xref: /openbmc/linux/mm/memory_hotplug.c (revision 2209fda3)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/bootmem.h>
37 #include <linux/compaction.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 /* add this memory to iomem resource */
100 static struct resource *register_memory_resource(u64 start, u64 size)
101 {
102 	struct resource *res, *conflict;
103 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
104 	if (!res)
105 		return ERR_PTR(-ENOMEM);
106 
107 	res->name = "System RAM";
108 	res->start = start;
109 	res->end = start + size - 1;
110 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
111 	conflict =  request_resource_conflict(&iomem_resource, res);
112 	if (conflict) {
113 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
114 			pr_debug("Device unaddressable memory block "
115 				 "memory hotplug at %#010llx !\n",
116 				 (unsigned long long)start);
117 		}
118 		pr_debug("System RAM resource %pR cannot be added\n", res);
119 		kfree(res);
120 		return ERR_PTR(-EEXIST);
121 	}
122 	return res;
123 }
124 
125 static void release_memory_resource(struct resource *res)
126 {
127 	if (!res)
128 		return;
129 	release_resource(res);
130 	kfree(res);
131 	return;
132 }
133 
134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
135 void get_page_bootmem(unsigned long info,  struct page *page,
136 		      unsigned long type)
137 {
138 	page->freelist = (void *)type;
139 	SetPagePrivate(page);
140 	set_page_private(page, info);
141 	page_ref_inc(page);
142 }
143 
144 void put_page_bootmem(struct page *page)
145 {
146 	unsigned long type;
147 
148 	type = (unsigned long) page->freelist;
149 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
150 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
151 
152 	if (page_ref_dec_return(page) == 1) {
153 		page->freelist = NULL;
154 		ClearPagePrivate(page);
155 		set_page_private(page, 0);
156 		INIT_LIST_HEAD(&page->lru);
157 		free_reserved_page(page);
158 	}
159 }
160 
161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
162 #ifndef CONFIG_SPARSEMEM_VMEMMAP
163 static void register_page_bootmem_info_section(unsigned long start_pfn)
164 {
165 	unsigned long *usemap, mapsize, section_nr, i;
166 	struct mem_section *ms;
167 	struct page *page, *memmap;
168 
169 	section_nr = pfn_to_section_nr(start_pfn);
170 	ms = __nr_to_section(section_nr);
171 
172 	/* Get section's memmap address */
173 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
174 
175 	/*
176 	 * Get page for the memmap's phys address
177 	 * XXX: need more consideration for sparse_vmemmap...
178 	 */
179 	page = virt_to_page(memmap);
180 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
181 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
182 
183 	/* remember memmap's page */
184 	for (i = 0; i < mapsize; i++, page++)
185 		get_page_bootmem(section_nr, page, SECTION_INFO);
186 
187 	usemap = ms->pageblock_flags;
188 	page = virt_to_page(usemap);
189 
190 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
191 
192 	for (i = 0; i < mapsize; i++, page++)
193 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
194 
195 }
196 #else /* CONFIG_SPARSEMEM_VMEMMAP */
197 static void register_page_bootmem_info_section(unsigned long start_pfn)
198 {
199 	unsigned long *usemap, mapsize, section_nr, i;
200 	struct mem_section *ms;
201 	struct page *page, *memmap;
202 
203 	section_nr = pfn_to_section_nr(start_pfn);
204 	ms = __nr_to_section(section_nr);
205 
206 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
207 
208 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
209 
210 	usemap = ms->pageblock_flags;
211 	page = virt_to_page(usemap);
212 
213 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214 
215 	for (i = 0; i < mapsize; i++, page++)
216 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217 }
218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
219 
220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
221 {
222 	unsigned long i, pfn, end_pfn, nr_pages;
223 	int node = pgdat->node_id;
224 	struct page *page;
225 
226 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
227 	page = virt_to_page(pgdat);
228 
229 	for (i = 0; i < nr_pages; i++, page++)
230 		get_page_bootmem(node, page, NODE_INFO);
231 
232 	pfn = pgdat->node_start_pfn;
233 	end_pfn = pgdat_end_pfn(pgdat);
234 
235 	/* register section info */
236 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
237 		/*
238 		 * Some platforms can assign the same pfn to multiple nodes - on
239 		 * node0 as well as nodeN.  To avoid registering a pfn against
240 		 * multiple nodes we check that this pfn does not already
241 		 * reside in some other nodes.
242 		 */
243 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
244 			register_page_bootmem_info_section(pfn);
245 	}
246 }
247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
248 
249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
250 		struct vmem_altmap *altmap, bool want_memblock)
251 {
252 	int ret;
253 
254 	if (pfn_valid(phys_start_pfn))
255 		return -EEXIST;
256 
257 	ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
258 	if (ret < 0)
259 		return ret;
260 
261 	if (!want_memblock)
262 		return 0;
263 
264 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
265 }
266 
267 /*
268  * Reasonably generic function for adding memory.  It is
269  * expected that archs that support memory hotplug will
270  * call this function after deciding the zone to which to
271  * add the new pages.
272  */
273 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
274 		unsigned long nr_pages, struct vmem_altmap *altmap,
275 		bool want_memblock)
276 {
277 	unsigned long i;
278 	int err = 0;
279 	int start_sec, end_sec;
280 
281 	/* during initialize mem_map, align hot-added range to section */
282 	start_sec = pfn_to_section_nr(phys_start_pfn);
283 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
284 
285 	if (altmap) {
286 		/*
287 		 * Validate altmap is within bounds of the total request
288 		 */
289 		if (altmap->base_pfn != phys_start_pfn
290 				|| vmem_altmap_offset(altmap) > nr_pages) {
291 			pr_warn_once("memory add fail, invalid altmap\n");
292 			err = -EINVAL;
293 			goto out;
294 		}
295 		altmap->alloc = 0;
296 	}
297 
298 	for (i = start_sec; i <= end_sec; i++) {
299 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
300 				want_memblock);
301 
302 		/*
303 		 * EEXIST is finally dealt with by ioresource collision
304 		 * check. see add_memory() => register_memory_resource()
305 		 * Warning will be printed if there is collision.
306 		 */
307 		if (err && (err != -EEXIST))
308 			break;
309 		err = 0;
310 		cond_resched();
311 	}
312 	vmemmap_populate_print_last();
313 out:
314 	return err;
315 }
316 
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
320 				     unsigned long start_pfn,
321 				     unsigned long end_pfn)
322 {
323 	struct mem_section *ms;
324 
325 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
326 		ms = __pfn_to_section(start_pfn);
327 
328 		if (unlikely(!valid_section(ms)))
329 			continue;
330 
331 		if (unlikely(pfn_to_nid(start_pfn) != nid))
332 			continue;
333 
334 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
335 			continue;
336 
337 		return start_pfn;
338 	}
339 
340 	return 0;
341 }
342 
343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
345 				    unsigned long start_pfn,
346 				    unsigned long end_pfn)
347 {
348 	struct mem_section *ms;
349 	unsigned long pfn;
350 
351 	/* pfn is the end pfn of a memory section. */
352 	pfn = end_pfn - 1;
353 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
354 		ms = __pfn_to_section(pfn);
355 
356 		if (unlikely(!valid_section(ms)))
357 			continue;
358 
359 		if (unlikely(pfn_to_nid(pfn) != nid))
360 			continue;
361 
362 		if (zone && zone != page_zone(pfn_to_page(pfn)))
363 			continue;
364 
365 		return pfn;
366 	}
367 
368 	return 0;
369 }
370 
371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
372 			     unsigned long end_pfn)
373 {
374 	unsigned long zone_start_pfn = zone->zone_start_pfn;
375 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
376 	unsigned long zone_end_pfn = z;
377 	unsigned long pfn;
378 	struct mem_section *ms;
379 	int nid = zone_to_nid(zone);
380 
381 	zone_span_writelock(zone);
382 	if (zone_start_pfn == start_pfn) {
383 		/*
384 		 * If the section is smallest section in the zone, it need
385 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
386 		 * In this case, we find second smallest valid mem_section
387 		 * for shrinking zone.
388 		 */
389 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
390 						zone_end_pfn);
391 		if (pfn) {
392 			zone->zone_start_pfn = pfn;
393 			zone->spanned_pages = zone_end_pfn - pfn;
394 		}
395 	} else if (zone_end_pfn == end_pfn) {
396 		/*
397 		 * If the section is biggest section in the zone, it need
398 		 * shrink zone->spanned_pages.
399 		 * In this case, we find second biggest valid mem_section for
400 		 * shrinking zone.
401 		 */
402 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
403 					       start_pfn);
404 		if (pfn)
405 			zone->spanned_pages = pfn - zone_start_pfn + 1;
406 	}
407 
408 	/*
409 	 * The section is not biggest or smallest mem_section in the zone, it
410 	 * only creates a hole in the zone. So in this case, we need not
411 	 * change the zone. But perhaps, the zone has only hole data. Thus
412 	 * it check the zone has only hole or not.
413 	 */
414 	pfn = zone_start_pfn;
415 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
416 		ms = __pfn_to_section(pfn);
417 
418 		if (unlikely(!valid_section(ms)))
419 			continue;
420 
421 		if (page_zone(pfn_to_page(pfn)) != zone)
422 			continue;
423 
424 		 /* If the section is current section, it continues the loop */
425 		if (start_pfn == pfn)
426 			continue;
427 
428 		/* If we find valid section, we have nothing to do */
429 		zone_span_writeunlock(zone);
430 		return;
431 	}
432 
433 	/* The zone has no valid section */
434 	zone->zone_start_pfn = 0;
435 	zone->spanned_pages = 0;
436 	zone_span_writeunlock(zone);
437 }
438 
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 			      unsigned long start_pfn, unsigned long end_pfn)
441 {
442 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 	unsigned long pgdat_end_pfn = p;
445 	unsigned long pfn;
446 	struct mem_section *ms;
447 	int nid = pgdat->node_id;
448 
449 	if (pgdat_start_pfn == start_pfn) {
450 		/*
451 		 * If the section is smallest section in the pgdat, it need
452 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
453 		 * In this case, we find second smallest valid mem_section
454 		 * for shrinking zone.
455 		 */
456 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
457 						pgdat_end_pfn);
458 		if (pfn) {
459 			pgdat->node_start_pfn = pfn;
460 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
461 		}
462 	} else if (pgdat_end_pfn == end_pfn) {
463 		/*
464 		 * If the section is biggest section in the pgdat, it need
465 		 * shrink pgdat->node_spanned_pages.
466 		 * In this case, we find second biggest valid mem_section for
467 		 * shrinking zone.
468 		 */
469 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
470 					       start_pfn);
471 		if (pfn)
472 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
473 	}
474 
475 	/*
476 	 * If the section is not biggest or smallest mem_section in the pgdat,
477 	 * it only creates a hole in the pgdat. So in this case, we need not
478 	 * change the pgdat.
479 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
480 	 * has only hole or not.
481 	 */
482 	pfn = pgdat_start_pfn;
483 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
484 		ms = __pfn_to_section(pfn);
485 
486 		if (unlikely(!valid_section(ms)))
487 			continue;
488 
489 		if (pfn_to_nid(pfn) != nid)
490 			continue;
491 
492 		 /* If the section is current section, it continues the loop */
493 		if (start_pfn == pfn)
494 			continue;
495 
496 		/* If we find valid section, we have nothing to do */
497 		return;
498 	}
499 
500 	/* The pgdat has no valid section */
501 	pgdat->node_start_pfn = 0;
502 	pgdat->node_spanned_pages = 0;
503 }
504 
505 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
506 {
507 	struct pglist_data *pgdat = zone->zone_pgdat;
508 	int nr_pages = PAGES_PER_SECTION;
509 	unsigned long flags;
510 
511 	pgdat_resize_lock(zone->zone_pgdat, &flags);
512 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
514 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
515 }
516 
517 static int __remove_section(struct zone *zone, struct mem_section *ms,
518 		unsigned long map_offset, struct vmem_altmap *altmap)
519 {
520 	unsigned long start_pfn;
521 	int scn_nr;
522 	int ret = -EINVAL;
523 
524 	if (!valid_section(ms))
525 		return ret;
526 
527 	ret = unregister_memory_section(ms);
528 	if (ret)
529 		return ret;
530 
531 	scn_nr = __section_nr(ms);
532 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
533 	__remove_zone(zone, start_pfn);
534 
535 	sparse_remove_one_section(zone, ms, map_offset, altmap);
536 	return 0;
537 }
538 
539 /**
540  * __remove_pages() - remove sections of pages from a zone
541  * @zone: zone from which pages need to be removed
542  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
543  * @nr_pages: number of pages to remove (must be multiple of section size)
544  * @altmap: alternative device page map or %NULL if default memmap is used
545  *
546  * Generic helper function to remove section mappings and sysfs entries
547  * for the section of the memory we are removing. Caller needs to make
548  * sure that pages are marked reserved and zones are adjust properly by
549  * calling offline_pages().
550  */
551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
552 		 unsigned long nr_pages, struct vmem_altmap *altmap)
553 {
554 	unsigned long i;
555 	unsigned long map_offset = 0;
556 	int sections_to_remove, ret = 0;
557 
558 	/* In the ZONE_DEVICE case device driver owns the memory region */
559 	if (is_dev_zone(zone)) {
560 		if (altmap)
561 			map_offset = vmem_altmap_offset(altmap);
562 	} else {
563 		resource_size_t start, size;
564 
565 		start = phys_start_pfn << PAGE_SHIFT;
566 		size = nr_pages * PAGE_SIZE;
567 
568 		ret = release_mem_region_adjustable(&iomem_resource, start,
569 					size);
570 		if (ret) {
571 			resource_size_t endres = start + size - 1;
572 
573 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
574 					&start, &endres, ret);
575 		}
576 	}
577 
578 	clear_zone_contiguous(zone);
579 
580 	/*
581 	 * We can only remove entire sections
582 	 */
583 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
584 	BUG_ON(nr_pages % PAGES_PER_SECTION);
585 
586 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
587 	for (i = 0; i < sections_to_remove; i++) {
588 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
589 
590 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 				altmap);
592 		map_offset = 0;
593 		if (ret)
594 			break;
595 	}
596 
597 	set_zone_contiguous(zone);
598 
599 	return ret;
600 }
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
602 
603 int set_online_page_callback(online_page_callback_t callback)
604 {
605 	int rc = -EINVAL;
606 
607 	get_online_mems();
608 	mutex_lock(&online_page_callback_lock);
609 
610 	if (online_page_callback == generic_online_page) {
611 		online_page_callback = callback;
612 		rc = 0;
613 	}
614 
615 	mutex_unlock(&online_page_callback_lock);
616 	put_online_mems();
617 
618 	return rc;
619 }
620 EXPORT_SYMBOL_GPL(set_online_page_callback);
621 
622 int restore_online_page_callback(online_page_callback_t callback)
623 {
624 	int rc = -EINVAL;
625 
626 	get_online_mems();
627 	mutex_lock(&online_page_callback_lock);
628 
629 	if (online_page_callback == callback) {
630 		online_page_callback = generic_online_page;
631 		rc = 0;
632 	}
633 
634 	mutex_unlock(&online_page_callback_lock);
635 	put_online_mems();
636 
637 	return rc;
638 }
639 EXPORT_SYMBOL_GPL(restore_online_page_callback);
640 
641 void __online_page_set_limits(struct page *page)
642 {
643 }
644 EXPORT_SYMBOL_GPL(__online_page_set_limits);
645 
646 void __online_page_increment_counters(struct page *page)
647 {
648 	adjust_managed_page_count(page, 1);
649 }
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
651 
652 void __online_page_free(struct page *page)
653 {
654 	__free_reserved_page(page);
655 }
656 EXPORT_SYMBOL_GPL(__online_page_free);
657 
658 static void generic_online_page(struct page *page)
659 {
660 	__online_page_set_limits(page);
661 	__online_page_increment_counters(page);
662 	__online_page_free(page);
663 }
664 
665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 			void *arg)
667 {
668 	unsigned long i;
669 	unsigned long onlined_pages = *(unsigned long *)arg;
670 	struct page *page;
671 
672 	if (PageReserved(pfn_to_page(start_pfn)))
673 		for (i = 0; i < nr_pages; i++) {
674 			page = pfn_to_page(start_pfn + i);
675 			(*online_page_callback)(page);
676 			onlined_pages++;
677 		}
678 
679 	online_mem_sections(start_pfn, start_pfn + nr_pages);
680 
681 	*(unsigned long *)arg = onlined_pages;
682 	return 0;
683 }
684 
685 /* check which state of node_states will be changed when online memory */
686 static void node_states_check_changes_online(unsigned long nr_pages,
687 	struct zone *zone, struct memory_notify *arg)
688 {
689 	int nid = zone_to_nid(zone);
690 
691 	arg->status_change_nid = -1;
692 	arg->status_change_nid_normal = -1;
693 	arg->status_change_nid_high = -1;
694 
695 	if (!node_state(nid, N_MEMORY))
696 		arg->status_change_nid = nid;
697 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
698 		arg->status_change_nid_normal = nid;
699 #ifdef CONFIG_HIGHMEM
700 	if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
701 		arg->status_change_nid_high = nid;
702 #endif
703 }
704 
705 static void node_states_set_node(int node, struct memory_notify *arg)
706 {
707 	if (arg->status_change_nid_normal >= 0)
708 		node_set_state(node, N_NORMAL_MEMORY);
709 
710 	if (arg->status_change_nid_high >= 0)
711 		node_set_state(node, N_HIGH_MEMORY);
712 
713 	if (arg->status_change_nid >= 0)
714 		node_set_state(node, N_MEMORY);
715 }
716 
717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
718 		unsigned long nr_pages)
719 {
720 	unsigned long old_end_pfn = zone_end_pfn(zone);
721 
722 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
723 		zone->zone_start_pfn = start_pfn;
724 
725 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
726 }
727 
728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
729                                      unsigned long nr_pages)
730 {
731 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
732 
733 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
734 		pgdat->node_start_pfn = start_pfn;
735 
736 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
737 }
738 
739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
740 		unsigned long nr_pages, struct vmem_altmap *altmap)
741 {
742 	struct pglist_data *pgdat = zone->zone_pgdat;
743 	int nid = pgdat->node_id;
744 	unsigned long flags;
745 
746 	if (zone_is_empty(zone))
747 		init_currently_empty_zone(zone, start_pfn, nr_pages);
748 
749 	clear_zone_contiguous(zone);
750 
751 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
752 	pgdat_resize_lock(pgdat, &flags);
753 	zone_span_writelock(zone);
754 	resize_zone_range(zone, start_pfn, nr_pages);
755 	zone_span_writeunlock(zone);
756 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 	pgdat_resize_unlock(pgdat, &flags);
758 
759 	/*
760 	 * TODO now we have a visible range of pages which are not associated
761 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
762 	 * expects the zone spans the pfn range. All the pages in the range
763 	 * are reserved so nobody should be touching them so we should be safe
764 	 */
765 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
766 			MEMMAP_HOTPLUG, altmap);
767 
768 	set_zone_contiguous(zone);
769 }
770 
771 /*
772  * Returns a default kernel memory zone for the given pfn range.
773  * If no kernel zone covers this pfn range it will automatically go
774  * to the ZONE_NORMAL.
775  */
776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
777 		unsigned long nr_pages)
778 {
779 	struct pglist_data *pgdat = NODE_DATA(nid);
780 	int zid;
781 
782 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
783 		struct zone *zone = &pgdat->node_zones[zid];
784 
785 		if (zone_intersects(zone, start_pfn, nr_pages))
786 			return zone;
787 	}
788 
789 	return &pgdat->node_zones[ZONE_NORMAL];
790 }
791 
792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
793 		unsigned long nr_pages)
794 {
795 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
796 			nr_pages);
797 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
799 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
800 
801 	/*
802 	 * We inherit the existing zone in a simple case where zones do not
803 	 * overlap in the given range
804 	 */
805 	if (in_kernel ^ in_movable)
806 		return (in_kernel) ? kernel_zone : movable_zone;
807 
808 	/*
809 	 * If the range doesn't belong to any zone or two zones overlap in the
810 	 * given range then we use movable zone only if movable_node is
811 	 * enabled because we always online to a kernel zone by default.
812 	 */
813 	return movable_node_enabled ? movable_zone : kernel_zone;
814 }
815 
816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
817 		unsigned long nr_pages)
818 {
819 	if (online_type == MMOP_ONLINE_KERNEL)
820 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
821 
822 	if (online_type == MMOP_ONLINE_MOVABLE)
823 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
824 
825 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
826 }
827 
828 /*
829  * Associates the given pfn range with the given node and the zone appropriate
830  * for the given online type.
831  */
832 static struct zone * __meminit move_pfn_range(int online_type, int nid,
833 		unsigned long start_pfn, unsigned long nr_pages)
834 {
835 	struct zone *zone;
836 
837 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
838 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
839 	return zone;
840 }
841 
842 /* Must be protected by mem_hotplug_begin() or a device_lock */
843 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
844 {
845 	unsigned long flags;
846 	unsigned long onlined_pages = 0;
847 	struct zone *zone;
848 	int need_zonelists_rebuild = 0;
849 	int nid;
850 	int ret;
851 	struct memory_notify arg;
852 	struct memory_block *mem;
853 
854 	/*
855 	 * We can't use pfn_to_nid() because nid might be stored in struct page
856 	 * which is not yet initialized. Instead, we find nid from memory block.
857 	 */
858 	mem = find_memory_block(__pfn_to_section(pfn));
859 	nid = mem->nid;
860 
861 	/* associate pfn range with the zone */
862 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
863 
864 	arg.start_pfn = pfn;
865 	arg.nr_pages = nr_pages;
866 	node_states_check_changes_online(nr_pages, zone, &arg);
867 
868 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
869 	ret = notifier_to_errno(ret);
870 	if (ret)
871 		goto failed_addition;
872 
873 	/*
874 	 * If this zone is not populated, then it is not in zonelist.
875 	 * This means the page allocator ignores this zone.
876 	 * So, zonelist must be updated after online.
877 	 */
878 	if (!populated_zone(zone)) {
879 		need_zonelists_rebuild = 1;
880 		setup_zone_pageset(zone);
881 	}
882 
883 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
884 		online_pages_range);
885 	if (ret) {
886 		if (need_zonelists_rebuild)
887 			zone_pcp_reset(zone);
888 		goto failed_addition;
889 	}
890 
891 	zone->present_pages += onlined_pages;
892 
893 	pgdat_resize_lock(zone->zone_pgdat, &flags);
894 	zone->zone_pgdat->node_present_pages += onlined_pages;
895 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
896 
897 	if (onlined_pages) {
898 		node_states_set_node(nid, &arg);
899 		if (need_zonelists_rebuild)
900 			build_all_zonelists(NULL);
901 		else
902 			zone_pcp_update(zone);
903 	}
904 
905 	init_per_zone_wmark_min();
906 
907 	if (onlined_pages) {
908 		kswapd_run(nid);
909 		kcompactd_run(nid);
910 	}
911 
912 	vm_total_pages = nr_free_pagecache_pages();
913 
914 	writeback_set_ratelimit();
915 
916 	if (onlined_pages)
917 		memory_notify(MEM_ONLINE, &arg);
918 	return 0;
919 
920 failed_addition:
921 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
922 		 (unsigned long long) pfn << PAGE_SHIFT,
923 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
924 	memory_notify(MEM_CANCEL_ONLINE, &arg);
925 	return ret;
926 }
927 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
928 
929 static void reset_node_present_pages(pg_data_t *pgdat)
930 {
931 	struct zone *z;
932 
933 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
934 		z->present_pages = 0;
935 
936 	pgdat->node_present_pages = 0;
937 }
938 
939 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
940 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
941 {
942 	struct pglist_data *pgdat;
943 	unsigned long start_pfn = PFN_DOWN(start);
944 
945 	pgdat = NODE_DATA(nid);
946 	if (!pgdat) {
947 		pgdat = arch_alloc_nodedata(nid);
948 		if (!pgdat)
949 			return NULL;
950 
951 		arch_refresh_nodedata(nid, pgdat);
952 	} else {
953 		/*
954 		 * Reset the nr_zones, order and classzone_idx before reuse.
955 		 * Note that kswapd will init kswapd_classzone_idx properly
956 		 * when it starts in the near future.
957 		 */
958 		pgdat->nr_zones = 0;
959 		pgdat->kswapd_order = 0;
960 		pgdat->kswapd_classzone_idx = 0;
961 	}
962 
963 	/* we can use NODE_DATA(nid) from here */
964 
965 	pgdat->node_id = nid;
966 	pgdat->node_start_pfn = start_pfn;
967 
968 	/* init node's zones as empty zones, we don't have any present pages.*/
969 	free_area_init_core_hotplug(nid);
970 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
971 
972 	/*
973 	 * The node we allocated has no zone fallback lists. For avoiding
974 	 * to access not-initialized zonelist, build here.
975 	 */
976 	build_all_zonelists(pgdat);
977 
978 	/*
979 	 * When memory is hot-added, all the memory is in offline state. So
980 	 * clear all zones' present_pages because they will be updated in
981 	 * online_pages() and offline_pages().
982 	 */
983 	reset_node_managed_pages(pgdat);
984 	reset_node_present_pages(pgdat);
985 
986 	return pgdat;
987 }
988 
989 static void rollback_node_hotadd(int nid)
990 {
991 	pg_data_t *pgdat = NODE_DATA(nid);
992 
993 	arch_refresh_nodedata(nid, NULL);
994 	free_percpu(pgdat->per_cpu_nodestats);
995 	arch_free_nodedata(pgdat);
996 	return;
997 }
998 
999 
1000 /**
1001  * try_online_node - online a node if offlined
1002  * @nid: the node ID
1003  * @start: start addr of the node
1004  * @set_node_online: Whether we want to online the node
1005  * called by cpu_up() to online a node without onlined memory.
1006  *
1007  * Returns:
1008  * 1 -> a new node has been allocated
1009  * 0 -> the node is already online
1010  * -ENOMEM -> the node could not be allocated
1011  */
1012 static int __try_online_node(int nid, u64 start, bool set_node_online)
1013 {
1014 	pg_data_t *pgdat;
1015 	int ret = 1;
1016 
1017 	if (node_online(nid))
1018 		return 0;
1019 
1020 	pgdat = hotadd_new_pgdat(nid, start);
1021 	if (!pgdat) {
1022 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1023 		ret = -ENOMEM;
1024 		goto out;
1025 	}
1026 
1027 	if (set_node_online) {
1028 		node_set_online(nid);
1029 		ret = register_one_node(nid);
1030 		BUG_ON(ret);
1031 	}
1032 out:
1033 	return ret;
1034 }
1035 
1036 /*
1037  * Users of this function always want to online/register the node
1038  */
1039 int try_online_node(int nid)
1040 {
1041 	int ret;
1042 
1043 	mem_hotplug_begin();
1044 	ret =  __try_online_node(nid, 0, true);
1045 	mem_hotplug_done();
1046 	return ret;
1047 }
1048 
1049 static int check_hotplug_memory_range(u64 start, u64 size)
1050 {
1051 	unsigned long block_sz = memory_block_size_bytes();
1052 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1053 	u64 nr_pages = size >> PAGE_SHIFT;
1054 	u64 start_pfn = PFN_DOWN(start);
1055 
1056 	/* memory range must be block size aligned */
1057 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1058 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1059 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1060 		       block_sz, start, size);
1061 		return -EINVAL;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static int online_memory_block(struct memory_block *mem, void *arg)
1068 {
1069 	return device_online(&mem->dev);
1070 }
1071 
1072 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1073 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1074 {
1075 	u64 start, size;
1076 	bool new_node = false;
1077 	int ret;
1078 
1079 	start = res->start;
1080 	size = resource_size(res);
1081 
1082 	ret = check_hotplug_memory_range(start, size);
1083 	if (ret)
1084 		return ret;
1085 
1086 	mem_hotplug_begin();
1087 
1088 	/*
1089 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1090 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1091 	 * this new range and calculate total pages correctly.  The range will
1092 	 * be removed at hot-remove time.
1093 	 */
1094 	memblock_add_node(start, size, nid);
1095 
1096 	ret = __try_online_node(nid, start, false);
1097 	if (ret < 0)
1098 		goto error;
1099 	new_node = ret;
1100 
1101 	/* call arch's memory hotadd */
1102 	ret = arch_add_memory(nid, start, size, NULL, true);
1103 	if (ret < 0)
1104 		goto error;
1105 
1106 	if (new_node) {
1107 		/* If sysfs file of new node can't be created, cpu on the node
1108 		 * can't be hot-added. There is no rollback way now.
1109 		 * So, check by BUG_ON() to catch it reluctantly..
1110 		 * We online node here. We can't roll back from here.
1111 		 */
1112 		node_set_online(nid);
1113 		ret = __register_one_node(nid);
1114 		BUG_ON(ret);
1115 	}
1116 
1117 	/* link memory sections under this node.*/
1118 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1119 	BUG_ON(ret);
1120 
1121 	/* create new memmap entry */
1122 	firmware_map_add_hotplug(start, start + size, "System RAM");
1123 
1124 	/* online pages if requested */
1125 	if (online)
1126 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1127 				  NULL, online_memory_block);
1128 
1129 	goto out;
1130 
1131 error:
1132 	/* rollback pgdat allocation and others */
1133 	if (new_node)
1134 		rollback_node_hotadd(nid);
1135 	memblock_remove(start, size);
1136 
1137 out:
1138 	mem_hotplug_done();
1139 	return ret;
1140 }
1141 EXPORT_SYMBOL_GPL(add_memory_resource);
1142 
1143 int __ref add_memory(int nid, u64 start, u64 size)
1144 {
1145 	struct resource *res;
1146 	int ret;
1147 
1148 	res = register_memory_resource(start, size);
1149 	if (IS_ERR(res))
1150 		return PTR_ERR(res);
1151 
1152 	ret = add_memory_resource(nid, res, memhp_auto_online);
1153 	if (ret < 0)
1154 		release_memory_resource(res);
1155 	return ret;
1156 }
1157 EXPORT_SYMBOL_GPL(add_memory);
1158 
1159 #ifdef CONFIG_MEMORY_HOTREMOVE
1160 /*
1161  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1162  * set and the size of the free page is given by page_order(). Using this,
1163  * the function determines if the pageblock contains only free pages.
1164  * Due to buddy contraints, a free page at least the size of a pageblock will
1165  * be located at the start of the pageblock
1166  */
1167 static inline int pageblock_free(struct page *page)
1168 {
1169 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1170 }
1171 
1172 /* Return the start of the next active pageblock after a given page */
1173 static struct page *next_active_pageblock(struct page *page)
1174 {
1175 	/* Ensure the starting page is pageblock-aligned */
1176 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1177 
1178 	/* If the entire pageblock is free, move to the end of free page */
1179 	if (pageblock_free(page)) {
1180 		int order;
1181 		/* be careful. we don't have locks, page_order can be changed.*/
1182 		order = page_order(page);
1183 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1184 			return page + (1 << order);
1185 	}
1186 
1187 	return page + pageblock_nr_pages;
1188 }
1189 
1190 static bool is_pageblock_removable_nolock(struct page *page)
1191 {
1192 	struct zone *zone;
1193 	unsigned long pfn;
1194 
1195 	/*
1196 	 * We have to be careful here because we are iterating over memory
1197 	 * sections which are not zone aware so we might end up outside of
1198 	 * the zone but still within the section.
1199 	 * We have to take care about the node as well. If the node is offline
1200 	 * its NODE_DATA will be NULL - see page_zone.
1201 	 */
1202 	if (!node_online(page_to_nid(page)))
1203 		return false;
1204 
1205 	zone = page_zone(page);
1206 	pfn = page_to_pfn(page);
1207 	if (!zone_spans_pfn(zone, pfn))
1208 		return false;
1209 
1210 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
1211 }
1212 
1213 /* Checks if this range of memory is likely to be hot-removable. */
1214 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1215 {
1216 	struct page *page = pfn_to_page(start_pfn);
1217 	struct page *end_page = page + nr_pages;
1218 
1219 	/* Check the starting page of each pageblock within the range */
1220 	for (; page < end_page; page = next_active_pageblock(page)) {
1221 		if (!is_pageblock_removable_nolock(page))
1222 			return false;
1223 		cond_resched();
1224 	}
1225 
1226 	/* All pageblocks in the memory block are likely to be hot-removable */
1227 	return true;
1228 }
1229 
1230 /*
1231  * Confirm all pages in a range [start, end) belong to the same zone.
1232  * When true, return its valid [start, end).
1233  */
1234 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1235 			 unsigned long *valid_start, unsigned long *valid_end)
1236 {
1237 	unsigned long pfn, sec_end_pfn;
1238 	unsigned long start, end;
1239 	struct zone *zone = NULL;
1240 	struct page *page;
1241 	int i;
1242 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1243 	     pfn < end_pfn;
1244 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1245 		/* Make sure the memory section is present first */
1246 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1247 			continue;
1248 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1249 		     pfn += MAX_ORDER_NR_PAGES) {
1250 			i = 0;
1251 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1252 			while ((i < MAX_ORDER_NR_PAGES) &&
1253 				!pfn_valid_within(pfn + i))
1254 				i++;
1255 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1256 				continue;
1257 			page = pfn_to_page(pfn + i);
1258 			if (zone && page_zone(page) != zone)
1259 				return 0;
1260 			if (!zone)
1261 				start = pfn + i;
1262 			zone = page_zone(page);
1263 			end = pfn + MAX_ORDER_NR_PAGES;
1264 		}
1265 	}
1266 
1267 	if (zone) {
1268 		*valid_start = start;
1269 		*valid_end = min(end, end_pfn);
1270 		return 1;
1271 	} else {
1272 		return 0;
1273 	}
1274 }
1275 
1276 /*
1277  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1278  * non-lru movable pages and hugepages). We scan pfn because it's much
1279  * easier than scanning over linked list. This function returns the pfn
1280  * of the first found movable page if it's found, otherwise 0.
1281  */
1282 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1283 {
1284 	unsigned long pfn;
1285 	struct page *page;
1286 	for (pfn = start; pfn < end; pfn++) {
1287 		if (pfn_valid(pfn)) {
1288 			page = pfn_to_page(pfn);
1289 			if (PageLRU(page))
1290 				return pfn;
1291 			if (__PageMovable(page))
1292 				return pfn;
1293 			if (PageHuge(page)) {
1294 				if (hugepage_migration_supported(page_hstate(page)) &&
1295 				    page_huge_active(page))
1296 					return pfn;
1297 				else
1298 					pfn = round_up(pfn + 1,
1299 						1 << compound_order(page)) - 1;
1300 			}
1301 		}
1302 	}
1303 	return 0;
1304 }
1305 
1306 static struct page *new_node_page(struct page *page, unsigned long private)
1307 {
1308 	int nid = page_to_nid(page);
1309 	nodemask_t nmask = node_states[N_MEMORY];
1310 
1311 	/*
1312 	 * try to allocate from a different node but reuse this node if there
1313 	 * are no other online nodes to be used (e.g. we are offlining a part
1314 	 * of the only existing node)
1315 	 */
1316 	node_clear(nid, nmask);
1317 	if (nodes_empty(nmask))
1318 		node_set(nid, nmask);
1319 
1320 	return new_page_nodemask(page, nid, &nmask);
1321 }
1322 
1323 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1324 static int
1325 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1326 {
1327 	unsigned long pfn;
1328 	struct page *page;
1329 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1330 	int not_managed = 0;
1331 	int ret = 0;
1332 	LIST_HEAD(source);
1333 
1334 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1335 		if (!pfn_valid(pfn))
1336 			continue;
1337 		page = pfn_to_page(pfn);
1338 
1339 		if (PageHuge(page)) {
1340 			struct page *head = compound_head(page);
1341 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1342 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1343 				ret = -EBUSY;
1344 				break;
1345 			}
1346 			if (isolate_huge_page(page, &source))
1347 				move_pages -= 1 << compound_order(head);
1348 			continue;
1349 		} else if (PageTransHuge(page))
1350 			pfn = page_to_pfn(compound_head(page))
1351 				+ hpage_nr_pages(page) - 1;
1352 
1353 		if (!get_page_unless_zero(page))
1354 			continue;
1355 		/*
1356 		 * We can skip free pages. And we can deal with pages on
1357 		 * LRU and non-lru movable pages.
1358 		 */
1359 		if (PageLRU(page))
1360 			ret = isolate_lru_page(page);
1361 		else
1362 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1363 		if (!ret) { /* Success */
1364 			put_page(page);
1365 			list_add_tail(&page->lru, &source);
1366 			move_pages--;
1367 			if (!__PageMovable(page))
1368 				inc_node_page_state(page, NR_ISOLATED_ANON +
1369 						    page_is_file_cache(page));
1370 
1371 		} else {
1372 #ifdef CONFIG_DEBUG_VM
1373 			pr_alert("failed to isolate pfn %lx\n", pfn);
1374 			dump_page(page, "isolation failed");
1375 #endif
1376 			put_page(page);
1377 			/* Because we don't have big zone->lock. we should
1378 			   check this again here. */
1379 			if (page_count(page)) {
1380 				not_managed++;
1381 				ret = -EBUSY;
1382 				break;
1383 			}
1384 		}
1385 	}
1386 	if (!list_empty(&source)) {
1387 		if (not_managed) {
1388 			putback_movable_pages(&source);
1389 			goto out;
1390 		}
1391 
1392 		/* Allocate a new page from the nearest neighbor node */
1393 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1394 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1395 		if (ret)
1396 			putback_movable_pages(&source);
1397 	}
1398 out:
1399 	return ret;
1400 }
1401 
1402 /*
1403  * remove from free_area[] and mark all as Reserved.
1404  */
1405 static int
1406 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1407 			void *data)
1408 {
1409 	__offline_isolated_pages(start, start + nr_pages);
1410 	return 0;
1411 }
1412 
1413 static void
1414 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1415 {
1416 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1417 				offline_isolated_pages_cb);
1418 }
1419 
1420 /*
1421  * Check all pages in range, recoreded as memory resource, are isolated.
1422  */
1423 static int
1424 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1425 			void *data)
1426 {
1427 	int ret;
1428 	long offlined = *(long *)data;
1429 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1430 	offlined = nr_pages;
1431 	if (!ret)
1432 		*(long *)data += offlined;
1433 	return ret;
1434 }
1435 
1436 static long
1437 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1438 {
1439 	long offlined = 0;
1440 	int ret;
1441 
1442 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1443 			check_pages_isolated_cb);
1444 	if (ret < 0)
1445 		offlined = (long)ret;
1446 	return offlined;
1447 }
1448 
1449 static int __init cmdline_parse_movable_node(char *p)
1450 {
1451 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1452 	movable_node_enabled = true;
1453 #else
1454 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1455 #endif
1456 	return 0;
1457 }
1458 early_param("movable_node", cmdline_parse_movable_node);
1459 
1460 /* check which state of node_states will be changed when offline memory */
1461 static void node_states_check_changes_offline(unsigned long nr_pages,
1462 		struct zone *zone, struct memory_notify *arg)
1463 {
1464 	struct pglist_data *pgdat = zone->zone_pgdat;
1465 	unsigned long present_pages = 0;
1466 	enum zone_type zt;
1467 
1468 	arg->status_change_nid = -1;
1469 	arg->status_change_nid_normal = -1;
1470 	arg->status_change_nid_high = -1;
1471 
1472 	/*
1473 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1474 	 * If the memory to be offline is within the range
1475 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1476 	 * the zones in that range will become empty after the offlining,
1477 	 * thus we can determine that we need to clear the node from
1478 	 * node_states[N_NORMAL_MEMORY].
1479 	 */
1480 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1481 		present_pages += pgdat->node_zones[zt].present_pages;
1482 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1483 		arg->status_change_nid_normal = zone_to_nid(zone);
1484 
1485 #ifdef CONFIG_HIGHMEM
1486 	/*
1487 	 * node_states[N_HIGH_MEMORY] contains nodes which
1488 	 * have normal memory or high memory.
1489 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1490 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1491 	 * we determine that the zones in that range become empty,
1492 	 * we need to clear the node for N_HIGH_MEMORY.
1493 	 */
1494 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1495 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1496 		arg->status_change_nid_high = zone_to_nid(zone);
1497 #endif
1498 
1499 	/*
1500 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1501 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1502 	 * as well.
1503 	 * Here we count the possible pages from ZONE_MOVABLE.
1504 	 * If after having accounted all the pages, we see that the nr_pages
1505 	 * to be offlined is over or equal to the accounted pages,
1506 	 * we know that the node will become empty, and so, we can clear
1507 	 * it for N_MEMORY as well.
1508 	 */
1509 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1510 
1511 	if (nr_pages >= present_pages)
1512 		arg->status_change_nid = zone_to_nid(zone);
1513 }
1514 
1515 static void node_states_clear_node(int node, struct memory_notify *arg)
1516 {
1517 	if (arg->status_change_nid_normal >= 0)
1518 		node_clear_state(node, N_NORMAL_MEMORY);
1519 
1520 	if (arg->status_change_nid_high >= 0)
1521 		node_clear_state(node, N_HIGH_MEMORY);
1522 
1523 	if (arg->status_change_nid >= 0)
1524 		node_clear_state(node, N_MEMORY);
1525 }
1526 
1527 static int __ref __offline_pages(unsigned long start_pfn,
1528 		  unsigned long end_pfn)
1529 {
1530 	unsigned long pfn, nr_pages;
1531 	long offlined_pages;
1532 	int ret, node;
1533 	unsigned long flags;
1534 	unsigned long valid_start, valid_end;
1535 	struct zone *zone;
1536 	struct memory_notify arg;
1537 
1538 	/* at least, alignment against pageblock is necessary */
1539 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1540 		return -EINVAL;
1541 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1542 		return -EINVAL;
1543 	/* This makes hotplug much easier...and readable.
1544 	   we assume this for now. .*/
1545 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
1546 		return -EINVAL;
1547 
1548 	zone = page_zone(pfn_to_page(valid_start));
1549 	node = zone_to_nid(zone);
1550 	nr_pages = end_pfn - start_pfn;
1551 
1552 	/* set above range as isolated */
1553 	ret = start_isolate_page_range(start_pfn, end_pfn,
1554 				       MIGRATE_MOVABLE, true);
1555 	if (ret)
1556 		return ret;
1557 
1558 	arg.start_pfn = start_pfn;
1559 	arg.nr_pages = nr_pages;
1560 	node_states_check_changes_offline(nr_pages, zone, &arg);
1561 
1562 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1563 	ret = notifier_to_errno(ret);
1564 	if (ret)
1565 		goto failed_removal;
1566 
1567 	pfn = start_pfn;
1568 repeat:
1569 	/* start memory hot removal */
1570 	ret = -EINTR;
1571 	if (signal_pending(current))
1572 		goto failed_removal;
1573 
1574 	cond_resched();
1575 	lru_add_drain_all();
1576 	drain_all_pages(zone);
1577 
1578 	pfn = scan_movable_pages(start_pfn, end_pfn);
1579 	if (pfn) { /* We have movable pages */
1580 		ret = do_migrate_range(pfn, end_pfn);
1581 		goto repeat;
1582 	}
1583 
1584 	/*
1585 	 * dissolve free hugepages in the memory block before doing offlining
1586 	 * actually in order to make hugetlbfs's object counting consistent.
1587 	 */
1588 	ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1589 	if (ret)
1590 		goto failed_removal;
1591 	/* check again */
1592 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1593 	if (offlined_pages < 0)
1594 		goto repeat;
1595 	pr_info("Offlined Pages %ld\n", offlined_pages);
1596 	/* Ok, all of our target is isolated.
1597 	   We cannot do rollback at this point. */
1598 	offline_isolated_pages(start_pfn, end_pfn);
1599 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1600 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1601 	/* removal success */
1602 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1603 	zone->present_pages -= offlined_pages;
1604 
1605 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1606 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1607 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1608 
1609 	init_per_zone_wmark_min();
1610 
1611 	if (!populated_zone(zone)) {
1612 		zone_pcp_reset(zone);
1613 		build_all_zonelists(NULL);
1614 	} else
1615 		zone_pcp_update(zone);
1616 
1617 	node_states_clear_node(node, &arg);
1618 	if (arg.status_change_nid >= 0) {
1619 		kswapd_stop(node);
1620 		kcompactd_stop(node);
1621 	}
1622 
1623 	vm_total_pages = nr_free_pagecache_pages();
1624 	writeback_set_ratelimit();
1625 
1626 	memory_notify(MEM_OFFLINE, &arg);
1627 	return 0;
1628 
1629 failed_removal:
1630 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1631 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1632 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1633 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1634 	/* pushback to free area */
1635 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1636 	return ret;
1637 }
1638 
1639 /* Must be protected by mem_hotplug_begin() or a device_lock */
1640 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1641 {
1642 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1643 }
1644 #endif /* CONFIG_MEMORY_HOTREMOVE */
1645 
1646 /**
1647  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1648  * @start_pfn: start pfn of the memory range
1649  * @end_pfn: end pfn of the memory range
1650  * @arg: argument passed to func
1651  * @func: callback for each memory section walked
1652  *
1653  * This function walks through all present mem sections in range
1654  * [start_pfn, end_pfn) and call func on each mem section.
1655  *
1656  * Returns the return value of func.
1657  */
1658 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1659 		void *arg, int (*func)(struct memory_block *, void *))
1660 {
1661 	struct memory_block *mem = NULL;
1662 	struct mem_section *section;
1663 	unsigned long pfn, section_nr;
1664 	int ret;
1665 
1666 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1667 		section_nr = pfn_to_section_nr(pfn);
1668 		if (!present_section_nr(section_nr))
1669 			continue;
1670 
1671 		section = __nr_to_section(section_nr);
1672 		/* same memblock? */
1673 		if (mem)
1674 			if ((section_nr >= mem->start_section_nr) &&
1675 			    (section_nr <= mem->end_section_nr))
1676 				continue;
1677 
1678 		mem = find_memory_block_hinted(section, mem);
1679 		if (!mem)
1680 			continue;
1681 
1682 		ret = func(mem, arg);
1683 		if (ret) {
1684 			kobject_put(&mem->dev.kobj);
1685 			return ret;
1686 		}
1687 	}
1688 
1689 	if (mem)
1690 		kobject_put(&mem->dev.kobj);
1691 
1692 	return 0;
1693 }
1694 
1695 #ifdef CONFIG_MEMORY_HOTREMOVE
1696 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1697 {
1698 	int ret = !is_memblock_offlined(mem);
1699 
1700 	if (unlikely(ret)) {
1701 		phys_addr_t beginpa, endpa;
1702 
1703 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1704 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1705 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1706 			&beginpa, &endpa);
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 static int check_cpu_on_node(pg_data_t *pgdat)
1713 {
1714 	int cpu;
1715 
1716 	for_each_present_cpu(cpu) {
1717 		if (cpu_to_node(cpu) == pgdat->node_id)
1718 			/*
1719 			 * the cpu on this node isn't removed, and we can't
1720 			 * offline this node.
1721 			 */
1722 			return -EBUSY;
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 static void unmap_cpu_on_node(pg_data_t *pgdat)
1729 {
1730 #ifdef CONFIG_ACPI_NUMA
1731 	int cpu;
1732 
1733 	for_each_possible_cpu(cpu)
1734 		if (cpu_to_node(cpu) == pgdat->node_id)
1735 			numa_clear_node(cpu);
1736 #endif
1737 }
1738 
1739 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1740 {
1741 	int ret;
1742 
1743 	ret = check_cpu_on_node(pgdat);
1744 	if (ret)
1745 		return ret;
1746 
1747 	/*
1748 	 * the node will be offlined when we come here, so we can clear
1749 	 * the cpu_to_node() now.
1750 	 */
1751 
1752 	unmap_cpu_on_node(pgdat);
1753 	return 0;
1754 }
1755 
1756 /**
1757  * try_offline_node
1758  * @nid: the node ID
1759  *
1760  * Offline a node if all memory sections and cpus of the node are removed.
1761  *
1762  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1763  * and online/offline operations before this call.
1764  */
1765 void try_offline_node(int nid)
1766 {
1767 	pg_data_t *pgdat = NODE_DATA(nid);
1768 	unsigned long start_pfn = pgdat->node_start_pfn;
1769 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1770 	unsigned long pfn;
1771 
1772 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1773 		unsigned long section_nr = pfn_to_section_nr(pfn);
1774 
1775 		if (!present_section_nr(section_nr))
1776 			continue;
1777 
1778 		if (pfn_to_nid(pfn) != nid)
1779 			continue;
1780 
1781 		/*
1782 		 * some memory sections of this node are not removed, and we
1783 		 * can't offline node now.
1784 		 */
1785 		return;
1786 	}
1787 
1788 	if (check_and_unmap_cpu_on_node(pgdat))
1789 		return;
1790 
1791 	/*
1792 	 * all memory/cpu of this node are removed, we can offline this
1793 	 * node now.
1794 	 */
1795 	node_set_offline(nid);
1796 	unregister_one_node(nid);
1797 }
1798 EXPORT_SYMBOL(try_offline_node);
1799 
1800 /**
1801  * remove_memory
1802  * @nid: the node ID
1803  * @start: physical address of the region to remove
1804  * @size: size of the region to remove
1805  *
1806  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1807  * and online/offline operations before this call, as required by
1808  * try_offline_node().
1809  */
1810 void __ref remove_memory(int nid, u64 start, u64 size)
1811 {
1812 	int ret;
1813 
1814 	BUG_ON(check_hotplug_memory_range(start, size));
1815 
1816 	mem_hotplug_begin();
1817 
1818 	/*
1819 	 * All memory blocks must be offlined before removing memory.  Check
1820 	 * whether all memory blocks in question are offline and trigger a BUG()
1821 	 * if this is not the case.
1822 	 */
1823 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1824 				check_memblock_offlined_cb);
1825 	if (ret)
1826 		BUG();
1827 
1828 	/* remove memmap entry */
1829 	firmware_map_remove(start, start + size, "System RAM");
1830 	memblock_free(start, size);
1831 	memblock_remove(start, size);
1832 
1833 	arch_remove_memory(start, size, NULL);
1834 
1835 	try_offline_node(nid);
1836 
1837 	mem_hotplug_done();
1838 }
1839 EXPORT_SYMBOL_GPL(remove_memory);
1840 #endif /* CONFIG_MEMORY_HOTREMOVE */
1841