1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/bootmem.h> 37 #include <linux/compaction.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 /* add this memory to iomem resource */ 100 static struct resource *register_memory_resource(u64 start, u64 size) 101 { 102 struct resource *res, *conflict; 103 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 104 if (!res) 105 return ERR_PTR(-ENOMEM); 106 107 res->name = "System RAM"; 108 res->start = start; 109 res->end = start + size - 1; 110 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 111 conflict = request_resource_conflict(&iomem_resource, res); 112 if (conflict) { 113 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 114 pr_debug("Device unaddressable memory block " 115 "memory hotplug at %#010llx !\n", 116 (unsigned long long)start); 117 } 118 pr_debug("System RAM resource %pR cannot be added\n", res); 119 kfree(res); 120 return ERR_PTR(-EEXIST); 121 } 122 return res; 123 } 124 125 static void release_memory_resource(struct resource *res) 126 { 127 if (!res) 128 return; 129 release_resource(res); 130 kfree(res); 131 return; 132 } 133 134 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 135 void get_page_bootmem(unsigned long info, struct page *page, 136 unsigned long type) 137 { 138 page->freelist = (void *)type; 139 SetPagePrivate(page); 140 set_page_private(page, info); 141 page_ref_inc(page); 142 } 143 144 void put_page_bootmem(struct page *page) 145 { 146 unsigned long type; 147 148 type = (unsigned long) page->freelist; 149 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 150 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 151 152 if (page_ref_dec_return(page) == 1) { 153 page->freelist = NULL; 154 ClearPagePrivate(page); 155 set_page_private(page, 0); 156 INIT_LIST_HEAD(&page->lru); 157 free_reserved_page(page); 158 } 159 } 160 161 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 162 #ifndef CONFIG_SPARSEMEM_VMEMMAP 163 static void register_page_bootmem_info_section(unsigned long start_pfn) 164 { 165 unsigned long *usemap, mapsize, section_nr, i; 166 struct mem_section *ms; 167 struct page *page, *memmap; 168 169 section_nr = pfn_to_section_nr(start_pfn); 170 ms = __nr_to_section(section_nr); 171 172 /* Get section's memmap address */ 173 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 174 175 /* 176 * Get page for the memmap's phys address 177 * XXX: need more consideration for sparse_vmemmap... 178 */ 179 page = virt_to_page(memmap); 180 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 181 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 182 183 /* remember memmap's page */ 184 for (i = 0; i < mapsize; i++, page++) 185 get_page_bootmem(section_nr, page, SECTION_INFO); 186 187 usemap = ms->pageblock_flags; 188 page = virt_to_page(usemap); 189 190 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 191 192 for (i = 0; i < mapsize; i++, page++) 193 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 194 195 } 196 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 197 static void register_page_bootmem_info_section(unsigned long start_pfn) 198 { 199 unsigned long *usemap, mapsize, section_nr, i; 200 struct mem_section *ms; 201 struct page *page, *memmap; 202 203 section_nr = pfn_to_section_nr(start_pfn); 204 ms = __nr_to_section(section_nr); 205 206 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 207 208 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 209 210 usemap = ms->pageblock_flags; 211 page = virt_to_page(usemap); 212 213 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 214 215 for (i = 0; i < mapsize; i++, page++) 216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 217 } 218 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 219 220 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 221 { 222 unsigned long i, pfn, end_pfn, nr_pages; 223 int node = pgdat->node_id; 224 struct page *page; 225 226 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 227 page = virt_to_page(pgdat); 228 229 for (i = 0; i < nr_pages; i++, page++) 230 get_page_bootmem(node, page, NODE_INFO); 231 232 pfn = pgdat->node_start_pfn; 233 end_pfn = pgdat_end_pfn(pgdat); 234 235 /* register section info */ 236 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 237 /* 238 * Some platforms can assign the same pfn to multiple nodes - on 239 * node0 as well as nodeN. To avoid registering a pfn against 240 * multiple nodes we check that this pfn does not already 241 * reside in some other nodes. 242 */ 243 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 244 register_page_bootmem_info_section(pfn); 245 } 246 } 247 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 248 249 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 250 struct vmem_altmap *altmap, bool want_memblock) 251 { 252 int ret; 253 254 if (pfn_valid(phys_start_pfn)) 255 return -EEXIST; 256 257 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap); 258 if (ret < 0) 259 return ret; 260 261 if (!want_memblock) 262 return 0; 263 264 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 265 } 266 267 /* 268 * Reasonably generic function for adding memory. It is 269 * expected that archs that support memory hotplug will 270 * call this function after deciding the zone to which to 271 * add the new pages. 272 */ 273 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 274 unsigned long nr_pages, struct vmem_altmap *altmap, 275 bool want_memblock) 276 { 277 unsigned long i; 278 int err = 0; 279 int start_sec, end_sec; 280 281 /* during initialize mem_map, align hot-added range to section */ 282 start_sec = pfn_to_section_nr(phys_start_pfn); 283 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 284 285 if (altmap) { 286 /* 287 * Validate altmap is within bounds of the total request 288 */ 289 if (altmap->base_pfn != phys_start_pfn 290 || vmem_altmap_offset(altmap) > nr_pages) { 291 pr_warn_once("memory add fail, invalid altmap\n"); 292 err = -EINVAL; 293 goto out; 294 } 295 altmap->alloc = 0; 296 } 297 298 for (i = start_sec; i <= end_sec; i++) { 299 err = __add_section(nid, section_nr_to_pfn(i), altmap, 300 want_memblock); 301 302 /* 303 * EEXIST is finally dealt with by ioresource collision 304 * check. see add_memory() => register_memory_resource() 305 * Warning will be printed if there is collision. 306 */ 307 if (err && (err != -EEXIST)) 308 break; 309 err = 0; 310 cond_resched(); 311 } 312 vmemmap_populate_print_last(); 313 out: 314 return err; 315 } 316 317 #ifdef CONFIG_MEMORY_HOTREMOVE 318 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 319 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 320 unsigned long start_pfn, 321 unsigned long end_pfn) 322 { 323 struct mem_section *ms; 324 325 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 326 ms = __pfn_to_section(start_pfn); 327 328 if (unlikely(!valid_section(ms))) 329 continue; 330 331 if (unlikely(pfn_to_nid(start_pfn) != nid)) 332 continue; 333 334 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 335 continue; 336 337 return start_pfn; 338 } 339 340 return 0; 341 } 342 343 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 344 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 345 unsigned long start_pfn, 346 unsigned long end_pfn) 347 { 348 struct mem_section *ms; 349 unsigned long pfn; 350 351 /* pfn is the end pfn of a memory section. */ 352 pfn = end_pfn - 1; 353 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 354 ms = __pfn_to_section(pfn); 355 356 if (unlikely(!valid_section(ms))) 357 continue; 358 359 if (unlikely(pfn_to_nid(pfn) != nid)) 360 continue; 361 362 if (zone && zone != page_zone(pfn_to_page(pfn))) 363 continue; 364 365 return pfn; 366 } 367 368 return 0; 369 } 370 371 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 372 unsigned long end_pfn) 373 { 374 unsigned long zone_start_pfn = zone->zone_start_pfn; 375 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 376 unsigned long zone_end_pfn = z; 377 unsigned long pfn; 378 struct mem_section *ms; 379 int nid = zone_to_nid(zone); 380 381 zone_span_writelock(zone); 382 if (zone_start_pfn == start_pfn) { 383 /* 384 * If the section is smallest section in the zone, it need 385 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 386 * In this case, we find second smallest valid mem_section 387 * for shrinking zone. 388 */ 389 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 390 zone_end_pfn); 391 if (pfn) { 392 zone->zone_start_pfn = pfn; 393 zone->spanned_pages = zone_end_pfn - pfn; 394 } 395 } else if (zone_end_pfn == end_pfn) { 396 /* 397 * If the section is biggest section in the zone, it need 398 * shrink zone->spanned_pages. 399 * In this case, we find second biggest valid mem_section for 400 * shrinking zone. 401 */ 402 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 403 start_pfn); 404 if (pfn) 405 zone->spanned_pages = pfn - zone_start_pfn + 1; 406 } 407 408 /* 409 * The section is not biggest or smallest mem_section in the zone, it 410 * only creates a hole in the zone. So in this case, we need not 411 * change the zone. But perhaps, the zone has only hole data. Thus 412 * it check the zone has only hole or not. 413 */ 414 pfn = zone_start_pfn; 415 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 416 ms = __pfn_to_section(pfn); 417 418 if (unlikely(!valid_section(ms))) 419 continue; 420 421 if (page_zone(pfn_to_page(pfn)) != zone) 422 continue; 423 424 /* If the section is current section, it continues the loop */ 425 if (start_pfn == pfn) 426 continue; 427 428 /* If we find valid section, we have nothing to do */ 429 zone_span_writeunlock(zone); 430 return; 431 } 432 433 /* The zone has no valid section */ 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 zone_span_writeunlock(zone); 437 } 438 439 static void shrink_pgdat_span(struct pglist_data *pgdat, 440 unsigned long start_pfn, unsigned long end_pfn) 441 { 442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 444 unsigned long pgdat_end_pfn = p; 445 unsigned long pfn; 446 struct mem_section *ms; 447 int nid = pgdat->node_id; 448 449 if (pgdat_start_pfn == start_pfn) { 450 /* 451 * If the section is smallest section in the pgdat, it need 452 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 453 * In this case, we find second smallest valid mem_section 454 * for shrinking zone. 455 */ 456 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 457 pgdat_end_pfn); 458 if (pfn) { 459 pgdat->node_start_pfn = pfn; 460 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 461 } 462 } else if (pgdat_end_pfn == end_pfn) { 463 /* 464 * If the section is biggest section in the pgdat, it need 465 * shrink pgdat->node_spanned_pages. 466 * In this case, we find second biggest valid mem_section for 467 * shrinking zone. 468 */ 469 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 470 start_pfn); 471 if (pfn) 472 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 473 } 474 475 /* 476 * If the section is not biggest or smallest mem_section in the pgdat, 477 * it only creates a hole in the pgdat. So in this case, we need not 478 * change the pgdat. 479 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 480 * has only hole or not. 481 */ 482 pfn = pgdat_start_pfn; 483 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 484 ms = __pfn_to_section(pfn); 485 486 if (unlikely(!valid_section(ms))) 487 continue; 488 489 if (pfn_to_nid(pfn) != nid) 490 continue; 491 492 /* If the section is current section, it continues the loop */ 493 if (start_pfn == pfn) 494 continue; 495 496 /* If we find valid section, we have nothing to do */ 497 return; 498 } 499 500 /* The pgdat has no valid section */ 501 pgdat->node_start_pfn = 0; 502 pgdat->node_spanned_pages = 0; 503 } 504 505 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 506 { 507 struct pglist_data *pgdat = zone->zone_pgdat; 508 int nr_pages = PAGES_PER_SECTION; 509 unsigned long flags; 510 511 pgdat_resize_lock(zone->zone_pgdat, &flags); 512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 513 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 514 pgdat_resize_unlock(zone->zone_pgdat, &flags); 515 } 516 517 static int __remove_section(struct zone *zone, struct mem_section *ms, 518 unsigned long map_offset, struct vmem_altmap *altmap) 519 { 520 unsigned long start_pfn; 521 int scn_nr; 522 int ret = -EINVAL; 523 524 if (!valid_section(ms)) 525 return ret; 526 527 ret = unregister_memory_section(ms); 528 if (ret) 529 return ret; 530 531 scn_nr = __section_nr(ms); 532 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 533 __remove_zone(zone, start_pfn); 534 535 sparse_remove_one_section(zone, ms, map_offset, altmap); 536 return 0; 537 } 538 539 /** 540 * __remove_pages() - remove sections of pages from a zone 541 * @zone: zone from which pages need to be removed 542 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 543 * @nr_pages: number of pages to remove (must be multiple of section size) 544 * @altmap: alternative device page map or %NULL if default memmap is used 545 * 546 * Generic helper function to remove section mappings and sysfs entries 547 * for the section of the memory we are removing. Caller needs to make 548 * sure that pages are marked reserved and zones are adjust properly by 549 * calling offline_pages(). 550 */ 551 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 552 unsigned long nr_pages, struct vmem_altmap *altmap) 553 { 554 unsigned long i; 555 unsigned long map_offset = 0; 556 int sections_to_remove, ret = 0; 557 558 /* In the ZONE_DEVICE case device driver owns the memory region */ 559 if (is_dev_zone(zone)) { 560 if (altmap) 561 map_offset = vmem_altmap_offset(altmap); 562 } else { 563 resource_size_t start, size; 564 565 start = phys_start_pfn << PAGE_SHIFT; 566 size = nr_pages * PAGE_SIZE; 567 568 ret = release_mem_region_adjustable(&iomem_resource, start, 569 size); 570 if (ret) { 571 resource_size_t endres = start + size - 1; 572 573 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 574 &start, &endres, ret); 575 } 576 } 577 578 clear_zone_contiguous(zone); 579 580 /* 581 * We can only remove entire sections 582 */ 583 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 584 BUG_ON(nr_pages % PAGES_PER_SECTION); 585 586 sections_to_remove = nr_pages / PAGES_PER_SECTION; 587 for (i = 0; i < sections_to_remove; i++) { 588 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 589 590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 591 altmap); 592 map_offset = 0; 593 if (ret) 594 break; 595 } 596 597 set_zone_contiguous(zone); 598 599 return ret; 600 } 601 #endif /* CONFIG_MEMORY_HOTREMOVE */ 602 603 int set_online_page_callback(online_page_callback_t callback) 604 { 605 int rc = -EINVAL; 606 607 get_online_mems(); 608 mutex_lock(&online_page_callback_lock); 609 610 if (online_page_callback == generic_online_page) { 611 online_page_callback = callback; 612 rc = 0; 613 } 614 615 mutex_unlock(&online_page_callback_lock); 616 put_online_mems(); 617 618 return rc; 619 } 620 EXPORT_SYMBOL_GPL(set_online_page_callback); 621 622 int restore_online_page_callback(online_page_callback_t callback) 623 { 624 int rc = -EINVAL; 625 626 get_online_mems(); 627 mutex_lock(&online_page_callback_lock); 628 629 if (online_page_callback == callback) { 630 online_page_callback = generic_online_page; 631 rc = 0; 632 } 633 634 mutex_unlock(&online_page_callback_lock); 635 put_online_mems(); 636 637 return rc; 638 } 639 EXPORT_SYMBOL_GPL(restore_online_page_callback); 640 641 void __online_page_set_limits(struct page *page) 642 { 643 } 644 EXPORT_SYMBOL_GPL(__online_page_set_limits); 645 646 void __online_page_increment_counters(struct page *page) 647 { 648 adjust_managed_page_count(page, 1); 649 } 650 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 651 652 void __online_page_free(struct page *page) 653 { 654 __free_reserved_page(page); 655 } 656 EXPORT_SYMBOL_GPL(__online_page_free); 657 658 static void generic_online_page(struct page *page) 659 { 660 __online_page_set_limits(page); 661 __online_page_increment_counters(page); 662 __online_page_free(page); 663 } 664 665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 666 void *arg) 667 { 668 unsigned long i; 669 unsigned long onlined_pages = *(unsigned long *)arg; 670 struct page *page; 671 672 if (PageReserved(pfn_to_page(start_pfn))) 673 for (i = 0; i < nr_pages; i++) { 674 page = pfn_to_page(start_pfn + i); 675 (*online_page_callback)(page); 676 onlined_pages++; 677 } 678 679 online_mem_sections(start_pfn, start_pfn + nr_pages); 680 681 *(unsigned long *)arg = onlined_pages; 682 return 0; 683 } 684 685 /* check which state of node_states will be changed when online memory */ 686 static void node_states_check_changes_online(unsigned long nr_pages, 687 struct zone *zone, struct memory_notify *arg) 688 { 689 int nid = zone_to_nid(zone); 690 691 arg->status_change_nid = -1; 692 arg->status_change_nid_normal = -1; 693 arg->status_change_nid_high = -1; 694 695 if (!node_state(nid, N_MEMORY)) 696 arg->status_change_nid = nid; 697 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 698 arg->status_change_nid_normal = nid; 699 #ifdef CONFIG_HIGHMEM 700 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY)) 701 arg->status_change_nid_high = nid; 702 #endif 703 } 704 705 static void node_states_set_node(int node, struct memory_notify *arg) 706 { 707 if (arg->status_change_nid_normal >= 0) 708 node_set_state(node, N_NORMAL_MEMORY); 709 710 if (arg->status_change_nid_high >= 0) 711 node_set_state(node, N_HIGH_MEMORY); 712 713 if (arg->status_change_nid >= 0) 714 node_set_state(node, N_MEMORY); 715 } 716 717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 718 unsigned long nr_pages) 719 { 720 unsigned long old_end_pfn = zone_end_pfn(zone); 721 722 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 723 zone->zone_start_pfn = start_pfn; 724 725 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 726 } 727 728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 729 unsigned long nr_pages) 730 { 731 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 732 733 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 734 pgdat->node_start_pfn = start_pfn; 735 736 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 737 } 738 739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 740 unsigned long nr_pages, struct vmem_altmap *altmap) 741 { 742 struct pglist_data *pgdat = zone->zone_pgdat; 743 int nid = pgdat->node_id; 744 unsigned long flags; 745 746 if (zone_is_empty(zone)) 747 init_currently_empty_zone(zone, start_pfn, nr_pages); 748 749 clear_zone_contiguous(zone); 750 751 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 752 pgdat_resize_lock(pgdat, &flags); 753 zone_span_writelock(zone); 754 resize_zone_range(zone, start_pfn, nr_pages); 755 zone_span_writeunlock(zone); 756 resize_pgdat_range(pgdat, start_pfn, nr_pages); 757 pgdat_resize_unlock(pgdat, &flags); 758 759 /* 760 * TODO now we have a visible range of pages which are not associated 761 * with their zone properly. Not nice but set_pfnblock_flags_mask 762 * expects the zone spans the pfn range. All the pages in the range 763 * are reserved so nobody should be touching them so we should be safe 764 */ 765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 766 MEMMAP_HOTPLUG, altmap); 767 768 set_zone_contiguous(zone); 769 } 770 771 /* 772 * Returns a default kernel memory zone for the given pfn range. 773 * If no kernel zone covers this pfn range it will automatically go 774 * to the ZONE_NORMAL. 775 */ 776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 777 unsigned long nr_pages) 778 { 779 struct pglist_data *pgdat = NODE_DATA(nid); 780 int zid; 781 782 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 783 struct zone *zone = &pgdat->node_zones[zid]; 784 785 if (zone_intersects(zone, start_pfn, nr_pages)) 786 return zone; 787 } 788 789 return &pgdat->node_zones[ZONE_NORMAL]; 790 } 791 792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 793 unsigned long nr_pages) 794 { 795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 796 nr_pages); 797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 800 801 /* 802 * We inherit the existing zone in a simple case where zones do not 803 * overlap in the given range 804 */ 805 if (in_kernel ^ in_movable) 806 return (in_kernel) ? kernel_zone : movable_zone; 807 808 /* 809 * If the range doesn't belong to any zone or two zones overlap in the 810 * given range then we use movable zone only if movable_node is 811 * enabled because we always online to a kernel zone by default. 812 */ 813 return movable_node_enabled ? movable_zone : kernel_zone; 814 } 815 816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 817 unsigned long nr_pages) 818 { 819 if (online_type == MMOP_ONLINE_KERNEL) 820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 821 822 if (online_type == MMOP_ONLINE_MOVABLE) 823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 824 825 return default_zone_for_pfn(nid, start_pfn, nr_pages); 826 } 827 828 /* 829 * Associates the given pfn range with the given node and the zone appropriate 830 * for the given online type. 831 */ 832 static struct zone * __meminit move_pfn_range(int online_type, int nid, 833 unsigned long start_pfn, unsigned long nr_pages) 834 { 835 struct zone *zone; 836 837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 839 return zone; 840 } 841 842 /* Must be protected by mem_hotplug_begin() or a device_lock */ 843 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 844 { 845 unsigned long flags; 846 unsigned long onlined_pages = 0; 847 struct zone *zone; 848 int need_zonelists_rebuild = 0; 849 int nid; 850 int ret; 851 struct memory_notify arg; 852 struct memory_block *mem; 853 854 /* 855 * We can't use pfn_to_nid() because nid might be stored in struct page 856 * which is not yet initialized. Instead, we find nid from memory block. 857 */ 858 mem = find_memory_block(__pfn_to_section(pfn)); 859 nid = mem->nid; 860 861 /* associate pfn range with the zone */ 862 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 863 864 arg.start_pfn = pfn; 865 arg.nr_pages = nr_pages; 866 node_states_check_changes_online(nr_pages, zone, &arg); 867 868 ret = memory_notify(MEM_GOING_ONLINE, &arg); 869 ret = notifier_to_errno(ret); 870 if (ret) 871 goto failed_addition; 872 873 /* 874 * If this zone is not populated, then it is not in zonelist. 875 * This means the page allocator ignores this zone. 876 * So, zonelist must be updated after online. 877 */ 878 if (!populated_zone(zone)) { 879 need_zonelists_rebuild = 1; 880 setup_zone_pageset(zone); 881 } 882 883 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 884 online_pages_range); 885 if (ret) { 886 if (need_zonelists_rebuild) 887 zone_pcp_reset(zone); 888 goto failed_addition; 889 } 890 891 zone->present_pages += onlined_pages; 892 893 pgdat_resize_lock(zone->zone_pgdat, &flags); 894 zone->zone_pgdat->node_present_pages += onlined_pages; 895 pgdat_resize_unlock(zone->zone_pgdat, &flags); 896 897 if (onlined_pages) { 898 node_states_set_node(nid, &arg); 899 if (need_zonelists_rebuild) 900 build_all_zonelists(NULL); 901 else 902 zone_pcp_update(zone); 903 } 904 905 init_per_zone_wmark_min(); 906 907 if (onlined_pages) { 908 kswapd_run(nid); 909 kcompactd_run(nid); 910 } 911 912 vm_total_pages = nr_free_pagecache_pages(); 913 914 writeback_set_ratelimit(); 915 916 if (onlined_pages) 917 memory_notify(MEM_ONLINE, &arg); 918 return 0; 919 920 failed_addition: 921 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 922 (unsigned long long) pfn << PAGE_SHIFT, 923 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 924 memory_notify(MEM_CANCEL_ONLINE, &arg); 925 return ret; 926 } 927 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 928 929 static void reset_node_present_pages(pg_data_t *pgdat) 930 { 931 struct zone *z; 932 933 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 934 z->present_pages = 0; 935 936 pgdat->node_present_pages = 0; 937 } 938 939 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 940 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 941 { 942 struct pglist_data *pgdat; 943 unsigned long start_pfn = PFN_DOWN(start); 944 945 pgdat = NODE_DATA(nid); 946 if (!pgdat) { 947 pgdat = arch_alloc_nodedata(nid); 948 if (!pgdat) 949 return NULL; 950 951 arch_refresh_nodedata(nid, pgdat); 952 } else { 953 /* 954 * Reset the nr_zones, order and classzone_idx before reuse. 955 * Note that kswapd will init kswapd_classzone_idx properly 956 * when it starts in the near future. 957 */ 958 pgdat->nr_zones = 0; 959 pgdat->kswapd_order = 0; 960 pgdat->kswapd_classzone_idx = 0; 961 } 962 963 /* we can use NODE_DATA(nid) from here */ 964 965 pgdat->node_id = nid; 966 pgdat->node_start_pfn = start_pfn; 967 968 /* init node's zones as empty zones, we don't have any present pages.*/ 969 free_area_init_core_hotplug(nid); 970 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 971 972 /* 973 * The node we allocated has no zone fallback lists. For avoiding 974 * to access not-initialized zonelist, build here. 975 */ 976 build_all_zonelists(pgdat); 977 978 /* 979 * When memory is hot-added, all the memory is in offline state. So 980 * clear all zones' present_pages because they will be updated in 981 * online_pages() and offline_pages(). 982 */ 983 reset_node_managed_pages(pgdat); 984 reset_node_present_pages(pgdat); 985 986 return pgdat; 987 } 988 989 static void rollback_node_hotadd(int nid) 990 { 991 pg_data_t *pgdat = NODE_DATA(nid); 992 993 arch_refresh_nodedata(nid, NULL); 994 free_percpu(pgdat->per_cpu_nodestats); 995 arch_free_nodedata(pgdat); 996 return; 997 } 998 999 1000 /** 1001 * try_online_node - online a node if offlined 1002 * @nid: the node ID 1003 * @start: start addr of the node 1004 * @set_node_online: Whether we want to online the node 1005 * called by cpu_up() to online a node without onlined memory. 1006 * 1007 * Returns: 1008 * 1 -> a new node has been allocated 1009 * 0 -> the node is already online 1010 * -ENOMEM -> the node could not be allocated 1011 */ 1012 static int __try_online_node(int nid, u64 start, bool set_node_online) 1013 { 1014 pg_data_t *pgdat; 1015 int ret = 1; 1016 1017 if (node_online(nid)) 1018 return 0; 1019 1020 pgdat = hotadd_new_pgdat(nid, start); 1021 if (!pgdat) { 1022 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1023 ret = -ENOMEM; 1024 goto out; 1025 } 1026 1027 if (set_node_online) { 1028 node_set_online(nid); 1029 ret = register_one_node(nid); 1030 BUG_ON(ret); 1031 } 1032 out: 1033 return ret; 1034 } 1035 1036 /* 1037 * Users of this function always want to online/register the node 1038 */ 1039 int try_online_node(int nid) 1040 { 1041 int ret; 1042 1043 mem_hotplug_begin(); 1044 ret = __try_online_node(nid, 0, true); 1045 mem_hotplug_done(); 1046 return ret; 1047 } 1048 1049 static int check_hotplug_memory_range(u64 start, u64 size) 1050 { 1051 unsigned long block_sz = memory_block_size_bytes(); 1052 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1053 u64 nr_pages = size >> PAGE_SHIFT; 1054 u64 start_pfn = PFN_DOWN(start); 1055 1056 /* memory range must be block size aligned */ 1057 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1058 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1059 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1060 block_sz, start, size); 1061 return -EINVAL; 1062 } 1063 1064 return 0; 1065 } 1066 1067 static int online_memory_block(struct memory_block *mem, void *arg) 1068 { 1069 return device_online(&mem->dev); 1070 } 1071 1072 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1073 int __ref add_memory_resource(int nid, struct resource *res, bool online) 1074 { 1075 u64 start, size; 1076 bool new_node = false; 1077 int ret; 1078 1079 start = res->start; 1080 size = resource_size(res); 1081 1082 ret = check_hotplug_memory_range(start, size); 1083 if (ret) 1084 return ret; 1085 1086 mem_hotplug_begin(); 1087 1088 /* 1089 * Add new range to memblock so that when hotadd_new_pgdat() is called 1090 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1091 * this new range and calculate total pages correctly. The range will 1092 * be removed at hot-remove time. 1093 */ 1094 memblock_add_node(start, size, nid); 1095 1096 ret = __try_online_node(nid, start, false); 1097 if (ret < 0) 1098 goto error; 1099 new_node = ret; 1100 1101 /* call arch's memory hotadd */ 1102 ret = arch_add_memory(nid, start, size, NULL, true); 1103 if (ret < 0) 1104 goto error; 1105 1106 if (new_node) { 1107 /* If sysfs file of new node can't be created, cpu on the node 1108 * can't be hot-added. There is no rollback way now. 1109 * So, check by BUG_ON() to catch it reluctantly.. 1110 * We online node here. We can't roll back from here. 1111 */ 1112 node_set_online(nid); 1113 ret = __register_one_node(nid); 1114 BUG_ON(ret); 1115 } 1116 1117 /* link memory sections under this node.*/ 1118 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1119 BUG_ON(ret); 1120 1121 /* create new memmap entry */ 1122 firmware_map_add_hotplug(start, start + size, "System RAM"); 1123 1124 /* online pages if requested */ 1125 if (online) 1126 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1127 NULL, online_memory_block); 1128 1129 goto out; 1130 1131 error: 1132 /* rollback pgdat allocation and others */ 1133 if (new_node) 1134 rollback_node_hotadd(nid); 1135 memblock_remove(start, size); 1136 1137 out: 1138 mem_hotplug_done(); 1139 return ret; 1140 } 1141 EXPORT_SYMBOL_GPL(add_memory_resource); 1142 1143 int __ref add_memory(int nid, u64 start, u64 size) 1144 { 1145 struct resource *res; 1146 int ret; 1147 1148 res = register_memory_resource(start, size); 1149 if (IS_ERR(res)) 1150 return PTR_ERR(res); 1151 1152 ret = add_memory_resource(nid, res, memhp_auto_online); 1153 if (ret < 0) 1154 release_memory_resource(res); 1155 return ret; 1156 } 1157 EXPORT_SYMBOL_GPL(add_memory); 1158 1159 #ifdef CONFIG_MEMORY_HOTREMOVE 1160 /* 1161 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1162 * set and the size of the free page is given by page_order(). Using this, 1163 * the function determines if the pageblock contains only free pages. 1164 * Due to buddy contraints, a free page at least the size of a pageblock will 1165 * be located at the start of the pageblock 1166 */ 1167 static inline int pageblock_free(struct page *page) 1168 { 1169 return PageBuddy(page) && page_order(page) >= pageblock_order; 1170 } 1171 1172 /* Return the start of the next active pageblock after a given page */ 1173 static struct page *next_active_pageblock(struct page *page) 1174 { 1175 /* Ensure the starting page is pageblock-aligned */ 1176 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1)); 1177 1178 /* If the entire pageblock is free, move to the end of free page */ 1179 if (pageblock_free(page)) { 1180 int order; 1181 /* be careful. we don't have locks, page_order can be changed.*/ 1182 order = page_order(page); 1183 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1184 return page + (1 << order); 1185 } 1186 1187 return page + pageblock_nr_pages; 1188 } 1189 1190 static bool is_pageblock_removable_nolock(struct page *page) 1191 { 1192 struct zone *zone; 1193 unsigned long pfn; 1194 1195 /* 1196 * We have to be careful here because we are iterating over memory 1197 * sections which are not zone aware so we might end up outside of 1198 * the zone but still within the section. 1199 * We have to take care about the node as well. If the node is offline 1200 * its NODE_DATA will be NULL - see page_zone. 1201 */ 1202 if (!node_online(page_to_nid(page))) 1203 return false; 1204 1205 zone = page_zone(page); 1206 pfn = page_to_pfn(page); 1207 if (!zone_spans_pfn(zone, pfn)) 1208 return false; 1209 1210 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 1211 } 1212 1213 /* Checks if this range of memory is likely to be hot-removable. */ 1214 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1215 { 1216 struct page *page = pfn_to_page(start_pfn); 1217 struct page *end_page = page + nr_pages; 1218 1219 /* Check the starting page of each pageblock within the range */ 1220 for (; page < end_page; page = next_active_pageblock(page)) { 1221 if (!is_pageblock_removable_nolock(page)) 1222 return false; 1223 cond_resched(); 1224 } 1225 1226 /* All pageblocks in the memory block are likely to be hot-removable */ 1227 return true; 1228 } 1229 1230 /* 1231 * Confirm all pages in a range [start, end) belong to the same zone. 1232 * When true, return its valid [start, end). 1233 */ 1234 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1235 unsigned long *valid_start, unsigned long *valid_end) 1236 { 1237 unsigned long pfn, sec_end_pfn; 1238 unsigned long start, end; 1239 struct zone *zone = NULL; 1240 struct page *page; 1241 int i; 1242 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1243 pfn < end_pfn; 1244 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1245 /* Make sure the memory section is present first */ 1246 if (!present_section_nr(pfn_to_section_nr(pfn))) 1247 continue; 1248 for (; pfn < sec_end_pfn && pfn < end_pfn; 1249 pfn += MAX_ORDER_NR_PAGES) { 1250 i = 0; 1251 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1252 while ((i < MAX_ORDER_NR_PAGES) && 1253 !pfn_valid_within(pfn + i)) 1254 i++; 1255 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1256 continue; 1257 page = pfn_to_page(pfn + i); 1258 if (zone && page_zone(page) != zone) 1259 return 0; 1260 if (!zone) 1261 start = pfn + i; 1262 zone = page_zone(page); 1263 end = pfn + MAX_ORDER_NR_PAGES; 1264 } 1265 } 1266 1267 if (zone) { 1268 *valid_start = start; 1269 *valid_end = min(end, end_pfn); 1270 return 1; 1271 } else { 1272 return 0; 1273 } 1274 } 1275 1276 /* 1277 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1278 * non-lru movable pages and hugepages). We scan pfn because it's much 1279 * easier than scanning over linked list. This function returns the pfn 1280 * of the first found movable page if it's found, otherwise 0. 1281 */ 1282 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1283 { 1284 unsigned long pfn; 1285 struct page *page; 1286 for (pfn = start; pfn < end; pfn++) { 1287 if (pfn_valid(pfn)) { 1288 page = pfn_to_page(pfn); 1289 if (PageLRU(page)) 1290 return pfn; 1291 if (__PageMovable(page)) 1292 return pfn; 1293 if (PageHuge(page)) { 1294 if (hugepage_migration_supported(page_hstate(page)) && 1295 page_huge_active(page)) 1296 return pfn; 1297 else 1298 pfn = round_up(pfn + 1, 1299 1 << compound_order(page)) - 1; 1300 } 1301 } 1302 } 1303 return 0; 1304 } 1305 1306 static struct page *new_node_page(struct page *page, unsigned long private) 1307 { 1308 int nid = page_to_nid(page); 1309 nodemask_t nmask = node_states[N_MEMORY]; 1310 1311 /* 1312 * try to allocate from a different node but reuse this node if there 1313 * are no other online nodes to be used (e.g. we are offlining a part 1314 * of the only existing node) 1315 */ 1316 node_clear(nid, nmask); 1317 if (nodes_empty(nmask)) 1318 node_set(nid, nmask); 1319 1320 return new_page_nodemask(page, nid, &nmask); 1321 } 1322 1323 #define NR_OFFLINE_AT_ONCE_PAGES (256) 1324 static int 1325 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1326 { 1327 unsigned long pfn; 1328 struct page *page; 1329 int move_pages = NR_OFFLINE_AT_ONCE_PAGES; 1330 int not_managed = 0; 1331 int ret = 0; 1332 LIST_HEAD(source); 1333 1334 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) { 1335 if (!pfn_valid(pfn)) 1336 continue; 1337 page = pfn_to_page(pfn); 1338 1339 if (PageHuge(page)) { 1340 struct page *head = compound_head(page); 1341 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1342 if (compound_order(head) > PFN_SECTION_SHIFT) { 1343 ret = -EBUSY; 1344 break; 1345 } 1346 if (isolate_huge_page(page, &source)) 1347 move_pages -= 1 << compound_order(head); 1348 continue; 1349 } else if (PageTransHuge(page)) 1350 pfn = page_to_pfn(compound_head(page)) 1351 + hpage_nr_pages(page) - 1; 1352 1353 if (!get_page_unless_zero(page)) 1354 continue; 1355 /* 1356 * We can skip free pages. And we can deal with pages on 1357 * LRU and non-lru movable pages. 1358 */ 1359 if (PageLRU(page)) 1360 ret = isolate_lru_page(page); 1361 else 1362 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1363 if (!ret) { /* Success */ 1364 put_page(page); 1365 list_add_tail(&page->lru, &source); 1366 move_pages--; 1367 if (!__PageMovable(page)) 1368 inc_node_page_state(page, NR_ISOLATED_ANON + 1369 page_is_file_cache(page)); 1370 1371 } else { 1372 #ifdef CONFIG_DEBUG_VM 1373 pr_alert("failed to isolate pfn %lx\n", pfn); 1374 dump_page(page, "isolation failed"); 1375 #endif 1376 put_page(page); 1377 /* Because we don't have big zone->lock. we should 1378 check this again here. */ 1379 if (page_count(page)) { 1380 not_managed++; 1381 ret = -EBUSY; 1382 break; 1383 } 1384 } 1385 } 1386 if (!list_empty(&source)) { 1387 if (not_managed) { 1388 putback_movable_pages(&source); 1389 goto out; 1390 } 1391 1392 /* Allocate a new page from the nearest neighbor node */ 1393 ret = migrate_pages(&source, new_node_page, NULL, 0, 1394 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1395 if (ret) 1396 putback_movable_pages(&source); 1397 } 1398 out: 1399 return ret; 1400 } 1401 1402 /* 1403 * remove from free_area[] and mark all as Reserved. 1404 */ 1405 static int 1406 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1407 void *data) 1408 { 1409 __offline_isolated_pages(start, start + nr_pages); 1410 return 0; 1411 } 1412 1413 static void 1414 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1415 { 1416 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1417 offline_isolated_pages_cb); 1418 } 1419 1420 /* 1421 * Check all pages in range, recoreded as memory resource, are isolated. 1422 */ 1423 static int 1424 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1425 void *data) 1426 { 1427 int ret; 1428 long offlined = *(long *)data; 1429 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1430 offlined = nr_pages; 1431 if (!ret) 1432 *(long *)data += offlined; 1433 return ret; 1434 } 1435 1436 static long 1437 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1438 { 1439 long offlined = 0; 1440 int ret; 1441 1442 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1443 check_pages_isolated_cb); 1444 if (ret < 0) 1445 offlined = (long)ret; 1446 return offlined; 1447 } 1448 1449 static int __init cmdline_parse_movable_node(char *p) 1450 { 1451 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1452 movable_node_enabled = true; 1453 #else 1454 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1455 #endif 1456 return 0; 1457 } 1458 early_param("movable_node", cmdline_parse_movable_node); 1459 1460 /* check which state of node_states will be changed when offline memory */ 1461 static void node_states_check_changes_offline(unsigned long nr_pages, 1462 struct zone *zone, struct memory_notify *arg) 1463 { 1464 struct pglist_data *pgdat = zone->zone_pgdat; 1465 unsigned long present_pages = 0; 1466 enum zone_type zt; 1467 1468 arg->status_change_nid = -1; 1469 arg->status_change_nid_normal = -1; 1470 arg->status_change_nid_high = -1; 1471 1472 /* 1473 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1474 * If the memory to be offline is within the range 1475 * [0..ZONE_NORMAL], and it is the last present memory there, 1476 * the zones in that range will become empty after the offlining, 1477 * thus we can determine that we need to clear the node from 1478 * node_states[N_NORMAL_MEMORY]. 1479 */ 1480 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1481 present_pages += pgdat->node_zones[zt].present_pages; 1482 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1483 arg->status_change_nid_normal = zone_to_nid(zone); 1484 1485 #ifdef CONFIG_HIGHMEM 1486 /* 1487 * node_states[N_HIGH_MEMORY] contains nodes which 1488 * have normal memory or high memory. 1489 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1490 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1491 * we determine that the zones in that range become empty, 1492 * we need to clear the node for N_HIGH_MEMORY. 1493 */ 1494 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1495 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1496 arg->status_change_nid_high = zone_to_nid(zone); 1497 #endif 1498 1499 /* 1500 * We have accounted the pages from [0..ZONE_NORMAL), and 1501 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1502 * as well. 1503 * Here we count the possible pages from ZONE_MOVABLE. 1504 * If after having accounted all the pages, we see that the nr_pages 1505 * to be offlined is over or equal to the accounted pages, 1506 * we know that the node will become empty, and so, we can clear 1507 * it for N_MEMORY as well. 1508 */ 1509 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1510 1511 if (nr_pages >= present_pages) 1512 arg->status_change_nid = zone_to_nid(zone); 1513 } 1514 1515 static void node_states_clear_node(int node, struct memory_notify *arg) 1516 { 1517 if (arg->status_change_nid_normal >= 0) 1518 node_clear_state(node, N_NORMAL_MEMORY); 1519 1520 if (arg->status_change_nid_high >= 0) 1521 node_clear_state(node, N_HIGH_MEMORY); 1522 1523 if (arg->status_change_nid >= 0) 1524 node_clear_state(node, N_MEMORY); 1525 } 1526 1527 static int __ref __offline_pages(unsigned long start_pfn, 1528 unsigned long end_pfn) 1529 { 1530 unsigned long pfn, nr_pages; 1531 long offlined_pages; 1532 int ret, node; 1533 unsigned long flags; 1534 unsigned long valid_start, valid_end; 1535 struct zone *zone; 1536 struct memory_notify arg; 1537 1538 /* at least, alignment against pageblock is necessary */ 1539 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) 1540 return -EINVAL; 1541 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages)) 1542 return -EINVAL; 1543 /* This makes hotplug much easier...and readable. 1544 we assume this for now. .*/ 1545 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end)) 1546 return -EINVAL; 1547 1548 zone = page_zone(pfn_to_page(valid_start)); 1549 node = zone_to_nid(zone); 1550 nr_pages = end_pfn - start_pfn; 1551 1552 /* set above range as isolated */ 1553 ret = start_isolate_page_range(start_pfn, end_pfn, 1554 MIGRATE_MOVABLE, true); 1555 if (ret) 1556 return ret; 1557 1558 arg.start_pfn = start_pfn; 1559 arg.nr_pages = nr_pages; 1560 node_states_check_changes_offline(nr_pages, zone, &arg); 1561 1562 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1563 ret = notifier_to_errno(ret); 1564 if (ret) 1565 goto failed_removal; 1566 1567 pfn = start_pfn; 1568 repeat: 1569 /* start memory hot removal */ 1570 ret = -EINTR; 1571 if (signal_pending(current)) 1572 goto failed_removal; 1573 1574 cond_resched(); 1575 lru_add_drain_all(); 1576 drain_all_pages(zone); 1577 1578 pfn = scan_movable_pages(start_pfn, end_pfn); 1579 if (pfn) { /* We have movable pages */ 1580 ret = do_migrate_range(pfn, end_pfn); 1581 goto repeat; 1582 } 1583 1584 /* 1585 * dissolve free hugepages in the memory block before doing offlining 1586 * actually in order to make hugetlbfs's object counting consistent. 1587 */ 1588 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1589 if (ret) 1590 goto failed_removal; 1591 /* check again */ 1592 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1593 if (offlined_pages < 0) 1594 goto repeat; 1595 pr_info("Offlined Pages %ld\n", offlined_pages); 1596 /* Ok, all of our target is isolated. 1597 We cannot do rollback at this point. */ 1598 offline_isolated_pages(start_pfn, end_pfn); 1599 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1600 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1601 /* removal success */ 1602 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1603 zone->present_pages -= offlined_pages; 1604 1605 pgdat_resize_lock(zone->zone_pgdat, &flags); 1606 zone->zone_pgdat->node_present_pages -= offlined_pages; 1607 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1608 1609 init_per_zone_wmark_min(); 1610 1611 if (!populated_zone(zone)) { 1612 zone_pcp_reset(zone); 1613 build_all_zonelists(NULL); 1614 } else 1615 zone_pcp_update(zone); 1616 1617 node_states_clear_node(node, &arg); 1618 if (arg.status_change_nid >= 0) { 1619 kswapd_stop(node); 1620 kcompactd_stop(node); 1621 } 1622 1623 vm_total_pages = nr_free_pagecache_pages(); 1624 writeback_set_ratelimit(); 1625 1626 memory_notify(MEM_OFFLINE, &arg); 1627 return 0; 1628 1629 failed_removal: 1630 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n", 1631 (unsigned long long) start_pfn << PAGE_SHIFT, 1632 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1633 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1634 /* pushback to free area */ 1635 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1636 return ret; 1637 } 1638 1639 /* Must be protected by mem_hotplug_begin() or a device_lock */ 1640 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1641 { 1642 return __offline_pages(start_pfn, start_pfn + nr_pages); 1643 } 1644 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1645 1646 /** 1647 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1648 * @start_pfn: start pfn of the memory range 1649 * @end_pfn: end pfn of the memory range 1650 * @arg: argument passed to func 1651 * @func: callback for each memory section walked 1652 * 1653 * This function walks through all present mem sections in range 1654 * [start_pfn, end_pfn) and call func on each mem section. 1655 * 1656 * Returns the return value of func. 1657 */ 1658 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1659 void *arg, int (*func)(struct memory_block *, void *)) 1660 { 1661 struct memory_block *mem = NULL; 1662 struct mem_section *section; 1663 unsigned long pfn, section_nr; 1664 int ret; 1665 1666 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1667 section_nr = pfn_to_section_nr(pfn); 1668 if (!present_section_nr(section_nr)) 1669 continue; 1670 1671 section = __nr_to_section(section_nr); 1672 /* same memblock? */ 1673 if (mem) 1674 if ((section_nr >= mem->start_section_nr) && 1675 (section_nr <= mem->end_section_nr)) 1676 continue; 1677 1678 mem = find_memory_block_hinted(section, mem); 1679 if (!mem) 1680 continue; 1681 1682 ret = func(mem, arg); 1683 if (ret) { 1684 kobject_put(&mem->dev.kobj); 1685 return ret; 1686 } 1687 } 1688 1689 if (mem) 1690 kobject_put(&mem->dev.kobj); 1691 1692 return 0; 1693 } 1694 1695 #ifdef CONFIG_MEMORY_HOTREMOVE 1696 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1697 { 1698 int ret = !is_memblock_offlined(mem); 1699 1700 if (unlikely(ret)) { 1701 phys_addr_t beginpa, endpa; 1702 1703 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1704 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1705 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1706 &beginpa, &endpa); 1707 } 1708 1709 return ret; 1710 } 1711 1712 static int check_cpu_on_node(pg_data_t *pgdat) 1713 { 1714 int cpu; 1715 1716 for_each_present_cpu(cpu) { 1717 if (cpu_to_node(cpu) == pgdat->node_id) 1718 /* 1719 * the cpu on this node isn't removed, and we can't 1720 * offline this node. 1721 */ 1722 return -EBUSY; 1723 } 1724 1725 return 0; 1726 } 1727 1728 static void unmap_cpu_on_node(pg_data_t *pgdat) 1729 { 1730 #ifdef CONFIG_ACPI_NUMA 1731 int cpu; 1732 1733 for_each_possible_cpu(cpu) 1734 if (cpu_to_node(cpu) == pgdat->node_id) 1735 numa_clear_node(cpu); 1736 #endif 1737 } 1738 1739 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) 1740 { 1741 int ret; 1742 1743 ret = check_cpu_on_node(pgdat); 1744 if (ret) 1745 return ret; 1746 1747 /* 1748 * the node will be offlined when we come here, so we can clear 1749 * the cpu_to_node() now. 1750 */ 1751 1752 unmap_cpu_on_node(pgdat); 1753 return 0; 1754 } 1755 1756 /** 1757 * try_offline_node 1758 * @nid: the node ID 1759 * 1760 * Offline a node if all memory sections and cpus of the node are removed. 1761 * 1762 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1763 * and online/offline operations before this call. 1764 */ 1765 void try_offline_node(int nid) 1766 { 1767 pg_data_t *pgdat = NODE_DATA(nid); 1768 unsigned long start_pfn = pgdat->node_start_pfn; 1769 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1770 unsigned long pfn; 1771 1772 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1773 unsigned long section_nr = pfn_to_section_nr(pfn); 1774 1775 if (!present_section_nr(section_nr)) 1776 continue; 1777 1778 if (pfn_to_nid(pfn) != nid) 1779 continue; 1780 1781 /* 1782 * some memory sections of this node are not removed, and we 1783 * can't offline node now. 1784 */ 1785 return; 1786 } 1787 1788 if (check_and_unmap_cpu_on_node(pgdat)) 1789 return; 1790 1791 /* 1792 * all memory/cpu of this node are removed, we can offline this 1793 * node now. 1794 */ 1795 node_set_offline(nid); 1796 unregister_one_node(nid); 1797 } 1798 EXPORT_SYMBOL(try_offline_node); 1799 1800 /** 1801 * remove_memory 1802 * @nid: the node ID 1803 * @start: physical address of the region to remove 1804 * @size: size of the region to remove 1805 * 1806 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1807 * and online/offline operations before this call, as required by 1808 * try_offline_node(). 1809 */ 1810 void __ref remove_memory(int nid, u64 start, u64 size) 1811 { 1812 int ret; 1813 1814 BUG_ON(check_hotplug_memory_range(start, size)); 1815 1816 mem_hotplug_begin(); 1817 1818 /* 1819 * All memory blocks must be offlined before removing memory. Check 1820 * whether all memory blocks in question are offline and trigger a BUG() 1821 * if this is not the case. 1822 */ 1823 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1824 check_memblock_offlined_cb); 1825 if (ret) 1826 BUG(); 1827 1828 /* remove memmap entry */ 1829 firmware_map_remove(start, start + size, "System RAM"); 1830 memblock_free(start, size); 1831 memblock_remove(start, size); 1832 1833 arch_remove_memory(start, size, NULL); 1834 1835 try_offline_node(nid); 1836 1837 mem_hotplug_done(); 1838 } 1839 EXPORT_SYMBOL_GPL(remove_memory); 1840 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1841