xref: /openbmc/linux/mm/memory_hotplug.c (revision 4e0d2e7e)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * online_page_callback contains pointer to current page onlining function.
44  * Initially it is generic_online_page(). If it is required it could be
45  * changed by calling set_online_page_callback() for callback registration
46  * and restore_online_page_callback() for generic callback restore.
47  */
48 
49 static void generic_online_page(struct page *page);
50 
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53 
54 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
55 
56 void get_online_mems(void)
57 {
58 	percpu_down_read(&mem_hotplug_lock);
59 }
60 
61 void put_online_mems(void)
62 {
63 	percpu_up_read(&mem_hotplug_lock);
64 }
65 
66 bool movable_node_enabled = false;
67 
68 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
69 bool memhp_auto_online;
70 #else
71 bool memhp_auto_online = true;
72 #endif
73 EXPORT_SYMBOL_GPL(memhp_auto_online);
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	if (!strcmp(str, "online"))
78 		memhp_auto_online = true;
79 	else if (!strcmp(str, "offline"))
80 		memhp_auto_online = false;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 /* add this memory to iomem resource */
99 static struct resource *register_memory_resource(u64 start, u64 size)
100 {
101 	struct resource *res, *conflict;
102 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
103 	if (!res)
104 		return ERR_PTR(-ENOMEM);
105 
106 	res->name = "System RAM";
107 	res->start = start;
108 	res->end = start + size - 1;
109 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
110 	conflict =  request_resource_conflict(&iomem_resource, res);
111 	if (conflict) {
112 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
113 			pr_debug("Device unaddressable memory block "
114 				 "memory hotplug at %#010llx !\n",
115 				 (unsigned long long)start);
116 		}
117 		pr_debug("System RAM resource %pR cannot be added\n", res);
118 		kfree(res);
119 		return ERR_PTR(-EEXIST);
120 	}
121 	return res;
122 }
123 
124 static void release_memory_resource(struct resource *res)
125 {
126 	if (!res)
127 		return;
128 	release_resource(res);
129 	kfree(res);
130 	return;
131 }
132 
133 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
134 void get_page_bootmem(unsigned long info,  struct page *page,
135 		      unsigned long type)
136 {
137 	page->freelist = (void *)type;
138 	SetPagePrivate(page);
139 	set_page_private(page, info);
140 	page_ref_inc(page);
141 }
142 
143 void put_page_bootmem(struct page *page)
144 {
145 	unsigned long type;
146 
147 	type = (unsigned long) page->freelist;
148 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
149 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
150 
151 	if (page_ref_dec_return(page) == 1) {
152 		page->freelist = NULL;
153 		ClearPagePrivate(page);
154 		set_page_private(page, 0);
155 		INIT_LIST_HEAD(&page->lru);
156 		free_reserved_page(page);
157 	}
158 }
159 
160 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
161 #ifndef CONFIG_SPARSEMEM_VMEMMAP
162 static void register_page_bootmem_info_section(unsigned long start_pfn)
163 {
164 	unsigned long *usemap, mapsize, section_nr, i;
165 	struct mem_section *ms;
166 	struct page *page, *memmap;
167 
168 	section_nr = pfn_to_section_nr(start_pfn);
169 	ms = __nr_to_section(section_nr);
170 
171 	/* Get section's memmap address */
172 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
173 
174 	/*
175 	 * Get page for the memmap's phys address
176 	 * XXX: need more consideration for sparse_vmemmap...
177 	 */
178 	page = virt_to_page(memmap);
179 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
180 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
181 
182 	/* remember memmap's page */
183 	for (i = 0; i < mapsize; i++, page++)
184 		get_page_bootmem(section_nr, page, SECTION_INFO);
185 
186 	usemap = ms->pageblock_flags;
187 	page = virt_to_page(usemap);
188 
189 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
190 
191 	for (i = 0; i < mapsize; i++, page++)
192 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
193 
194 }
195 #else /* CONFIG_SPARSEMEM_VMEMMAP */
196 static void register_page_bootmem_info_section(unsigned long start_pfn)
197 {
198 	unsigned long *usemap, mapsize, section_nr, i;
199 	struct mem_section *ms;
200 	struct page *page, *memmap;
201 
202 	section_nr = pfn_to_section_nr(start_pfn);
203 	ms = __nr_to_section(section_nr);
204 
205 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
206 
207 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
208 
209 	usemap = ms->pageblock_flags;
210 	page = virt_to_page(usemap);
211 
212 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
213 
214 	for (i = 0; i < mapsize; i++, page++)
215 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
216 }
217 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
218 
219 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
220 {
221 	unsigned long i, pfn, end_pfn, nr_pages;
222 	int node = pgdat->node_id;
223 	struct page *page;
224 
225 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
226 	page = virt_to_page(pgdat);
227 
228 	for (i = 0; i < nr_pages; i++, page++)
229 		get_page_bootmem(node, page, NODE_INFO);
230 
231 	pfn = pgdat->node_start_pfn;
232 	end_pfn = pgdat_end_pfn(pgdat);
233 
234 	/* register section info */
235 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
236 		/*
237 		 * Some platforms can assign the same pfn to multiple nodes - on
238 		 * node0 as well as nodeN.  To avoid registering a pfn against
239 		 * multiple nodes we check that this pfn does not already
240 		 * reside in some other nodes.
241 		 */
242 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
243 			register_page_bootmem_info_section(pfn);
244 	}
245 }
246 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
247 
248 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
249 		struct vmem_altmap *altmap, bool want_memblock)
250 {
251 	int ret;
252 
253 	if (pfn_valid(phys_start_pfn))
254 		return -EEXIST;
255 
256 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
257 	if (ret < 0)
258 		return ret;
259 
260 	if (!want_memblock)
261 		return 0;
262 
263 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
264 }
265 
266 /*
267  * Reasonably generic function for adding memory.  It is
268  * expected that archs that support memory hotplug will
269  * call this function after deciding the zone to which to
270  * add the new pages.
271  */
272 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
273 		unsigned long nr_pages, struct vmem_altmap *altmap,
274 		bool want_memblock)
275 {
276 	unsigned long i;
277 	int err = 0;
278 	int start_sec, end_sec;
279 
280 	/* during initialize mem_map, align hot-added range to section */
281 	start_sec = pfn_to_section_nr(phys_start_pfn);
282 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
283 
284 	if (altmap) {
285 		/*
286 		 * Validate altmap is within bounds of the total request
287 		 */
288 		if (altmap->base_pfn != phys_start_pfn
289 				|| vmem_altmap_offset(altmap) > nr_pages) {
290 			pr_warn_once("memory add fail, invalid altmap\n");
291 			err = -EINVAL;
292 			goto out;
293 		}
294 		altmap->alloc = 0;
295 	}
296 
297 	for (i = start_sec; i <= end_sec; i++) {
298 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
299 				want_memblock);
300 
301 		/*
302 		 * EEXIST is finally dealt with by ioresource collision
303 		 * check. see add_memory() => register_memory_resource()
304 		 * Warning will be printed if there is collision.
305 		 */
306 		if (err && (err != -EEXIST))
307 			break;
308 		err = 0;
309 		cond_resched();
310 	}
311 	vmemmap_populate_print_last();
312 out:
313 	return err;
314 }
315 
316 #ifdef CONFIG_MEMORY_HOTREMOVE
317 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
318 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
319 				     unsigned long start_pfn,
320 				     unsigned long end_pfn)
321 {
322 	struct mem_section *ms;
323 
324 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
325 		ms = __pfn_to_section(start_pfn);
326 
327 		if (unlikely(!valid_section(ms)))
328 			continue;
329 
330 		if (unlikely(pfn_to_nid(start_pfn) != nid))
331 			continue;
332 
333 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
334 			continue;
335 
336 		return start_pfn;
337 	}
338 
339 	return 0;
340 }
341 
342 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
343 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
344 				    unsigned long start_pfn,
345 				    unsigned long end_pfn)
346 {
347 	struct mem_section *ms;
348 	unsigned long pfn;
349 
350 	/* pfn is the end pfn of a memory section. */
351 	pfn = end_pfn - 1;
352 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
353 		ms = __pfn_to_section(pfn);
354 
355 		if (unlikely(!valid_section(ms)))
356 			continue;
357 
358 		if (unlikely(pfn_to_nid(pfn) != nid))
359 			continue;
360 
361 		if (zone && zone != page_zone(pfn_to_page(pfn)))
362 			continue;
363 
364 		return pfn;
365 	}
366 
367 	return 0;
368 }
369 
370 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
371 			     unsigned long end_pfn)
372 {
373 	unsigned long zone_start_pfn = zone->zone_start_pfn;
374 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
375 	unsigned long zone_end_pfn = z;
376 	unsigned long pfn;
377 	struct mem_section *ms;
378 	int nid = zone_to_nid(zone);
379 
380 	zone_span_writelock(zone);
381 	if (zone_start_pfn == start_pfn) {
382 		/*
383 		 * If the section is smallest section in the zone, it need
384 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
385 		 * In this case, we find second smallest valid mem_section
386 		 * for shrinking zone.
387 		 */
388 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
389 						zone_end_pfn);
390 		if (pfn) {
391 			zone->zone_start_pfn = pfn;
392 			zone->spanned_pages = zone_end_pfn - pfn;
393 		}
394 	} else if (zone_end_pfn == end_pfn) {
395 		/*
396 		 * If the section is biggest section in the zone, it need
397 		 * shrink zone->spanned_pages.
398 		 * In this case, we find second biggest valid mem_section for
399 		 * shrinking zone.
400 		 */
401 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
402 					       start_pfn);
403 		if (pfn)
404 			zone->spanned_pages = pfn - zone_start_pfn + 1;
405 	}
406 
407 	/*
408 	 * The section is not biggest or smallest mem_section in the zone, it
409 	 * only creates a hole in the zone. So in this case, we need not
410 	 * change the zone. But perhaps, the zone has only hole data. Thus
411 	 * it check the zone has only hole or not.
412 	 */
413 	pfn = zone_start_pfn;
414 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
415 		ms = __pfn_to_section(pfn);
416 
417 		if (unlikely(!valid_section(ms)))
418 			continue;
419 
420 		if (page_zone(pfn_to_page(pfn)) != zone)
421 			continue;
422 
423 		 /* If the section is current section, it continues the loop */
424 		if (start_pfn == pfn)
425 			continue;
426 
427 		/* If we find valid section, we have nothing to do */
428 		zone_span_writeunlock(zone);
429 		return;
430 	}
431 
432 	/* The zone has no valid section */
433 	zone->zone_start_pfn = 0;
434 	zone->spanned_pages = 0;
435 	zone_span_writeunlock(zone);
436 }
437 
438 static void shrink_pgdat_span(struct pglist_data *pgdat,
439 			      unsigned long start_pfn, unsigned long end_pfn)
440 {
441 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
442 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
443 	unsigned long pgdat_end_pfn = p;
444 	unsigned long pfn;
445 	struct mem_section *ms;
446 	int nid = pgdat->node_id;
447 
448 	if (pgdat_start_pfn == start_pfn) {
449 		/*
450 		 * If the section is smallest section in the pgdat, it need
451 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 		 * In this case, we find second smallest valid mem_section
453 		 * for shrinking zone.
454 		 */
455 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 						pgdat_end_pfn);
457 		if (pfn) {
458 			pgdat->node_start_pfn = pfn;
459 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 		}
461 	} else if (pgdat_end_pfn == end_pfn) {
462 		/*
463 		 * If the section is biggest section in the pgdat, it need
464 		 * shrink pgdat->node_spanned_pages.
465 		 * In this case, we find second biggest valid mem_section for
466 		 * shrinking zone.
467 		 */
468 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 					       start_pfn);
470 		if (pfn)
471 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 	}
473 
474 	/*
475 	 * If the section is not biggest or smallest mem_section in the pgdat,
476 	 * it only creates a hole in the pgdat. So in this case, we need not
477 	 * change the pgdat.
478 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 	 * has only hole or not.
480 	 */
481 	pfn = pgdat_start_pfn;
482 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
483 		ms = __pfn_to_section(pfn);
484 
485 		if (unlikely(!valid_section(ms)))
486 			continue;
487 
488 		if (pfn_to_nid(pfn) != nid)
489 			continue;
490 
491 		 /* If the section is current section, it continues the loop */
492 		if (start_pfn == pfn)
493 			continue;
494 
495 		/* If we find valid section, we have nothing to do */
496 		return;
497 	}
498 
499 	/* The pgdat has no valid section */
500 	pgdat->node_start_pfn = 0;
501 	pgdat->node_spanned_pages = 0;
502 }
503 
504 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
505 {
506 	struct pglist_data *pgdat = zone->zone_pgdat;
507 	int nr_pages = PAGES_PER_SECTION;
508 	unsigned long flags;
509 
510 	pgdat_resize_lock(zone->zone_pgdat, &flags);
511 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
512 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
513 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
514 }
515 
516 static int __remove_section(struct zone *zone, struct mem_section *ms,
517 		unsigned long map_offset, struct vmem_altmap *altmap)
518 {
519 	unsigned long start_pfn;
520 	int scn_nr;
521 	int ret = -EINVAL;
522 
523 	if (!valid_section(ms))
524 		return ret;
525 
526 	ret = unregister_memory_section(ms);
527 	if (ret)
528 		return ret;
529 
530 	scn_nr = __section_nr(ms);
531 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
532 	__remove_zone(zone, start_pfn);
533 
534 	sparse_remove_one_section(zone, ms, map_offset, altmap);
535 	return 0;
536 }
537 
538 /**
539  * __remove_pages() - remove sections of pages from a zone
540  * @zone: zone from which pages need to be removed
541  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
542  * @nr_pages: number of pages to remove (must be multiple of section size)
543  * @altmap: alternative device page map or %NULL if default memmap is used
544  *
545  * Generic helper function to remove section mappings and sysfs entries
546  * for the section of the memory we are removing. Caller needs to make
547  * sure that pages are marked reserved and zones are adjust properly by
548  * calling offline_pages().
549  */
550 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
551 		 unsigned long nr_pages, struct vmem_altmap *altmap)
552 {
553 	unsigned long i;
554 	unsigned long map_offset = 0;
555 	int sections_to_remove, ret = 0;
556 
557 	/* In the ZONE_DEVICE case device driver owns the memory region */
558 	if (is_dev_zone(zone)) {
559 		if (altmap)
560 			map_offset = vmem_altmap_offset(altmap);
561 	} else {
562 		resource_size_t start, size;
563 
564 		start = phys_start_pfn << PAGE_SHIFT;
565 		size = nr_pages * PAGE_SIZE;
566 
567 		ret = release_mem_region_adjustable(&iomem_resource, start,
568 					size);
569 		if (ret) {
570 			resource_size_t endres = start + size - 1;
571 
572 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
573 					&start, &endres, ret);
574 		}
575 	}
576 
577 	clear_zone_contiguous(zone);
578 
579 	/*
580 	 * We can only remove entire sections
581 	 */
582 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
583 	BUG_ON(nr_pages % PAGES_PER_SECTION);
584 
585 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
586 	for (i = 0; i < sections_to_remove; i++) {
587 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
588 
589 		cond_resched();
590 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 				altmap);
592 		map_offset = 0;
593 		if (ret)
594 			break;
595 	}
596 
597 	set_zone_contiguous(zone);
598 
599 	return ret;
600 }
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
602 
603 int set_online_page_callback(online_page_callback_t callback)
604 {
605 	int rc = -EINVAL;
606 
607 	get_online_mems();
608 	mutex_lock(&online_page_callback_lock);
609 
610 	if (online_page_callback == generic_online_page) {
611 		online_page_callback = callback;
612 		rc = 0;
613 	}
614 
615 	mutex_unlock(&online_page_callback_lock);
616 	put_online_mems();
617 
618 	return rc;
619 }
620 EXPORT_SYMBOL_GPL(set_online_page_callback);
621 
622 int restore_online_page_callback(online_page_callback_t callback)
623 {
624 	int rc = -EINVAL;
625 
626 	get_online_mems();
627 	mutex_lock(&online_page_callback_lock);
628 
629 	if (online_page_callback == callback) {
630 		online_page_callback = generic_online_page;
631 		rc = 0;
632 	}
633 
634 	mutex_unlock(&online_page_callback_lock);
635 	put_online_mems();
636 
637 	return rc;
638 }
639 EXPORT_SYMBOL_GPL(restore_online_page_callback);
640 
641 void __online_page_set_limits(struct page *page)
642 {
643 }
644 EXPORT_SYMBOL_GPL(__online_page_set_limits);
645 
646 void __online_page_increment_counters(struct page *page)
647 {
648 	adjust_managed_page_count(page, 1);
649 }
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
651 
652 void __online_page_free(struct page *page)
653 {
654 	__free_reserved_page(page);
655 }
656 EXPORT_SYMBOL_GPL(__online_page_free);
657 
658 static void generic_online_page(struct page *page)
659 {
660 	__online_page_set_limits(page);
661 	__online_page_increment_counters(page);
662 	__online_page_free(page);
663 }
664 
665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 			void *arg)
667 {
668 	unsigned long i;
669 	unsigned long onlined_pages = *(unsigned long *)arg;
670 	struct page *page;
671 
672 	if (PageReserved(pfn_to_page(start_pfn)))
673 		for (i = 0; i < nr_pages; i++) {
674 			page = pfn_to_page(start_pfn + i);
675 			(*online_page_callback)(page);
676 			onlined_pages++;
677 		}
678 
679 	online_mem_sections(start_pfn, start_pfn + nr_pages);
680 
681 	*(unsigned long *)arg = onlined_pages;
682 	return 0;
683 }
684 
685 /* check which state of node_states will be changed when online memory */
686 static void node_states_check_changes_online(unsigned long nr_pages,
687 	struct zone *zone, struct memory_notify *arg)
688 {
689 	int nid = zone_to_nid(zone);
690 
691 	arg->status_change_nid = -1;
692 	arg->status_change_nid_normal = -1;
693 	arg->status_change_nid_high = -1;
694 
695 	if (!node_state(nid, N_MEMORY))
696 		arg->status_change_nid = nid;
697 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
698 		arg->status_change_nid_normal = nid;
699 #ifdef CONFIG_HIGHMEM
700 	if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
701 		arg->status_change_nid_high = nid;
702 #endif
703 }
704 
705 static void node_states_set_node(int node, struct memory_notify *arg)
706 {
707 	if (arg->status_change_nid_normal >= 0)
708 		node_set_state(node, N_NORMAL_MEMORY);
709 
710 	if (arg->status_change_nid_high >= 0)
711 		node_set_state(node, N_HIGH_MEMORY);
712 
713 	if (arg->status_change_nid >= 0)
714 		node_set_state(node, N_MEMORY);
715 }
716 
717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
718 		unsigned long nr_pages)
719 {
720 	unsigned long old_end_pfn = zone_end_pfn(zone);
721 
722 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
723 		zone->zone_start_pfn = start_pfn;
724 
725 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
726 }
727 
728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
729                                      unsigned long nr_pages)
730 {
731 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
732 
733 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
734 		pgdat->node_start_pfn = start_pfn;
735 
736 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
737 }
738 
739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
740 		unsigned long nr_pages, struct vmem_altmap *altmap)
741 {
742 	struct pglist_data *pgdat = zone->zone_pgdat;
743 	int nid = pgdat->node_id;
744 	unsigned long flags;
745 
746 	if (zone_is_empty(zone))
747 		init_currently_empty_zone(zone, start_pfn, nr_pages);
748 
749 	clear_zone_contiguous(zone);
750 
751 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
752 	pgdat_resize_lock(pgdat, &flags);
753 	zone_span_writelock(zone);
754 	resize_zone_range(zone, start_pfn, nr_pages);
755 	zone_span_writeunlock(zone);
756 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 	pgdat_resize_unlock(pgdat, &flags);
758 
759 	/*
760 	 * TODO now we have a visible range of pages which are not associated
761 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
762 	 * expects the zone spans the pfn range. All the pages in the range
763 	 * are reserved so nobody should be touching them so we should be safe
764 	 */
765 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
766 			MEMMAP_HOTPLUG, altmap);
767 
768 	set_zone_contiguous(zone);
769 }
770 
771 /*
772  * Returns a default kernel memory zone for the given pfn range.
773  * If no kernel zone covers this pfn range it will automatically go
774  * to the ZONE_NORMAL.
775  */
776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
777 		unsigned long nr_pages)
778 {
779 	struct pglist_data *pgdat = NODE_DATA(nid);
780 	int zid;
781 
782 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
783 		struct zone *zone = &pgdat->node_zones[zid];
784 
785 		if (zone_intersects(zone, start_pfn, nr_pages))
786 			return zone;
787 	}
788 
789 	return &pgdat->node_zones[ZONE_NORMAL];
790 }
791 
792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
793 		unsigned long nr_pages)
794 {
795 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
796 			nr_pages);
797 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
799 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
800 
801 	/*
802 	 * We inherit the existing zone in a simple case where zones do not
803 	 * overlap in the given range
804 	 */
805 	if (in_kernel ^ in_movable)
806 		return (in_kernel) ? kernel_zone : movable_zone;
807 
808 	/*
809 	 * If the range doesn't belong to any zone or two zones overlap in the
810 	 * given range then we use movable zone only if movable_node is
811 	 * enabled because we always online to a kernel zone by default.
812 	 */
813 	return movable_node_enabled ? movable_zone : kernel_zone;
814 }
815 
816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
817 		unsigned long nr_pages)
818 {
819 	if (online_type == MMOP_ONLINE_KERNEL)
820 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
821 
822 	if (online_type == MMOP_ONLINE_MOVABLE)
823 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
824 
825 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
826 }
827 
828 /*
829  * Associates the given pfn range with the given node and the zone appropriate
830  * for the given online type.
831  */
832 static struct zone * __meminit move_pfn_range(int online_type, int nid,
833 		unsigned long start_pfn, unsigned long nr_pages)
834 {
835 	struct zone *zone;
836 
837 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
838 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
839 	return zone;
840 }
841 
842 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
843 {
844 	unsigned long flags;
845 	unsigned long onlined_pages = 0;
846 	struct zone *zone;
847 	int need_zonelists_rebuild = 0;
848 	int nid;
849 	int ret;
850 	struct memory_notify arg;
851 	struct memory_block *mem;
852 
853 	mem_hotplug_begin();
854 
855 	/*
856 	 * We can't use pfn_to_nid() because nid might be stored in struct page
857 	 * which is not yet initialized. Instead, we find nid from memory block.
858 	 */
859 	mem = find_memory_block(__pfn_to_section(pfn));
860 	nid = mem->nid;
861 
862 	/* associate pfn range with the zone */
863 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
864 
865 	arg.start_pfn = pfn;
866 	arg.nr_pages = nr_pages;
867 	node_states_check_changes_online(nr_pages, zone, &arg);
868 
869 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
870 	ret = notifier_to_errno(ret);
871 	if (ret)
872 		goto failed_addition;
873 
874 	/*
875 	 * If this zone is not populated, then it is not in zonelist.
876 	 * This means the page allocator ignores this zone.
877 	 * So, zonelist must be updated after online.
878 	 */
879 	if (!populated_zone(zone)) {
880 		need_zonelists_rebuild = 1;
881 		setup_zone_pageset(zone);
882 	}
883 
884 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
885 		online_pages_range);
886 	if (ret) {
887 		if (need_zonelists_rebuild)
888 			zone_pcp_reset(zone);
889 		goto failed_addition;
890 	}
891 
892 	zone->present_pages += onlined_pages;
893 
894 	pgdat_resize_lock(zone->zone_pgdat, &flags);
895 	zone->zone_pgdat->node_present_pages += onlined_pages;
896 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
897 
898 	if (onlined_pages) {
899 		node_states_set_node(nid, &arg);
900 		if (need_zonelists_rebuild)
901 			build_all_zonelists(NULL);
902 		else
903 			zone_pcp_update(zone);
904 	}
905 
906 	init_per_zone_wmark_min();
907 
908 	if (onlined_pages) {
909 		kswapd_run(nid);
910 		kcompactd_run(nid);
911 	}
912 
913 	vm_total_pages = nr_free_pagecache_pages();
914 
915 	writeback_set_ratelimit();
916 
917 	if (onlined_pages)
918 		memory_notify(MEM_ONLINE, &arg);
919 	mem_hotplug_done();
920 	return 0;
921 
922 failed_addition:
923 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
924 		 (unsigned long long) pfn << PAGE_SHIFT,
925 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
926 	memory_notify(MEM_CANCEL_ONLINE, &arg);
927 	mem_hotplug_done();
928 	return ret;
929 }
930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
931 
932 static void reset_node_present_pages(pg_data_t *pgdat)
933 {
934 	struct zone *z;
935 
936 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
937 		z->present_pages = 0;
938 
939 	pgdat->node_present_pages = 0;
940 }
941 
942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
944 {
945 	struct pglist_data *pgdat;
946 	unsigned long start_pfn = PFN_DOWN(start);
947 
948 	pgdat = NODE_DATA(nid);
949 	if (!pgdat) {
950 		pgdat = arch_alloc_nodedata(nid);
951 		if (!pgdat)
952 			return NULL;
953 
954 		arch_refresh_nodedata(nid, pgdat);
955 	} else {
956 		/*
957 		 * Reset the nr_zones, order and classzone_idx before reuse.
958 		 * Note that kswapd will init kswapd_classzone_idx properly
959 		 * when it starts in the near future.
960 		 */
961 		pgdat->nr_zones = 0;
962 		pgdat->kswapd_order = 0;
963 		pgdat->kswapd_classzone_idx = 0;
964 	}
965 
966 	/* we can use NODE_DATA(nid) from here */
967 
968 	pgdat->node_id = nid;
969 	pgdat->node_start_pfn = start_pfn;
970 
971 	/* init node's zones as empty zones, we don't have any present pages.*/
972 	free_area_init_core_hotplug(nid);
973 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
974 
975 	/*
976 	 * The node we allocated has no zone fallback lists. For avoiding
977 	 * to access not-initialized zonelist, build here.
978 	 */
979 	build_all_zonelists(pgdat);
980 
981 	/*
982 	 * When memory is hot-added, all the memory is in offline state. So
983 	 * clear all zones' present_pages because they will be updated in
984 	 * online_pages() and offline_pages().
985 	 */
986 	reset_node_managed_pages(pgdat);
987 	reset_node_present_pages(pgdat);
988 
989 	return pgdat;
990 }
991 
992 static void rollback_node_hotadd(int nid)
993 {
994 	pg_data_t *pgdat = NODE_DATA(nid);
995 
996 	arch_refresh_nodedata(nid, NULL);
997 	free_percpu(pgdat->per_cpu_nodestats);
998 	arch_free_nodedata(pgdat);
999 	return;
1000 }
1001 
1002 
1003 /**
1004  * try_online_node - online a node if offlined
1005  * @nid: the node ID
1006  * @start: start addr of the node
1007  * @set_node_online: Whether we want to online the node
1008  * called by cpu_up() to online a node without onlined memory.
1009  *
1010  * Returns:
1011  * 1 -> a new node has been allocated
1012  * 0 -> the node is already online
1013  * -ENOMEM -> the node could not be allocated
1014  */
1015 static int __try_online_node(int nid, u64 start, bool set_node_online)
1016 {
1017 	pg_data_t *pgdat;
1018 	int ret = 1;
1019 
1020 	if (node_online(nid))
1021 		return 0;
1022 
1023 	pgdat = hotadd_new_pgdat(nid, start);
1024 	if (!pgdat) {
1025 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026 		ret = -ENOMEM;
1027 		goto out;
1028 	}
1029 
1030 	if (set_node_online) {
1031 		node_set_online(nid);
1032 		ret = register_one_node(nid);
1033 		BUG_ON(ret);
1034 	}
1035 out:
1036 	return ret;
1037 }
1038 
1039 /*
1040  * Users of this function always want to online/register the node
1041  */
1042 int try_online_node(int nid)
1043 {
1044 	int ret;
1045 
1046 	mem_hotplug_begin();
1047 	ret =  __try_online_node(nid, 0, true);
1048 	mem_hotplug_done();
1049 	return ret;
1050 }
1051 
1052 static int check_hotplug_memory_range(u64 start, u64 size)
1053 {
1054 	unsigned long block_sz = memory_block_size_bytes();
1055 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056 	u64 nr_pages = size >> PAGE_SHIFT;
1057 	u64 start_pfn = PFN_DOWN(start);
1058 
1059 	/* memory range must be block size aligned */
1060 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063 		       block_sz, start, size);
1064 		return -EINVAL;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int online_memory_block(struct memory_block *mem, void *arg)
1071 {
1072 	return device_online(&mem->dev);
1073 }
1074 
1075 /*
1076  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077  * and online/offline operations (triggered e.g. by sysfs).
1078  *
1079  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1080  */
1081 int __ref add_memory_resource(int nid, struct resource *res)
1082 {
1083 	u64 start, size;
1084 	bool new_node = false;
1085 	int ret;
1086 
1087 	start = res->start;
1088 	size = resource_size(res);
1089 
1090 	ret = check_hotplug_memory_range(start, size);
1091 	if (ret)
1092 		return ret;
1093 
1094 	mem_hotplug_begin();
1095 
1096 	/*
1097 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1098 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1099 	 * this new range and calculate total pages correctly.  The range will
1100 	 * be removed at hot-remove time.
1101 	 */
1102 	memblock_add_node(start, size, nid);
1103 
1104 	ret = __try_online_node(nid, start, false);
1105 	if (ret < 0)
1106 		goto error;
1107 	new_node = ret;
1108 
1109 	/* call arch's memory hotadd */
1110 	ret = arch_add_memory(nid, start, size, NULL, true);
1111 	if (ret < 0)
1112 		goto error;
1113 
1114 	if (new_node) {
1115 		/* If sysfs file of new node can't be created, cpu on the node
1116 		 * can't be hot-added. There is no rollback way now.
1117 		 * So, check by BUG_ON() to catch it reluctantly..
1118 		 * We online node here. We can't roll back from here.
1119 		 */
1120 		node_set_online(nid);
1121 		ret = __register_one_node(nid);
1122 		BUG_ON(ret);
1123 	}
1124 
1125 	/* link memory sections under this node.*/
1126 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1127 	BUG_ON(ret);
1128 
1129 	/* create new memmap entry */
1130 	firmware_map_add_hotplug(start, start + size, "System RAM");
1131 
1132 	/* device_online() will take the lock when calling online_pages() */
1133 	mem_hotplug_done();
1134 
1135 	/* online pages if requested */
1136 	if (memhp_auto_online)
1137 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1138 				  NULL, online_memory_block);
1139 
1140 	return ret;
1141 error:
1142 	/* rollback pgdat allocation and others */
1143 	if (new_node)
1144 		rollback_node_hotadd(nid);
1145 	memblock_remove(start, size);
1146 	mem_hotplug_done();
1147 	return ret;
1148 }
1149 
1150 /* requires device_hotplug_lock, see add_memory_resource() */
1151 int __ref __add_memory(int nid, u64 start, u64 size)
1152 {
1153 	struct resource *res;
1154 	int ret;
1155 
1156 	res = register_memory_resource(start, size);
1157 	if (IS_ERR(res))
1158 		return PTR_ERR(res);
1159 
1160 	ret = add_memory_resource(nid, res);
1161 	if (ret < 0)
1162 		release_memory_resource(res);
1163 	return ret;
1164 }
1165 
1166 int add_memory(int nid, u64 start, u64 size)
1167 {
1168 	int rc;
1169 
1170 	lock_device_hotplug();
1171 	rc = __add_memory(nid, start, size);
1172 	unlock_device_hotplug();
1173 
1174 	return rc;
1175 }
1176 EXPORT_SYMBOL_GPL(add_memory);
1177 
1178 #ifdef CONFIG_MEMORY_HOTREMOVE
1179 /*
1180  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1181  * set and the size of the free page is given by page_order(). Using this,
1182  * the function determines if the pageblock contains only free pages.
1183  * Due to buddy contraints, a free page at least the size of a pageblock will
1184  * be located at the start of the pageblock
1185  */
1186 static inline int pageblock_free(struct page *page)
1187 {
1188 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1189 }
1190 
1191 /* Return the start of the next active pageblock after a given page */
1192 static struct page *next_active_pageblock(struct page *page)
1193 {
1194 	/* Ensure the starting page is pageblock-aligned */
1195 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1196 
1197 	/* If the entire pageblock is free, move to the end of free page */
1198 	if (pageblock_free(page)) {
1199 		int order;
1200 		/* be careful. we don't have locks, page_order can be changed.*/
1201 		order = page_order(page);
1202 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1203 			return page + (1 << order);
1204 	}
1205 
1206 	return page + pageblock_nr_pages;
1207 }
1208 
1209 static bool is_pageblock_removable_nolock(struct page *page)
1210 {
1211 	struct zone *zone;
1212 	unsigned long pfn;
1213 
1214 	/*
1215 	 * We have to be careful here because we are iterating over memory
1216 	 * sections which are not zone aware so we might end up outside of
1217 	 * the zone but still within the section.
1218 	 * We have to take care about the node as well. If the node is offline
1219 	 * its NODE_DATA will be NULL - see page_zone.
1220 	 */
1221 	if (!node_online(page_to_nid(page)))
1222 		return false;
1223 
1224 	zone = page_zone(page);
1225 	pfn = page_to_pfn(page);
1226 	if (!zone_spans_pfn(zone, pfn))
1227 		return false;
1228 
1229 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1230 }
1231 
1232 /* Checks if this range of memory is likely to be hot-removable. */
1233 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1234 {
1235 	struct page *page = pfn_to_page(start_pfn);
1236 	struct page *end_page = page + nr_pages;
1237 
1238 	/* Check the starting page of each pageblock within the range */
1239 	for (; page < end_page; page = next_active_pageblock(page)) {
1240 		if (!is_pageblock_removable_nolock(page))
1241 			return false;
1242 		cond_resched();
1243 	}
1244 
1245 	/* All pageblocks in the memory block are likely to be hot-removable */
1246 	return true;
1247 }
1248 
1249 /*
1250  * Confirm all pages in a range [start, end) belong to the same zone.
1251  * When true, return its valid [start, end).
1252  */
1253 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1254 			 unsigned long *valid_start, unsigned long *valid_end)
1255 {
1256 	unsigned long pfn, sec_end_pfn;
1257 	unsigned long start, end;
1258 	struct zone *zone = NULL;
1259 	struct page *page;
1260 	int i;
1261 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1262 	     pfn < end_pfn;
1263 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1264 		/* Make sure the memory section is present first */
1265 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1266 			continue;
1267 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1268 		     pfn += MAX_ORDER_NR_PAGES) {
1269 			i = 0;
1270 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1271 			while ((i < MAX_ORDER_NR_PAGES) &&
1272 				!pfn_valid_within(pfn + i))
1273 				i++;
1274 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1275 				continue;
1276 			page = pfn_to_page(pfn + i);
1277 			if (zone && page_zone(page) != zone)
1278 				return 0;
1279 			if (!zone)
1280 				start = pfn + i;
1281 			zone = page_zone(page);
1282 			end = pfn + MAX_ORDER_NR_PAGES;
1283 		}
1284 	}
1285 
1286 	if (zone) {
1287 		*valid_start = start;
1288 		*valid_end = min(end, end_pfn);
1289 		return 1;
1290 	} else {
1291 		return 0;
1292 	}
1293 }
1294 
1295 /*
1296  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1297  * non-lru movable pages and hugepages). We scan pfn because it's much
1298  * easier than scanning over linked list. This function returns the pfn
1299  * of the first found movable page if it's found, otherwise 0.
1300  */
1301 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1302 {
1303 	unsigned long pfn;
1304 	struct page *page;
1305 	for (pfn = start; pfn < end; pfn++) {
1306 		if (pfn_valid(pfn)) {
1307 			page = pfn_to_page(pfn);
1308 			if (PageLRU(page))
1309 				return pfn;
1310 			if (__PageMovable(page))
1311 				return pfn;
1312 			if (PageHuge(page)) {
1313 				if (hugepage_migration_supported(page_hstate(page)) &&
1314 				    page_huge_active(page))
1315 					return pfn;
1316 				else
1317 					pfn = round_up(pfn + 1,
1318 						1 << compound_order(page)) - 1;
1319 			}
1320 		}
1321 	}
1322 	return 0;
1323 }
1324 
1325 static struct page *new_node_page(struct page *page, unsigned long private)
1326 {
1327 	int nid = page_to_nid(page);
1328 	nodemask_t nmask = node_states[N_MEMORY];
1329 
1330 	/*
1331 	 * try to allocate from a different node but reuse this node if there
1332 	 * are no other online nodes to be used (e.g. we are offlining a part
1333 	 * of the only existing node)
1334 	 */
1335 	node_clear(nid, nmask);
1336 	if (nodes_empty(nmask))
1337 		node_set(nid, nmask);
1338 
1339 	return new_page_nodemask(page, nid, &nmask);
1340 }
1341 
1342 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1343 static int
1344 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1345 {
1346 	unsigned long pfn;
1347 	struct page *page;
1348 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1349 	int not_managed = 0;
1350 	int ret = 0;
1351 	LIST_HEAD(source);
1352 
1353 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1354 		if (!pfn_valid(pfn))
1355 			continue;
1356 		page = pfn_to_page(pfn);
1357 
1358 		if (PageHuge(page)) {
1359 			struct page *head = compound_head(page);
1360 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1361 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1362 				ret = -EBUSY;
1363 				break;
1364 			}
1365 			if (isolate_huge_page(page, &source))
1366 				move_pages -= 1 << compound_order(head);
1367 			continue;
1368 		} else if (PageTransHuge(page))
1369 			pfn = page_to_pfn(compound_head(page))
1370 				+ hpage_nr_pages(page) - 1;
1371 
1372 		if (!get_page_unless_zero(page))
1373 			continue;
1374 		/*
1375 		 * We can skip free pages. And we can deal with pages on
1376 		 * LRU and non-lru movable pages.
1377 		 */
1378 		if (PageLRU(page))
1379 			ret = isolate_lru_page(page);
1380 		else
1381 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382 		if (!ret) { /* Success */
1383 			put_page(page);
1384 			list_add_tail(&page->lru, &source);
1385 			move_pages--;
1386 			if (!__PageMovable(page))
1387 				inc_node_page_state(page, NR_ISOLATED_ANON +
1388 						    page_is_file_cache(page));
1389 
1390 		} else {
1391 			pr_warn("failed to isolate pfn %lx\n", pfn);
1392 			dump_page(page, "isolation failed");
1393 			put_page(page);
1394 			/* Because we don't have big zone->lock. we should
1395 			   check this again here. */
1396 			if (page_count(page)) {
1397 				not_managed++;
1398 				ret = -EBUSY;
1399 				break;
1400 			}
1401 		}
1402 	}
1403 	if (!list_empty(&source)) {
1404 		if (not_managed) {
1405 			putback_movable_pages(&source);
1406 			goto out;
1407 		}
1408 
1409 		/* Allocate a new page from the nearest neighbor node */
1410 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1411 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1412 		if (ret) {
1413 			list_for_each_entry(page, &source, lru) {
1414 				pr_warn("migrating pfn %lx failed ret:%d ",
1415 				       page_to_pfn(page), ret);
1416 				dump_page(page, "migration failure");
1417 			}
1418 			putback_movable_pages(&source);
1419 		}
1420 	}
1421 out:
1422 	return ret;
1423 }
1424 
1425 /*
1426  * remove from free_area[] and mark all as Reserved.
1427  */
1428 static int
1429 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1430 			void *data)
1431 {
1432 	__offline_isolated_pages(start, start + nr_pages);
1433 	return 0;
1434 }
1435 
1436 static void
1437 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1438 {
1439 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1440 				offline_isolated_pages_cb);
1441 }
1442 
1443 /*
1444  * Check all pages in range, recoreded as memory resource, are isolated.
1445  */
1446 static int
1447 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1448 			void *data)
1449 {
1450 	int ret;
1451 	long offlined = *(long *)data;
1452 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1453 	offlined = nr_pages;
1454 	if (!ret)
1455 		*(long *)data += offlined;
1456 	return ret;
1457 }
1458 
1459 static long
1460 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1461 {
1462 	long offlined = 0;
1463 	int ret;
1464 
1465 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1466 			check_pages_isolated_cb);
1467 	if (ret < 0)
1468 		offlined = (long)ret;
1469 	return offlined;
1470 }
1471 
1472 static int __init cmdline_parse_movable_node(char *p)
1473 {
1474 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1475 	movable_node_enabled = true;
1476 #else
1477 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1478 #endif
1479 	return 0;
1480 }
1481 early_param("movable_node", cmdline_parse_movable_node);
1482 
1483 /* check which state of node_states will be changed when offline memory */
1484 static void node_states_check_changes_offline(unsigned long nr_pages,
1485 		struct zone *zone, struct memory_notify *arg)
1486 {
1487 	struct pglist_data *pgdat = zone->zone_pgdat;
1488 	unsigned long present_pages = 0;
1489 	enum zone_type zt;
1490 
1491 	arg->status_change_nid = -1;
1492 	arg->status_change_nid_normal = -1;
1493 	arg->status_change_nid_high = -1;
1494 
1495 	/*
1496 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1497 	 * If the memory to be offline is within the range
1498 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1499 	 * the zones in that range will become empty after the offlining,
1500 	 * thus we can determine that we need to clear the node from
1501 	 * node_states[N_NORMAL_MEMORY].
1502 	 */
1503 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1504 		present_pages += pgdat->node_zones[zt].present_pages;
1505 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1506 		arg->status_change_nid_normal = zone_to_nid(zone);
1507 
1508 #ifdef CONFIG_HIGHMEM
1509 	/*
1510 	 * node_states[N_HIGH_MEMORY] contains nodes which
1511 	 * have normal memory or high memory.
1512 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1513 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1514 	 * we determine that the zones in that range become empty,
1515 	 * we need to clear the node for N_HIGH_MEMORY.
1516 	 */
1517 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1518 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1519 		arg->status_change_nid_high = zone_to_nid(zone);
1520 #endif
1521 
1522 	/*
1523 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1524 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1525 	 * as well.
1526 	 * Here we count the possible pages from ZONE_MOVABLE.
1527 	 * If after having accounted all the pages, we see that the nr_pages
1528 	 * to be offlined is over or equal to the accounted pages,
1529 	 * we know that the node will become empty, and so, we can clear
1530 	 * it for N_MEMORY as well.
1531 	 */
1532 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1533 
1534 	if (nr_pages >= present_pages)
1535 		arg->status_change_nid = zone_to_nid(zone);
1536 }
1537 
1538 static void node_states_clear_node(int node, struct memory_notify *arg)
1539 {
1540 	if (arg->status_change_nid_normal >= 0)
1541 		node_clear_state(node, N_NORMAL_MEMORY);
1542 
1543 	if (arg->status_change_nid_high >= 0)
1544 		node_clear_state(node, N_HIGH_MEMORY);
1545 
1546 	if (arg->status_change_nid >= 0)
1547 		node_clear_state(node, N_MEMORY);
1548 }
1549 
1550 static int __ref __offline_pages(unsigned long start_pfn,
1551 		  unsigned long end_pfn)
1552 {
1553 	unsigned long pfn, nr_pages;
1554 	long offlined_pages;
1555 	int ret, node;
1556 	unsigned long flags;
1557 	unsigned long valid_start, valid_end;
1558 	struct zone *zone;
1559 	struct memory_notify arg;
1560 	char *reason;
1561 
1562 	mem_hotplug_begin();
1563 
1564 	/* This makes hotplug much easier...and readable.
1565 	   we assume this for now. .*/
1566 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1567 				  &valid_end)) {
1568 		mem_hotplug_done();
1569 		ret = -EINVAL;
1570 		reason = "multizone range";
1571 		goto failed_removal;
1572 	}
1573 
1574 	zone = page_zone(pfn_to_page(valid_start));
1575 	node = zone_to_nid(zone);
1576 	nr_pages = end_pfn - start_pfn;
1577 
1578 	/* set above range as isolated */
1579 	ret = start_isolate_page_range(start_pfn, end_pfn,
1580 				       MIGRATE_MOVABLE,
1581 				       SKIP_HWPOISON | REPORT_FAILURE);
1582 	if (ret) {
1583 		mem_hotplug_done();
1584 		reason = "failure to isolate range";
1585 		goto failed_removal;
1586 	}
1587 
1588 	arg.start_pfn = start_pfn;
1589 	arg.nr_pages = nr_pages;
1590 	node_states_check_changes_offline(nr_pages, zone, &arg);
1591 
1592 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1593 	ret = notifier_to_errno(ret);
1594 	if (ret) {
1595 		reason = "notifier failure";
1596 		goto failed_removal_isolated;
1597 	}
1598 
1599 	pfn = start_pfn;
1600 repeat:
1601 	/* start memory hot removal */
1602 	ret = -EINTR;
1603 	if (signal_pending(current)) {
1604 		reason = "signal backoff";
1605 		goto failed_removal_isolated;
1606 	}
1607 
1608 	cond_resched();
1609 	lru_add_drain_all();
1610 	drain_all_pages(zone);
1611 
1612 	pfn = scan_movable_pages(start_pfn, end_pfn);
1613 	if (pfn) { /* We have movable pages */
1614 		ret = do_migrate_range(pfn, end_pfn);
1615 		goto repeat;
1616 	}
1617 
1618 	/*
1619 	 * dissolve free hugepages in the memory block before doing offlining
1620 	 * actually in order to make hugetlbfs's object counting consistent.
1621 	 */
1622 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1623 	if (ret) {
1624 		reason = "failure to dissolve huge pages";
1625 		goto failed_removal_isolated;
1626 	}
1627 	/* check again */
1628 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1629 	if (offlined_pages < 0)
1630 		goto repeat;
1631 	pr_info("Offlined Pages %ld\n", offlined_pages);
1632 	/* Ok, all of our target is isolated.
1633 	   We cannot do rollback at this point. */
1634 	offline_isolated_pages(start_pfn, end_pfn);
1635 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1636 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1637 	/* removal success */
1638 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1639 	zone->present_pages -= offlined_pages;
1640 
1641 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1642 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1643 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1644 
1645 	init_per_zone_wmark_min();
1646 
1647 	if (!populated_zone(zone)) {
1648 		zone_pcp_reset(zone);
1649 		build_all_zonelists(NULL);
1650 	} else
1651 		zone_pcp_update(zone);
1652 
1653 	node_states_clear_node(node, &arg);
1654 	if (arg.status_change_nid >= 0) {
1655 		kswapd_stop(node);
1656 		kcompactd_stop(node);
1657 	}
1658 
1659 	vm_total_pages = nr_free_pagecache_pages();
1660 	writeback_set_ratelimit();
1661 
1662 	memory_notify(MEM_OFFLINE, &arg);
1663 	mem_hotplug_done();
1664 	return 0;
1665 
1666 failed_removal_isolated:
1667 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1668 failed_removal:
1669 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1670 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1671 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1672 		 reason);
1673 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1674 	/* pushback to free area */
1675 	mem_hotplug_done();
1676 	return ret;
1677 }
1678 
1679 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1680 {
1681 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1682 }
1683 #endif /* CONFIG_MEMORY_HOTREMOVE */
1684 
1685 /**
1686  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1687  * @start_pfn: start pfn of the memory range
1688  * @end_pfn: end pfn of the memory range
1689  * @arg: argument passed to func
1690  * @func: callback for each memory section walked
1691  *
1692  * This function walks through all present mem sections in range
1693  * [start_pfn, end_pfn) and call func on each mem section.
1694  *
1695  * Returns the return value of func.
1696  */
1697 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1698 		void *arg, int (*func)(struct memory_block *, void *))
1699 {
1700 	struct memory_block *mem = NULL;
1701 	struct mem_section *section;
1702 	unsigned long pfn, section_nr;
1703 	int ret;
1704 
1705 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1706 		section_nr = pfn_to_section_nr(pfn);
1707 		if (!present_section_nr(section_nr))
1708 			continue;
1709 
1710 		section = __nr_to_section(section_nr);
1711 		/* same memblock? */
1712 		if (mem)
1713 			if ((section_nr >= mem->start_section_nr) &&
1714 			    (section_nr <= mem->end_section_nr))
1715 				continue;
1716 
1717 		mem = find_memory_block_hinted(section, mem);
1718 		if (!mem)
1719 			continue;
1720 
1721 		ret = func(mem, arg);
1722 		if (ret) {
1723 			kobject_put(&mem->dev.kobj);
1724 			return ret;
1725 		}
1726 	}
1727 
1728 	if (mem)
1729 		kobject_put(&mem->dev.kobj);
1730 
1731 	return 0;
1732 }
1733 
1734 #ifdef CONFIG_MEMORY_HOTREMOVE
1735 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1736 {
1737 	int ret = !is_memblock_offlined(mem);
1738 
1739 	if (unlikely(ret)) {
1740 		phys_addr_t beginpa, endpa;
1741 
1742 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1743 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1744 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1745 			&beginpa, &endpa);
1746 	}
1747 
1748 	return ret;
1749 }
1750 
1751 static int check_cpu_on_node(pg_data_t *pgdat)
1752 {
1753 	int cpu;
1754 
1755 	for_each_present_cpu(cpu) {
1756 		if (cpu_to_node(cpu) == pgdat->node_id)
1757 			/*
1758 			 * the cpu on this node isn't removed, and we can't
1759 			 * offline this node.
1760 			 */
1761 			return -EBUSY;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * try_offline_node
1769  * @nid: the node ID
1770  *
1771  * Offline a node if all memory sections and cpus of the node are removed.
1772  *
1773  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1774  * and online/offline operations before this call.
1775  */
1776 void try_offline_node(int nid)
1777 {
1778 	pg_data_t *pgdat = NODE_DATA(nid);
1779 	unsigned long start_pfn = pgdat->node_start_pfn;
1780 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1781 	unsigned long pfn;
1782 
1783 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1784 		unsigned long section_nr = pfn_to_section_nr(pfn);
1785 
1786 		if (!present_section_nr(section_nr))
1787 			continue;
1788 
1789 		if (pfn_to_nid(pfn) != nid)
1790 			continue;
1791 
1792 		/*
1793 		 * some memory sections of this node are not removed, and we
1794 		 * can't offline node now.
1795 		 */
1796 		return;
1797 	}
1798 
1799 	if (check_cpu_on_node(pgdat))
1800 		return;
1801 
1802 	/*
1803 	 * all memory/cpu of this node are removed, we can offline this
1804 	 * node now.
1805 	 */
1806 	node_set_offline(nid);
1807 	unregister_one_node(nid);
1808 }
1809 EXPORT_SYMBOL(try_offline_node);
1810 
1811 /**
1812  * remove_memory
1813  * @nid: the node ID
1814  * @start: physical address of the region to remove
1815  * @size: size of the region to remove
1816  *
1817  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1818  * and online/offline operations before this call, as required by
1819  * try_offline_node().
1820  */
1821 void __ref __remove_memory(int nid, u64 start, u64 size)
1822 {
1823 	int ret;
1824 
1825 	BUG_ON(check_hotplug_memory_range(start, size));
1826 
1827 	mem_hotplug_begin();
1828 
1829 	/*
1830 	 * All memory blocks must be offlined before removing memory.  Check
1831 	 * whether all memory blocks in question are offline and trigger a BUG()
1832 	 * if this is not the case.
1833 	 */
1834 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1835 				check_memblock_offlined_cb);
1836 	if (ret)
1837 		BUG();
1838 
1839 	/* remove memmap entry */
1840 	firmware_map_remove(start, start + size, "System RAM");
1841 	memblock_free(start, size);
1842 	memblock_remove(start, size);
1843 
1844 	arch_remove_memory(nid, start, size, NULL);
1845 
1846 	try_offline_node(nid);
1847 
1848 	mem_hotplug_done();
1849 }
1850 
1851 void remove_memory(int nid, u64 start, u64 size)
1852 {
1853 	lock_device_hotplug();
1854 	__remove_memory(nid, start, size);
1855 	unlock_device_hotplug();
1856 }
1857 EXPORT_SYMBOL_GPL(remove_memory);
1858 #endif /* CONFIG_MEMORY_HOTREMOVE */
1859