPORT_SYMBOL_GPL(remove_memory);
2194 #endif /* CONFIG_MEMORY_HOTREMOVE */
2195