1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 #include <linux/module.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 46 static int memmap_on_memory_set(const char *val, const struct kernel_param *kp) 47 { 48 if (hugetlb_optimize_vmemmap_enabled()) 49 return 0; 50 return param_set_bool(val, kp); 51 } 52 53 static const struct kernel_param_ops memmap_on_memory_ops = { 54 .flags = KERNEL_PARAM_OPS_FL_NOARG, 55 .set = memmap_on_memory_set, 56 .get = param_get_bool, 57 }; 58 59 /* 60 * memory_hotplug.memmap_on_memory parameter 61 */ 62 static bool memmap_on_memory __ro_after_init; 63 module_param_cb(memmap_on_memory, &memmap_on_memory_ops, &memmap_on_memory, 0444); 64 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 65 66 bool mhp_memmap_on_memory(void) 67 { 68 return memmap_on_memory; 69 } 70 #endif 71 72 enum { 73 ONLINE_POLICY_CONTIG_ZONES = 0, 74 ONLINE_POLICY_AUTO_MOVABLE, 75 }; 76 77 static const char * const online_policy_to_str[] = { 78 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 79 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 80 }; 81 82 static int set_online_policy(const char *val, const struct kernel_param *kp) 83 { 84 int ret = sysfs_match_string(online_policy_to_str, val); 85 86 if (ret < 0) 87 return ret; 88 *((int *)kp->arg) = ret; 89 return 0; 90 } 91 92 static int get_online_policy(char *buffer, const struct kernel_param *kp) 93 { 94 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 95 } 96 97 /* 98 * memory_hotplug.online_policy: configure online behavior when onlining without 99 * specifying a zone (MMOP_ONLINE) 100 * 101 * "contig-zones": keep zone contiguous 102 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 103 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 104 */ 105 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 106 static const struct kernel_param_ops online_policy_ops = { 107 .set = set_online_policy, 108 .get = get_online_policy, 109 }; 110 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 111 MODULE_PARM_DESC(online_policy, 112 "Set the online policy (\"contig-zones\", \"auto-movable\") " 113 "Default: \"contig-zones\""); 114 115 /* 116 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 117 * 118 * The ratio represent an upper limit and the kernel might decide to not 119 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 120 * doesn't allow for more MOVABLE memory. 121 */ 122 static unsigned int auto_movable_ratio __read_mostly = 301; 123 module_param(auto_movable_ratio, uint, 0644); 124 MODULE_PARM_DESC(auto_movable_ratio, 125 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 126 "in percent for \"auto-movable\" online policy. Default: 301"); 127 128 /* 129 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 130 */ 131 #ifdef CONFIG_NUMA 132 static bool auto_movable_numa_aware __read_mostly = true; 133 module_param(auto_movable_numa_aware, bool, 0644); 134 MODULE_PARM_DESC(auto_movable_numa_aware, 135 "Consider numa node stats in addition to global stats in " 136 "\"auto-movable\" online policy. Default: true"); 137 #endif /* CONFIG_NUMA */ 138 139 /* 140 * online_page_callback contains pointer to current page onlining function. 141 * Initially it is generic_online_page(). If it is required it could be 142 * changed by calling set_online_page_callback() for callback registration 143 * and restore_online_page_callback() for generic callback restore. 144 */ 145 146 static online_page_callback_t online_page_callback = generic_online_page; 147 static DEFINE_MUTEX(online_page_callback_lock); 148 149 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 150 151 void get_online_mems(void) 152 { 153 percpu_down_read(&mem_hotplug_lock); 154 } 155 156 void put_online_mems(void) 157 { 158 percpu_up_read(&mem_hotplug_lock); 159 } 160 161 bool movable_node_enabled = false; 162 163 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 164 int mhp_default_online_type = MMOP_OFFLINE; 165 #else 166 int mhp_default_online_type = MMOP_ONLINE; 167 #endif 168 169 static int __init setup_memhp_default_state(char *str) 170 { 171 const int online_type = mhp_online_type_from_str(str); 172 173 if (online_type >= 0) 174 mhp_default_online_type = online_type; 175 176 return 1; 177 } 178 __setup("memhp_default_state=", setup_memhp_default_state); 179 180 void mem_hotplug_begin(void) 181 { 182 cpus_read_lock(); 183 percpu_down_write(&mem_hotplug_lock); 184 } 185 186 void mem_hotplug_done(void) 187 { 188 percpu_up_write(&mem_hotplug_lock); 189 cpus_read_unlock(); 190 } 191 192 u64 max_mem_size = U64_MAX; 193 194 /* add this memory to iomem resource */ 195 static struct resource *register_memory_resource(u64 start, u64 size, 196 const char *resource_name) 197 { 198 struct resource *res; 199 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 200 201 if (strcmp(resource_name, "System RAM")) 202 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 203 204 if (!mhp_range_allowed(start, size, true)) 205 return ERR_PTR(-E2BIG); 206 207 /* 208 * Make sure value parsed from 'mem=' only restricts memory adding 209 * while booting, so that memory hotplug won't be impacted. Please 210 * refer to document of 'mem=' in kernel-parameters.txt for more 211 * details. 212 */ 213 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 214 return ERR_PTR(-E2BIG); 215 216 /* 217 * Request ownership of the new memory range. This might be 218 * a child of an existing resource that was present but 219 * not marked as busy. 220 */ 221 res = __request_region(&iomem_resource, start, size, 222 resource_name, flags); 223 224 if (!res) { 225 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 226 start, start + size); 227 return ERR_PTR(-EEXIST); 228 } 229 return res; 230 } 231 232 static void release_memory_resource(struct resource *res) 233 { 234 if (!res) 235 return; 236 release_resource(res); 237 kfree(res); 238 } 239 240 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 241 { 242 /* 243 * Disallow all operations smaller than a sub-section and only 244 * allow operations smaller than a section for 245 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 246 * enforces a larger memory_block_size_bytes() granularity for 247 * memory that will be marked online, so this check should only 248 * fire for direct arch_{add,remove}_memory() users outside of 249 * add_memory_resource(). 250 */ 251 unsigned long min_align; 252 253 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 254 min_align = PAGES_PER_SUBSECTION; 255 else 256 min_align = PAGES_PER_SECTION; 257 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 258 return -EINVAL; 259 return 0; 260 } 261 262 /* 263 * Return page for the valid pfn only if the page is online. All pfn 264 * walkers which rely on the fully initialized page->flags and others 265 * should use this rather than pfn_valid && pfn_to_page 266 */ 267 struct page *pfn_to_online_page(unsigned long pfn) 268 { 269 unsigned long nr = pfn_to_section_nr(pfn); 270 struct dev_pagemap *pgmap; 271 struct mem_section *ms; 272 273 if (nr >= NR_MEM_SECTIONS) 274 return NULL; 275 276 ms = __nr_to_section(nr); 277 if (!online_section(ms)) 278 return NULL; 279 280 /* 281 * Save some code text when online_section() + 282 * pfn_section_valid() are sufficient. 283 */ 284 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 285 return NULL; 286 287 if (!pfn_section_valid(ms, pfn)) 288 return NULL; 289 290 if (!online_device_section(ms)) 291 return pfn_to_page(pfn); 292 293 /* 294 * Slowpath: when ZONE_DEVICE collides with 295 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 296 * the section may be 'offline' but 'valid'. Only 297 * get_dev_pagemap() can determine sub-section online status. 298 */ 299 pgmap = get_dev_pagemap(pfn, NULL); 300 put_dev_pagemap(pgmap); 301 302 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 303 if (pgmap) 304 return NULL; 305 306 return pfn_to_page(pfn); 307 } 308 EXPORT_SYMBOL_GPL(pfn_to_online_page); 309 310 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 311 struct mhp_params *params) 312 { 313 const unsigned long end_pfn = pfn + nr_pages; 314 unsigned long cur_nr_pages; 315 int err; 316 struct vmem_altmap *altmap = params->altmap; 317 318 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 319 return -EINVAL; 320 321 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 322 323 if (altmap) { 324 /* 325 * Validate altmap is within bounds of the total request 326 */ 327 if (altmap->base_pfn != pfn 328 || vmem_altmap_offset(altmap) > nr_pages) { 329 pr_warn_once("memory add fail, invalid altmap\n"); 330 return -EINVAL; 331 } 332 altmap->alloc = 0; 333 } 334 335 if (check_pfn_span(pfn, nr_pages)) { 336 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1); 337 return -EINVAL; 338 } 339 340 for (; pfn < end_pfn; pfn += cur_nr_pages) { 341 /* Select all remaining pages up to the next section boundary */ 342 cur_nr_pages = min(end_pfn - pfn, 343 SECTION_ALIGN_UP(pfn + 1) - pfn); 344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 345 params->pgmap); 346 if (err) 347 break; 348 cond_resched(); 349 } 350 vmemmap_populate_print_last(); 351 return err; 352 } 353 354 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 355 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 356 unsigned long start_pfn, 357 unsigned long end_pfn) 358 { 359 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 360 if (unlikely(!pfn_to_online_page(start_pfn))) 361 continue; 362 363 if (unlikely(pfn_to_nid(start_pfn) != nid)) 364 continue; 365 366 if (zone != page_zone(pfn_to_page(start_pfn))) 367 continue; 368 369 return start_pfn; 370 } 371 372 return 0; 373 } 374 375 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 376 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 377 unsigned long start_pfn, 378 unsigned long end_pfn) 379 { 380 unsigned long pfn; 381 382 /* pfn is the end pfn of a memory section. */ 383 pfn = end_pfn - 1; 384 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 385 if (unlikely(!pfn_to_online_page(pfn))) 386 continue; 387 388 if (unlikely(pfn_to_nid(pfn) != nid)) 389 continue; 390 391 if (zone != page_zone(pfn_to_page(pfn))) 392 continue; 393 394 return pfn; 395 } 396 397 return 0; 398 } 399 400 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 401 unsigned long end_pfn) 402 { 403 unsigned long pfn; 404 int nid = zone_to_nid(zone); 405 406 if (zone->zone_start_pfn == start_pfn) { 407 /* 408 * If the section is smallest section in the zone, it need 409 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 410 * In this case, we find second smallest valid mem_section 411 * for shrinking zone. 412 */ 413 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 414 zone_end_pfn(zone)); 415 if (pfn) { 416 zone->spanned_pages = zone_end_pfn(zone) - pfn; 417 zone->zone_start_pfn = pfn; 418 } else { 419 zone->zone_start_pfn = 0; 420 zone->spanned_pages = 0; 421 } 422 } else if (zone_end_pfn(zone) == end_pfn) { 423 /* 424 * If the section is biggest section in the zone, it need 425 * shrink zone->spanned_pages. 426 * In this case, we find second biggest valid mem_section for 427 * shrinking zone. 428 */ 429 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 430 start_pfn); 431 if (pfn) 432 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 433 else { 434 zone->zone_start_pfn = 0; 435 zone->spanned_pages = 0; 436 } 437 } 438 } 439 440 static void update_pgdat_span(struct pglist_data *pgdat) 441 { 442 unsigned long node_start_pfn = 0, node_end_pfn = 0; 443 struct zone *zone; 444 445 for (zone = pgdat->node_zones; 446 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 447 unsigned long end_pfn = zone_end_pfn(zone); 448 449 /* No need to lock the zones, they can't change. */ 450 if (!zone->spanned_pages) 451 continue; 452 if (!node_end_pfn) { 453 node_start_pfn = zone->zone_start_pfn; 454 node_end_pfn = end_pfn; 455 continue; 456 } 457 458 if (end_pfn > node_end_pfn) 459 node_end_pfn = end_pfn; 460 if (zone->zone_start_pfn < node_start_pfn) 461 node_start_pfn = zone->zone_start_pfn; 462 } 463 464 pgdat->node_start_pfn = node_start_pfn; 465 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 466 } 467 468 void __ref remove_pfn_range_from_zone(struct zone *zone, 469 unsigned long start_pfn, 470 unsigned long nr_pages) 471 { 472 const unsigned long end_pfn = start_pfn + nr_pages; 473 struct pglist_data *pgdat = zone->zone_pgdat; 474 unsigned long pfn, cur_nr_pages; 475 476 /* Poison struct pages because they are now uninitialized again. */ 477 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 478 cond_resched(); 479 480 /* Select all remaining pages up to the next section boundary */ 481 cur_nr_pages = 482 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 483 page_init_poison(pfn_to_page(pfn), 484 sizeof(struct page) * cur_nr_pages); 485 } 486 487 /* 488 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 489 * we will not try to shrink the zones - which is okay as 490 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 491 */ 492 if (zone_is_zone_device(zone)) 493 return; 494 495 clear_zone_contiguous(zone); 496 497 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 498 update_pgdat_span(pgdat); 499 500 set_zone_contiguous(zone); 501 } 502 503 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 504 unsigned long map_offset, 505 struct vmem_altmap *altmap) 506 { 507 struct mem_section *ms = __pfn_to_section(pfn); 508 509 if (WARN_ON_ONCE(!valid_section(ms))) 510 return; 511 512 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 513 } 514 515 /** 516 * __remove_pages() - remove sections of pages 517 * @pfn: starting pageframe (must be aligned to start of a section) 518 * @nr_pages: number of pages to remove (must be multiple of section size) 519 * @altmap: alternative device page map or %NULL if default memmap is used 520 * 521 * Generic helper function to remove section mappings and sysfs entries 522 * for the section of the memory we are removing. Caller needs to make 523 * sure that pages are marked reserved and zones are adjust properly by 524 * calling offline_pages(). 525 */ 526 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 527 struct vmem_altmap *altmap) 528 { 529 const unsigned long end_pfn = pfn + nr_pages; 530 unsigned long cur_nr_pages; 531 unsigned long map_offset = 0; 532 533 map_offset = vmem_altmap_offset(altmap); 534 535 if (check_pfn_span(pfn, nr_pages)) { 536 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1); 537 return; 538 } 539 540 for (; pfn < end_pfn; pfn += cur_nr_pages) { 541 cond_resched(); 542 /* Select all remaining pages up to the next section boundary */ 543 cur_nr_pages = min(end_pfn - pfn, 544 SECTION_ALIGN_UP(pfn + 1) - pfn); 545 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 546 map_offset = 0; 547 } 548 } 549 550 int set_online_page_callback(online_page_callback_t callback) 551 { 552 int rc = -EINVAL; 553 554 get_online_mems(); 555 mutex_lock(&online_page_callback_lock); 556 557 if (online_page_callback == generic_online_page) { 558 online_page_callback = callback; 559 rc = 0; 560 } 561 562 mutex_unlock(&online_page_callback_lock); 563 put_online_mems(); 564 565 return rc; 566 } 567 EXPORT_SYMBOL_GPL(set_online_page_callback); 568 569 int restore_online_page_callback(online_page_callback_t callback) 570 { 571 int rc = -EINVAL; 572 573 get_online_mems(); 574 mutex_lock(&online_page_callback_lock); 575 576 if (online_page_callback == callback) { 577 online_page_callback = generic_online_page; 578 rc = 0; 579 } 580 581 mutex_unlock(&online_page_callback_lock); 582 put_online_mems(); 583 584 return rc; 585 } 586 EXPORT_SYMBOL_GPL(restore_online_page_callback); 587 588 void generic_online_page(struct page *page, unsigned int order) 589 { 590 /* 591 * Freeing the page with debug_pagealloc enabled will try to unmap it, 592 * so we should map it first. This is better than introducing a special 593 * case in page freeing fast path. 594 */ 595 debug_pagealloc_map_pages(page, 1 << order); 596 __free_pages_core(page, order); 597 totalram_pages_add(1UL << order); 598 } 599 EXPORT_SYMBOL_GPL(generic_online_page); 600 601 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 602 { 603 const unsigned long end_pfn = start_pfn + nr_pages; 604 unsigned long pfn; 605 606 /* 607 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 608 * decide to not expose all pages to the buddy (e.g., expose them 609 * later). We account all pages as being online and belonging to this 610 * zone ("present"). 611 * When using memmap_on_memory, the range might not be aligned to 612 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 613 * this and the first chunk to online will be pageblock_nr_pages. 614 */ 615 for (pfn = start_pfn; pfn < end_pfn;) { 616 int order = min(MAX_ORDER - 1UL, __ffs(pfn)); 617 618 (*online_page_callback)(pfn_to_page(pfn), order); 619 pfn += (1UL << order); 620 } 621 622 /* mark all involved sections as online */ 623 online_mem_sections(start_pfn, end_pfn); 624 } 625 626 /* check which state of node_states will be changed when online memory */ 627 static void node_states_check_changes_online(unsigned long nr_pages, 628 struct zone *zone, struct memory_notify *arg) 629 { 630 int nid = zone_to_nid(zone); 631 632 arg->status_change_nid = NUMA_NO_NODE; 633 arg->status_change_nid_normal = NUMA_NO_NODE; 634 635 if (!node_state(nid, N_MEMORY)) 636 arg->status_change_nid = nid; 637 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 638 arg->status_change_nid_normal = nid; 639 } 640 641 static void node_states_set_node(int node, struct memory_notify *arg) 642 { 643 if (arg->status_change_nid_normal >= 0) 644 node_set_state(node, N_NORMAL_MEMORY); 645 646 if (arg->status_change_nid >= 0) 647 node_set_state(node, N_MEMORY); 648 } 649 650 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 651 unsigned long nr_pages) 652 { 653 unsigned long old_end_pfn = zone_end_pfn(zone); 654 655 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 656 zone->zone_start_pfn = start_pfn; 657 658 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 659 } 660 661 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 662 unsigned long nr_pages) 663 { 664 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 665 666 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 667 pgdat->node_start_pfn = start_pfn; 668 669 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 670 671 } 672 673 static void section_taint_zone_device(unsigned long pfn) 674 { 675 struct mem_section *ms = __pfn_to_section(pfn); 676 677 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 678 } 679 680 /* 681 * Associate the pfn range with the given zone, initializing the memmaps 682 * and resizing the pgdat/zone data to span the added pages. After this 683 * call, all affected pages are PG_reserved. 684 * 685 * All aligned pageblocks are initialized to the specified migratetype 686 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 687 * zone stats (e.g., nr_isolate_pageblock) are touched. 688 */ 689 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 690 unsigned long nr_pages, 691 struct vmem_altmap *altmap, int migratetype) 692 { 693 struct pglist_data *pgdat = zone->zone_pgdat; 694 int nid = pgdat->node_id; 695 696 clear_zone_contiguous(zone); 697 698 if (zone_is_empty(zone)) 699 init_currently_empty_zone(zone, start_pfn, nr_pages); 700 resize_zone_range(zone, start_pfn, nr_pages); 701 resize_pgdat_range(pgdat, start_pfn, nr_pages); 702 703 /* 704 * Subsection population requires care in pfn_to_online_page(). 705 * Set the taint to enable the slow path detection of 706 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 707 * section. 708 */ 709 if (zone_is_zone_device(zone)) { 710 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 711 section_taint_zone_device(start_pfn); 712 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 713 section_taint_zone_device(start_pfn + nr_pages); 714 } 715 716 /* 717 * TODO now we have a visible range of pages which are not associated 718 * with their zone properly. Not nice but set_pfnblock_flags_mask 719 * expects the zone spans the pfn range. All the pages in the range 720 * are reserved so nobody should be touching them so we should be safe 721 */ 722 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 723 MEMINIT_HOTPLUG, altmap, migratetype); 724 725 set_zone_contiguous(zone); 726 } 727 728 struct auto_movable_stats { 729 unsigned long kernel_early_pages; 730 unsigned long movable_pages; 731 }; 732 733 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 734 struct zone *zone) 735 { 736 if (zone_idx(zone) == ZONE_MOVABLE) { 737 stats->movable_pages += zone->present_pages; 738 } else { 739 stats->kernel_early_pages += zone->present_early_pages; 740 #ifdef CONFIG_CMA 741 /* 742 * CMA pages (never on hotplugged memory) behave like 743 * ZONE_MOVABLE. 744 */ 745 stats->movable_pages += zone->cma_pages; 746 stats->kernel_early_pages -= zone->cma_pages; 747 #endif /* CONFIG_CMA */ 748 } 749 } 750 struct auto_movable_group_stats { 751 unsigned long movable_pages; 752 unsigned long req_kernel_early_pages; 753 }; 754 755 static int auto_movable_stats_account_group(struct memory_group *group, 756 void *arg) 757 { 758 const int ratio = READ_ONCE(auto_movable_ratio); 759 struct auto_movable_group_stats *stats = arg; 760 long pages; 761 762 /* 763 * We don't support modifying the config while the auto-movable online 764 * policy is already enabled. Just avoid the division by zero below. 765 */ 766 if (!ratio) 767 return 0; 768 769 /* 770 * Calculate how many early kernel pages this group requires to 771 * satisfy the configured zone ratio. 772 */ 773 pages = group->present_movable_pages * 100 / ratio; 774 pages -= group->present_kernel_pages; 775 776 if (pages > 0) 777 stats->req_kernel_early_pages += pages; 778 stats->movable_pages += group->present_movable_pages; 779 return 0; 780 } 781 782 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 783 unsigned long nr_pages) 784 { 785 unsigned long kernel_early_pages, movable_pages; 786 struct auto_movable_group_stats group_stats = {}; 787 struct auto_movable_stats stats = {}; 788 pg_data_t *pgdat = NODE_DATA(nid); 789 struct zone *zone; 790 int i; 791 792 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 793 if (nid == NUMA_NO_NODE) { 794 /* TODO: cache values */ 795 for_each_populated_zone(zone) 796 auto_movable_stats_account_zone(&stats, zone); 797 } else { 798 for (i = 0; i < MAX_NR_ZONES; i++) { 799 zone = pgdat->node_zones + i; 800 if (populated_zone(zone)) 801 auto_movable_stats_account_zone(&stats, zone); 802 } 803 } 804 805 kernel_early_pages = stats.kernel_early_pages; 806 movable_pages = stats.movable_pages; 807 808 /* 809 * Kernel memory inside dynamic memory group allows for more MOVABLE 810 * memory within the same group. Remove the effect of all but the 811 * current group from the stats. 812 */ 813 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 814 group, &group_stats); 815 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 816 return false; 817 kernel_early_pages -= group_stats.req_kernel_early_pages; 818 movable_pages -= group_stats.movable_pages; 819 820 if (group && group->is_dynamic) 821 kernel_early_pages += group->present_kernel_pages; 822 823 /* 824 * Test if we could online the given number of pages to ZONE_MOVABLE 825 * and still stay in the configured ratio. 826 */ 827 movable_pages += nr_pages; 828 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 829 } 830 831 /* 832 * Returns a default kernel memory zone for the given pfn range. 833 * If no kernel zone covers this pfn range it will automatically go 834 * to the ZONE_NORMAL. 835 */ 836 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 837 unsigned long nr_pages) 838 { 839 struct pglist_data *pgdat = NODE_DATA(nid); 840 int zid; 841 842 for (zid = 0; zid < ZONE_NORMAL; zid++) { 843 struct zone *zone = &pgdat->node_zones[zid]; 844 845 if (zone_intersects(zone, start_pfn, nr_pages)) 846 return zone; 847 } 848 849 return &pgdat->node_zones[ZONE_NORMAL]; 850 } 851 852 /* 853 * Determine to which zone to online memory dynamically based on user 854 * configuration and system stats. We care about the following ratio: 855 * 856 * MOVABLE : KERNEL 857 * 858 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 859 * one of the kernel zones. CMA pages inside one of the kernel zones really 860 * behaves like ZONE_MOVABLE, so we treat them accordingly. 861 * 862 * We don't allow for hotplugged memory in a KERNEL zone to increase the 863 * amount of MOVABLE memory we can have, so we end up with: 864 * 865 * MOVABLE : KERNEL_EARLY 866 * 867 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 868 * boot. We base our calculation on KERNEL_EARLY internally, because: 869 * 870 * a) Hotplugged memory in one of the kernel zones can sometimes still get 871 * hotunplugged, especially when hot(un)plugging individual memory blocks. 872 * There is no coordination across memory devices, therefore "automatic" 873 * hotunplugging, as implemented in hypervisors, could result in zone 874 * imbalances. 875 * b) Early/boot memory in one of the kernel zones can usually not get 876 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 877 * with unmovable allocations). While there are corner cases where it might 878 * still work, it is barely relevant in practice. 879 * 880 * Exceptions are dynamic memory groups, which allow for more MOVABLE 881 * memory within the same memory group -- because in that case, there is 882 * coordination within the single memory device managed by a single driver. 883 * 884 * We rely on "present pages" instead of "managed pages", as the latter is 885 * highly unreliable and dynamic in virtualized environments, and does not 886 * consider boot time allocations. For example, memory ballooning adjusts the 887 * managed pages when inflating/deflating the balloon, and balloon compaction 888 * can even migrate inflated pages between zones. 889 * 890 * Using "present pages" is better but some things to keep in mind are: 891 * 892 * a) Some memblock allocations, such as for the crashkernel area, are 893 * effectively unused by the kernel, yet they account to "present pages". 894 * Fortunately, these allocations are comparatively small in relevant setups 895 * (e.g., fraction of system memory). 896 * b) Some hotplugged memory blocks in virtualized environments, esecially 897 * hotplugged by virtio-mem, look like they are completely present, however, 898 * only parts of the memory block are actually currently usable. 899 * "present pages" is an upper limit that can get reached at runtime. As 900 * we base our calculations on KERNEL_EARLY, this is not an issue. 901 */ 902 static struct zone *auto_movable_zone_for_pfn(int nid, 903 struct memory_group *group, 904 unsigned long pfn, 905 unsigned long nr_pages) 906 { 907 unsigned long online_pages = 0, max_pages, end_pfn; 908 struct page *page; 909 910 if (!auto_movable_ratio) 911 goto kernel_zone; 912 913 if (group && !group->is_dynamic) { 914 max_pages = group->s.max_pages; 915 online_pages = group->present_movable_pages; 916 917 /* If anything is !MOVABLE online the rest !MOVABLE. */ 918 if (group->present_kernel_pages) 919 goto kernel_zone; 920 } else if (!group || group->d.unit_pages == nr_pages) { 921 max_pages = nr_pages; 922 } else { 923 max_pages = group->d.unit_pages; 924 /* 925 * Take a look at all online sections in the current unit. 926 * We can safely assume that all pages within a section belong 927 * to the same zone, because dynamic memory groups only deal 928 * with hotplugged memory. 929 */ 930 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 931 end_pfn = pfn + group->d.unit_pages; 932 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 933 page = pfn_to_online_page(pfn); 934 if (!page) 935 continue; 936 /* If anything is !MOVABLE online the rest !MOVABLE. */ 937 if (page_zonenum(page) != ZONE_MOVABLE) 938 goto kernel_zone; 939 online_pages += PAGES_PER_SECTION; 940 } 941 } 942 943 /* 944 * Online MOVABLE if we could *currently* online all remaining parts 945 * MOVABLE. We expect to (add+) online them immediately next, so if 946 * nobody interferes, all will be MOVABLE if possible. 947 */ 948 nr_pages = max_pages - online_pages; 949 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 950 goto kernel_zone; 951 952 #ifdef CONFIG_NUMA 953 if (auto_movable_numa_aware && 954 !auto_movable_can_online_movable(nid, group, nr_pages)) 955 goto kernel_zone; 956 #endif /* CONFIG_NUMA */ 957 958 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 959 kernel_zone: 960 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 961 } 962 963 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 964 unsigned long nr_pages) 965 { 966 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 967 nr_pages); 968 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 969 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 970 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 971 972 /* 973 * We inherit the existing zone in a simple case where zones do not 974 * overlap in the given range 975 */ 976 if (in_kernel ^ in_movable) 977 return (in_kernel) ? kernel_zone : movable_zone; 978 979 /* 980 * If the range doesn't belong to any zone or two zones overlap in the 981 * given range then we use movable zone only if movable_node is 982 * enabled because we always online to a kernel zone by default. 983 */ 984 return movable_node_enabled ? movable_zone : kernel_zone; 985 } 986 987 struct zone *zone_for_pfn_range(int online_type, int nid, 988 struct memory_group *group, unsigned long start_pfn, 989 unsigned long nr_pages) 990 { 991 if (online_type == MMOP_ONLINE_KERNEL) 992 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 993 994 if (online_type == MMOP_ONLINE_MOVABLE) 995 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 996 997 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 998 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 999 1000 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1001 } 1002 1003 /* 1004 * This function should only be called by memory_block_{online,offline}, 1005 * and {online,offline}_pages. 1006 */ 1007 void adjust_present_page_count(struct page *page, struct memory_group *group, 1008 long nr_pages) 1009 { 1010 struct zone *zone = page_zone(page); 1011 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1012 1013 /* 1014 * We only support onlining/offlining/adding/removing of complete 1015 * memory blocks; therefore, either all is either early or hotplugged. 1016 */ 1017 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1018 zone->present_early_pages += nr_pages; 1019 zone->present_pages += nr_pages; 1020 zone->zone_pgdat->node_present_pages += nr_pages; 1021 1022 if (group && movable) 1023 group->present_movable_pages += nr_pages; 1024 else if (group && !movable) 1025 group->present_kernel_pages += nr_pages; 1026 } 1027 1028 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1029 struct zone *zone) 1030 { 1031 unsigned long end_pfn = pfn + nr_pages; 1032 int ret; 1033 1034 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1035 if (ret) 1036 return ret; 1037 1038 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1039 1040 /* 1041 * It might be that the vmemmap_pages fully span sections. If that is 1042 * the case, mark those sections online here as otherwise they will be 1043 * left offline. 1044 */ 1045 if (nr_pages >= PAGES_PER_SECTION) 1046 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1047 1048 return ret; 1049 } 1050 1051 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1052 { 1053 unsigned long end_pfn = pfn + nr_pages; 1054 1055 /* 1056 * It might be that the vmemmap_pages fully span sections. If that is 1057 * the case, mark those sections offline here as otherwise they will be 1058 * left online. 1059 */ 1060 if (nr_pages >= PAGES_PER_SECTION) 1061 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1062 1063 /* 1064 * The pages associated with this vmemmap have been offlined, so 1065 * we can reset its state here. 1066 */ 1067 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1068 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1069 } 1070 1071 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1072 struct zone *zone, struct memory_group *group) 1073 { 1074 unsigned long flags; 1075 int need_zonelists_rebuild = 0; 1076 const int nid = zone_to_nid(zone); 1077 int ret; 1078 struct memory_notify arg; 1079 1080 /* 1081 * {on,off}lining is constrained to full memory sections (or more 1082 * precisely to memory blocks from the user space POV). 1083 * memmap_on_memory is an exception because it reserves initial part 1084 * of the physical memory space for vmemmaps. That space is pageblock 1085 * aligned. 1086 */ 1087 if (WARN_ON_ONCE(!nr_pages || 1088 !IS_ALIGNED(pfn, pageblock_nr_pages) || 1089 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1090 return -EINVAL; 1091 1092 mem_hotplug_begin(); 1093 1094 /* associate pfn range with the zone */ 1095 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1096 1097 arg.start_pfn = pfn; 1098 arg.nr_pages = nr_pages; 1099 node_states_check_changes_online(nr_pages, zone, &arg); 1100 1101 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1102 ret = notifier_to_errno(ret); 1103 if (ret) 1104 goto failed_addition; 1105 1106 /* 1107 * Fixup the number of isolated pageblocks before marking the sections 1108 * onlining, such that undo_isolate_page_range() works correctly. 1109 */ 1110 spin_lock_irqsave(&zone->lock, flags); 1111 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1112 spin_unlock_irqrestore(&zone->lock, flags); 1113 1114 /* 1115 * If this zone is not populated, then it is not in zonelist. 1116 * This means the page allocator ignores this zone. 1117 * So, zonelist must be updated after online. 1118 */ 1119 if (!populated_zone(zone)) { 1120 need_zonelists_rebuild = 1; 1121 setup_zone_pageset(zone); 1122 } 1123 1124 online_pages_range(pfn, nr_pages); 1125 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1126 1127 node_states_set_node(nid, &arg); 1128 if (need_zonelists_rebuild) 1129 build_all_zonelists(NULL); 1130 1131 /* Basic onlining is complete, allow allocation of onlined pages. */ 1132 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1133 1134 /* 1135 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1136 * the tail of the freelist when undoing isolation). Shuffle the whole 1137 * zone to make sure the just onlined pages are properly distributed 1138 * across the whole freelist - to create an initial shuffle. 1139 */ 1140 shuffle_zone(zone); 1141 1142 /* reinitialise watermarks and update pcp limits */ 1143 init_per_zone_wmark_min(); 1144 1145 kswapd_run(nid); 1146 kcompactd_run(nid); 1147 1148 writeback_set_ratelimit(); 1149 1150 memory_notify(MEM_ONLINE, &arg); 1151 mem_hotplug_done(); 1152 return 0; 1153 1154 failed_addition: 1155 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1156 (unsigned long long) pfn << PAGE_SHIFT, 1157 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1158 memory_notify(MEM_CANCEL_ONLINE, &arg); 1159 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1160 mem_hotplug_done(); 1161 return ret; 1162 } 1163 1164 static void reset_node_present_pages(pg_data_t *pgdat) 1165 { 1166 struct zone *z; 1167 1168 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1169 z->present_pages = 0; 1170 1171 pgdat->node_present_pages = 0; 1172 } 1173 1174 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1175 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1176 { 1177 struct pglist_data *pgdat; 1178 1179 /* 1180 * NODE_DATA is preallocated (free_area_init) but its internal 1181 * state is not allocated completely. Add missing pieces. 1182 * Completely offline nodes stay around and they just need 1183 * reintialization. 1184 */ 1185 pgdat = NODE_DATA(nid); 1186 1187 /* init node's zones as empty zones, we don't have any present pages.*/ 1188 free_area_init_core_hotplug(pgdat); 1189 1190 /* 1191 * The node we allocated has no zone fallback lists. For avoiding 1192 * to access not-initialized zonelist, build here. 1193 */ 1194 build_all_zonelists(pgdat); 1195 1196 /* 1197 * When memory is hot-added, all the memory is in offline state. So 1198 * clear all zones' present_pages because they will be updated in 1199 * online_pages() and offline_pages(). 1200 * TODO: should be in free_area_init_core_hotplug? 1201 */ 1202 reset_node_managed_pages(pgdat); 1203 reset_node_present_pages(pgdat); 1204 1205 return pgdat; 1206 } 1207 1208 /* 1209 * __try_online_node - online a node if offlined 1210 * @nid: the node ID 1211 * @set_node_online: Whether we want to online the node 1212 * called by cpu_up() to online a node without onlined memory. 1213 * 1214 * Returns: 1215 * 1 -> a new node has been allocated 1216 * 0 -> the node is already online 1217 * -ENOMEM -> the node could not be allocated 1218 */ 1219 static int __try_online_node(int nid, bool set_node_online) 1220 { 1221 pg_data_t *pgdat; 1222 int ret = 1; 1223 1224 if (node_online(nid)) 1225 return 0; 1226 1227 pgdat = hotadd_init_pgdat(nid); 1228 if (!pgdat) { 1229 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1230 ret = -ENOMEM; 1231 goto out; 1232 } 1233 1234 if (set_node_online) { 1235 node_set_online(nid); 1236 ret = register_one_node(nid); 1237 BUG_ON(ret); 1238 } 1239 out: 1240 return ret; 1241 } 1242 1243 /* 1244 * Users of this function always want to online/register the node 1245 */ 1246 int try_online_node(int nid) 1247 { 1248 int ret; 1249 1250 mem_hotplug_begin(); 1251 ret = __try_online_node(nid, true); 1252 mem_hotplug_done(); 1253 return ret; 1254 } 1255 1256 static int check_hotplug_memory_range(u64 start, u64 size) 1257 { 1258 /* memory range must be block size aligned */ 1259 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1260 !IS_ALIGNED(size, memory_block_size_bytes())) { 1261 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1262 memory_block_size_bytes(), start, size); 1263 return -EINVAL; 1264 } 1265 1266 return 0; 1267 } 1268 1269 static int online_memory_block(struct memory_block *mem, void *arg) 1270 { 1271 mem->online_type = mhp_default_online_type; 1272 return device_online(&mem->dev); 1273 } 1274 1275 bool mhp_supports_memmap_on_memory(unsigned long size) 1276 { 1277 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1278 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1279 unsigned long remaining_size = size - vmemmap_size; 1280 1281 /* 1282 * Besides having arch support and the feature enabled at runtime, we 1283 * need a few more assumptions to hold true: 1284 * 1285 * a) We span a single memory block: memory onlining/offlinin;g happens 1286 * in memory block granularity. We don't want the vmemmap of online 1287 * memory blocks to reside on offline memory blocks. In the future, 1288 * we might want to support variable-sized memory blocks to make the 1289 * feature more versatile. 1290 * 1291 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1292 * to populate memory from the altmap for unrelated parts (i.e., 1293 * other memory blocks) 1294 * 1295 * c) The vmemmap pages (and thereby the pages that will be exposed to 1296 * the buddy) have to cover full pageblocks: memory onlining/offlining 1297 * code requires applicable ranges to be page-aligned, for example, to 1298 * set the migratetypes properly. 1299 * 1300 * TODO: Although we have a check here to make sure that vmemmap pages 1301 * fully populate a PMD, it is not the right place to check for 1302 * this. A much better solution involves improving vmemmap code 1303 * to fallback to base pages when trying to populate vmemmap using 1304 * altmap as an alternative source of memory, and we do not exactly 1305 * populate a single PMD. 1306 */ 1307 return mhp_memmap_on_memory() && 1308 size == memory_block_size_bytes() && 1309 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1310 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1311 } 1312 1313 /* 1314 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1315 * and online/offline operations (triggered e.g. by sysfs). 1316 * 1317 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1318 */ 1319 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1320 { 1321 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1322 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1323 struct vmem_altmap mhp_altmap = {}; 1324 struct memory_group *group = NULL; 1325 u64 start, size; 1326 bool new_node = false; 1327 int ret; 1328 1329 start = res->start; 1330 size = resource_size(res); 1331 1332 ret = check_hotplug_memory_range(start, size); 1333 if (ret) 1334 return ret; 1335 1336 if (mhp_flags & MHP_NID_IS_MGID) { 1337 group = memory_group_find_by_id(nid); 1338 if (!group) 1339 return -EINVAL; 1340 nid = group->nid; 1341 } 1342 1343 if (!node_possible(nid)) { 1344 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1345 return -EINVAL; 1346 } 1347 1348 mem_hotplug_begin(); 1349 1350 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1351 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1352 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1353 ret = memblock_add_node(start, size, nid, memblock_flags); 1354 if (ret) 1355 goto error_mem_hotplug_end; 1356 } 1357 1358 ret = __try_online_node(nid, false); 1359 if (ret < 0) 1360 goto error; 1361 new_node = ret; 1362 1363 /* 1364 * Self hosted memmap array 1365 */ 1366 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1367 if (!mhp_supports_memmap_on_memory(size)) { 1368 ret = -EINVAL; 1369 goto error; 1370 } 1371 mhp_altmap.free = PHYS_PFN(size); 1372 mhp_altmap.base_pfn = PHYS_PFN(start); 1373 params.altmap = &mhp_altmap; 1374 } 1375 1376 /* call arch's memory hotadd */ 1377 ret = arch_add_memory(nid, start, size, ¶ms); 1378 if (ret < 0) 1379 goto error; 1380 1381 /* create memory block devices after memory was added */ 1382 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1383 group); 1384 if (ret) { 1385 arch_remove_memory(start, size, NULL); 1386 goto error; 1387 } 1388 1389 if (new_node) { 1390 /* If sysfs file of new node can't be created, cpu on the node 1391 * can't be hot-added. There is no rollback way now. 1392 * So, check by BUG_ON() to catch it reluctantly.. 1393 * We online node here. We can't roll back from here. 1394 */ 1395 node_set_online(nid); 1396 ret = __register_one_node(nid); 1397 BUG_ON(ret); 1398 } 1399 1400 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1401 PFN_UP(start + size - 1), 1402 MEMINIT_HOTPLUG); 1403 1404 /* create new memmap entry */ 1405 if (!strcmp(res->name, "System RAM")) 1406 firmware_map_add_hotplug(start, start + size, "System RAM"); 1407 1408 /* device_online() will take the lock when calling online_pages() */ 1409 mem_hotplug_done(); 1410 1411 /* 1412 * In case we're allowed to merge the resource, flag it and trigger 1413 * merging now that adding succeeded. 1414 */ 1415 if (mhp_flags & MHP_MERGE_RESOURCE) 1416 merge_system_ram_resource(res); 1417 1418 /* online pages if requested */ 1419 if (mhp_default_online_type != MMOP_OFFLINE) 1420 walk_memory_blocks(start, size, NULL, online_memory_block); 1421 1422 return ret; 1423 error: 1424 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1425 memblock_remove(start, size); 1426 error_mem_hotplug_end: 1427 mem_hotplug_done(); 1428 return ret; 1429 } 1430 1431 /* requires device_hotplug_lock, see add_memory_resource() */ 1432 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1433 { 1434 struct resource *res; 1435 int ret; 1436 1437 res = register_memory_resource(start, size, "System RAM"); 1438 if (IS_ERR(res)) 1439 return PTR_ERR(res); 1440 1441 ret = add_memory_resource(nid, res, mhp_flags); 1442 if (ret < 0) 1443 release_memory_resource(res); 1444 return ret; 1445 } 1446 1447 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1448 { 1449 int rc; 1450 1451 lock_device_hotplug(); 1452 rc = __add_memory(nid, start, size, mhp_flags); 1453 unlock_device_hotplug(); 1454 1455 return rc; 1456 } 1457 EXPORT_SYMBOL_GPL(add_memory); 1458 1459 /* 1460 * Add special, driver-managed memory to the system as system RAM. Such 1461 * memory is not exposed via the raw firmware-provided memmap as system 1462 * RAM, instead, it is detected and added by a driver - during cold boot, 1463 * after a reboot, and after kexec. 1464 * 1465 * Reasons why this memory should not be used for the initial memmap of a 1466 * kexec kernel or for placing kexec images: 1467 * - The booting kernel is in charge of determining how this memory will be 1468 * used (e.g., use persistent memory as system RAM) 1469 * - Coordination with a hypervisor is required before this memory 1470 * can be used (e.g., inaccessible parts). 1471 * 1472 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1473 * memory map") are created. Also, the created memory resource is flagged 1474 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1475 * this memory as well (esp., not place kexec images onto it). 1476 * 1477 * The resource_name (visible via /proc/iomem) has to have the format 1478 * "System RAM ($DRIVER)". 1479 */ 1480 int add_memory_driver_managed(int nid, u64 start, u64 size, 1481 const char *resource_name, mhp_t mhp_flags) 1482 { 1483 struct resource *res; 1484 int rc; 1485 1486 if (!resource_name || 1487 strstr(resource_name, "System RAM (") != resource_name || 1488 resource_name[strlen(resource_name) - 1] != ')') 1489 return -EINVAL; 1490 1491 lock_device_hotplug(); 1492 1493 res = register_memory_resource(start, size, resource_name); 1494 if (IS_ERR(res)) { 1495 rc = PTR_ERR(res); 1496 goto out_unlock; 1497 } 1498 1499 rc = add_memory_resource(nid, res, mhp_flags); 1500 if (rc < 0) 1501 release_memory_resource(res); 1502 1503 out_unlock: 1504 unlock_device_hotplug(); 1505 return rc; 1506 } 1507 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1508 1509 /* 1510 * Platforms should define arch_get_mappable_range() that provides 1511 * maximum possible addressable physical memory range for which the 1512 * linear mapping could be created. The platform returned address 1513 * range must adhere to these following semantics. 1514 * 1515 * - range.start <= range.end 1516 * - Range includes both end points [range.start..range.end] 1517 * 1518 * There is also a fallback definition provided here, allowing the 1519 * entire possible physical address range in case any platform does 1520 * not define arch_get_mappable_range(). 1521 */ 1522 struct range __weak arch_get_mappable_range(void) 1523 { 1524 struct range mhp_range = { 1525 .start = 0UL, 1526 .end = -1ULL, 1527 }; 1528 return mhp_range; 1529 } 1530 1531 struct range mhp_get_pluggable_range(bool need_mapping) 1532 { 1533 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1534 struct range mhp_range; 1535 1536 if (need_mapping) { 1537 mhp_range = arch_get_mappable_range(); 1538 if (mhp_range.start > max_phys) { 1539 mhp_range.start = 0; 1540 mhp_range.end = 0; 1541 } 1542 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1543 } else { 1544 mhp_range.start = 0; 1545 mhp_range.end = max_phys; 1546 } 1547 return mhp_range; 1548 } 1549 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1550 1551 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1552 { 1553 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1554 u64 end = start + size; 1555 1556 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1557 return true; 1558 1559 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1560 start, end, mhp_range.start, mhp_range.end); 1561 return false; 1562 } 1563 1564 #ifdef CONFIG_MEMORY_HOTREMOVE 1565 /* 1566 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1567 * non-lru movable pages and hugepages). Will skip over most unmovable 1568 * pages (esp., pages that can be skipped when offlining), but bail out on 1569 * definitely unmovable pages. 1570 * 1571 * Returns: 1572 * 0 in case a movable page is found and movable_pfn was updated. 1573 * -ENOENT in case no movable page was found. 1574 * -EBUSY in case a definitely unmovable page was found. 1575 */ 1576 static int scan_movable_pages(unsigned long start, unsigned long end, 1577 unsigned long *movable_pfn) 1578 { 1579 unsigned long pfn; 1580 1581 for (pfn = start; pfn < end; pfn++) { 1582 struct page *page, *head; 1583 unsigned long skip; 1584 1585 if (!pfn_valid(pfn)) 1586 continue; 1587 page = pfn_to_page(pfn); 1588 if (PageLRU(page)) 1589 goto found; 1590 if (__PageMovable(page)) 1591 goto found; 1592 1593 /* 1594 * PageOffline() pages that are not marked __PageMovable() and 1595 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1596 * definitely unmovable. If their reference count would be 0, 1597 * they could at least be skipped when offlining memory. 1598 */ 1599 if (PageOffline(page) && page_count(page)) 1600 return -EBUSY; 1601 1602 if (!PageHuge(page)) 1603 continue; 1604 head = compound_head(page); 1605 /* 1606 * This test is racy as we hold no reference or lock. The 1607 * hugetlb page could have been free'ed and head is no longer 1608 * a hugetlb page before the following check. In such unlikely 1609 * cases false positives and negatives are possible. Calling 1610 * code must deal with these scenarios. 1611 */ 1612 if (HPageMigratable(head)) 1613 goto found; 1614 skip = compound_nr(head) - (page - head); 1615 pfn += skip - 1; 1616 } 1617 return -ENOENT; 1618 found: 1619 *movable_pfn = pfn; 1620 return 0; 1621 } 1622 1623 static int 1624 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1625 { 1626 unsigned long pfn; 1627 struct page *page, *head; 1628 int ret = 0; 1629 LIST_HEAD(source); 1630 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1631 DEFAULT_RATELIMIT_BURST); 1632 1633 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1634 struct folio *folio; 1635 1636 if (!pfn_valid(pfn)) 1637 continue; 1638 page = pfn_to_page(pfn); 1639 folio = page_folio(page); 1640 head = &folio->page; 1641 1642 if (PageHuge(page)) { 1643 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1644 isolate_hugetlb(head, &source); 1645 continue; 1646 } else if (PageTransHuge(page)) 1647 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1648 1649 /* 1650 * HWPoison pages have elevated reference counts so the migration would 1651 * fail on them. It also doesn't make any sense to migrate them in the 1652 * first place. Still try to unmap such a page in case it is still mapped 1653 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1654 * the unmap as the catch all safety net). 1655 */ 1656 if (PageHWPoison(page)) { 1657 if (WARN_ON(folio_test_lru(folio))) 1658 folio_isolate_lru(folio); 1659 if (folio_mapped(folio)) 1660 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1661 continue; 1662 } 1663 1664 if (!get_page_unless_zero(page)) 1665 continue; 1666 /* 1667 * We can skip free pages. And we can deal with pages on 1668 * LRU and non-lru movable pages. 1669 */ 1670 if (PageLRU(page)) 1671 ret = isolate_lru_page(page); 1672 else 1673 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1674 if (!ret) { /* Success */ 1675 list_add_tail(&page->lru, &source); 1676 if (!__PageMovable(page)) 1677 inc_node_page_state(page, NR_ISOLATED_ANON + 1678 page_is_file_lru(page)); 1679 1680 } else { 1681 if (__ratelimit(&migrate_rs)) { 1682 pr_warn("failed to isolate pfn %lx\n", pfn); 1683 dump_page(page, "isolation failed"); 1684 } 1685 } 1686 put_page(page); 1687 } 1688 if (!list_empty(&source)) { 1689 nodemask_t nmask = node_states[N_MEMORY]; 1690 struct migration_target_control mtc = { 1691 .nmask = &nmask, 1692 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1693 }; 1694 1695 /* 1696 * We have checked that migration range is on a single zone so 1697 * we can use the nid of the first page to all the others. 1698 */ 1699 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1700 1701 /* 1702 * try to allocate from a different node but reuse this node 1703 * if there are no other online nodes to be used (e.g. we are 1704 * offlining a part of the only existing node) 1705 */ 1706 node_clear(mtc.nid, nmask); 1707 if (nodes_empty(nmask)) 1708 node_set(mtc.nid, nmask); 1709 ret = migrate_pages(&source, alloc_migration_target, NULL, 1710 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1711 if (ret) { 1712 list_for_each_entry(page, &source, lru) { 1713 if (__ratelimit(&migrate_rs)) { 1714 pr_warn("migrating pfn %lx failed ret:%d\n", 1715 page_to_pfn(page), ret); 1716 dump_page(page, "migration failure"); 1717 } 1718 } 1719 putback_movable_pages(&source); 1720 } 1721 } 1722 1723 return ret; 1724 } 1725 1726 static int __init cmdline_parse_movable_node(char *p) 1727 { 1728 movable_node_enabled = true; 1729 return 0; 1730 } 1731 early_param("movable_node", cmdline_parse_movable_node); 1732 1733 /* check which state of node_states will be changed when offline memory */ 1734 static void node_states_check_changes_offline(unsigned long nr_pages, 1735 struct zone *zone, struct memory_notify *arg) 1736 { 1737 struct pglist_data *pgdat = zone->zone_pgdat; 1738 unsigned long present_pages = 0; 1739 enum zone_type zt; 1740 1741 arg->status_change_nid = NUMA_NO_NODE; 1742 arg->status_change_nid_normal = NUMA_NO_NODE; 1743 1744 /* 1745 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1746 * If the memory to be offline is within the range 1747 * [0..ZONE_NORMAL], and it is the last present memory there, 1748 * the zones in that range will become empty after the offlining, 1749 * thus we can determine that we need to clear the node from 1750 * node_states[N_NORMAL_MEMORY]. 1751 */ 1752 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1753 present_pages += pgdat->node_zones[zt].present_pages; 1754 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1755 arg->status_change_nid_normal = zone_to_nid(zone); 1756 1757 /* 1758 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1759 * does not apply as we don't support 32bit. 1760 * Here we count the possible pages from ZONE_MOVABLE. 1761 * If after having accounted all the pages, we see that the nr_pages 1762 * to be offlined is over or equal to the accounted pages, 1763 * we know that the node will become empty, and so, we can clear 1764 * it for N_MEMORY as well. 1765 */ 1766 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1767 1768 if (nr_pages >= present_pages) 1769 arg->status_change_nid = zone_to_nid(zone); 1770 } 1771 1772 static void node_states_clear_node(int node, struct memory_notify *arg) 1773 { 1774 if (arg->status_change_nid_normal >= 0) 1775 node_clear_state(node, N_NORMAL_MEMORY); 1776 1777 if (arg->status_change_nid >= 0) 1778 node_clear_state(node, N_MEMORY); 1779 } 1780 1781 static int count_system_ram_pages_cb(unsigned long start_pfn, 1782 unsigned long nr_pages, void *data) 1783 { 1784 unsigned long *nr_system_ram_pages = data; 1785 1786 *nr_system_ram_pages += nr_pages; 1787 return 0; 1788 } 1789 1790 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1791 struct zone *zone, struct memory_group *group) 1792 { 1793 const unsigned long end_pfn = start_pfn + nr_pages; 1794 unsigned long pfn, system_ram_pages = 0; 1795 const int node = zone_to_nid(zone); 1796 unsigned long flags; 1797 struct memory_notify arg; 1798 char *reason; 1799 int ret; 1800 1801 /* 1802 * {on,off}lining is constrained to full memory sections (or more 1803 * precisely to memory blocks from the user space POV). 1804 * memmap_on_memory is an exception because it reserves initial part 1805 * of the physical memory space for vmemmaps. That space is pageblock 1806 * aligned. 1807 */ 1808 if (WARN_ON_ONCE(!nr_pages || 1809 !IS_ALIGNED(start_pfn, pageblock_nr_pages) || 1810 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1811 return -EINVAL; 1812 1813 mem_hotplug_begin(); 1814 1815 /* 1816 * Don't allow to offline memory blocks that contain holes. 1817 * Consequently, memory blocks with holes can never get onlined 1818 * via the hotplug path - online_pages() - as hotplugged memory has 1819 * no holes. This way, we e.g., don't have to worry about marking 1820 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1821 * avoid using walk_system_ram_range() later. 1822 */ 1823 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1824 count_system_ram_pages_cb); 1825 if (system_ram_pages != nr_pages) { 1826 ret = -EINVAL; 1827 reason = "memory holes"; 1828 goto failed_removal; 1829 } 1830 1831 /* 1832 * We only support offlining of memory blocks managed by a single zone, 1833 * checked by calling code. This is just a sanity check that we might 1834 * want to remove in the future. 1835 */ 1836 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1837 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1838 ret = -EINVAL; 1839 reason = "multizone range"; 1840 goto failed_removal; 1841 } 1842 1843 /* 1844 * Disable pcplists so that page isolation cannot race with freeing 1845 * in a way that pages from isolated pageblock are left on pcplists. 1846 */ 1847 zone_pcp_disable(zone); 1848 lru_cache_disable(); 1849 1850 /* set above range as isolated */ 1851 ret = start_isolate_page_range(start_pfn, end_pfn, 1852 MIGRATE_MOVABLE, 1853 MEMORY_OFFLINE | REPORT_FAILURE, 1854 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 1855 if (ret) { 1856 reason = "failure to isolate range"; 1857 goto failed_removal_pcplists_disabled; 1858 } 1859 1860 arg.start_pfn = start_pfn; 1861 arg.nr_pages = nr_pages; 1862 node_states_check_changes_offline(nr_pages, zone, &arg); 1863 1864 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1865 ret = notifier_to_errno(ret); 1866 if (ret) { 1867 reason = "notifier failure"; 1868 goto failed_removal_isolated; 1869 } 1870 1871 do { 1872 pfn = start_pfn; 1873 do { 1874 if (signal_pending(current)) { 1875 ret = -EINTR; 1876 reason = "signal backoff"; 1877 goto failed_removal_isolated; 1878 } 1879 1880 cond_resched(); 1881 1882 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1883 if (!ret) { 1884 /* 1885 * TODO: fatal migration failures should bail 1886 * out 1887 */ 1888 do_migrate_range(pfn, end_pfn); 1889 } 1890 } while (!ret); 1891 1892 if (ret != -ENOENT) { 1893 reason = "unmovable page"; 1894 goto failed_removal_isolated; 1895 } 1896 1897 /* 1898 * Dissolve free hugepages in the memory block before doing 1899 * offlining actually in order to make hugetlbfs's object 1900 * counting consistent. 1901 */ 1902 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1903 if (ret) { 1904 reason = "failure to dissolve huge pages"; 1905 goto failed_removal_isolated; 1906 } 1907 1908 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1909 1910 } while (ret); 1911 1912 /* Mark all sections offline and remove free pages from the buddy. */ 1913 __offline_isolated_pages(start_pfn, end_pfn); 1914 pr_debug("Offlined Pages %ld\n", nr_pages); 1915 1916 /* 1917 * The memory sections are marked offline, and the pageblock flags 1918 * effectively stale; nobody should be touching them. Fixup the number 1919 * of isolated pageblocks, memory onlining will properly revert this. 1920 */ 1921 spin_lock_irqsave(&zone->lock, flags); 1922 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1923 spin_unlock_irqrestore(&zone->lock, flags); 1924 1925 lru_cache_enable(); 1926 zone_pcp_enable(zone); 1927 1928 /* removal success */ 1929 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1930 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 1931 1932 /* reinitialise watermarks and update pcp limits */ 1933 init_per_zone_wmark_min(); 1934 1935 if (!populated_zone(zone)) { 1936 zone_pcp_reset(zone); 1937 build_all_zonelists(NULL); 1938 } 1939 1940 node_states_clear_node(node, &arg); 1941 if (arg.status_change_nid >= 0) { 1942 kswapd_stop(node); 1943 kcompactd_stop(node); 1944 } 1945 1946 writeback_set_ratelimit(); 1947 1948 memory_notify(MEM_OFFLINE, &arg); 1949 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1950 mem_hotplug_done(); 1951 return 0; 1952 1953 failed_removal_isolated: 1954 /* pushback to free area */ 1955 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1956 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1957 failed_removal_pcplists_disabled: 1958 lru_cache_enable(); 1959 zone_pcp_enable(zone); 1960 failed_removal: 1961 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1962 (unsigned long long) start_pfn << PAGE_SHIFT, 1963 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1964 reason); 1965 mem_hotplug_done(); 1966 return ret; 1967 } 1968 1969 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1970 { 1971 int ret = !is_memblock_offlined(mem); 1972 int *nid = arg; 1973 1974 *nid = mem->nid; 1975 if (unlikely(ret)) { 1976 phys_addr_t beginpa, endpa; 1977 1978 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1979 endpa = beginpa + memory_block_size_bytes() - 1; 1980 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1981 &beginpa, &endpa); 1982 1983 return -EBUSY; 1984 } 1985 return 0; 1986 } 1987 1988 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 1989 { 1990 /* 1991 * If not set, continue with the next block. 1992 */ 1993 return mem->nr_vmemmap_pages; 1994 } 1995 1996 static int check_cpu_on_node(int nid) 1997 { 1998 int cpu; 1999 2000 for_each_present_cpu(cpu) { 2001 if (cpu_to_node(cpu) == nid) 2002 /* 2003 * the cpu on this node isn't removed, and we can't 2004 * offline this node. 2005 */ 2006 return -EBUSY; 2007 } 2008 2009 return 0; 2010 } 2011 2012 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2013 { 2014 int nid = *(int *)arg; 2015 2016 /* 2017 * If a memory block belongs to multiple nodes, the stored nid is not 2018 * reliable. However, such blocks are always online (e.g., cannot get 2019 * offlined) and, therefore, are still spanned by the node. 2020 */ 2021 return mem->nid == nid ? -EEXIST : 0; 2022 } 2023 2024 /** 2025 * try_offline_node 2026 * @nid: the node ID 2027 * 2028 * Offline a node if all memory sections and cpus of the node are removed. 2029 * 2030 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2031 * and online/offline operations before this call. 2032 */ 2033 void try_offline_node(int nid) 2034 { 2035 int rc; 2036 2037 /* 2038 * If the node still spans pages (especially ZONE_DEVICE), don't 2039 * offline it. A node spans memory after move_pfn_range_to_zone(), 2040 * e.g., after the memory block was onlined. 2041 */ 2042 if (node_spanned_pages(nid)) 2043 return; 2044 2045 /* 2046 * Especially offline memory blocks might not be spanned by the 2047 * node. They will get spanned by the node once they get onlined. 2048 * However, they link to the node in sysfs and can get onlined later. 2049 */ 2050 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2051 if (rc) 2052 return; 2053 2054 if (check_cpu_on_node(nid)) 2055 return; 2056 2057 /* 2058 * all memory/cpu of this node are removed, we can offline this 2059 * node now. 2060 */ 2061 node_set_offline(nid); 2062 unregister_one_node(nid); 2063 } 2064 EXPORT_SYMBOL(try_offline_node); 2065 2066 static int __ref try_remove_memory(u64 start, u64 size) 2067 { 2068 struct vmem_altmap mhp_altmap = {}; 2069 struct vmem_altmap *altmap = NULL; 2070 unsigned long nr_vmemmap_pages; 2071 int rc = 0, nid = NUMA_NO_NODE; 2072 2073 BUG_ON(check_hotplug_memory_range(start, size)); 2074 2075 /* 2076 * All memory blocks must be offlined before removing memory. Check 2077 * whether all memory blocks in question are offline and return error 2078 * if this is not the case. 2079 * 2080 * While at it, determine the nid. Note that if we'd have mixed nodes, 2081 * we'd only try to offline the last determined one -- which is good 2082 * enough for the cases we care about. 2083 */ 2084 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2085 if (rc) 2086 return rc; 2087 2088 /* 2089 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2090 * the same granularity it was added - a single memory block. 2091 */ 2092 if (mhp_memmap_on_memory()) { 2093 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2094 get_nr_vmemmap_pages_cb); 2095 if (nr_vmemmap_pages) { 2096 if (size != memory_block_size_bytes()) { 2097 pr_warn("Refuse to remove %#llx - %#llx," 2098 "wrong granularity\n", 2099 start, start + size); 2100 return -EINVAL; 2101 } 2102 2103 /* 2104 * Let remove_pmd_table->free_hugepage_table do the 2105 * right thing if we used vmem_altmap when hot-adding 2106 * the range. 2107 */ 2108 mhp_altmap.alloc = nr_vmemmap_pages; 2109 altmap = &mhp_altmap; 2110 } 2111 } 2112 2113 /* remove memmap entry */ 2114 firmware_map_remove(start, start + size, "System RAM"); 2115 2116 /* 2117 * Memory block device removal under the device_hotplug_lock is 2118 * a barrier against racing online attempts. 2119 */ 2120 remove_memory_block_devices(start, size); 2121 2122 mem_hotplug_begin(); 2123 2124 arch_remove_memory(start, size, altmap); 2125 2126 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2127 memblock_phys_free(start, size); 2128 memblock_remove(start, size); 2129 } 2130 2131 release_mem_region_adjustable(start, size); 2132 2133 if (nid != NUMA_NO_NODE) 2134 try_offline_node(nid); 2135 2136 mem_hotplug_done(); 2137 return 0; 2138 } 2139 2140 /** 2141 * __remove_memory - Remove memory if every memory block is offline 2142 * @start: physical address of the region to remove 2143 * @size: size of the region to remove 2144 * 2145 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2146 * and online/offline operations before this call, as required by 2147 * try_offline_node(). 2148 */ 2149 void __remove_memory(u64 start, u64 size) 2150 { 2151 2152 /* 2153 * trigger BUG() if some memory is not offlined prior to calling this 2154 * function 2155 */ 2156 if (try_remove_memory(start, size)) 2157 BUG(); 2158 } 2159 2160 /* 2161 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2162 * some memory is not offline 2163 */ 2164 int remove_memory(u64 start, u64 size) 2165 { 2166 int rc; 2167 2168 lock_device_hotplug(); 2169 rc = try_remove_memory(start, size); 2170 unlock_device_hotplug(); 2171 2172 return rc; 2173 } 2174 EXPORT_SYMBOL_GPL(remove_memory); 2175 2176 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2177 { 2178 uint8_t online_type = MMOP_ONLINE_KERNEL; 2179 uint8_t **online_types = arg; 2180 struct page *page; 2181 int rc; 2182 2183 /* 2184 * Sense the online_type via the zone of the memory block. Offlining 2185 * with multiple zones within one memory block will be rejected 2186 * by offlining code ... so we don't care about that. 2187 */ 2188 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2189 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2190 online_type = MMOP_ONLINE_MOVABLE; 2191 2192 rc = device_offline(&mem->dev); 2193 /* 2194 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2195 * so try_reonline_memory_block() can do the right thing. 2196 */ 2197 if (!rc) 2198 **online_types = online_type; 2199 2200 (*online_types)++; 2201 /* Ignore if already offline. */ 2202 return rc < 0 ? rc : 0; 2203 } 2204 2205 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2206 { 2207 uint8_t **online_types = arg; 2208 int rc; 2209 2210 if (**online_types != MMOP_OFFLINE) { 2211 mem->online_type = **online_types; 2212 rc = device_online(&mem->dev); 2213 if (rc < 0) 2214 pr_warn("%s: Failed to re-online memory: %d", 2215 __func__, rc); 2216 } 2217 2218 /* Continue processing all remaining memory blocks. */ 2219 (*online_types)++; 2220 return 0; 2221 } 2222 2223 /* 2224 * Try to offline and remove memory. Might take a long time to finish in case 2225 * memory is still in use. Primarily useful for memory devices that logically 2226 * unplugged all memory (so it's no longer in use) and want to offline + remove 2227 * that memory. 2228 */ 2229 int offline_and_remove_memory(u64 start, u64 size) 2230 { 2231 const unsigned long mb_count = size / memory_block_size_bytes(); 2232 uint8_t *online_types, *tmp; 2233 int rc; 2234 2235 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2236 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2237 return -EINVAL; 2238 2239 /* 2240 * We'll remember the old online type of each memory block, so we can 2241 * try to revert whatever we did when offlining one memory block fails 2242 * after offlining some others succeeded. 2243 */ 2244 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2245 GFP_KERNEL); 2246 if (!online_types) 2247 return -ENOMEM; 2248 /* 2249 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2250 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2251 * try_reonline_memory_block(). 2252 */ 2253 memset(online_types, MMOP_OFFLINE, mb_count); 2254 2255 lock_device_hotplug(); 2256 2257 tmp = online_types; 2258 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2259 2260 /* 2261 * In case we succeeded to offline all memory, remove it. 2262 * This cannot fail as it cannot get onlined in the meantime. 2263 */ 2264 if (!rc) { 2265 rc = try_remove_memory(start, size); 2266 if (rc) 2267 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2268 } 2269 2270 /* 2271 * Rollback what we did. While memory onlining might theoretically fail 2272 * (nacked by a notifier), it barely ever happens. 2273 */ 2274 if (rc) { 2275 tmp = online_types; 2276 walk_memory_blocks(start, size, &tmp, 2277 try_reonline_memory_block); 2278 } 2279 unlock_device_hotplug(); 2280 2281 kfree(online_types); 2282 return rc; 2283 } 2284 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2285 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2286