1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 int memhp_default_online_type = MMOP_OFFLINE; 71 #else 72 int memhp_default_online_type = MMOP_ONLINE; 73 #endif 74 75 static int __init setup_memhp_default_state(char *str) 76 { 77 const int online_type = memhp_online_type_from_str(str); 78 79 if (online_type >= 0) 80 memhp_default_online_type = online_type; 81 82 return 1; 83 } 84 __setup("memhp_default_state=", setup_memhp_default_state); 85 86 void mem_hotplug_begin(void) 87 { 88 cpus_read_lock(); 89 percpu_down_write(&mem_hotplug_lock); 90 } 91 92 void mem_hotplug_done(void) 93 { 94 percpu_up_write(&mem_hotplug_lock); 95 cpus_read_unlock(); 96 } 97 98 u64 max_mem_size = U64_MAX; 99 100 /* add this memory to iomem resource */ 101 static struct resource *register_memory_resource(u64 start, u64 size, 102 const char *resource_name) 103 { 104 struct resource *res; 105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 106 107 if (strcmp(resource_name, "System RAM")) 108 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 109 110 /* 111 * Make sure value parsed from 'mem=' only restricts memory adding 112 * while booting, so that memory hotplug won't be impacted. Please 113 * refer to document of 'mem=' in kernel-parameters.txt for more 114 * details. 115 */ 116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 117 return ERR_PTR(-E2BIG); 118 119 /* 120 * Request ownership of the new memory range. This might be 121 * a child of an existing resource that was present but 122 * not marked as busy. 123 */ 124 res = __request_region(&iomem_resource, start, size, 125 resource_name, flags); 126 127 if (!res) { 128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 129 start, start + size); 130 return ERR_PTR(-EEXIST); 131 } 132 return res; 133 } 134 135 static void release_memory_resource(struct resource *res) 136 { 137 if (!res) 138 return; 139 release_resource(res); 140 kfree(res); 141 } 142 143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 144 void get_page_bootmem(unsigned long info, struct page *page, 145 unsigned long type) 146 { 147 page->freelist = (void *)type; 148 SetPagePrivate(page); 149 set_page_private(page, info); 150 page_ref_inc(page); 151 } 152 153 void put_page_bootmem(struct page *page) 154 { 155 unsigned long type; 156 157 type = (unsigned long) page->freelist; 158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 160 161 if (page_ref_dec_return(page) == 1) { 162 page->freelist = NULL; 163 ClearPagePrivate(page); 164 set_page_private(page, 0); 165 INIT_LIST_HEAD(&page->lru); 166 free_reserved_page(page); 167 } 168 } 169 170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 171 #ifndef CONFIG_SPARSEMEM_VMEMMAP 172 static void register_page_bootmem_info_section(unsigned long start_pfn) 173 { 174 unsigned long mapsize, section_nr, i; 175 struct mem_section *ms; 176 struct page *page, *memmap; 177 struct mem_section_usage *usage; 178 179 section_nr = pfn_to_section_nr(start_pfn); 180 ms = __nr_to_section(section_nr); 181 182 /* Get section's memmap address */ 183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 184 185 /* 186 * Get page for the memmap's phys address 187 * XXX: need more consideration for sparse_vmemmap... 188 */ 189 page = virt_to_page(memmap); 190 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 192 193 /* remember memmap's page */ 194 for (i = 0; i < mapsize; i++, page++) 195 get_page_bootmem(section_nr, page, SECTION_INFO); 196 197 usage = ms->usage; 198 page = virt_to_page(usage); 199 200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 201 202 for (i = 0; i < mapsize; i++, page++) 203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 204 205 } 206 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 207 static void register_page_bootmem_info_section(unsigned long start_pfn) 208 { 209 unsigned long mapsize, section_nr, i; 210 struct mem_section *ms; 211 struct page *page, *memmap; 212 struct mem_section_usage *usage; 213 214 section_nr = pfn_to_section_nr(start_pfn); 215 ms = __nr_to_section(section_nr); 216 217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 218 219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 220 221 usage = ms->usage; 222 page = virt_to_page(usage); 223 224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT; 225 226 for (i = 0; i < mapsize; i++, page++) 227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 228 } 229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 230 231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 232 { 233 unsigned long i, pfn, end_pfn, nr_pages; 234 int node = pgdat->node_id; 235 struct page *page; 236 237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 238 page = virt_to_page(pgdat); 239 240 for (i = 0; i < nr_pages; i++, page++) 241 get_page_bootmem(node, page, NODE_INFO); 242 243 pfn = pgdat->node_start_pfn; 244 end_pfn = pgdat_end_pfn(pgdat); 245 246 /* register section info */ 247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 248 /* 249 * Some platforms can assign the same pfn to multiple nodes - on 250 * node0 as well as nodeN. To avoid registering a pfn against 251 * multiple nodes we check that this pfn does not already 252 * reside in some other nodes. 253 */ 254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 255 register_page_bootmem_info_section(pfn); 256 } 257 } 258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 259 260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 261 const char *reason) 262 { 263 /* 264 * Disallow all operations smaller than a sub-section and only 265 * allow operations smaller than a section for 266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 267 * enforces a larger memory_block_size_bytes() granularity for 268 * memory that will be marked online, so this check should only 269 * fire for direct arch_{add,remove}_memory() users outside of 270 * add_memory_resource(). 271 */ 272 unsigned long min_align; 273 274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 275 min_align = PAGES_PER_SUBSECTION; 276 else 277 min_align = PAGES_PER_SECTION; 278 if (!IS_ALIGNED(pfn, min_align) 279 || !IS_ALIGNED(nr_pages, min_align)) { 280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 281 reason, pfn, pfn + nr_pages - 1); 282 return -EINVAL; 283 } 284 return 0; 285 } 286 287 static int check_hotplug_memory_addressable(unsigned long pfn, 288 unsigned long nr_pages) 289 { 290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1; 291 292 if (max_addr >> MAX_PHYSMEM_BITS) { 293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1; 294 WARN(1, 295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n", 296 (u64)PFN_PHYS(pfn), max_addr, max_allowed); 297 return -E2BIG; 298 } 299 300 return 0; 301 } 302 303 /* 304 * Reasonably generic function for adding memory. It is 305 * expected that archs that support memory hotplug will 306 * call this function after deciding the zone to which to 307 * add the new pages. 308 */ 309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 310 struct mhp_params *params) 311 { 312 const unsigned long end_pfn = pfn + nr_pages; 313 unsigned long cur_nr_pages; 314 int err; 315 struct vmem_altmap *altmap = params->altmap; 316 317 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 318 return -EINVAL; 319 320 err = check_hotplug_memory_addressable(pfn, nr_pages); 321 if (err) 322 return err; 323 324 if (altmap) { 325 /* 326 * Validate altmap is within bounds of the total request 327 */ 328 if (altmap->base_pfn != pfn 329 || vmem_altmap_offset(altmap) > nr_pages) { 330 pr_warn_once("memory add fail, invalid altmap\n"); 331 return -EINVAL; 332 } 333 altmap->alloc = 0; 334 } 335 336 err = check_pfn_span(pfn, nr_pages, "add"); 337 if (err) 338 return err; 339 340 for (; pfn < end_pfn; pfn += cur_nr_pages) { 341 /* Select all remaining pages up to the next section boundary */ 342 cur_nr_pages = min(end_pfn - pfn, 343 SECTION_ALIGN_UP(pfn + 1) - pfn); 344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 345 if (err) 346 break; 347 cond_resched(); 348 } 349 vmemmap_populate_print_last(); 350 return err; 351 } 352 353 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 354 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 355 unsigned long start_pfn, 356 unsigned long end_pfn) 357 { 358 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 359 if (unlikely(!pfn_to_online_page(start_pfn))) 360 continue; 361 362 if (unlikely(pfn_to_nid(start_pfn) != nid)) 363 continue; 364 365 if (zone != page_zone(pfn_to_page(start_pfn))) 366 continue; 367 368 return start_pfn; 369 } 370 371 return 0; 372 } 373 374 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 375 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 376 unsigned long start_pfn, 377 unsigned long end_pfn) 378 { 379 unsigned long pfn; 380 381 /* pfn is the end pfn of a memory section. */ 382 pfn = end_pfn - 1; 383 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 384 if (unlikely(!pfn_to_online_page(pfn))) 385 continue; 386 387 if (unlikely(pfn_to_nid(pfn) != nid)) 388 continue; 389 390 if (zone != page_zone(pfn_to_page(pfn))) 391 continue; 392 393 return pfn; 394 } 395 396 return 0; 397 } 398 399 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 400 unsigned long end_pfn) 401 { 402 unsigned long pfn; 403 int nid = zone_to_nid(zone); 404 405 zone_span_writelock(zone); 406 if (zone->zone_start_pfn == start_pfn) { 407 /* 408 * If the section is smallest section in the zone, it need 409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 410 * In this case, we find second smallest valid mem_section 411 * for shrinking zone. 412 */ 413 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 414 zone_end_pfn(zone)); 415 if (pfn) { 416 zone->spanned_pages = zone_end_pfn(zone) - pfn; 417 zone->zone_start_pfn = pfn; 418 } else { 419 zone->zone_start_pfn = 0; 420 zone->spanned_pages = 0; 421 } 422 } else if (zone_end_pfn(zone) == end_pfn) { 423 /* 424 * If the section is biggest section in the zone, it need 425 * shrink zone->spanned_pages. 426 * In this case, we find second biggest valid mem_section for 427 * shrinking zone. 428 */ 429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 430 start_pfn); 431 if (pfn) 432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 433 else { 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 } 437 } 438 zone_span_writeunlock(zone); 439 } 440 441 static void update_pgdat_span(struct pglist_data *pgdat) 442 { 443 unsigned long node_start_pfn = 0, node_end_pfn = 0; 444 struct zone *zone; 445 446 for (zone = pgdat->node_zones; 447 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 448 unsigned long zone_end_pfn = zone->zone_start_pfn + 449 zone->spanned_pages; 450 451 /* No need to lock the zones, they can't change. */ 452 if (!zone->spanned_pages) 453 continue; 454 if (!node_end_pfn) { 455 node_start_pfn = zone->zone_start_pfn; 456 node_end_pfn = zone_end_pfn; 457 continue; 458 } 459 460 if (zone_end_pfn > node_end_pfn) 461 node_end_pfn = zone_end_pfn; 462 if (zone->zone_start_pfn < node_start_pfn) 463 node_start_pfn = zone->zone_start_pfn; 464 } 465 466 pgdat->node_start_pfn = node_start_pfn; 467 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 468 } 469 470 void __ref remove_pfn_range_from_zone(struct zone *zone, 471 unsigned long start_pfn, 472 unsigned long nr_pages) 473 { 474 const unsigned long end_pfn = start_pfn + nr_pages; 475 struct pglist_data *pgdat = zone->zone_pgdat; 476 unsigned long pfn, cur_nr_pages, flags; 477 478 /* Poison struct pages because they are now uninitialized again. */ 479 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 480 cond_resched(); 481 482 /* Select all remaining pages up to the next section boundary */ 483 cur_nr_pages = 484 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 485 page_init_poison(pfn_to_page(pfn), 486 sizeof(struct page) * cur_nr_pages); 487 } 488 489 #ifdef CONFIG_ZONE_DEVICE 490 /* 491 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 492 * we will not try to shrink the zones - which is okay as 493 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 494 */ 495 if (zone_idx(zone) == ZONE_DEVICE) 496 return; 497 #endif 498 499 clear_zone_contiguous(zone); 500 501 pgdat_resize_lock(zone->zone_pgdat, &flags); 502 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 503 update_pgdat_span(pgdat); 504 pgdat_resize_unlock(zone->zone_pgdat, &flags); 505 506 set_zone_contiguous(zone); 507 } 508 509 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 510 unsigned long map_offset, 511 struct vmem_altmap *altmap) 512 { 513 struct mem_section *ms = __pfn_to_section(pfn); 514 515 if (WARN_ON_ONCE(!valid_section(ms))) 516 return; 517 518 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 519 } 520 521 /** 522 * __remove_pages() - remove sections of pages 523 * @pfn: starting pageframe (must be aligned to start of a section) 524 * @nr_pages: number of pages to remove (must be multiple of section size) 525 * @altmap: alternative device page map or %NULL if default memmap is used 526 * 527 * Generic helper function to remove section mappings and sysfs entries 528 * for the section of the memory we are removing. Caller needs to make 529 * sure that pages are marked reserved and zones are adjust properly by 530 * calling offline_pages(). 531 */ 532 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 533 struct vmem_altmap *altmap) 534 { 535 const unsigned long end_pfn = pfn + nr_pages; 536 unsigned long cur_nr_pages; 537 unsigned long map_offset = 0; 538 539 map_offset = vmem_altmap_offset(altmap); 540 541 if (check_pfn_span(pfn, nr_pages, "remove")) 542 return; 543 544 for (; pfn < end_pfn; pfn += cur_nr_pages) { 545 cond_resched(); 546 /* Select all remaining pages up to the next section boundary */ 547 cur_nr_pages = min(end_pfn - pfn, 548 SECTION_ALIGN_UP(pfn + 1) - pfn); 549 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 550 map_offset = 0; 551 } 552 } 553 554 int set_online_page_callback(online_page_callback_t callback) 555 { 556 int rc = -EINVAL; 557 558 get_online_mems(); 559 mutex_lock(&online_page_callback_lock); 560 561 if (online_page_callback == generic_online_page) { 562 online_page_callback = callback; 563 rc = 0; 564 } 565 566 mutex_unlock(&online_page_callback_lock); 567 put_online_mems(); 568 569 return rc; 570 } 571 EXPORT_SYMBOL_GPL(set_online_page_callback); 572 573 int restore_online_page_callback(online_page_callback_t callback) 574 { 575 int rc = -EINVAL; 576 577 get_online_mems(); 578 mutex_lock(&online_page_callback_lock); 579 580 if (online_page_callback == callback) { 581 online_page_callback = generic_online_page; 582 rc = 0; 583 } 584 585 mutex_unlock(&online_page_callback_lock); 586 put_online_mems(); 587 588 return rc; 589 } 590 EXPORT_SYMBOL_GPL(restore_online_page_callback); 591 592 void generic_online_page(struct page *page, unsigned int order) 593 { 594 /* 595 * Freeing the page with debug_pagealloc enabled will try to unmap it, 596 * so we should map it first. This is better than introducing a special 597 * case in page freeing fast path. 598 */ 599 debug_pagealloc_map_pages(page, 1 << order); 600 __free_pages_core(page, order); 601 totalram_pages_add(1UL << order); 602 #ifdef CONFIG_HIGHMEM 603 if (PageHighMem(page)) 604 totalhigh_pages_add(1UL << order); 605 #endif 606 } 607 EXPORT_SYMBOL_GPL(generic_online_page); 608 609 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 610 { 611 const unsigned long end_pfn = start_pfn + nr_pages; 612 unsigned long pfn; 613 614 /* 615 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 616 * decide to not expose all pages to the buddy (e.g., expose them 617 * later). We account all pages as being online and belonging to this 618 * zone ("present"). 619 */ 620 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) 621 (*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1); 622 623 /* mark all involved sections as online */ 624 online_mem_sections(start_pfn, end_pfn); 625 } 626 627 /* check which state of node_states will be changed when online memory */ 628 static void node_states_check_changes_online(unsigned long nr_pages, 629 struct zone *zone, struct memory_notify *arg) 630 { 631 int nid = zone_to_nid(zone); 632 633 arg->status_change_nid = NUMA_NO_NODE; 634 arg->status_change_nid_normal = NUMA_NO_NODE; 635 arg->status_change_nid_high = NUMA_NO_NODE; 636 637 if (!node_state(nid, N_MEMORY)) 638 arg->status_change_nid = nid; 639 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 640 arg->status_change_nid_normal = nid; 641 #ifdef CONFIG_HIGHMEM 642 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 643 arg->status_change_nid_high = nid; 644 #endif 645 } 646 647 static void node_states_set_node(int node, struct memory_notify *arg) 648 { 649 if (arg->status_change_nid_normal >= 0) 650 node_set_state(node, N_NORMAL_MEMORY); 651 652 if (arg->status_change_nid_high >= 0) 653 node_set_state(node, N_HIGH_MEMORY); 654 655 if (arg->status_change_nid >= 0) 656 node_set_state(node, N_MEMORY); 657 } 658 659 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 660 unsigned long nr_pages) 661 { 662 unsigned long old_end_pfn = zone_end_pfn(zone); 663 664 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 665 zone->zone_start_pfn = start_pfn; 666 667 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 668 } 669 670 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 671 unsigned long nr_pages) 672 { 673 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 674 675 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 676 pgdat->node_start_pfn = start_pfn; 677 678 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 679 680 } 681 /* 682 * Associate the pfn range with the given zone, initializing the memmaps 683 * and resizing the pgdat/zone data to span the added pages. After this 684 * call, all affected pages are PG_reserved. 685 * 686 * All aligned pageblocks are initialized to the specified migratetype 687 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 688 * zone stats (e.g., nr_isolate_pageblock) are touched. 689 */ 690 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 691 unsigned long nr_pages, 692 struct vmem_altmap *altmap, int migratetype) 693 { 694 struct pglist_data *pgdat = zone->zone_pgdat; 695 int nid = pgdat->node_id; 696 unsigned long flags; 697 698 clear_zone_contiguous(zone); 699 700 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 701 pgdat_resize_lock(pgdat, &flags); 702 zone_span_writelock(zone); 703 if (zone_is_empty(zone)) 704 init_currently_empty_zone(zone, start_pfn, nr_pages); 705 resize_zone_range(zone, start_pfn, nr_pages); 706 zone_span_writeunlock(zone); 707 resize_pgdat_range(pgdat, start_pfn, nr_pages); 708 pgdat_resize_unlock(pgdat, &flags); 709 710 /* 711 * TODO now we have a visible range of pages which are not associated 712 * with their zone properly. Not nice but set_pfnblock_flags_mask 713 * expects the zone spans the pfn range. All the pages in the range 714 * are reserved so nobody should be touching them so we should be safe 715 */ 716 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 717 MEMINIT_HOTPLUG, altmap, migratetype); 718 719 set_zone_contiguous(zone); 720 } 721 722 /* 723 * Returns a default kernel memory zone for the given pfn range. 724 * If no kernel zone covers this pfn range it will automatically go 725 * to the ZONE_NORMAL. 726 */ 727 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 728 unsigned long nr_pages) 729 { 730 struct pglist_data *pgdat = NODE_DATA(nid); 731 int zid; 732 733 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 734 struct zone *zone = &pgdat->node_zones[zid]; 735 736 if (zone_intersects(zone, start_pfn, nr_pages)) 737 return zone; 738 } 739 740 return &pgdat->node_zones[ZONE_NORMAL]; 741 } 742 743 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 744 unsigned long nr_pages) 745 { 746 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 747 nr_pages); 748 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 749 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 750 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 751 752 /* 753 * We inherit the existing zone in a simple case where zones do not 754 * overlap in the given range 755 */ 756 if (in_kernel ^ in_movable) 757 return (in_kernel) ? kernel_zone : movable_zone; 758 759 /* 760 * If the range doesn't belong to any zone or two zones overlap in the 761 * given range then we use movable zone only if movable_node is 762 * enabled because we always online to a kernel zone by default. 763 */ 764 return movable_node_enabled ? movable_zone : kernel_zone; 765 } 766 767 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 768 unsigned long nr_pages) 769 { 770 if (online_type == MMOP_ONLINE_KERNEL) 771 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 772 773 if (online_type == MMOP_ONLINE_MOVABLE) 774 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 775 776 return default_zone_for_pfn(nid, start_pfn, nr_pages); 777 } 778 779 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 780 int online_type, int nid) 781 { 782 unsigned long flags; 783 struct zone *zone; 784 int need_zonelists_rebuild = 0; 785 int ret; 786 struct memory_notify arg; 787 788 /* We can only online full sections (e.g., SECTION_IS_ONLINE) */ 789 if (WARN_ON_ONCE(!nr_pages || 790 !IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION))) 791 return -EINVAL; 792 793 mem_hotplug_begin(); 794 795 /* associate pfn range with the zone */ 796 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages); 797 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 798 799 arg.start_pfn = pfn; 800 arg.nr_pages = nr_pages; 801 node_states_check_changes_online(nr_pages, zone, &arg); 802 803 ret = memory_notify(MEM_GOING_ONLINE, &arg); 804 ret = notifier_to_errno(ret); 805 if (ret) 806 goto failed_addition; 807 808 /* 809 * Fixup the number of isolated pageblocks before marking the sections 810 * onlining, such that undo_isolate_page_range() works correctly. 811 */ 812 spin_lock_irqsave(&zone->lock, flags); 813 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 814 spin_unlock_irqrestore(&zone->lock, flags); 815 816 /* 817 * If this zone is not populated, then it is not in zonelist. 818 * This means the page allocator ignores this zone. 819 * So, zonelist must be updated after online. 820 */ 821 if (!populated_zone(zone)) { 822 need_zonelists_rebuild = 1; 823 setup_zone_pageset(zone); 824 } 825 826 online_pages_range(pfn, nr_pages); 827 zone->present_pages += nr_pages; 828 829 pgdat_resize_lock(zone->zone_pgdat, &flags); 830 zone->zone_pgdat->node_present_pages += nr_pages; 831 pgdat_resize_unlock(zone->zone_pgdat, &flags); 832 833 node_states_set_node(nid, &arg); 834 if (need_zonelists_rebuild) 835 build_all_zonelists(NULL); 836 zone_pcp_update(zone); 837 838 /* Basic onlining is complete, allow allocation of onlined pages. */ 839 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 840 841 /* 842 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 843 * the tail of the freelist when undoing isolation). Shuffle the whole 844 * zone to make sure the just onlined pages are properly distributed 845 * across the whole freelist - to create an initial shuffle. 846 */ 847 shuffle_zone(zone); 848 849 init_per_zone_wmark_min(); 850 851 kswapd_run(nid); 852 kcompactd_run(nid); 853 854 writeback_set_ratelimit(); 855 856 memory_notify(MEM_ONLINE, &arg); 857 mem_hotplug_done(); 858 return 0; 859 860 failed_addition: 861 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 862 (unsigned long long) pfn << PAGE_SHIFT, 863 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 864 memory_notify(MEM_CANCEL_ONLINE, &arg); 865 remove_pfn_range_from_zone(zone, pfn, nr_pages); 866 mem_hotplug_done(); 867 return ret; 868 } 869 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 870 871 static void reset_node_present_pages(pg_data_t *pgdat) 872 { 873 struct zone *z; 874 875 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 876 z->present_pages = 0; 877 878 pgdat->node_present_pages = 0; 879 } 880 881 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 882 static pg_data_t __ref *hotadd_new_pgdat(int nid) 883 { 884 struct pglist_data *pgdat; 885 886 pgdat = NODE_DATA(nid); 887 if (!pgdat) { 888 pgdat = arch_alloc_nodedata(nid); 889 if (!pgdat) 890 return NULL; 891 892 pgdat->per_cpu_nodestats = 893 alloc_percpu(struct per_cpu_nodestat); 894 arch_refresh_nodedata(nid, pgdat); 895 } else { 896 int cpu; 897 /* 898 * Reset the nr_zones, order and highest_zoneidx before reuse. 899 * Note that kswapd will init kswapd_highest_zoneidx properly 900 * when it starts in the near future. 901 */ 902 pgdat->nr_zones = 0; 903 pgdat->kswapd_order = 0; 904 pgdat->kswapd_highest_zoneidx = 0; 905 for_each_online_cpu(cpu) { 906 struct per_cpu_nodestat *p; 907 908 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 909 memset(p, 0, sizeof(*p)); 910 } 911 } 912 913 /* we can use NODE_DATA(nid) from here */ 914 pgdat->node_id = nid; 915 pgdat->node_start_pfn = 0; 916 917 /* init node's zones as empty zones, we don't have any present pages.*/ 918 free_area_init_core_hotplug(nid); 919 920 /* 921 * The node we allocated has no zone fallback lists. For avoiding 922 * to access not-initialized zonelist, build here. 923 */ 924 build_all_zonelists(pgdat); 925 926 /* 927 * When memory is hot-added, all the memory is in offline state. So 928 * clear all zones' present_pages because they will be updated in 929 * online_pages() and offline_pages(). 930 */ 931 reset_node_managed_pages(pgdat); 932 reset_node_present_pages(pgdat); 933 934 return pgdat; 935 } 936 937 static void rollback_node_hotadd(int nid) 938 { 939 pg_data_t *pgdat = NODE_DATA(nid); 940 941 arch_refresh_nodedata(nid, NULL); 942 free_percpu(pgdat->per_cpu_nodestats); 943 arch_free_nodedata(pgdat); 944 } 945 946 947 /** 948 * try_online_node - online a node if offlined 949 * @nid: the node ID 950 * @set_node_online: Whether we want to online the node 951 * called by cpu_up() to online a node without onlined memory. 952 * 953 * Returns: 954 * 1 -> a new node has been allocated 955 * 0 -> the node is already online 956 * -ENOMEM -> the node could not be allocated 957 */ 958 static int __try_online_node(int nid, bool set_node_online) 959 { 960 pg_data_t *pgdat; 961 int ret = 1; 962 963 if (node_online(nid)) 964 return 0; 965 966 pgdat = hotadd_new_pgdat(nid); 967 if (!pgdat) { 968 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 969 ret = -ENOMEM; 970 goto out; 971 } 972 973 if (set_node_online) { 974 node_set_online(nid); 975 ret = register_one_node(nid); 976 BUG_ON(ret); 977 } 978 out: 979 return ret; 980 } 981 982 /* 983 * Users of this function always want to online/register the node 984 */ 985 int try_online_node(int nid) 986 { 987 int ret; 988 989 mem_hotplug_begin(); 990 ret = __try_online_node(nid, true); 991 mem_hotplug_done(); 992 return ret; 993 } 994 995 static int check_hotplug_memory_range(u64 start, u64 size) 996 { 997 /* memory range must be block size aligned */ 998 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 999 !IS_ALIGNED(size, memory_block_size_bytes())) { 1000 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1001 memory_block_size_bytes(), start, size); 1002 return -EINVAL; 1003 } 1004 1005 return 0; 1006 } 1007 1008 static int online_memory_block(struct memory_block *mem, void *arg) 1009 { 1010 mem->online_type = memhp_default_online_type; 1011 return device_online(&mem->dev); 1012 } 1013 1014 /* 1015 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1016 * and online/offline operations (triggered e.g. by sysfs). 1017 * 1018 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1019 */ 1020 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1021 { 1022 struct mhp_params params = { .pgprot = PAGE_KERNEL }; 1023 u64 start, size; 1024 bool new_node = false; 1025 int ret; 1026 1027 start = res->start; 1028 size = resource_size(res); 1029 1030 ret = check_hotplug_memory_range(start, size); 1031 if (ret) 1032 return ret; 1033 1034 if (!node_possible(nid)) { 1035 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1036 return -EINVAL; 1037 } 1038 1039 mem_hotplug_begin(); 1040 1041 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1042 memblock_add_node(start, size, nid); 1043 1044 ret = __try_online_node(nid, false); 1045 if (ret < 0) 1046 goto error; 1047 new_node = ret; 1048 1049 /* call arch's memory hotadd */ 1050 ret = arch_add_memory(nid, start, size, ¶ms); 1051 if (ret < 0) 1052 goto error; 1053 1054 /* create memory block devices after memory was added */ 1055 ret = create_memory_block_devices(start, size); 1056 if (ret) { 1057 arch_remove_memory(nid, start, size, NULL); 1058 goto error; 1059 } 1060 1061 if (new_node) { 1062 /* If sysfs file of new node can't be created, cpu on the node 1063 * can't be hot-added. There is no rollback way now. 1064 * So, check by BUG_ON() to catch it reluctantly.. 1065 * We online node here. We can't roll back from here. 1066 */ 1067 node_set_online(nid); 1068 ret = __register_one_node(nid); 1069 BUG_ON(ret); 1070 } 1071 1072 /* link memory sections under this node.*/ 1073 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1074 MEMINIT_HOTPLUG); 1075 1076 /* create new memmap entry */ 1077 if (!strcmp(res->name, "System RAM")) 1078 firmware_map_add_hotplug(start, start + size, "System RAM"); 1079 1080 /* device_online() will take the lock when calling online_pages() */ 1081 mem_hotplug_done(); 1082 1083 /* 1084 * In case we're allowed to merge the resource, flag it and trigger 1085 * merging now that adding succeeded. 1086 */ 1087 if (mhp_flags & MEMHP_MERGE_RESOURCE) 1088 merge_system_ram_resource(res); 1089 1090 /* online pages if requested */ 1091 if (memhp_default_online_type != MMOP_OFFLINE) 1092 walk_memory_blocks(start, size, NULL, online_memory_block); 1093 1094 return ret; 1095 error: 1096 /* rollback pgdat allocation and others */ 1097 if (new_node) 1098 rollback_node_hotadd(nid); 1099 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1100 memblock_remove(start, size); 1101 mem_hotplug_done(); 1102 return ret; 1103 } 1104 1105 /* requires device_hotplug_lock, see add_memory_resource() */ 1106 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1107 { 1108 struct resource *res; 1109 int ret; 1110 1111 res = register_memory_resource(start, size, "System RAM"); 1112 if (IS_ERR(res)) 1113 return PTR_ERR(res); 1114 1115 ret = add_memory_resource(nid, res, mhp_flags); 1116 if (ret < 0) 1117 release_memory_resource(res); 1118 return ret; 1119 } 1120 1121 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1122 { 1123 int rc; 1124 1125 lock_device_hotplug(); 1126 rc = __add_memory(nid, start, size, mhp_flags); 1127 unlock_device_hotplug(); 1128 1129 return rc; 1130 } 1131 EXPORT_SYMBOL_GPL(add_memory); 1132 1133 /* 1134 * Add special, driver-managed memory to the system as system RAM. Such 1135 * memory is not exposed via the raw firmware-provided memmap as system 1136 * RAM, instead, it is detected and added by a driver - during cold boot, 1137 * after a reboot, and after kexec. 1138 * 1139 * Reasons why this memory should not be used for the initial memmap of a 1140 * kexec kernel or for placing kexec images: 1141 * - The booting kernel is in charge of determining how this memory will be 1142 * used (e.g., use persistent memory as system RAM) 1143 * - Coordination with a hypervisor is required before this memory 1144 * can be used (e.g., inaccessible parts). 1145 * 1146 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1147 * memory map") are created. Also, the created memory resource is flagged 1148 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1149 * this memory as well (esp., not place kexec images onto it). 1150 * 1151 * The resource_name (visible via /proc/iomem) has to have the format 1152 * "System RAM ($DRIVER)". 1153 */ 1154 int add_memory_driver_managed(int nid, u64 start, u64 size, 1155 const char *resource_name, mhp_t mhp_flags) 1156 { 1157 struct resource *res; 1158 int rc; 1159 1160 if (!resource_name || 1161 strstr(resource_name, "System RAM (") != resource_name || 1162 resource_name[strlen(resource_name) - 1] != ')') 1163 return -EINVAL; 1164 1165 lock_device_hotplug(); 1166 1167 res = register_memory_resource(start, size, resource_name); 1168 if (IS_ERR(res)) { 1169 rc = PTR_ERR(res); 1170 goto out_unlock; 1171 } 1172 1173 rc = add_memory_resource(nid, res, mhp_flags); 1174 if (rc < 0) 1175 release_memory_resource(res); 1176 1177 out_unlock: 1178 unlock_device_hotplug(); 1179 return rc; 1180 } 1181 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1182 1183 #ifdef CONFIG_MEMORY_HOTREMOVE 1184 /* 1185 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1186 * memory holes). When true, return the zone. 1187 */ 1188 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1189 unsigned long end_pfn) 1190 { 1191 unsigned long pfn, sec_end_pfn; 1192 struct zone *zone = NULL; 1193 struct page *page; 1194 int i; 1195 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1196 pfn < end_pfn; 1197 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1198 /* Make sure the memory section is present first */ 1199 if (!present_section_nr(pfn_to_section_nr(pfn))) 1200 continue; 1201 for (; pfn < sec_end_pfn && pfn < end_pfn; 1202 pfn += MAX_ORDER_NR_PAGES) { 1203 i = 0; 1204 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1205 while ((i < MAX_ORDER_NR_PAGES) && 1206 !pfn_valid_within(pfn + i)) 1207 i++; 1208 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1209 continue; 1210 /* Check if we got outside of the zone */ 1211 if (zone && !zone_spans_pfn(zone, pfn + i)) 1212 return NULL; 1213 page = pfn_to_page(pfn + i); 1214 if (zone && page_zone(page) != zone) 1215 return NULL; 1216 zone = page_zone(page); 1217 } 1218 } 1219 1220 return zone; 1221 } 1222 1223 /* 1224 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1225 * non-lru movable pages and hugepages). Will skip over most unmovable 1226 * pages (esp., pages that can be skipped when offlining), but bail out on 1227 * definitely unmovable pages. 1228 * 1229 * Returns: 1230 * 0 in case a movable page is found and movable_pfn was updated. 1231 * -ENOENT in case no movable page was found. 1232 * -EBUSY in case a definitely unmovable page was found. 1233 */ 1234 static int scan_movable_pages(unsigned long start, unsigned long end, 1235 unsigned long *movable_pfn) 1236 { 1237 unsigned long pfn; 1238 1239 for (pfn = start; pfn < end; pfn++) { 1240 struct page *page, *head; 1241 unsigned long skip; 1242 1243 if (!pfn_valid(pfn)) 1244 continue; 1245 page = pfn_to_page(pfn); 1246 if (PageLRU(page)) 1247 goto found; 1248 if (__PageMovable(page)) 1249 goto found; 1250 1251 /* 1252 * PageOffline() pages that are not marked __PageMovable() and 1253 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1254 * definitely unmovable. If their reference count would be 0, 1255 * they could at least be skipped when offlining memory. 1256 */ 1257 if (PageOffline(page) && page_count(page)) 1258 return -EBUSY; 1259 1260 if (!PageHuge(page)) 1261 continue; 1262 head = compound_head(page); 1263 if (page_huge_active(head)) 1264 goto found; 1265 skip = compound_nr(head) - (page - head); 1266 pfn += skip - 1; 1267 } 1268 return -ENOENT; 1269 found: 1270 *movable_pfn = pfn; 1271 return 0; 1272 } 1273 1274 static int 1275 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1276 { 1277 unsigned long pfn; 1278 struct page *page, *head; 1279 int ret = 0; 1280 LIST_HEAD(source); 1281 1282 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1283 if (!pfn_valid(pfn)) 1284 continue; 1285 page = pfn_to_page(pfn); 1286 head = compound_head(page); 1287 1288 if (PageHuge(page)) { 1289 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1290 isolate_huge_page(head, &source); 1291 continue; 1292 } else if (PageTransHuge(page)) 1293 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1294 1295 /* 1296 * HWPoison pages have elevated reference counts so the migration would 1297 * fail on them. It also doesn't make any sense to migrate them in the 1298 * first place. Still try to unmap such a page in case it is still mapped 1299 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1300 * the unmap as the catch all safety net). 1301 */ 1302 if (PageHWPoison(page)) { 1303 if (WARN_ON(PageLRU(page))) 1304 isolate_lru_page(page); 1305 if (page_mapped(page)) 1306 try_to_unmap(page, TTU_IGNORE_MLOCK); 1307 continue; 1308 } 1309 1310 if (!get_page_unless_zero(page)) 1311 continue; 1312 /* 1313 * We can skip free pages. And we can deal with pages on 1314 * LRU and non-lru movable pages. 1315 */ 1316 if (PageLRU(page)) 1317 ret = isolate_lru_page(page); 1318 else 1319 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1320 if (!ret) { /* Success */ 1321 list_add_tail(&page->lru, &source); 1322 if (!__PageMovable(page)) 1323 inc_node_page_state(page, NR_ISOLATED_ANON + 1324 page_is_file_lru(page)); 1325 1326 } else { 1327 pr_warn("failed to isolate pfn %lx\n", pfn); 1328 dump_page(page, "isolation failed"); 1329 } 1330 put_page(page); 1331 } 1332 if (!list_empty(&source)) { 1333 nodemask_t nmask = node_states[N_MEMORY]; 1334 struct migration_target_control mtc = { 1335 .nmask = &nmask, 1336 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1337 }; 1338 1339 /* 1340 * We have checked that migration range is on a single zone so 1341 * we can use the nid of the first page to all the others. 1342 */ 1343 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1344 1345 /* 1346 * try to allocate from a different node but reuse this node 1347 * if there are no other online nodes to be used (e.g. we are 1348 * offlining a part of the only existing node) 1349 */ 1350 node_clear(mtc.nid, nmask); 1351 if (nodes_empty(nmask)) 1352 node_set(mtc.nid, nmask); 1353 ret = migrate_pages(&source, alloc_migration_target, NULL, 1354 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1355 if (ret) { 1356 list_for_each_entry(page, &source, lru) { 1357 pr_warn("migrating pfn %lx failed ret:%d ", 1358 page_to_pfn(page), ret); 1359 dump_page(page, "migration failure"); 1360 } 1361 putback_movable_pages(&source); 1362 } 1363 } 1364 1365 return ret; 1366 } 1367 1368 static int __init cmdline_parse_movable_node(char *p) 1369 { 1370 movable_node_enabled = true; 1371 return 0; 1372 } 1373 early_param("movable_node", cmdline_parse_movable_node); 1374 1375 /* check which state of node_states will be changed when offline memory */ 1376 static void node_states_check_changes_offline(unsigned long nr_pages, 1377 struct zone *zone, struct memory_notify *arg) 1378 { 1379 struct pglist_data *pgdat = zone->zone_pgdat; 1380 unsigned long present_pages = 0; 1381 enum zone_type zt; 1382 1383 arg->status_change_nid = NUMA_NO_NODE; 1384 arg->status_change_nid_normal = NUMA_NO_NODE; 1385 arg->status_change_nid_high = NUMA_NO_NODE; 1386 1387 /* 1388 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1389 * If the memory to be offline is within the range 1390 * [0..ZONE_NORMAL], and it is the last present memory there, 1391 * the zones in that range will become empty after the offlining, 1392 * thus we can determine that we need to clear the node from 1393 * node_states[N_NORMAL_MEMORY]. 1394 */ 1395 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1396 present_pages += pgdat->node_zones[zt].present_pages; 1397 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1398 arg->status_change_nid_normal = zone_to_nid(zone); 1399 1400 #ifdef CONFIG_HIGHMEM 1401 /* 1402 * node_states[N_HIGH_MEMORY] contains nodes which 1403 * have normal memory or high memory. 1404 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1405 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1406 * we determine that the zones in that range become empty, 1407 * we need to clear the node for N_HIGH_MEMORY. 1408 */ 1409 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1410 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1411 arg->status_change_nid_high = zone_to_nid(zone); 1412 #endif 1413 1414 /* 1415 * We have accounted the pages from [0..ZONE_NORMAL), and 1416 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1417 * as well. 1418 * Here we count the possible pages from ZONE_MOVABLE. 1419 * If after having accounted all the pages, we see that the nr_pages 1420 * to be offlined is over or equal to the accounted pages, 1421 * we know that the node will become empty, and so, we can clear 1422 * it for N_MEMORY as well. 1423 */ 1424 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1425 1426 if (nr_pages >= present_pages) 1427 arg->status_change_nid = zone_to_nid(zone); 1428 } 1429 1430 static void node_states_clear_node(int node, struct memory_notify *arg) 1431 { 1432 if (arg->status_change_nid_normal >= 0) 1433 node_clear_state(node, N_NORMAL_MEMORY); 1434 1435 if (arg->status_change_nid_high >= 0) 1436 node_clear_state(node, N_HIGH_MEMORY); 1437 1438 if (arg->status_change_nid >= 0) 1439 node_clear_state(node, N_MEMORY); 1440 } 1441 1442 static int count_system_ram_pages_cb(unsigned long start_pfn, 1443 unsigned long nr_pages, void *data) 1444 { 1445 unsigned long *nr_system_ram_pages = data; 1446 1447 *nr_system_ram_pages += nr_pages; 1448 return 0; 1449 } 1450 1451 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1452 { 1453 const unsigned long end_pfn = start_pfn + nr_pages; 1454 unsigned long pfn, system_ram_pages = 0; 1455 unsigned long flags; 1456 struct zone *zone; 1457 struct memory_notify arg; 1458 int ret, node; 1459 char *reason; 1460 1461 /* We can only offline full sections (e.g., SECTION_IS_ONLINE) */ 1462 if (WARN_ON_ONCE(!nr_pages || 1463 !IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION))) 1464 return -EINVAL; 1465 1466 mem_hotplug_begin(); 1467 1468 /* 1469 * Don't allow to offline memory blocks that contain holes. 1470 * Consequently, memory blocks with holes can never get onlined 1471 * via the hotplug path - online_pages() - as hotplugged memory has 1472 * no holes. This way, we e.g., don't have to worry about marking 1473 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1474 * avoid using walk_system_ram_range() later. 1475 */ 1476 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1477 count_system_ram_pages_cb); 1478 if (system_ram_pages != nr_pages) { 1479 ret = -EINVAL; 1480 reason = "memory holes"; 1481 goto failed_removal; 1482 } 1483 1484 /* This makes hotplug much easier...and readable. 1485 we assume this for now. .*/ 1486 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1487 if (!zone) { 1488 ret = -EINVAL; 1489 reason = "multizone range"; 1490 goto failed_removal; 1491 } 1492 node = zone_to_nid(zone); 1493 1494 /* 1495 * Disable pcplists so that page isolation cannot race with freeing 1496 * in a way that pages from isolated pageblock are left on pcplists. 1497 */ 1498 zone_pcp_disable(zone); 1499 1500 /* set above range as isolated */ 1501 ret = start_isolate_page_range(start_pfn, end_pfn, 1502 MIGRATE_MOVABLE, 1503 MEMORY_OFFLINE | REPORT_FAILURE); 1504 if (ret) { 1505 reason = "failure to isolate range"; 1506 goto failed_removal_pcplists_disabled; 1507 } 1508 1509 arg.start_pfn = start_pfn; 1510 arg.nr_pages = nr_pages; 1511 node_states_check_changes_offline(nr_pages, zone, &arg); 1512 1513 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1514 ret = notifier_to_errno(ret); 1515 if (ret) { 1516 reason = "notifier failure"; 1517 goto failed_removal_isolated; 1518 } 1519 1520 do { 1521 pfn = start_pfn; 1522 do { 1523 if (signal_pending(current)) { 1524 ret = -EINTR; 1525 reason = "signal backoff"; 1526 goto failed_removal_isolated; 1527 } 1528 1529 cond_resched(); 1530 lru_add_drain_all(); 1531 1532 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1533 if (!ret) { 1534 /* 1535 * TODO: fatal migration failures should bail 1536 * out 1537 */ 1538 do_migrate_range(pfn, end_pfn); 1539 } 1540 } while (!ret); 1541 1542 if (ret != -ENOENT) { 1543 reason = "unmovable page"; 1544 goto failed_removal_isolated; 1545 } 1546 1547 /* 1548 * Dissolve free hugepages in the memory block before doing 1549 * offlining actually in order to make hugetlbfs's object 1550 * counting consistent. 1551 */ 1552 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1553 if (ret) { 1554 reason = "failure to dissolve huge pages"; 1555 goto failed_removal_isolated; 1556 } 1557 1558 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1559 1560 } while (ret); 1561 1562 /* Mark all sections offline and remove free pages from the buddy. */ 1563 __offline_isolated_pages(start_pfn, end_pfn); 1564 pr_debug("Offlined Pages %ld\n", nr_pages); 1565 1566 /* 1567 * The memory sections are marked offline, and the pageblock flags 1568 * effectively stale; nobody should be touching them. Fixup the number 1569 * of isolated pageblocks, memory onlining will properly revert this. 1570 */ 1571 spin_lock_irqsave(&zone->lock, flags); 1572 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1573 spin_unlock_irqrestore(&zone->lock, flags); 1574 1575 zone_pcp_enable(zone); 1576 1577 /* removal success */ 1578 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1579 zone->present_pages -= nr_pages; 1580 1581 pgdat_resize_lock(zone->zone_pgdat, &flags); 1582 zone->zone_pgdat->node_present_pages -= nr_pages; 1583 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1584 1585 init_per_zone_wmark_min(); 1586 1587 if (!populated_zone(zone)) { 1588 zone_pcp_reset(zone); 1589 build_all_zonelists(NULL); 1590 } else 1591 zone_pcp_update(zone); 1592 1593 node_states_clear_node(node, &arg); 1594 if (arg.status_change_nid >= 0) { 1595 kswapd_stop(node); 1596 kcompactd_stop(node); 1597 } 1598 1599 writeback_set_ratelimit(); 1600 1601 memory_notify(MEM_OFFLINE, &arg); 1602 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1603 mem_hotplug_done(); 1604 return 0; 1605 1606 failed_removal_isolated: 1607 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1608 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1609 failed_removal_pcplists_disabled: 1610 zone_pcp_enable(zone); 1611 failed_removal: 1612 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1613 (unsigned long long) start_pfn << PAGE_SHIFT, 1614 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1615 reason); 1616 /* pushback to free area */ 1617 mem_hotplug_done(); 1618 return ret; 1619 } 1620 1621 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1622 { 1623 int ret = !is_memblock_offlined(mem); 1624 1625 if (unlikely(ret)) { 1626 phys_addr_t beginpa, endpa; 1627 1628 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1629 endpa = beginpa + memory_block_size_bytes() - 1; 1630 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1631 &beginpa, &endpa); 1632 1633 return -EBUSY; 1634 } 1635 return 0; 1636 } 1637 1638 static int check_cpu_on_node(pg_data_t *pgdat) 1639 { 1640 int cpu; 1641 1642 for_each_present_cpu(cpu) { 1643 if (cpu_to_node(cpu) == pgdat->node_id) 1644 /* 1645 * the cpu on this node isn't removed, and we can't 1646 * offline this node. 1647 */ 1648 return -EBUSY; 1649 } 1650 1651 return 0; 1652 } 1653 1654 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 1655 { 1656 int nid = *(int *)arg; 1657 1658 /* 1659 * If a memory block belongs to multiple nodes, the stored nid is not 1660 * reliable. However, such blocks are always online (e.g., cannot get 1661 * offlined) and, therefore, are still spanned by the node. 1662 */ 1663 return mem->nid == nid ? -EEXIST : 0; 1664 } 1665 1666 /** 1667 * try_offline_node 1668 * @nid: the node ID 1669 * 1670 * Offline a node if all memory sections and cpus of the node are removed. 1671 * 1672 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1673 * and online/offline operations before this call. 1674 */ 1675 void try_offline_node(int nid) 1676 { 1677 pg_data_t *pgdat = NODE_DATA(nid); 1678 int rc; 1679 1680 /* 1681 * If the node still spans pages (especially ZONE_DEVICE), don't 1682 * offline it. A node spans memory after move_pfn_range_to_zone(), 1683 * e.g., after the memory block was onlined. 1684 */ 1685 if (pgdat->node_spanned_pages) 1686 return; 1687 1688 /* 1689 * Especially offline memory blocks might not be spanned by the 1690 * node. They will get spanned by the node once they get onlined. 1691 * However, they link to the node in sysfs and can get onlined later. 1692 */ 1693 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 1694 if (rc) 1695 return; 1696 1697 if (check_cpu_on_node(pgdat)) 1698 return; 1699 1700 /* 1701 * all memory/cpu of this node are removed, we can offline this 1702 * node now. 1703 */ 1704 node_set_offline(nid); 1705 unregister_one_node(nid); 1706 } 1707 EXPORT_SYMBOL(try_offline_node); 1708 1709 static int __ref try_remove_memory(int nid, u64 start, u64 size) 1710 { 1711 int rc = 0; 1712 1713 BUG_ON(check_hotplug_memory_range(start, size)); 1714 1715 /* 1716 * All memory blocks must be offlined before removing memory. Check 1717 * whether all memory blocks in question are offline and return error 1718 * if this is not the case. 1719 */ 1720 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb); 1721 if (rc) 1722 return rc; 1723 1724 /* remove memmap entry */ 1725 firmware_map_remove(start, start + size, "System RAM"); 1726 1727 /* 1728 * Memory block device removal under the device_hotplug_lock is 1729 * a barrier against racing online attempts. 1730 */ 1731 remove_memory_block_devices(start, size); 1732 1733 mem_hotplug_begin(); 1734 1735 arch_remove_memory(nid, start, size, NULL); 1736 1737 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1738 memblock_free(start, size); 1739 memblock_remove(start, size); 1740 } 1741 1742 release_mem_region_adjustable(start, size); 1743 1744 try_offline_node(nid); 1745 1746 mem_hotplug_done(); 1747 return 0; 1748 } 1749 1750 /** 1751 * remove_memory 1752 * @nid: the node ID 1753 * @start: physical address of the region to remove 1754 * @size: size of the region to remove 1755 * 1756 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1757 * and online/offline operations before this call, as required by 1758 * try_offline_node(). 1759 */ 1760 void __remove_memory(int nid, u64 start, u64 size) 1761 { 1762 1763 /* 1764 * trigger BUG() if some memory is not offlined prior to calling this 1765 * function 1766 */ 1767 if (try_remove_memory(nid, start, size)) 1768 BUG(); 1769 } 1770 1771 /* 1772 * Remove memory if every memory block is offline, otherwise return -EBUSY is 1773 * some memory is not offline 1774 */ 1775 int remove_memory(int nid, u64 start, u64 size) 1776 { 1777 int rc; 1778 1779 lock_device_hotplug(); 1780 rc = try_remove_memory(nid, start, size); 1781 unlock_device_hotplug(); 1782 1783 return rc; 1784 } 1785 EXPORT_SYMBOL_GPL(remove_memory); 1786 1787 /* 1788 * Try to offline and remove a memory block. Might take a long time to 1789 * finish in case memory is still in use. Primarily useful for memory devices 1790 * that logically unplugged all memory (so it's no longer in use) and want to 1791 * offline + remove the memory block. 1792 */ 1793 int offline_and_remove_memory(int nid, u64 start, u64 size) 1794 { 1795 struct memory_block *mem; 1796 int rc = -EINVAL; 1797 1798 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 1799 size != memory_block_size_bytes()) 1800 return rc; 1801 1802 lock_device_hotplug(); 1803 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start))); 1804 if (mem) 1805 rc = device_offline(&mem->dev); 1806 /* Ignore if the device is already offline. */ 1807 if (rc > 0) 1808 rc = 0; 1809 1810 /* 1811 * In case we succeeded to offline the memory block, remove it. 1812 * This cannot fail as it cannot get onlined in the meantime. 1813 */ 1814 if (!rc) { 1815 rc = try_remove_memory(nid, start, size); 1816 WARN_ON_ONCE(rc); 1817 } 1818 unlock_device_hotplug(); 1819 1820 return rc; 1821 } 1822 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 1823 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1824