xref: /openbmc/linux/mm/memory_hotplug.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 enum {
56 	ONLINE_POLICY_CONTIG_ZONES = 0,
57 	ONLINE_POLICY_AUTO_MOVABLE,
58 };
59 
60 static const char * const online_policy_to_str[] = {
61 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
63 };
64 
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
66 {
67 	int ret = sysfs_match_string(online_policy_to_str, val);
68 
69 	if (ret < 0)
70 		return ret;
71 	*((int *)kp->arg) = ret;
72 	return 0;
73 }
74 
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
76 {
77 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
78 }
79 
80 /*
81  * memory_hotplug.online_policy: configure online behavior when onlining without
82  * specifying a zone (MMOP_ONLINE)
83  *
84  * "contig-zones": keep zone contiguous
85  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
87  */
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 	.set = set_online_policy,
91 	.get = get_online_policy,
92 };
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
96 		"Default: \"contig-zones\"");
97 
98 /*
99  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
100  *
101  * The ratio represent an upper limit and the kernel might decide to not
102  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103  * doesn't allow for more MOVABLE memory.
104  */
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 		"in percent for \"auto-movable\" online policy. Default: 301");
110 
111 /*
112  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
113  */
114 #ifdef CONFIG_NUMA
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 		"Consider numa node stats in addition to global stats in "
119 		"\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
121 
122 /*
123  * online_page_callback contains pointer to current page onlining function.
124  * Initially it is generic_online_page(). If it is required it could be
125  * changed by calling set_online_page_callback() for callback registration
126  * and restore_online_page_callback() for generic callback restore.
127  */
128 
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
131 
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
133 
134 void get_online_mems(void)
135 {
136 	percpu_down_read(&mem_hotplug_lock);
137 }
138 
139 void put_online_mems(void)
140 {
141 	percpu_up_read(&mem_hotplug_lock);
142 }
143 
144 bool movable_node_enabled = false;
145 
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
148 #else
149 int mhp_default_online_type = MMOP_ONLINE;
150 #endif
151 
152 static int __init setup_memhp_default_state(char *str)
153 {
154 	const int online_type = mhp_online_type_from_str(str);
155 
156 	if (online_type >= 0)
157 		mhp_default_online_type = online_type;
158 
159 	return 1;
160 }
161 __setup("memhp_default_state=", setup_memhp_default_state);
162 
163 void mem_hotplug_begin(void)
164 {
165 	cpus_read_lock();
166 	percpu_down_write(&mem_hotplug_lock);
167 }
168 
169 void mem_hotplug_done(void)
170 {
171 	percpu_up_write(&mem_hotplug_lock);
172 	cpus_read_unlock();
173 }
174 
175 u64 max_mem_size = U64_MAX;
176 
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 						 const char *resource_name)
180 {
181 	struct resource *res;
182 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
183 
184 	if (strcmp(resource_name, "System RAM"))
185 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
186 
187 	if (!mhp_range_allowed(start, size, true))
188 		return ERR_PTR(-E2BIG);
189 
190 	/*
191 	 * Make sure value parsed from 'mem=' only restricts memory adding
192 	 * while booting, so that memory hotplug won't be impacted. Please
193 	 * refer to document of 'mem=' in kernel-parameters.txt for more
194 	 * details.
195 	 */
196 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Request ownership of the new memory range.  This might be
201 	 * a child of an existing resource that was present but
202 	 * not marked as busy.
203 	 */
204 	res = __request_region(&iomem_resource, start, size,
205 			       resource_name, flags);
206 
207 	if (!res) {
208 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 				start, start + size);
210 		return ERR_PTR(-EEXIST);
211 	}
212 	return res;
213 }
214 
215 static void release_memory_resource(struct resource *res)
216 {
217 	if (!res)
218 		return;
219 	release_resource(res);
220 	kfree(res);
221 }
222 
223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
224 		const char *reason)
225 {
226 	/*
227 	 * Disallow all operations smaller than a sub-section and only
228 	 * allow operations smaller than a section for
229 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
230 	 * enforces a larger memory_block_size_bytes() granularity for
231 	 * memory that will be marked online, so this check should only
232 	 * fire for direct arch_{add,remove}_memory() users outside of
233 	 * add_memory_resource().
234 	 */
235 	unsigned long min_align;
236 
237 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
238 		min_align = PAGES_PER_SUBSECTION;
239 	else
240 		min_align = PAGES_PER_SECTION;
241 	if (!IS_ALIGNED(pfn, min_align)
242 			|| !IS_ALIGNED(nr_pages, min_align)) {
243 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
244 				reason, pfn, pfn + nr_pages - 1);
245 		return -EINVAL;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Return page for the valid pfn only if the page is online. All pfn
252  * walkers which rely on the fully initialized page->flags and others
253  * should use this rather than pfn_valid && pfn_to_page
254  */
255 struct page *pfn_to_online_page(unsigned long pfn)
256 {
257 	unsigned long nr = pfn_to_section_nr(pfn);
258 	struct dev_pagemap *pgmap;
259 	struct mem_section *ms;
260 
261 	if (nr >= NR_MEM_SECTIONS)
262 		return NULL;
263 
264 	ms = __nr_to_section(nr);
265 	if (!online_section(ms))
266 		return NULL;
267 
268 	/*
269 	 * Save some code text when online_section() +
270 	 * pfn_section_valid() are sufficient.
271 	 */
272 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
273 		return NULL;
274 
275 	if (!pfn_section_valid(ms, pfn))
276 		return NULL;
277 
278 	if (!online_device_section(ms))
279 		return pfn_to_page(pfn);
280 
281 	/*
282 	 * Slowpath: when ZONE_DEVICE collides with
283 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
284 	 * the section may be 'offline' but 'valid'. Only
285 	 * get_dev_pagemap() can determine sub-section online status.
286 	 */
287 	pgmap = get_dev_pagemap(pfn, NULL);
288 	put_dev_pagemap(pgmap);
289 
290 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
291 	if (pgmap)
292 		return NULL;
293 
294 	return pfn_to_page(pfn);
295 }
296 EXPORT_SYMBOL_GPL(pfn_to_online_page);
297 
298 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
299 		struct mhp_params *params)
300 {
301 	const unsigned long end_pfn = pfn + nr_pages;
302 	unsigned long cur_nr_pages;
303 	int err;
304 	struct vmem_altmap *altmap = params->altmap;
305 
306 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
307 		return -EINVAL;
308 
309 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
310 
311 	if (altmap) {
312 		/*
313 		 * Validate altmap is within bounds of the total request
314 		 */
315 		if (altmap->base_pfn != pfn
316 				|| vmem_altmap_offset(altmap) > nr_pages) {
317 			pr_warn_once("memory add fail, invalid altmap\n");
318 			return -EINVAL;
319 		}
320 		altmap->alloc = 0;
321 	}
322 
323 	err = check_pfn_span(pfn, nr_pages, "add");
324 	if (err)
325 		return err;
326 
327 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
328 		/* Select all remaining pages up to the next section boundary */
329 		cur_nr_pages = min(end_pfn - pfn,
330 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
331 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
332 		if (err)
333 			break;
334 		cond_resched();
335 	}
336 	vmemmap_populate_print_last();
337 	return err;
338 }
339 
340 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
341 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
342 				     unsigned long start_pfn,
343 				     unsigned long end_pfn)
344 {
345 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
346 		if (unlikely(!pfn_to_online_page(start_pfn)))
347 			continue;
348 
349 		if (unlikely(pfn_to_nid(start_pfn) != nid))
350 			continue;
351 
352 		if (zone != page_zone(pfn_to_page(start_pfn)))
353 			continue;
354 
355 		return start_pfn;
356 	}
357 
358 	return 0;
359 }
360 
361 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
362 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
363 				    unsigned long start_pfn,
364 				    unsigned long end_pfn)
365 {
366 	unsigned long pfn;
367 
368 	/* pfn is the end pfn of a memory section. */
369 	pfn = end_pfn - 1;
370 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
371 		if (unlikely(!pfn_to_online_page(pfn)))
372 			continue;
373 
374 		if (unlikely(pfn_to_nid(pfn) != nid))
375 			continue;
376 
377 		if (zone != page_zone(pfn_to_page(pfn)))
378 			continue;
379 
380 		return pfn;
381 	}
382 
383 	return 0;
384 }
385 
386 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
387 			     unsigned long end_pfn)
388 {
389 	unsigned long pfn;
390 	int nid = zone_to_nid(zone);
391 
392 	if (zone->zone_start_pfn == start_pfn) {
393 		/*
394 		 * If the section is smallest section in the zone, it need
395 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
396 		 * In this case, we find second smallest valid mem_section
397 		 * for shrinking zone.
398 		 */
399 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
400 						zone_end_pfn(zone));
401 		if (pfn) {
402 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
403 			zone->zone_start_pfn = pfn;
404 		} else {
405 			zone->zone_start_pfn = 0;
406 			zone->spanned_pages = 0;
407 		}
408 	} else if (zone_end_pfn(zone) == end_pfn) {
409 		/*
410 		 * If the section is biggest section in the zone, it need
411 		 * shrink zone->spanned_pages.
412 		 * In this case, we find second biggest valid mem_section for
413 		 * shrinking zone.
414 		 */
415 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
416 					       start_pfn);
417 		if (pfn)
418 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
419 		else {
420 			zone->zone_start_pfn = 0;
421 			zone->spanned_pages = 0;
422 		}
423 	}
424 }
425 
426 static void update_pgdat_span(struct pglist_data *pgdat)
427 {
428 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
429 	struct zone *zone;
430 
431 	for (zone = pgdat->node_zones;
432 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
433 		unsigned long end_pfn = zone_end_pfn(zone);
434 
435 		/* No need to lock the zones, they can't change. */
436 		if (!zone->spanned_pages)
437 			continue;
438 		if (!node_end_pfn) {
439 			node_start_pfn = zone->zone_start_pfn;
440 			node_end_pfn = end_pfn;
441 			continue;
442 		}
443 
444 		if (end_pfn > node_end_pfn)
445 			node_end_pfn = end_pfn;
446 		if (zone->zone_start_pfn < node_start_pfn)
447 			node_start_pfn = zone->zone_start_pfn;
448 	}
449 
450 	pgdat->node_start_pfn = node_start_pfn;
451 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
452 }
453 
454 void __ref remove_pfn_range_from_zone(struct zone *zone,
455 				      unsigned long start_pfn,
456 				      unsigned long nr_pages)
457 {
458 	const unsigned long end_pfn = start_pfn + nr_pages;
459 	struct pglist_data *pgdat = zone->zone_pgdat;
460 	unsigned long pfn, cur_nr_pages;
461 
462 	/* Poison struct pages because they are now uninitialized again. */
463 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
464 		cond_resched();
465 
466 		/* Select all remaining pages up to the next section boundary */
467 		cur_nr_pages =
468 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
469 		page_init_poison(pfn_to_page(pfn),
470 				 sizeof(struct page) * cur_nr_pages);
471 	}
472 
473 	/*
474 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
475 	 * we will not try to shrink the zones - which is okay as
476 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
477 	 */
478 	if (zone_is_zone_device(zone))
479 		return;
480 
481 	clear_zone_contiguous(zone);
482 
483 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
484 	update_pgdat_span(pgdat);
485 
486 	set_zone_contiguous(zone);
487 }
488 
489 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
490 			     unsigned long map_offset,
491 			     struct vmem_altmap *altmap)
492 {
493 	struct mem_section *ms = __pfn_to_section(pfn);
494 
495 	if (WARN_ON_ONCE(!valid_section(ms)))
496 		return;
497 
498 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
499 }
500 
501 /**
502  * __remove_pages() - remove sections of pages
503  * @pfn: starting pageframe (must be aligned to start of a section)
504  * @nr_pages: number of pages to remove (must be multiple of section size)
505  * @altmap: alternative device page map or %NULL if default memmap is used
506  *
507  * Generic helper function to remove section mappings and sysfs entries
508  * for the section of the memory we are removing. Caller needs to make
509  * sure that pages are marked reserved and zones are adjust properly by
510  * calling offline_pages().
511  */
512 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
513 		    struct vmem_altmap *altmap)
514 {
515 	const unsigned long end_pfn = pfn + nr_pages;
516 	unsigned long cur_nr_pages;
517 	unsigned long map_offset = 0;
518 
519 	map_offset = vmem_altmap_offset(altmap);
520 
521 	if (check_pfn_span(pfn, nr_pages, "remove"))
522 		return;
523 
524 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
525 		cond_resched();
526 		/* Select all remaining pages up to the next section boundary */
527 		cur_nr_pages = min(end_pfn - pfn,
528 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
529 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
530 		map_offset = 0;
531 	}
532 }
533 
534 int set_online_page_callback(online_page_callback_t callback)
535 {
536 	int rc = -EINVAL;
537 
538 	get_online_mems();
539 	mutex_lock(&online_page_callback_lock);
540 
541 	if (online_page_callback == generic_online_page) {
542 		online_page_callback = callback;
543 		rc = 0;
544 	}
545 
546 	mutex_unlock(&online_page_callback_lock);
547 	put_online_mems();
548 
549 	return rc;
550 }
551 EXPORT_SYMBOL_GPL(set_online_page_callback);
552 
553 int restore_online_page_callback(online_page_callback_t callback)
554 {
555 	int rc = -EINVAL;
556 
557 	get_online_mems();
558 	mutex_lock(&online_page_callback_lock);
559 
560 	if (online_page_callback == callback) {
561 		online_page_callback = generic_online_page;
562 		rc = 0;
563 	}
564 
565 	mutex_unlock(&online_page_callback_lock);
566 	put_online_mems();
567 
568 	return rc;
569 }
570 EXPORT_SYMBOL_GPL(restore_online_page_callback);
571 
572 void generic_online_page(struct page *page, unsigned int order)
573 {
574 	/*
575 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
576 	 * so we should map it first. This is better than introducing a special
577 	 * case in page freeing fast path.
578 	 */
579 	debug_pagealloc_map_pages(page, 1 << order);
580 	__free_pages_core(page, order);
581 	totalram_pages_add(1UL << order);
582 }
583 EXPORT_SYMBOL_GPL(generic_online_page);
584 
585 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
586 {
587 	const unsigned long end_pfn = start_pfn + nr_pages;
588 	unsigned long pfn;
589 
590 	/*
591 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
592 	 * decide to not expose all pages to the buddy (e.g., expose them
593 	 * later). We account all pages as being online and belonging to this
594 	 * zone ("present").
595 	 * When using memmap_on_memory, the range might not be aligned to
596 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
597 	 * this and the first chunk to online will be pageblock_nr_pages.
598 	 */
599 	for (pfn = start_pfn; pfn < end_pfn;) {
600 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
601 
602 		(*online_page_callback)(pfn_to_page(pfn), order);
603 		pfn += (1UL << order);
604 	}
605 
606 	/* mark all involved sections as online */
607 	online_mem_sections(start_pfn, end_pfn);
608 }
609 
610 /* check which state of node_states will be changed when online memory */
611 static void node_states_check_changes_online(unsigned long nr_pages,
612 	struct zone *zone, struct memory_notify *arg)
613 {
614 	int nid = zone_to_nid(zone);
615 
616 	arg->status_change_nid = NUMA_NO_NODE;
617 	arg->status_change_nid_normal = NUMA_NO_NODE;
618 
619 	if (!node_state(nid, N_MEMORY))
620 		arg->status_change_nid = nid;
621 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
622 		arg->status_change_nid_normal = nid;
623 }
624 
625 static void node_states_set_node(int node, struct memory_notify *arg)
626 {
627 	if (arg->status_change_nid_normal >= 0)
628 		node_set_state(node, N_NORMAL_MEMORY);
629 
630 	if (arg->status_change_nid >= 0)
631 		node_set_state(node, N_MEMORY);
632 }
633 
634 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
635 		unsigned long nr_pages)
636 {
637 	unsigned long old_end_pfn = zone_end_pfn(zone);
638 
639 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
640 		zone->zone_start_pfn = start_pfn;
641 
642 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
643 }
644 
645 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
646                                      unsigned long nr_pages)
647 {
648 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
649 
650 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
651 		pgdat->node_start_pfn = start_pfn;
652 
653 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
654 
655 }
656 
657 static void section_taint_zone_device(unsigned long pfn)
658 {
659 	struct mem_section *ms = __pfn_to_section(pfn);
660 
661 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
662 }
663 
664 /*
665  * Associate the pfn range with the given zone, initializing the memmaps
666  * and resizing the pgdat/zone data to span the added pages. After this
667  * call, all affected pages are PG_reserved.
668  *
669  * All aligned pageblocks are initialized to the specified migratetype
670  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
671  * zone stats (e.g., nr_isolate_pageblock) are touched.
672  */
673 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
674 				  unsigned long nr_pages,
675 				  struct vmem_altmap *altmap, int migratetype)
676 {
677 	struct pglist_data *pgdat = zone->zone_pgdat;
678 	int nid = pgdat->node_id;
679 
680 	clear_zone_contiguous(zone);
681 
682 	if (zone_is_empty(zone))
683 		init_currently_empty_zone(zone, start_pfn, nr_pages);
684 	resize_zone_range(zone, start_pfn, nr_pages);
685 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
686 
687 	/*
688 	 * Subsection population requires care in pfn_to_online_page().
689 	 * Set the taint to enable the slow path detection of
690 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
691 	 * section.
692 	 */
693 	if (zone_is_zone_device(zone)) {
694 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
695 			section_taint_zone_device(start_pfn);
696 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
697 			section_taint_zone_device(start_pfn + nr_pages);
698 	}
699 
700 	/*
701 	 * TODO now we have a visible range of pages which are not associated
702 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
703 	 * expects the zone spans the pfn range. All the pages in the range
704 	 * are reserved so nobody should be touching them so we should be safe
705 	 */
706 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
707 			 MEMINIT_HOTPLUG, altmap, migratetype);
708 
709 	set_zone_contiguous(zone);
710 }
711 
712 struct auto_movable_stats {
713 	unsigned long kernel_early_pages;
714 	unsigned long movable_pages;
715 };
716 
717 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
718 					    struct zone *zone)
719 {
720 	if (zone_idx(zone) == ZONE_MOVABLE) {
721 		stats->movable_pages += zone->present_pages;
722 	} else {
723 		stats->kernel_early_pages += zone->present_early_pages;
724 #ifdef CONFIG_CMA
725 		/*
726 		 * CMA pages (never on hotplugged memory) behave like
727 		 * ZONE_MOVABLE.
728 		 */
729 		stats->movable_pages += zone->cma_pages;
730 		stats->kernel_early_pages -= zone->cma_pages;
731 #endif /* CONFIG_CMA */
732 	}
733 }
734 struct auto_movable_group_stats {
735 	unsigned long movable_pages;
736 	unsigned long req_kernel_early_pages;
737 };
738 
739 static int auto_movable_stats_account_group(struct memory_group *group,
740 					   void *arg)
741 {
742 	const int ratio = READ_ONCE(auto_movable_ratio);
743 	struct auto_movable_group_stats *stats = arg;
744 	long pages;
745 
746 	/*
747 	 * We don't support modifying the config while the auto-movable online
748 	 * policy is already enabled. Just avoid the division by zero below.
749 	 */
750 	if (!ratio)
751 		return 0;
752 
753 	/*
754 	 * Calculate how many early kernel pages this group requires to
755 	 * satisfy the configured zone ratio.
756 	 */
757 	pages = group->present_movable_pages * 100 / ratio;
758 	pages -= group->present_kernel_pages;
759 
760 	if (pages > 0)
761 		stats->req_kernel_early_pages += pages;
762 	stats->movable_pages += group->present_movable_pages;
763 	return 0;
764 }
765 
766 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
767 					    unsigned long nr_pages)
768 {
769 	unsigned long kernel_early_pages, movable_pages;
770 	struct auto_movable_group_stats group_stats = {};
771 	struct auto_movable_stats stats = {};
772 	pg_data_t *pgdat = NODE_DATA(nid);
773 	struct zone *zone;
774 	int i;
775 
776 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
777 	if (nid == NUMA_NO_NODE) {
778 		/* TODO: cache values */
779 		for_each_populated_zone(zone)
780 			auto_movable_stats_account_zone(&stats, zone);
781 	} else {
782 		for (i = 0; i < MAX_NR_ZONES; i++) {
783 			zone = pgdat->node_zones + i;
784 			if (populated_zone(zone))
785 				auto_movable_stats_account_zone(&stats, zone);
786 		}
787 	}
788 
789 	kernel_early_pages = stats.kernel_early_pages;
790 	movable_pages = stats.movable_pages;
791 
792 	/*
793 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
794 	 * memory within the same group. Remove the effect of all but the
795 	 * current group from the stats.
796 	 */
797 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
798 				   group, &group_stats);
799 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
800 		return false;
801 	kernel_early_pages -= group_stats.req_kernel_early_pages;
802 	movable_pages -= group_stats.movable_pages;
803 
804 	if (group && group->is_dynamic)
805 		kernel_early_pages += group->present_kernel_pages;
806 
807 	/*
808 	 * Test if we could online the given number of pages to ZONE_MOVABLE
809 	 * and still stay in the configured ratio.
810 	 */
811 	movable_pages += nr_pages;
812 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
813 }
814 
815 /*
816  * Returns a default kernel memory zone for the given pfn range.
817  * If no kernel zone covers this pfn range it will automatically go
818  * to the ZONE_NORMAL.
819  */
820 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
821 		unsigned long nr_pages)
822 {
823 	struct pglist_data *pgdat = NODE_DATA(nid);
824 	int zid;
825 
826 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
827 		struct zone *zone = &pgdat->node_zones[zid];
828 
829 		if (zone_intersects(zone, start_pfn, nr_pages))
830 			return zone;
831 	}
832 
833 	return &pgdat->node_zones[ZONE_NORMAL];
834 }
835 
836 /*
837  * Determine to which zone to online memory dynamically based on user
838  * configuration and system stats. We care about the following ratio:
839  *
840  *   MOVABLE : KERNEL
841  *
842  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
843  * one of the kernel zones. CMA pages inside one of the kernel zones really
844  * behaves like ZONE_MOVABLE, so we treat them accordingly.
845  *
846  * We don't allow for hotplugged memory in a KERNEL zone to increase the
847  * amount of MOVABLE memory we can have, so we end up with:
848  *
849  *   MOVABLE : KERNEL_EARLY
850  *
851  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
852  * boot. We base our calculation on KERNEL_EARLY internally, because:
853  *
854  * a) Hotplugged memory in one of the kernel zones can sometimes still get
855  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
856  *    There is no coordination across memory devices, therefore "automatic"
857  *    hotunplugging, as implemented in hypervisors, could result in zone
858  *    imbalances.
859  * b) Early/boot memory in one of the kernel zones can usually not get
860  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
861  *    with unmovable allocations). While there are corner cases where it might
862  *    still work, it is barely relevant in practice.
863  *
864  * Exceptions are dynamic memory groups, which allow for more MOVABLE
865  * memory within the same memory group -- because in that case, there is
866  * coordination within the single memory device managed by a single driver.
867  *
868  * We rely on "present pages" instead of "managed pages", as the latter is
869  * highly unreliable and dynamic in virtualized environments, and does not
870  * consider boot time allocations. For example, memory ballooning adjusts the
871  * managed pages when inflating/deflating the balloon, and balloon compaction
872  * can even migrate inflated pages between zones.
873  *
874  * Using "present pages" is better but some things to keep in mind are:
875  *
876  * a) Some memblock allocations, such as for the crashkernel area, are
877  *    effectively unused by the kernel, yet they account to "present pages".
878  *    Fortunately, these allocations are comparatively small in relevant setups
879  *    (e.g., fraction of system memory).
880  * b) Some hotplugged memory blocks in virtualized environments, esecially
881  *    hotplugged by virtio-mem, look like they are completely present, however,
882  *    only parts of the memory block are actually currently usable.
883  *    "present pages" is an upper limit that can get reached at runtime. As
884  *    we base our calculations on KERNEL_EARLY, this is not an issue.
885  */
886 static struct zone *auto_movable_zone_for_pfn(int nid,
887 					      struct memory_group *group,
888 					      unsigned long pfn,
889 					      unsigned long nr_pages)
890 {
891 	unsigned long online_pages = 0, max_pages, end_pfn;
892 	struct page *page;
893 
894 	if (!auto_movable_ratio)
895 		goto kernel_zone;
896 
897 	if (group && !group->is_dynamic) {
898 		max_pages = group->s.max_pages;
899 		online_pages = group->present_movable_pages;
900 
901 		/* If anything is !MOVABLE online the rest !MOVABLE. */
902 		if (group->present_kernel_pages)
903 			goto kernel_zone;
904 	} else if (!group || group->d.unit_pages == nr_pages) {
905 		max_pages = nr_pages;
906 	} else {
907 		max_pages = group->d.unit_pages;
908 		/*
909 		 * Take a look at all online sections in the current unit.
910 		 * We can safely assume that all pages within a section belong
911 		 * to the same zone, because dynamic memory groups only deal
912 		 * with hotplugged memory.
913 		 */
914 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
915 		end_pfn = pfn + group->d.unit_pages;
916 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
917 			page = pfn_to_online_page(pfn);
918 			if (!page)
919 				continue;
920 			/* If anything is !MOVABLE online the rest !MOVABLE. */
921 			if (page_zonenum(page) != ZONE_MOVABLE)
922 				goto kernel_zone;
923 			online_pages += PAGES_PER_SECTION;
924 		}
925 	}
926 
927 	/*
928 	 * Online MOVABLE if we could *currently* online all remaining parts
929 	 * MOVABLE. We expect to (add+) online them immediately next, so if
930 	 * nobody interferes, all will be MOVABLE if possible.
931 	 */
932 	nr_pages = max_pages - online_pages;
933 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
934 		goto kernel_zone;
935 
936 #ifdef CONFIG_NUMA
937 	if (auto_movable_numa_aware &&
938 	    !auto_movable_can_online_movable(nid, group, nr_pages))
939 		goto kernel_zone;
940 #endif /* CONFIG_NUMA */
941 
942 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
943 kernel_zone:
944 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
945 }
946 
947 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
948 		unsigned long nr_pages)
949 {
950 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
951 			nr_pages);
952 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
953 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
954 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
955 
956 	/*
957 	 * We inherit the existing zone in a simple case where zones do not
958 	 * overlap in the given range
959 	 */
960 	if (in_kernel ^ in_movable)
961 		return (in_kernel) ? kernel_zone : movable_zone;
962 
963 	/*
964 	 * If the range doesn't belong to any zone or two zones overlap in the
965 	 * given range then we use movable zone only if movable_node is
966 	 * enabled because we always online to a kernel zone by default.
967 	 */
968 	return movable_node_enabled ? movable_zone : kernel_zone;
969 }
970 
971 struct zone *zone_for_pfn_range(int online_type, int nid,
972 		struct memory_group *group, unsigned long start_pfn,
973 		unsigned long nr_pages)
974 {
975 	if (online_type == MMOP_ONLINE_KERNEL)
976 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
977 
978 	if (online_type == MMOP_ONLINE_MOVABLE)
979 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
980 
981 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
982 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
983 
984 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
985 }
986 
987 /*
988  * This function should only be called by memory_block_{online,offline},
989  * and {online,offline}_pages.
990  */
991 void adjust_present_page_count(struct page *page, struct memory_group *group,
992 			       long nr_pages)
993 {
994 	struct zone *zone = page_zone(page);
995 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
996 
997 	/*
998 	 * We only support onlining/offlining/adding/removing of complete
999 	 * memory blocks; therefore, either all is either early or hotplugged.
1000 	 */
1001 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1002 		zone->present_early_pages += nr_pages;
1003 	zone->present_pages += nr_pages;
1004 	zone->zone_pgdat->node_present_pages += nr_pages;
1005 
1006 	if (group && movable)
1007 		group->present_movable_pages += nr_pages;
1008 	else if (group && !movable)
1009 		group->present_kernel_pages += nr_pages;
1010 }
1011 
1012 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1013 			      struct zone *zone)
1014 {
1015 	unsigned long end_pfn = pfn + nr_pages;
1016 	int ret;
1017 
1018 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1019 	if (ret)
1020 		return ret;
1021 
1022 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1023 
1024 	/*
1025 	 * It might be that the vmemmap_pages fully span sections. If that is
1026 	 * the case, mark those sections online here as otherwise they will be
1027 	 * left offline.
1028 	 */
1029 	if (nr_pages >= PAGES_PER_SECTION)
1030 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1031 
1032 	return ret;
1033 }
1034 
1035 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1036 {
1037 	unsigned long end_pfn = pfn + nr_pages;
1038 
1039 	/*
1040 	 * It might be that the vmemmap_pages fully span sections. If that is
1041 	 * the case, mark those sections offline here as otherwise they will be
1042 	 * left online.
1043 	 */
1044 	if (nr_pages >= PAGES_PER_SECTION)
1045 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1046 
1047         /*
1048 	 * The pages associated with this vmemmap have been offlined, so
1049 	 * we can reset its state here.
1050 	 */
1051 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1052 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1053 }
1054 
1055 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1056 		       struct zone *zone, struct memory_group *group)
1057 {
1058 	unsigned long flags;
1059 	int need_zonelists_rebuild = 0;
1060 	const int nid = zone_to_nid(zone);
1061 	int ret;
1062 	struct memory_notify arg;
1063 
1064 	/*
1065 	 * {on,off}lining is constrained to full memory sections (or more
1066 	 * precisely to memory blocks from the user space POV).
1067 	 * memmap_on_memory is an exception because it reserves initial part
1068 	 * of the physical memory space for vmemmaps. That space is pageblock
1069 	 * aligned.
1070 	 */
1071 	if (WARN_ON_ONCE(!nr_pages ||
1072 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1073 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1074 		return -EINVAL;
1075 
1076 	mem_hotplug_begin();
1077 
1078 	/* associate pfn range with the zone */
1079 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1080 
1081 	arg.start_pfn = pfn;
1082 	arg.nr_pages = nr_pages;
1083 	node_states_check_changes_online(nr_pages, zone, &arg);
1084 
1085 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1086 	ret = notifier_to_errno(ret);
1087 	if (ret)
1088 		goto failed_addition;
1089 
1090 	/*
1091 	 * Fixup the number of isolated pageblocks before marking the sections
1092 	 * onlining, such that undo_isolate_page_range() works correctly.
1093 	 */
1094 	spin_lock_irqsave(&zone->lock, flags);
1095 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1096 	spin_unlock_irqrestore(&zone->lock, flags);
1097 
1098 	/*
1099 	 * If this zone is not populated, then it is not in zonelist.
1100 	 * This means the page allocator ignores this zone.
1101 	 * So, zonelist must be updated after online.
1102 	 */
1103 	if (!populated_zone(zone)) {
1104 		need_zonelists_rebuild = 1;
1105 		setup_zone_pageset(zone);
1106 	}
1107 
1108 	online_pages_range(pfn, nr_pages);
1109 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1110 
1111 	node_states_set_node(nid, &arg);
1112 	if (need_zonelists_rebuild)
1113 		build_all_zonelists(NULL);
1114 
1115 	/* Basic onlining is complete, allow allocation of onlined pages. */
1116 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1117 
1118 	/*
1119 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1120 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1121 	 * zone to make sure the just onlined pages are properly distributed
1122 	 * across the whole freelist - to create an initial shuffle.
1123 	 */
1124 	shuffle_zone(zone);
1125 
1126 	/* reinitialise watermarks and update pcp limits */
1127 	init_per_zone_wmark_min();
1128 
1129 	kswapd_run(nid);
1130 	kcompactd_run(nid);
1131 
1132 	writeback_set_ratelimit();
1133 
1134 	memory_notify(MEM_ONLINE, &arg);
1135 	mem_hotplug_done();
1136 	return 0;
1137 
1138 failed_addition:
1139 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1140 		 (unsigned long long) pfn << PAGE_SHIFT,
1141 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1142 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1143 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1144 	mem_hotplug_done();
1145 	return ret;
1146 }
1147 
1148 static void reset_node_present_pages(pg_data_t *pgdat)
1149 {
1150 	struct zone *z;
1151 
1152 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1153 		z->present_pages = 0;
1154 
1155 	pgdat->node_present_pages = 0;
1156 }
1157 
1158 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1159 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1160 {
1161 	struct pglist_data *pgdat;
1162 
1163 	/*
1164 	 * NODE_DATA is preallocated (free_area_init) but its internal
1165 	 * state is not allocated completely. Add missing pieces.
1166 	 * Completely offline nodes stay around and they just need
1167 	 * reintialization.
1168 	 */
1169 	pgdat = NODE_DATA(nid);
1170 
1171 	/* init node's zones as empty zones, we don't have any present pages.*/
1172 	free_area_init_core_hotplug(pgdat);
1173 
1174 	/*
1175 	 * The node we allocated has no zone fallback lists. For avoiding
1176 	 * to access not-initialized zonelist, build here.
1177 	 */
1178 	build_all_zonelists(pgdat);
1179 
1180 	/*
1181 	 * When memory is hot-added, all the memory is in offline state. So
1182 	 * clear all zones' present_pages because they will be updated in
1183 	 * online_pages() and offline_pages().
1184 	 * TODO: should be in free_area_init_core_hotplug?
1185 	 */
1186 	reset_node_managed_pages(pgdat);
1187 	reset_node_present_pages(pgdat);
1188 
1189 	return pgdat;
1190 }
1191 
1192 /*
1193  * __try_online_node - online a node if offlined
1194  * @nid: the node ID
1195  * @set_node_online: Whether we want to online the node
1196  * called by cpu_up() to online a node without onlined memory.
1197  *
1198  * Returns:
1199  * 1 -> a new node has been allocated
1200  * 0 -> the node is already online
1201  * -ENOMEM -> the node could not be allocated
1202  */
1203 static int __try_online_node(int nid, bool set_node_online)
1204 {
1205 	pg_data_t *pgdat;
1206 	int ret = 1;
1207 
1208 	if (node_online(nid))
1209 		return 0;
1210 
1211 	pgdat = hotadd_init_pgdat(nid);
1212 	if (!pgdat) {
1213 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1214 		ret = -ENOMEM;
1215 		goto out;
1216 	}
1217 
1218 	if (set_node_online) {
1219 		node_set_online(nid);
1220 		ret = register_one_node(nid);
1221 		BUG_ON(ret);
1222 	}
1223 out:
1224 	return ret;
1225 }
1226 
1227 /*
1228  * Users of this function always want to online/register the node
1229  */
1230 int try_online_node(int nid)
1231 {
1232 	int ret;
1233 
1234 	mem_hotplug_begin();
1235 	ret =  __try_online_node(nid, true);
1236 	mem_hotplug_done();
1237 	return ret;
1238 }
1239 
1240 static int check_hotplug_memory_range(u64 start, u64 size)
1241 {
1242 	/* memory range must be block size aligned */
1243 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1244 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1245 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1246 		       memory_block_size_bytes(), start, size);
1247 		return -EINVAL;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static int online_memory_block(struct memory_block *mem, void *arg)
1254 {
1255 	mem->online_type = mhp_default_online_type;
1256 	return device_online(&mem->dev);
1257 }
1258 
1259 bool mhp_supports_memmap_on_memory(unsigned long size)
1260 {
1261 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1262 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1263 	unsigned long remaining_size = size - vmemmap_size;
1264 
1265 	/*
1266 	 * Besides having arch support and the feature enabled at runtime, we
1267 	 * need a few more assumptions to hold true:
1268 	 *
1269 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1270 	 *    in memory block granularity. We don't want the vmemmap of online
1271 	 *    memory blocks to reside on offline memory blocks. In the future,
1272 	 *    we might want to support variable-sized memory blocks to make the
1273 	 *    feature more versatile.
1274 	 *
1275 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1276 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1277 	 *    other memory blocks)
1278 	 *
1279 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1280 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1281 	 *    code requires applicable ranges to be page-aligned, for example, to
1282 	 *    set the migratetypes properly.
1283 	 *
1284 	 * TODO: Although we have a check here to make sure that vmemmap pages
1285 	 *       fully populate a PMD, it is not the right place to check for
1286 	 *       this. A much better solution involves improving vmemmap code
1287 	 *       to fallback to base pages when trying to populate vmemmap using
1288 	 *       altmap as an alternative source of memory, and we do not exactly
1289 	 *       populate a single PMD.
1290 	 */
1291 	return memmap_on_memory &&
1292 	       !hugetlb_free_vmemmap_enabled() &&
1293 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1294 	       size == memory_block_size_bytes() &&
1295 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1296 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1297 }
1298 
1299 /*
1300  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1301  * and online/offline operations (triggered e.g. by sysfs).
1302  *
1303  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1304  */
1305 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1306 {
1307 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1308 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1309 	struct vmem_altmap mhp_altmap = {};
1310 	struct memory_group *group = NULL;
1311 	u64 start, size;
1312 	bool new_node = false;
1313 	int ret;
1314 
1315 	start = res->start;
1316 	size = resource_size(res);
1317 
1318 	ret = check_hotplug_memory_range(start, size);
1319 	if (ret)
1320 		return ret;
1321 
1322 	if (mhp_flags & MHP_NID_IS_MGID) {
1323 		group = memory_group_find_by_id(nid);
1324 		if (!group)
1325 			return -EINVAL;
1326 		nid = group->nid;
1327 	}
1328 
1329 	if (!node_possible(nid)) {
1330 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1331 		return -EINVAL;
1332 	}
1333 
1334 	mem_hotplug_begin();
1335 
1336 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1337 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1338 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1339 		ret = memblock_add_node(start, size, nid, memblock_flags);
1340 		if (ret)
1341 			goto error_mem_hotplug_end;
1342 	}
1343 
1344 	ret = __try_online_node(nid, false);
1345 	if (ret < 0)
1346 		goto error;
1347 	new_node = ret;
1348 
1349 	/*
1350 	 * Self hosted memmap array
1351 	 */
1352 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1353 		if (!mhp_supports_memmap_on_memory(size)) {
1354 			ret = -EINVAL;
1355 			goto error;
1356 		}
1357 		mhp_altmap.free = PHYS_PFN(size);
1358 		mhp_altmap.base_pfn = PHYS_PFN(start);
1359 		params.altmap = &mhp_altmap;
1360 	}
1361 
1362 	/* call arch's memory hotadd */
1363 	ret = arch_add_memory(nid, start, size, &params);
1364 	if (ret < 0)
1365 		goto error;
1366 
1367 	/* create memory block devices after memory was added */
1368 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1369 					  group);
1370 	if (ret) {
1371 		arch_remove_memory(start, size, NULL);
1372 		goto error;
1373 	}
1374 
1375 	if (new_node) {
1376 		/* If sysfs file of new node can't be created, cpu on the node
1377 		 * can't be hot-added. There is no rollback way now.
1378 		 * So, check by BUG_ON() to catch it reluctantly..
1379 		 * We online node here. We can't roll back from here.
1380 		 */
1381 		node_set_online(nid);
1382 		ret = __register_one_node(nid);
1383 		BUG_ON(ret);
1384 	}
1385 
1386 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1387 					  PFN_UP(start + size - 1),
1388 					  MEMINIT_HOTPLUG);
1389 
1390 	/* create new memmap entry */
1391 	if (!strcmp(res->name, "System RAM"))
1392 		firmware_map_add_hotplug(start, start + size, "System RAM");
1393 
1394 	/* device_online() will take the lock when calling online_pages() */
1395 	mem_hotplug_done();
1396 
1397 	/*
1398 	 * In case we're allowed to merge the resource, flag it and trigger
1399 	 * merging now that adding succeeded.
1400 	 */
1401 	if (mhp_flags & MHP_MERGE_RESOURCE)
1402 		merge_system_ram_resource(res);
1403 
1404 	/* online pages if requested */
1405 	if (mhp_default_online_type != MMOP_OFFLINE)
1406 		walk_memory_blocks(start, size, NULL, online_memory_block);
1407 
1408 	return ret;
1409 error:
1410 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1411 		memblock_remove(start, size);
1412 error_mem_hotplug_end:
1413 	mem_hotplug_done();
1414 	return ret;
1415 }
1416 
1417 /* requires device_hotplug_lock, see add_memory_resource() */
1418 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1419 {
1420 	struct resource *res;
1421 	int ret;
1422 
1423 	res = register_memory_resource(start, size, "System RAM");
1424 	if (IS_ERR(res))
1425 		return PTR_ERR(res);
1426 
1427 	ret = add_memory_resource(nid, res, mhp_flags);
1428 	if (ret < 0)
1429 		release_memory_resource(res);
1430 	return ret;
1431 }
1432 
1433 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1434 {
1435 	int rc;
1436 
1437 	lock_device_hotplug();
1438 	rc = __add_memory(nid, start, size, mhp_flags);
1439 	unlock_device_hotplug();
1440 
1441 	return rc;
1442 }
1443 EXPORT_SYMBOL_GPL(add_memory);
1444 
1445 /*
1446  * Add special, driver-managed memory to the system as system RAM. Such
1447  * memory is not exposed via the raw firmware-provided memmap as system
1448  * RAM, instead, it is detected and added by a driver - during cold boot,
1449  * after a reboot, and after kexec.
1450  *
1451  * Reasons why this memory should not be used for the initial memmap of a
1452  * kexec kernel or for placing kexec images:
1453  * - The booting kernel is in charge of determining how this memory will be
1454  *   used (e.g., use persistent memory as system RAM)
1455  * - Coordination with a hypervisor is required before this memory
1456  *   can be used (e.g., inaccessible parts).
1457  *
1458  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1459  * memory map") are created. Also, the created memory resource is flagged
1460  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1461  * this memory as well (esp., not place kexec images onto it).
1462  *
1463  * The resource_name (visible via /proc/iomem) has to have the format
1464  * "System RAM ($DRIVER)".
1465  */
1466 int add_memory_driver_managed(int nid, u64 start, u64 size,
1467 			      const char *resource_name, mhp_t mhp_flags)
1468 {
1469 	struct resource *res;
1470 	int rc;
1471 
1472 	if (!resource_name ||
1473 	    strstr(resource_name, "System RAM (") != resource_name ||
1474 	    resource_name[strlen(resource_name) - 1] != ')')
1475 		return -EINVAL;
1476 
1477 	lock_device_hotplug();
1478 
1479 	res = register_memory_resource(start, size, resource_name);
1480 	if (IS_ERR(res)) {
1481 		rc = PTR_ERR(res);
1482 		goto out_unlock;
1483 	}
1484 
1485 	rc = add_memory_resource(nid, res, mhp_flags);
1486 	if (rc < 0)
1487 		release_memory_resource(res);
1488 
1489 out_unlock:
1490 	unlock_device_hotplug();
1491 	return rc;
1492 }
1493 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1494 
1495 /*
1496  * Platforms should define arch_get_mappable_range() that provides
1497  * maximum possible addressable physical memory range for which the
1498  * linear mapping could be created. The platform returned address
1499  * range must adhere to these following semantics.
1500  *
1501  * - range.start <= range.end
1502  * - Range includes both end points [range.start..range.end]
1503  *
1504  * There is also a fallback definition provided here, allowing the
1505  * entire possible physical address range in case any platform does
1506  * not define arch_get_mappable_range().
1507  */
1508 struct range __weak arch_get_mappable_range(void)
1509 {
1510 	struct range mhp_range = {
1511 		.start = 0UL,
1512 		.end = -1ULL,
1513 	};
1514 	return mhp_range;
1515 }
1516 
1517 struct range mhp_get_pluggable_range(bool need_mapping)
1518 {
1519 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1520 	struct range mhp_range;
1521 
1522 	if (need_mapping) {
1523 		mhp_range = arch_get_mappable_range();
1524 		if (mhp_range.start > max_phys) {
1525 			mhp_range.start = 0;
1526 			mhp_range.end = 0;
1527 		}
1528 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1529 	} else {
1530 		mhp_range.start = 0;
1531 		mhp_range.end = max_phys;
1532 	}
1533 	return mhp_range;
1534 }
1535 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1536 
1537 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1538 {
1539 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1540 	u64 end = start + size;
1541 
1542 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1543 		return true;
1544 
1545 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1546 		start, end, mhp_range.start, mhp_range.end);
1547 	return false;
1548 }
1549 
1550 #ifdef CONFIG_MEMORY_HOTREMOVE
1551 /*
1552  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1553  * non-lru movable pages and hugepages). Will skip over most unmovable
1554  * pages (esp., pages that can be skipped when offlining), but bail out on
1555  * definitely unmovable pages.
1556  *
1557  * Returns:
1558  *	0 in case a movable page is found and movable_pfn was updated.
1559  *	-ENOENT in case no movable page was found.
1560  *	-EBUSY in case a definitely unmovable page was found.
1561  */
1562 static int scan_movable_pages(unsigned long start, unsigned long end,
1563 			      unsigned long *movable_pfn)
1564 {
1565 	unsigned long pfn;
1566 
1567 	for (pfn = start; pfn < end; pfn++) {
1568 		struct page *page, *head;
1569 		unsigned long skip;
1570 
1571 		if (!pfn_valid(pfn))
1572 			continue;
1573 		page = pfn_to_page(pfn);
1574 		if (PageLRU(page))
1575 			goto found;
1576 		if (__PageMovable(page))
1577 			goto found;
1578 
1579 		/*
1580 		 * PageOffline() pages that are not marked __PageMovable() and
1581 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1582 		 * definitely unmovable. If their reference count would be 0,
1583 		 * they could at least be skipped when offlining memory.
1584 		 */
1585 		if (PageOffline(page) && page_count(page))
1586 			return -EBUSY;
1587 
1588 		if (!PageHuge(page))
1589 			continue;
1590 		head = compound_head(page);
1591 		/*
1592 		 * This test is racy as we hold no reference or lock.  The
1593 		 * hugetlb page could have been free'ed and head is no longer
1594 		 * a hugetlb page before the following check.  In such unlikely
1595 		 * cases false positives and negatives are possible.  Calling
1596 		 * code must deal with these scenarios.
1597 		 */
1598 		if (HPageMigratable(head))
1599 			goto found;
1600 		skip = compound_nr(head) - (page - head);
1601 		pfn += skip - 1;
1602 	}
1603 	return -ENOENT;
1604 found:
1605 	*movable_pfn = pfn;
1606 	return 0;
1607 }
1608 
1609 static int
1610 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1611 {
1612 	unsigned long pfn;
1613 	struct page *page, *head;
1614 	int ret = 0;
1615 	LIST_HEAD(source);
1616 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1617 				      DEFAULT_RATELIMIT_BURST);
1618 
1619 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1620 		struct folio *folio;
1621 
1622 		if (!pfn_valid(pfn))
1623 			continue;
1624 		page = pfn_to_page(pfn);
1625 		folio = page_folio(page);
1626 		head = &folio->page;
1627 
1628 		if (PageHuge(page)) {
1629 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1630 			isolate_huge_page(head, &source);
1631 			continue;
1632 		} else if (PageTransHuge(page))
1633 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1634 
1635 		/*
1636 		 * HWPoison pages have elevated reference counts so the migration would
1637 		 * fail on them. It also doesn't make any sense to migrate them in the
1638 		 * first place. Still try to unmap such a page in case it is still mapped
1639 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1640 		 * the unmap as the catch all safety net).
1641 		 */
1642 		if (PageHWPoison(page)) {
1643 			if (WARN_ON(folio_test_lru(folio)))
1644 				folio_isolate_lru(folio);
1645 			if (folio_mapped(folio))
1646 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1647 			continue;
1648 		}
1649 
1650 		if (!get_page_unless_zero(page))
1651 			continue;
1652 		/*
1653 		 * We can skip free pages. And we can deal with pages on
1654 		 * LRU and non-lru movable pages.
1655 		 */
1656 		if (PageLRU(page))
1657 			ret = isolate_lru_page(page);
1658 		else
1659 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1660 		if (!ret) { /* Success */
1661 			list_add_tail(&page->lru, &source);
1662 			if (!__PageMovable(page))
1663 				inc_node_page_state(page, NR_ISOLATED_ANON +
1664 						    page_is_file_lru(page));
1665 
1666 		} else {
1667 			if (__ratelimit(&migrate_rs)) {
1668 				pr_warn("failed to isolate pfn %lx\n", pfn);
1669 				dump_page(page, "isolation failed");
1670 			}
1671 		}
1672 		put_page(page);
1673 	}
1674 	if (!list_empty(&source)) {
1675 		nodemask_t nmask = node_states[N_MEMORY];
1676 		struct migration_target_control mtc = {
1677 			.nmask = &nmask,
1678 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1679 		};
1680 
1681 		/*
1682 		 * We have checked that migration range is on a single zone so
1683 		 * we can use the nid of the first page to all the others.
1684 		 */
1685 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1686 
1687 		/*
1688 		 * try to allocate from a different node but reuse this node
1689 		 * if there are no other online nodes to be used (e.g. we are
1690 		 * offlining a part of the only existing node)
1691 		 */
1692 		node_clear(mtc.nid, nmask);
1693 		if (nodes_empty(nmask))
1694 			node_set(mtc.nid, nmask);
1695 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1696 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1697 		if (ret) {
1698 			list_for_each_entry(page, &source, lru) {
1699 				if (__ratelimit(&migrate_rs)) {
1700 					pr_warn("migrating pfn %lx failed ret:%d\n",
1701 						page_to_pfn(page), ret);
1702 					dump_page(page, "migration failure");
1703 				}
1704 			}
1705 			putback_movable_pages(&source);
1706 		}
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 static int __init cmdline_parse_movable_node(char *p)
1713 {
1714 	movable_node_enabled = true;
1715 	return 0;
1716 }
1717 early_param("movable_node", cmdline_parse_movable_node);
1718 
1719 /* check which state of node_states will be changed when offline memory */
1720 static void node_states_check_changes_offline(unsigned long nr_pages,
1721 		struct zone *zone, struct memory_notify *arg)
1722 {
1723 	struct pglist_data *pgdat = zone->zone_pgdat;
1724 	unsigned long present_pages = 0;
1725 	enum zone_type zt;
1726 
1727 	arg->status_change_nid = NUMA_NO_NODE;
1728 	arg->status_change_nid_normal = NUMA_NO_NODE;
1729 
1730 	/*
1731 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1732 	 * If the memory to be offline is within the range
1733 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1734 	 * the zones in that range will become empty after the offlining,
1735 	 * thus we can determine that we need to clear the node from
1736 	 * node_states[N_NORMAL_MEMORY].
1737 	 */
1738 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1739 		present_pages += pgdat->node_zones[zt].present_pages;
1740 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1741 		arg->status_change_nid_normal = zone_to_nid(zone);
1742 
1743 	/*
1744 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1745 	 * does not apply as we don't support 32bit.
1746 	 * Here we count the possible pages from ZONE_MOVABLE.
1747 	 * If after having accounted all the pages, we see that the nr_pages
1748 	 * to be offlined is over or equal to the accounted pages,
1749 	 * we know that the node will become empty, and so, we can clear
1750 	 * it for N_MEMORY as well.
1751 	 */
1752 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1753 
1754 	if (nr_pages >= present_pages)
1755 		arg->status_change_nid = zone_to_nid(zone);
1756 }
1757 
1758 static void node_states_clear_node(int node, struct memory_notify *arg)
1759 {
1760 	if (arg->status_change_nid_normal >= 0)
1761 		node_clear_state(node, N_NORMAL_MEMORY);
1762 
1763 	if (arg->status_change_nid >= 0)
1764 		node_clear_state(node, N_MEMORY);
1765 }
1766 
1767 static int count_system_ram_pages_cb(unsigned long start_pfn,
1768 				     unsigned long nr_pages, void *data)
1769 {
1770 	unsigned long *nr_system_ram_pages = data;
1771 
1772 	*nr_system_ram_pages += nr_pages;
1773 	return 0;
1774 }
1775 
1776 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1777 			struct zone *zone, struct memory_group *group)
1778 {
1779 	const unsigned long end_pfn = start_pfn + nr_pages;
1780 	unsigned long pfn, system_ram_pages = 0;
1781 	const int node = zone_to_nid(zone);
1782 	unsigned long flags;
1783 	struct memory_notify arg;
1784 	char *reason;
1785 	int ret;
1786 
1787 	/*
1788 	 * {on,off}lining is constrained to full memory sections (or more
1789 	 * precisely to memory blocks from the user space POV).
1790 	 * memmap_on_memory is an exception because it reserves initial part
1791 	 * of the physical memory space for vmemmaps. That space is pageblock
1792 	 * aligned.
1793 	 */
1794 	if (WARN_ON_ONCE(!nr_pages ||
1795 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1796 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1797 		return -EINVAL;
1798 
1799 	mem_hotplug_begin();
1800 
1801 	/*
1802 	 * Don't allow to offline memory blocks that contain holes.
1803 	 * Consequently, memory blocks with holes can never get onlined
1804 	 * via the hotplug path - online_pages() - as hotplugged memory has
1805 	 * no holes. This way, we e.g., don't have to worry about marking
1806 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1807 	 * avoid using walk_system_ram_range() later.
1808 	 */
1809 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1810 			      count_system_ram_pages_cb);
1811 	if (system_ram_pages != nr_pages) {
1812 		ret = -EINVAL;
1813 		reason = "memory holes";
1814 		goto failed_removal;
1815 	}
1816 
1817 	/*
1818 	 * We only support offlining of memory blocks managed by a single zone,
1819 	 * checked by calling code. This is just a sanity check that we might
1820 	 * want to remove in the future.
1821 	 */
1822 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1823 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1824 		ret = -EINVAL;
1825 		reason = "multizone range";
1826 		goto failed_removal;
1827 	}
1828 
1829 	/*
1830 	 * Disable pcplists so that page isolation cannot race with freeing
1831 	 * in a way that pages from isolated pageblock are left on pcplists.
1832 	 */
1833 	zone_pcp_disable(zone);
1834 	lru_cache_disable();
1835 
1836 	/* set above range as isolated */
1837 	ret = start_isolate_page_range(start_pfn, end_pfn,
1838 				       MIGRATE_MOVABLE,
1839 				       MEMORY_OFFLINE | REPORT_FAILURE);
1840 	if (ret) {
1841 		reason = "failure to isolate range";
1842 		goto failed_removal_pcplists_disabled;
1843 	}
1844 
1845 	arg.start_pfn = start_pfn;
1846 	arg.nr_pages = nr_pages;
1847 	node_states_check_changes_offline(nr_pages, zone, &arg);
1848 
1849 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1850 	ret = notifier_to_errno(ret);
1851 	if (ret) {
1852 		reason = "notifier failure";
1853 		goto failed_removal_isolated;
1854 	}
1855 
1856 	do {
1857 		pfn = start_pfn;
1858 		do {
1859 			if (signal_pending(current)) {
1860 				ret = -EINTR;
1861 				reason = "signal backoff";
1862 				goto failed_removal_isolated;
1863 			}
1864 
1865 			cond_resched();
1866 
1867 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1868 			if (!ret) {
1869 				/*
1870 				 * TODO: fatal migration failures should bail
1871 				 * out
1872 				 */
1873 				do_migrate_range(pfn, end_pfn);
1874 			}
1875 		} while (!ret);
1876 
1877 		if (ret != -ENOENT) {
1878 			reason = "unmovable page";
1879 			goto failed_removal_isolated;
1880 		}
1881 
1882 		/*
1883 		 * Dissolve free hugepages in the memory block before doing
1884 		 * offlining actually in order to make hugetlbfs's object
1885 		 * counting consistent.
1886 		 */
1887 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1888 		if (ret) {
1889 			reason = "failure to dissolve huge pages";
1890 			goto failed_removal_isolated;
1891 		}
1892 
1893 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1894 
1895 	} while (ret);
1896 
1897 	/* Mark all sections offline and remove free pages from the buddy. */
1898 	__offline_isolated_pages(start_pfn, end_pfn);
1899 	pr_debug("Offlined Pages %ld\n", nr_pages);
1900 
1901 	/*
1902 	 * The memory sections are marked offline, and the pageblock flags
1903 	 * effectively stale; nobody should be touching them. Fixup the number
1904 	 * of isolated pageblocks, memory onlining will properly revert this.
1905 	 */
1906 	spin_lock_irqsave(&zone->lock, flags);
1907 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1908 	spin_unlock_irqrestore(&zone->lock, flags);
1909 
1910 	lru_cache_enable();
1911 	zone_pcp_enable(zone);
1912 
1913 	/* removal success */
1914 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1915 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1916 
1917 	/* reinitialise watermarks and update pcp limits */
1918 	init_per_zone_wmark_min();
1919 
1920 	if (!populated_zone(zone)) {
1921 		zone_pcp_reset(zone);
1922 		build_all_zonelists(NULL);
1923 	}
1924 
1925 	node_states_clear_node(node, &arg);
1926 	if (arg.status_change_nid >= 0) {
1927 		kswapd_stop(node);
1928 		kcompactd_stop(node);
1929 	}
1930 
1931 	writeback_set_ratelimit();
1932 
1933 	memory_notify(MEM_OFFLINE, &arg);
1934 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1935 	mem_hotplug_done();
1936 	return 0;
1937 
1938 failed_removal_isolated:
1939 	/* pushback to free area */
1940 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1941 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1942 failed_removal_pcplists_disabled:
1943 	lru_cache_enable();
1944 	zone_pcp_enable(zone);
1945 failed_removal:
1946 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1947 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1948 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1949 		 reason);
1950 	mem_hotplug_done();
1951 	return ret;
1952 }
1953 
1954 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1955 {
1956 	int ret = !is_memblock_offlined(mem);
1957 	int *nid = arg;
1958 
1959 	*nid = mem->nid;
1960 	if (unlikely(ret)) {
1961 		phys_addr_t beginpa, endpa;
1962 
1963 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1964 		endpa = beginpa + memory_block_size_bytes() - 1;
1965 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1966 			&beginpa, &endpa);
1967 
1968 		return -EBUSY;
1969 	}
1970 	return 0;
1971 }
1972 
1973 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1974 {
1975 	/*
1976 	 * If not set, continue with the next block.
1977 	 */
1978 	return mem->nr_vmemmap_pages;
1979 }
1980 
1981 static int check_cpu_on_node(int nid)
1982 {
1983 	int cpu;
1984 
1985 	for_each_present_cpu(cpu) {
1986 		if (cpu_to_node(cpu) == nid)
1987 			/*
1988 			 * the cpu on this node isn't removed, and we can't
1989 			 * offline this node.
1990 			 */
1991 			return -EBUSY;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1998 {
1999 	int nid = *(int *)arg;
2000 
2001 	/*
2002 	 * If a memory block belongs to multiple nodes, the stored nid is not
2003 	 * reliable. However, such blocks are always online (e.g., cannot get
2004 	 * offlined) and, therefore, are still spanned by the node.
2005 	 */
2006 	return mem->nid == nid ? -EEXIST : 0;
2007 }
2008 
2009 /**
2010  * try_offline_node
2011  * @nid: the node ID
2012  *
2013  * Offline a node if all memory sections and cpus of the node are removed.
2014  *
2015  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2016  * and online/offline operations before this call.
2017  */
2018 void try_offline_node(int nid)
2019 {
2020 	int rc;
2021 
2022 	/*
2023 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2024 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2025 	 * e.g., after the memory block was onlined.
2026 	 */
2027 	if (node_spanned_pages(nid))
2028 		return;
2029 
2030 	/*
2031 	 * Especially offline memory blocks might not be spanned by the
2032 	 * node. They will get spanned by the node once they get onlined.
2033 	 * However, they link to the node in sysfs and can get onlined later.
2034 	 */
2035 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2036 	if (rc)
2037 		return;
2038 
2039 	if (check_cpu_on_node(nid))
2040 		return;
2041 
2042 	/*
2043 	 * all memory/cpu of this node are removed, we can offline this
2044 	 * node now.
2045 	 */
2046 	node_set_offline(nid);
2047 	unregister_one_node(nid);
2048 }
2049 EXPORT_SYMBOL(try_offline_node);
2050 
2051 static int __ref try_remove_memory(u64 start, u64 size)
2052 {
2053 	struct vmem_altmap mhp_altmap = {};
2054 	struct vmem_altmap *altmap = NULL;
2055 	unsigned long nr_vmemmap_pages;
2056 	int rc = 0, nid = NUMA_NO_NODE;
2057 
2058 	BUG_ON(check_hotplug_memory_range(start, size));
2059 
2060 	/*
2061 	 * All memory blocks must be offlined before removing memory.  Check
2062 	 * whether all memory blocks in question are offline and return error
2063 	 * if this is not the case.
2064 	 *
2065 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2066 	 * we'd only try to offline the last determined one -- which is good
2067 	 * enough for the cases we care about.
2068 	 */
2069 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2070 	if (rc)
2071 		return rc;
2072 
2073 	/*
2074 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2075 	 * the same granularity it was added - a single memory block.
2076 	 */
2077 	if (memmap_on_memory) {
2078 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2079 						      get_nr_vmemmap_pages_cb);
2080 		if (nr_vmemmap_pages) {
2081 			if (size != memory_block_size_bytes()) {
2082 				pr_warn("Refuse to remove %#llx - %#llx,"
2083 					"wrong granularity\n",
2084 					start, start + size);
2085 				return -EINVAL;
2086 			}
2087 
2088 			/*
2089 			 * Let remove_pmd_table->free_hugepage_table do the
2090 			 * right thing if we used vmem_altmap when hot-adding
2091 			 * the range.
2092 			 */
2093 			mhp_altmap.alloc = nr_vmemmap_pages;
2094 			altmap = &mhp_altmap;
2095 		}
2096 	}
2097 
2098 	/* remove memmap entry */
2099 	firmware_map_remove(start, start + size, "System RAM");
2100 
2101 	/*
2102 	 * Memory block device removal under the device_hotplug_lock is
2103 	 * a barrier against racing online attempts.
2104 	 */
2105 	remove_memory_block_devices(start, size);
2106 
2107 	mem_hotplug_begin();
2108 
2109 	arch_remove_memory(start, size, altmap);
2110 
2111 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2112 		memblock_phys_free(start, size);
2113 		memblock_remove(start, size);
2114 	}
2115 
2116 	release_mem_region_adjustable(start, size);
2117 
2118 	if (nid != NUMA_NO_NODE)
2119 		try_offline_node(nid);
2120 
2121 	mem_hotplug_done();
2122 	return 0;
2123 }
2124 
2125 /**
2126  * __remove_memory - Remove memory if every memory block is offline
2127  * @start: physical address of the region to remove
2128  * @size: size of the region to remove
2129  *
2130  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2131  * and online/offline operations before this call, as required by
2132  * try_offline_node().
2133  */
2134 void __remove_memory(u64 start, u64 size)
2135 {
2136 
2137 	/*
2138 	 * trigger BUG() if some memory is not offlined prior to calling this
2139 	 * function
2140 	 */
2141 	if (try_remove_memory(start, size))
2142 		BUG();
2143 }
2144 
2145 /*
2146  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2147  * some memory is not offline
2148  */
2149 int remove_memory(u64 start, u64 size)
2150 {
2151 	int rc;
2152 
2153 	lock_device_hotplug();
2154 	rc = try_remove_memory(start, size);
2155 	unlock_device_hotplug();
2156 
2157 	return rc;
2158 }
2159 EXPORT_SYMBOL_GPL(remove_memory);
2160 
2161 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2162 {
2163 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2164 	uint8_t **online_types = arg;
2165 	struct page *page;
2166 	int rc;
2167 
2168 	/*
2169 	 * Sense the online_type via the zone of the memory block. Offlining
2170 	 * with multiple zones within one memory block will be rejected
2171 	 * by offlining code ... so we don't care about that.
2172 	 */
2173 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2174 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2175 		online_type = MMOP_ONLINE_MOVABLE;
2176 
2177 	rc = device_offline(&mem->dev);
2178 	/*
2179 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2180 	 * so try_reonline_memory_block() can do the right thing.
2181 	 */
2182 	if (!rc)
2183 		**online_types = online_type;
2184 
2185 	(*online_types)++;
2186 	/* Ignore if already offline. */
2187 	return rc < 0 ? rc : 0;
2188 }
2189 
2190 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2191 {
2192 	uint8_t **online_types = arg;
2193 	int rc;
2194 
2195 	if (**online_types != MMOP_OFFLINE) {
2196 		mem->online_type = **online_types;
2197 		rc = device_online(&mem->dev);
2198 		if (rc < 0)
2199 			pr_warn("%s: Failed to re-online memory: %d",
2200 				__func__, rc);
2201 	}
2202 
2203 	/* Continue processing all remaining memory blocks. */
2204 	(*online_types)++;
2205 	return 0;
2206 }
2207 
2208 /*
2209  * Try to offline and remove memory. Might take a long time to finish in case
2210  * memory is still in use. Primarily useful for memory devices that logically
2211  * unplugged all memory (so it's no longer in use) and want to offline + remove
2212  * that memory.
2213  */
2214 int offline_and_remove_memory(u64 start, u64 size)
2215 {
2216 	const unsigned long mb_count = size / memory_block_size_bytes();
2217 	uint8_t *online_types, *tmp;
2218 	int rc;
2219 
2220 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2221 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2222 		return -EINVAL;
2223 
2224 	/*
2225 	 * We'll remember the old online type of each memory block, so we can
2226 	 * try to revert whatever we did when offlining one memory block fails
2227 	 * after offlining some others succeeded.
2228 	 */
2229 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2230 				     GFP_KERNEL);
2231 	if (!online_types)
2232 		return -ENOMEM;
2233 	/*
2234 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2235 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2236 	 * try_reonline_memory_block().
2237 	 */
2238 	memset(online_types, MMOP_OFFLINE, mb_count);
2239 
2240 	lock_device_hotplug();
2241 
2242 	tmp = online_types;
2243 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2244 
2245 	/*
2246 	 * In case we succeeded to offline all memory, remove it.
2247 	 * This cannot fail as it cannot get onlined in the meantime.
2248 	 */
2249 	if (!rc) {
2250 		rc = try_remove_memory(start, size);
2251 		if (rc)
2252 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2253 	}
2254 
2255 	/*
2256 	 * Rollback what we did. While memory onlining might theoretically fail
2257 	 * (nacked by a notifier), it barely ever happens.
2258 	 */
2259 	if (rc) {
2260 		tmp = online_types;
2261 		walk_memory_blocks(start, size, &tmp,
2262 				   try_reonline_memory_block);
2263 	}
2264 	unlock_device_hotplug();
2265 
2266 	kfree(online_types);
2267 	return rc;
2268 }
2269 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2270 #endif /* CONFIG_MEMORY_HOTREMOVE */
2271