xref: /openbmc/linux/mm/memory_hotplug.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 
45 /*
46  * memory_hotplug.memmap_on_memory parameter
47  */
48 static bool memmap_on_memory __ro_after_init;
49 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
50 module_param(memmap_on_memory, bool, 0444);
51 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
52 #endif
53 
54 enum {
55 	ONLINE_POLICY_CONTIG_ZONES = 0,
56 	ONLINE_POLICY_AUTO_MOVABLE,
57 };
58 
59 static const char * const online_policy_to_str[] = {
60 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
61 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
62 };
63 
64 static int set_online_policy(const char *val, const struct kernel_param *kp)
65 {
66 	int ret = sysfs_match_string(online_policy_to_str, val);
67 
68 	if (ret < 0)
69 		return ret;
70 	*((int *)kp->arg) = ret;
71 	return 0;
72 }
73 
74 static int get_online_policy(char *buffer, const struct kernel_param *kp)
75 {
76 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
77 }
78 
79 /*
80  * memory_hotplug.online_policy: configure online behavior when onlining without
81  * specifying a zone (MMOP_ONLINE)
82  *
83  * "contig-zones": keep zone contiguous
84  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
85  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
86  */
87 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
88 static const struct kernel_param_ops online_policy_ops = {
89 	.set = set_online_policy,
90 	.get = get_online_policy,
91 };
92 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
93 MODULE_PARM_DESC(online_policy,
94 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
95 		"Default: \"contig-zones\"");
96 
97 /*
98  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
99  *
100  * The ratio represent an upper limit and the kernel might decide to not
101  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
102  * doesn't allow for more MOVABLE memory.
103  */
104 static unsigned int auto_movable_ratio __read_mostly = 301;
105 module_param(auto_movable_ratio, uint, 0644);
106 MODULE_PARM_DESC(auto_movable_ratio,
107 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
108 		"in percent for \"auto-movable\" online policy. Default: 301");
109 
110 /*
111  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
112  */
113 #ifdef CONFIG_NUMA
114 static bool auto_movable_numa_aware __read_mostly = true;
115 module_param(auto_movable_numa_aware, bool, 0644);
116 MODULE_PARM_DESC(auto_movable_numa_aware,
117 		"Consider numa node stats in addition to global stats in "
118 		"\"auto-movable\" online policy. Default: true");
119 #endif /* CONFIG_NUMA */
120 
121 /*
122  * online_page_callback contains pointer to current page onlining function.
123  * Initially it is generic_online_page(). If it is required it could be
124  * changed by calling set_online_page_callback() for callback registration
125  * and restore_online_page_callback() for generic callback restore.
126  */
127 
128 static online_page_callback_t online_page_callback = generic_online_page;
129 static DEFINE_MUTEX(online_page_callback_lock);
130 
131 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
132 
133 void get_online_mems(void)
134 {
135 	percpu_down_read(&mem_hotplug_lock);
136 }
137 
138 void put_online_mems(void)
139 {
140 	percpu_up_read(&mem_hotplug_lock);
141 }
142 
143 bool movable_node_enabled = false;
144 
145 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
146 int mhp_default_online_type = MMOP_OFFLINE;
147 #else
148 int mhp_default_online_type = MMOP_ONLINE;
149 #endif
150 
151 static int __init setup_memhp_default_state(char *str)
152 {
153 	const int online_type = mhp_online_type_from_str(str);
154 
155 	if (online_type >= 0)
156 		mhp_default_online_type = online_type;
157 
158 	return 1;
159 }
160 __setup("memhp_default_state=", setup_memhp_default_state);
161 
162 void mem_hotplug_begin(void)
163 {
164 	cpus_read_lock();
165 	percpu_down_write(&mem_hotplug_lock);
166 }
167 
168 void mem_hotplug_done(void)
169 {
170 	percpu_up_write(&mem_hotplug_lock);
171 	cpus_read_unlock();
172 }
173 
174 u64 max_mem_size = U64_MAX;
175 
176 /* add this memory to iomem resource */
177 static struct resource *register_memory_resource(u64 start, u64 size,
178 						 const char *resource_name)
179 {
180 	struct resource *res;
181 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
182 
183 	if (strcmp(resource_name, "System RAM"))
184 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
185 
186 	if (!mhp_range_allowed(start, size, true))
187 		return ERR_PTR(-E2BIG);
188 
189 	/*
190 	 * Make sure value parsed from 'mem=' only restricts memory adding
191 	 * while booting, so that memory hotplug won't be impacted. Please
192 	 * refer to document of 'mem=' in kernel-parameters.txt for more
193 	 * details.
194 	 */
195 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
196 		return ERR_PTR(-E2BIG);
197 
198 	/*
199 	 * Request ownership of the new memory range.  This might be
200 	 * a child of an existing resource that was present but
201 	 * not marked as busy.
202 	 */
203 	res = __request_region(&iomem_resource, start, size,
204 			       resource_name, flags);
205 
206 	if (!res) {
207 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
208 				start, start + size);
209 		return ERR_PTR(-EEXIST);
210 	}
211 	return res;
212 }
213 
214 static void release_memory_resource(struct resource *res)
215 {
216 	if (!res)
217 		return;
218 	release_resource(res);
219 	kfree(res);
220 }
221 
222 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
223 		const char *reason)
224 {
225 	/*
226 	 * Disallow all operations smaller than a sub-section and only
227 	 * allow operations smaller than a section for
228 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
229 	 * enforces a larger memory_block_size_bytes() granularity for
230 	 * memory that will be marked online, so this check should only
231 	 * fire for direct arch_{add,remove}_memory() users outside of
232 	 * add_memory_resource().
233 	 */
234 	unsigned long min_align;
235 
236 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
237 		min_align = PAGES_PER_SUBSECTION;
238 	else
239 		min_align = PAGES_PER_SECTION;
240 	if (!IS_ALIGNED(pfn, min_align)
241 			|| !IS_ALIGNED(nr_pages, min_align)) {
242 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
243 				reason, pfn, pfn + nr_pages - 1);
244 		return -EINVAL;
245 	}
246 	return 0;
247 }
248 
249 /*
250  * Return page for the valid pfn only if the page is online. All pfn
251  * walkers which rely on the fully initialized page->flags and others
252  * should use this rather than pfn_valid && pfn_to_page
253  */
254 struct page *pfn_to_online_page(unsigned long pfn)
255 {
256 	unsigned long nr = pfn_to_section_nr(pfn);
257 	struct dev_pagemap *pgmap;
258 	struct mem_section *ms;
259 
260 	if (nr >= NR_MEM_SECTIONS)
261 		return NULL;
262 
263 	ms = __nr_to_section(nr);
264 	if (!online_section(ms))
265 		return NULL;
266 
267 	/*
268 	 * Save some code text when online_section() +
269 	 * pfn_section_valid() are sufficient.
270 	 */
271 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
272 		return NULL;
273 
274 	if (!pfn_section_valid(ms, pfn))
275 		return NULL;
276 
277 	if (!online_device_section(ms))
278 		return pfn_to_page(pfn);
279 
280 	/*
281 	 * Slowpath: when ZONE_DEVICE collides with
282 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
283 	 * the section may be 'offline' but 'valid'. Only
284 	 * get_dev_pagemap() can determine sub-section online status.
285 	 */
286 	pgmap = get_dev_pagemap(pfn, NULL);
287 	put_dev_pagemap(pgmap);
288 
289 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
290 	if (pgmap)
291 		return NULL;
292 
293 	return pfn_to_page(pfn);
294 }
295 EXPORT_SYMBOL_GPL(pfn_to_online_page);
296 
297 /*
298  * Reasonably generic function for adding memory.  It is
299  * expected that archs that support memory hotplug will
300  * call this function after deciding the zone to which to
301  * add the new pages.
302  */
303 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
304 		struct mhp_params *params)
305 {
306 	const unsigned long end_pfn = pfn + nr_pages;
307 	unsigned long cur_nr_pages;
308 	int err;
309 	struct vmem_altmap *altmap = params->altmap;
310 
311 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
312 		return -EINVAL;
313 
314 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
315 
316 	if (altmap) {
317 		/*
318 		 * Validate altmap is within bounds of the total request
319 		 */
320 		if (altmap->base_pfn != pfn
321 				|| vmem_altmap_offset(altmap) > nr_pages) {
322 			pr_warn_once("memory add fail, invalid altmap\n");
323 			return -EINVAL;
324 		}
325 		altmap->alloc = 0;
326 	}
327 
328 	err = check_pfn_span(pfn, nr_pages, "add");
329 	if (err)
330 		return err;
331 
332 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
333 		/* Select all remaining pages up to the next section boundary */
334 		cur_nr_pages = min(end_pfn - pfn,
335 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
336 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
337 		if (err)
338 			break;
339 		cond_resched();
340 	}
341 	vmemmap_populate_print_last();
342 	return err;
343 }
344 
345 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
346 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
347 				     unsigned long start_pfn,
348 				     unsigned long end_pfn)
349 {
350 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
351 		if (unlikely(!pfn_to_online_page(start_pfn)))
352 			continue;
353 
354 		if (unlikely(pfn_to_nid(start_pfn) != nid))
355 			continue;
356 
357 		if (zone != page_zone(pfn_to_page(start_pfn)))
358 			continue;
359 
360 		return start_pfn;
361 	}
362 
363 	return 0;
364 }
365 
366 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
367 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
368 				    unsigned long start_pfn,
369 				    unsigned long end_pfn)
370 {
371 	unsigned long pfn;
372 
373 	/* pfn is the end pfn of a memory section. */
374 	pfn = end_pfn - 1;
375 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
376 		if (unlikely(!pfn_to_online_page(pfn)))
377 			continue;
378 
379 		if (unlikely(pfn_to_nid(pfn) != nid))
380 			continue;
381 
382 		if (zone != page_zone(pfn_to_page(pfn)))
383 			continue;
384 
385 		return pfn;
386 	}
387 
388 	return 0;
389 }
390 
391 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
392 			     unsigned long end_pfn)
393 {
394 	unsigned long pfn;
395 	int nid = zone_to_nid(zone);
396 
397 	if (zone->zone_start_pfn == start_pfn) {
398 		/*
399 		 * If the section is smallest section in the zone, it need
400 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
401 		 * In this case, we find second smallest valid mem_section
402 		 * for shrinking zone.
403 		 */
404 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
405 						zone_end_pfn(zone));
406 		if (pfn) {
407 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
408 			zone->zone_start_pfn = pfn;
409 		} else {
410 			zone->zone_start_pfn = 0;
411 			zone->spanned_pages = 0;
412 		}
413 	} else if (zone_end_pfn(zone) == end_pfn) {
414 		/*
415 		 * If the section is biggest section in the zone, it need
416 		 * shrink zone->spanned_pages.
417 		 * In this case, we find second biggest valid mem_section for
418 		 * shrinking zone.
419 		 */
420 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
421 					       start_pfn);
422 		if (pfn)
423 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
424 		else {
425 			zone->zone_start_pfn = 0;
426 			zone->spanned_pages = 0;
427 		}
428 	}
429 }
430 
431 static void update_pgdat_span(struct pglist_data *pgdat)
432 {
433 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
434 	struct zone *zone;
435 
436 	for (zone = pgdat->node_zones;
437 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
438 		unsigned long end_pfn = zone_end_pfn(zone);
439 
440 		/* No need to lock the zones, they can't change. */
441 		if (!zone->spanned_pages)
442 			continue;
443 		if (!node_end_pfn) {
444 			node_start_pfn = zone->zone_start_pfn;
445 			node_end_pfn = end_pfn;
446 			continue;
447 		}
448 
449 		if (end_pfn > node_end_pfn)
450 			node_end_pfn = end_pfn;
451 		if (zone->zone_start_pfn < node_start_pfn)
452 			node_start_pfn = zone->zone_start_pfn;
453 	}
454 
455 	pgdat->node_start_pfn = node_start_pfn;
456 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
457 }
458 
459 void __ref remove_pfn_range_from_zone(struct zone *zone,
460 				      unsigned long start_pfn,
461 				      unsigned long nr_pages)
462 {
463 	const unsigned long end_pfn = start_pfn + nr_pages;
464 	struct pglist_data *pgdat = zone->zone_pgdat;
465 	unsigned long pfn, cur_nr_pages;
466 
467 	/* Poison struct pages because they are now uninitialized again. */
468 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
469 		cond_resched();
470 
471 		/* Select all remaining pages up to the next section boundary */
472 		cur_nr_pages =
473 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
474 		page_init_poison(pfn_to_page(pfn),
475 				 sizeof(struct page) * cur_nr_pages);
476 	}
477 
478 	/*
479 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
480 	 * we will not try to shrink the zones - which is okay as
481 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
482 	 */
483 	if (zone_is_zone_device(zone))
484 		return;
485 
486 	clear_zone_contiguous(zone);
487 
488 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
489 	update_pgdat_span(pgdat);
490 
491 	set_zone_contiguous(zone);
492 }
493 
494 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
495 			     unsigned long map_offset,
496 			     struct vmem_altmap *altmap)
497 {
498 	struct mem_section *ms = __pfn_to_section(pfn);
499 
500 	if (WARN_ON_ONCE(!valid_section(ms)))
501 		return;
502 
503 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
504 }
505 
506 /**
507  * __remove_pages() - remove sections of pages
508  * @pfn: starting pageframe (must be aligned to start of a section)
509  * @nr_pages: number of pages to remove (must be multiple of section size)
510  * @altmap: alternative device page map or %NULL if default memmap is used
511  *
512  * Generic helper function to remove section mappings and sysfs entries
513  * for the section of the memory we are removing. Caller needs to make
514  * sure that pages are marked reserved and zones are adjust properly by
515  * calling offline_pages().
516  */
517 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
518 		    struct vmem_altmap *altmap)
519 {
520 	const unsigned long end_pfn = pfn + nr_pages;
521 	unsigned long cur_nr_pages;
522 	unsigned long map_offset = 0;
523 
524 	map_offset = vmem_altmap_offset(altmap);
525 
526 	if (check_pfn_span(pfn, nr_pages, "remove"))
527 		return;
528 
529 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
530 		cond_resched();
531 		/* Select all remaining pages up to the next section boundary */
532 		cur_nr_pages = min(end_pfn - pfn,
533 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
534 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
535 		map_offset = 0;
536 	}
537 }
538 
539 int set_online_page_callback(online_page_callback_t callback)
540 {
541 	int rc = -EINVAL;
542 
543 	get_online_mems();
544 	mutex_lock(&online_page_callback_lock);
545 
546 	if (online_page_callback == generic_online_page) {
547 		online_page_callback = callback;
548 		rc = 0;
549 	}
550 
551 	mutex_unlock(&online_page_callback_lock);
552 	put_online_mems();
553 
554 	return rc;
555 }
556 EXPORT_SYMBOL_GPL(set_online_page_callback);
557 
558 int restore_online_page_callback(online_page_callback_t callback)
559 {
560 	int rc = -EINVAL;
561 
562 	get_online_mems();
563 	mutex_lock(&online_page_callback_lock);
564 
565 	if (online_page_callback == callback) {
566 		online_page_callback = generic_online_page;
567 		rc = 0;
568 	}
569 
570 	mutex_unlock(&online_page_callback_lock);
571 	put_online_mems();
572 
573 	return rc;
574 }
575 EXPORT_SYMBOL_GPL(restore_online_page_callback);
576 
577 void generic_online_page(struct page *page, unsigned int order)
578 {
579 	/*
580 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
581 	 * so we should map it first. This is better than introducing a special
582 	 * case in page freeing fast path.
583 	 */
584 	debug_pagealloc_map_pages(page, 1 << order);
585 	__free_pages_core(page, order);
586 	totalram_pages_add(1UL << order);
587 }
588 EXPORT_SYMBOL_GPL(generic_online_page);
589 
590 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
591 {
592 	const unsigned long end_pfn = start_pfn + nr_pages;
593 	unsigned long pfn;
594 
595 	/*
596 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
597 	 * decide to not expose all pages to the buddy (e.g., expose them
598 	 * later). We account all pages as being online and belonging to this
599 	 * zone ("present").
600 	 * When using memmap_on_memory, the range might not be aligned to
601 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
602 	 * this and the first chunk to online will be pageblock_nr_pages.
603 	 */
604 	for (pfn = start_pfn; pfn < end_pfn;) {
605 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
606 
607 		(*online_page_callback)(pfn_to_page(pfn), order);
608 		pfn += (1UL << order);
609 	}
610 
611 	/* mark all involved sections as online */
612 	online_mem_sections(start_pfn, end_pfn);
613 }
614 
615 /* check which state of node_states will be changed when online memory */
616 static void node_states_check_changes_online(unsigned long nr_pages,
617 	struct zone *zone, struct memory_notify *arg)
618 {
619 	int nid = zone_to_nid(zone);
620 
621 	arg->status_change_nid = NUMA_NO_NODE;
622 	arg->status_change_nid_normal = NUMA_NO_NODE;
623 
624 	if (!node_state(nid, N_MEMORY))
625 		arg->status_change_nid = nid;
626 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
627 		arg->status_change_nid_normal = nid;
628 }
629 
630 static void node_states_set_node(int node, struct memory_notify *arg)
631 {
632 	if (arg->status_change_nid_normal >= 0)
633 		node_set_state(node, N_NORMAL_MEMORY);
634 
635 	if (arg->status_change_nid >= 0)
636 		node_set_state(node, N_MEMORY);
637 }
638 
639 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
640 		unsigned long nr_pages)
641 {
642 	unsigned long old_end_pfn = zone_end_pfn(zone);
643 
644 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
645 		zone->zone_start_pfn = start_pfn;
646 
647 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
648 }
649 
650 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
651                                      unsigned long nr_pages)
652 {
653 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
654 
655 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
656 		pgdat->node_start_pfn = start_pfn;
657 
658 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
659 
660 }
661 
662 static void section_taint_zone_device(unsigned long pfn)
663 {
664 	struct mem_section *ms = __pfn_to_section(pfn);
665 
666 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
667 }
668 
669 /*
670  * Associate the pfn range with the given zone, initializing the memmaps
671  * and resizing the pgdat/zone data to span the added pages. After this
672  * call, all affected pages are PG_reserved.
673  *
674  * All aligned pageblocks are initialized to the specified migratetype
675  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
676  * zone stats (e.g., nr_isolate_pageblock) are touched.
677  */
678 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
679 				  unsigned long nr_pages,
680 				  struct vmem_altmap *altmap, int migratetype)
681 {
682 	struct pglist_data *pgdat = zone->zone_pgdat;
683 	int nid = pgdat->node_id;
684 
685 	clear_zone_contiguous(zone);
686 
687 	if (zone_is_empty(zone))
688 		init_currently_empty_zone(zone, start_pfn, nr_pages);
689 	resize_zone_range(zone, start_pfn, nr_pages);
690 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
691 
692 	/*
693 	 * Subsection population requires care in pfn_to_online_page().
694 	 * Set the taint to enable the slow path detection of
695 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
696 	 * section.
697 	 */
698 	if (zone_is_zone_device(zone)) {
699 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
700 			section_taint_zone_device(start_pfn);
701 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
702 			section_taint_zone_device(start_pfn + nr_pages);
703 	}
704 
705 	/*
706 	 * TODO now we have a visible range of pages which are not associated
707 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
708 	 * expects the zone spans the pfn range. All the pages in the range
709 	 * are reserved so nobody should be touching them so we should be safe
710 	 */
711 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
712 			 MEMINIT_HOTPLUG, altmap, migratetype);
713 
714 	set_zone_contiguous(zone);
715 }
716 
717 struct auto_movable_stats {
718 	unsigned long kernel_early_pages;
719 	unsigned long movable_pages;
720 };
721 
722 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
723 					    struct zone *zone)
724 {
725 	if (zone_idx(zone) == ZONE_MOVABLE) {
726 		stats->movable_pages += zone->present_pages;
727 	} else {
728 		stats->kernel_early_pages += zone->present_early_pages;
729 #ifdef CONFIG_CMA
730 		/*
731 		 * CMA pages (never on hotplugged memory) behave like
732 		 * ZONE_MOVABLE.
733 		 */
734 		stats->movable_pages += zone->cma_pages;
735 		stats->kernel_early_pages -= zone->cma_pages;
736 #endif /* CONFIG_CMA */
737 	}
738 }
739 struct auto_movable_group_stats {
740 	unsigned long movable_pages;
741 	unsigned long req_kernel_early_pages;
742 };
743 
744 static int auto_movable_stats_account_group(struct memory_group *group,
745 					   void *arg)
746 {
747 	const int ratio = READ_ONCE(auto_movable_ratio);
748 	struct auto_movable_group_stats *stats = arg;
749 	long pages;
750 
751 	/*
752 	 * We don't support modifying the config while the auto-movable online
753 	 * policy is already enabled. Just avoid the division by zero below.
754 	 */
755 	if (!ratio)
756 		return 0;
757 
758 	/*
759 	 * Calculate how many early kernel pages this group requires to
760 	 * satisfy the configured zone ratio.
761 	 */
762 	pages = group->present_movable_pages * 100 / ratio;
763 	pages -= group->present_kernel_pages;
764 
765 	if (pages > 0)
766 		stats->req_kernel_early_pages += pages;
767 	stats->movable_pages += group->present_movable_pages;
768 	return 0;
769 }
770 
771 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
772 					    unsigned long nr_pages)
773 {
774 	unsigned long kernel_early_pages, movable_pages;
775 	struct auto_movable_group_stats group_stats = {};
776 	struct auto_movable_stats stats = {};
777 	pg_data_t *pgdat = NODE_DATA(nid);
778 	struct zone *zone;
779 	int i;
780 
781 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
782 	if (nid == NUMA_NO_NODE) {
783 		/* TODO: cache values */
784 		for_each_populated_zone(zone)
785 			auto_movable_stats_account_zone(&stats, zone);
786 	} else {
787 		for (i = 0; i < MAX_NR_ZONES; i++) {
788 			zone = pgdat->node_zones + i;
789 			if (populated_zone(zone))
790 				auto_movable_stats_account_zone(&stats, zone);
791 		}
792 	}
793 
794 	kernel_early_pages = stats.kernel_early_pages;
795 	movable_pages = stats.movable_pages;
796 
797 	/*
798 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
799 	 * memory within the same group. Remove the effect of all but the
800 	 * current group from the stats.
801 	 */
802 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
803 				   group, &group_stats);
804 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
805 		return false;
806 	kernel_early_pages -= group_stats.req_kernel_early_pages;
807 	movable_pages -= group_stats.movable_pages;
808 
809 	if (group && group->is_dynamic)
810 		kernel_early_pages += group->present_kernel_pages;
811 
812 	/*
813 	 * Test if we could online the given number of pages to ZONE_MOVABLE
814 	 * and still stay in the configured ratio.
815 	 */
816 	movable_pages += nr_pages;
817 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
818 }
819 
820 /*
821  * Returns a default kernel memory zone for the given pfn range.
822  * If no kernel zone covers this pfn range it will automatically go
823  * to the ZONE_NORMAL.
824  */
825 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
826 		unsigned long nr_pages)
827 {
828 	struct pglist_data *pgdat = NODE_DATA(nid);
829 	int zid;
830 
831 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
832 		struct zone *zone = &pgdat->node_zones[zid];
833 
834 		if (zone_intersects(zone, start_pfn, nr_pages))
835 			return zone;
836 	}
837 
838 	return &pgdat->node_zones[ZONE_NORMAL];
839 }
840 
841 /*
842  * Determine to which zone to online memory dynamically based on user
843  * configuration and system stats. We care about the following ratio:
844  *
845  *   MOVABLE : KERNEL
846  *
847  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
848  * one of the kernel zones. CMA pages inside one of the kernel zones really
849  * behaves like ZONE_MOVABLE, so we treat them accordingly.
850  *
851  * We don't allow for hotplugged memory in a KERNEL zone to increase the
852  * amount of MOVABLE memory we can have, so we end up with:
853  *
854  *   MOVABLE : KERNEL_EARLY
855  *
856  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
857  * boot. We base our calculation on KERNEL_EARLY internally, because:
858  *
859  * a) Hotplugged memory in one of the kernel zones can sometimes still get
860  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
861  *    There is no coordination across memory devices, therefore "automatic"
862  *    hotunplugging, as implemented in hypervisors, could result in zone
863  *    imbalances.
864  * b) Early/boot memory in one of the kernel zones can usually not get
865  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
866  *    with unmovable allocations). While there are corner cases where it might
867  *    still work, it is barely relevant in practice.
868  *
869  * Exceptions are dynamic memory groups, which allow for more MOVABLE
870  * memory within the same memory group -- because in that case, there is
871  * coordination within the single memory device managed by a single driver.
872  *
873  * We rely on "present pages" instead of "managed pages", as the latter is
874  * highly unreliable and dynamic in virtualized environments, and does not
875  * consider boot time allocations. For example, memory ballooning adjusts the
876  * managed pages when inflating/deflating the balloon, and balloon compaction
877  * can even migrate inflated pages between zones.
878  *
879  * Using "present pages" is better but some things to keep in mind are:
880  *
881  * a) Some memblock allocations, such as for the crashkernel area, are
882  *    effectively unused by the kernel, yet they account to "present pages".
883  *    Fortunately, these allocations are comparatively small in relevant setups
884  *    (e.g., fraction of system memory).
885  * b) Some hotplugged memory blocks in virtualized environments, esecially
886  *    hotplugged by virtio-mem, look like they are completely present, however,
887  *    only parts of the memory block are actually currently usable.
888  *    "present pages" is an upper limit that can get reached at runtime. As
889  *    we base our calculations on KERNEL_EARLY, this is not an issue.
890  */
891 static struct zone *auto_movable_zone_for_pfn(int nid,
892 					      struct memory_group *group,
893 					      unsigned long pfn,
894 					      unsigned long nr_pages)
895 {
896 	unsigned long online_pages = 0, max_pages, end_pfn;
897 	struct page *page;
898 
899 	if (!auto_movable_ratio)
900 		goto kernel_zone;
901 
902 	if (group && !group->is_dynamic) {
903 		max_pages = group->s.max_pages;
904 		online_pages = group->present_movable_pages;
905 
906 		/* If anything is !MOVABLE online the rest !MOVABLE. */
907 		if (group->present_kernel_pages)
908 			goto kernel_zone;
909 	} else if (!group || group->d.unit_pages == nr_pages) {
910 		max_pages = nr_pages;
911 	} else {
912 		max_pages = group->d.unit_pages;
913 		/*
914 		 * Take a look at all online sections in the current unit.
915 		 * We can safely assume that all pages within a section belong
916 		 * to the same zone, because dynamic memory groups only deal
917 		 * with hotplugged memory.
918 		 */
919 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
920 		end_pfn = pfn + group->d.unit_pages;
921 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
922 			page = pfn_to_online_page(pfn);
923 			if (!page)
924 				continue;
925 			/* If anything is !MOVABLE online the rest !MOVABLE. */
926 			if (page_zonenum(page) != ZONE_MOVABLE)
927 				goto kernel_zone;
928 			online_pages += PAGES_PER_SECTION;
929 		}
930 	}
931 
932 	/*
933 	 * Online MOVABLE if we could *currently* online all remaining parts
934 	 * MOVABLE. We expect to (add+) online them immediately next, so if
935 	 * nobody interferes, all will be MOVABLE if possible.
936 	 */
937 	nr_pages = max_pages - online_pages;
938 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
939 		goto kernel_zone;
940 
941 #ifdef CONFIG_NUMA
942 	if (auto_movable_numa_aware &&
943 	    !auto_movable_can_online_movable(nid, group, nr_pages))
944 		goto kernel_zone;
945 #endif /* CONFIG_NUMA */
946 
947 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
948 kernel_zone:
949 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
950 }
951 
952 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
953 		unsigned long nr_pages)
954 {
955 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
956 			nr_pages);
957 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
958 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
959 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
960 
961 	/*
962 	 * We inherit the existing zone in a simple case where zones do not
963 	 * overlap in the given range
964 	 */
965 	if (in_kernel ^ in_movable)
966 		return (in_kernel) ? kernel_zone : movable_zone;
967 
968 	/*
969 	 * If the range doesn't belong to any zone or two zones overlap in the
970 	 * given range then we use movable zone only if movable_node is
971 	 * enabled because we always online to a kernel zone by default.
972 	 */
973 	return movable_node_enabled ? movable_zone : kernel_zone;
974 }
975 
976 struct zone *zone_for_pfn_range(int online_type, int nid,
977 		struct memory_group *group, unsigned long start_pfn,
978 		unsigned long nr_pages)
979 {
980 	if (online_type == MMOP_ONLINE_KERNEL)
981 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
982 
983 	if (online_type == MMOP_ONLINE_MOVABLE)
984 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
985 
986 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
987 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
988 
989 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
990 }
991 
992 /*
993  * This function should only be called by memory_block_{online,offline},
994  * and {online,offline}_pages.
995  */
996 void adjust_present_page_count(struct page *page, struct memory_group *group,
997 			       long nr_pages)
998 {
999 	struct zone *zone = page_zone(page);
1000 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1001 
1002 	/*
1003 	 * We only support onlining/offlining/adding/removing of complete
1004 	 * memory blocks; therefore, either all is either early or hotplugged.
1005 	 */
1006 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1007 		zone->present_early_pages += nr_pages;
1008 	zone->present_pages += nr_pages;
1009 	zone->zone_pgdat->node_present_pages += nr_pages;
1010 
1011 	if (group && movable)
1012 		group->present_movable_pages += nr_pages;
1013 	else if (group && !movable)
1014 		group->present_kernel_pages += nr_pages;
1015 }
1016 
1017 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1018 			      struct zone *zone)
1019 {
1020 	unsigned long end_pfn = pfn + nr_pages;
1021 	int ret;
1022 
1023 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1024 	if (ret)
1025 		return ret;
1026 
1027 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1028 
1029 	/*
1030 	 * It might be that the vmemmap_pages fully span sections. If that is
1031 	 * the case, mark those sections online here as otherwise they will be
1032 	 * left offline.
1033 	 */
1034 	if (nr_pages >= PAGES_PER_SECTION)
1035 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1036 
1037 	return ret;
1038 }
1039 
1040 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1041 {
1042 	unsigned long end_pfn = pfn + nr_pages;
1043 
1044 	/*
1045 	 * It might be that the vmemmap_pages fully span sections. If that is
1046 	 * the case, mark those sections offline here as otherwise they will be
1047 	 * left online.
1048 	 */
1049 	if (nr_pages >= PAGES_PER_SECTION)
1050 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1051 
1052         /*
1053 	 * The pages associated with this vmemmap have been offlined, so
1054 	 * we can reset its state here.
1055 	 */
1056 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1057 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1058 }
1059 
1060 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1061 		       struct zone *zone, struct memory_group *group)
1062 {
1063 	unsigned long flags;
1064 	int need_zonelists_rebuild = 0;
1065 	const int nid = zone_to_nid(zone);
1066 	int ret;
1067 	struct memory_notify arg;
1068 
1069 	/*
1070 	 * {on,off}lining is constrained to full memory sections (or more
1071 	 * precisely to memory blocks from the user space POV).
1072 	 * memmap_on_memory is an exception because it reserves initial part
1073 	 * of the physical memory space for vmemmaps. That space is pageblock
1074 	 * aligned.
1075 	 */
1076 	if (WARN_ON_ONCE(!nr_pages ||
1077 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1078 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1079 		return -EINVAL;
1080 
1081 	mem_hotplug_begin();
1082 
1083 	/* associate pfn range with the zone */
1084 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1085 
1086 	arg.start_pfn = pfn;
1087 	arg.nr_pages = nr_pages;
1088 	node_states_check_changes_online(nr_pages, zone, &arg);
1089 
1090 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1091 	ret = notifier_to_errno(ret);
1092 	if (ret)
1093 		goto failed_addition;
1094 
1095 	/*
1096 	 * Fixup the number of isolated pageblocks before marking the sections
1097 	 * onlining, such that undo_isolate_page_range() works correctly.
1098 	 */
1099 	spin_lock_irqsave(&zone->lock, flags);
1100 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1101 	spin_unlock_irqrestore(&zone->lock, flags);
1102 
1103 	/*
1104 	 * If this zone is not populated, then it is not in zonelist.
1105 	 * This means the page allocator ignores this zone.
1106 	 * So, zonelist must be updated after online.
1107 	 */
1108 	if (!populated_zone(zone)) {
1109 		need_zonelists_rebuild = 1;
1110 		setup_zone_pageset(zone);
1111 	}
1112 
1113 	online_pages_range(pfn, nr_pages);
1114 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1115 
1116 	node_states_set_node(nid, &arg);
1117 	if (need_zonelists_rebuild)
1118 		build_all_zonelists(NULL);
1119 
1120 	/* Basic onlining is complete, allow allocation of onlined pages. */
1121 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1122 
1123 	/*
1124 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1125 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1126 	 * zone to make sure the just onlined pages are properly distributed
1127 	 * across the whole freelist - to create an initial shuffle.
1128 	 */
1129 	shuffle_zone(zone);
1130 
1131 	/* reinitialise watermarks and update pcp limits */
1132 	init_per_zone_wmark_min();
1133 
1134 	kswapd_run(nid);
1135 	kcompactd_run(nid);
1136 
1137 	writeback_set_ratelimit();
1138 
1139 	memory_notify(MEM_ONLINE, &arg);
1140 	mem_hotplug_done();
1141 	return 0;
1142 
1143 failed_addition:
1144 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1145 		 (unsigned long long) pfn << PAGE_SHIFT,
1146 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1147 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1148 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1149 	mem_hotplug_done();
1150 	return ret;
1151 }
1152 
1153 static void reset_node_present_pages(pg_data_t *pgdat)
1154 {
1155 	struct zone *z;
1156 
1157 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1158 		z->present_pages = 0;
1159 
1160 	pgdat->node_present_pages = 0;
1161 }
1162 
1163 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1164 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1165 {
1166 	struct pglist_data *pgdat;
1167 
1168 	pgdat = NODE_DATA(nid);
1169 	if (!pgdat) {
1170 		pgdat = arch_alloc_nodedata(nid);
1171 		if (!pgdat)
1172 			return NULL;
1173 
1174 		pgdat->per_cpu_nodestats =
1175 			alloc_percpu(struct per_cpu_nodestat);
1176 		arch_refresh_nodedata(nid, pgdat);
1177 	} else {
1178 		int cpu;
1179 		/*
1180 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
1181 		 * Note that kswapd will init kswapd_highest_zoneidx properly
1182 		 * when it starts in the near future.
1183 		 */
1184 		pgdat->nr_zones = 0;
1185 		pgdat->kswapd_order = 0;
1186 		pgdat->kswapd_highest_zoneidx = 0;
1187 		for_each_online_cpu(cpu) {
1188 			struct per_cpu_nodestat *p;
1189 
1190 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1191 			memset(p, 0, sizeof(*p));
1192 		}
1193 	}
1194 
1195 	/* we can use NODE_DATA(nid) from here */
1196 	pgdat->node_id = nid;
1197 	pgdat->node_start_pfn = 0;
1198 
1199 	/* init node's zones as empty zones, we don't have any present pages.*/
1200 	free_area_init_core_hotplug(nid);
1201 
1202 	/*
1203 	 * The node we allocated has no zone fallback lists. For avoiding
1204 	 * to access not-initialized zonelist, build here.
1205 	 */
1206 	build_all_zonelists(pgdat);
1207 
1208 	/*
1209 	 * When memory is hot-added, all the memory is in offline state. So
1210 	 * clear all zones' present_pages because they will be updated in
1211 	 * online_pages() and offline_pages().
1212 	 */
1213 	reset_node_managed_pages(pgdat);
1214 	reset_node_present_pages(pgdat);
1215 
1216 	return pgdat;
1217 }
1218 
1219 static void rollback_node_hotadd(int nid)
1220 {
1221 	pg_data_t *pgdat = NODE_DATA(nid);
1222 
1223 	arch_refresh_nodedata(nid, NULL);
1224 	free_percpu(pgdat->per_cpu_nodestats);
1225 	arch_free_nodedata(pgdat);
1226 }
1227 
1228 
1229 /*
1230  * __try_online_node - online a node if offlined
1231  * @nid: the node ID
1232  * @set_node_online: Whether we want to online the node
1233  * called by cpu_up() to online a node without onlined memory.
1234  *
1235  * Returns:
1236  * 1 -> a new node has been allocated
1237  * 0 -> the node is already online
1238  * -ENOMEM -> the node could not be allocated
1239  */
1240 static int __try_online_node(int nid, bool set_node_online)
1241 {
1242 	pg_data_t *pgdat;
1243 	int ret = 1;
1244 
1245 	if (node_online(nid))
1246 		return 0;
1247 
1248 	pgdat = hotadd_new_pgdat(nid);
1249 	if (!pgdat) {
1250 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1251 		ret = -ENOMEM;
1252 		goto out;
1253 	}
1254 
1255 	if (set_node_online) {
1256 		node_set_online(nid);
1257 		ret = register_one_node(nid);
1258 		BUG_ON(ret);
1259 	}
1260 out:
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Users of this function always want to online/register the node
1266  */
1267 int try_online_node(int nid)
1268 {
1269 	int ret;
1270 
1271 	mem_hotplug_begin();
1272 	ret =  __try_online_node(nid, true);
1273 	mem_hotplug_done();
1274 	return ret;
1275 }
1276 
1277 static int check_hotplug_memory_range(u64 start, u64 size)
1278 {
1279 	/* memory range must be block size aligned */
1280 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1281 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1282 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1283 		       memory_block_size_bytes(), start, size);
1284 		return -EINVAL;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int online_memory_block(struct memory_block *mem, void *arg)
1291 {
1292 	mem->online_type = mhp_default_online_type;
1293 	return device_online(&mem->dev);
1294 }
1295 
1296 bool mhp_supports_memmap_on_memory(unsigned long size)
1297 {
1298 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1299 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1300 	unsigned long remaining_size = size - vmemmap_size;
1301 
1302 	/*
1303 	 * Besides having arch support and the feature enabled at runtime, we
1304 	 * need a few more assumptions to hold true:
1305 	 *
1306 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1307 	 *    in memory block granularity. We don't want the vmemmap of online
1308 	 *    memory blocks to reside on offline memory blocks. In the future,
1309 	 *    we might want to support variable-sized memory blocks to make the
1310 	 *    feature more versatile.
1311 	 *
1312 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1313 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1314 	 *    other memory blocks)
1315 	 *
1316 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1317 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1318 	 *    code requires applicable ranges to be page-aligned, for example, to
1319 	 *    set the migratetypes properly.
1320 	 *
1321 	 * TODO: Although we have a check here to make sure that vmemmap pages
1322 	 *       fully populate a PMD, it is not the right place to check for
1323 	 *       this. A much better solution involves improving vmemmap code
1324 	 *       to fallback to base pages when trying to populate vmemmap using
1325 	 *       altmap as an alternative source of memory, and we do not exactly
1326 	 *       populate a single PMD.
1327 	 */
1328 	return memmap_on_memory &&
1329 	       !hugetlb_free_vmemmap_enabled &&
1330 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1331 	       size == memory_block_size_bytes() &&
1332 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1333 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1334 }
1335 
1336 /*
1337  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1338  * and online/offline operations (triggered e.g. by sysfs).
1339  *
1340  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1341  */
1342 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1343 {
1344 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1345 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1346 	struct vmem_altmap mhp_altmap = {};
1347 	struct memory_group *group = NULL;
1348 	u64 start, size;
1349 	bool new_node = false;
1350 	int ret;
1351 
1352 	start = res->start;
1353 	size = resource_size(res);
1354 
1355 	ret = check_hotplug_memory_range(start, size);
1356 	if (ret)
1357 		return ret;
1358 
1359 	if (mhp_flags & MHP_NID_IS_MGID) {
1360 		group = memory_group_find_by_id(nid);
1361 		if (!group)
1362 			return -EINVAL;
1363 		nid = group->nid;
1364 	}
1365 
1366 	if (!node_possible(nid)) {
1367 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1368 		return -EINVAL;
1369 	}
1370 
1371 	mem_hotplug_begin();
1372 
1373 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1374 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1375 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1376 		ret = memblock_add_node(start, size, nid, memblock_flags);
1377 		if (ret)
1378 			goto error_mem_hotplug_end;
1379 	}
1380 
1381 	ret = __try_online_node(nid, false);
1382 	if (ret < 0)
1383 		goto error;
1384 	new_node = ret;
1385 
1386 	/*
1387 	 * Self hosted memmap array
1388 	 */
1389 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1390 		if (!mhp_supports_memmap_on_memory(size)) {
1391 			ret = -EINVAL;
1392 			goto error;
1393 		}
1394 		mhp_altmap.free = PHYS_PFN(size);
1395 		mhp_altmap.base_pfn = PHYS_PFN(start);
1396 		params.altmap = &mhp_altmap;
1397 	}
1398 
1399 	/* call arch's memory hotadd */
1400 	ret = arch_add_memory(nid, start, size, &params);
1401 	if (ret < 0)
1402 		goto error;
1403 
1404 	/* create memory block devices after memory was added */
1405 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1406 					  group);
1407 	if (ret) {
1408 		arch_remove_memory(start, size, NULL);
1409 		goto error;
1410 	}
1411 
1412 	if (new_node) {
1413 		/* If sysfs file of new node can't be created, cpu on the node
1414 		 * can't be hot-added. There is no rollback way now.
1415 		 * So, check by BUG_ON() to catch it reluctantly..
1416 		 * We online node here. We can't roll back from here.
1417 		 */
1418 		node_set_online(nid);
1419 		ret = __register_one_node(nid);
1420 		BUG_ON(ret);
1421 	}
1422 
1423 	/* link memory sections under this node.*/
1424 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1425 			  MEMINIT_HOTPLUG);
1426 
1427 	/* create new memmap entry */
1428 	if (!strcmp(res->name, "System RAM"))
1429 		firmware_map_add_hotplug(start, start + size, "System RAM");
1430 
1431 	/* device_online() will take the lock when calling online_pages() */
1432 	mem_hotplug_done();
1433 
1434 	/*
1435 	 * In case we're allowed to merge the resource, flag it and trigger
1436 	 * merging now that adding succeeded.
1437 	 */
1438 	if (mhp_flags & MHP_MERGE_RESOURCE)
1439 		merge_system_ram_resource(res);
1440 
1441 	/* online pages if requested */
1442 	if (mhp_default_online_type != MMOP_OFFLINE)
1443 		walk_memory_blocks(start, size, NULL, online_memory_block);
1444 
1445 	return ret;
1446 error:
1447 	/* rollback pgdat allocation and others */
1448 	if (new_node)
1449 		rollback_node_hotadd(nid);
1450 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1451 		memblock_remove(start, size);
1452 error_mem_hotplug_end:
1453 	mem_hotplug_done();
1454 	return ret;
1455 }
1456 
1457 /* requires device_hotplug_lock, see add_memory_resource() */
1458 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1459 {
1460 	struct resource *res;
1461 	int ret;
1462 
1463 	res = register_memory_resource(start, size, "System RAM");
1464 	if (IS_ERR(res))
1465 		return PTR_ERR(res);
1466 
1467 	ret = add_memory_resource(nid, res, mhp_flags);
1468 	if (ret < 0)
1469 		release_memory_resource(res);
1470 	return ret;
1471 }
1472 
1473 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1474 {
1475 	int rc;
1476 
1477 	lock_device_hotplug();
1478 	rc = __add_memory(nid, start, size, mhp_flags);
1479 	unlock_device_hotplug();
1480 
1481 	return rc;
1482 }
1483 EXPORT_SYMBOL_GPL(add_memory);
1484 
1485 /*
1486  * Add special, driver-managed memory to the system as system RAM. Such
1487  * memory is not exposed via the raw firmware-provided memmap as system
1488  * RAM, instead, it is detected and added by a driver - during cold boot,
1489  * after a reboot, and after kexec.
1490  *
1491  * Reasons why this memory should not be used for the initial memmap of a
1492  * kexec kernel or for placing kexec images:
1493  * - The booting kernel is in charge of determining how this memory will be
1494  *   used (e.g., use persistent memory as system RAM)
1495  * - Coordination with a hypervisor is required before this memory
1496  *   can be used (e.g., inaccessible parts).
1497  *
1498  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1499  * memory map") are created. Also, the created memory resource is flagged
1500  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1501  * this memory as well (esp., not place kexec images onto it).
1502  *
1503  * The resource_name (visible via /proc/iomem) has to have the format
1504  * "System RAM ($DRIVER)".
1505  */
1506 int add_memory_driver_managed(int nid, u64 start, u64 size,
1507 			      const char *resource_name, mhp_t mhp_flags)
1508 {
1509 	struct resource *res;
1510 	int rc;
1511 
1512 	if (!resource_name ||
1513 	    strstr(resource_name, "System RAM (") != resource_name ||
1514 	    resource_name[strlen(resource_name) - 1] != ')')
1515 		return -EINVAL;
1516 
1517 	lock_device_hotplug();
1518 
1519 	res = register_memory_resource(start, size, resource_name);
1520 	if (IS_ERR(res)) {
1521 		rc = PTR_ERR(res);
1522 		goto out_unlock;
1523 	}
1524 
1525 	rc = add_memory_resource(nid, res, mhp_flags);
1526 	if (rc < 0)
1527 		release_memory_resource(res);
1528 
1529 out_unlock:
1530 	unlock_device_hotplug();
1531 	return rc;
1532 }
1533 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1534 
1535 /*
1536  * Platforms should define arch_get_mappable_range() that provides
1537  * maximum possible addressable physical memory range for which the
1538  * linear mapping could be created. The platform returned address
1539  * range must adhere to these following semantics.
1540  *
1541  * - range.start <= range.end
1542  * - Range includes both end points [range.start..range.end]
1543  *
1544  * There is also a fallback definition provided here, allowing the
1545  * entire possible physical address range in case any platform does
1546  * not define arch_get_mappable_range().
1547  */
1548 struct range __weak arch_get_mappable_range(void)
1549 {
1550 	struct range mhp_range = {
1551 		.start = 0UL,
1552 		.end = -1ULL,
1553 	};
1554 	return mhp_range;
1555 }
1556 
1557 struct range mhp_get_pluggable_range(bool need_mapping)
1558 {
1559 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1560 	struct range mhp_range;
1561 
1562 	if (need_mapping) {
1563 		mhp_range = arch_get_mappable_range();
1564 		if (mhp_range.start > max_phys) {
1565 			mhp_range.start = 0;
1566 			mhp_range.end = 0;
1567 		}
1568 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1569 	} else {
1570 		mhp_range.start = 0;
1571 		mhp_range.end = max_phys;
1572 	}
1573 	return mhp_range;
1574 }
1575 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1576 
1577 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1578 {
1579 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1580 	u64 end = start + size;
1581 
1582 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1583 		return true;
1584 
1585 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1586 		start, end, mhp_range.start, mhp_range.end);
1587 	return false;
1588 }
1589 
1590 #ifdef CONFIG_MEMORY_HOTREMOVE
1591 /*
1592  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1593  * memory holes). When true, return the zone.
1594  */
1595 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1596 				  unsigned long end_pfn)
1597 {
1598 	unsigned long pfn, sec_end_pfn;
1599 	struct zone *zone = NULL;
1600 	struct page *page;
1601 
1602 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1603 	     pfn < end_pfn;
1604 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1605 		/* Make sure the memory section is present first */
1606 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1607 			continue;
1608 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1609 		     pfn += MAX_ORDER_NR_PAGES) {
1610 			/* Check if we got outside of the zone */
1611 			if (zone && !zone_spans_pfn(zone, pfn))
1612 				return NULL;
1613 			page = pfn_to_page(pfn);
1614 			if (zone && page_zone(page) != zone)
1615 				return NULL;
1616 			zone = page_zone(page);
1617 		}
1618 	}
1619 
1620 	return zone;
1621 }
1622 
1623 /*
1624  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1625  * non-lru movable pages and hugepages). Will skip over most unmovable
1626  * pages (esp., pages that can be skipped when offlining), but bail out on
1627  * definitely unmovable pages.
1628  *
1629  * Returns:
1630  *	0 in case a movable page is found and movable_pfn was updated.
1631  *	-ENOENT in case no movable page was found.
1632  *	-EBUSY in case a definitely unmovable page was found.
1633  */
1634 static int scan_movable_pages(unsigned long start, unsigned long end,
1635 			      unsigned long *movable_pfn)
1636 {
1637 	unsigned long pfn;
1638 
1639 	for (pfn = start; pfn < end; pfn++) {
1640 		struct page *page, *head;
1641 		unsigned long skip;
1642 
1643 		if (!pfn_valid(pfn))
1644 			continue;
1645 		page = pfn_to_page(pfn);
1646 		if (PageLRU(page))
1647 			goto found;
1648 		if (__PageMovable(page))
1649 			goto found;
1650 
1651 		/*
1652 		 * PageOffline() pages that are not marked __PageMovable() and
1653 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1654 		 * definitely unmovable. If their reference count would be 0,
1655 		 * they could at least be skipped when offlining memory.
1656 		 */
1657 		if (PageOffline(page) && page_count(page))
1658 			return -EBUSY;
1659 
1660 		if (!PageHuge(page))
1661 			continue;
1662 		head = compound_head(page);
1663 		/*
1664 		 * This test is racy as we hold no reference or lock.  The
1665 		 * hugetlb page could have been free'ed and head is no longer
1666 		 * a hugetlb page before the following check.  In such unlikely
1667 		 * cases false positives and negatives are possible.  Calling
1668 		 * code must deal with these scenarios.
1669 		 */
1670 		if (HPageMigratable(head))
1671 			goto found;
1672 		skip = compound_nr(head) - (page - head);
1673 		pfn += skip - 1;
1674 	}
1675 	return -ENOENT;
1676 found:
1677 	*movable_pfn = pfn;
1678 	return 0;
1679 }
1680 
1681 static int
1682 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1683 {
1684 	unsigned long pfn;
1685 	struct page *page, *head;
1686 	int ret = 0;
1687 	LIST_HEAD(source);
1688 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1689 				      DEFAULT_RATELIMIT_BURST);
1690 
1691 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1692 		if (!pfn_valid(pfn))
1693 			continue;
1694 		page = pfn_to_page(pfn);
1695 		head = compound_head(page);
1696 
1697 		if (PageHuge(page)) {
1698 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1699 			isolate_huge_page(head, &source);
1700 			continue;
1701 		} else if (PageTransHuge(page))
1702 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1703 
1704 		/*
1705 		 * HWPoison pages have elevated reference counts so the migration would
1706 		 * fail on them. It also doesn't make any sense to migrate them in the
1707 		 * first place. Still try to unmap such a page in case it is still mapped
1708 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1709 		 * the unmap as the catch all safety net).
1710 		 */
1711 		if (PageHWPoison(page)) {
1712 			if (WARN_ON(PageLRU(page)))
1713 				isolate_lru_page(page);
1714 			if (page_mapped(page))
1715 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1716 			continue;
1717 		}
1718 
1719 		if (!get_page_unless_zero(page))
1720 			continue;
1721 		/*
1722 		 * We can skip free pages. And we can deal with pages on
1723 		 * LRU and non-lru movable pages.
1724 		 */
1725 		if (PageLRU(page))
1726 			ret = isolate_lru_page(page);
1727 		else
1728 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1729 		if (!ret) { /* Success */
1730 			list_add_tail(&page->lru, &source);
1731 			if (!__PageMovable(page))
1732 				inc_node_page_state(page, NR_ISOLATED_ANON +
1733 						    page_is_file_lru(page));
1734 
1735 		} else {
1736 			if (__ratelimit(&migrate_rs)) {
1737 				pr_warn("failed to isolate pfn %lx\n", pfn);
1738 				dump_page(page, "isolation failed");
1739 			}
1740 		}
1741 		put_page(page);
1742 	}
1743 	if (!list_empty(&source)) {
1744 		nodemask_t nmask = node_states[N_MEMORY];
1745 		struct migration_target_control mtc = {
1746 			.nmask = &nmask,
1747 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1748 		};
1749 
1750 		/*
1751 		 * We have checked that migration range is on a single zone so
1752 		 * we can use the nid of the first page to all the others.
1753 		 */
1754 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1755 
1756 		/*
1757 		 * try to allocate from a different node but reuse this node
1758 		 * if there are no other online nodes to be used (e.g. we are
1759 		 * offlining a part of the only existing node)
1760 		 */
1761 		node_clear(mtc.nid, nmask);
1762 		if (nodes_empty(nmask))
1763 			node_set(mtc.nid, nmask);
1764 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1765 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1766 		if (ret) {
1767 			list_for_each_entry(page, &source, lru) {
1768 				if (__ratelimit(&migrate_rs)) {
1769 					pr_warn("migrating pfn %lx failed ret:%d\n",
1770 						page_to_pfn(page), ret);
1771 					dump_page(page, "migration failure");
1772 				}
1773 			}
1774 			putback_movable_pages(&source);
1775 		}
1776 	}
1777 
1778 	return ret;
1779 }
1780 
1781 static int __init cmdline_parse_movable_node(char *p)
1782 {
1783 	movable_node_enabled = true;
1784 	return 0;
1785 }
1786 early_param("movable_node", cmdline_parse_movable_node);
1787 
1788 /* check which state of node_states will be changed when offline memory */
1789 static void node_states_check_changes_offline(unsigned long nr_pages,
1790 		struct zone *zone, struct memory_notify *arg)
1791 {
1792 	struct pglist_data *pgdat = zone->zone_pgdat;
1793 	unsigned long present_pages = 0;
1794 	enum zone_type zt;
1795 
1796 	arg->status_change_nid = NUMA_NO_NODE;
1797 	arg->status_change_nid_normal = NUMA_NO_NODE;
1798 
1799 	/*
1800 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1801 	 * If the memory to be offline is within the range
1802 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1803 	 * the zones in that range will become empty after the offlining,
1804 	 * thus we can determine that we need to clear the node from
1805 	 * node_states[N_NORMAL_MEMORY].
1806 	 */
1807 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1808 		present_pages += pgdat->node_zones[zt].present_pages;
1809 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1810 		arg->status_change_nid_normal = zone_to_nid(zone);
1811 
1812 	/*
1813 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1814 	 * does not apply as we don't support 32bit.
1815 	 * Here we count the possible pages from ZONE_MOVABLE.
1816 	 * If after having accounted all the pages, we see that the nr_pages
1817 	 * to be offlined is over or equal to the accounted pages,
1818 	 * we know that the node will become empty, and so, we can clear
1819 	 * it for N_MEMORY as well.
1820 	 */
1821 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1822 
1823 	if (nr_pages >= present_pages)
1824 		arg->status_change_nid = zone_to_nid(zone);
1825 }
1826 
1827 static void node_states_clear_node(int node, struct memory_notify *arg)
1828 {
1829 	if (arg->status_change_nid_normal >= 0)
1830 		node_clear_state(node, N_NORMAL_MEMORY);
1831 
1832 	if (arg->status_change_nid >= 0)
1833 		node_clear_state(node, N_MEMORY);
1834 }
1835 
1836 static int count_system_ram_pages_cb(unsigned long start_pfn,
1837 				     unsigned long nr_pages, void *data)
1838 {
1839 	unsigned long *nr_system_ram_pages = data;
1840 
1841 	*nr_system_ram_pages += nr_pages;
1842 	return 0;
1843 }
1844 
1845 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1846 			struct memory_group *group)
1847 {
1848 	const unsigned long end_pfn = start_pfn + nr_pages;
1849 	unsigned long pfn, system_ram_pages = 0;
1850 	unsigned long flags;
1851 	struct zone *zone;
1852 	struct memory_notify arg;
1853 	int ret, node;
1854 	char *reason;
1855 
1856 	/*
1857 	 * {on,off}lining is constrained to full memory sections (or more
1858 	 * precisely to memory blocks from the user space POV).
1859 	 * memmap_on_memory is an exception because it reserves initial part
1860 	 * of the physical memory space for vmemmaps. That space is pageblock
1861 	 * aligned.
1862 	 */
1863 	if (WARN_ON_ONCE(!nr_pages ||
1864 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1865 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1866 		return -EINVAL;
1867 
1868 	mem_hotplug_begin();
1869 
1870 	/*
1871 	 * Don't allow to offline memory blocks that contain holes.
1872 	 * Consequently, memory blocks with holes can never get onlined
1873 	 * via the hotplug path - online_pages() - as hotplugged memory has
1874 	 * no holes. This way, we e.g., don't have to worry about marking
1875 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1876 	 * avoid using walk_system_ram_range() later.
1877 	 */
1878 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1879 			      count_system_ram_pages_cb);
1880 	if (system_ram_pages != nr_pages) {
1881 		ret = -EINVAL;
1882 		reason = "memory holes";
1883 		goto failed_removal;
1884 	}
1885 
1886 	/* This makes hotplug much easier...and readable.
1887 	   we assume this for now. .*/
1888 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1889 	if (!zone) {
1890 		ret = -EINVAL;
1891 		reason = "multizone range";
1892 		goto failed_removal;
1893 	}
1894 	node = zone_to_nid(zone);
1895 
1896 	/*
1897 	 * Disable pcplists so that page isolation cannot race with freeing
1898 	 * in a way that pages from isolated pageblock are left on pcplists.
1899 	 */
1900 	zone_pcp_disable(zone);
1901 	lru_cache_disable();
1902 
1903 	/* set above range as isolated */
1904 	ret = start_isolate_page_range(start_pfn, end_pfn,
1905 				       MIGRATE_MOVABLE,
1906 				       MEMORY_OFFLINE | REPORT_FAILURE);
1907 	if (ret) {
1908 		reason = "failure to isolate range";
1909 		goto failed_removal_pcplists_disabled;
1910 	}
1911 
1912 	arg.start_pfn = start_pfn;
1913 	arg.nr_pages = nr_pages;
1914 	node_states_check_changes_offline(nr_pages, zone, &arg);
1915 
1916 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1917 	ret = notifier_to_errno(ret);
1918 	if (ret) {
1919 		reason = "notifier failure";
1920 		goto failed_removal_isolated;
1921 	}
1922 
1923 	do {
1924 		pfn = start_pfn;
1925 		do {
1926 			if (signal_pending(current)) {
1927 				ret = -EINTR;
1928 				reason = "signal backoff";
1929 				goto failed_removal_isolated;
1930 			}
1931 
1932 			cond_resched();
1933 
1934 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1935 			if (!ret) {
1936 				/*
1937 				 * TODO: fatal migration failures should bail
1938 				 * out
1939 				 */
1940 				do_migrate_range(pfn, end_pfn);
1941 			}
1942 		} while (!ret);
1943 
1944 		if (ret != -ENOENT) {
1945 			reason = "unmovable page";
1946 			goto failed_removal_isolated;
1947 		}
1948 
1949 		/*
1950 		 * Dissolve free hugepages in the memory block before doing
1951 		 * offlining actually in order to make hugetlbfs's object
1952 		 * counting consistent.
1953 		 */
1954 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1955 		if (ret) {
1956 			reason = "failure to dissolve huge pages";
1957 			goto failed_removal_isolated;
1958 		}
1959 
1960 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1961 
1962 	} while (ret);
1963 
1964 	/* Mark all sections offline and remove free pages from the buddy. */
1965 	__offline_isolated_pages(start_pfn, end_pfn);
1966 	pr_debug("Offlined Pages %ld\n", nr_pages);
1967 
1968 	/*
1969 	 * The memory sections are marked offline, and the pageblock flags
1970 	 * effectively stale; nobody should be touching them. Fixup the number
1971 	 * of isolated pageblocks, memory onlining will properly revert this.
1972 	 */
1973 	spin_lock_irqsave(&zone->lock, flags);
1974 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1975 	spin_unlock_irqrestore(&zone->lock, flags);
1976 
1977 	lru_cache_enable();
1978 	zone_pcp_enable(zone);
1979 
1980 	/* removal success */
1981 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1982 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1983 
1984 	/* reinitialise watermarks and update pcp limits */
1985 	init_per_zone_wmark_min();
1986 
1987 	if (!populated_zone(zone)) {
1988 		zone_pcp_reset(zone);
1989 		build_all_zonelists(NULL);
1990 	}
1991 
1992 	node_states_clear_node(node, &arg);
1993 	if (arg.status_change_nid >= 0) {
1994 		kswapd_stop(node);
1995 		kcompactd_stop(node);
1996 	}
1997 
1998 	writeback_set_ratelimit();
1999 
2000 	memory_notify(MEM_OFFLINE, &arg);
2001 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2002 	mem_hotplug_done();
2003 	return 0;
2004 
2005 failed_removal_isolated:
2006 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2007 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2008 failed_removal_pcplists_disabled:
2009 	lru_cache_enable();
2010 	zone_pcp_enable(zone);
2011 failed_removal:
2012 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2013 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2014 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2015 		 reason);
2016 	/* pushback to free area */
2017 	mem_hotplug_done();
2018 	return ret;
2019 }
2020 
2021 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2022 {
2023 	int ret = !is_memblock_offlined(mem);
2024 	int *nid = arg;
2025 
2026 	*nid = mem->nid;
2027 	if (unlikely(ret)) {
2028 		phys_addr_t beginpa, endpa;
2029 
2030 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2031 		endpa = beginpa + memory_block_size_bytes() - 1;
2032 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2033 			&beginpa, &endpa);
2034 
2035 		return -EBUSY;
2036 	}
2037 	return 0;
2038 }
2039 
2040 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2041 {
2042 	/*
2043 	 * If not set, continue with the next block.
2044 	 */
2045 	return mem->nr_vmemmap_pages;
2046 }
2047 
2048 static int check_cpu_on_node(pg_data_t *pgdat)
2049 {
2050 	int cpu;
2051 
2052 	for_each_present_cpu(cpu) {
2053 		if (cpu_to_node(cpu) == pgdat->node_id)
2054 			/*
2055 			 * the cpu on this node isn't removed, and we can't
2056 			 * offline this node.
2057 			 */
2058 			return -EBUSY;
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2065 {
2066 	int nid = *(int *)arg;
2067 
2068 	/*
2069 	 * If a memory block belongs to multiple nodes, the stored nid is not
2070 	 * reliable. However, such blocks are always online (e.g., cannot get
2071 	 * offlined) and, therefore, are still spanned by the node.
2072 	 */
2073 	return mem->nid == nid ? -EEXIST : 0;
2074 }
2075 
2076 /**
2077  * try_offline_node
2078  * @nid: the node ID
2079  *
2080  * Offline a node if all memory sections and cpus of the node are removed.
2081  *
2082  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2083  * and online/offline operations before this call.
2084  */
2085 void try_offline_node(int nid)
2086 {
2087 	pg_data_t *pgdat = NODE_DATA(nid);
2088 	int rc;
2089 
2090 	/*
2091 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2092 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2093 	 * e.g., after the memory block was onlined.
2094 	 */
2095 	if (pgdat->node_spanned_pages)
2096 		return;
2097 
2098 	/*
2099 	 * Especially offline memory blocks might not be spanned by the
2100 	 * node. They will get spanned by the node once they get onlined.
2101 	 * However, they link to the node in sysfs and can get onlined later.
2102 	 */
2103 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2104 	if (rc)
2105 		return;
2106 
2107 	if (check_cpu_on_node(pgdat))
2108 		return;
2109 
2110 	/*
2111 	 * all memory/cpu of this node are removed, we can offline this
2112 	 * node now.
2113 	 */
2114 	node_set_offline(nid);
2115 	unregister_one_node(nid);
2116 }
2117 EXPORT_SYMBOL(try_offline_node);
2118 
2119 static int __ref try_remove_memory(u64 start, u64 size)
2120 {
2121 	struct vmem_altmap mhp_altmap = {};
2122 	struct vmem_altmap *altmap = NULL;
2123 	unsigned long nr_vmemmap_pages;
2124 	int rc = 0, nid = NUMA_NO_NODE;
2125 
2126 	BUG_ON(check_hotplug_memory_range(start, size));
2127 
2128 	/*
2129 	 * All memory blocks must be offlined before removing memory.  Check
2130 	 * whether all memory blocks in question are offline and return error
2131 	 * if this is not the case.
2132 	 *
2133 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2134 	 * we'd only try to offline the last determined one -- which is good
2135 	 * enough for the cases we care about.
2136 	 */
2137 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2138 	if (rc)
2139 		return rc;
2140 
2141 	/*
2142 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2143 	 * the same granularity it was added - a single memory block.
2144 	 */
2145 	if (memmap_on_memory) {
2146 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2147 						      get_nr_vmemmap_pages_cb);
2148 		if (nr_vmemmap_pages) {
2149 			if (size != memory_block_size_bytes()) {
2150 				pr_warn("Refuse to remove %#llx - %#llx,"
2151 					"wrong granularity\n",
2152 					start, start + size);
2153 				return -EINVAL;
2154 			}
2155 
2156 			/*
2157 			 * Let remove_pmd_table->free_hugepage_table do the
2158 			 * right thing if we used vmem_altmap when hot-adding
2159 			 * the range.
2160 			 */
2161 			mhp_altmap.alloc = nr_vmemmap_pages;
2162 			altmap = &mhp_altmap;
2163 		}
2164 	}
2165 
2166 	/* remove memmap entry */
2167 	firmware_map_remove(start, start + size, "System RAM");
2168 
2169 	/*
2170 	 * Memory block device removal under the device_hotplug_lock is
2171 	 * a barrier against racing online attempts.
2172 	 */
2173 	remove_memory_block_devices(start, size);
2174 
2175 	mem_hotplug_begin();
2176 
2177 	arch_remove_memory(start, size, altmap);
2178 
2179 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2180 		memblock_phys_free(start, size);
2181 		memblock_remove(start, size);
2182 	}
2183 
2184 	release_mem_region_adjustable(start, size);
2185 
2186 	if (nid != NUMA_NO_NODE)
2187 		try_offline_node(nid);
2188 
2189 	mem_hotplug_done();
2190 	return 0;
2191 }
2192 
2193 /**
2194  * __remove_memory - Remove memory if every memory block is offline
2195  * @start: physical address of the region to remove
2196  * @size: size of the region to remove
2197  *
2198  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2199  * and online/offline operations before this call, as required by
2200  * try_offline_node().
2201  */
2202 void __remove_memory(u64 start, u64 size)
2203 {
2204 
2205 	/*
2206 	 * trigger BUG() if some memory is not offlined prior to calling this
2207 	 * function
2208 	 */
2209 	if (try_remove_memory(start, size))
2210 		BUG();
2211 }
2212 
2213 /*
2214  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2215  * some memory is not offline
2216  */
2217 int remove_memory(u64 start, u64 size)
2218 {
2219 	int rc;
2220 
2221 	lock_device_hotplug();
2222 	rc = try_remove_memory(start, size);
2223 	unlock_device_hotplug();
2224 
2225 	return rc;
2226 }
2227 EXPORT_SYMBOL_GPL(remove_memory);
2228 
2229 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2230 {
2231 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2232 	uint8_t **online_types = arg;
2233 	struct page *page;
2234 	int rc;
2235 
2236 	/*
2237 	 * Sense the online_type via the zone of the memory block. Offlining
2238 	 * with multiple zones within one memory block will be rejected
2239 	 * by offlining code ... so we don't care about that.
2240 	 */
2241 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2242 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2243 		online_type = MMOP_ONLINE_MOVABLE;
2244 
2245 	rc = device_offline(&mem->dev);
2246 	/*
2247 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2248 	 * so try_reonline_memory_block() can do the right thing.
2249 	 */
2250 	if (!rc)
2251 		**online_types = online_type;
2252 
2253 	(*online_types)++;
2254 	/* Ignore if already offline. */
2255 	return rc < 0 ? rc : 0;
2256 }
2257 
2258 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2259 {
2260 	uint8_t **online_types = arg;
2261 	int rc;
2262 
2263 	if (**online_types != MMOP_OFFLINE) {
2264 		mem->online_type = **online_types;
2265 		rc = device_online(&mem->dev);
2266 		if (rc < 0)
2267 			pr_warn("%s: Failed to re-online memory: %d",
2268 				__func__, rc);
2269 	}
2270 
2271 	/* Continue processing all remaining memory blocks. */
2272 	(*online_types)++;
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Try to offline and remove memory. Might take a long time to finish in case
2278  * memory is still in use. Primarily useful for memory devices that logically
2279  * unplugged all memory (so it's no longer in use) and want to offline + remove
2280  * that memory.
2281  */
2282 int offline_and_remove_memory(u64 start, u64 size)
2283 {
2284 	const unsigned long mb_count = size / memory_block_size_bytes();
2285 	uint8_t *online_types, *tmp;
2286 	int rc;
2287 
2288 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2289 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2290 		return -EINVAL;
2291 
2292 	/*
2293 	 * We'll remember the old online type of each memory block, so we can
2294 	 * try to revert whatever we did when offlining one memory block fails
2295 	 * after offlining some others succeeded.
2296 	 */
2297 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2298 				     GFP_KERNEL);
2299 	if (!online_types)
2300 		return -ENOMEM;
2301 	/*
2302 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2303 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2304 	 * try_reonline_memory_block().
2305 	 */
2306 	memset(online_types, MMOP_OFFLINE, mb_count);
2307 
2308 	lock_device_hotplug();
2309 
2310 	tmp = online_types;
2311 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2312 
2313 	/*
2314 	 * In case we succeeded to offline all memory, remove it.
2315 	 * This cannot fail as it cannot get onlined in the meantime.
2316 	 */
2317 	if (!rc) {
2318 		rc = try_remove_memory(start, size);
2319 		if (rc)
2320 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2321 	}
2322 
2323 	/*
2324 	 * Rollback what we did. While memory onlining might theoretically fail
2325 	 * (nacked by a notifier), it barely ever happens.
2326 	 */
2327 	if (rc) {
2328 		tmp = online_types;
2329 		walk_memory_blocks(start, size, &tmp,
2330 				   try_reonline_memory_block);
2331 	}
2332 	unlock_device_hotplug();
2333 
2334 	kfree(online_types);
2335 	return rc;
2336 }
2337 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2338 #endif /* CONFIG_MEMORY_HOTREMOVE */
2339