xref: /openbmc/linux/mm/memory_hotplug.c (revision 278d3ba6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 module_param(memmap_on_memory, bool, 0444);
51 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
52 
53 static inline bool mhp_memmap_on_memory(void)
54 {
55 	return memmap_on_memory;
56 }
57 #else
58 static inline bool mhp_memmap_on_memory(void)
59 {
60 	return false;
61 }
62 #endif
63 
64 enum {
65 	ONLINE_POLICY_CONTIG_ZONES = 0,
66 	ONLINE_POLICY_AUTO_MOVABLE,
67 };
68 
69 static const char * const online_policy_to_str[] = {
70 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
71 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
72 };
73 
74 static int set_online_policy(const char *val, const struct kernel_param *kp)
75 {
76 	int ret = sysfs_match_string(online_policy_to_str, val);
77 
78 	if (ret < 0)
79 		return ret;
80 	*((int *)kp->arg) = ret;
81 	return 0;
82 }
83 
84 static int get_online_policy(char *buffer, const struct kernel_param *kp)
85 {
86 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
87 }
88 
89 /*
90  * memory_hotplug.online_policy: configure online behavior when onlining without
91  * specifying a zone (MMOP_ONLINE)
92  *
93  * "contig-zones": keep zone contiguous
94  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
95  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
96  */
97 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
98 static const struct kernel_param_ops online_policy_ops = {
99 	.set = set_online_policy,
100 	.get = get_online_policy,
101 };
102 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
103 MODULE_PARM_DESC(online_policy,
104 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
105 		"Default: \"contig-zones\"");
106 
107 /*
108  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
109  *
110  * The ratio represent an upper limit and the kernel might decide to not
111  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
112  * doesn't allow for more MOVABLE memory.
113  */
114 static unsigned int auto_movable_ratio __read_mostly = 301;
115 module_param(auto_movable_ratio, uint, 0644);
116 MODULE_PARM_DESC(auto_movable_ratio,
117 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
118 		"in percent for \"auto-movable\" online policy. Default: 301");
119 
120 /*
121  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
122  */
123 #ifdef CONFIG_NUMA
124 static bool auto_movable_numa_aware __read_mostly = true;
125 module_param(auto_movable_numa_aware, bool, 0644);
126 MODULE_PARM_DESC(auto_movable_numa_aware,
127 		"Consider numa node stats in addition to global stats in "
128 		"\"auto-movable\" online policy. Default: true");
129 #endif /* CONFIG_NUMA */
130 
131 /*
132  * online_page_callback contains pointer to current page onlining function.
133  * Initially it is generic_online_page(). If it is required it could be
134  * changed by calling set_online_page_callback() for callback registration
135  * and restore_online_page_callback() for generic callback restore.
136  */
137 
138 static online_page_callback_t online_page_callback = generic_online_page;
139 static DEFINE_MUTEX(online_page_callback_lock);
140 
141 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
142 
143 void get_online_mems(void)
144 {
145 	percpu_down_read(&mem_hotplug_lock);
146 }
147 
148 void put_online_mems(void)
149 {
150 	percpu_up_read(&mem_hotplug_lock);
151 }
152 
153 bool movable_node_enabled = false;
154 
155 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
156 int mhp_default_online_type = MMOP_OFFLINE;
157 #else
158 int mhp_default_online_type = MMOP_ONLINE;
159 #endif
160 
161 static int __init setup_memhp_default_state(char *str)
162 {
163 	const int online_type = mhp_online_type_from_str(str);
164 
165 	if (online_type >= 0)
166 		mhp_default_online_type = online_type;
167 
168 	return 1;
169 }
170 __setup("memhp_default_state=", setup_memhp_default_state);
171 
172 void mem_hotplug_begin(void)
173 {
174 	cpus_read_lock();
175 	percpu_down_write(&mem_hotplug_lock);
176 }
177 
178 void mem_hotplug_done(void)
179 {
180 	percpu_up_write(&mem_hotplug_lock);
181 	cpus_read_unlock();
182 }
183 
184 u64 max_mem_size = U64_MAX;
185 
186 /* add this memory to iomem resource */
187 static struct resource *register_memory_resource(u64 start, u64 size,
188 						 const char *resource_name)
189 {
190 	struct resource *res;
191 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
192 
193 	if (strcmp(resource_name, "System RAM"))
194 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
195 
196 	if (!mhp_range_allowed(start, size, true))
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Make sure value parsed from 'mem=' only restricts memory adding
201 	 * while booting, so that memory hotplug won't be impacted. Please
202 	 * refer to document of 'mem=' in kernel-parameters.txt for more
203 	 * details.
204 	 */
205 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
206 		return ERR_PTR(-E2BIG);
207 
208 	/*
209 	 * Request ownership of the new memory range.  This might be
210 	 * a child of an existing resource that was present but
211 	 * not marked as busy.
212 	 */
213 	res = __request_region(&iomem_resource, start, size,
214 			       resource_name, flags);
215 
216 	if (!res) {
217 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
218 				start, start + size);
219 		return ERR_PTR(-EEXIST);
220 	}
221 	return res;
222 }
223 
224 static void release_memory_resource(struct resource *res)
225 {
226 	if (!res)
227 		return;
228 	release_resource(res);
229 	kfree(res);
230 }
231 
232 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
233 {
234 	/*
235 	 * Disallow all operations smaller than a sub-section and only
236 	 * allow operations smaller than a section for
237 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
238 	 * enforces a larger memory_block_size_bytes() granularity for
239 	 * memory that will be marked online, so this check should only
240 	 * fire for direct arch_{add,remove}_memory() users outside of
241 	 * add_memory_resource().
242 	 */
243 	unsigned long min_align;
244 
245 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
246 		min_align = PAGES_PER_SUBSECTION;
247 	else
248 		min_align = PAGES_PER_SECTION;
249 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
250 		return -EINVAL;
251 	return 0;
252 }
253 
254 /*
255  * Return page for the valid pfn only if the page is online. All pfn
256  * walkers which rely on the fully initialized page->flags and others
257  * should use this rather than pfn_valid && pfn_to_page
258  */
259 struct page *pfn_to_online_page(unsigned long pfn)
260 {
261 	unsigned long nr = pfn_to_section_nr(pfn);
262 	struct dev_pagemap *pgmap;
263 	struct mem_section *ms;
264 
265 	if (nr >= NR_MEM_SECTIONS)
266 		return NULL;
267 
268 	ms = __nr_to_section(nr);
269 	if (!online_section(ms))
270 		return NULL;
271 
272 	/*
273 	 * Save some code text when online_section() +
274 	 * pfn_section_valid() are sufficient.
275 	 */
276 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
277 		return NULL;
278 
279 	if (!pfn_section_valid(ms, pfn))
280 		return NULL;
281 
282 	if (!online_device_section(ms))
283 		return pfn_to_page(pfn);
284 
285 	/*
286 	 * Slowpath: when ZONE_DEVICE collides with
287 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
288 	 * the section may be 'offline' but 'valid'. Only
289 	 * get_dev_pagemap() can determine sub-section online status.
290 	 */
291 	pgmap = get_dev_pagemap(pfn, NULL);
292 	put_dev_pagemap(pgmap);
293 
294 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
295 	if (pgmap)
296 		return NULL;
297 
298 	return pfn_to_page(pfn);
299 }
300 EXPORT_SYMBOL_GPL(pfn_to_online_page);
301 
302 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
303 		struct mhp_params *params)
304 {
305 	const unsigned long end_pfn = pfn + nr_pages;
306 	unsigned long cur_nr_pages;
307 	int err;
308 	struct vmem_altmap *altmap = params->altmap;
309 
310 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
311 		return -EINVAL;
312 
313 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
314 
315 	if (altmap) {
316 		/*
317 		 * Validate altmap is within bounds of the total request
318 		 */
319 		if (altmap->base_pfn != pfn
320 				|| vmem_altmap_offset(altmap) > nr_pages) {
321 			pr_warn_once("memory add fail, invalid altmap\n");
322 			return -EINVAL;
323 		}
324 		altmap->alloc = 0;
325 	}
326 
327 	if (check_pfn_span(pfn, nr_pages)) {
328 		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
329 		return -EINVAL;
330 	}
331 
332 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
333 		/* Select all remaining pages up to the next section boundary */
334 		cur_nr_pages = min(end_pfn - pfn,
335 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
336 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
337 					 params->pgmap);
338 		if (err)
339 			break;
340 		cond_resched();
341 	}
342 	vmemmap_populate_print_last();
343 	return err;
344 }
345 
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 				     unsigned long start_pfn,
349 				     unsigned long end_pfn)
350 {
351 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 		if (unlikely(!pfn_to_online_page(start_pfn)))
353 			continue;
354 
355 		if (unlikely(pfn_to_nid(start_pfn) != nid))
356 			continue;
357 
358 		if (zone != page_zone(pfn_to_page(start_pfn)))
359 			continue;
360 
361 		return start_pfn;
362 	}
363 
364 	return 0;
365 }
366 
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 				    unsigned long start_pfn,
370 				    unsigned long end_pfn)
371 {
372 	unsigned long pfn;
373 
374 	/* pfn is the end pfn of a memory section. */
375 	pfn = end_pfn - 1;
376 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(pfn)))
384 			continue;
385 
386 		return pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 			     unsigned long end_pfn)
394 {
395 	unsigned long pfn;
396 	int nid = zone_to_nid(zone);
397 
398 	if (zone->zone_start_pfn == start_pfn) {
399 		/*
400 		 * If the section is smallest section in the zone, it need
401 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
402 		 * In this case, we find second smallest valid mem_section
403 		 * for shrinking zone.
404 		 */
405 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
406 						zone_end_pfn(zone));
407 		if (pfn) {
408 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
409 			zone->zone_start_pfn = pfn;
410 		} else {
411 			zone->zone_start_pfn = 0;
412 			zone->spanned_pages = 0;
413 		}
414 	} else if (zone_end_pfn(zone) == end_pfn) {
415 		/*
416 		 * If the section is biggest section in the zone, it need
417 		 * shrink zone->spanned_pages.
418 		 * In this case, we find second biggest valid mem_section for
419 		 * shrinking zone.
420 		 */
421 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
422 					       start_pfn);
423 		if (pfn)
424 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
425 		else {
426 			zone->zone_start_pfn = 0;
427 			zone->spanned_pages = 0;
428 		}
429 	}
430 }
431 
432 static void update_pgdat_span(struct pglist_data *pgdat)
433 {
434 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
435 	struct zone *zone;
436 
437 	for (zone = pgdat->node_zones;
438 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
439 		unsigned long end_pfn = zone_end_pfn(zone);
440 
441 		/* No need to lock the zones, they can't change. */
442 		if (!zone->spanned_pages)
443 			continue;
444 		if (!node_end_pfn) {
445 			node_start_pfn = zone->zone_start_pfn;
446 			node_end_pfn = end_pfn;
447 			continue;
448 		}
449 
450 		if (end_pfn > node_end_pfn)
451 			node_end_pfn = end_pfn;
452 		if (zone->zone_start_pfn < node_start_pfn)
453 			node_start_pfn = zone->zone_start_pfn;
454 	}
455 
456 	pgdat->node_start_pfn = node_start_pfn;
457 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458 }
459 
460 void __ref remove_pfn_range_from_zone(struct zone *zone,
461 				      unsigned long start_pfn,
462 				      unsigned long nr_pages)
463 {
464 	const unsigned long end_pfn = start_pfn + nr_pages;
465 	struct pglist_data *pgdat = zone->zone_pgdat;
466 	unsigned long pfn, cur_nr_pages;
467 
468 	/* Poison struct pages because they are now uninitialized again. */
469 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
470 		cond_resched();
471 
472 		/* Select all remaining pages up to the next section boundary */
473 		cur_nr_pages =
474 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
475 		page_init_poison(pfn_to_page(pfn),
476 				 sizeof(struct page) * cur_nr_pages);
477 	}
478 
479 	/*
480 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
481 	 * we will not try to shrink the zones - which is okay as
482 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
483 	 */
484 	if (zone_is_zone_device(zone))
485 		return;
486 
487 	clear_zone_contiguous(zone);
488 
489 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
490 	update_pgdat_span(pgdat);
491 
492 	set_zone_contiguous(zone);
493 }
494 
495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496 			     unsigned long map_offset,
497 			     struct vmem_altmap *altmap)
498 {
499 	struct mem_section *ms = __pfn_to_section(pfn);
500 
501 	if (WARN_ON_ONCE(!valid_section(ms)))
502 		return;
503 
504 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505 }
506 
507 /**
508  * __remove_pages() - remove sections of pages
509  * @pfn: starting pageframe (must be aligned to start of a section)
510  * @nr_pages: number of pages to remove (must be multiple of section size)
511  * @altmap: alternative device page map or %NULL if default memmap is used
512  *
513  * Generic helper function to remove section mappings and sysfs entries
514  * for the section of the memory we are removing. Caller needs to make
515  * sure that pages are marked reserved and zones are adjust properly by
516  * calling offline_pages().
517  */
518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519 		    struct vmem_altmap *altmap)
520 {
521 	const unsigned long end_pfn = pfn + nr_pages;
522 	unsigned long cur_nr_pages;
523 	unsigned long map_offset = 0;
524 
525 	map_offset = vmem_altmap_offset(altmap);
526 
527 	if (check_pfn_span(pfn, nr_pages)) {
528 		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
529 		return;
530 	}
531 
532 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
533 		cond_resched();
534 		/* Select all remaining pages up to the next section boundary */
535 		cur_nr_pages = min(end_pfn - pfn,
536 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
537 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
538 		map_offset = 0;
539 	}
540 }
541 
542 int set_online_page_callback(online_page_callback_t callback)
543 {
544 	int rc = -EINVAL;
545 
546 	get_online_mems();
547 	mutex_lock(&online_page_callback_lock);
548 
549 	if (online_page_callback == generic_online_page) {
550 		online_page_callback = callback;
551 		rc = 0;
552 	}
553 
554 	mutex_unlock(&online_page_callback_lock);
555 	put_online_mems();
556 
557 	return rc;
558 }
559 EXPORT_SYMBOL_GPL(set_online_page_callback);
560 
561 int restore_online_page_callback(online_page_callback_t callback)
562 {
563 	int rc = -EINVAL;
564 
565 	get_online_mems();
566 	mutex_lock(&online_page_callback_lock);
567 
568 	if (online_page_callback == callback) {
569 		online_page_callback = generic_online_page;
570 		rc = 0;
571 	}
572 
573 	mutex_unlock(&online_page_callback_lock);
574 	put_online_mems();
575 
576 	return rc;
577 }
578 EXPORT_SYMBOL_GPL(restore_online_page_callback);
579 
580 void generic_online_page(struct page *page, unsigned int order)
581 {
582 	/*
583 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
584 	 * so we should map it first. This is better than introducing a special
585 	 * case in page freeing fast path.
586 	 */
587 	debug_pagealloc_map_pages(page, 1 << order);
588 	__free_pages_core(page, order);
589 	totalram_pages_add(1UL << order);
590 }
591 EXPORT_SYMBOL_GPL(generic_online_page);
592 
593 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
594 {
595 	const unsigned long end_pfn = start_pfn + nr_pages;
596 	unsigned long pfn;
597 
598 	/*
599 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
600 	 * decide to not expose all pages to the buddy (e.g., expose them
601 	 * later). We account all pages as being online and belonging to this
602 	 * zone ("present").
603 	 * When using memmap_on_memory, the range might not be aligned to
604 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
605 	 * this and the first chunk to online will be pageblock_nr_pages.
606 	 */
607 	for (pfn = start_pfn; pfn < end_pfn;) {
608 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
609 
610 		(*online_page_callback)(pfn_to_page(pfn), order);
611 		pfn += (1UL << order);
612 	}
613 
614 	/* mark all involved sections as online */
615 	online_mem_sections(start_pfn, end_pfn);
616 }
617 
618 /* check which state of node_states will be changed when online memory */
619 static void node_states_check_changes_online(unsigned long nr_pages,
620 	struct zone *zone, struct memory_notify *arg)
621 {
622 	int nid = zone_to_nid(zone);
623 
624 	arg->status_change_nid = NUMA_NO_NODE;
625 	arg->status_change_nid_normal = NUMA_NO_NODE;
626 
627 	if (!node_state(nid, N_MEMORY))
628 		arg->status_change_nid = nid;
629 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
630 		arg->status_change_nid_normal = nid;
631 }
632 
633 static void node_states_set_node(int node, struct memory_notify *arg)
634 {
635 	if (arg->status_change_nid_normal >= 0)
636 		node_set_state(node, N_NORMAL_MEMORY);
637 
638 	if (arg->status_change_nid >= 0)
639 		node_set_state(node, N_MEMORY);
640 }
641 
642 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
643 		unsigned long nr_pages)
644 {
645 	unsigned long old_end_pfn = zone_end_pfn(zone);
646 
647 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
648 		zone->zone_start_pfn = start_pfn;
649 
650 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
651 }
652 
653 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
654                                      unsigned long nr_pages)
655 {
656 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
657 
658 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
659 		pgdat->node_start_pfn = start_pfn;
660 
661 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
662 
663 }
664 
665 #ifdef CONFIG_ZONE_DEVICE
666 static void section_taint_zone_device(unsigned long pfn)
667 {
668 	struct mem_section *ms = __pfn_to_section(pfn);
669 
670 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
671 }
672 #else
673 static inline void section_taint_zone_device(unsigned long pfn)
674 {
675 }
676 #endif
677 
678 /*
679  * Associate the pfn range with the given zone, initializing the memmaps
680  * and resizing the pgdat/zone data to span the added pages. After this
681  * call, all affected pages are PG_reserved.
682  *
683  * All aligned pageblocks are initialized to the specified migratetype
684  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
685  * zone stats (e.g., nr_isolate_pageblock) are touched.
686  */
687 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
688 				  unsigned long nr_pages,
689 				  struct vmem_altmap *altmap, int migratetype)
690 {
691 	struct pglist_data *pgdat = zone->zone_pgdat;
692 	int nid = pgdat->node_id;
693 
694 	clear_zone_contiguous(zone);
695 
696 	if (zone_is_empty(zone))
697 		init_currently_empty_zone(zone, start_pfn, nr_pages);
698 	resize_zone_range(zone, start_pfn, nr_pages);
699 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
700 
701 	/*
702 	 * Subsection population requires care in pfn_to_online_page().
703 	 * Set the taint to enable the slow path detection of
704 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
705 	 * section.
706 	 */
707 	if (zone_is_zone_device(zone)) {
708 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
709 			section_taint_zone_device(start_pfn);
710 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
711 			section_taint_zone_device(start_pfn + nr_pages);
712 	}
713 
714 	/*
715 	 * TODO now we have a visible range of pages which are not associated
716 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
717 	 * expects the zone spans the pfn range. All the pages in the range
718 	 * are reserved so nobody should be touching them so we should be safe
719 	 */
720 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
721 			 MEMINIT_HOTPLUG, altmap, migratetype);
722 
723 	set_zone_contiguous(zone);
724 }
725 
726 struct auto_movable_stats {
727 	unsigned long kernel_early_pages;
728 	unsigned long movable_pages;
729 };
730 
731 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
732 					    struct zone *zone)
733 {
734 	if (zone_idx(zone) == ZONE_MOVABLE) {
735 		stats->movable_pages += zone->present_pages;
736 	} else {
737 		stats->kernel_early_pages += zone->present_early_pages;
738 #ifdef CONFIG_CMA
739 		/*
740 		 * CMA pages (never on hotplugged memory) behave like
741 		 * ZONE_MOVABLE.
742 		 */
743 		stats->movable_pages += zone->cma_pages;
744 		stats->kernel_early_pages -= zone->cma_pages;
745 #endif /* CONFIG_CMA */
746 	}
747 }
748 struct auto_movable_group_stats {
749 	unsigned long movable_pages;
750 	unsigned long req_kernel_early_pages;
751 };
752 
753 static int auto_movable_stats_account_group(struct memory_group *group,
754 					   void *arg)
755 {
756 	const int ratio = READ_ONCE(auto_movable_ratio);
757 	struct auto_movable_group_stats *stats = arg;
758 	long pages;
759 
760 	/*
761 	 * We don't support modifying the config while the auto-movable online
762 	 * policy is already enabled. Just avoid the division by zero below.
763 	 */
764 	if (!ratio)
765 		return 0;
766 
767 	/*
768 	 * Calculate how many early kernel pages this group requires to
769 	 * satisfy the configured zone ratio.
770 	 */
771 	pages = group->present_movable_pages * 100 / ratio;
772 	pages -= group->present_kernel_pages;
773 
774 	if (pages > 0)
775 		stats->req_kernel_early_pages += pages;
776 	stats->movable_pages += group->present_movable_pages;
777 	return 0;
778 }
779 
780 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
781 					    unsigned long nr_pages)
782 {
783 	unsigned long kernel_early_pages, movable_pages;
784 	struct auto_movable_group_stats group_stats = {};
785 	struct auto_movable_stats stats = {};
786 	pg_data_t *pgdat = NODE_DATA(nid);
787 	struct zone *zone;
788 	int i;
789 
790 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
791 	if (nid == NUMA_NO_NODE) {
792 		/* TODO: cache values */
793 		for_each_populated_zone(zone)
794 			auto_movable_stats_account_zone(&stats, zone);
795 	} else {
796 		for (i = 0; i < MAX_NR_ZONES; i++) {
797 			zone = pgdat->node_zones + i;
798 			if (populated_zone(zone))
799 				auto_movable_stats_account_zone(&stats, zone);
800 		}
801 	}
802 
803 	kernel_early_pages = stats.kernel_early_pages;
804 	movable_pages = stats.movable_pages;
805 
806 	/*
807 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
808 	 * memory within the same group. Remove the effect of all but the
809 	 * current group from the stats.
810 	 */
811 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
812 				   group, &group_stats);
813 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
814 		return false;
815 	kernel_early_pages -= group_stats.req_kernel_early_pages;
816 	movable_pages -= group_stats.movable_pages;
817 
818 	if (group && group->is_dynamic)
819 		kernel_early_pages += group->present_kernel_pages;
820 
821 	/*
822 	 * Test if we could online the given number of pages to ZONE_MOVABLE
823 	 * and still stay in the configured ratio.
824 	 */
825 	movable_pages += nr_pages;
826 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
827 }
828 
829 /*
830  * Returns a default kernel memory zone for the given pfn range.
831  * If no kernel zone covers this pfn range it will automatically go
832  * to the ZONE_NORMAL.
833  */
834 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
835 		unsigned long nr_pages)
836 {
837 	struct pglist_data *pgdat = NODE_DATA(nid);
838 	int zid;
839 
840 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
841 		struct zone *zone = &pgdat->node_zones[zid];
842 
843 		if (zone_intersects(zone, start_pfn, nr_pages))
844 			return zone;
845 	}
846 
847 	return &pgdat->node_zones[ZONE_NORMAL];
848 }
849 
850 /*
851  * Determine to which zone to online memory dynamically based on user
852  * configuration and system stats. We care about the following ratio:
853  *
854  *   MOVABLE : KERNEL
855  *
856  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
857  * one of the kernel zones. CMA pages inside one of the kernel zones really
858  * behaves like ZONE_MOVABLE, so we treat them accordingly.
859  *
860  * We don't allow for hotplugged memory in a KERNEL zone to increase the
861  * amount of MOVABLE memory we can have, so we end up with:
862  *
863  *   MOVABLE : KERNEL_EARLY
864  *
865  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
866  * boot. We base our calculation on KERNEL_EARLY internally, because:
867  *
868  * a) Hotplugged memory in one of the kernel zones can sometimes still get
869  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
870  *    There is no coordination across memory devices, therefore "automatic"
871  *    hotunplugging, as implemented in hypervisors, could result in zone
872  *    imbalances.
873  * b) Early/boot memory in one of the kernel zones can usually not get
874  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
875  *    with unmovable allocations). While there are corner cases where it might
876  *    still work, it is barely relevant in practice.
877  *
878  * Exceptions are dynamic memory groups, which allow for more MOVABLE
879  * memory within the same memory group -- because in that case, there is
880  * coordination within the single memory device managed by a single driver.
881  *
882  * We rely on "present pages" instead of "managed pages", as the latter is
883  * highly unreliable and dynamic in virtualized environments, and does not
884  * consider boot time allocations. For example, memory ballooning adjusts the
885  * managed pages when inflating/deflating the balloon, and balloon compaction
886  * can even migrate inflated pages between zones.
887  *
888  * Using "present pages" is better but some things to keep in mind are:
889  *
890  * a) Some memblock allocations, such as for the crashkernel area, are
891  *    effectively unused by the kernel, yet they account to "present pages".
892  *    Fortunately, these allocations are comparatively small in relevant setups
893  *    (e.g., fraction of system memory).
894  * b) Some hotplugged memory blocks in virtualized environments, esecially
895  *    hotplugged by virtio-mem, look like they are completely present, however,
896  *    only parts of the memory block are actually currently usable.
897  *    "present pages" is an upper limit that can get reached at runtime. As
898  *    we base our calculations on KERNEL_EARLY, this is not an issue.
899  */
900 static struct zone *auto_movable_zone_for_pfn(int nid,
901 					      struct memory_group *group,
902 					      unsigned long pfn,
903 					      unsigned long nr_pages)
904 {
905 	unsigned long online_pages = 0, max_pages, end_pfn;
906 	struct page *page;
907 
908 	if (!auto_movable_ratio)
909 		goto kernel_zone;
910 
911 	if (group && !group->is_dynamic) {
912 		max_pages = group->s.max_pages;
913 		online_pages = group->present_movable_pages;
914 
915 		/* If anything is !MOVABLE online the rest !MOVABLE. */
916 		if (group->present_kernel_pages)
917 			goto kernel_zone;
918 	} else if (!group || group->d.unit_pages == nr_pages) {
919 		max_pages = nr_pages;
920 	} else {
921 		max_pages = group->d.unit_pages;
922 		/*
923 		 * Take a look at all online sections in the current unit.
924 		 * We can safely assume that all pages within a section belong
925 		 * to the same zone, because dynamic memory groups only deal
926 		 * with hotplugged memory.
927 		 */
928 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
929 		end_pfn = pfn + group->d.unit_pages;
930 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
931 			page = pfn_to_online_page(pfn);
932 			if (!page)
933 				continue;
934 			/* If anything is !MOVABLE online the rest !MOVABLE. */
935 			if (!is_zone_movable_page(page))
936 				goto kernel_zone;
937 			online_pages += PAGES_PER_SECTION;
938 		}
939 	}
940 
941 	/*
942 	 * Online MOVABLE if we could *currently* online all remaining parts
943 	 * MOVABLE. We expect to (add+) online them immediately next, so if
944 	 * nobody interferes, all will be MOVABLE if possible.
945 	 */
946 	nr_pages = max_pages - online_pages;
947 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
948 		goto kernel_zone;
949 
950 #ifdef CONFIG_NUMA
951 	if (auto_movable_numa_aware &&
952 	    !auto_movable_can_online_movable(nid, group, nr_pages))
953 		goto kernel_zone;
954 #endif /* CONFIG_NUMA */
955 
956 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
957 kernel_zone:
958 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
959 }
960 
961 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
962 		unsigned long nr_pages)
963 {
964 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
965 			nr_pages);
966 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
967 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
968 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
969 
970 	/*
971 	 * We inherit the existing zone in a simple case where zones do not
972 	 * overlap in the given range
973 	 */
974 	if (in_kernel ^ in_movable)
975 		return (in_kernel) ? kernel_zone : movable_zone;
976 
977 	/*
978 	 * If the range doesn't belong to any zone or two zones overlap in the
979 	 * given range then we use movable zone only if movable_node is
980 	 * enabled because we always online to a kernel zone by default.
981 	 */
982 	return movable_node_enabled ? movable_zone : kernel_zone;
983 }
984 
985 struct zone *zone_for_pfn_range(int online_type, int nid,
986 		struct memory_group *group, unsigned long start_pfn,
987 		unsigned long nr_pages)
988 {
989 	if (online_type == MMOP_ONLINE_KERNEL)
990 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
991 
992 	if (online_type == MMOP_ONLINE_MOVABLE)
993 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
994 
995 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
996 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
997 
998 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
999 }
1000 
1001 /*
1002  * This function should only be called by memory_block_{online,offline},
1003  * and {online,offline}_pages.
1004  */
1005 void adjust_present_page_count(struct page *page, struct memory_group *group,
1006 			       long nr_pages)
1007 {
1008 	struct zone *zone = page_zone(page);
1009 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1010 
1011 	/*
1012 	 * We only support onlining/offlining/adding/removing of complete
1013 	 * memory blocks; therefore, either all is either early or hotplugged.
1014 	 */
1015 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1016 		zone->present_early_pages += nr_pages;
1017 	zone->present_pages += nr_pages;
1018 	zone->zone_pgdat->node_present_pages += nr_pages;
1019 
1020 	if (group && movable)
1021 		group->present_movable_pages += nr_pages;
1022 	else if (group && !movable)
1023 		group->present_kernel_pages += nr_pages;
1024 }
1025 
1026 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1027 			      struct zone *zone)
1028 {
1029 	unsigned long end_pfn = pfn + nr_pages;
1030 	int ret, i;
1031 
1032 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1033 	if (ret)
1034 		return ret;
1035 
1036 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1037 
1038 	for (i = 0; i < nr_pages; i++)
1039 		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1040 
1041 	/*
1042 	 * It might be that the vmemmap_pages fully span sections. If that is
1043 	 * the case, mark those sections online here as otherwise they will be
1044 	 * left offline.
1045 	 */
1046 	if (nr_pages >= PAGES_PER_SECTION)
1047 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048 
1049 	return ret;
1050 }
1051 
1052 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1053 {
1054 	unsigned long end_pfn = pfn + nr_pages;
1055 
1056 	/*
1057 	 * It might be that the vmemmap_pages fully span sections. If that is
1058 	 * the case, mark those sections offline here as otherwise they will be
1059 	 * left online.
1060 	 */
1061 	if (nr_pages >= PAGES_PER_SECTION)
1062 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1063 
1064         /*
1065 	 * The pages associated with this vmemmap have been offlined, so
1066 	 * we can reset its state here.
1067 	 */
1068 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1069 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1070 }
1071 
1072 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1073 		       struct zone *zone, struct memory_group *group)
1074 {
1075 	unsigned long flags;
1076 	int need_zonelists_rebuild = 0;
1077 	const int nid = zone_to_nid(zone);
1078 	int ret;
1079 	struct memory_notify arg;
1080 
1081 	/*
1082 	 * {on,off}lining is constrained to full memory sections (or more
1083 	 * precisely to memory blocks from the user space POV).
1084 	 * memmap_on_memory is an exception because it reserves initial part
1085 	 * of the physical memory space for vmemmaps. That space is pageblock
1086 	 * aligned.
1087 	 */
1088 	if (WARN_ON_ONCE(!nr_pages ||
1089 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1090 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1091 		return -EINVAL;
1092 
1093 	mem_hotplug_begin();
1094 
1095 	/* associate pfn range with the zone */
1096 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1097 
1098 	arg.start_pfn = pfn;
1099 	arg.nr_pages = nr_pages;
1100 	node_states_check_changes_online(nr_pages, zone, &arg);
1101 
1102 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1103 	ret = notifier_to_errno(ret);
1104 	if (ret)
1105 		goto failed_addition;
1106 
1107 	/*
1108 	 * Fixup the number of isolated pageblocks before marking the sections
1109 	 * onlining, such that undo_isolate_page_range() works correctly.
1110 	 */
1111 	spin_lock_irqsave(&zone->lock, flags);
1112 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1113 	spin_unlock_irqrestore(&zone->lock, flags);
1114 
1115 	/*
1116 	 * If this zone is not populated, then it is not in zonelist.
1117 	 * This means the page allocator ignores this zone.
1118 	 * So, zonelist must be updated after online.
1119 	 */
1120 	if (!populated_zone(zone)) {
1121 		need_zonelists_rebuild = 1;
1122 		setup_zone_pageset(zone);
1123 	}
1124 
1125 	online_pages_range(pfn, nr_pages);
1126 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1127 
1128 	node_states_set_node(nid, &arg);
1129 	if (need_zonelists_rebuild)
1130 		build_all_zonelists(NULL);
1131 
1132 	/* Basic onlining is complete, allow allocation of onlined pages. */
1133 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1134 
1135 	/*
1136 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1137 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1138 	 * zone to make sure the just onlined pages are properly distributed
1139 	 * across the whole freelist - to create an initial shuffle.
1140 	 */
1141 	shuffle_zone(zone);
1142 
1143 	/* reinitialise watermarks and update pcp limits */
1144 	init_per_zone_wmark_min();
1145 
1146 	kswapd_run(nid);
1147 	kcompactd_run(nid);
1148 
1149 	writeback_set_ratelimit();
1150 
1151 	memory_notify(MEM_ONLINE, &arg);
1152 	mem_hotplug_done();
1153 	return 0;
1154 
1155 failed_addition:
1156 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1157 		 (unsigned long long) pfn << PAGE_SHIFT,
1158 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1159 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1160 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1161 	mem_hotplug_done();
1162 	return ret;
1163 }
1164 
1165 static void reset_node_present_pages(pg_data_t *pgdat)
1166 {
1167 	struct zone *z;
1168 
1169 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1170 		z->present_pages = 0;
1171 
1172 	pgdat->node_present_pages = 0;
1173 }
1174 
1175 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1176 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1177 {
1178 	struct pglist_data *pgdat;
1179 
1180 	/*
1181 	 * NODE_DATA is preallocated (free_area_init) but its internal
1182 	 * state is not allocated completely. Add missing pieces.
1183 	 * Completely offline nodes stay around and they just need
1184 	 * reintialization.
1185 	 */
1186 	pgdat = NODE_DATA(nid);
1187 
1188 	/* init node's zones as empty zones, we don't have any present pages.*/
1189 	free_area_init_core_hotplug(pgdat);
1190 
1191 	/*
1192 	 * The node we allocated has no zone fallback lists. For avoiding
1193 	 * to access not-initialized zonelist, build here.
1194 	 */
1195 	build_all_zonelists(pgdat);
1196 
1197 	/*
1198 	 * When memory is hot-added, all the memory is in offline state. So
1199 	 * clear all zones' present_pages because they will be updated in
1200 	 * online_pages() and offline_pages().
1201 	 * TODO: should be in free_area_init_core_hotplug?
1202 	 */
1203 	reset_node_managed_pages(pgdat);
1204 	reset_node_present_pages(pgdat);
1205 
1206 	return pgdat;
1207 }
1208 
1209 /*
1210  * __try_online_node - online a node if offlined
1211  * @nid: the node ID
1212  * @set_node_online: Whether we want to online the node
1213  * called by cpu_up() to online a node without onlined memory.
1214  *
1215  * Returns:
1216  * 1 -> a new node has been allocated
1217  * 0 -> the node is already online
1218  * -ENOMEM -> the node could not be allocated
1219  */
1220 static int __try_online_node(int nid, bool set_node_online)
1221 {
1222 	pg_data_t *pgdat;
1223 	int ret = 1;
1224 
1225 	if (node_online(nid))
1226 		return 0;
1227 
1228 	pgdat = hotadd_init_pgdat(nid);
1229 	if (!pgdat) {
1230 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1231 		ret = -ENOMEM;
1232 		goto out;
1233 	}
1234 
1235 	if (set_node_online) {
1236 		node_set_online(nid);
1237 		ret = register_one_node(nid);
1238 		BUG_ON(ret);
1239 	}
1240 out:
1241 	return ret;
1242 }
1243 
1244 /*
1245  * Users of this function always want to online/register the node
1246  */
1247 int try_online_node(int nid)
1248 {
1249 	int ret;
1250 
1251 	mem_hotplug_begin();
1252 	ret =  __try_online_node(nid, true);
1253 	mem_hotplug_done();
1254 	return ret;
1255 }
1256 
1257 static int check_hotplug_memory_range(u64 start, u64 size)
1258 {
1259 	/* memory range must be block size aligned */
1260 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1261 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1262 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1263 		       memory_block_size_bytes(), start, size);
1264 		return -EINVAL;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int online_memory_block(struct memory_block *mem, void *arg)
1271 {
1272 	mem->online_type = mhp_default_online_type;
1273 	return device_online(&mem->dev);
1274 }
1275 
1276 bool mhp_supports_memmap_on_memory(unsigned long size)
1277 {
1278 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1279 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1280 	unsigned long remaining_size = size - vmemmap_size;
1281 
1282 	/*
1283 	 * Besides having arch support and the feature enabled at runtime, we
1284 	 * need a few more assumptions to hold true:
1285 	 *
1286 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1287 	 *    in memory block granularity. We don't want the vmemmap of online
1288 	 *    memory blocks to reside on offline memory blocks. In the future,
1289 	 *    we might want to support variable-sized memory blocks to make the
1290 	 *    feature more versatile.
1291 	 *
1292 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1293 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1294 	 *    other memory blocks)
1295 	 *
1296 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1297 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1298 	 *    code requires applicable ranges to be page-aligned, for example, to
1299 	 *    set the migratetypes properly.
1300 	 *
1301 	 * TODO: Although we have a check here to make sure that vmemmap pages
1302 	 *       fully populate a PMD, it is not the right place to check for
1303 	 *       this. A much better solution involves improving vmemmap code
1304 	 *       to fallback to base pages when trying to populate vmemmap using
1305 	 *       altmap as an alternative source of memory, and we do not exactly
1306 	 *       populate a single PMD.
1307 	 */
1308 	return mhp_memmap_on_memory() &&
1309 	       size == memory_block_size_bytes() &&
1310 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1311 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1312 }
1313 
1314 /*
1315  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1316  * and online/offline operations (triggered e.g. by sysfs).
1317  *
1318  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1319  */
1320 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1321 {
1322 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1323 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1324 	struct vmem_altmap mhp_altmap = {};
1325 	struct memory_group *group = NULL;
1326 	u64 start, size;
1327 	bool new_node = false;
1328 	int ret;
1329 
1330 	start = res->start;
1331 	size = resource_size(res);
1332 
1333 	ret = check_hotplug_memory_range(start, size);
1334 	if (ret)
1335 		return ret;
1336 
1337 	if (mhp_flags & MHP_NID_IS_MGID) {
1338 		group = memory_group_find_by_id(nid);
1339 		if (!group)
1340 			return -EINVAL;
1341 		nid = group->nid;
1342 	}
1343 
1344 	if (!node_possible(nid)) {
1345 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1346 		return -EINVAL;
1347 	}
1348 
1349 	mem_hotplug_begin();
1350 
1351 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1352 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1353 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1354 		ret = memblock_add_node(start, size, nid, memblock_flags);
1355 		if (ret)
1356 			goto error_mem_hotplug_end;
1357 	}
1358 
1359 	ret = __try_online_node(nid, false);
1360 	if (ret < 0)
1361 		goto error;
1362 	new_node = ret;
1363 
1364 	/*
1365 	 * Self hosted memmap array
1366 	 */
1367 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1368 		if (!mhp_supports_memmap_on_memory(size)) {
1369 			ret = -EINVAL;
1370 			goto error;
1371 		}
1372 		mhp_altmap.free = PHYS_PFN(size);
1373 		mhp_altmap.base_pfn = PHYS_PFN(start);
1374 		params.altmap = &mhp_altmap;
1375 	}
1376 
1377 	/* call arch's memory hotadd */
1378 	ret = arch_add_memory(nid, start, size, &params);
1379 	if (ret < 0)
1380 		goto error;
1381 
1382 	/* create memory block devices after memory was added */
1383 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1384 					  group);
1385 	if (ret) {
1386 		arch_remove_memory(start, size, NULL);
1387 		goto error;
1388 	}
1389 
1390 	if (new_node) {
1391 		/* If sysfs file of new node can't be created, cpu on the node
1392 		 * can't be hot-added. There is no rollback way now.
1393 		 * So, check by BUG_ON() to catch it reluctantly..
1394 		 * We online node here. We can't roll back from here.
1395 		 */
1396 		node_set_online(nid);
1397 		ret = __register_one_node(nid);
1398 		BUG_ON(ret);
1399 	}
1400 
1401 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1402 					  PFN_UP(start + size - 1),
1403 					  MEMINIT_HOTPLUG);
1404 
1405 	/* create new memmap entry */
1406 	if (!strcmp(res->name, "System RAM"))
1407 		firmware_map_add_hotplug(start, start + size, "System RAM");
1408 
1409 	/* device_online() will take the lock when calling online_pages() */
1410 	mem_hotplug_done();
1411 
1412 	/*
1413 	 * In case we're allowed to merge the resource, flag it and trigger
1414 	 * merging now that adding succeeded.
1415 	 */
1416 	if (mhp_flags & MHP_MERGE_RESOURCE)
1417 		merge_system_ram_resource(res);
1418 
1419 	/* online pages if requested */
1420 	if (mhp_default_online_type != MMOP_OFFLINE)
1421 		walk_memory_blocks(start, size, NULL, online_memory_block);
1422 
1423 	return ret;
1424 error:
1425 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1426 		memblock_remove(start, size);
1427 error_mem_hotplug_end:
1428 	mem_hotplug_done();
1429 	return ret;
1430 }
1431 
1432 /* requires device_hotplug_lock, see add_memory_resource() */
1433 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1434 {
1435 	struct resource *res;
1436 	int ret;
1437 
1438 	res = register_memory_resource(start, size, "System RAM");
1439 	if (IS_ERR(res))
1440 		return PTR_ERR(res);
1441 
1442 	ret = add_memory_resource(nid, res, mhp_flags);
1443 	if (ret < 0)
1444 		release_memory_resource(res);
1445 	return ret;
1446 }
1447 
1448 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1449 {
1450 	int rc;
1451 
1452 	lock_device_hotplug();
1453 	rc = __add_memory(nid, start, size, mhp_flags);
1454 	unlock_device_hotplug();
1455 
1456 	return rc;
1457 }
1458 EXPORT_SYMBOL_GPL(add_memory);
1459 
1460 /*
1461  * Add special, driver-managed memory to the system as system RAM. Such
1462  * memory is not exposed via the raw firmware-provided memmap as system
1463  * RAM, instead, it is detected and added by a driver - during cold boot,
1464  * after a reboot, and after kexec.
1465  *
1466  * Reasons why this memory should not be used for the initial memmap of a
1467  * kexec kernel or for placing kexec images:
1468  * - The booting kernel is in charge of determining how this memory will be
1469  *   used (e.g., use persistent memory as system RAM)
1470  * - Coordination with a hypervisor is required before this memory
1471  *   can be used (e.g., inaccessible parts).
1472  *
1473  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1474  * memory map") are created. Also, the created memory resource is flagged
1475  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1476  * this memory as well (esp., not place kexec images onto it).
1477  *
1478  * The resource_name (visible via /proc/iomem) has to have the format
1479  * "System RAM ($DRIVER)".
1480  */
1481 int add_memory_driver_managed(int nid, u64 start, u64 size,
1482 			      const char *resource_name, mhp_t mhp_flags)
1483 {
1484 	struct resource *res;
1485 	int rc;
1486 
1487 	if (!resource_name ||
1488 	    strstr(resource_name, "System RAM (") != resource_name ||
1489 	    resource_name[strlen(resource_name) - 1] != ')')
1490 		return -EINVAL;
1491 
1492 	lock_device_hotplug();
1493 
1494 	res = register_memory_resource(start, size, resource_name);
1495 	if (IS_ERR(res)) {
1496 		rc = PTR_ERR(res);
1497 		goto out_unlock;
1498 	}
1499 
1500 	rc = add_memory_resource(nid, res, mhp_flags);
1501 	if (rc < 0)
1502 		release_memory_resource(res);
1503 
1504 out_unlock:
1505 	unlock_device_hotplug();
1506 	return rc;
1507 }
1508 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1509 
1510 /*
1511  * Platforms should define arch_get_mappable_range() that provides
1512  * maximum possible addressable physical memory range for which the
1513  * linear mapping could be created. The platform returned address
1514  * range must adhere to these following semantics.
1515  *
1516  * - range.start <= range.end
1517  * - Range includes both end points [range.start..range.end]
1518  *
1519  * There is also a fallback definition provided here, allowing the
1520  * entire possible physical address range in case any platform does
1521  * not define arch_get_mappable_range().
1522  */
1523 struct range __weak arch_get_mappable_range(void)
1524 {
1525 	struct range mhp_range = {
1526 		.start = 0UL,
1527 		.end = -1ULL,
1528 	};
1529 	return mhp_range;
1530 }
1531 
1532 struct range mhp_get_pluggable_range(bool need_mapping)
1533 {
1534 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1535 	struct range mhp_range;
1536 
1537 	if (need_mapping) {
1538 		mhp_range = arch_get_mappable_range();
1539 		if (mhp_range.start > max_phys) {
1540 			mhp_range.start = 0;
1541 			mhp_range.end = 0;
1542 		}
1543 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1544 	} else {
1545 		mhp_range.start = 0;
1546 		mhp_range.end = max_phys;
1547 	}
1548 	return mhp_range;
1549 }
1550 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1551 
1552 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1553 {
1554 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1555 	u64 end = start + size;
1556 
1557 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1558 		return true;
1559 
1560 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1561 		start, end, mhp_range.start, mhp_range.end);
1562 	return false;
1563 }
1564 
1565 #ifdef CONFIG_MEMORY_HOTREMOVE
1566 /*
1567  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1568  * non-lru movable pages and hugepages). Will skip over most unmovable
1569  * pages (esp., pages that can be skipped when offlining), but bail out on
1570  * definitely unmovable pages.
1571  *
1572  * Returns:
1573  *	0 in case a movable page is found and movable_pfn was updated.
1574  *	-ENOENT in case no movable page was found.
1575  *	-EBUSY in case a definitely unmovable page was found.
1576  */
1577 static int scan_movable_pages(unsigned long start, unsigned long end,
1578 			      unsigned long *movable_pfn)
1579 {
1580 	unsigned long pfn;
1581 
1582 	for (pfn = start; pfn < end; pfn++) {
1583 		struct page *page, *head;
1584 		unsigned long skip;
1585 
1586 		if (!pfn_valid(pfn))
1587 			continue;
1588 		page = pfn_to_page(pfn);
1589 		if (PageLRU(page))
1590 			goto found;
1591 		if (__PageMovable(page))
1592 			goto found;
1593 
1594 		/*
1595 		 * PageOffline() pages that are not marked __PageMovable() and
1596 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1597 		 * definitely unmovable. If their reference count would be 0,
1598 		 * they could at least be skipped when offlining memory.
1599 		 */
1600 		if (PageOffline(page) && page_count(page))
1601 			return -EBUSY;
1602 
1603 		if (!PageHuge(page))
1604 			continue;
1605 		head = compound_head(page);
1606 		/*
1607 		 * This test is racy as we hold no reference or lock.  The
1608 		 * hugetlb page could have been free'ed and head is no longer
1609 		 * a hugetlb page before the following check.  In such unlikely
1610 		 * cases false positives and negatives are possible.  Calling
1611 		 * code must deal with these scenarios.
1612 		 */
1613 		if (HPageMigratable(head))
1614 			goto found;
1615 		skip = compound_nr(head) - (page - head);
1616 		pfn += skip - 1;
1617 	}
1618 	return -ENOENT;
1619 found:
1620 	*movable_pfn = pfn;
1621 	return 0;
1622 }
1623 
1624 static int
1625 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1626 {
1627 	unsigned long pfn;
1628 	struct page *page, *head;
1629 	int ret = 0;
1630 	LIST_HEAD(source);
1631 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1632 				      DEFAULT_RATELIMIT_BURST);
1633 
1634 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1635 		struct folio *folio;
1636 
1637 		if (!pfn_valid(pfn))
1638 			continue;
1639 		page = pfn_to_page(pfn);
1640 		folio = page_folio(page);
1641 		head = &folio->page;
1642 
1643 		if (PageHuge(page)) {
1644 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1645 			isolate_hugetlb(head, &source);
1646 			continue;
1647 		} else if (PageTransHuge(page))
1648 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1649 
1650 		/*
1651 		 * HWPoison pages have elevated reference counts so the migration would
1652 		 * fail on them. It also doesn't make any sense to migrate them in the
1653 		 * first place. Still try to unmap such a page in case it is still mapped
1654 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1655 		 * the unmap as the catch all safety net).
1656 		 */
1657 		if (PageHWPoison(page)) {
1658 			if (WARN_ON(folio_test_lru(folio)))
1659 				folio_isolate_lru(folio);
1660 			if (folio_mapped(folio))
1661 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1662 			continue;
1663 		}
1664 
1665 		if (!get_page_unless_zero(page))
1666 			continue;
1667 		/*
1668 		 * We can skip free pages. And we can deal with pages on
1669 		 * LRU and non-lru movable pages.
1670 		 */
1671 		if (PageLRU(page))
1672 			ret = isolate_lru_page(page);
1673 		else
1674 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1675 		if (!ret) { /* Success */
1676 			list_add_tail(&page->lru, &source);
1677 			if (!__PageMovable(page))
1678 				inc_node_page_state(page, NR_ISOLATED_ANON +
1679 						    page_is_file_lru(page));
1680 
1681 		} else {
1682 			if (__ratelimit(&migrate_rs)) {
1683 				pr_warn("failed to isolate pfn %lx\n", pfn);
1684 				dump_page(page, "isolation failed");
1685 			}
1686 		}
1687 		put_page(page);
1688 	}
1689 	if (!list_empty(&source)) {
1690 		nodemask_t nmask = node_states[N_MEMORY];
1691 		struct migration_target_control mtc = {
1692 			.nmask = &nmask,
1693 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1694 		};
1695 
1696 		/*
1697 		 * We have checked that migration range is on a single zone so
1698 		 * we can use the nid of the first page to all the others.
1699 		 */
1700 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1701 
1702 		/*
1703 		 * try to allocate from a different node but reuse this node
1704 		 * if there are no other online nodes to be used (e.g. we are
1705 		 * offlining a part of the only existing node)
1706 		 */
1707 		node_clear(mtc.nid, nmask);
1708 		if (nodes_empty(nmask))
1709 			node_set(mtc.nid, nmask);
1710 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1711 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1712 		if (ret) {
1713 			list_for_each_entry(page, &source, lru) {
1714 				if (__ratelimit(&migrate_rs)) {
1715 					pr_warn("migrating pfn %lx failed ret:%d\n",
1716 						page_to_pfn(page), ret);
1717 					dump_page(page, "migration failure");
1718 				}
1719 			}
1720 			putback_movable_pages(&source);
1721 		}
1722 	}
1723 
1724 	return ret;
1725 }
1726 
1727 static int __init cmdline_parse_movable_node(char *p)
1728 {
1729 	movable_node_enabled = true;
1730 	return 0;
1731 }
1732 early_param("movable_node", cmdline_parse_movable_node);
1733 
1734 /* check which state of node_states will be changed when offline memory */
1735 static void node_states_check_changes_offline(unsigned long nr_pages,
1736 		struct zone *zone, struct memory_notify *arg)
1737 {
1738 	struct pglist_data *pgdat = zone->zone_pgdat;
1739 	unsigned long present_pages = 0;
1740 	enum zone_type zt;
1741 
1742 	arg->status_change_nid = NUMA_NO_NODE;
1743 	arg->status_change_nid_normal = NUMA_NO_NODE;
1744 
1745 	/*
1746 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1747 	 * If the memory to be offline is within the range
1748 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1749 	 * the zones in that range will become empty after the offlining,
1750 	 * thus we can determine that we need to clear the node from
1751 	 * node_states[N_NORMAL_MEMORY].
1752 	 */
1753 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1754 		present_pages += pgdat->node_zones[zt].present_pages;
1755 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1756 		arg->status_change_nid_normal = zone_to_nid(zone);
1757 
1758 	/*
1759 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1760 	 * does not apply as we don't support 32bit.
1761 	 * Here we count the possible pages from ZONE_MOVABLE.
1762 	 * If after having accounted all the pages, we see that the nr_pages
1763 	 * to be offlined is over or equal to the accounted pages,
1764 	 * we know that the node will become empty, and so, we can clear
1765 	 * it for N_MEMORY as well.
1766 	 */
1767 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1768 
1769 	if (nr_pages >= present_pages)
1770 		arg->status_change_nid = zone_to_nid(zone);
1771 }
1772 
1773 static void node_states_clear_node(int node, struct memory_notify *arg)
1774 {
1775 	if (arg->status_change_nid_normal >= 0)
1776 		node_clear_state(node, N_NORMAL_MEMORY);
1777 
1778 	if (arg->status_change_nid >= 0)
1779 		node_clear_state(node, N_MEMORY);
1780 }
1781 
1782 static int count_system_ram_pages_cb(unsigned long start_pfn,
1783 				     unsigned long nr_pages, void *data)
1784 {
1785 	unsigned long *nr_system_ram_pages = data;
1786 
1787 	*nr_system_ram_pages += nr_pages;
1788 	return 0;
1789 }
1790 
1791 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1792 			struct zone *zone, struct memory_group *group)
1793 {
1794 	const unsigned long end_pfn = start_pfn + nr_pages;
1795 	unsigned long pfn, system_ram_pages = 0;
1796 	const int node = zone_to_nid(zone);
1797 	unsigned long flags;
1798 	struct memory_notify arg;
1799 	char *reason;
1800 	int ret;
1801 
1802 	/*
1803 	 * {on,off}lining is constrained to full memory sections (or more
1804 	 * precisely to memory blocks from the user space POV).
1805 	 * memmap_on_memory is an exception because it reserves initial part
1806 	 * of the physical memory space for vmemmaps. That space is pageblock
1807 	 * aligned.
1808 	 */
1809 	if (WARN_ON_ONCE(!nr_pages ||
1810 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1811 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1812 		return -EINVAL;
1813 
1814 	mem_hotplug_begin();
1815 
1816 	/*
1817 	 * Don't allow to offline memory blocks that contain holes.
1818 	 * Consequently, memory blocks with holes can never get onlined
1819 	 * via the hotplug path - online_pages() - as hotplugged memory has
1820 	 * no holes. This way, we e.g., don't have to worry about marking
1821 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1822 	 * avoid using walk_system_ram_range() later.
1823 	 */
1824 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1825 			      count_system_ram_pages_cb);
1826 	if (system_ram_pages != nr_pages) {
1827 		ret = -EINVAL;
1828 		reason = "memory holes";
1829 		goto failed_removal;
1830 	}
1831 
1832 	/*
1833 	 * We only support offlining of memory blocks managed by a single zone,
1834 	 * checked by calling code. This is just a sanity check that we might
1835 	 * want to remove in the future.
1836 	 */
1837 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1838 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1839 		ret = -EINVAL;
1840 		reason = "multizone range";
1841 		goto failed_removal;
1842 	}
1843 
1844 	/*
1845 	 * Disable pcplists so that page isolation cannot race with freeing
1846 	 * in a way that pages from isolated pageblock are left on pcplists.
1847 	 */
1848 	zone_pcp_disable(zone);
1849 	lru_cache_disable();
1850 
1851 	/* set above range as isolated */
1852 	ret = start_isolate_page_range(start_pfn, end_pfn,
1853 				       MIGRATE_MOVABLE,
1854 				       MEMORY_OFFLINE | REPORT_FAILURE,
1855 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1856 	if (ret) {
1857 		reason = "failure to isolate range";
1858 		goto failed_removal_pcplists_disabled;
1859 	}
1860 
1861 	arg.start_pfn = start_pfn;
1862 	arg.nr_pages = nr_pages;
1863 	node_states_check_changes_offline(nr_pages, zone, &arg);
1864 
1865 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1866 	ret = notifier_to_errno(ret);
1867 	if (ret) {
1868 		reason = "notifier failure";
1869 		goto failed_removal_isolated;
1870 	}
1871 
1872 	do {
1873 		pfn = start_pfn;
1874 		do {
1875 			if (signal_pending(current)) {
1876 				ret = -EINTR;
1877 				reason = "signal backoff";
1878 				goto failed_removal_isolated;
1879 			}
1880 
1881 			cond_resched();
1882 
1883 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1884 			if (!ret) {
1885 				/*
1886 				 * TODO: fatal migration failures should bail
1887 				 * out
1888 				 */
1889 				do_migrate_range(pfn, end_pfn);
1890 			}
1891 		} while (!ret);
1892 
1893 		if (ret != -ENOENT) {
1894 			reason = "unmovable page";
1895 			goto failed_removal_isolated;
1896 		}
1897 
1898 		/*
1899 		 * Dissolve free hugepages in the memory block before doing
1900 		 * offlining actually in order to make hugetlbfs's object
1901 		 * counting consistent.
1902 		 */
1903 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1904 		if (ret) {
1905 			reason = "failure to dissolve huge pages";
1906 			goto failed_removal_isolated;
1907 		}
1908 
1909 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1910 
1911 	} while (ret);
1912 
1913 	/* Mark all sections offline and remove free pages from the buddy. */
1914 	__offline_isolated_pages(start_pfn, end_pfn);
1915 	pr_debug("Offlined Pages %ld\n", nr_pages);
1916 
1917 	/*
1918 	 * The memory sections are marked offline, and the pageblock flags
1919 	 * effectively stale; nobody should be touching them. Fixup the number
1920 	 * of isolated pageblocks, memory onlining will properly revert this.
1921 	 */
1922 	spin_lock_irqsave(&zone->lock, flags);
1923 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1924 	spin_unlock_irqrestore(&zone->lock, flags);
1925 
1926 	lru_cache_enable();
1927 	zone_pcp_enable(zone);
1928 
1929 	/* removal success */
1930 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1931 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1932 
1933 	/* reinitialise watermarks and update pcp limits */
1934 	init_per_zone_wmark_min();
1935 
1936 	if (!populated_zone(zone)) {
1937 		zone_pcp_reset(zone);
1938 		build_all_zonelists(NULL);
1939 	}
1940 
1941 	node_states_clear_node(node, &arg);
1942 	if (arg.status_change_nid >= 0) {
1943 		kswapd_stop(node);
1944 		kcompactd_stop(node);
1945 	}
1946 
1947 	writeback_set_ratelimit();
1948 
1949 	memory_notify(MEM_OFFLINE, &arg);
1950 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1951 	mem_hotplug_done();
1952 	return 0;
1953 
1954 failed_removal_isolated:
1955 	/* pushback to free area */
1956 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1957 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1958 failed_removal_pcplists_disabled:
1959 	lru_cache_enable();
1960 	zone_pcp_enable(zone);
1961 failed_removal:
1962 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1963 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1964 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1965 		 reason);
1966 	mem_hotplug_done();
1967 	return ret;
1968 }
1969 
1970 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1971 {
1972 	int ret = !is_memblock_offlined(mem);
1973 	int *nid = arg;
1974 
1975 	*nid = mem->nid;
1976 	if (unlikely(ret)) {
1977 		phys_addr_t beginpa, endpa;
1978 
1979 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1980 		endpa = beginpa + memory_block_size_bytes() - 1;
1981 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1982 			&beginpa, &endpa);
1983 
1984 		return -EBUSY;
1985 	}
1986 	return 0;
1987 }
1988 
1989 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1990 {
1991 	/*
1992 	 * If not set, continue with the next block.
1993 	 */
1994 	return mem->nr_vmemmap_pages;
1995 }
1996 
1997 static int check_cpu_on_node(int nid)
1998 {
1999 	int cpu;
2000 
2001 	for_each_present_cpu(cpu) {
2002 		if (cpu_to_node(cpu) == nid)
2003 			/*
2004 			 * the cpu on this node isn't removed, and we can't
2005 			 * offline this node.
2006 			 */
2007 			return -EBUSY;
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2014 {
2015 	int nid = *(int *)arg;
2016 
2017 	/*
2018 	 * If a memory block belongs to multiple nodes, the stored nid is not
2019 	 * reliable. However, such blocks are always online (e.g., cannot get
2020 	 * offlined) and, therefore, are still spanned by the node.
2021 	 */
2022 	return mem->nid == nid ? -EEXIST : 0;
2023 }
2024 
2025 /**
2026  * try_offline_node
2027  * @nid: the node ID
2028  *
2029  * Offline a node if all memory sections and cpus of the node are removed.
2030  *
2031  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2032  * and online/offline operations before this call.
2033  */
2034 void try_offline_node(int nid)
2035 {
2036 	int rc;
2037 
2038 	/*
2039 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2040 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2041 	 * e.g., after the memory block was onlined.
2042 	 */
2043 	if (node_spanned_pages(nid))
2044 		return;
2045 
2046 	/*
2047 	 * Especially offline memory blocks might not be spanned by the
2048 	 * node. They will get spanned by the node once they get onlined.
2049 	 * However, they link to the node in sysfs and can get onlined later.
2050 	 */
2051 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2052 	if (rc)
2053 		return;
2054 
2055 	if (check_cpu_on_node(nid))
2056 		return;
2057 
2058 	/*
2059 	 * all memory/cpu of this node are removed, we can offline this
2060 	 * node now.
2061 	 */
2062 	node_set_offline(nid);
2063 	unregister_one_node(nid);
2064 }
2065 EXPORT_SYMBOL(try_offline_node);
2066 
2067 static int __ref try_remove_memory(u64 start, u64 size)
2068 {
2069 	struct vmem_altmap mhp_altmap = {};
2070 	struct vmem_altmap *altmap = NULL;
2071 	unsigned long nr_vmemmap_pages;
2072 	int rc = 0, nid = NUMA_NO_NODE;
2073 
2074 	BUG_ON(check_hotplug_memory_range(start, size));
2075 
2076 	/*
2077 	 * All memory blocks must be offlined before removing memory.  Check
2078 	 * whether all memory blocks in question are offline and return error
2079 	 * if this is not the case.
2080 	 *
2081 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2082 	 * we'd only try to offline the last determined one -- which is good
2083 	 * enough for the cases we care about.
2084 	 */
2085 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2086 	if (rc)
2087 		return rc;
2088 
2089 	/*
2090 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2091 	 * the same granularity it was added - a single memory block.
2092 	 */
2093 	if (mhp_memmap_on_memory()) {
2094 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2095 						      get_nr_vmemmap_pages_cb);
2096 		if (nr_vmemmap_pages) {
2097 			if (size != memory_block_size_bytes()) {
2098 				pr_warn("Refuse to remove %#llx - %#llx,"
2099 					"wrong granularity\n",
2100 					start, start + size);
2101 				return -EINVAL;
2102 			}
2103 
2104 			/*
2105 			 * Let remove_pmd_table->free_hugepage_table do the
2106 			 * right thing if we used vmem_altmap when hot-adding
2107 			 * the range.
2108 			 */
2109 			mhp_altmap.alloc = nr_vmemmap_pages;
2110 			altmap = &mhp_altmap;
2111 		}
2112 	}
2113 
2114 	/* remove memmap entry */
2115 	firmware_map_remove(start, start + size, "System RAM");
2116 
2117 	/*
2118 	 * Memory block device removal under the device_hotplug_lock is
2119 	 * a barrier against racing online attempts.
2120 	 */
2121 	remove_memory_block_devices(start, size);
2122 
2123 	mem_hotplug_begin();
2124 
2125 	arch_remove_memory(start, size, altmap);
2126 
2127 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2128 		memblock_phys_free(start, size);
2129 		memblock_remove(start, size);
2130 	}
2131 
2132 	release_mem_region_adjustable(start, size);
2133 
2134 	if (nid != NUMA_NO_NODE)
2135 		try_offline_node(nid);
2136 
2137 	mem_hotplug_done();
2138 	return 0;
2139 }
2140 
2141 /**
2142  * __remove_memory - Remove memory if every memory block is offline
2143  * @start: physical address of the region to remove
2144  * @size: size of the region to remove
2145  *
2146  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2147  * and online/offline operations before this call, as required by
2148  * try_offline_node().
2149  */
2150 void __remove_memory(u64 start, u64 size)
2151 {
2152 
2153 	/*
2154 	 * trigger BUG() if some memory is not offlined prior to calling this
2155 	 * function
2156 	 */
2157 	if (try_remove_memory(start, size))
2158 		BUG();
2159 }
2160 
2161 /*
2162  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2163  * some memory is not offline
2164  */
2165 int remove_memory(u64 start, u64 size)
2166 {
2167 	int rc;
2168 
2169 	lock_device_hotplug();
2170 	rc = try_remove_memory(start, size);
2171 	unlock_device_hotplug();
2172 
2173 	return rc;
2174 }
2175 EXPORT_SYMBOL_GPL(remove_memory);
2176 
2177 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2178 {
2179 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2180 	uint8_t **online_types = arg;
2181 	struct page *page;
2182 	int rc;
2183 
2184 	/*
2185 	 * Sense the online_type via the zone of the memory block. Offlining
2186 	 * with multiple zones within one memory block will be rejected
2187 	 * by offlining code ... so we don't care about that.
2188 	 */
2189 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2190 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2191 		online_type = MMOP_ONLINE_MOVABLE;
2192 
2193 	rc = device_offline(&mem->dev);
2194 	/*
2195 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2196 	 * so try_reonline_memory_block() can do the right thing.
2197 	 */
2198 	if (!rc)
2199 		**online_types = online_type;
2200 
2201 	(*online_types)++;
2202 	/* Ignore if already offline. */
2203 	return rc < 0 ? rc : 0;
2204 }
2205 
2206 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2207 {
2208 	uint8_t **online_types = arg;
2209 	int rc;
2210 
2211 	if (**online_types != MMOP_OFFLINE) {
2212 		mem->online_type = **online_types;
2213 		rc = device_online(&mem->dev);
2214 		if (rc < 0)
2215 			pr_warn("%s: Failed to re-online memory: %d",
2216 				__func__, rc);
2217 	}
2218 
2219 	/* Continue processing all remaining memory blocks. */
2220 	(*online_types)++;
2221 	return 0;
2222 }
2223 
2224 /*
2225  * Try to offline and remove memory. Might take a long time to finish in case
2226  * memory is still in use. Primarily useful for memory devices that logically
2227  * unplugged all memory (so it's no longer in use) and want to offline + remove
2228  * that memory.
2229  */
2230 int offline_and_remove_memory(u64 start, u64 size)
2231 {
2232 	const unsigned long mb_count = size / memory_block_size_bytes();
2233 	uint8_t *online_types, *tmp;
2234 	int rc;
2235 
2236 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2237 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2238 		return -EINVAL;
2239 
2240 	/*
2241 	 * We'll remember the old online type of each memory block, so we can
2242 	 * try to revert whatever we did when offlining one memory block fails
2243 	 * after offlining some others succeeded.
2244 	 */
2245 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2246 				     GFP_KERNEL);
2247 	if (!online_types)
2248 		return -ENOMEM;
2249 	/*
2250 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2251 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2252 	 * try_reonline_memory_block().
2253 	 */
2254 	memset(online_types, MMOP_OFFLINE, mb_count);
2255 
2256 	lock_device_hotplug();
2257 
2258 	tmp = online_types;
2259 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2260 
2261 	/*
2262 	 * In case we succeeded to offline all memory, remove it.
2263 	 * This cannot fail as it cannot get onlined in the meantime.
2264 	 */
2265 	if (!rc) {
2266 		rc = try_remove_memory(start, size);
2267 		if (rc)
2268 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2269 	}
2270 
2271 	/*
2272 	 * Rollback what we did. While memory onlining might theoretically fail
2273 	 * (nacked by a notifier), it barely ever happens.
2274 	 */
2275 	if (rc) {
2276 		tmp = online_types;
2277 		walk_memory_blocks(start, size, &tmp,
2278 				   try_reonline_memory_block);
2279 	}
2280 	unlock_device_hotplug();
2281 
2282 	kfree(online_types);
2283 	return rc;
2284 }
2285 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2286 #endif /* CONFIG_MEMORY_HOTREMOVE */
2287