xref: /openbmc/linux/mm/memory_hotplug.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 module_param(memmap_on_memory, bool, 0444);
51 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
52 
53 static inline bool mhp_memmap_on_memory(void)
54 {
55 	return memmap_on_memory;
56 }
57 #else
58 static inline bool mhp_memmap_on_memory(void)
59 {
60 	return false;
61 }
62 #endif
63 
64 enum {
65 	ONLINE_POLICY_CONTIG_ZONES = 0,
66 	ONLINE_POLICY_AUTO_MOVABLE,
67 };
68 
69 static const char * const online_policy_to_str[] = {
70 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
71 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
72 };
73 
74 static int set_online_policy(const char *val, const struct kernel_param *kp)
75 {
76 	int ret = sysfs_match_string(online_policy_to_str, val);
77 
78 	if (ret < 0)
79 		return ret;
80 	*((int *)kp->arg) = ret;
81 	return 0;
82 }
83 
84 static int get_online_policy(char *buffer, const struct kernel_param *kp)
85 {
86 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
87 }
88 
89 /*
90  * memory_hotplug.online_policy: configure online behavior when onlining without
91  * specifying a zone (MMOP_ONLINE)
92  *
93  * "contig-zones": keep zone contiguous
94  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
95  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
96  */
97 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
98 static const struct kernel_param_ops online_policy_ops = {
99 	.set = set_online_policy,
100 	.get = get_online_policy,
101 };
102 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
103 MODULE_PARM_DESC(online_policy,
104 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
105 		"Default: \"contig-zones\"");
106 
107 /*
108  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
109  *
110  * The ratio represent an upper limit and the kernel might decide to not
111  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
112  * doesn't allow for more MOVABLE memory.
113  */
114 static unsigned int auto_movable_ratio __read_mostly = 301;
115 module_param(auto_movable_ratio, uint, 0644);
116 MODULE_PARM_DESC(auto_movable_ratio,
117 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
118 		"in percent for \"auto-movable\" online policy. Default: 301");
119 
120 /*
121  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
122  */
123 #ifdef CONFIG_NUMA
124 static bool auto_movable_numa_aware __read_mostly = true;
125 module_param(auto_movable_numa_aware, bool, 0644);
126 MODULE_PARM_DESC(auto_movable_numa_aware,
127 		"Consider numa node stats in addition to global stats in "
128 		"\"auto-movable\" online policy. Default: true");
129 #endif /* CONFIG_NUMA */
130 
131 /*
132  * online_page_callback contains pointer to current page onlining function.
133  * Initially it is generic_online_page(). If it is required it could be
134  * changed by calling set_online_page_callback() for callback registration
135  * and restore_online_page_callback() for generic callback restore.
136  */
137 
138 static online_page_callback_t online_page_callback = generic_online_page;
139 static DEFINE_MUTEX(online_page_callback_lock);
140 
141 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
142 
143 void get_online_mems(void)
144 {
145 	percpu_down_read(&mem_hotplug_lock);
146 }
147 
148 void put_online_mems(void)
149 {
150 	percpu_up_read(&mem_hotplug_lock);
151 }
152 
153 bool movable_node_enabled = false;
154 
155 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
156 int mhp_default_online_type = MMOP_OFFLINE;
157 #else
158 int mhp_default_online_type = MMOP_ONLINE;
159 #endif
160 
161 static int __init setup_memhp_default_state(char *str)
162 {
163 	const int online_type = mhp_online_type_from_str(str);
164 
165 	if (online_type >= 0)
166 		mhp_default_online_type = online_type;
167 
168 	return 1;
169 }
170 __setup("memhp_default_state=", setup_memhp_default_state);
171 
172 void mem_hotplug_begin(void)
173 {
174 	cpus_read_lock();
175 	percpu_down_write(&mem_hotplug_lock);
176 }
177 
178 void mem_hotplug_done(void)
179 {
180 	percpu_up_write(&mem_hotplug_lock);
181 	cpus_read_unlock();
182 }
183 
184 u64 max_mem_size = U64_MAX;
185 
186 /* add this memory to iomem resource */
187 static struct resource *register_memory_resource(u64 start, u64 size,
188 						 const char *resource_name)
189 {
190 	struct resource *res;
191 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
192 
193 	if (strcmp(resource_name, "System RAM"))
194 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
195 
196 	if (!mhp_range_allowed(start, size, true))
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Make sure value parsed from 'mem=' only restricts memory adding
201 	 * while booting, so that memory hotplug won't be impacted. Please
202 	 * refer to document of 'mem=' in kernel-parameters.txt for more
203 	 * details.
204 	 */
205 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
206 		return ERR_PTR(-E2BIG);
207 
208 	/*
209 	 * Request ownership of the new memory range.  This might be
210 	 * a child of an existing resource that was present but
211 	 * not marked as busy.
212 	 */
213 	res = __request_region(&iomem_resource, start, size,
214 			       resource_name, flags);
215 
216 	if (!res) {
217 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
218 				start, start + size);
219 		return ERR_PTR(-EEXIST);
220 	}
221 	return res;
222 }
223 
224 static void release_memory_resource(struct resource *res)
225 {
226 	if (!res)
227 		return;
228 	release_resource(res);
229 	kfree(res);
230 }
231 
232 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
233 {
234 	/*
235 	 * Disallow all operations smaller than a sub-section and only
236 	 * allow operations smaller than a section for
237 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
238 	 * enforces a larger memory_block_size_bytes() granularity for
239 	 * memory that will be marked online, so this check should only
240 	 * fire for direct arch_{add,remove}_memory() users outside of
241 	 * add_memory_resource().
242 	 */
243 	unsigned long min_align;
244 
245 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
246 		min_align = PAGES_PER_SUBSECTION;
247 	else
248 		min_align = PAGES_PER_SECTION;
249 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
250 		return -EINVAL;
251 	return 0;
252 }
253 
254 /*
255  * Return page for the valid pfn only if the page is online. All pfn
256  * walkers which rely on the fully initialized page->flags and others
257  * should use this rather than pfn_valid && pfn_to_page
258  */
259 struct page *pfn_to_online_page(unsigned long pfn)
260 {
261 	unsigned long nr = pfn_to_section_nr(pfn);
262 	struct dev_pagemap *pgmap;
263 	struct mem_section *ms;
264 
265 	if (nr >= NR_MEM_SECTIONS)
266 		return NULL;
267 
268 	ms = __nr_to_section(nr);
269 	if (!online_section(ms))
270 		return NULL;
271 
272 	/*
273 	 * Save some code text when online_section() +
274 	 * pfn_section_valid() are sufficient.
275 	 */
276 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
277 		return NULL;
278 
279 	if (!pfn_section_valid(ms, pfn))
280 		return NULL;
281 
282 	if (!online_device_section(ms))
283 		return pfn_to_page(pfn);
284 
285 	/*
286 	 * Slowpath: when ZONE_DEVICE collides with
287 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
288 	 * the section may be 'offline' but 'valid'. Only
289 	 * get_dev_pagemap() can determine sub-section online status.
290 	 */
291 	pgmap = get_dev_pagemap(pfn, NULL);
292 	put_dev_pagemap(pgmap);
293 
294 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
295 	if (pgmap)
296 		return NULL;
297 
298 	return pfn_to_page(pfn);
299 }
300 EXPORT_SYMBOL_GPL(pfn_to_online_page);
301 
302 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
303 		struct mhp_params *params)
304 {
305 	const unsigned long end_pfn = pfn + nr_pages;
306 	unsigned long cur_nr_pages;
307 	int err;
308 	struct vmem_altmap *altmap = params->altmap;
309 
310 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
311 		return -EINVAL;
312 
313 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
314 
315 	if (altmap) {
316 		/*
317 		 * Validate altmap is within bounds of the total request
318 		 */
319 		if (altmap->base_pfn != pfn
320 				|| vmem_altmap_offset(altmap) > nr_pages) {
321 			pr_warn_once("memory add fail, invalid altmap\n");
322 			return -EINVAL;
323 		}
324 		altmap->alloc = 0;
325 	}
326 
327 	if (check_pfn_span(pfn, nr_pages)) {
328 		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
329 		return -EINVAL;
330 	}
331 
332 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
333 		/* Select all remaining pages up to the next section boundary */
334 		cur_nr_pages = min(end_pfn - pfn,
335 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
336 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
337 					 params->pgmap);
338 		if (err)
339 			break;
340 		cond_resched();
341 	}
342 	vmemmap_populate_print_last();
343 	return err;
344 }
345 
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 				     unsigned long start_pfn,
349 				     unsigned long end_pfn)
350 {
351 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 		if (unlikely(!pfn_to_online_page(start_pfn)))
353 			continue;
354 
355 		if (unlikely(pfn_to_nid(start_pfn) != nid))
356 			continue;
357 
358 		if (zone != page_zone(pfn_to_page(start_pfn)))
359 			continue;
360 
361 		return start_pfn;
362 	}
363 
364 	return 0;
365 }
366 
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 				    unsigned long start_pfn,
370 				    unsigned long end_pfn)
371 {
372 	unsigned long pfn;
373 
374 	/* pfn is the end pfn of a memory section. */
375 	pfn = end_pfn - 1;
376 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(pfn)))
384 			continue;
385 
386 		return pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 			     unsigned long end_pfn)
394 {
395 	unsigned long pfn;
396 	int nid = zone_to_nid(zone);
397 
398 	if (zone->zone_start_pfn == start_pfn) {
399 		/*
400 		 * If the section is smallest section in the zone, it need
401 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
402 		 * In this case, we find second smallest valid mem_section
403 		 * for shrinking zone.
404 		 */
405 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
406 						zone_end_pfn(zone));
407 		if (pfn) {
408 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
409 			zone->zone_start_pfn = pfn;
410 		} else {
411 			zone->zone_start_pfn = 0;
412 			zone->spanned_pages = 0;
413 		}
414 	} else if (zone_end_pfn(zone) == end_pfn) {
415 		/*
416 		 * If the section is biggest section in the zone, it need
417 		 * shrink zone->spanned_pages.
418 		 * In this case, we find second biggest valid mem_section for
419 		 * shrinking zone.
420 		 */
421 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
422 					       start_pfn);
423 		if (pfn)
424 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
425 		else {
426 			zone->zone_start_pfn = 0;
427 			zone->spanned_pages = 0;
428 		}
429 	}
430 }
431 
432 static void update_pgdat_span(struct pglist_data *pgdat)
433 {
434 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
435 	struct zone *zone;
436 
437 	for (zone = pgdat->node_zones;
438 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
439 		unsigned long end_pfn = zone_end_pfn(zone);
440 
441 		/* No need to lock the zones, they can't change. */
442 		if (!zone->spanned_pages)
443 			continue;
444 		if (!node_end_pfn) {
445 			node_start_pfn = zone->zone_start_pfn;
446 			node_end_pfn = end_pfn;
447 			continue;
448 		}
449 
450 		if (end_pfn > node_end_pfn)
451 			node_end_pfn = end_pfn;
452 		if (zone->zone_start_pfn < node_start_pfn)
453 			node_start_pfn = zone->zone_start_pfn;
454 	}
455 
456 	pgdat->node_start_pfn = node_start_pfn;
457 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458 }
459 
460 void __ref remove_pfn_range_from_zone(struct zone *zone,
461 				      unsigned long start_pfn,
462 				      unsigned long nr_pages)
463 {
464 	const unsigned long end_pfn = start_pfn + nr_pages;
465 	struct pglist_data *pgdat = zone->zone_pgdat;
466 	unsigned long pfn, cur_nr_pages;
467 
468 	/* Poison struct pages because they are now uninitialized again. */
469 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
470 		cond_resched();
471 
472 		/* Select all remaining pages up to the next section boundary */
473 		cur_nr_pages =
474 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
475 		page_init_poison(pfn_to_page(pfn),
476 				 sizeof(struct page) * cur_nr_pages);
477 	}
478 
479 	/*
480 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
481 	 * we will not try to shrink the zones - which is okay as
482 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
483 	 */
484 	if (zone_is_zone_device(zone))
485 		return;
486 
487 	clear_zone_contiguous(zone);
488 
489 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
490 	update_pgdat_span(pgdat);
491 
492 	set_zone_contiguous(zone);
493 }
494 
495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496 			     unsigned long map_offset,
497 			     struct vmem_altmap *altmap)
498 {
499 	struct mem_section *ms = __pfn_to_section(pfn);
500 
501 	if (WARN_ON_ONCE(!valid_section(ms)))
502 		return;
503 
504 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505 }
506 
507 /**
508  * __remove_pages() - remove sections of pages
509  * @pfn: starting pageframe (must be aligned to start of a section)
510  * @nr_pages: number of pages to remove (must be multiple of section size)
511  * @altmap: alternative device page map or %NULL if default memmap is used
512  *
513  * Generic helper function to remove section mappings and sysfs entries
514  * for the section of the memory we are removing. Caller needs to make
515  * sure that pages are marked reserved and zones are adjust properly by
516  * calling offline_pages().
517  */
518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519 		    struct vmem_altmap *altmap)
520 {
521 	const unsigned long end_pfn = pfn + nr_pages;
522 	unsigned long cur_nr_pages;
523 	unsigned long map_offset = 0;
524 
525 	map_offset = vmem_altmap_offset(altmap);
526 
527 	if (check_pfn_span(pfn, nr_pages)) {
528 		WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1);
529 		return;
530 	}
531 
532 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
533 		cond_resched();
534 		/* Select all remaining pages up to the next section boundary */
535 		cur_nr_pages = min(end_pfn - pfn,
536 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
537 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
538 		map_offset = 0;
539 	}
540 }
541 
542 int set_online_page_callback(online_page_callback_t callback)
543 {
544 	int rc = -EINVAL;
545 
546 	get_online_mems();
547 	mutex_lock(&online_page_callback_lock);
548 
549 	if (online_page_callback == generic_online_page) {
550 		online_page_callback = callback;
551 		rc = 0;
552 	}
553 
554 	mutex_unlock(&online_page_callback_lock);
555 	put_online_mems();
556 
557 	return rc;
558 }
559 EXPORT_SYMBOL_GPL(set_online_page_callback);
560 
561 int restore_online_page_callback(online_page_callback_t callback)
562 {
563 	int rc = -EINVAL;
564 
565 	get_online_mems();
566 	mutex_lock(&online_page_callback_lock);
567 
568 	if (online_page_callback == callback) {
569 		online_page_callback = generic_online_page;
570 		rc = 0;
571 	}
572 
573 	mutex_unlock(&online_page_callback_lock);
574 	put_online_mems();
575 
576 	return rc;
577 }
578 EXPORT_SYMBOL_GPL(restore_online_page_callback);
579 
580 void generic_online_page(struct page *page, unsigned int order)
581 {
582 	/*
583 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
584 	 * so we should map it first. This is better than introducing a special
585 	 * case in page freeing fast path.
586 	 */
587 	debug_pagealloc_map_pages(page, 1 << order);
588 	__free_pages_core(page, order);
589 	totalram_pages_add(1UL << order);
590 }
591 EXPORT_SYMBOL_GPL(generic_online_page);
592 
593 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
594 {
595 	const unsigned long end_pfn = start_pfn + nr_pages;
596 	unsigned long pfn;
597 
598 	/*
599 	 * Online the pages in MAX_ORDER aligned chunks. The callback might
600 	 * decide to not expose all pages to the buddy (e.g., expose them
601 	 * later). We account all pages as being online and belonging to this
602 	 * zone ("present").
603 	 * When using memmap_on_memory, the range might not be aligned to
604 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
605 	 * this and the first chunk to online will be pageblock_nr_pages.
606 	 */
607 	for (pfn = start_pfn; pfn < end_pfn;) {
608 		int order;
609 
610 		/*
611 		 * Free to online pages in the largest chunks alignment allows.
612 		 *
613 		 * __ffs() behaviour is undefined for 0. start == 0 is
614 		 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case.
615 		 */
616 		if (pfn)
617 			order = min_t(int, MAX_ORDER, __ffs(pfn));
618 		else
619 			order = MAX_ORDER;
620 
621 		(*online_page_callback)(pfn_to_page(pfn), order);
622 		pfn += (1UL << order);
623 	}
624 
625 	/* mark all involved sections as online */
626 	online_mem_sections(start_pfn, end_pfn);
627 }
628 
629 /* check which state of node_states will be changed when online memory */
630 static void node_states_check_changes_online(unsigned long nr_pages,
631 	struct zone *zone, struct memory_notify *arg)
632 {
633 	int nid = zone_to_nid(zone);
634 
635 	arg->status_change_nid = NUMA_NO_NODE;
636 	arg->status_change_nid_normal = NUMA_NO_NODE;
637 
638 	if (!node_state(nid, N_MEMORY))
639 		arg->status_change_nid = nid;
640 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
641 		arg->status_change_nid_normal = nid;
642 }
643 
644 static void node_states_set_node(int node, struct memory_notify *arg)
645 {
646 	if (arg->status_change_nid_normal >= 0)
647 		node_set_state(node, N_NORMAL_MEMORY);
648 
649 	if (arg->status_change_nid >= 0)
650 		node_set_state(node, N_MEMORY);
651 }
652 
653 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
654 		unsigned long nr_pages)
655 {
656 	unsigned long old_end_pfn = zone_end_pfn(zone);
657 
658 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
659 		zone->zone_start_pfn = start_pfn;
660 
661 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
662 }
663 
664 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
665                                      unsigned long nr_pages)
666 {
667 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
668 
669 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
670 		pgdat->node_start_pfn = start_pfn;
671 
672 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
673 
674 }
675 
676 #ifdef CONFIG_ZONE_DEVICE
677 static void section_taint_zone_device(unsigned long pfn)
678 {
679 	struct mem_section *ms = __pfn_to_section(pfn);
680 
681 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
682 }
683 #else
684 static inline void section_taint_zone_device(unsigned long pfn)
685 {
686 }
687 #endif
688 
689 /*
690  * Associate the pfn range with the given zone, initializing the memmaps
691  * and resizing the pgdat/zone data to span the added pages. After this
692  * call, all affected pages are PG_reserved.
693  *
694  * All aligned pageblocks are initialized to the specified migratetype
695  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
696  * zone stats (e.g., nr_isolate_pageblock) are touched.
697  */
698 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
699 				  unsigned long nr_pages,
700 				  struct vmem_altmap *altmap, int migratetype)
701 {
702 	struct pglist_data *pgdat = zone->zone_pgdat;
703 	int nid = pgdat->node_id;
704 
705 	clear_zone_contiguous(zone);
706 
707 	if (zone_is_empty(zone))
708 		init_currently_empty_zone(zone, start_pfn, nr_pages);
709 	resize_zone_range(zone, start_pfn, nr_pages);
710 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
711 
712 	/*
713 	 * Subsection population requires care in pfn_to_online_page().
714 	 * Set the taint to enable the slow path detection of
715 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
716 	 * section.
717 	 */
718 	if (zone_is_zone_device(zone)) {
719 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
720 			section_taint_zone_device(start_pfn);
721 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
722 			section_taint_zone_device(start_pfn + nr_pages);
723 	}
724 
725 	/*
726 	 * TODO now we have a visible range of pages which are not associated
727 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
728 	 * expects the zone spans the pfn range. All the pages in the range
729 	 * are reserved so nobody should be touching them so we should be safe
730 	 */
731 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
732 			 MEMINIT_HOTPLUG, altmap, migratetype);
733 
734 	set_zone_contiguous(zone);
735 }
736 
737 struct auto_movable_stats {
738 	unsigned long kernel_early_pages;
739 	unsigned long movable_pages;
740 };
741 
742 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
743 					    struct zone *zone)
744 {
745 	if (zone_idx(zone) == ZONE_MOVABLE) {
746 		stats->movable_pages += zone->present_pages;
747 	} else {
748 		stats->kernel_early_pages += zone->present_early_pages;
749 #ifdef CONFIG_CMA
750 		/*
751 		 * CMA pages (never on hotplugged memory) behave like
752 		 * ZONE_MOVABLE.
753 		 */
754 		stats->movable_pages += zone->cma_pages;
755 		stats->kernel_early_pages -= zone->cma_pages;
756 #endif /* CONFIG_CMA */
757 	}
758 }
759 struct auto_movable_group_stats {
760 	unsigned long movable_pages;
761 	unsigned long req_kernel_early_pages;
762 };
763 
764 static int auto_movable_stats_account_group(struct memory_group *group,
765 					   void *arg)
766 {
767 	const int ratio = READ_ONCE(auto_movable_ratio);
768 	struct auto_movable_group_stats *stats = arg;
769 	long pages;
770 
771 	/*
772 	 * We don't support modifying the config while the auto-movable online
773 	 * policy is already enabled. Just avoid the division by zero below.
774 	 */
775 	if (!ratio)
776 		return 0;
777 
778 	/*
779 	 * Calculate how many early kernel pages this group requires to
780 	 * satisfy the configured zone ratio.
781 	 */
782 	pages = group->present_movable_pages * 100 / ratio;
783 	pages -= group->present_kernel_pages;
784 
785 	if (pages > 0)
786 		stats->req_kernel_early_pages += pages;
787 	stats->movable_pages += group->present_movable_pages;
788 	return 0;
789 }
790 
791 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
792 					    unsigned long nr_pages)
793 {
794 	unsigned long kernel_early_pages, movable_pages;
795 	struct auto_movable_group_stats group_stats = {};
796 	struct auto_movable_stats stats = {};
797 	pg_data_t *pgdat = NODE_DATA(nid);
798 	struct zone *zone;
799 	int i;
800 
801 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
802 	if (nid == NUMA_NO_NODE) {
803 		/* TODO: cache values */
804 		for_each_populated_zone(zone)
805 			auto_movable_stats_account_zone(&stats, zone);
806 	} else {
807 		for (i = 0; i < MAX_NR_ZONES; i++) {
808 			zone = pgdat->node_zones + i;
809 			if (populated_zone(zone))
810 				auto_movable_stats_account_zone(&stats, zone);
811 		}
812 	}
813 
814 	kernel_early_pages = stats.kernel_early_pages;
815 	movable_pages = stats.movable_pages;
816 
817 	/*
818 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
819 	 * memory within the same group. Remove the effect of all but the
820 	 * current group from the stats.
821 	 */
822 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
823 				   group, &group_stats);
824 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
825 		return false;
826 	kernel_early_pages -= group_stats.req_kernel_early_pages;
827 	movable_pages -= group_stats.movable_pages;
828 
829 	if (group && group->is_dynamic)
830 		kernel_early_pages += group->present_kernel_pages;
831 
832 	/*
833 	 * Test if we could online the given number of pages to ZONE_MOVABLE
834 	 * and still stay in the configured ratio.
835 	 */
836 	movable_pages += nr_pages;
837 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
838 }
839 
840 /*
841  * Returns a default kernel memory zone for the given pfn range.
842  * If no kernel zone covers this pfn range it will automatically go
843  * to the ZONE_NORMAL.
844  */
845 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
846 		unsigned long nr_pages)
847 {
848 	struct pglist_data *pgdat = NODE_DATA(nid);
849 	int zid;
850 
851 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
852 		struct zone *zone = &pgdat->node_zones[zid];
853 
854 		if (zone_intersects(zone, start_pfn, nr_pages))
855 			return zone;
856 	}
857 
858 	return &pgdat->node_zones[ZONE_NORMAL];
859 }
860 
861 /*
862  * Determine to which zone to online memory dynamically based on user
863  * configuration and system stats. We care about the following ratio:
864  *
865  *   MOVABLE : KERNEL
866  *
867  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
868  * one of the kernel zones. CMA pages inside one of the kernel zones really
869  * behaves like ZONE_MOVABLE, so we treat them accordingly.
870  *
871  * We don't allow for hotplugged memory in a KERNEL zone to increase the
872  * amount of MOVABLE memory we can have, so we end up with:
873  *
874  *   MOVABLE : KERNEL_EARLY
875  *
876  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
877  * boot. We base our calculation on KERNEL_EARLY internally, because:
878  *
879  * a) Hotplugged memory in one of the kernel zones can sometimes still get
880  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
881  *    There is no coordination across memory devices, therefore "automatic"
882  *    hotunplugging, as implemented in hypervisors, could result in zone
883  *    imbalances.
884  * b) Early/boot memory in one of the kernel zones can usually not get
885  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
886  *    with unmovable allocations). While there are corner cases where it might
887  *    still work, it is barely relevant in practice.
888  *
889  * Exceptions are dynamic memory groups, which allow for more MOVABLE
890  * memory within the same memory group -- because in that case, there is
891  * coordination within the single memory device managed by a single driver.
892  *
893  * We rely on "present pages" instead of "managed pages", as the latter is
894  * highly unreliable and dynamic in virtualized environments, and does not
895  * consider boot time allocations. For example, memory ballooning adjusts the
896  * managed pages when inflating/deflating the balloon, and balloon compaction
897  * can even migrate inflated pages between zones.
898  *
899  * Using "present pages" is better but some things to keep in mind are:
900  *
901  * a) Some memblock allocations, such as for the crashkernel area, are
902  *    effectively unused by the kernel, yet they account to "present pages".
903  *    Fortunately, these allocations are comparatively small in relevant setups
904  *    (e.g., fraction of system memory).
905  * b) Some hotplugged memory blocks in virtualized environments, esecially
906  *    hotplugged by virtio-mem, look like they are completely present, however,
907  *    only parts of the memory block are actually currently usable.
908  *    "present pages" is an upper limit that can get reached at runtime. As
909  *    we base our calculations on KERNEL_EARLY, this is not an issue.
910  */
911 static struct zone *auto_movable_zone_for_pfn(int nid,
912 					      struct memory_group *group,
913 					      unsigned long pfn,
914 					      unsigned long nr_pages)
915 {
916 	unsigned long online_pages = 0, max_pages, end_pfn;
917 	struct page *page;
918 
919 	if (!auto_movable_ratio)
920 		goto kernel_zone;
921 
922 	if (group && !group->is_dynamic) {
923 		max_pages = group->s.max_pages;
924 		online_pages = group->present_movable_pages;
925 
926 		/* If anything is !MOVABLE online the rest !MOVABLE. */
927 		if (group->present_kernel_pages)
928 			goto kernel_zone;
929 	} else if (!group || group->d.unit_pages == nr_pages) {
930 		max_pages = nr_pages;
931 	} else {
932 		max_pages = group->d.unit_pages;
933 		/*
934 		 * Take a look at all online sections in the current unit.
935 		 * We can safely assume that all pages within a section belong
936 		 * to the same zone, because dynamic memory groups only deal
937 		 * with hotplugged memory.
938 		 */
939 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
940 		end_pfn = pfn + group->d.unit_pages;
941 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
942 			page = pfn_to_online_page(pfn);
943 			if (!page)
944 				continue;
945 			/* If anything is !MOVABLE online the rest !MOVABLE. */
946 			if (!is_zone_movable_page(page))
947 				goto kernel_zone;
948 			online_pages += PAGES_PER_SECTION;
949 		}
950 	}
951 
952 	/*
953 	 * Online MOVABLE if we could *currently* online all remaining parts
954 	 * MOVABLE. We expect to (add+) online them immediately next, so if
955 	 * nobody interferes, all will be MOVABLE if possible.
956 	 */
957 	nr_pages = max_pages - online_pages;
958 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
959 		goto kernel_zone;
960 
961 #ifdef CONFIG_NUMA
962 	if (auto_movable_numa_aware &&
963 	    !auto_movable_can_online_movable(nid, group, nr_pages))
964 		goto kernel_zone;
965 #endif /* CONFIG_NUMA */
966 
967 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
968 kernel_zone:
969 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
970 }
971 
972 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
973 		unsigned long nr_pages)
974 {
975 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
976 			nr_pages);
977 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
978 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
979 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
980 
981 	/*
982 	 * We inherit the existing zone in a simple case where zones do not
983 	 * overlap in the given range
984 	 */
985 	if (in_kernel ^ in_movable)
986 		return (in_kernel) ? kernel_zone : movable_zone;
987 
988 	/*
989 	 * If the range doesn't belong to any zone or two zones overlap in the
990 	 * given range then we use movable zone only if movable_node is
991 	 * enabled because we always online to a kernel zone by default.
992 	 */
993 	return movable_node_enabled ? movable_zone : kernel_zone;
994 }
995 
996 struct zone *zone_for_pfn_range(int online_type, int nid,
997 		struct memory_group *group, unsigned long start_pfn,
998 		unsigned long nr_pages)
999 {
1000 	if (online_type == MMOP_ONLINE_KERNEL)
1001 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1002 
1003 	if (online_type == MMOP_ONLINE_MOVABLE)
1004 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1005 
1006 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1007 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1008 
1009 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1010 }
1011 
1012 /*
1013  * This function should only be called by memory_block_{online,offline},
1014  * and {online,offline}_pages.
1015  */
1016 void adjust_present_page_count(struct page *page, struct memory_group *group,
1017 			       long nr_pages)
1018 {
1019 	struct zone *zone = page_zone(page);
1020 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1021 
1022 	/*
1023 	 * We only support onlining/offlining/adding/removing of complete
1024 	 * memory blocks; therefore, either all is either early or hotplugged.
1025 	 */
1026 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1027 		zone->present_early_pages += nr_pages;
1028 	zone->present_pages += nr_pages;
1029 	zone->zone_pgdat->node_present_pages += nr_pages;
1030 
1031 	if (group && movable)
1032 		group->present_movable_pages += nr_pages;
1033 	else if (group && !movable)
1034 		group->present_kernel_pages += nr_pages;
1035 }
1036 
1037 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1038 			      struct zone *zone)
1039 {
1040 	unsigned long end_pfn = pfn + nr_pages;
1041 	int ret, i;
1042 
1043 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1044 	if (ret)
1045 		return ret;
1046 
1047 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1048 
1049 	for (i = 0; i < nr_pages; i++)
1050 		SetPageVmemmapSelfHosted(pfn_to_page(pfn + i));
1051 
1052 	/*
1053 	 * It might be that the vmemmap_pages fully span sections. If that is
1054 	 * the case, mark those sections online here as otherwise they will be
1055 	 * left offline.
1056 	 */
1057 	if (nr_pages >= PAGES_PER_SECTION)
1058 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1059 
1060 	return ret;
1061 }
1062 
1063 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1064 {
1065 	unsigned long end_pfn = pfn + nr_pages;
1066 
1067 	/*
1068 	 * It might be that the vmemmap_pages fully span sections. If that is
1069 	 * the case, mark those sections offline here as otherwise they will be
1070 	 * left online.
1071 	 */
1072 	if (nr_pages >= PAGES_PER_SECTION)
1073 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1074 
1075         /*
1076 	 * The pages associated with this vmemmap have been offlined, so
1077 	 * we can reset its state here.
1078 	 */
1079 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1080 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1081 }
1082 
1083 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1084 		       struct zone *zone, struct memory_group *group)
1085 {
1086 	unsigned long flags;
1087 	int need_zonelists_rebuild = 0;
1088 	const int nid = zone_to_nid(zone);
1089 	int ret;
1090 	struct memory_notify arg;
1091 
1092 	/*
1093 	 * {on,off}lining is constrained to full memory sections (or more
1094 	 * precisely to memory blocks from the user space POV).
1095 	 * memmap_on_memory is an exception because it reserves initial part
1096 	 * of the physical memory space for vmemmaps. That space is pageblock
1097 	 * aligned.
1098 	 */
1099 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1100 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1101 		return -EINVAL;
1102 
1103 	mem_hotplug_begin();
1104 
1105 	/* associate pfn range with the zone */
1106 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1107 
1108 	arg.start_pfn = pfn;
1109 	arg.nr_pages = nr_pages;
1110 	node_states_check_changes_online(nr_pages, zone, &arg);
1111 
1112 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1113 	ret = notifier_to_errno(ret);
1114 	if (ret)
1115 		goto failed_addition;
1116 
1117 	/*
1118 	 * Fixup the number of isolated pageblocks before marking the sections
1119 	 * onlining, such that undo_isolate_page_range() works correctly.
1120 	 */
1121 	spin_lock_irqsave(&zone->lock, flags);
1122 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1123 	spin_unlock_irqrestore(&zone->lock, flags);
1124 
1125 	/*
1126 	 * If this zone is not populated, then it is not in zonelist.
1127 	 * This means the page allocator ignores this zone.
1128 	 * So, zonelist must be updated after online.
1129 	 */
1130 	if (!populated_zone(zone)) {
1131 		need_zonelists_rebuild = 1;
1132 		setup_zone_pageset(zone);
1133 	}
1134 
1135 	online_pages_range(pfn, nr_pages);
1136 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1137 
1138 	node_states_set_node(nid, &arg);
1139 	if (need_zonelists_rebuild)
1140 		build_all_zonelists(NULL);
1141 
1142 	/* Basic onlining is complete, allow allocation of onlined pages. */
1143 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1144 
1145 	/*
1146 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1147 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1148 	 * zone to make sure the just onlined pages are properly distributed
1149 	 * across the whole freelist - to create an initial shuffle.
1150 	 */
1151 	shuffle_zone(zone);
1152 
1153 	/* reinitialise watermarks and update pcp limits */
1154 	init_per_zone_wmark_min();
1155 
1156 	kswapd_run(nid);
1157 	kcompactd_run(nid);
1158 
1159 	writeback_set_ratelimit();
1160 
1161 	memory_notify(MEM_ONLINE, &arg);
1162 	mem_hotplug_done();
1163 	return 0;
1164 
1165 failed_addition:
1166 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1167 		 (unsigned long long) pfn << PAGE_SHIFT,
1168 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1169 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1170 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1171 	mem_hotplug_done();
1172 	return ret;
1173 }
1174 
1175 static void reset_node_present_pages(pg_data_t *pgdat)
1176 {
1177 	struct zone *z;
1178 
1179 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1180 		z->present_pages = 0;
1181 
1182 	pgdat->node_present_pages = 0;
1183 }
1184 
1185 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1186 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1187 {
1188 	struct pglist_data *pgdat;
1189 
1190 	/*
1191 	 * NODE_DATA is preallocated (free_area_init) but its internal
1192 	 * state is not allocated completely. Add missing pieces.
1193 	 * Completely offline nodes stay around and they just need
1194 	 * reintialization.
1195 	 */
1196 	pgdat = NODE_DATA(nid);
1197 
1198 	/* init node's zones as empty zones, we don't have any present pages.*/
1199 	free_area_init_core_hotplug(pgdat);
1200 
1201 	/*
1202 	 * The node we allocated has no zone fallback lists. For avoiding
1203 	 * to access not-initialized zonelist, build here.
1204 	 */
1205 	build_all_zonelists(pgdat);
1206 
1207 	/*
1208 	 * When memory is hot-added, all the memory is in offline state. So
1209 	 * clear all zones' present_pages because they will be updated in
1210 	 * online_pages() and offline_pages().
1211 	 * TODO: should be in free_area_init_core_hotplug?
1212 	 */
1213 	reset_node_managed_pages(pgdat);
1214 	reset_node_present_pages(pgdat);
1215 
1216 	return pgdat;
1217 }
1218 
1219 /*
1220  * __try_online_node - online a node if offlined
1221  * @nid: the node ID
1222  * @set_node_online: Whether we want to online the node
1223  * called by cpu_up() to online a node without onlined memory.
1224  *
1225  * Returns:
1226  * 1 -> a new node has been allocated
1227  * 0 -> the node is already online
1228  * -ENOMEM -> the node could not be allocated
1229  */
1230 static int __try_online_node(int nid, bool set_node_online)
1231 {
1232 	pg_data_t *pgdat;
1233 	int ret = 1;
1234 
1235 	if (node_online(nid))
1236 		return 0;
1237 
1238 	pgdat = hotadd_init_pgdat(nid);
1239 	if (!pgdat) {
1240 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1241 		ret = -ENOMEM;
1242 		goto out;
1243 	}
1244 
1245 	if (set_node_online) {
1246 		node_set_online(nid);
1247 		ret = register_one_node(nid);
1248 		BUG_ON(ret);
1249 	}
1250 out:
1251 	return ret;
1252 }
1253 
1254 /*
1255  * Users of this function always want to online/register the node
1256  */
1257 int try_online_node(int nid)
1258 {
1259 	int ret;
1260 
1261 	mem_hotplug_begin();
1262 	ret =  __try_online_node(nid, true);
1263 	mem_hotplug_done();
1264 	return ret;
1265 }
1266 
1267 static int check_hotplug_memory_range(u64 start, u64 size)
1268 {
1269 	/* memory range must be block size aligned */
1270 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1271 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1272 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1273 		       memory_block_size_bytes(), start, size);
1274 		return -EINVAL;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int online_memory_block(struct memory_block *mem, void *arg)
1281 {
1282 	mem->online_type = mhp_default_online_type;
1283 	return device_online(&mem->dev);
1284 }
1285 
1286 bool mhp_supports_memmap_on_memory(unsigned long size)
1287 {
1288 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1289 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1290 	unsigned long remaining_size = size - vmemmap_size;
1291 
1292 	/*
1293 	 * Besides having arch support and the feature enabled at runtime, we
1294 	 * need a few more assumptions to hold true:
1295 	 *
1296 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1297 	 *    in memory block granularity. We don't want the vmemmap of online
1298 	 *    memory blocks to reside on offline memory blocks. In the future,
1299 	 *    we might want to support variable-sized memory blocks to make the
1300 	 *    feature more versatile.
1301 	 *
1302 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1303 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1304 	 *    other memory blocks)
1305 	 *
1306 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1307 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1308 	 *    code requires applicable ranges to be page-aligned, for example, to
1309 	 *    set the migratetypes properly.
1310 	 *
1311 	 * TODO: Although we have a check here to make sure that vmemmap pages
1312 	 *       fully populate a PMD, it is not the right place to check for
1313 	 *       this. A much better solution involves improving vmemmap code
1314 	 *       to fallback to base pages when trying to populate vmemmap using
1315 	 *       altmap as an alternative source of memory, and we do not exactly
1316 	 *       populate a single PMD.
1317 	 */
1318 	return mhp_memmap_on_memory() &&
1319 	       size == memory_block_size_bytes() &&
1320 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1321 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1322 }
1323 
1324 /*
1325  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1326  * and online/offline operations (triggered e.g. by sysfs).
1327  *
1328  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1329  */
1330 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1331 {
1332 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1333 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1334 	struct vmem_altmap mhp_altmap = {};
1335 	struct memory_group *group = NULL;
1336 	u64 start, size;
1337 	bool new_node = false;
1338 	int ret;
1339 
1340 	start = res->start;
1341 	size = resource_size(res);
1342 
1343 	ret = check_hotplug_memory_range(start, size);
1344 	if (ret)
1345 		return ret;
1346 
1347 	if (mhp_flags & MHP_NID_IS_MGID) {
1348 		group = memory_group_find_by_id(nid);
1349 		if (!group)
1350 			return -EINVAL;
1351 		nid = group->nid;
1352 	}
1353 
1354 	if (!node_possible(nid)) {
1355 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1356 		return -EINVAL;
1357 	}
1358 
1359 	mem_hotplug_begin();
1360 
1361 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1362 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1363 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1364 		ret = memblock_add_node(start, size, nid, memblock_flags);
1365 		if (ret)
1366 			goto error_mem_hotplug_end;
1367 	}
1368 
1369 	ret = __try_online_node(nid, false);
1370 	if (ret < 0)
1371 		goto error;
1372 	new_node = ret;
1373 
1374 	/*
1375 	 * Self hosted memmap array
1376 	 */
1377 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1378 		if (!mhp_supports_memmap_on_memory(size)) {
1379 			ret = -EINVAL;
1380 			goto error;
1381 		}
1382 		mhp_altmap.free = PHYS_PFN(size);
1383 		mhp_altmap.base_pfn = PHYS_PFN(start);
1384 		params.altmap = &mhp_altmap;
1385 	}
1386 
1387 	/* call arch's memory hotadd */
1388 	ret = arch_add_memory(nid, start, size, &params);
1389 	if (ret < 0)
1390 		goto error;
1391 
1392 	/* create memory block devices after memory was added */
1393 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1394 					  group);
1395 	if (ret) {
1396 		arch_remove_memory(start, size, NULL);
1397 		goto error;
1398 	}
1399 
1400 	if (new_node) {
1401 		/* If sysfs file of new node can't be created, cpu on the node
1402 		 * can't be hot-added. There is no rollback way now.
1403 		 * So, check by BUG_ON() to catch it reluctantly..
1404 		 * We online node here. We can't roll back from here.
1405 		 */
1406 		node_set_online(nid);
1407 		ret = __register_one_node(nid);
1408 		BUG_ON(ret);
1409 	}
1410 
1411 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1412 					  PFN_UP(start + size - 1),
1413 					  MEMINIT_HOTPLUG);
1414 
1415 	/* create new memmap entry */
1416 	if (!strcmp(res->name, "System RAM"))
1417 		firmware_map_add_hotplug(start, start + size, "System RAM");
1418 
1419 	/* device_online() will take the lock when calling online_pages() */
1420 	mem_hotplug_done();
1421 
1422 	/*
1423 	 * In case we're allowed to merge the resource, flag it and trigger
1424 	 * merging now that adding succeeded.
1425 	 */
1426 	if (mhp_flags & MHP_MERGE_RESOURCE)
1427 		merge_system_ram_resource(res);
1428 
1429 	/* online pages if requested */
1430 	if (mhp_default_online_type != MMOP_OFFLINE)
1431 		walk_memory_blocks(start, size, NULL, online_memory_block);
1432 
1433 	return ret;
1434 error:
1435 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1436 		memblock_remove(start, size);
1437 error_mem_hotplug_end:
1438 	mem_hotplug_done();
1439 	return ret;
1440 }
1441 
1442 /* requires device_hotplug_lock, see add_memory_resource() */
1443 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1444 {
1445 	struct resource *res;
1446 	int ret;
1447 
1448 	res = register_memory_resource(start, size, "System RAM");
1449 	if (IS_ERR(res))
1450 		return PTR_ERR(res);
1451 
1452 	ret = add_memory_resource(nid, res, mhp_flags);
1453 	if (ret < 0)
1454 		release_memory_resource(res);
1455 	return ret;
1456 }
1457 
1458 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1459 {
1460 	int rc;
1461 
1462 	lock_device_hotplug();
1463 	rc = __add_memory(nid, start, size, mhp_flags);
1464 	unlock_device_hotplug();
1465 
1466 	return rc;
1467 }
1468 EXPORT_SYMBOL_GPL(add_memory);
1469 
1470 /*
1471  * Add special, driver-managed memory to the system as system RAM. Such
1472  * memory is not exposed via the raw firmware-provided memmap as system
1473  * RAM, instead, it is detected and added by a driver - during cold boot,
1474  * after a reboot, and after kexec.
1475  *
1476  * Reasons why this memory should not be used for the initial memmap of a
1477  * kexec kernel or for placing kexec images:
1478  * - The booting kernel is in charge of determining how this memory will be
1479  *   used (e.g., use persistent memory as system RAM)
1480  * - Coordination with a hypervisor is required before this memory
1481  *   can be used (e.g., inaccessible parts).
1482  *
1483  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1484  * memory map") are created. Also, the created memory resource is flagged
1485  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1486  * this memory as well (esp., not place kexec images onto it).
1487  *
1488  * The resource_name (visible via /proc/iomem) has to have the format
1489  * "System RAM ($DRIVER)".
1490  */
1491 int add_memory_driver_managed(int nid, u64 start, u64 size,
1492 			      const char *resource_name, mhp_t mhp_flags)
1493 {
1494 	struct resource *res;
1495 	int rc;
1496 
1497 	if (!resource_name ||
1498 	    strstr(resource_name, "System RAM (") != resource_name ||
1499 	    resource_name[strlen(resource_name) - 1] != ')')
1500 		return -EINVAL;
1501 
1502 	lock_device_hotplug();
1503 
1504 	res = register_memory_resource(start, size, resource_name);
1505 	if (IS_ERR(res)) {
1506 		rc = PTR_ERR(res);
1507 		goto out_unlock;
1508 	}
1509 
1510 	rc = add_memory_resource(nid, res, mhp_flags);
1511 	if (rc < 0)
1512 		release_memory_resource(res);
1513 
1514 out_unlock:
1515 	unlock_device_hotplug();
1516 	return rc;
1517 }
1518 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1519 
1520 /*
1521  * Platforms should define arch_get_mappable_range() that provides
1522  * maximum possible addressable physical memory range for which the
1523  * linear mapping could be created. The platform returned address
1524  * range must adhere to these following semantics.
1525  *
1526  * - range.start <= range.end
1527  * - Range includes both end points [range.start..range.end]
1528  *
1529  * There is also a fallback definition provided here, allowing the
1530  * entire possible physical address range in case any platform does
1531  * not define arch_get_mappable_range().
1532  */
1533 struct range __weak arch_get_mappable_range(void)
1534 {
1535 	struct range mhp_range = {
1536 		.start = 0UL,
1537 		.end = -1ULL,
1538 	};
1539 	return mhp_range;
1540 }
1541 
1542 struct range mhp_get_pluggable_range(bool need_mapping)
1543 {
1544 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1545 	struct range mhp_range;
1546 
1547 	if (need_mapping) {
1548 		mhp_range = arch_get_mappable_range();
1549 		if (mhp_range.start > max_phys) {
1550 			mhp_range.start = 0;
1551 			mhp_range.end = 0;
1552 		}
1553 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1554 	} else {
1555 		mhp_range.start = 0;
1556 		mhp_range.end = max_phys;
1557 	}
1558 	return mhp_range;
1559 }
1560 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1561 
1562 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1563 {
1564 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1565 	u64 end = start + size;
1566 
1567 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1568 		return true;
1569 
1570 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1571 		start, end, mhp_range.start, mhp_range.end);
1572 	return false;
1573 }
1574 
1575 #ifdef CONFIG_MEMORY_HOTREMOVE
1576 /*
1577  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1578  * non-lru movable pages and hugepages). Will skip over most unmovable
1579  * pages (esp., pages that can be skipped when offlining), but bail out on
1580  * definitely unmovable pages.
1581  *
1582  * Returns:
1583  *	0 in case a movable page is found and movable_pfn was updated.
1584  *	-ENOENT in case no movable page was found.
1585  *	-EBUSY in case a definitely unmovable page was found.
1586  */
1587 static int scan_movable_pages(unsigned long start, unsigned long end,
1588 			      unsigned long *movable_pfn)
1589 {
1590 	unsigned long pfn;
1591 
1592 	for (pfn = start; pfn < end; pfn++) {
1593 		struct page *page, *head;
1594 		unsigned long skip;
1595 
1596 		if (!pfn_valid(pfn))
1597 			continue;
1598 		page = pfn_to_page(pfn);
1599 		if (PageLRU(page))
1600 			goto found;
1601 		if (__PageMovable(page))
1602 			goto found;
1603 
1604 		/*
1605 		 * PageOffline() pages that are not marked __PageMovable() and
1606 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1607 		 * definitely unmovable. If their reference count would be 0,
1608 		 * they could at least be skipped when offlining memory.
1609 		 */
1610 		if (PageOffline(page) && page_count(page))
1611 			return -EBUSY;
1612 
1613 		if (!PageHuge(page))
1614 			continue;
1615 		head = compound_head(page);
1616 		/*
1617 		 * This test is racy as we hold no reference or lock.  The
1618 		 * hugetlb page could have been free'ed and head is no longer
1619 		 * a hugetlb page before the following check.  In such unlikely
1620 		 * cases false positives and negatives are possible.  Calling
1621 		 * code must deal with these scenarios.
1622 		 */
1623 		if (HPageMigratable(head))
1624 			goto found;
1625 		skip = compound_nr(head) - (page - head);
1626 		pfn += skip - 1;
1627 	}
1628 	return -ENOENT;
1629 found:
1630 	*movable_pfn = pfn;
1631 	return 0;
1632 }
1633 
1634 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1635 {
1636 	unsigned long pfn;
1637 	struct page *page, *head;
1638 	LIST_HEAD(source);
1639 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1640 				      DEFAULT_RATELIMIT_BURST);
1641 
1642 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1643 		struct folio *folio;
1644 		bool isolated;
1645 
1646 		if (!pfn_valid(pfn))
1647 			continue;
1648 		page = pfn_to_page(pfn);
1649 		folio = page_folio(page);
1650 		head = &folio->page;
1651 
1652 		if (PageHuge(page)) {
1653 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1654 			isolate_hugetlb(folio, &source);
1655 			continue;
1656 		} else if (PageTransHuge(page))
1657 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1658 
1659 		/*
1660 		 * HWPoison pages have elevated reference counts so the migration would
1661 		 * fail on them. It also doesn't make any sense to migrate them in the
1662 		 * first place. Still try to unmap such a page in case it is still mapped
1663 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1664 		 * the unmap as the catch all safety net).
1665 		 */
1666 		if (PageHWPoison(page)) {
1667 			if (WARN_ON(folio_test_lru(folio)))
1668 				folio_isolate_lru(folio);
1669 			if (folio_mapped(folio))
1670 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1671 			continue;
1672 		}
1673 
1674 		if (!get_page_unless_zero(page))
1675 			continue;
1676 		/*
1677 		 * We can skip free pages. And we can deal with pages on
1678 		 * LRU and non-lru movable pages.
1679 		 */
1680 		if (PageLRU(page))
1681 			isolated = isolate_lru_page(page);
1682 		else
1683 			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1684 		if (isolated) {
1685 			list_add_tail(&page->lru, &source);
1686 			if (!__PageMovable(page))
1687 				inc_node_page_state(page, NR_ISOLATED_ANON +
1688 						    page_is_file_lru(page));
1689 
1690 		} else {
1691 			if (__ratelimit(&migrate_rs)) {
1692 				pr_warn("failed to isolate pfn %lx\n", pfn);
1693 				dump_page(page, "isolation failed");
1694 			}
1695 		}
1696 		put_page(page);
1697 	}
1698 	if (!list_empty(&source)) {
1699 		nodemask_t nmask = node_states[N_MEMORY];
1700 		struct migration_target_control mtc = {
1701 			.nmask = &nmask,
1702 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1703 		};
1704 		int ret;
1705 
1706 		/*
1707 		 * We have checked that migration range is on a single zone so
1708 		 * we can use the nid of the first page to all the others.
1709 		 */
1710 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1711 
1712 		/*
1713 		 * try to allocate from a different node but reuse this node
1714 		 * if there are no other online nodes to be used (e.g. we are
1715 		 * offlining a part of the only existing node)
1716 		 */
1717 		node_clear(mtc.nid, nmask);
1718 		if (nodes_empty(nmask))
1719 			node_set(mtc.nid, nmask);
1720 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1721 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1722 		if (ret) {
1723 			list_for_each_entry(page, &source, lru) {
1724 				if (__ratelimit(&migrate_rs)) {
1725 					pr_warn("migrating pfn %lx failed ret:%d\n",
1726 						page_to_pfn(page), ret);
1727 					dump_page(page, "migration failure");
1728 				}
1729 			}
1730 			putback_movable_pages(&source);
1731 		}
1732 	}
1733 }
1734 
1735 static int __init cmdline_parse_movable_node(char *p)
1736 {
1737 	movable_node_enabled = true;
1738 	return 0;
1739 }
1740 early_param("movable_node", cmdline_parse_movable_node);
1741 
1742 /* check which state of node_states will be changed when offline memory */
1743 static void node_states_check_changes_offline(unsigned long nr_pages,
1744 		struct zone *zone, struct memory_notify *arg)
1745 {
1746 	struct pglist_data *pgdat = zone->zone_pgdat;
1747 	unsigned long present_pages = 0;
1748 	enum zone_type zt;
1749 
1750 	arg->status_change_nid = NUMA_NO_NODE;
1751 	arg->status_change_nid_normal = NUMA_NO_NODE;
1752 
1753 	/*
1754 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1755 	 * If the memory to be offline is within the range
1756 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1757 	 * the zones in that range will become empty after the offlining,
1758 	 * thus we can determine that we need to clear the node from
1759 	 * node_states[N_NORMAL_MEMORY].
1760 	 */
1761 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1762 		present_pages += pgdat->node_zones[zt].present_pages;
1763 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1764 		arg->status_change_nid_normal = zone_to_nid(zone);
1765 
1766 	/*
1767 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1768 	 * does not apply as we don't support 32bit.
1769 	 * Here we count the possible pages from ZONE_MOVABLE.
1770 	 * If after having accounted all the pages, we see that the nr_pages
1771 	 * to be offlined is over or equal to the accounted pages,
1772 	 * we know that the node will become empty, and so, we can clear
1773 	 * it for N_MEMORY as well.
1774 	 */
1775 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1776 
1777 	if (nr_pages >= present_pages)
1778 		arg->status_change_nid = zone_to_nid(zone);
1779 }
1780 
1781 static void node_states_clear_node(int node, struct memory_notify *arg)
1782 {
1783 	if (arg->status_change_nid_normal >= 0)
1784 		node_clear_state(node, N_NORMAL_MEMORY);
1785 
1786 	if (arg->status_change_nid >= 0)
1787 		node_clear_state(node, N_MEMORY);
1788 }
1789 
1790 static int count_system_ram_pages_cb(unsigned long start_pfn,
1791 				     unsigned long nr_pages, void *data)
1792 {
1793 	unsigned long *nr_system_ram_pages = data;
1794 
1795 	*nr_system_ram_pages += nr_pages;
1796 	return 0;
1797 }
1798 
1799 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1800 			struct zone *zone, struct memory_group *group)
1801 {
1802 	const unsigned long end_pfn = start_pfn + nr_pages;
1803 	unsigned long pfn, system_ram_pages = 0;
1804 	const int node = zone_to_nid(zone);
1805 	unsigned long flags;
1806 	struct memory_notify arg;
1807 	char *reason;
1808 	int ret;
1809 
1810 	/*
1811 	 * {on,off}lining is constrained to full memory sections (or more
1812 	 * precisely to memory blocks from the user space POV).
1813 	 * memmap_on_memory is an exception because it reserves initial part
1814 	 * of the physical memory space for vmemmaps. That space is pageblock
1815 	 * aligned.
1816 	 */
1817 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1818 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1819 		return -EINVAL;
1820 
1821 	mem_hotplug_begin();
1822 
1823 	/*
1824 	 * Don't allow to offline memory blocks that contain holes.
1825 	 * Consequently, memory blocks with holes can never get onlined
1826 	 * via the hotplug path - online_pages() - as hotplugged memory has
1827 	 * no holes. This way, we e.g., don't have to worry about marking
1828 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1829 	 * avoid using walk_system_ram_range() later.
1830 	 */
1831 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1832 			      count_system_ram_pages_cb);
1833 	if (system_ram_pages != nr_pages) {
1834 		ret = -EINVAL;
1835 		reason = "memory holes";
1836 		goto failed_removal;
1837 	}
1838 
1839 	/*
1840 	 * We only support offlining of memory blocks managed by a single zone,
1841 	 * checked by calling code. This is just a sanity check that we might
1842 	 * want to remove in the future.
1843 	 */
1844 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1845 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1846 		ret = -EINVAL;
1847 		reason = "multizone range";
1848 		goto failed_removal;
1849 	}
1850 
1851 	/*
1852 	 * Disable pcplists so that page isolation cannot race with freeing
1853 	 * in a way that pages from isolated pageblock are left on pcplists.
1854 	 */
1855 	zone_pcp_disable(zone);
1856 	lru_cache_disable();
1857 
1858 	/* set above range as isolated */
1859 	ret = start_isolate_page_range(start_pfn, end_pfn,
1860 				       MIGRATE_MOVABLE,
1861 				       MEMORY_OFFLINE | REPORT_FAILURE,
1862 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1863 	if (ret) {
1864 		reason = "failure to isolate range";
1865 		goto failed_removal_pcplists_disabled;
1866 	}
1867 
1868 	arg.start_pfn = start_pfn;
1869 	arg.nr_pages = nr_pages;
1870 	node_states_check_changes_offline(nr_pages, zone, &arg);
1871 
1872 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1873 	ret = notifier_to_errno(ret);
1874 	if (ret) {
1875 		reason = "notifier failure";
1876 		goto failed_removal_isolated;
1877 	}
1878 
1879 	do {
1880 		pfn = start_pfn;
1881 		do {
1882 			if (signal_pending(current)) {
1883 				ret = -EINTR;
1884 				reason = "signal backoff";
1885 				goto failed_removal_isolated;
1886 			}
1887 
1888 			cond_resched();
1889 
1890 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1891 			if (!ret) {
1892 				/*
1893 				 * TODO: fatal migration failures should bail
1894 				 * out
1895 				 */
1896 				do_migrate_range(pfn, end_pfn);
1897 			}
1898 		} while (!ret);
1899 
1900 		if (ret != -ENOENT) {
1901 			reason = "unmovable page";
1902 			goto failed_removal_isolated;
1903 		}
1904 
1905 		/*
1906 		 * Dissolve free hugepages in the memory block before doing
1907 		 * offlining actually in order to make hugetlbfs's object
1908 		 * counting consistent.
1909 		 */
1910 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1911 		if (ret) {
1912 			reason = "failure to dissolve huge pages";
1913 			goto failed_removal_isolated;
1914 		}
1915 
1916 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1917 
1918 	} while (ret);
1919 
1920 	/* Mark all sections offline and remove free pages from the buddy. */
1921 	__offline_isolated_pages(start_pfn, end_pfn);
1922 	pr_debug("Offlined Pages %ld\n", nr_pages);
1923 
1924 	/*
1925 	 * The memory sections are marked offline, and the pageblock flags
1926 	 * effectively stale; nobody should be touching them. Fixup the number
1927 	 * of isolated pageblocks, memory onlining will properly revert this.
1928 	 */
1929 	spin_lock_irqsave(&zone->lock, flags);
1930 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1931 	spin_unlock_irqrestore(&zone->lock, flags);
1932 
1933 	lru_cache_enable();
1934 	zone_pcp_enable(zone);
1935 
1936 	/* removal success */
1937 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1938 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1939 
1940 	/* reinitialise watermarks and update pcp limits */
1941 	init_per_zone_wmark_min();
1942 
1943 	if (!populated_zone(zone)) {
1944 		zone_pcp_reset(zone);
1945 		build_all_zonelists(NULL);
1946 	}
1947 
1948 	node_states_clear_node(node, &arg);
1949 	if (arg.status_change_nid >= 0) {
1950 		kcompactd_stop(node);
1951 		kswapd_stop(node);
1952 	}
1953 
1954 	writeback_set_ratelimit();
1955 
1956 	memory_notify(MEM_OFFLINE, &arg);
1957 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1958 	mem_hotplug_done();
1959 	return 0;
1960 
1961 failed_removal_isolated:
1962 	/* pushback to free area */
1963 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1964 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1965 failed_removal_pcplists_disabled:
1966 	lru_cache_enable();
1967 	zone_pcp_enable(zone);
1968 failed_removal:
1969 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1970 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1971 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1972 		 reason);
1973 	mem_hotplug_done();
1974 	return ret;
1975 }
1976 
1977 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1978 {
1979 	int *nid = arg;
1980 
1981 	*nid = mem->nid;
1982 	if (unlikely(mem->state != MEM_OFFLINE)) {
1983 		phys_addr_t beginpa, endpa;
1984 
1985 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1986 		endpa = beginpa + memory_block_size_bytes() - 1;
1987 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1988 			&beginpa, &endpa);
1989 
1990 		return -EBUSY;
1991 	}
1992 	return 0;
1993 }
1994 
1995 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1996 {
1997 	/*
1998 	 * If not set, continue with the next block.
1999 	 */
2000 	return mem->nr_vmemmap_pages;
2001 }
2002 
2003 static int check_cpu_on_node(int nid)
2004 {
2005 	int cpu;
2006 
2007 	for_each_present_cpu(cpu) {
2008 		if (cpu_to_node(cpu) == nid)
2009 			/*
2010 			 * the cpu on this node isn't removed, and we can't
2011 			 * offline this node.
2012 			 */
2013 			return -EBUSY;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2020 {
2021 	int nid = *(int *)arg;
2022 
2023 	/*
2024 	 * If a memory block belongs to multiple nodes, the stored nid is not
2025 	 * reliable. However, such blocks are always online (e.g., cannot get
2026 	 * offlined) and, therefore, are still spanned by the node.
2027 	 */
2028 	return mem->nid == nid ? -EEXIST : 0;
2029 }
2030 
2031 /**
2032  * try_offline_node
2033  * @nid: the node ID
2034  *
2035  * Offline a node if all memory sections and cpus of the node are removed.
2036  *
2037  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2038  * and online/offline operations before this call.
2039  */
2040 void try_offline_node(int nid)
2041 {
2042 	int rc;
2043 
2044 	/*
2045 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2046 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2047 	 * e.g., after the memory block was onlined.
2048 	 */
2049 	if (node_spanned_pages(nid))
2050 		return;
2051 
2052 	/*
2053 	 * Especially offline memory blocks might not be spanned by the
2054 	 * node. They will get spanned by the node once they get onlined.
2055 	 * However, they link to the node in sysfs and can get onlined later.
2056 	 */
2057 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2058 	if (rc)
2059 		return;
2060 
2061 	if (check_cpu_on_node(nid))
2062 		return;
2063 
2064 	/*
2065 	 * all memory/cpu of this node are removed, we can offline this
2066 	 * node now.
2067 	 */
2068 	node_set_offline(nid);
2069 	unregister_one_node(nid);
2070 }
2071 EXPORT_SYMBOL(try_offline_node);
2072 
2073 static int __ref try_remove_memory(u64 start, u64 size)
2074 {
2075 	struct vmem_altmap mhp_altmap = {};
2076 	struct vmem_altmap *altmap = NULL;
2077 	unsigned long nr_vmemmap_pages;
2078 	int rc = 0, nid = NUMA_NO_NODE;
2079 
2080 	BUG_ON(check_hotplug_memory_range(start, size));
2081 
2082 	/*
2083 	 * All memory blocks must be offlined before removing memory.  Check
2084 	 * whether all memory blocks in question are offline and return error
2085 	 * if this is not the case.
2086 	 *
2087 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2088 	 * we'd only try to offline the last determined one -- which is good
2089 	 * enough for the cases we care about.
2090 	 */
2091 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2092 	if (rc)
2093 		return rc;
2094 
2095 	/*
2096 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2097 	 * the same granularity it was added - a single memory block.
2098 	 */
2099 	if (mhp_memmap_on_memory()) {
2100 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2101 						      get_nr_vmemmap_pages_cb);
2102 		if (nr_vmemmap_pages) {
2103 			if (size != memory_block_size_bytes()) {
2104 				pr_warn("Refuse to remove %#llx - %#llx,"
2105 					"wrong granularity\n",
2106 					start, start + size);
2107 				return -EINVAL;
2108 			}
2109 
2110 			/*
2111 			 * Let remove_pmd_table->free_hugepage_table do the
2112 			 * right thing if we used vmem_altmap when hot-adding
2113 			 * the range.
2114 			 */
2115 			mhp_altmap.alloc = nr_vmemmap_pages;
2116 			altmap = &mhp_altmap;
2117 		}
2118 	}
2119 
2120 	/* remove memmap entry */
2121 	firmware_map_remove(start, start + size, "System RAM");
2122 
2123 	/*
2124 	 * Memory block device removal under the device_hotplug_lock is
2125 	 * a barrier against racing online attempts.
2126 	 */
2127 	remove_memory_block_devices(start, size);
2128 
2129 	mem_hotplug_begin();
2130 
2131 	arch_remove_memory(start, size, altmap);
2132 
2133 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2134 		memblock_phys_free(start, size);
2135 		memblock_remove(start, size);
2136 	}
2137 
2138 	release_mem_region_adjustable(start, size);
2139 
2140 	if (nid != NUMA_NO_NODE)
2141 		try_offline_node(nid);
2142 
2143 	mem_hotplug_done();
2144 	return 0;
2145 }
2146 
2147 /**
2148  * __remove_memory - Remove memory if every memory block is offline
2149  * @start: physical address of the region to remove
2150  * @size: size of the region to remove
2151  *
2152  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2153  * and online/offline operations before this call, as required by
2154  * try_offline_node().
2155  */
2156 void __remove_memory(u64 start, u64 size)
2157 {
2158 
2159 	/*
2160 	 * trigger BUG() if some memory is not offlined prior to calling this
2161 	 * function
2162 	 */
2163 	if (try_remove_memory(start, size))
2164 		BUG();
2165 }
2166 
2167 /*
2168  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2169  * some memory is not offline
2170  */
2171 int remove_memory(u64 start, u64 size)
2172 {
2173 	int rc;
2174 
2175 	lock_device_hotplug();
2176 	rc = try_remove_memory(start, size);
2177 	unlock_device_hotplug();
2178 
2179 	return rc;
2180 }
2181 EXPORT_SYMBOL_GPL(remove_memory);
2182 
2183 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2184 {
2185 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2186 	uint8_t **online_types = arg;
2187 	struct page *page;
2188 	int rc;
2189 
2190 	/*
2191 	 * Sense the online_type via the zone of the memory block. Offlining
2192 	 * with multiple zones within one memory block will be rejected
2193 	 * by offlining code ... so we don't care about that.
2194 	 */
2195 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2196 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2197 		online_type = MMOP_ONLINE_MOVABLE;
2198 
2199 	rc = device_offline(&mem->dev);
2200 	/*
2201 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2202 	 * so try_reonline_memory_block() can do the right thing.
2203 	 */
2204 	if (!rc)
2205 		**online_types = online_type;
2206 
2207 	(*online_types)++;
2208 	/* Ignore if already offline. */
2209 	return rc < 0 ? rc : 0;
2210 }
2211 
2212 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2213 {
2214 	uint8_t **online_types = arg;
2215 	int rc;
2216 
2217 	if (**online_types != MMOP_OFFLINE) {
2218 		mem->online_type = **online_types;
2219 		rc = device_online(&mem->dev);
2220 		if (rc < 0)
2221 			pr_warn("%s: Failed to re-online memory: %d",
2222 				__func__, rc);
2223 	}
2224 
2225 	/* Continue processing all remaining memory blocks. */
2226 	(*online_types)++;
2227 	return 0;
2228 }
2229 
2230 /*
2231  * Try to offline and remove memory. Might take a long time to finish in case
2232  * memory is still in use. Primarily useful for memory devices that logically
2233  * unplugged all memory (so it's no longer in use) and want to offline + remove
2234  * that memory.
2235  */
2236 int offline_and_remove_memory(u64 start, u64 size)
2237 {
2238 	const unsigned long mb_count = size / memory_block_size_bytes();
2239 	uint8_t *online_types, *tmp;
2240 	int rc;
2241 
2242 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2243 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2244 		return -EINVAL;
2245 
2246 	/*
2247 	 * We'll remember the old online type of each memory block, so we can
2248 	 * try to revert whatever we did when offlining one memory block fails
2249 	 * after offlining some others succeeded.
2250 	 */
2251 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2252 				     GFP_KERNEL);
2253 	if (!online_types)
2254 		return -ENOMEM;
2255 	/*
2256 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2257 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2258 	 * try_reonline_memory_block().
2259 	 */
2260 	memset(online_types, MMOP_OFFLINE, mb_count);
2261 
2262 	lock_device_hotplug();
2263 
2264 	tmp = online_types;
2265 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2266 
2267 	/*
2268 	 * In case we succeeded to offline all memory, remove it.
2269 	 * This cannot fail as it cannot get onlined in the meantime.
2270 	 */
2271 	if (!rc) {
2272 		rc = try_remove_memory(start, size);
2273 		if (rc)
2274 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2275 	}
2276 
2277 	/*
2278 	 * Rollback what we did. While memory onlining might theoretically fail
2279 	 * (nacked by a notifier), it barely ever happens.
2280 	 */
2281 	if (rc) {
2282 		tmp = online_types;
2283 		walk_memory_blocks(start, size, &tmp,
2284 				   try_reonline_memory_block);
2285 	}
2286 	unlock_device_hotplug();
2287 
2288 	kfree(online_types);
2289 	return rc;
2290 }
2291 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2292 #endif /* CONFIG_MEMORY_HOTREMOVE */
2293