1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/swap.h> 10 #include <linux/interrupt.h> 11 #include <linux/pagemap.h> 12 #include <linux/compiler.h> 13 #include <linux/export.h> 14 #include <linux/pagevec.h> 15 #include <linux/writeback.h> 16 #include <linux/slab.h> 17 #include <linux/sysctl.h> 18 #include <linux/cpu.h> 19 #include <linux/memory.h> 20 #include <linux/memremap.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/highmem.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/bootmem.h> 36 #include <linux/compaction.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 /* 43 * online_page_callback contains pointer to current page onlining function. 44 * Initially it is generic_online_page(). If it is required it could be 45 * changed by calling set_online_page_callback() for callback registration 46 * and restore_online_page_callback() for generic callback restore. 47 */ 48 49 static void generic_online_page(struct page *page); 50 51 static online_page_callback_t online_page_callback = generic_online_page; 52 static DEFINE_MUTEX(online_page_callback_lock); 53 54 /* The same as the cpu_hotplug lock, but for memory hotplug. */ 55 static struct { 56 struct task_struct *active_writer; 57 struct mutex lock; /* Synchronizes accesses to refcount, */ 58 /* 59 * Also blocks the new readers during 60 * an ongoing mem hotplug operation. 61 */ 62 int refcount; 63 64 #ifdef CONFIG_DEBUG_LOCK_ALLOC 65 struct lockdep_map dep_map; 66 #endif 67 } mem_hotplug = { 68 .active_writer = NULL, 69 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock), 70 .refcount = 0, 71 #ifdef CONFIG_DEBUG_LOCK_ALLOC 72 .dep_map = {.name = "mem_hotplug.lock" }, 73 #endif 74 }; 75 76 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */ 77 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map) 78 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map) 79 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map) 80 81 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 82 bool memhp_auto_online; 83 #else 84 bool memhp_auto_online = true; 85 #endif 86 EXPORT_SYMBOL_GPL(memhp_auto_online); 87 88 static int __init setup_memhp_default_state(char *str) 89 { 90 if (!strcmp(str, "online")) 91 memhp_auto_online = true; 92 else if (!strcmp(str, "offline")) 93 memhp_auto_online = false; 94 95 return 1; 96 } 97 __setup("memhp_default_state=", setup_memhp_default_state); 98 99 void get_online_mems(void) 100 { 101 might_sleep(); 102 if (mem_hotplug.active_writer == current) 103 return; 104 memhp_lock_acquire_read(); 105 mutex_lock(&mem_hotplug.lock); 106 mem_hotplug.refcount++; 107 mutex_unlock(&mem_hotplug.lock); 108 109 } 110 111 void put_online_mems(void) 112 { 113 if (mem_hotplug.active_writer == current) 114 return; 115 mutex_lock(&mem_hotplug.lock); 116 117 if (WARN_ON(!mem_hotplug.refcount)) 118 mem_hotplug.refcount++; /* try to fix things up */ 119 120 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer)) 121 wake_up_process(mem_hotplug.active_writer); 122 mutex_unlock(&mem_hotplug.lock); 123 memhp_lock_release(); 124 125 } 126 127 void mem_hotplug_begin(void) 128 { 129 assert_held_device_hotplug(); 130 131 mem_hotplug.active_writer = current; 132 133 memhp_lock_acquire(); 134 for (;;) { 135 mutex_lock(&mem_hotplug.lock); 136 if (likely(!mem_hotplug.refcount)) 137 break; 138 __set_current_state(TASK_UNINTERRUPTIBLE); 139 mutex_unlock(&mem_hotplug.lock); 140 schedule(); 141 } 142 } 143 144 void mem_hotplug_done(void) 145 { 146 mem_hotplug.active_writer = NULL; 147 mutex_unlock(&mem_hotplug.lock); 148 memhp_lock_release(); 149 } 150 151 /* add this memory to iomem resource */ 152 static struct resource *register_memory_resource(u64 start, u64 size) 153 { 154 struct resource *res; 155 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 156 if (!res) 157 return ERR_PTR(-ENOMEM); 158 159 res->name = "System RAM"; 160 res->start = start; 161 res->end = start + size - 1; 162 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 163 if (request_resource(&iomem_resource, res) < 0) { 164 pr_debug("System RAM resource %pR cannot be added\n", res); 165 kfree(res); 166 return ERR_PTR(-EEXIST); 167 } 168 return res; 169 } 170 171 static void release_memory_resource(struct resource *res) 172 { 173 if (!res) 174 return; 175 release_resource(res); 176 kfree(res); 177 return; 178 } 179 180 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 181 void get_page_bootmem(unsigned long info, struct page *page, 182 unsigned long type) 183 { 184 page->freelist = (void *)type; 185 SetPagePrivate(page); 186 set_page_private(page, info); 187 page_ref_inc(page); 188 } 189 190 void put_page_bootmem(struct page *page) 191 { 192 unsigned long type; 193 194 type = (unsigned long) page->freelist; 195 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 196 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 197 198 if (page_ref_dec_return(page) == 1) { 199 page->freelist = NULL; 200 ClearPagePrivate(page); 201 set_page_private(page, 0); 202 INIT_LIST_HEAD(&page->lru); 203 free_reserved_page(page); 204 } 205 } 206 207 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 208 #ifndef CONFIG_SPARSEMEM_VMEMMAP 209 static void register_page_bootmem_info_section(unsigned long start_pfn) 210 { 211 unsigned long *usemap, mapsize, section_nr, i; 212 struct mem_section *ms; 213 struct page *page, *memmap; 214 215 section_nr = pfn_to_section_nr(start_pfn); 216 ms = __nr_to_section(section_nr); 217 218 /* Get section's memmap address */ 219 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 220 221 /* 222 * Get page for the memmap's phys address 223 * XXX: need more consideration for sparse_vmemmap... 224 */ 225 page = virt_to_page(memmap); 226 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 227 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 228 229 /* remember memmap's page */ 230 for (i = 0; i < mapsize; i++, page++) 231 get_page_bootmem(section_nr, page, SECTION_INFO); 232 233 usemap = __nr_to_section(section_nr)->pageblock_flags; 234 page = virt_to_page(usemap); 235 236 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 237 238 for (i = 0; i < mapsize; i++, page++) 239 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 240 241 } 242 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 243 static void register_page_bootmem_info_section(unsigned long start_pfn) 244 { 245 unsigned long *usemap, mapsize, section_nr, i; 246 struct mem_section *ms; 247 struct page *page, *memmap; 248 249 if (!pfn_valid(start_pfn)) 250 return; 251 252 section_nr = pfn_to_section_nr(start_pfn); 253 ms = __nr_to_section(section_nr); 254 255 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 256 257 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 258 259 usemap = __nr_to_section(section_nr)->pageblock_flags; 260 page = virt_to_page(usemap); 261 262 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 263 264 for (i = 0; i < mapsize; i++, page++) 265 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 266 } 267 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 268 269 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 270 { 271 unsigned long i, pfn, end_pfn, nr_pages; 272 int node = pgdat->node_id; 273 struct page *page; 274 275 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 276 page = virt_to_page(pgdat); 277 278 for (i = 0; i < nr_pages; i++, page++) 279 get_page_bootmem(node, page, NODE_INFO); 280 281 pfn = pgdat->node_start_pfn; 282 end_pfn = pgdat_end_pfn(pgdat); 283 284 /* register section info */ 285 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 286 /* 287 * Some platforms can assign the same pfn to multiple nodes - on 288 * node0 as well as nodeN. To avoid registering a pfn against 289 * multiple nodes we check that this pfn does not already 290 * reside in some other nodes. 291 */ 292 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 293 register_page_bootmem_info_section(pfn); 294 } 295 } 296 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 297 298 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn, 299 unsigned long end_pfn) 300 { 301 unsigned long old_zone_end_pfn; 302 303 zone_span_writelock(zone); 304 305 old_zone_end_pfn = zone_end_pfn(zone); 306 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 307 zone->zone_start_pfn = start_pfn; 308 309 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - 310 zone->zone_start_pfn; 311 312 zone_span_writeunlock(zone); 313 } 314 315 static void resize_zone(struct zone *zone, unsigned long start_pfn, 316 unsigned long end_pfn) 317 { 318 zone_span_writelock(zone); 319 320 if (end_pfn - start_pfn) { 321 zone->zone_start_pfn = start_pfn; 322 zone->spanned_pages = end_pfn - start_pfn; 323 } else { 324 /* 325 * make it consist as free_area_init_core(), 326 * if spanned_pages = 0, then keep start_pfn = 0 327 */ 328 zone->zone_start_pfn = 0; 329 zone->spanned_pages = 0; 330 } 331 332 zone_span_writeunlock(zone); 333 } 334 335 static void fix_zone_id(struct zone *zone, unsigned long start_pfn, 336 unsigned long end_pfn) 337 { 338 enum zone_type zid = zone_idx(zone); 339 int nid = zone->zone_pgdat->node_id; 340 unsigned long pfn; 341 342 for (pfn = start_pfn; pfn < end_pfn; pfn++) 343 set_page_links(pfn_to_page(pfn), zid, nid, pfn); 344 } 345 346 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or 347 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ 348 static int __ref ensure_zone_is_initialized(struct zone *zone, 349 unsigned long start_pfn, unsigned long num_pages) 350 { 351 if (!zone_is_initialized(zone)) 352 return init_currently_empty_zone(zone, start_pfn, num_pages); 353 354 return 0; 355 } 356 357 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, 358 unsigned long start_pfn, unsigned long end_pfn) 359 { 360 int ret; 361 unsigned long flags; 362 unsigned long z1_start_pfn; 363 364 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn); 365 if (ret) 366 return ret; 367 368 pgdat_resize_lock(z1->zone_pgdat, &flags); 369 370 /* can't move pfns which are higher than @z2 */ 371 if (end_pfn > zone_end_pfn(z2)) 372 goto out_fail; 373 /* the move out part must be at the left most of @z2 */ 374 if (start_pfn > z2->zone_start_pfn) 375 goto out_fail; 376 /* must included/overlap */ 377 if (end_pfn <= z2->zone_start_pfn) 378 goto out_fail; 379 380 /* use start_pfn for z1's start_pfn if z1 is empty */ 381 if (!zone_is_empty(z1)) 382 z1_start_pfn = z1->zone_start_pfn; 383 else 384 z1_start_pfn = start_pfn; 385 386 resize_zone(z1, z1_start_pfn, end_pfn); 387 resize_zone(z2, end_pfn, zone_end_pfn(z2)); 388 389 pgdat_resize_unlock(z1->zone_pgdat, &flags); 390 391 fix_zone_id(z1, start_pfn, end_pfn); 392 393 return 0; 394 out_fail: 395 pgdat_resize_unlock(z1->zone_pgdat, &flags); 396 return -1; 397 } 398 399 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, 400 unsigned long start_pfn, unsigned long end_pfn) 401 { 402 int ret; 403 unsigned long flags; 404 unsigned long z2_end_pfn; 405 406 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn); 407 if (ret) 408 return ret; 409 410 pgdat_resize_lock(z1->zone_pgdat, &flags); 411 412 /* can't move pfns which are lower than @z1 */ 413 if (z1->zone_start_pfn > start_pfn) 414 goto out_fail; 415 /* the move out part mast at the right most of @z1 */ 416 if (zone_end_pfn(z1) > end_pfn) 417 goto out_fail; 418 /* must included/overlap */ 419 if (start_pfn >= zone_end_pfn(z1)) 420 goto out_fail; 421 422 /* use end_pfn for z2's end_pfn if z2 is empty */ 423 if (!zone_is_empty(z2)) 424 z2_end_pfn = zone_end_pfn(z2); 425 else 426 z2_end_pfn = end_pfn; 427 428 resize_zone(z1, z1->zone_start_pfn, start_pfn); 429 resize_zone(z2, start_pfn, z2_end_pfn); 430 431 pgdat_resize_unlock(z1->zone_pgdat, &flags); 432 433 fix_zone_id(z2, start_pfn, end_pfn); 434 435 return 0; 436 out_fail: 437 pgdat_resize_unlock(z1->zone_pgdat, &flags); 438 return -1; 439 } 440 441 static struct zone * __meminit move_pfn_range(int zone_shift, 442 unsigned long start_pfn, unsigned long end_pfn) 443 { 444 struct zone *zone = page_zone(pfn_to_page(start_pfn)); 445 int ret = 0; 446 447 if (zone_shift < 0) 448 ret = move_pfn_range_left(zone + zone_shift, zone, 449 start_pfn, end_pfn); 450 else if (zone_shift) 451 ret = move_pfn_range_right(zone, zone + zone_shift, 452 start_pfn, end_pfn); 453 454 if (ret) 455 return NULL; 456 457 return zone + zone_shift; 458 } 459 460 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn, 461 unsigned long end_pfn) 462 { 463 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat); 464 465 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 466 pgdat->node_start_pfn = start_pfn; 467 468 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) - 469 pgdat->node_start_pfn; 470 } 471 472 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn) 473 { 474 struct pglist_data *pgdat = zone->zone_pgdat; 475 int nr_pages = PAGES_PER_SECTION; 476 int nid = pgdat->node_id; 477 int zone_type; 478 unsigned long flags, pfn; 479 int ret; 480 481 zone_type = zone - pgdat->node_zones; 482 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages); 483 if (ret) 484 return ret; 485 486 pgdat_resize_lock(zone->zone_pgdat, &flags); 487 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages); 488 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn, 489 phys_start_pfn + nr_pages); 490 pgdat_resize_unlock(zone->zone_pgdat, &flags); 491 memmap_init_zone(nr_pages, nid, zone_type, 492 phys_start_pfn, MEMMAP_HOTPLUG); 493 494 /* online_page_range is called later and expects pages reserved */ 495 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) { 496 if (!pfn_valid(pfn)) 497 continue; 498 499 SetPageReserved(pfn_to_page(pfn)); 500 } 501 return 0; 502 } 503 504 static int __meminit __add_section(int nid, struct zone *zone, 505 unsigned long phys_start_pfn) 506 { 507 int ret; 508 509 if (pfn_valid(phys_start_pfn)) 510 return -EEXIST; 511 512 ret = sparse_add_one_section(zone, phys_start_pfn); 513 514 if (ret < 0) 515 return ret; 516 517 ret = __add_zone(zone, phys_start_pfn); 518 519 if (ret < 0) 520 return ret; 521 522 return register_new_memory(nid, __pfn_to_section(phys_start_pfn)); 523 } 524 525 /* 526 * Reasonably generic function for adding memory. It is 527 * expected that archs that support memory hotplug will 528 * call this function after deciding the zone to which to 529 * add the new pages. 530 */ 531 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn, 532 unsigned long nr_pages) 533 { 534 unsigned long i; 535 int err = 0; 536 int start_sec, end_sec; 537 struct vmem_altmap *altmap; 538 539 clear_zone_contiguous(zone); 540 541 /* during initialize mem_map, align hot-added range to section */ 542 start_sec = pfn_to_section_nr(phys_start_pfn); 543 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 544 545 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn)); 546 if (altmap) { 547 /* 548 * Validate altmap is within bounds of the total request 549 */ 550 if (altmap->base_pfn != phys_start_pfn 551 || vmem_altmap_offset(altmap) > nr_pages) { 552 pr_warn_once("memory add fail, invalid altmap\n"); 553 err = -EINVAL; 554 goto out; 555 } 556 altmap->alloc = 0; 557 } 558 559 for (i = start_sec; i <= end_sec; i++) { 560 err = __add_section(nid, zone, section_nr_to_pfn(i)); 561 562 /* 563 * EEXIST is finally dealt with by ioresource collision 564 * check. see add_memory() => register_memory_resource() 565 * Warning will be printed if there is collision. 566 */ 567 if (err && (err != -EEXIST)) 568 break; 569 err = 0; 570 } 571 vmemmap_populate_print_last(); 572 out: 573 set_zone_contiguous(zone); 574 return err; 575 } 576 EXPORT_SYMBOL_GPL(__add_pages); 577 578 #ifdef CONFIG_MEMORY_HOTREMOVE 579 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 580 static int find_smallest_section_pfn(int nid, struct zone *zone, 581 unsigned long start_pfn, 582 unsigned long end_pfn) 583 { 584 struct mem_section *ms; 585 586 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 587 ms = __pfn_to_section(start_pfn); 588 589 if (unlikely(!valid_section(ms))) 590 continue; 591 592 if (unlikely(pfn_to_nid(start_pfn) != nid)) 593 continue; 594 595 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 596 continue; 597 598 return start_pfn; 599 } 600 601 return 0; 602 } 603 604 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 605 static int find_biggest_section_pfn(int nid, struct zone *zone, 606 unsigned long start_pfn, 607 unsigned long end_pfn) 608 { 609 struct mem_section *ms; 610 unsigned long pfn; 611 612 /* pfn is the end pfn of a memory section. */ 613 pfn = end_pfn - 1; 614 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 615 ms = __pfn_to_section(pfn); 616 617 if (unlikely(!valid_section(ms))) 618 continue; 619 620 if (unlikely(pfn_to_nid(pfn) != nid)) 621 continue; 622 623 if (zone && zone != page_zone(pfn_to_page(pfn))) 624 continue; 625 626 return pfn; 627 } 628 629 return 0; 630 } 631 632 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 633 unsigned long end_pfn) 634 { 635 unsigned long zone_start_pfn = zone->zone_start_pfn; 636 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 637 unsigned long zone_end_pfn = z; 638 unsigned long pfn; 639 struct mem_section *ms; 640 int nid = zone_to_nid(zone); 641 642 zone_span_writelock(zone); 643 if (zone_start_pfn == start_pfn) { 644 /* 645 * If the section is smallest section in the zone, it need 646 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 647 * In this case, we find second smallest valid mem_section 648 * for shrinking zone. 649 */ 650 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 651 zone_end_pfn); 652 if (pfn) { 653 zone->zone_start_pfn = pfn; 654 zone->spanned_pages = zone_end_pfn - pfn; 655 } 656 } else if (zone_end_pfn == end_pfn) { 657 /* 658 * If the section is biggest section in the zone, it need 659 * shrink zone->spanned_pages. 660 * In this case, we find second biggest valid mem_section for 661 * shrinking zone. 662 */ 663 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 664 start_pfn); 665 if (pfn) 666 zone->spanned_pages = pfn - zone_start_pfn + 1; 667 } 668 669 /* 670 * The section is not biggest or smallest mem_section in the zone, it 671 * only creates a hole in the zone. So in this case, we need not 672 * change the zone. But perhaps, the zone has only hole data. Thus 673 * it check the zone has only hole or not. 674 */ 675 pfn = zone_start_pfn; 676 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 677 ms = __pfn_to_section(pfn); 678 679 if (unlikely(!valid_section(ms))) 680 continue; 681 682 if (page_zone(pfn_to_page(pfn)) != zone) 683 continue; 684 685 /* If the section is current section, it continues the loop */ 686 if (start_pfn == pfn) 687 continue; 688 689 /* If we find valid section, we have nothing to do */ 690 zone_span_writeunlock(zone); 691 return; 692 } 693 694 /* The zone has no valid section */ 695 zone->zone_start_pfn = 0; 696 zone->spanned_pages = 0; 697 zone_span_writeunlock(zone); 698 } 699 700 static void shrink_pgdat_span(struct pglist_data *pgdat, 701 unsigned long start_pfn, unsigned long end_pfn) 702 { 703 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 704 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 705 unsigned long pgdat_end_pfn = p; 706 unsigned long pfn; 707 struct mem_section *ms; 708 int nid = pgdat->node_id; 709 710 if (pgdat_start_pfn == start_pfn) { 711 /* 712 * If the section is smallest section in the pgdat, it need 713 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 714 * In this case, we find second smallest valid mem_section 715 * for shrinking zone. 716 */ 717 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 718 pgdat_end_pfn); 719 if (pfn) { 720 pgdat->node_start_pfn = pfn; 721 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 722 } 723 } else if (pgdat_end_pfn == end_pfn) { 724 /* 725 * If the section is biggest section in the pgdat, it need 726 * shrink pgdat->node_spanned_pages. 727 * In this case, we find second biggest valid mem_section for 728 * shrinking zone. 729 */ 730 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 731 start_pfn); 732 if (pfn) 733 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 734 } 735 736 /* 737 * If the section is not biggest or smallest mem_section in the pgdat, 738 * it only creates a hole in the pgdat. So in this case, we need not 739 * change the pgdat. 740 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 741 * has only hole or not. 742 */ 743 pfn = pgdat_start_pfn; 744 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 745 ms = __pfn_to_section(pfn); 746 747 if (unlikely(!valid_section(ms))) 748 continue; 749 750 if (pfn_to_nid(pfn) != nid) 751 continue; 752 753 /* If the section is current section, it continues the loop */ 754 if (start_pfn == pfn) 755 continue; 756 757 /* If we find valid section, we have nothing to do */ 758 return; 759 } 760 761 /* The pgdat has no valid section */ 762 pgdat->node_start_pfn = 0; 763 pgdat->node_spanned_pages = 0; 764 } 765 766 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 767 { 768 struct pglist_data *pgdat = zone->zone_pgdat; 769 int nr_pages = PAGES_PER_SECTION; 770 int zone_type; 771 unsigned long flags; 772 773 zone_type = zone - pgdat->node_zones; 774 775 pgdat_resize_lock(zone->zone_pgdat, &flags); 776 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 777 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 778 pgdat_resize_unlock(zone->zone_pgdat, &flags); 779 } 780 781 static int __remove_section(struct zone *zone, struct mem_section *ms, 782 unsigned long map_offset) 783 { 784 unsigned long start_pfn; 785 int scn_nr; 786 int ret = -EINVAL; 787 788 if (!valid_section(ms)) 789 return ret; 790 791 ret = unregister_memory_section(ms); 792 if (ret) 793 return ret; 794 795 scn_nr = __section_nr(ms); 796 start_pfn = section_nr_to_pfn(scn_nr); 797 __remove_zone(zone, start_pfn); 798 799 sparse_remove_one_section(zone, ms, map_offset); 800 return 0; 801 } 802 803 /** 804 * __remove_pages() - remove sections of pages from a zone 805 * @zone: zone from which pages need to be removed 806 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 807 * @nr_pages: number of pages to remove (must be multiple of section size) 808 * 809 * Generic helper function to remove section mappings and sysfs entries 810 * for the section of the memory we are removing. Caller needs to make 811 * sure that pages are marked reserved and zones are adjust properly by 812 * calling offline_pages(). 813 */ 814 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 815 unsigned long nr_pages) 816 { 817 unsigned long i; 818 unsigned long map_offset = 0; 819 int sections_to_remove, ret = 0; 820 821 /* In the ZONE_DEVICE case device driver owns the memory region */ 822 if (is_dev_zone(zone)) { 823 struct page *page = pfn_to_page(phys_start_pfn); 824 struct vmem_altmap *altmap; 825 826 altmap = to_vmem_altmap((unsigned long) page); 827 if (altmap) 828 map_offset = vmem_altmap_offset(altmap); 829 } else { 830 resource_size_t start, size; 831 832 start = phys_start_pfn << PAGE_SHIFT; 833 size = nr_pages * PAGE_SIZE; 834 835 ret = release_mem_region_adjustable(&iomem_resource, start, 836 size); 837 if (ret) { 838 resource_size_t endres = start + size - 1; 839 840 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 841 &start, &endres, ret); 842 } 843 } 844 845 clear_zone_contiguous(zone); 846 847 /* 848 * We can only remove entire sections 849 */ 850 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 851 BUG_ON(nr_pages % PAGES_PER_SECTION); 852 853 sections_to_remove = nr_pages / PAGES_PER_SECTION; 854 for (i = 0; i < sections_to_remove; i++) { 855 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 856 857 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset); 858 map_offset = 0; 859 if (ret) 860 break; 861 } 862 863 set_zone_contiguous(zone); 864 865 return ret; 866 } 867 #endif /* CONFIG_MEMORY_HOTREMOVE */ 868 869 int set_online_page_callback(online_page_callback_t callback) 870 { 871 int rc = -EINVAL; 872 873 get_online_mems(); 874 mutex_lock(&online_page_callback_lock); 875 876 if (online_page_callback == generic_online_page) { 877 online_page_callback = callback; 878 rc = 0; 879 } 880 881 mutex_unlock(&online_page_callback_lock); 882 put_online_mems(); 883 884 return rc; 885 } 886 EXPORT_SYMBOL_GPL(set_online_page_callback); 887 888 int restore_online_page_callback(online_page_callback_t callback) 889 { 890 int rc = -EINVAL; 891 892 get_online_mems(); 893 mutex_lock(&online_page_callback_lock); 894 895 if (online_page_callback == callback) { 896 online_page_callback = generic_online_page; 897 rc = 0; 898 } 899 900 mutex_unlock(&online_page_callback_lock); 901 put_online_mems(); 902 903 return rc; 904 } 905 EXPORT_SYMBOL_GPL(restore_online_page_callback); 906 907 void __online_page_set_limits(struct page *page) 908 { 909 } 910 EXPORT_SYMBOL_GPL(__online_page_set_limits); 911 912 void __online_page_increment_counters(struct page *page) 913 { 914 adjust_managed_page_count(page, 1); 915 } 916 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 917 918 void __online_page_free(struct page *page) 919 { 920 __free_reserved_page(page); 921 } 922 EXPORT_SYMBOL_GPL(__online_page_free); 923 924 static void generic_online_page(struct page *page) 925 { 926 __online_page_set_limits(page); 927 __online_page_increment_counters(page); 928 __online_page_free(page); 929 } 930 931 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 932 void *arg) 933 { 934 unsigned long i; 935 unsigned long onlined_pages = *(unsigned long *)arg; 936 struct page *page; 937 if (PageReserved(pfn_to_page(start_pfn))) 938 for (i = 0; i < nr_pages; i++) { 939 page = pfn_to_page(start_pfn + i); 940 (*online_page_callback)(page); 941 onlined_pages++; 942 } 943 *(unsigned long *)arg = onlined_pages; 944 return 0; 945 } 946 947 #ifdef CONFIG_MOVABLE_NODE 948 /* 949 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have 950 * normal memory. 951 */ 952 static bool can_online_high_movable(struct zone *zone) 953 { 954 return true; 955 } 956 #else /* CONFIG_MOVABLE_NODE */ 957 /* ensure every online node has NORMAL memory */ 958 static bool can_online_high_movable(struct zone *zone) 959 { 960 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY); 961 } 962 #endif /* CONFIG_MOVABLE_NODE */ 963 964 /* check which state of node_states will be changed when online memory */ 965 static void node_states_check_changes_online(unsigned long nr_pages, 966 struct zone *zone, struct memory_notify *arg) 967 { 968 int nid = zone_to_nid(zone); 969 enum zone_type zone_last = ZONE_NORMAL; 970 971 /* 972 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 973 * contains nodes which have zones of 0...ZONE_NORMAL, 974 * set zone_last to ZONE_NORMAL. 975 * 976 * If we don't have HIGHMEM nor movable node, 977 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 978 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 979 */ 980 if (N_MEMORY == N_NORMAL_MEMORY) 981 zone_last = ZONE_MOVABLE; 982 983 /* 984 * if the memory to be online is in a zone of 0...zone_last, and 985 * the zones of 0...zone_last don't have memory before online, we will 986 * need to set the node to node_states[N_NORMAL_MEMORY] after 987 * the memory is online. 988 */ 989 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY)) 990 arg->status_change_nid_normal = nid; 991 else 992 arg->status_change_nid_normal = -1; 993 994 #ifdef CONFIG_HIGHMEM 995 /* 996 * If we have movable node, node_states[N_HIGH_MEMORY] 997 * contains nodes which have zones of 0...ZONE_HIGHMEM, 998 * set zone_last to ZONE_HIGHMEM. 999 * 1000 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1001 * contains nodes which have zones of 0...ZONE_MOVABLE, 1002 * set zone_last to ZONE_MOVABLE. 1003 */ 1004 zone_last = ZONE_HIGHMEM; 1005 if (N_MEMORY == N_HIGH_MEMORY) 1006 zone_last = ZONE_MOVABLE; 1007 1008 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY)) 1009 arg->status_change_nid_high = nid; 1010 else 1011 arg->status_change_nid_high = -1; 1012 #else 1013 arg->status_change_nid_high = arg->status_change_nid_normal; 1014 #endif 1015 1016 /* 1017 * if the node don't have memory befor online, we will need to 1018 * set the node to node_states[N_MEMORY] after the memory 1019 * is online. 1020 */ 1021 if (!node_state(nid, N_MEMORY)) 1022 arg->status_change_nid = nid; 1023 else 1024 arg->status_change_nid = -1; 1025 } 1026 1027 static void node_states_set_node(int node, struct memory_notify *arg) 1028 { 1029 if (arg->status_change_nid_normal >= 0) 1030 node_set_state(node, N_NORMAL_MEMORY); 1031 1032 if (arg->status_change_nid_high >= 0) 1033 node_set_state(node, N_HIGH_MEMORY); 1034 1035 node_set_state(node, N_MEMORY); 1036 } 1037 1038 bool zone_can_shift(unsigned long pfn, unsigned long nr_pages, 1039 enum zone_type target, int *zone_shift) 1040 { 1041 struct zone *zone = page_zone(pfn_to_page(pfn)); 1042 enum zone_type idx = zone_idx(zone); 1043 int i; 1044 1045 *zone_shift = 0; 1046 1047 if (idx < target) { 1048 /* pages must be at end of current zone */ 1049 if (pfn + nr_pages != zone_end_pfn(zone)) 1050 return false; 1051 1052 /* no zones in use between current zone and target */ 1053 for (i = idx + 1; i < target; i++) 1054 if (zone_is_initialized(zone - idx + i)) 1055 return false; 1056 } 1057 1058 if (target < idx) { 1059 /* pages must be at beginning of current zone */ 1060 if (pfn != zone->zone_start_pfn) 1061 return false; 1062 1063 /* no zones in use between current zone and target */ 1064 for (i = target + 1; i < idx; i++) 1065 if (zone_is_initialized(zone - idx + i)) 1066 return false; 1067 } 1068 1069 *zone_shift = target - idx; 1070 return true; 1071 } 1072 1073 /* Must be protected by mem_hotplug_begin() */ 1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 1075 { 1076 unsigned long flags; 1077 unsigned long onlined_pages = 0; 1078 struct zone *zone; 1079 int need_zonelists_rebuild = 0; 1080 int nid; 1081 int ret; 1082 struct memory_notify arg; 1083 int zone_shift = 0; 1084 1085 /* 1086 * This doesn't need a lock to do pfn_to_page(). 1087 * The section can't be removed here because of the 1088 * memory_block->state_mutex. 1089 */ 1090 zone = page_zone(pfn_to_page(pfn)); 1091 1092 if ((zone_idx(zone) > ZONE_NORMAL || 1093 online_type == MMOP_ONLINE_MOVABLE) && 1094 !can_online_high_movable(zone)) 1095 return -EINVAL; 1096 1097 if (online_type == MMOP_ONLINE_KERNEL) { 1098 if (!zone_can_shift(pfn, nr_pages, ZONE_NORMAL, &zone_shift)) 1099 return -EINVAL; 1100 } else if (online_type == MMOP_ONLINE_MOVABLE) { 1101 if (!zone_can_shift(pfn, nr_pages, ZONE_MOVABLE, &zone_shift)) 1102 return -EINVAL; 1103 } 1104 1105 zone = move_pfn_range(zone_shift, pfn, pfn + nr_pages); 1106 if (!zone) 1107 return -EINVAL; 1108 1109 arg.start_pfn = pfn; 1110 arg.nr_pages = nr_pages; 1111 node_states_check_changes_online(nr_pages, zone, &arg); 1112 1113 nid = zone_to_nid(zone); 1114 1115 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1116 ret = notifier_to_errno(ret); 1117 if (ret) 1118 goto failed_addition; 1119 1120 /* 1121 * If this zone is not populated, then it is not in zonelist. 1122 * This means the page allocator ignores this zone. 1123 * So, zonelist must be updated after online. 1124 */ 1125 mutex_lock(&zonelists_mutex); 1126 if (!populated_zone(zone)) { 1127 need_zonelists_rebuild = 1; 1128 build_all_zonelists(NULL, zone); 1129 } 1130 1131 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 1132 online_pages_range); 1133 if (ret) { 1134 if (need_zonelists_rebuild) 1135 zone_pcp_reset(zone); 1136 mutex_unlock(&zonelists_mutex); 1137 goto failed_addition; 1138 } 1139 1140 zone->present_pages += onlined_pages; 1141 1142 pgdat_resize_lock(zone->zone_pgdat, &flags); 1143 zone->zone_pgdat->node_present_pages += onlined_pages; 1144 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1145 1146 if (onlined_pages) { 1147 node_states_set_node(nid, &arg); 1148 if (need_zonelists_rebuild) 1149 build_all_zonelists(NULL, NULL); 1150 else 1151 zone_pcp_update(zone); 1152 } 1153 1154 mutex_unlock(&zonelists_mutex); 1155 1156 init_per_zone_wmark_min(); 1157 1158 if (onlined_pages) { 1159 kswapd_run(nid); 1160 kcompactd_run(nid); 1161 } 1162 1163 vm_total_pages = nr_free_pagecache_pages(); 1164 1165 writeback_set_ratelimit(); 1166 1167 if (onlined_pages) 1168 memory_notify(MEM_ONLINE, &arg); 1169 return 0; 1170 1171 failed_addition: 1172 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1173 (unsigned long long) pfn << PAGE_SHIFT, 1174 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1175 memory_notify(MEM_CANCEL_ONLINE, &arg); 1176 return ret; 1177 } 1178 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 1179 1180 static void reset_node_present_pages(pg_data_t *pgdat) 1181 { 1182 struct zone *z; 1183 1184 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1185 z->present_pages = 0; 1186 1187 pgdat->node_present_pages = 0; 1188 } 1189 1190 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1191 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 1192 { 1193 struct pglist_data *pgdat; 1194 unsigned long zones_size[MAX_NR_ZONES] = {0}; 1195 unsigned long zholes_size[MAX_NR_ZONES] = {0}; 1196 unsigned long start_pfn = PFN_DOWN(start); 1197 1198 pgdat = NODE_DATA(nid); 1199 if (!pgdat) { 1200 pgdat = arch_alloc_nodedata(nid); 1201 if (!pgdat) 1202 return NULL; 1203 1204 arch_refresh_nodedata(nid, pgdat); 1205 } else { 1206 /* Reset the nr_zones, order and classzone_idx before reuse */ 1207 pgdat->nr_zones = 0; 1208 pgdat->kswapd_order = 0; 1209 pgdat->kswapd_classzone_idx = 0; 1210 } 1211 1212 /* we can use NODE_DATA(nid) from here */ 1213 1214 /* init node's zones as empty zones, we don't have any present pages.*/ 1215 free_area_init_node(nid, zones_size, start_pfn, zholes_size); 1216 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 1217 1218 /* 1219 * The node we allocated has no zone fallback lists. For avoiding 1220 * to access not-initialized zonelist, build here. 1221 */ 1222 mutex_lock(&zonelists_mutex); 1223 build_all_zonelists(pgdat, NULL); 1224 mutex_unlock(&zonelists_mutex); 1225 1226 /* 1227 * zone->managed_pages is set to an approximate value in 1228 * free_area_init_core(), which will cause 1229 * /sys/device/system/node/nodeX/meminfo has wrong data. 1230 * So reset it to 0 before any memory is onlined. 1231 */ 1232 reset_node_managed_pages(pgdat); 1233 1234 /* 1235 * When memory is hot-added, all the memory is in offline state. So 1236 * clear all zones' present_pages because they will be updated in 1237 * online_pages() and offline_pages(). 1238 */ 1239 reset_node_present_pages(pgdat); 1240 1241 return pgdat; 1242 } 1243 1244 static void rollback_node_hotadd(int nid, pg_data_t *pgdat) 1245 { 1246 arch_refresh_nodedata(nid, NULL); 1247 free_percpu(pgdat->per_cpu_nodestats); 1248 arch_free_nodedata(pgdat); 1249 return; 1250 } 1251 1252 1253 /** 1254 * try_online_node - online a node if offlined 1255 * 1256 * called by cpu_up() to online a node without onlined memory. 1257 */ 1258 int try_online_node(int nid) 1259 { 1260 pg_data_t *pgdat; 1261 int ret; 1262 1263 if (node_online(nid)) 1264 return 0; 1265 1266 mem_hotplug_begin(); 1267 pgdat = hotadd_new_pgdat(nid, 0); 1268 if (!pgdat) { 1269 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1270 ret = -ENOMEM; 1271 goto out; 1272 } 1273 node_set_online(nid); 1274 ret = register_one_node(nid); 1275 BUG_ON(ret); 1276 1277 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 1278 mutex_lock(&zonelists_mutex); 1279 build_all_zonelists(NULL, NULL); 1280 mutex_unlock(&zonelists_mutex); 1281 } 1282 1283 out: 1284 mem_hotplug_done(); 1285 return ret; 1286 } 1287 1288 static int check_hotplug_memory_range(u64 start, u64 size) 1289 { 1290 u64 start_pfn = PFN_DOWN(start); 1291 u64 nr_pages = size >> PAGE_SHIFT; 1292 1293 /* Memory range must be aligned with section */ 1294 if ((start_pfn & ~PAGE_SECTION_MASK) || 1295 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { 1296 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", 1297 (unsigned long long)start, 1298 (unsigned long long)size); 1299 return -EINVAL; 1300 } 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * If movable zone has already been setup, newly added memory should be check. 1307 * If its address is higher than movable zone, it should be added as movable. 1308 * Without this check, movable zone may overlap with other zone. 1309 */ 1310 static int should_add_memory_movable(int nid, u64 start, u64 size) 1311 { 1312 unsigned long start_pfn = start >> PAGE_SHIFT; 1313 pg_data_t *pgdat = NODE_DATA(nid); 1314 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE; 1315 1316 if (zone_is_empty(movable_zone)) 1317 return 0; 1318 1319 if (movable_zone->zone_start_pfn <= start_pfn) 1320 return 1; 1321 1322 return 0; 1323 } 1324 1325 int zone_for_memory(int nid, u64 start, u64 size, int zone_default, 1326 bool for_device) 1327 { 1328 #ifdef CONFIG_ZONE_DEVICE 1329 if (for_device) 1330 return ZONE_DEVICE; 1331 #endif 1332 if (should_add_memory_movable(nid, start, size)) 1333 return ZONE_MOVABLE; 1334 1335 return zone_default; 1336 } 1337 1338 static int online_memory_block(struct memory_block *mem, void *arg) 1339 { 1340 return device_online(&mem->dev); 1341 } 1342 1343 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1344 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1345 { 1346 u64 start, size; 1347 pg_data_t *pgdat = NULL; 1348 bool new_pgdat; 1349 bool new_node; 1350 int ret; 1351 1352 start = res->start; 1353 size = resource_size(res); 1354 1355 ret = check_hotplug_memory_range(start, size); 1356 if (ret) 1357 return ret; 1358 1359 { /* Stupid hack to suppress address-never-null warning */ 1360 void *p = NODE_DATA(nid); 1361 new_pgdat = !p; 1362 } 1363 1364 mem_hotplug_begin(); 1365 1366 /* 1367 * Add new range to memblock so that when hotadd_new_pgdat() is called 1368 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1369 * this new range and calculate total pages correctly. The range will 1370 * be removed at hot-remove time. 1371 */ 1372 memblock_add_node(start, size, nid); 1373 1374 new_node = !node_online(nid); 1375 if (new_node) { 1376 pgdat = hotadd_new_pgdat(nid, start); 1377 ret = -ENOMEM; 1378 if (!pgdat) 1379 goto error; 1380 } 1381 1382 /* call arch's memory hotadd */ 1383 ret = arch_add_memory(nid, start, size, false); 1384 1385 if (ret < 0) 1386 goto error; 1387 1388 /* we online node here. we can't roll back from here. */ 1389 node_set_online(nid); 1390 1391 if (new_node) { 1392 ret = register_one_node(nid); 1393 /* 1394 * If sysfs file of new node can't create, cpu on the node 1395 * can't be hot-added. There is no rollback way now. 1396 * So, check by BUG_ON() to catch it reluctantly.. 1397 */ 1398 BUG_ON(ret); 1399 } 1400 1401 /* create new memmap entry */ 1402 firmware_map_add_hotplug(start, start + size, "System RAM"); 1403 1404 /* online pages if requested */ 1405 if (online) 1406 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1407 NULL, online_memory_block); 1408 1409 goto out; 1410 1411 error: 1412 /* rollback pgdat allocation and others */ 1413 if (new_pgdat) 1414 rollback_node_hotadd(nid, pgdat); 1415 memblock_remove(start, size); 1416 1417 out: 1418 mem_hotplug_done(); 1419 return ret; 1420 } 1421 EXPORT_SYMBOL_GPL(add_memory_resource); 1422 1423 int __ref add_memory(int nid, u64 start, u64 size) 1424 { 1425 struct resource *res; 1426 int ret; 1427 1428 res = register_memory_resource(start, size); 1429 if (IS_ERR(res)) 1430 return PTR_ERR(res); 1431 1432 ret = add_memory_resource(nid, res, memhp_auto_online); 1433 if (ret < 0) 1434 release_memory_resource(res); 1435 return ret; 1436 } 1437 EXPORT_SYMBOL_GPL(add_memory); 1438 1439 #ifdef CONFIG_MEMORY_HOTREMOVE 1440 /* 1441 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1442 * set and the size of the free page is given by page_order(). Using this, 1443 * the function determines if the pageblock contains only free pages. 1444 * Due to buddy contraints, a free page at least the size of a pageblock will 1445 * be located at the start of the pageblock 1446 */ 1447 static inline int pageblock_free(struct page *page) 1448 { 1449 return PageBuddy(page) && page_order(page) >= pageblock_order; 1450 } 1451 1452 /* Return the start of the next active pageblock after a given page */ 1453 static struct page *next_active_pageblock(struct page *page) 1454 { 1455 /* Ensure the starting page is pageblock-aligned */ 1456 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1457 1458 /* If the entire pageblock is free, move to the end of free page */ 1459 if (pageblock_free(page)) { 1460 int order; 1461 /* be careful. we don't have locks, page_order can be changed.*/ 1462 order = page_order(page); 1463 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1464 return page + (1 << order); 1465 } 1466 1467 return page + pageblock_nr_pages; 1468 } 1469 1470 /* Checks if this range of memory is likely to be hot-removable. */ 1471 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1472 { 1473 struct page *page = pfn_to_page(start_pfn); 1474 struct page *end_page = page + nr_pages; 1475 1476 /* Check the starting page of each pageblock within the range */ 1477 for (; page < end_page; page = next_active_pageblock(page)) { 1478 if (!is_pageblock_removable_nolock(page)) 1479 return false; 1480 cond_resched(); 1481 } 1482 1483 /* All pageblocks in the memory block are likely to be hot-removable */ 1484 return true; 1485 } 1486 1487 /* 1488 * Confirm all pages in a range [start, end) belong to the same zone. 1489 * When true, return its valid [start, end). 1490 */ 1491 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1492 unsigned long *valid_start, unsigned long *valid_end) 1493 { 1494 unsigned long pfn, sec_end_pfn; 1495 unsigned long start, end; 1496 struct zone *zone = NULL; 1497 struct page *page; 1498 int i; 1499 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1500 pfn < end_pfn; 1501 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1502 /* Make sure the memory section is present first */ 1503 if (!present_section_nr(pfn_to_section_nr(pfn))) 1504 continue; 1505 for (; pfn < sec_end_pfn && pfn < end_pfn; 1506 pfn += MAX_ORDER_NR_PAGES) { 1507 i = 0; 1508 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1509 while ((i < MAX_ORDER_NR_PAGES) && 1510 !pfn_valid_within(pfn + i)) 1511 i++; 1512 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1513 continue; 1514 page = pfn_to_page(pfn + i); 1515 if (zone && page_zone(page) != zone) 1516 return 0; 1517 if (!zone) 1518 start = pfn + i; 1519 zone = page_zone(page); 1520 end = pfn + MAX_ORDER_NR_PAGES; 1521 } 1522 } 1523 1524 if (zone) { 1525 *valid_start = start; 1526 *valid_end = min(end, end_pfn); 1527 return 1; 1528 } else { 1529 return 0; 1530 } 1531 } 1532 1533 /* 1534 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1535 * non-lru movable pages and hugepages). We scan pfn because it's much 1536 * easier than scanning over linked list. This function returns the pfn 1537 * of the first found movable page if it's found, otherwise 0. 1538 */ 1539 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1540 { 1541 unsigned long pfn; 1542 struct page *page; 1543 for (pfn = start; pfn < end; pfn++) { 1544 if (pfn_valid(pfn)) { 1545 page = pfn_to_page(pfn); 1546 if (PageLRU(page)) 1547 return pfn; 1548 if (__PageMovable(page)) 1549 return pfn; 1550 if (PageHuge(page)) { 1551 if (page_huge_active(page)) 1552 return pfn; 1553 else 1554 pfn = round_up(pfn + 1, 1555 1 << compound_order(page)) - 1; 1556 } 1557 } 1558 } 1559 return 0; 1560 } 1561 1562 static struct page *new_node_page(struct page *page, unsigned long private, 1563 int **result) 1564 { 1565 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 1566 int nid = page_to_nid(page); 1567 nodemask_t nmask = node_states[N_MEMORY]; 1568 struct page *new_page = NULL; 1569 1570 /* 1571 * TODO: allocate a destination hugepage from a nearest neighbor node, 1572 * accordance with memory policy of the user process if possible. For 1573 * now as a simple work-around, we use the next node for destination. 1574 */ 1575 if (PageHuge(page)) 1576 return alloc_huge_page_node(page_hstate(compound_head(page)), 1577 next_node_in(nid, nmask)); 1578 1579 node_clear(nid, nmask); 1580 1581 if (PageHighMem(page) 1582 || (zone_idx(page_zone(page)) == ZONE_MOVABLE)) 1583 gfp_mask |= __GFP_HIGHMEM; 1584 1585 if (!nodes_empty(nmask)) 1586 new_page = __alloc_pages_nodemask(gfp_mask, 0, 1587 node_zonelist(nid, gfp_mask), &nmask); 1588 if (!new_page) 1589 new_page = __alloc_pages(gfp_mask, 0, 1590 node_zonelist(nid, gfp_mask)); 1591 1592 return new_page; 1593 } 1594 1595 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1596 static int 1597 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1598 { 1599 unsigned long pfn; 1600 struct page *page; 1601 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1602 int not_managed = 0; 1603 int ret = 0; 1604 LIST_HEAD(source); 1605 1606 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1607 if (!pfn_valid(pfn)) 1608 continue; 1609 page = pfn_to_page(pfn); 1610 1611 if (PageHuge(page)) { 1612 struct page *head = compound_head(page); 1613 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1614 if (compound_order(head) > PFN_SECTION_SHIFT) { 1615 ret = -EBUSY; 1616 break; 1617 } 1618 if (isolate_huge_page(page, &source)) 1619 move_pages -= 1 << compound_order(head); 1620 continue; 1621 } 1622 1623 if (!get_page_unless_zero(page)) 1624 continue; 1625 /* 1626 * We can skip free pages. And we can deal with pages on 1627 * LRU and non-lru movable pages. 1628 */ 1629 if (PageLRU(page)) 1630 ret = isolate_lru_page(page); 1631 else 1632 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1633 if (!ret) { /* Success */ 1634 put_page(page); 1635 list_add_tail(&page->lru, &source); 1636 move_pages--; 1637 if (!__PageMovable(page)) 1638 inc_node_page_state(page, NR_ISOLATED_ANON + 1639 page_is_file_cache(page)); 1640 1641 } else { 1642 #ifdef CONFIG_DEBUG_VM 1643 pr_alert("failed to isolate pfn %lx\n", pfn); 1644 dump_page(page, "isolation failed"); 1645 #endif 1646 put_page(page); 1647 /* Because we don't have big zone->lock. we should 1648 check this again here. */ 1649 if (page_count(page)) { 1650 not_managed++; 1651 ret = -EBUSY; 1652 break; 1653 } 1654 } 1655 } 1656 if (!list_empty(&source)) { 1657 if (not_managed) { 1658 putback_movable_pages(&source); 1659 goto out; 1660 } 1661 1662 /* Allocate a new page from the nearest neighbor node */ 1663 ret = migrate_pages(&source, new_node_page, NULL, 0, 1664 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1665 if (ret) 1666 putback_movable_pages(&source); 1667 } 1668 out: 1669 return ret; 1670 } 1671 1672 /* 1673 * remove from free_area[] and mark all as Reserved. 1674 */ 1675 static int 1676 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1677 void *data) 1678 { 1679 __offline_isolated_pages(start, start + nr_pages); 1680 return 0; 1681 } 1682 1683 static void 1684 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1685 { 1686 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1687 offline_isolated_pages_cb); 1688 } 1689 1690 /* 1691 * Check all pages in range, recoreded as memory resource, are isolated. 1692 */ 1693 static int 1694 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1695 void *data) 1696 { 1697 int ret; 1698 long offlined = *(long *)data; 1699 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1700 offlined = nr_pages; 1701 if (!ret) 1702 *(long *)data += offlined; 1703 return ret; 1704 } 1705 1706 static long 1707 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1708 { 1709 long offlined = 0; 1710 int ret; 1711 1712 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1713 check_pages_isolated_cb); 1714 if (ret < 0) 1715 offlined = (long)ret; 1716 return offlined; 1717 } 1718 1719 #ifdef CONFIG_MOVABLE_NODE 1720 /* 1721 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have 1722 * normal memory. 1723 */ 1724 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1725 { 1726 return true; 1727 } 1728 #else /* CONFIG_MOVABLE_NODE */ 1729 /* ensure the node has NORMAL memory if it is still online */ 1730 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages) 1731 { 1732 struct pglist_data *pgdat = zone->zone_pgdat; 1733 unsigned long present_pages = 0; 1734 enum zone_type zt; 1735 1736 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1737 present_pages += pgdat->node_zones[zt].present_pages; 1738 1739 if (present_pages > nr_pages) 1740 return true; 1741 1742 present_pages = 0; 1743 for (; zt <= ZONE_MOVABLE; zt++) 1744 present_pages += pgdat->node_zones[zt].present_pages; 1745 1746 /* 1747 * we can't offline the last normal memory until all 1748 * higher memory is offlined. 1749 */ 1750 return present_pages == 0; 1751 } 1752 #endif /* CONFIG_MOVABLE_NODE */ 1753 1754 static int __init cmdline_parse_movable_node(char *p) 1755 { 1756 #ifdef CONFIG_MOVABLE_NODE 1757 movable_node_enabled = true; 1758 #else 1759 pr_warn("movable_node option not supported\n"); 1760 #endif 1761 return 0; 1762 } 1763 early_param("movable_node", cmdline_parse_movable_node); 1764 1765 /* check which state of node_states will be changed when offline memory */ 1766 static void node_states_check_changes_offline(unsigned long nr_pages, 1767 struct zone *zone, struct memory_notify *arg) 1768 { 1769 struct pglist_data *pgdat = zone->zone_pgdat; 1770 unsigned long present_pages = 0; 1771 enum zone_type zt, zone_last = ZONE_NORMAL; 1772 1773 /* 1774 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY] 1775 * contains nodes which have zones of 0...ZONE_NORMAL, 1776 * set zone_last to ZONE_NORMAL. 1777 * 1778 * If we don't have HIGHMEM nor movable node, 1779 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of 1780 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE. 1781 */ 1782 if (N_MEMORY == N_NORMAL_MEMORY) 1783 zone_last = ZONE_MOVABLE; 1784 1785 /* 1786 * check whether node_states[N_NORMAL_MEMORY] will be changed. 1787 * If the memory to be offline is in a zone of 0...zone_last, 1788 * and it is the last present memory, 0...zone_last will 1789 * become empty after offline , thus we can determind we will 1790 * need to clear the node from node_states[N_NORMAL_MEMORY]. 1791 */ 1792 for (zt = 0; zt <= zone_last; zt++) 1793 present_pages += pgdat->node_zones[zt].present_pages; 1794 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1795 arg->status_change_nid_normal = zone_to_nid(zone); 1796 else 1797 arg->status_change_nid_normal = -1; 1798 1799 #ifdef CONFIG_HIGHMEM 1800 /* 1801 * If we have movable node, node_states[N_HIGH_MEMORY] 1802 * contains nodes which have zones of 0...ZONE_HIGHMEM, 1803 * set zone_last to ZONE_HIGHMEM. 1804 * 1805 * If we don't have movable node, node_states[N_NORMAL_MEMORY] 1806 * contains nodes which have zones of 0...ZONE_MOVABLE, 1807 * set zone_last to ZONE_MOVABLE. 1808 */ 1809 zone_last = ZONE_HIGHMEM; 1810 if (N_MEMORY == N_HIGH_MEMORY) 1811 zone_last = ZONE_MOVABLE; 1812 1813 for (; zt <= zone_last; zt++) 1814 present_pages += pgdat->node_zones[zt].present_pages; 1815 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages) 1816 arg->status_change_nid_high = zone_to_nid(zone); 1817 else 1818 arg->status_change_nid_high = -1; 1819 #else 1820 arg->status_change_nid_high = arg->status_change_nid_normal; 1821 #endif 1822 1823 /* 1824 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE 1825 */ 1826 zone_last = ZONE_MOVABLE; 1827 1828 /* 1829 * check whether node_states[N_HIGH_MEMORY] will be changed 1830 * If we try to offline the last present @nr_pages from the node, 1831 * we can determind we will need to clear the node from 1832 * node_states[N_HIGH_MEMORY]. 1833 */ 1834 for (; zt <= zone_last; zt++) 1835 present_pages += pgdat->node_zones[zt].present_pages; 1836 if (nr_pages >= present_pages) 1837 arg->status_change_nid = zone_to_nid(zone); 1838 else 1839 arg->status_change_nid = -1; 1840 } 1841 1842 static void node_states_clear_node(int node, struct memory_notify *arg) 1843 { 1844 if (arg->status_change_nid_normal >= 0) 1845 node_clear_state(node, N_NORMAL_MEMORY); 1846 1847 if ((N_MEMORY != N_NORMAL_MEMORY) && 1848 (arg->status_change_nid_high >= 0)) 1849 node_clear_state(node, N_HIGH_MEMORY); 1850 1851 if ((N_MEMORY != N_HIGH_MEMORY) && 1852 (arg->status_change_nid >= 0)) 1853 node_clear_state(node, N_MEMORY); 1854 } 1855 1856 static int __ref __offline_pages(unsigned long start_pfn, 1857 unsigned long end_pfn, unsigned long timeout) 1858 { 1859 unsigned long pfn, nr_pages, expire; 1860 long offlined_pages; 1861 int ret, drain, retry_max, node; 1862 unsigned long flags; 1863 unsigned long valid_start, valid_end; 1864 struct zone *zone; 1865 struct memory_notify arg; 1866 1867 /* at least, alignment against pageblock is necessary */ 1868 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1869 return -EINVAL; 1870 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1871 return -EINVAL; 1872 /* This makes hotplug much easier...and readable. 1873 we assume this for now. .*/ 1874 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end)) 1875 return -EINVAL; 1876 1877 zone = page_zone(pfn_to_page(valid_start)); 1878 node = zone_to_nid(zone); 1879 nr_pages = end_pfn - start_pfn; 1880 1881 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages)) 1882 return -EINVAL; 1883 1884 /* set above range as isolated */ 1885 ret = start_isolate_page_range(start_pfn, end_pfn, 1886 MIGRATE_MOVABLE, true); 1887 if (ret) 1888 return ret; 1889 1890 arg.start_pfn = start_pfn; 1891 arg.nr_pages = nr_pages; 1892 node_states_check_changes_offline(nr_pages, zone, &arg); 1893 1894 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1895 ret = notifier_to_errno(ret); 1896 if (ret) 1897 goto failed_removal; 1898 1899 pfn = start_pfn; 1900 expire = jiffies + timeout; 1901 drain = 0; 1902 retry_max = 5; 1903 repeat: 1904 /* start memory hot removal */ 1905 ret = -EAGAIN; 1906 if (time_after(jiffies, expire)) 1907 goto failed_removal; 1908 ret = -EINTR; 1909 if (signal_pending(current)) 1910 goto failed_removal; 1911 ret = 0; 1912 if (drain) { 1913 lru_add_drain_all(); 1914 cond_resched(); 1915 drain_all_pages(zone); 1916 } 1917 1918 pfn = scan_movable_pages(start_pfn, end_pfn); 1919 if (pfn) { /* We have movable pages */ 1920 ret = do_migrate_range(pfn, end_pfn); 1921 if (!ret) { 1922 drain = 1; 1923 goto repeat; 1924 } else { 1925 if (ret < 0) 1926 if (--retry_max == 0) 1927 goto failed_removal; 1928 yield(); 1929 drain = 1; 1930 goto repeat; 1931 } 1932 } 1933 /* drain all zone's lru pagevec, this is asynchronous... */ 1934 lru_add_drain_all(); 1935 yield(); 1936 /* drain pcp pages, this is synchronous. */ 1937 drain_all_pages(zone); 1938 /* 1939 * dissolve free hugepages in the memory block before doing offlining 1940 * actually in order to make hugetlbfs's object counting consistent. 1941 */ 1942 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1943 if (ret) 1944 goto failed_removal; 1945 /* check again */ 1946 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1947 if (offlined_pages < 0) { 1948 ret = -EBUSY; 1949 goto failed_removal; 1950 } 1951 pr_info("Offlined Pages %ld\n", offlined_pages); 1952 /* Ok, all of our target is isolated. 1953 We cannot do rollback at this point. */ 1954 offline_isolated_pages(start_pfn, end_pfn); 1955 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1956 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1957 /* removal success */ 1958 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1959 zone->present_pages -= offlined_pages; 1960 1961 pgdat_resize_lock(zone->zone_pgdat, &flags); 1962 zone->zone_pgdat->node_present_pages -= offlined_pages; 1963 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1964 1965 init_per_zone_wmark_min(); 1966 1967 if (!populated_zone(zone)) { 1968 zone_pcp_reset(zone); 1969 mutex_lock(&zonelists_mutex); 1970 build_all_zonelists(NULL, NULL); 1971 mutex_unlock(&zonelists_mutex); 1972 } else 1973 zone_pcp_update(zone); 1974 1975 node_states_clear_node(node, &arg); 1976 if (arg.status_change_nid >= 0) { 1977 kswapd_stop(node); 1978 kcompactd_stop(node); 1979 } 1980 1981 vm_total_pages = nr_free_pagecache_pages(); 1982 writeback_set_ratelimit(); 1983 1984 memory_notify(MEM_OFFLINE, &arg); 1985 return 0; 1986 1987 failed_removal: 1988 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1989 (unsigned long long) start_pfn << PAGE_SHIFT, 1990 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1991 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1992 /* pushback to free area */ 1993 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1994 return ret; 1995 } 1996 1997 /* Must be protected by mem_hotplug_begin() */ 1998 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1999 { 2000 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ); 2001 } 2002 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2003 2004 /** 2005 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 2006 * @start_pfn: start pfn of the memory range 2007 * @end_pfn: end pfn of the memory range 2008 * @arg: argument passed to func 2009 * @func: callback for each memory section walked 2010 * 2011 * This function walks through all present mem sections in range 2012 * [start_pfn, end_pfn) and call func on each mem section. 2013 * 2014 * Returns the return value of func. 2015 */ 2016 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 2017 void *arg, int (*func)(struct memory_block *, void *)) 2018 { 2019 struct memory_block *mem = NULL; 2020 struct mem_section *section; 2021 unsigned long pfn, section_nr; 2022 int ret; 2023 2024 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2025 section_nr = pfn_to_section_nr(pfn); 2026 if (!present_section_nr(section_nr)) 2027 continue; 2028 2029 section = __nr_to_section(section_nr); 2030 /* same memblock? */ 2031 if (mem) 2032 if ((section_nr >= mem->start_section_nr) && 2033 (section_nr <= mem->end_section_nr)) 2034 continue; 2035 2036 mem = find_memory_block_hinted(section, mem); 2037 if (!mem) 2038 continue; 2039 2040 ret = func(mem, arg); 2041 if (ret) { 2042 kobject_put(&mem->dev.kobj); 2043 return ret; 2044 } 2045 } 2046 2047 if (mem) 2048 kobject_put(&mem->dev.kobj); 2049 2050 return 0; 2051 } 2052 2053 #ifdef CONFIG_MEMORY_HOTREMOVE 2054 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2055 { 2056 int ret = !is_memblock_offlined(mem); 2057 2058 if (unlikely(ret)) { 2059 phys_addr_t beginpa, endpa; 2060 2061 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2062 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 2063 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2064 &beginpa, &endpa); 2065 } 2066 2067 return ret; 2068 } 2069 2070 static int check_cpu_on_node(pg_data_t *pgdat) 2071 { 2072 int cpu; 2073 2074 for_each_present_cpu(cpu) { 2075 if (cpu_to_node(cpu) == pgdat->node_id) 2076 /* 2077 * the cpu on this node isn't removed, and we can't 2078 * offline this node. 2079 */ 2080 return -EBUSY; 2081 } 2082 2083 return 0; 2084 } 2085 2086 static void unmap_cpu_on_node(pg_data_t *pgdat) 2087 { 2088 #ifdef CONFIG_ACPI_NUMA 2089 int cpu; 2090 2091 for_each_possible_cpu(cpu) 2092 if (cpu_to_node(cpu) == pgdat->node_id) 2093 numa_clear_node(cpu); 2094 #endif 2095 } 2096 2097 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 2098 { 2099 int ret; 2100 2101 ret = check_cpu_on_node(pgdat); 2102 if (ret) 2103 return ret; 2104 2105 /* 2106 * the node will be offlined when we come here, so we can clear 2107 * the cpu_to_node() now. 2108 */ 2109 2110 unmap_cpu_on_node(pgdat); 2111 return 0; 2112 } 2113 2114 /** 2115 * try_offline_node 2116 * 2117 * Offline a node if all memory sections and cpus of the node are removed. 2118 * 2119 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2120 * and online/offline operations before this call. 2121 */ 2122 void try_offline_node(int nid) 2123 { 2124 pg_data_t *pgdat = NODE_DATA(nid); 2125 unsigned long start_pfn = pgdat->node_start_pfn; 2126 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 2127 unsigned long pfn; 2128 2129 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 2130 unsigned long section_nr = pfn_to_section_nr(pfn); 2131 2132 if (!present_section_nr(section_nr)) 2133 continue; 2134 2135 if (pfn_to_nid(pfn) != nid) 2136 continue; 2137 2138 /* 2139 * some memory sections of this node are not removed, and we 2140 * can't offline node now. 2141 */ 2142 return; 2143 } 2144 2145 if (check_and_unmap_cpu_on_node(pgdat)) 2146 return; 2147 2148 /* 2149 * all memory/cpu of this node are removed, we can offline this 2150 * node now. 2151 */ 2152 node_set_offline(nid); 2153 unregister_one_node(nid); 2154 } 2155 EXPORT_SYMBOL(try_offline_node); 2156 2157 /** 2158 * remove_memory 2159 * 2160 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2161 * and online/offline operations before this call, as required by 2162 * try_offline_node(). 2163 */ 2164 void __ref remove_memory(int nid, u64 start, u64 size) 2165 { 2166 int ret; 2167 2168 BUG_ON(check_hotplug_memory_range(start, size)); 2169 2170 mem_hotplug_begin(); 2171 2172 /* 2173 * All memory blocks must be offlined before removing memory. Check 2174 * whether all memory blocks in question are offline and trigger a BUG() 2175 * if this is not the case. 2176 */ 2177 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 2178 check_memblock_offlined_cb); 2179 if (ret) 2180 BUG(); 2181 2182 /* remove memmap entry */ 2183 firmware_map_remove(start, start + size, "System RAM"); 2184 memblock_free(start, size); 2185 memblock_remove(start, size); 2186 2187 arch_remove_memory(start, size); 2188 2189 try_offline_node(nid); 2190 2191 mem_hotplug_done(); 2192 } 2193 EXPORT_SYMBOL_GPL(remove_memory); 2194 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2195