xref: /openbmc/linux/mm/memory_hotplug.c (revision 43f6c078)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static void generic_online_page(struct page *page, unsigned int order);
53 
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56 
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58 
59 void get_online_mems(void)
60 {
61 	percpu_down_read(&mem_hotplug_lock);
62 }
63 
64 void put_online_mems(void)
65 {
66 	percpu_up_read(&mem_hotplug_lock);
67 }
68 
69 bool movable_node_enabled = false;
70 
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77 
78 static int __init setup_memhp_default_state(char *str)
79 {
80 	if (!strcmp(str, "online"))
81 		memhp_auto_online = true;
82 	else if (!strcmp(str, "offline"))
83 		memhp_auto_online = false;
84 
85 	return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88 
89 void mem_hotplug_begin(void)
90 {
91 	cpus_read_lock();
92 	percpu_down_write(&mem_hotplug_lock);
93 }
94 
95 void mem_hotplug_done(void)
96 {
97 	percpu_up_write(&mem_hotplug_lock);
98 	cpus_read_unlock();
99 }
100 
101 u64 max_mem_size = U64_MAX;
102 
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 	struct resource *res;
107 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 	char *resource_name = "System RAM";
109 
110 	if (start + size > max_mem_size)
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Request ownership of the new memory range.  This might be
115 	 * a child of an existing resource that was present but
116 	 * not marked as busy.
117 	 */
118 	res = __request_region(&iomem_resource, start, size,
119 			       resource_name, flags);
120 
121 	if (!res) {
122 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 				start, start + size);
124 		return ERR_PTR(-EEXIST);
125 	}
126 	return res;
127 }
128 
129 static void release_memory_resource(struct resource *res)
130 {
131 	if (!res)
132 		return;
133 	release_resource(res);
134 	kfree(res);
135 	return;
136 }
137 
138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
139 void get_page_bootmem(unsigned long info,  struct page *page,
140 		      unsigned long type)
141 {
142 	page->freelist = (void *)type;
143 	SetPagePrivate(page);
144 	set_page_private(page, info);
145 	page_ref_inc(page);
146 }
147 
148 void put_page_bootmem(struct page *page)
149 {
150 	unsigned long type;
151 
152 	type = (unsigned long) page->freelist;
153 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
154 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
155 
156 	if (page_ref_dec_return(page) == 1) {
157 		page->freelist = NULL;
158 		ClearPagePrivate(page);
159 		set_page_private(page, 0);
160 		INIT_LIST_HEAD(&page->lru);
161 		free_reserved_page(page);
162 	}
163 }
164 
165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
166 #ifndef CONFIG_SPARSEMEM_VMEMMAP
167 static void register_page_bootmem_info_section(unsigned long start_pfn)
168 {
169 	unsigned long *usemap, mapsize, section_nr, i;
170 	struct mem_section *ms;
171 	struct page *page, *memmap;
172 
173 	section_nr = pfn_to_section_nr(start_pfn);
174 	ms = __nr_to_section(section_nr);
175 
176 	/* Get section's memmap address */
177 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178 
179 	/*
180 	 * Get page for the memmap's phys address
181 	 * XXX: need more consideration for sparse_vmemmap...
182 	 */
183 	page = virt_to_page(memmap);
184 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186 
187 	/* remember memmap's page */
188 	for (i = 0; i < mapsize; i++, page++)
189 		get_page_bootmem(section_nr, page, SECTION_INFO);
190 
191 	usemap = ms->pageblock_flags;
192 	page = virt_to_page(usemap);
193 
194 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
195 
196 	for (i = 0; i < mapsize; i++, page++)
197 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198 
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 	unsigned long *usemap, mapsize, section_nr, i;
204 	struct mem_section *ms;
205 	struct page *page, *memmap;
206 
207 	section_nr = pfn_to_section_nr(start_pfn);
208 	ms = __nr_to_section(section_nr);
209 
210 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
211 
212 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
213 
214 	usemap = ms->pageblock_flags;
215 	page = virt_to_page(usemap);
216 
217 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
218 
219 	for (i = 0; i < mapsize; i++, page++)
220 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
221 }
222 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
223 
224 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
225 {
226 	unsigned long i, pfn, end_pfn, nr_pages;
227 	int node = pgdat->node_id;
228 	struct page *page;
229 
230 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
231 	page = virt_to_page(pgdat);
232 
233 	for (i = 0; i < nr_pages; i++, page++)
234 		get_page_bootmem(node, page, NODE_INFO);
235 
236 	pfn = pgdat->node_start_pfn;
237 	end_pfn = pgdat_end_pfn(pgdat);
238 
239 	/* register section info */
240 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241 		/*
242 		 * Some platforms can assign the same pfn to multiple nodes - on
243 		 * node0 as well as nodeN.  To avoid registering a pfn against
244 		 * multiple nodes we check that this pfn does not already
245 		 * reside in some other nodes.
246 		 */
247 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
248 			register_page_bootmem_info_section(pfn);
249 	}
250 }
251 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
252 
253 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
254 		struct vmem_altmap *altmap, bool want_memblock)
255 {
256 	int ret;
257 
258 	if (pfn_valid(phys_start_pfn))
259 		return -EEXIST;
260 
261 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
262 	if (ret < 0)
263 		return ret;
264 
265 	if (!want_memblock)
266 		return 0;
267 
268 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
269 }
270 
271 /*
272  * Reasonably generic function for adding memory.  It is
273  * expected that archs that support memory hotplug will
274  * call this function after deciding the zone to which to
275  * add the new pages.
276  */
277 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
278 		unsigned long nr_pages, struct mhp_restrictions *restrictions)
279 {
280 	unsigned long i;
281 	int err = 0;
282 	int start_sec, end_sec;
283 	struct vmem_altmap *altmap = restrictions->altmap;
284 
285 	/* during initialize mem_map, align hot-added range to section */
286 	start_sec = pfn_to_section_nr(phys_start_pfn);
287 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
288 
289 	if (altmap) {
290 		/*
291 		 * Validate altmap is within bounds of the total request
292 		 */
293 		if (altmap->base_pfn != phys_start_pfn
294 				|| vmem_altmap_offset(altmap) > nr_pages) {
295 			pr_warn_once("memory add fail, invalid altmap\n");
296 			err = -EINVAL;
297 			goto out;
298 		}
299 		altmap->alloc = 0;
300 	}
301 
302 	for (i = start_sec; i <= end_sec; i++) {
303 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
304 				restrictions->flags & MHP_MEMBLOCK_API);
305 
306 		/*
307 		 * EEXIST is finally dealt with by ioresource collision
308 		 * check. see add_memory() => register_memory_resource()
309 		 * Warning will be printed if there is collision.
310 		 */
311 		if (err && (err != -EEXIST))
312 			break;
313 		err = 0;
314 		cond_resched();
315 	}
316 	vmemmap_populate_print_last();
317 out:
318 	return err;
319 }
320 
321 #ifdef CONFIG_MEMORY_HOTREMOVE
322 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
323 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
324 				     unsigned long start_pfn,
325 				     unsigned long end_pfn)
326 {
327 	struct mem_section *ms;
328 
329 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
330 		ms = __pfn_to_section(start_pfn);
331 
332 		if (unlikely(!valid_section(ms)))
333 			continue;
334 
335 		if (unlikely(pfn_to_nid(start_pfn) != nid))
336 			continue;
337 
338 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
339 			continue;
340 
341 		return start_pfn;
342 	}
343 
344 	return 0;
345 }
346 
347 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
348 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
349 				    unsigned long start_pfn,
350 				    unsigned long end_pfn)
351 {
352 	struct mem_section *ms;
353 	unsigned long pfn;
354 
355 	/* pfn is the end pfn of a memory section. */
356 	pfn = end_pfn - 1;
357 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
358 		ms = __pfn_to_section(pfn);
359 
360 		if (unlikely(!valid_section(ms)))
361 			continue;
362 
363 		if (unlikely(pfn_to_nid(pfn) != nid))
364 			continue;
365 
366 		if (zone && zone != page_zone(pfn_to_page(pfn)))
367 			continue;
368 
369 		return pfn;
370 	}
371 
372 	return 0;
373 }
374 
375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
376 			     unsigned long end_pfn)
377 {
378 	unsigned long zone_start_pfn = zone->zone_start_pfn;
379 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
380 	unsigned long zone_end_pfn = z;
381 	unsigned long pfn;
382 	struct mem_section *ms;
383 	int nid = zone_to_nid(zone);
384 
385 	zone_span_writelock(zone);
386 	if (zone_start_pfn == start_pfn) {
387 		/*
388 		 * If the section is smallest section in the zone, it need
389 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
390 		 * In this case, we find second smallest valid mem_section
391 		 * for shrinking zone.
392 		 */
393 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
394 						zone_end_pfn);
395 		if (pfn) {
396 			zone->zone_start_pfn = pfn;
397 			zone->spanned_pages = zone_end_pfn - pfn;
398 		}
399 	} else if (zone_end_pfn == end_pfn) {
400 		/*
401 		 * If the section is biggest section in the zone, it need
402 		 * shrink zone->spanned_pages.
403 		 * In this case, we find second biggest valid mem_section for
404 		 * shrinking zone.
405 		 */
406 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
407 					       start_pfn);
408 		if (pfn)
409 			zone->spanned_pages = pfn - zone_start_pfn + 1;
410 	}
411 
412 	/*
413 	 * The section is not biggest or smallest mem_section in the zone, it
414 	 * only creates a hole in the zone. So in this case, we need not
415 	 * change the zone. But perhaps, the zone has only hole data. Thus
416 	 * it check the zone has only hole or not.
417 	 */
418 	pfn = zone_start_pfn;
419 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
420 		ms = __pfn_to_section(pfn);
421 
422 		if (unlikely(!valid_section(ms)))
423 			continue;
424 
425 		if (page_zone(pfn_to_page(pfn)) != zone)
426 			continue;
427 
428 		 /* If the section is current section, it continues the loop */
429 		if (start_pfn == pfn)
430 			continue;
431 
432 		/* If we find valid section, we have nothing to do */
433 		zone_span_writeunlock(zone);
434 		return;
435 	}
436 
437 	/* The zone has no valid section */
438 	zone->zone_start_pfn = 0;
439 	zone->spanned_pages = 0;
440 	zone_span_writeunlock(zone);
441 }
442 
443 static void shrink_pgdat_span(struct pglist_data *pgdat,
444 			      unsigned long start_pfn, unsigned long end_pfn)
445 {
446 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
447 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
448 	unsigned long pgdat_end_pfn = p;
449 	unsigned long pfn;
450 	struct mem_section *ms;
451 	int nid = pgdat->node_id;
452 
453 	if (pgdat_start_pfn == start_pfn) {
454 		/*
455 		 * If the section is smallest section in the pgdat, it need
456 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
457 		 * In this case, we find second smallest valid mem_section
458 		 * for shrinking zone.
459 		 */
460 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
461 						pgdat_end_pfn);
462 		if (pfn) {
463 			pgdat->node_start_pfn = pfn;
464 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
465 		}
466 	} else if (pgdat_end_pfn == end_pfn) {
467 		/*
468 		 * If the section is biggest section in the pgdat, it need
469 		 * shrink pgdat->node_spanned_pages.
470 		 * In this case, we find second biggest valid mem_section for
471 		 * shrinking zone.
472 		 */
473 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
474 					       start_pfn);
475 		if (pfn)
476 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
477 	}
478 
479 	/*
480 	 * If the section is not biggest or smallest mem_section in the pgdat,
481 	 * it only creates a hole in the pgdat. So in this case, we need not
482 	 * change the pgdat.
483 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
484 	 * has only hole or not.
485 	 */
486 	pfn = pgdat_start_pfn;
487 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
488 		ms = __pfn_to_section(pfn);
489 
490 		if (unlikely(!valid_section(ms)))
491 			continue;
492 
493 		if (pfn_to_nid(pfn) != nid)
494 			continue;
495 
496 		 /* If the section is current section, it continues the loop */
497 		if (start_pfn == pfn)
498 			continue;
499 
500 		/* If we find valid section, we have nothing to do */
501 		return;
502 	}
503 
504 	/* The pgdat has no valid section */
505 	pgdat->node_start_pfn = 0;
506 	pgdat->node_spanned_pages = 0;
507 }
508 
509 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
510 {
511 	struct pglist_data *pgdat = zone->zone_pgdat;
512 	int nr_pages = PAGES_PER_SECTION;
513 	unsigned long flags;
514 
515 	pgdat_resize_lock(zone->zone_pgdat, &flags);
516 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
517 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
518 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
519 }
520 
521 static void __remove_section(struct zone *zone, struct mem_section *ms,
522 			     unsigned long map_offset,
523 			     struct vmem_altmap *altmap)
524 {
525 	unsigned long start_pfn;
526 	int scn_nr;
527 
528 	if (WARN_ON_ONCE(!valid_section(ms)))
529 		return;
530 
531 	unregister_memory_section(ms);
532 
533 	scn_nr = __section_nr(ms);
534 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
535 	__remove_zone(zone, start_pfn);
536 
537 	sparse_remove_one_section(zone, ms, map_offset, altmap);
538 }
539 
540 /**
541  * __remove_pages() - remove sections of pages from a zone
542  * @zone: zone from which pages need to be removed
543  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
544  * @nr_pages: number of pages to remove (must be multiple of section size)
545  * @altmap: alternative device page map or %NULL if default memmap is used
546  *
547  * Generic helper function to remove section mappings and sysfs entries
548  * for the section of the memory we are removing. Caller needs to make
549  * sure that pages are marked reserved and zones are adjust properly by
550  * calling offline_pages().
551  */
552 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
553 		    unsigned long nr_pages, struct vmem_altmap *altmap)
554 {
555 	unsigned long i;
556 	unsigned long map_offset = 0;
557 	int sections_to_remove;
558 
559 	/* In the ZONE_DEVICE case device driver owns the memory region */
560 	if (is_dev_zone(zone))
561 		map_offset = vmem_altmap_offset(altmap);
562 
563 	clear_zone_contiguous(zone);
564 
565 	/*
566 	 * We can only remove entire sections
567 	 */
568 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
569 	BUG_ON(nr_pages % PAGES_PER_SECTION);
570 
571 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
572 	for (i = 0; i < sections_to_remove; i++) {
573 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
574 
575 		cond_resched();
576 		__remove_section(zone, __pfn_to_section(pfn), map_offset,
577 				 altmap);
578 		map_offset = 0;
579 	}
580 
581 	set_zone_contiguous(zone);
582 }
583 #endif /* CONFIG_MEMORY_HOTREMOVE */
584 
585 int set_online_page_callback(online_page_callback_t callback)
586 {
587 	int rc = -EINVAL;
588 
589 	get_online_mems();
590 	mutex_lock(&online_page_callback_lock);
591 
592 	if (online_page_callback == generic_online_page) {
593 		online_page_callback = callback;
594 		rc = 0;
595 	}
596 
597 	mutex_unlock(&online_page_callback_lock);
598 	put_online_mems();
599 
600 	return rc;
601 }
602 EXPORT_SYMBOL_GPL(set_online_page_callback);
603 
604 int restore_online_page_callback(online_page_callback_t callback)
605 {
606 	int rc = -EINVAL;
607 
608 	get_online_mems();
609 	mutex_lock(&online_page_callback_lock);
610 
611 	if (online_page_callback == callback) {
612 		online_page_callback = generic_online_page;
613 		rc = 0;
614 	}
615 
616 	mutex_unlock(&online_page_callback_lock);
617 	put_online_mems();
618 
619 	return rc;
620 }
621 EXPORT_SYMBOL_GPL(restore_online_page_callback);
622 
623 void __online_page_set_limits(struct page *page)
624 {
625 }
626 EXPORT_SYMBOL_GPL(__online_page_set_limits);
627 
628 void __online_page_increment_counters(struct page *page)
629 {
630 	adjust_managed_page_count(page, 1);
631 }
632 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
633 
634 void __online_page_free(struct page *page)
635 {
636 	__free_reserved_page(page);
637 }
638 EXPORT_SYMBOL_GPL(__online_page_free);
639 
640 static void generic_online_page(struct page *page, unsigned int order)
641 {
642 	kernel_map_pages(page, 1 << order, 1);
643 	__free_pages_core(page, order);
644 	totalram_pages_add(1UL << order);
645 #ifdef CONFIG_HIGHMEM
646 	if (PageHighMem(page))
647 		totalhigh_pages_add(1UL << order);
648 #endif
649 }
650 
651 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
652 {
653 	unsigned long end = start + nr_pages;
654 	int order, onlined_pages = 0;
655 
656 	while (start < end) {
657 		order = min(MAX_ORDER - 1,
658 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
659 		(*online_page_callback)(pfn_to_page(start), order);
660 
661 		onlined_pages += (1UL << order);
662 		start += (1UL << order);
663 	}
664 	return onlined_pages;
665 }
666 
667 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
668 			void *arg)
669 {
670 	unsigned long onlined_pages = *(unsigned long *)arg;
671 
672 	if (PageReserved(pfn_to_page(start_pfn)))
673 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
674 
675 	online_mem_sections(start_pfn, start_pfn + nr_pages);
676 
677 	*(unsigned long *)arg = onlined_pages;
678 	return 0;
679 }
680 
681 /* check which state of node_states will be changed when online memory */
682 static void node_states_check_changes_online(unsigned long nr_pages,
683 	struct zone *zone, struct memory_notify *arg)
684 {
685 	int nid = zone_to_nid(zone);
686 
687 	arg->status_change_nid = NUMA_NO_NODE;
688 	arg->status_change_nid_normal = NUMA_NO_NODE;
689 	arg->status_change_nid_high = NUMA_NO_NODE;
690 
691 	if (!node_state(nid, N_MEMORY))
692 		arg->status_change_nid = nid;
693 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
694 		arg->status_change_nid_normal = nid;
695 #ifdef CONFIG_HIGHMEM
696 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
697 		arg->status_change_nid_high = nid;
698 #endif
699 }
700 
701 static void node_states_set_node(int node, struct memory_notify *arg)
702 {
703 	if (arg->status_change_nid_normal >= 0)
704 		node_set_state(node, N_NORMAL_MEMORY);
705 
706 	if (arg->status_change_nid_high >= 0)
707 		node_set_state(node, N_HIGH_MEMORY);
708 
709 	if (arg->status_change_nid >= 0)
710 		node_set_state(node, N_MEMORY);
711 }
712 
713 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
714 		unsigned long nr_pages)
715 {
716 	unsigned long old_end_pfn = zone_end_pfn(zone);
717 
718 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
719 		zone->zone_start_pfn = start_pfn;
720 
721 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
722 }
723 
724 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
725                                      unsigned long nr_pages)
726 {
727 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
728 
729 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
730 		pgdat->node_start_pfn = start_pfn;
731 
732 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
733 }
734 
735 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
736 		unsigned long nr_pages, struct vmem_altmap *altmap)
737 {
738 	struct pglist_data *pgdat = zone->zone_pgdat;
739 	int nid = pgdat->node_id;
740 	unsigned long flags;
741 
742 	clear_zone_contiguous(zone);
743 
744 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
745 	pgdat_resize_lock(pgdat, &flags);
746 	zone_span_writelock(zone);
747 	if (zone_is_empty(zone))
748 		init_currently_empty_zone(zone, start_pfn, nr_pages);
749 	resize_zone_range(zone, start_pfn, nr_pages);
750 	zone_span_writeunlock(zone);
751 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
752 	pgdat_resize_unlock(pgdat, &flags);
753 
754 	/*
755 	 * TODO now we have a visible range of pages which are not associated
756 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
757 	 * expects the zone spans the pfn range. All the pages in the range
758 	 * are reserved so nobody should be touching them so we should be safe
759 	 */
760 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
761 			MEMMAP_HOTPLUG, altmap);
762 
763 	set_zone_contiguous(zone);
764 }
765 
766 /*
767  * Returns a default kernel memory zone for the given pfn range.
768  * If no kernel zone covers this pfn range it will automatically go
769  * to the ZONE_NORMAL.
770  */
771 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
772 		unsigned long nr_pages)
773 {
774 	struct pglist_data *pgdat = NODE_DATA(nid);
775 	int zid;
776 
777 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
778 		struct zone *zone = &pgdat->node_zones[zid];
779 
780 		if (zone_intersects(zone, start_pfn, nr_pages))
781 			return zone;
782 	}
783 
784 	return &pgdat->node_zones[ZONE_NORMAL];
785 }
786 
787 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
788 		unsigned long nr_pages)
789 {
790 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
791 			nr_pages);
792 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
793 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
794 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
795 
796 	/*
797 	 * We inherit the existing zone in a simple case where zones do not
798 	 * overlap in the given range
799 	 */
800 	if (in_kernel ^ in_movable)
801 		return (in_kernel) ? kernel_zone : movable_zone;
802 
803 	/*
804 	 * If the range doesn't belong to any zone or two zones overlap in the
805 	 * given range then we use movable zone only if movable_node is
806 	 * enabled because we always online to a kernel zone by default.
807 	 */
808 	return movable_node_enabled ? movable_zone : kernel_zone;
809 }
810 
811 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
812 		unsigned long nr_pages)
813 {
814 	if (online_type == MMOP_ONLINE_KERNEL)
815 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
816 
817 	if (online_type == MMOP_ONLINE_MOVABLE)
818 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
819 
820 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
821 }
822 
823 /*
824  * Associates the given pfn range with the given node and the zone appropriate
825  * for the given online type.
826  */
827 static struct zone * __meminit move_pfn_range(int online_type, int nid,
828 		unsigned long start_pfn, unsigned long nr_pages)
829 {
830 	struct zone *zone;
831 
832 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
833 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
834 	return zone;
835 }
836 
837 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
838 {
839 	unsigned long flags;
840 	unsigned long onlined_pages = 0;
841 	struct zone *zone;
842 	int need_zonelists_rebuild = 0;
843 	int nid;
844 	int ret;
845 	struct memory_notify arg;
846 	struct memory_block *mem;
847 
848 	mem_hotplug_begin();
849 
850 	/*
851 	 * We can't use pfn_to_nid() because nid might be stored in struct page
852 	 * which is not yet initialized. Instead, we find nid from memory block.
853 	 */
854 	mem = find_memory_block(__pfn_to_section(pfn));
855 	nid = mem->nid;
856 	put_device(&mem->dev);
857 
858 	/* associate pfn range with the zone */
859 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
860 
861 	arg.start_pfn = pfn;
862 	arg.nr_pages = nr_pages;
863 	node_states_check_changes_online(nr_pages, zone, &arg);
864 
865 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
866 	ret = notifier_to_errno(ret);
867 	if (ret)
868 		goto failed_addition;
869 
870 	/*
871 	 * If this zone is not populated, then it is not in zonelist.
872 	 * This means the page allocator ignores this zone.
873 	 * So, zonelist must be updated after online.
874 	 */
875 	if (!populated_zone(zone)) {
876 		need_zonelists_rebuild = 1;
877 		setup_zone_pageset(zone);
878 	}
879 
880 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
881 		online_pages_range);
882 	if (ret) {
883 		if (need_zonelists_rebuild)
884 			zone_pcp_reset(zone);
885 		goto failed_addition;
886 	}
887 
888 	zone->present_pages += onlined_pages;
889 
890 	pgdat_resize_lock(zone->zone_pgdat, &flags);
891 	zone->zone_pgdat->node_present_pages += onlined_pages;
892 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
893 
894 	shuffle_zone(zone);
895 
896 	if (onlined_pages) {
897 		node_states_set_node(nid, &arg);
898 		if (need_zonelists_rebuild)
899 			build_all_zonelists(NULL);
900 		else
901 			zone_pcp_update(zone);
902 	}
903 
904 	init_per_zone_wmark_min();
905 
906 	if (onlined_pages) {
907 		kswapd_run(nid);
908 		kcompactd_run(nid);
909 	}
910 
911 	vm_total_pages = nr_free_pagecache_pages();
912 
913 	writeback_set_ratelimit();
914 
915 	if (onlined_pages)
916 		memory_notify(MEM_ONLINE, &arg);
917 	mem_hotplug_done();
918 	return 0;
919 
920 failed_addition:
921 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
922 		 (unsigned long long) pfn << PAGE_SHIFT,
923 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
924 	memory_notify(MEM_CANCEL_ONLINE, &arg);
925 	mem_hotplug_done();
926 	return ret;
927 }
928 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
929 
930 static void reset_node_present_pages(pg_data_t *pgdat)
931 {
932 	struct zone *z;
933 
934 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
935 		z->present_pages = 0;
936 
937 	pgdat->node_present_pages = 0;
938 }
939 
940 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
941 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
942 {
943 	struct pglist_data *pgdat;
944 	unsigned long start_pfn = PFN_DOWN(start);
945 
946 	pgdat = NODE_DATA(nid);
947 	if (!pgdat) {
948 		pgdat = arch_alloc_nodedata(nid);
949 		if (!pgdat)
950 			return NULL;
951 
952 		arch_refresh_nodedata(nid, pgdat);
953 	} else {
954 		/*
955 		 * Reset the nr_zones, order and classzone_idx before reuse.
956 		 * Note that kswapd will init kswapd_classzone_idx properly
957 		 * when it starts in the near future.
958 		 */
959 		pgdat->nr_zones = 0;
960 		pgdat->kswapd_order = 0;
961 		pgdat->kswapd_classzone_idx = 0;
962 	}
963 
964 	/* we can use NODE_DATA(nid) from here */
965 
966 	pgdat->node_id = nid;
967 	pgdat->node_start_pfn = start_pfn;
968 
969 	/* init node's zones as empty zones, we don't have any present pages.*/
970 	free_area_init_core_hotplug(nid);
971 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
972 
973 	/*
974 	 * The node we allocated has no zone fallback lists. For avoiding
975 	 * to access not-initialized zonelist, build here.
976 	 */
977 	build_all_zonelists(pgdat);
978 
979 	/*
980 	 * When memory is hot-added, all the memory is in offline state. So
981 	 * clear all zones' present_pages because they will be updated in
982 	 * online_pages() and offline_pages().
983 	 */
984 	reset_node_managed_pages(pgdat);
985 	reset_node_present_pages(pgdat);
986 
987 	return pgdat;
988 }
989 
990 static void rollback_node_hotadd(int nid)
991 {
992 	pg_data_t *pgdat = NODE_DATA(nid);
993 
994 	arch_refresh_nodedata(nid, NULL);
995 	free_percpu(pgdat->per_cpu_nodestats);
996 	arch_free_nodedata(pgdat);
997 	return;
998 }
999 
1000 
1001 /**
1002  * try_online_node - online a node if offlined
1003  * @nid: the node ID
1004  * @start: start addr of the node
1005  * @set_node_online: Whether we want to online the node
1006  * called by cpu_up() to online a node without onlined memory.
1007  *
1008  * Returns:
1009  * 1 -> a new node has been allocated
1010  * 0 -> the node is already online
1011  * -ENOMEM -> the node could not be allocated
1012  */
1013 static int __try_online_node(int nid, u64 start, bool set_node_online)
1014 {
1015 	pg_data_t *pgdat;
1016 	int ret = 1;
1017 
1018 	if (node_online(nid))
1019 		return 0;
1020 
1021 	pgdat = hotadd_new_pgdat(nid, start);
1022 	if (!pgdat) {
1023 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1024 		ret = -ENOMEM;
1025 		goto out;
1026 	}
1027 
1028 	if (set_node_online) {
1029 		node_set_online(nid);
1030 		ret = register_one_node(nid);
1031 		BUG_ON(ret);
1032 	}
1033 out:
1034 	return ret;
1035 }
1036 
1037 /*
1038  * Users of this function always want to online/register the node
1039  */
1040 int try_online_node(int nid)
1041 {
1042 	int ret;
1043 
1044 	mem_hotplug_begin();
1045 	ret =  __try_online_node(nid, 0, true);
1046 	mem_hotplug_done();
1047 	return ret;
1048 }
1049 
1050 static int check_hotplug_memory_range(u64 start, u64 size)
1051 {
1052 	unsigned long block_sz = memory_block_size_bytes();
1053 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1054 	u64 nr_pages = size >> PAGE_SHIFT;
1055 	u64 start_pfn = PFN_DOWN(start);
1056 
1057 	/* memory range must be block size aligned */
1058 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1059 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1060 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1061 		       block_sz, start, size);
1062 		return -EINVAL;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 static int online_memory_block(struct memory_block *mem, void *arg)
1069 {
1070 	return device_online(&mem->dev);
1071 }
1072 
1073 /*
1074  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1075  * and online/offline operations (triggered e.g. by sysfs).
1076  *
1077  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1078  */
1079 int __ref add_memory_resource(int nid, struct resource *res)
1080 {
1081 	struct mhp_restrictions restrictions = {
1082 		.flags = MHP_MEMBLOCK_API,
1083 	};
1084 	u64 start, size;
1085 	bool new_node = false;
1086 	int ret;
1087 
1088 	start = res->start;
1089 	size = resource_size(res);
1090 
1091 	ret = check_hotplug_memory_range(start, size);
1092 	if (ret)
1093 		return ret;
1094 
1095 	mem_hotplug_begin();
1096 
1097 	/*
1098 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1099 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1100 	 * this new range and calculate total pages correctly.  The range will
1101 	 * be removed at hot-remove time.
1102 	 */
1103 	memblock_add_node(start, size, nid);
1104 
1105 	ret = __try_online_node(nid, start, false);
1106 	if (ret < 0)
1107 		goto error;
1108 	new_node = ret;
1109 
1110 	/* call arch's memory hotadd */
1111 	ret = arch_add_memory(nid, start, size, &restrictions);
1112 	if (ret < 0)
1113 		goto error;
1114 
1115 	if (new_node) {
1116 		/* If sysfs file of new node can't be created, cpu on the node
1117 		 * can't be hot-added. There is no rollback way now.
1118 		 * So, check by BUG_ON() to catch it reluctantly..
1119 		 * We online node here. We can't roll back from here.
1120 		 */
1121 		node_set_online(nid);
1122 		ret = __register_one_node(nid);
1123 		BUG_ON(ret);
1124 	}
1125 
1126 	/* link memory sections under this node.*/
1127 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1128 	BUG_ON(ret);
1129 
1130 	/* create new memmap entry */
1131 	firmware_map_add_hotplug(start, start + size, "System RAM");
1132 
1133 	/* device_online() will take the lock when calling online_pages() */
1134 	mem_hotplug_done();
1135 
1136 	/* online pages if requested */
1137 	if (memhp_auto_online)
1138 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1139 				  NULL, online_memory_block);
1140 
1141 	return ret;
1142 error:
1143 	/* rollback pgdat allocation and others */
1144 	if (new_node)
1145 		rollback_node_hotadd(nid);
1146 	memblock_remove(start, size);
1147 	mem_hotplug_done();
1148 	return ret;
1149 }
1150 
1151 /* requires device_hotplug_lock, see add_memory_resource() */
1152 int __ref __add_memory(int nid, u64 start, u64 size)
1153 {
1154 	struct resource *res;
1155 	int ret;
1156 
1157 	res = register_memory_resource(start, size);
1158 	if (IS_ERR(res))
1159 		return PTR_ERR(res);
1160 
1161 	ret = add_memory_resource(nid, res);
1162 	if (ret < 0)
1163 		release_memory_resource(res);
1164 	return ret;
1165 }
1166 
1167 int add_memory(int nid, u64 start, u64 size)
1168 {
1169 	int rc;
1170 
1171 	lock_device_hotplug();
1172 	rc = __add_memory(nid, start, size);
1173 	unlock_device_hotplug();
1174 
1175 	return rc;
1176 }
1177 EXPORT_SYMBOL_GPL(add_memory);
1178 
1179 #ifdef CONFIG_MEMORY_HOTREMOVE
1180 /*
1181  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1182  * set and the size of the free page is given by page_order(). Using this,
1183  * the function determines if the pageblock contains only free pages.
1184  * Due to buddy contraints, a free page at least the size of a pageblock will
1185  * be located at the start of the pageblock
1186  */
1187 static inline int pageblock_free(struct page *page)
1188 {
1189 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1190 }
1191 
1192 /* Return the pfn of the start of the next active pageblock after a given pfn */
1193 static unsigned long next_active_pageblock(unsigned long pfn)
1194 {
1195 	struct page *page = pfn_to_page(pfn);
1196 
1197 	/* Ensure the starting page is pageblock-aligned */
1198 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1199 
1200 	/* If the entire pageblock is free, move to the end of free page */
1201 	if (pageblock_free(page)) {
1202 		int order;
1203 		/* be careful. we don't have locks, page_order can be changed.*/
1204 		order = page_order(page);
1205 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1206 			return pfn + (1 << order);
1207 	}
1208 
1209 	return pfn + pageblock_nr_pages;
1210 }
1211 
1212 static bool is_pageblock_removable_nolock(unsigned long pfn)
1213 {
1214 	struct page *page = pfn_to_page(pfn);
1215 	struct zone *zone;
1216 
1217 	/*
1218 	 * We have to be careful here because we are iterating over memory
1219 	 * sections which are not zone aware so we might end up outside of
1220 	 * the zone but still within the section.
1221 	 * We have to take care about the node as well. If the node is offline
1222 	 * its NODE_DATA will be NULL - see page_zone.
1223 	 */
1224 	if (!node_online(page_to_nid(page)))
1225 		return false;
1226 
1227 	zone = page_zone(page);
1228 	pfn = page_to_pfn(page);
1229 	if (!zone_spans_pfn(zone, pfn))
1230 		return false;
1231 
1232 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1233 }
1234 
1235 /* Checks if this range of memory is likely to be hot-removable. */
1236 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1237 {
1238 	unsigned long end_pfn, pfn;
1239 
1240 	end_pfn = min(start_pfn + nr_pages,
1241 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1242 
1243 	/* Check the starting page of each pageblock within the range */
1244 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1245 		if (!is_pageblock_removable_nolock(pfn))
1246 			return false;
1247 		cond_resched();
1248 	}
1249 
1250 	/* All pageblocks in the memory block are likely to be hot-removable */
1251 	return true;
1252 }
1253 
1254 /*
1255  * Confirm all pages in a range [start, end) belong to the same zone.
1256  * When true, return its valid [start, end).
1257  */
1258 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1259 			 unsigned long *valid_start, unsigned long *valid_end)
1260 {
1261 	unsigned long pfn, sec_end_pfn;
1262 	unsigned long start, end;
1263 	struct zone *zone = NULL;
1264 	struct page *page;
1265 	int i;
1266 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1267 	     pfn < end_pfn;
1268 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1269 		/* Make sure the memory section is present first */
1270 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1271 			continue;
1272 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1273 		     pfn += MAX_ORDER_NR_PAGES) {
1274 			i = 0;
1275 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1276 			while ((i < MAX_ORDER_NR_PAGES) &&
1277 				!pfn_valid_within(pfn + i))
1278 				i++;
1279 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1280 				continue;
1281 			/* Check if we got outside of the zone */
1282 			if (zone && !zone_spans_pfn(zone, pfn + i))
1283 				return 0;
1284 			page = pfn_to_page(pfn + i);
1285 			if (zone && page_zone(page) != zone)
1286 				return 0;
1287 			if (!zone)
1288 				start = pfn + i;
1289 			zone = page_zone(page);
1290 			end = pfn + MAX_ORDER_NR_PAGES;
1291 		}
1292 	}
1293 
1294 	if (zone) {
1295 		*valid_start = start;
1296 		*valid_end = min(end, end_pfn);
1297 		return 1;
1298 	} else {
1299 		return 0;
1300 	}
1301 }
1302 
1303 /*
1304  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1305  * non-lru movable pages and hugepages). We scan pfn because it's much
1306  * easier than scanning over linked list. This function returns the pfn
1307  * of the first found movable page if it's found, otherwise 0.
1308  */
1309 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1310 {
1311 	unsigned long pfn;
1312 
1313 	for (pfn = start; pfn < end; pfn++) {
1314 		struct page *page, *head;
1315 		unsigned long skip;
1316 
1317 		if (!pfn_valid(pfn))
1318 			continue;
1319 		page = pfn_to_page(pfn);
1320 		if (PageLRU(page))
1321 			return pfn;
1322 		if (__PageMovable(page))
1323 			return pfn;
1324 
1325 		if (!PageHuge(page))
1326 			continue;
1327 		head = compound_head(page);
1328 		if (page_huge_active(head))
1329 			return pfn;
1330 		skip = (1 << compound_order(head)) - (page - head);
1331 		pfn += skip - 1;
1332 	}
1333 	return 0;
1334 }
1335 
1336 static struct page *new_node_page(struct page *page, unsigned long private)
1337 {
1338 	int nid = page_to_nid(page);
1339 	nodemask_t nmask = node_states[N_MEMORY];
1340 
1341 	/*
1342 	 * try to allocate from a different node but reuse this node if there
1343 	 * are no other online nodes to be used (e.g. we are offlining a part
1344 	 * of the only existing node)
1345 	 */
1346 	node_clear(nid, nmask);
1347 	if (nodes_empty(nmask))
1348 		node_set(nid, nmask);
1349 
1350 	return new_page_nodemask(page, nid, &nmask);
1351 }
1352 
1353 static int
1354 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1355 {
1356 	unsigned long pfn;
1357 	struct page *page;
1358 	int ret = 0;
1359 	LIST_HEAD(source);
1360 
1361 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1362 		if (!pfn_valid(pfn))
1363 			continue;
1364 		page = pfn_to_page(pfn);
1365 
1366 		if (PageHuge(page)) {
1367 			struct page *head = compound_head(page);
1368 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1369 			isolate_huge_page(head, &source);
1370 			continue;
1371 		} else if (PageTransHuge(page))
1372 			pfn = page_to_pfn(compound_head(page))
1373 				+ hpage_nr_pages(page) - 1;
1374 
1375 		/*
1376 		 * HWPoison pages have elevated reference counts so the migration would
1377 		 * fail on them. It also doesn't make any sense to migrate them in the
1378 		 * first place. Still try to unmap such a page in case it is still mapped
1379 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1380 		 * the unmap as the catch all safety net).
1381 		 */
1382 		if (PageHWPoison(page)) {
1383 			if (WARN_ON(PageLRU(page)))
1384 				isolate_lru_page(page);
1385 			if (page_mapped(page))
1386 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1387 			continue;
1388 		}
1389 
1390 		if (!get_page_unless_zero(page))
1391 			continue;
1392 		/*
1393 		 * We can skip free pages. And we can deal with pages on
1394 		 * LRU and non-lru movable pages.
1395 		 */
1396 		if (PageLRU(page))
1397 			ret = isolate_lru_page(page);
1398 		else
1399 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1400 		if (!ret) { /* Success */
1401 			list_add_tail(&page->lru, &source);
1402 			if (!__PageMovable(page))
1403 				inc_node_page_state(page, NR_ISOLATED_ANON +
1404 						    page_is_file_cache(page));
1405 
1406 		} else {
1407 			pr_warn("failed to isolate pfn %lx\n", pfn);
1408 			dump_page(page, "isolation failed");
1409 		}
1410 		put_page(page);
1411 	}
1412 	if (!list_empty(&source)) {
1413 		/* Allocate a new page from the nearest neighbor node */
1414 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1415 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1416 		if (ret) {
1417 			list_for_each_entry(page, &source, lru) {
1418 				pr_warn("migrating pfn %lx failed ret:%d ",
1419 				       page_to_pfn(page), ret);
1420 				dump_page(page, "migration failure");
1421 			}
1422 			putback_movable_pages(&source);
1423 		}
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 /*
1430  * remove from free_area[] and mark all as Reserved.
1431  */
1432 static int
1433 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1434 			void *data)
1435 {
1436 	unsigned long *offlined_pages = (unsigned long *)data;
1437 
1438 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Check all pages in range, recoreded as memory resource, are isolated.
1444  */
1445 static int
1446 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1447 			void *data)
1448 {
1449 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1450 }
1451 
1452 static int __init cmdline_parse_movable_node(char *p)
1453 {
1454 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1455 	movable_node_enabled = true;
1456 #else
1457 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1458 #endif
1459 	return 0;
1460 }
1461 early_param("movable_node", cmdline_parse_movable_node);
1462 
1463 /* check which state of node_states will be changed when offline memory */
1464 static void node_states_check_changes_offline(unsigned long nr_pages,
1465 		struct zone *zone, struct memory_notify *arg)
1466 {
1467 	struct pglist_data *pgdat = zone->zone_pgdat;
1468 	unsigned long present_pages = 0;
1469 	enum zone_type zt;
1470 
1471 	arg->status_change_nid = NUMA_NO_NODE;
1472 	arg->status_change_nid_normal = NUMA_NO_NODE;
1473 	arg->status_change_nid_high = NUMA_NO_NODE;
1474 
1475 	/*
1476 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1477 	 * If the memory to be offline is within the range
1478 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1479 	 * the zones in that range will become empty after the offlining,
1480 	 * thus we can determine that we need to clear the node from
1481 	 * node_states[N_NORMAL_MEMORY].
1482 	 */
1483 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1484 		present_pages += pgdat->node_zones[zt].present_pages;
1485 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1486 		arg->status_change_nid_normal = zone_to_nid(zone);
1487 
1488 #ifdef CONFIG_HIGHMEM
1489 	/*
1490 	 * node_states[N_HIGH_MEMORY] contains nodes which
1491 	 * have normal memory or high memory.
1492 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1493 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1494 	 * we determine that the zones in that range become empty,
1495 	 * we need to clear the node for N_HIGH_MEMORY.
1496 	 */
1497 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1498 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1499 		arg->status_change_nid_high = zone_to_nid(zone);
1500 #endif
1501 
1502 	/*
1503 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1504 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1505 	 * as well.
1506 	 * Here we count the possible pages from ZONE_MOVABLE.
1507 	 * If after having accounted all the pages, we see that the nr_pages
1508 	 * to be offlined is over or equal to the accounted pages,
1509 	 * we know that the node will become empty, and so, we can clear
1510 	 * it for N_MEMORY as well.
1511 	 */
1512 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1513 
1514 	if (nr_pages >= present_pages)
1515 		arg->status_change_nid = zone_to_nid(zone);
1516 }
1517 
1518 static void node_states_clear_node(int node, struct memory_notify *arg)
1519 {
1520 	if (arg->status_change_nid_normal >= 0)
1521 		node_clear_state(node, N_NORMAL_MEMORY);
1522 
1523 	if (arg->status_change_nid_high >= 0)
1524 		node_clear_state(node, N_HIGH_MEMORY);
1525 
1526 	if (arg->status_change_nid >= 0)
1527 		node_clear_state(node, N_MEMORY);
1528 }
1529 
1530 static int __ref __offline_pages(unsigned long start_pfn,
1531 		  unsigned long end_pfn)
1532 {
1533 	unsigned long pfn, nr_pages;
1534 	unsigned long offlined_pages = 0;
1535 	int ret, node, nr_isolate_pageblock;
1536 	unsigned long flags;
1537 	unsigned long valid_start, valid_end;
1538 	struct zone *zone;
1539 	struct memory_notify arg;
1540 	char *reason;
1541 
1542 	mem_hotplug_begin();
1543 
1544 	/* This makes hotplug much easier...and readable.
1545 	   we assume this for now. .*/
1546 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1547 				  &valid_end)) {
1548 		ret = -EINVAL;
1549 		reason = "multizone range";
1550 		goto failed_removal;
1551 	}
1552 
1553 	zone = page_zone(pfn_to_page(valid_start));
1554 	node = zone_to_nid(zone);
1555 	nr_pages = end_pfn - start_pfn;
1556 
1557 	/* set above range as isolated */
1558 	ret = start_isolate_page_range(start_pfn, end_pfn,
1559 				       MIGRATE_MOVABLE,
1560 				       SKIP_HWPOISON | REPORT_FAILURE);
1561 	if (ret < 0) {
1562 		reason = "failure to isolate range";
1563 		goto failed_removal;
1564 	}
1565 	nr_isolate_pageblock = ret;
1566 
1567 	arg.start_pfn = start_pfn;
1568 	arg.nr_pages = nr_pages;
1569 	node_states_check_changes_offline(nr_pages, zone, &arg);
1570 
1571 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1572 	ret = notifier_to_errno(ret);
1573 	if (ret) {
1574 		reason = "notifier failure";
1575 		goto failed_removal_isolated;
1576 	}
1577 
1578 	do {
1579 		for (pfn = start_pfn; pfn;) {
1580 			if (signal_pending(current)) {
1581 				ret = -EINTR;
1582 				reason = "signal backoff";
1583 				goto failed_removal_isolated;
1584 			}
1585 
1586 			cond_resched();
1587 			lru_add_drain_all();
1588 
1589 			pfn = scan_movable_pages(pfn, end_pfn);
1590 			if (pfn) {
1591 				/*
1592 				 * TODO: fatal migration failures should bail
1593 				 * out
1594 				 */
1595 				do_migrate_range(pfn, end_pfn);
1596 			}
1597 		}
1598 
1599 		/*
1600 		 * Dissolve free hugepages in the memory block before doing
1601 		 * offlining actually in order to make hugetlbfs's object
1602 		 * counting consistent.
1603 		 */
1604 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1605 		if (ret) {
1606 			reason = "failure to dissolve huge pages";
1607 			goto failed_removal_isolated;
1608 		}
1609 		/* check again */
1610 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1611 					    NULL, check_pages_isolated_cb);
1612 	} while (ret);
1613 
1614 	/* Ok, all of our target is isolated.
1615 	   We cannot do rollback at this point. */
1616 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1617 			      &offlined_pages, offline_isolated_pages_cb);
1618 	pr_info("Offlined Pages %ld\n", offlined_pages);
1619 	/*
1620 	 * Onlining will reset pagetype flags and makes migrate type
1621 	 * MOVABLE, so just need to decrease the number of isolated
1622 	 * pageblocks zone counter here.
1623 	 */
1624 	spin_lock_irqsave(&zone->lock, flags);
1625 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1626 	spin_unlock_irqrestore(&zone->lock, flags);
1627 
1628 	/* removal success */
1629 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1630 	zone->present_pages -= offlined_pages;
1631 
1632 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1633 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1634 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1635 
1636 	init_per_zone_wmark_min();
1637 
1638 	if (!populated_zone(zone)) {
1639 		zone_pcp_reset(zone);
1640 		build_all_zonelists(NULL);
1641 	} else
1642 		zone_pcp_update(zone);
1643 
1644 	node_states_clear_node(node, &arg);
1645 	if (arg.status_change_nid >= 0) {
1646 		kswapd_stop(node);
1647 		kcompactd_stop(node);
1648 	}
1649 
1650 	vm_total_pages = nr_free_pagecache_pages();
1651 	writeback_set_ratelimit();
1652 
1653 	memory_notify(MEM_OFFLINE, &arg);
1654 	mem_hotplug_done();
1655 	return 0;
1656 
1657 failed_removal_isolated:
1658 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1659 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1660 failed_removal:
1661 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1662 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1663 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1664 		 reason);
1665 	/* pushback to free area */
1666 	mem_hotplug_done();
1667 	return ret;
1668 }
1669 
1670 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1671 {
1672 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1673 }
1674 #endif /* CONFIG_MEMORY_HOTREMOVE */
1675 
1676 /**
1677  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1678  * @start_pfn: start pfn of the memory range
1679  * @end_pfn: end pfn of the memory range
1680  * @arg: argument passed to func
1681  * @func: callback for each memory section walked
1682  *
1683  * This function walks through all present mem sections in range
1684  * [start_pfn, end_pfn) and call func on each mem section.
1685  *
1686  * Returns the return value of func.
1687  */
1688 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1689 		void *arg, int (*func)(struct memory_block *, void *))
1690 {
1691 	struct memory_block *mem = NULL;
1692 	struct mem_section *section;
1693 	unsigned long pfn, section_nr;
1694 	int ret;
1695 
1696 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1697 		section_nr = pfn_to_section_nr(pfn);
1698 		if (!present_section_nr(section_nr))
1699 			continue;
1700 
1701 		section = __nr_to_section(section_nr);
1702 		/* same memblock? */
1703 		if (mem)
1704 			if ((section_nr >= mem->start_section_nr) &&
1705 			    (section_nr <= mem->end_section_nr))
1706 				continue;
1707 
1708 		mem = find_memory_block_hinted(section, mem);
1709 		if (!mem)
1710 			continue;
1711 
1712 		ret = func(mem, arg);
1713 		if (ret) {
1714 			kobject_put(&mem->dev.kobj);
1715 			return ret;
1716 		}
1717 	}
1718 
1719 	if (mem)
1720 		kobject_put(&mem->dev.kobj);
1721 
1722 	return 0;
1723 }
1724 
1725 #ifdef CONFIG_MEMORY_HOTREMOVE
1726 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1727 {
1728 	int ret = !is_memblock_offlined(mem);
1729 
1730 	if (unlikely(ret)) {
1731 		phys_addr_t beginpa, endpa;
1732 
1733 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1734 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1735 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1736 			&beginpa, &endpa);
1737 	}
1738 
1739 	return ret;
1740 }
1741 
1742 static int check_cpu_on_node(pg_data_t *pgdat)
1743 {
1744 	int cpu;
1745 
1746 	for_each_present_cpu(cpu) {
1747 		if (cpu_to_node(cpu) == pgdat->node_id)
1748 			/*
1749 			 * the cpu on this node isn't removed, and we can't
1750 			 * offline this node.
1751 			 */
1752 			return -EBUSY;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 /**
1759  * try_offline_node
1760  * @nid: the node ID
1761  *
1762  * Offline a node if all memory sections and cpus of the node are removed.
1763  *
1764  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1765  * and online/offline operations before this call.
1766  */
1767 void try_offline_node(int nid)
1768 {
1769 	pg_data_t *pgdat = NODE_DATA(nid);
1770 	unsigned long start_pfn = pgdat->node_start_pfn;
1771 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1772 	unsigned long pfn;
1773 
1774 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1775 		unsigned long section_nr = pfn_to_section_nr(pfn);
1776 
1777 		if (!present_section_nr(section_nr))
1778 			continue;
1779 
1780 		if (pfn_to_nid(pfn) != nid)
1781 			continue;
1782 
1783 		/*
1784 		 * some memory sections of this node are not removed, and we
1785 		 * can't offline node now.
1786 		 */
1787 		return;
1788 	}
1789 
1790 	if (check_cpu_on_node(pgdat))
1791 		return;
1792 
1793 	/*
1794 	 * all memory/cpu of this node are removed, we can offline this
1795 	 * node now.
1796 	 */
1797 	node_set_offline(nid);
1798 	unregister_one_node(nid);
1799 }
1800 EXPORT_SYMBOL(try_offline_node);
1801 
1802 static void __release_memory_resource(resource_size_t start,
1803 				      resource_size_t size)
1804 {
1805 	int ret;
1806 
1807 	/*
1808 	 * When removing memory in the same granularity as it was added,
1809 	 * this function never fails. It might only fail if resources
1810 	 * have to be adjusted or split. We'll ignore the error, as
1811 	 * removing of memory cannot fail.
1812 	 */
1813 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1814 	if (ret) {
1815 		resource_size_t endres = start + size - 1;
1816 
1817 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1818 			&start, &endres, ret);
1819 	}
1820 }
1821 
1822 /**
1823  * remove_memory
1824  * @nid: the node ID
1825  * @start: physical address of the region to remove
1826  * @size: size of the region to remove
1827  *
1828  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1829  * and online/offline operations before this call, as required by
1830  * try_offline_node().
1831  */
1832 void __ref __remove_memory(int nid, u64 start, u64 size)
1833 {
1834 	int ret;
1835 
1836 	BUG_ON(check_hotplug_memory_range(start, size));
1837 
1838 	mem_hotplug_begin();
1839 
1840 	/*
1841 	 * All memory blocks must be offlined before removing memory.  Check
1842 	 * whether all memory blocks in question are offline and trigger a BUG()
1843 	 * if this is not the case.
1844 	 */
1845 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1846 				check_memblock_offlined_cb);
1847 	if (ret)
1848 		BUG();
1849 
1850 	/* remove memmap entry */
1851 	firmware_map_remove(start, start + size, "System RAM");
1852 	memblock_free(start, size);
1853 	memblock_remove(start, size);
1854 
1855 	arch_remove_memory(nid, start, size, NULL);
1856 	__release_memory_resource(start, size);
1857 
1858 	try_offline_node(nid);
1859 
1860 	mem_hotplug_done();
1861 }
1862 
1863 void remove_memory(int nid, u64 start, u64 size)
1864 {
1865 	lock_device_hotplug();
1866 	__remove_memory(nid, start, size);
1867 	unlock_device_hotplug();
1868 }
1869 EXPORT_SYMBOL_GPL(remove_memory);
1870 #endif /* CONFIG_MEMORY_HOTREMOVE */
1871