xref: /openbmc/linux/mm/memory_hotplug.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74 
75 static int __init setup_memhp_default_state(char *str)
76 {
77 	const int online_type = memhp_online_type_from_str(str);
78 
79 	if (online_type >= 0)
80 		memhp_default_online_type = online_type;
81 
82 	return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85 
86 void mem_hotplug_begin(void)
87 {
88 	cpus_read_lock();
89 	percpu_down_write(&mem_hotplug_lock);
90 }
91 
92 void mem_hotplug_done(void)
93 {
94 	percpu_up_write(&mem_hotplug_lock);
95 	cpus_read_unlock();
96 }
97 
98 u64 max_mem_size = U64_MAX;
99 
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size)
102 {
103 	struct resource *res;
104 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
105 	char *resource_name = "System RAM";
106 
107 	/*
108 	 * Make sure value parsed from 'mem=' only restricts memory adding
109 	 * while booting, so that memory hotplug won't be impacted. Please
110 	 * refer to document of 'mem=' in kernel-parameters.txt for more
111 	 * details.
112 	 */
113 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
114 		return ERR_PTR(-E2BIG);
115 
116 	/*
117 	 * Request ownership of the new memory range.  This might be
118 	 * a child of an existing resource that was present but
119 	 * not marked as busy.
120 	 */
121 	res = __request_region(&iomem_resource, start, size,
122 			       resource_name, flags);
123 
124 	if (!res) {
125 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
126 				start, start + size);
127 		return ERR_PTR(-EEXIST);
128 	}
129 	return res;
130 }
131 
132 static void release_memory_resource(struct resource *res)
133 {
134 	if (!res)
135 		return;
136 	release_resource(res);
137 	kfree(res);
138 }
139 
140 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
141 void get_page_bootmem(unsigned long info,  struct page *page,
142 		      unsigned long type)
143 {
144 	page->freelist = (void *)type;
145 	SetPagePrivate(page);
146 	set_page_private(page, info);
147 	page_ref_inc(page);
148 }
149 
150 void put_page_bootmem(struct page *page)
151 {
152 	unsigned long type;
153 
154 	type = (unsigned long) page->freelist;
155 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
156 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
157 
158 	if (page_ref_dec_return(page) == 1) {
159 		page->freelist = NULL;
160 		ClearPagePrivate(page);
161 		set_page_private(page, 0);
162 		INIT_LIST_HEAD(&page->lru);
163 		free_reserved_page(page);
164 	}
165 }
166 
167 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
168 #ifndef CONFIG_SPARSEMEM_VMEMMAP
169 static void register_page_bootmem_info_section(unsigned long start_pfn)
170 {
171 	unsigned long mapsize, section_nr, i;
172 	struct mem_section *ms;
173 	struct page *page, *memmap;
174 	struct mem_section_usage *usage;
175 
176 	section_nr = pfn_to_section_nr(start_pfn);
177 	ms = __nr_to_section(section_nr);
178 
179 	/* Get section's memmap address */
180 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181 
182 	/*
183 	 * Get page for the memmap's phys address
184 	 * XXX: need more consideration for sparse_vmemmap...
185 	 */
186 	page = virt_to_page(memmap);
187 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
188 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
189 
190 	/* remember memmap's page */
191 	for (i = 0; i < mapsize; i++, page++)
192 		get_page_bootmem(section_nr, page, SECTION_INFO);
193 
194 	usage = ms->usage;
195 	page = virt_to_page(usage);
196 
197 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
198 
199 	for (i = 0; i < mapsize; i++, page++)
200 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
201 
202 }
203 #else /* CONFIG_SPARSEMEM_VMEMMAP */
204 static void register_page_bootmem_info_section(unsigned long start_pfn)
205 {
206 	unsigned long mapsize, section_nr, i;
207 	struct mem_section *ms;
208 	struct page *page, *memmap;
209 	struct mem_section_usage *usage;
210 
211 	section_nr = pfn_to_section_nr(start_pfn);
212 	ms = __nr_to_section(section_nr);
213 
214 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
215 
216 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
217 
218 	usage = ms->usage;
219 	page = virt_to_page(usage);
220 
221 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
222 
223 	for (i = 0; i < mapsize; i++, page++)
224 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
225 }
226 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
227 
228 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
229 {
230 	unsigned long i, pfn, end_pfn, nr_pages;
231 	int node = pgdat->node_id;
232 	struct page *page;
233 
234 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
235 	page = virt_to_page(pgdat);
236 
237 	for (i = 0; i < nr_pages; i++, page++)
238 		get_page_bootmem(node, page, NODE_INFO);
239 
240 	pfn = pgdat->node_start_pfn;
241 	end_pfn = pgdat_end_pfn(pgdat);
242 
243 	/* register section info */
244 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
245 		/*
246 		 * Some platforms can assign the same pfn to multiple nodes - on
247 		 * node0 as well as nodeN.  To avoid registering a pfn against
248 		 * multiple nodes we check that this pfn does not already
249 		 * reside in some other nodes.
250 		 */
251 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
252 			register_page_bootmem_info_section(pfn);
253 	}
254 }
255 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
256 
257 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
258 		const char *reason)
259 {
260 	/*
261 	 * Disallow all operations smaller than a sub-section and only
262 	 * allow operations smaller than a section for
263 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
264 	 * enforces a larger memory_block_size_bytes() granularity for
265 	 * memory that will be marked online, so this check should only
266 	 * fire for direct arch_{add,remove}_memory() users outside of
267 	 * add_memory_resource().
268 	 */
269 	unsigned long min_align;
270 
271 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
272 		min_align = PAGES_PER_SUBSECTION;
273 	else
274 		min_align = PAGES_PER_SECTION;
275 	if (!IS_ALIGNED(pfn, min_align)
276 			|| !IS_ALIGNED(nr_pages, min_align)) {
277 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
278 				reason, pfn, pfn + nr_pages - 1);
279 		return -EINVAL;
280 	}
281 	return 0;
282 }
283 
284 static int check_hotplug_memory_addressable(unsigned long pfn,
285 					    unsigned long nr_pages)
286 {
287 	const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
288 
289 	if (max_addr >> MAX_PHYSMEM_BITS) {
290 		const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
291 		WARN(1,
292 		     "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
293 		     (u64)PFN_PHYS(pfn), max_addr, max_allowed);
294 		return -E2BIG;
295 	}
296 
297 	return 0;
298 }
299 
300 /*
301  * Reasonably generic function for adding memory.  It is
302  * expected that archs that support memory hotplug will
303  * call this function after deciding the zone to which to
304  * add the new pages.
305  */
306 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
307 		struct mhp_params *params)
308 {
309 	const unsigned long end_pfn = pfn + nr_pages;
310 	unsigned long cur_nr_pages;
311 	int err;
312 	struct vmem_altmap *altmap = params->altmap;
313 
314 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
315 		return -EINVAL;
316 
317 	err = check_hotplug_memory_addressable(pfn, nr_pages);
318 	if (err)
319 		return err;
320 
321 	if (altmap) {
322 		/*
323 		 * Validate altmap is within bounds of the total request
324 		 */
325 		if (altmap->base_pfn != pfn
326 				|| vmem_altmap_offset(altmap) > nr_pages) {
327 			pr_warn_once("memory add fail, invalid altmap\n");
328 			return -EINVAL;
329 		}
330 		altmap->alloc = 0;
331 	}
332 
333 	err = check_pfn_span(pfn, nr_pages, "add");
334 	if (err)
335 		return err;
336 
337 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
338 		/* Select all remaining pages up to the next section boundary */
339 		cur_nr_pages = min(end_pfn - pfn,
340 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
341 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
342 		if (err)
343 			break;
344 		cond_resched();
345 	}
346 	vmemmap_populate_print_last();
347 	return err;
348 }
349 
350 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
351 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
352 				     unsigned long start_pfn,
353 				     unsigned long end_pfn)
354 {
355 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
356 		if (unlikely(!pfn_to_online_page(start_pfn)))
357 			continue;
358 
359 		if (unlikely(pfn_to_nid(start_pfn) != nid))
360 			continue;
361 
362 		if (zone != page_zone(pfn_to_page(start_pfn)))
363 			continue;
364 
365 		return start_pfn;
366 	}
367 
368 	return 0;
369 }
370 
371 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
372 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
373 				    unsigned long start_pfn,
374 				    unsigned long end_pfn)
375 {
376 	unsigned long pfn;
377 
378 	/* pfn is the end pfn of a memory section. */
379 	pfn = end_pfn - 1;
380 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
381 		if (unlikely(!pfn_to_online_page(pfn)))
382 			continue;
383 
384 		if (unlikely(pfn_to_nid(pfn) != nid))
385 			continue;
386 
387 		if (zone != page_zone(pfn_to_page(pfn)))
388 			continue;
389 
390 		return pfn;
391 	}
392 
393 	return 0;
394 }
395 
396 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
397 			     unsigned long end_pfn)
398 {
399 	unsigned long pfn;
400 	int nid = zone_to_nid(zone);
401 
402 	zone_span_writelock(zone);
403 	if (zone->zone_start_pfn == start_pfn) {
404 		/*
405 		 * If the section is smallest section in the zone, it need
406 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
407 		 * In this case, we find second smallest valid mem_section
408 		 * for shrinking zone.
409 		 */
410 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
411 						zone_end_pfn(zone));
412 		if (pfn) {
413 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
414 			zone->zone_start_pfn = pfn;
415 		} else {
416 			zone->zone_start_pfn = 0;
417 			zone->spanned_pages = 0;
418 		}
419 	} else if (zone_end_pfn(zone) == end_pfn) {
420 		/*
421 		 * If the section is biggest section in the zone, it need
422 		 * shrink zone->spanned_pages.
423 		 * In this case, we find second biggest valid mem_section for
424 		 * shrinking zone.
425 		 */
426 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
427 					       start_pfn);
428 		if (pfn)
429 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
430 		else {
431 			zone->zone_start_pfn = 0;
432 			zone->spanned_pages = 0;
433 		}
434 	}
435 	zone_span_writeunlock(zone);
436 }
437 
438 static void update_pgdat_span(struct pglist_data *pgdat)
439 {
440 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
441 	struct zone *zone;
442 
443 	for (zone = pgdat->node_zones;
444 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
445 		unsigned long zone_end_pfn = zone->zone_start_pfn +
446 					     zone->spanned_pages;
447 
448 		/* No need to lock the zones, they can't change. */
449 		if (!zone->spanned_pages)
450 			continue;
451 		if (!node_end_pfn) {
452 			node_start_pfn = zone->zone_start_pfn;
453 			node_end_pfn = zone_end_pfn;
454 			continue;
455 		}
456 
457 		if (zone_end_pfn > node_end_pfn)
458 			node_end_pfn = zone_end_pfn;
459 		if (zone->zone_start_pfn < node_start_pfn)
460 			node_start_pfn = zone->zone_start_pfn;
461 	}
462 
463 	pgdat->node_start_pfn = node_start_pfn;
464 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
465 }
466 
467 void __ref remove_pfn_range_from_zone(struct zone *zone,
468 				      unsigned long start_pfn,
469 				      unsigned long nr_pages)
470 {
471 	struct pglist_data *pgdat = zone->zone_pgdat;
472 	unsigned long flags;
473 
474 	/* Poison struct pages because they are now uninitialized again. */
475 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
476 
477 #ifdef CONFIG_ZONE_DEVICE
478 	/*
479 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
480 	 * we will not try to shrink the zones - which is okay as
481 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
482 	 */
483 	if (zone_idx(zone) == ZONE_DEVICE)
484 		return;
485 #endif
486 
487 	clear_zone_contiguous(zone);
488 
489 	pgdat_resize_lock(zone->zone_pgdat, &flags);
490 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
491 	update_pgdat_span(pgdat);
492 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
493 
494 	set_zone_contiguous(zone);
495 }
496 
497 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
498 			     unsigned long map_offset,
499 			     struct vmem_altmap *altmap)
500 {
501 	struct mem_section *ms = __pfn_to_section(pfn);
502 
503 	if (WARN_ON_ONCE(!valid_section(ms)))
504 		return;
505 
506 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
507 }
508 
509 /**
510  * __remove_pages() - remove sections of pages
511  * @pfn: starting pageframe (must be aligned to start of a section)
512  * @nr_pages: number of pages to remove (must be multiple of section size)
513  * @altmap: alternative device page map or %NULL if default memmap is used
514  *
515  * Generic helper function to remove section mappings and sysfs entries
516  * for the section of the memory we are removing. Caller needs to make
517  * sure that pages are marked reserved and zones are adjust properly by
518  * calling offline_pages().
519  */
520 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
521 		    struct vmem_altmap *altmap)
522 {
523 	const unsigned long end_pfn = pfn + nr_pages;
524 	unsigned long cur_nr_pages;
525 	unsigned long map_offset = 0;
526 
527 	map_offset = vmem_altmap_offset(altmap);
528 
529 	if (check_pfn_span(pfn, nr_pages, "remove"))
530 		return;
531 
532 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
533 		cond_resched();
534 		/* Select all remaining pages up to the next section boundary */
535 		cur_nr_pages = min(end_pfn - pfn,
536 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
537 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
538 		map_offset = 0;
539 	}
540 }
541 
542 int set_online_page_callback(online_page_callback_t callback)
543 {
544 	int rc = -EINVAL;
545 
546 	get_online_mems();
547 	mutex_lock(&online_page_callback_lock);
548 
549 	if (online_page_callback == generic_online_page) {
550 		online_page_callback = callback;
551 		rc = 0;
552 	}
553 
554 	mutex_unlock(&online_page_callback_lock);
555 	put_online_mems();
556 
557 	return rc;
558 }
559 EXPORT_SYMBOL_GPL(set_online_page_callback);
560 
561 int restore_online_page_callback(online_page_callback_t callback)
562 {
563 	int rc = -EINVAL;
564 
565 	get_online_mems();
566 	mutex_lock(&online_page_callback_lock);
567 
568 	if (online_page_callback == callback) {
569 		online_page_callback = generic_online_page;
570 		rc = 0;
571 	}
572 
573 	mutex_unlock(&online_page_callback_lock);
574 	put_online_mems();
575 
576 	return rc;
577 }
578 EXPORT_SYMBOL_GPL(restore_online_page_callback);
579 
580 void generic_online_page(struct page *page, unsigned int order)
581 {
582 	/*
583 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
584 	 * so we should map it first. This is better than introducing a special
585 	 * case in page freeing fast path.
586 	 */
587 	if (debug_pagealloc_enabled_static())
588 		kernel_map_pages(page, 1 << order, 1);
589 	__free_pages_core(page, order);
590 	totalram_pages_add(1UL << order);
591 #ifdef CONFIG_HIGHMEM
592 	if (PageHighMem(page))
593 		totalhigh_pages_add(1UL << order);
594 #endif
595 }
596 EXPORT_SYMBOL_GPL(generic_online_page);
597 
598 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
599 			void *arg)
600 {
601 	const unsigned long end_pfn = start_pfn + nr_pages;
602 	unsigned long pfn;
603 	int order;
604 
605 	/*
606 	 * Online the pages. The callback might decide to keep some pages
607 	 * PG_reserved (to add them to the buddy later), but we still account
608 	 * them as being online/belonging to this zone ("present").
609 	 */
610 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
611 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
612 		/* __free_pages_core() wants pfns to be aligned to the order */
613 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
614 			order = 0;
615 		(*online_page_callback)(pfn_to_page(pfn), order);
616 	}
617 
618 	/* mark all involved sections as online */
619 	online_mem_sections(start_pfn, end_pfn);
620 
621 	*(unsigned long *)arg += nr_pages;
622 	return 0;
623 }
624 
625 /* check which state of node_states will be changed when online memory */
626 static void node_states_check_changes_online(unsigned long nr_pages,
627 	struct zone *zone, struct memory_notify *arg)
628 {
629 	int nid = zone_to_nid(zone);
630 
631 	arg->status_change_nid = NUMA_NO_NODE;
632 	arg->status_change_nid_normal = NUMA_NO_NODE;
633 	arg->status_change_nid_high = NUMA_NO_NODE;
634 
635 	if (!node_state(nid, N_MEMORY))
636 		arg->status_change_nid = nid;
637 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
638 		arg->status_change_nid_normal = nid;
639 #ifdef CONFIG_HIGHMEM
640 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
641 		arg->status_change_nid_high = nid;
642 #endif
643 }
644 
645 static void node_states_set_node(int node, struct memory_notify *arg)
646 {
647 	if (arg->status_change_nid_normal >= 0)
648 		node_set_state(node, N_NORMAL_MEMORY);
649 
650 	if (arg->status_change_nid_high >= 0)
651 		node_set_state(node, N_HIGH_MEMORY);
652 
653 	if (arg->status_change_nid >= 0)
654 		node_set_state(node, N_MEMORY);
655 }
656 
657 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
658 		unsigned long nr_pages)
659 {
660 	unsigned long old_end_pfn = zone_end_pfn(zone);
661 
662 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
663 		zone->zone_start_pfn = start_pfn;
664 
665 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
666 }
667 
668 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
669                                      unsigned long nr_pages)
670 {
671 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
672 
673 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
674 		pgdat->node_start_pfn = start_pfn;
675 
676 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
677 
678 }
679 /*
680  * Associate the pfn range with the given zone, initializing the memmaps
681  * and resizing the pgdat/zone data to span the added pages. After this
682  * call, all affected pages are PG_reserved.
683  */
684 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
685 		unsigned long nr_pages, struct vmem_altmap *altmap)
686 {
687 	struct pglist_data *pgdat = zone->zone_pgdat;
688 	int nid = pgdat->node_id;
689 	unsigned long flags;
690 
691 	clear_zone_contiguous(zone);
692 
693 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
694 	pgdat_resize_lock(pgdat, &flags);
695 	zone_span_writelock(zone);
696 	if (zone_is_empty(zone))
697 		init_currently_empty_zone(zone, start_pfn, nr_pages);
698 	resize_zone_range(zone, start_pfn, nr_pages);
699 	zone_span_writeunlock(zone);
700 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
701 	pgdat_resize_unlock(pgdat, &flags);
702 
703 	/*
704 	 * TODO now we have a visible range of pages which are not associated
705 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
706 	 * expects the zone spans the pfn range. All the pages in the range
707 	 * are reserved so nobody should be touching them so we should be safe
708 	 */
709 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
710 			MEMMAP_HOTPLUG, altmap);
711 
712 	set_zone_contiguous(zone);
713 }
714 
715 /*
716  * Returns a default kernel memory zone for the given pfn range.
717  * If no kernel zone covers this pfn range it will automatically go
718  * to the ZONE_NORMAL.
719  */
720 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
721 		unsigned long nr_pages)
722 {
723 	struct pglist_data *pgdat = NODE_DATA(nid);
724 	int zid;
725 
726 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
727 		struct zone *zone = &pgdat->node_zones[zid];
728 
729 		if (zone_intersects(zone, start_pfn, nr_pages))
730 			return zone;
731 	}
732 
733 	return &pgdat->node_zones[ZONE_NORMAL];
734 }
735 
736 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
737 		unsigned long nr_pages)
738 {
739 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
740 			nr_pages);
741 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
742 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
743 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
744 
745 	/*
746 	 * We inherit the existing zone in a simple case where zones do not
747 	 * overlap in the given range
748 	 */
749 	if (in_kernel ^ in_movable)
750 		return (in_kernel) ? kernel_zone : movable_zone;
751 
752 	/*
753 	 * If the range doesn't belong to any zone or two zones overlap in the
754 	 * given range then we use movable zone only if movable_node is
755 	 * enabled because we always online to a kernel zone by default.
756 	 */
757 	return movable_node_enabled ? movable_zone : kernel_zone;
758 }
759 
760 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
761 		unsigned long nr_pages)
762 {
763 	if (online_type == MMOP_ONLINE_KERNEL)
764 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
765 
766 	if (online_type == MMOP_ONLINE_MOVABLE)
767 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
768 
769 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
770 }
771 
772 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
773 		       int online_type, int nid)
774 {
775 	unsigned long flags;
776 	unsigned long onlined_pages = 0;
777 	struct zone *zone;
778 	int need_zonelists_rebuild = 0;
779 	int ret;
780 	struct memory_notify arg;
781 
782 	mem_hotplug_begin();
783 
784 	/* associate pfn range with the zone */
785 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
786 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
787 
788 	arg.start_pfn = pfn;
789 	arg.nr_pages = nr_pages;
790 	node_states_check_changes_online(nr_pages, zone, &arg);
791 
792 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
793 	ret = notifier_to_errno(ret);
794 	if (ret)
795 		goto failed_addition;
796 
797 	/*
798 	 * If this zone is not populated, then it is not in zonelist.
799 	 * This means the page allocator ignores this zone.
800 	 * So, zonelist must be updated after online.
801 	 */
802 	if (!populated_zone(zone)) {
803 		need_zonelists_rebuild = 1;
804 		setup_zone_pageset(zone);
805 	}
806 
807 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
808 		online_pages_range);
809 	if (ret) {
810 		/* not a single memory resource was applicable */
811 		if (need_zonelists_rebuild)
812 			zone_pcp_reset(zone);
813 		goto failed_addition;
814 	}
815 
816 	zone->present_pages += onlined_pages;
817 
818 	pgdat_resize_lock(zone->zone_pgdat, &flags);
819 	zone->zone_pgdat->node_present_pages += onlined_pages;
820 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
821 
822 	shuffle_zone(zone);
823 
824 	node_states_set_node(nid, &arg);
825 	if (need_zonelists_rebuild)
826 		build_all_zonelists(NULL);
827 	else
828 		zone_pcp_update(zone);
829 
830 	init_per_zone_wmark_min();
831 
832 	kswapd_run(nid);
833 	kcompactd_run(nid);
834 
835 	vm_total_pages = nr_free_pagecache_pages();
836 
837 	writeback_set_ratelimit();
838 
839 	memory_notify(MEM_ONLINE, &arg);
840 	mem_hotplug_done();
841 	return 0;
842 
843 failed_addition:
844 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
845 		 (unsigned long long) pfn << PAGE_SHIFT,
846 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
847 	memory_notify(MEM_CANCEL_ONLINE, &arg);
848 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
849 	mem_hotplug_done();
850 	return ret;
851 }
852 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
853 
854 static void reset_node_present_pages(pg_data_t *pgdat)
855 {
856 	struct zone *z;
857 
858 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
859 		z->present_pages = 0;
860 
861 	pgdat->node_present_pages = 0;
862 }
863 
864 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
865 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
866 {
867 	struct pglist_data *pgdat;
868 	unsigned long start_pfn = PFN_DOWN(start);
869 
870 	pgdat = NODE_DATA(nid);
871 	if (!pgdat) {
872 		pgdat = arch_alloc_nodedata(nid);
873 		if (!pgdat)
874 			return NULL;
875 
876 		pgdat->per_cpu_nodestats =
877 			alloc_percpu(struct per_cpu_nodestat);
878 		arch_refresh_nodedata(nid, pgdat);
879 	} else {
880 		int cpu;
881 		/*
882 		 * Reset the nr_zones, order and classzone_idx before reuse.
883 		 * Note that kswapd will init kswapd_classzone_idx properly
884 		 * when it starts in the near future.
885 		 */
886 		pgdat->nr_zones = 0;
887 		pgdat->kswapd_order = 0;
888 		pgdat->kswapd_classzone_idx = 0;
889 		for_each_online_cpu(cpu) {
890 			struct per_cpu_nodestat *p;
891 
892 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
893 			memset(p, 0, sizeof(*p));
894 		}
895 	}
896 
897 	/* we can use NODE_DATA(nid) from here */
898 
899 	pgdat->node_id = nid;
900 	pgdat->node_start_pfn = start_pfn;
901 
902 	/* init node's zones as empty zones, we don't have any present pages.*/
903 	free_area_init_core_hotplug(nid);
904 
905 	/*
906 	 * The node we allocated has no zone fallback lists. For avoiding
907 	 * to access not-initialized zonelist, build here.
908 	 */
909 	build_all_zonelists(pgdat);
910 
911 	/*
912 	 * When memory is hot-added, all the memory is in offline state. So
913 	 * clear all zones' present_pages because they will be updated in
914 	 * online_pages() and offline_pages().
915 	 */
916 	reset_node_managed_pages(pgdat);
917 	reset_node_present_pages(pgdat);
918 
919 	return pgdat;
920 }
921 
922 static void rollback_node_hotadd(int nid)
923 {
924 	pg_data_t *pgdat = NODE_DATA(nid);
925 
926 	arch_refresh_nodedata(nid, NULL);
927 	free_percpu(pgdat->per_cpu_nodestats);
928 	arch_free_nodedata(pgdat);
929 }
930 
931 
932 /**
933  * try_online_node - online a node if offlined
934  * @nid: the node ID
935  * @start: start addr of the node
936  * @set_node_online: Whether we want to online the node
937  * called by cpu_up() to online a node without onlined memory.
938  *
939  * Returns:
940  * 1 -> a new node has been allocated
941  * 0 -> the node is already online
942  * -ENOMEM -> the node could not be allocated
943  */
944 static int __try_online_node(int nid, u64 start, bool set_node_online)
945 {
946 	pg_data_t *pgdat;
947 	int ret = 1;
948 
949 	if (node_online(nid))
950 		return 0;
951 
952 	pgdat = hotadd_new_pgdat(nid, start);
953 	if (!pgdat) {
954 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
955 		ret = -ENOMEM;
956 		goto out;
957 	}
958 
959 	if (set_node_online) {
960 		node_set_online(nid);
961 		ret = register_one_node(nid);
962 		BUG_ON(ret);
963 	}
964 out:
965 	return ret;
966 }
967 
968 /*
969  * Users of this function always want to online/register the node
970  */
971 int try_online_node(int nid)
972 {
973 	int ret;
974 
975 	mem_hotplug_begin();
976 	ret =  __try_online_node(nid, 0, true);
977 	mem_hotplug_done();
978 	return ret;
979 }
980 
981 static int check_hotplug_memory_range(u64 start, u64 size)
982 {
983 	/* memory range must be block size aligned */
984 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
985 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
986 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
987 		       memory_block_size_bytes(), start, size);
988 		return -EINVAL;
989 	}
990 
991 	return 0;
992 }
993 
994 static int online_memory_block(struct memory_block *mem, void *arg)
995 {
996 	mem->online_type = memhp_default_online_type;
997 	return device_online(&mem->dev);
998 }
999 
1000 /*
1001  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1002  * and online/offline operations (triggered e.g. by sysfs).
1003  *
1004  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1005  */
1006 int __ref add_memory_resource(int nid, struct resource *res)
1007 {
1008 	struct mhp_params params = { .pgprot = PAGE_KERNEL };
1009 	u64 start, size;
1010 	bool new_node = false;
1011 	int ret;
1012 
1013 	start = res->start;
1014 	size = resource_size(res);
1015 
1016 	ret = check_hotplug_memory_range(start, size);
1017 	if (ret)
1018 		return ret;
1019 
1020 	mem_hotplug_begin();
1021 
1022 	/*
1023 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1024 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1025 	 * this new range and calculate total pages correctly.  The range will
1026 	 * be removed at hot-remove time.
1027 	 */
1028 	memblock_add_node(start, size, nid);
1029 
1030 	ret = __try_online_node(nid, start, false);
1031 	if (ret < 0)
1032 		goto error;
1033 	new_node = ret;
1034 
1035 	/* call arch's memory hotadd */
1036 	ret = arch_add_memory(nid, start, size, &params);
1037 	if (ret < 0)
1038 		goto error;
1039 
1040 	/* create memory block devices after memory was added */
1041 	ret = create_memory_block_devices(start, size);
1042 	if (ret) {
1043 		arch_remove_memory(nid, start, size, NULL);
1044 		goto error;
1045 	}
1046 
1047 	if (new_node) {
1048 		/* If sysfs file of new node can't be created, cpu on the node
1049 		 * can't be hot-added. There is no rollback way now.
1050 		 * So, check by BUG_ON() to catch it reluctantly..
1051 		 * We online node here. We can't roll back from here.
1052 		 */
1053 		node_set_online(nid);
1054 		ret = __register_one_node(nid);
1055 		BUG_ON(ret);
1056 	}
1057 
1058 	/* link memory sections under this node.*/
1059 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1060 	BUG_ON(ret);
1061 
1062 	/* create new memmap entry */
1063 	firmware_map_add_hotplug(start, start + size, "System RAM");
1064 
1065 	/* device_online() will take the lock when calling online_pages() */
1066 	mem_hotplug_done();
1067 
1068 	/* online pages if requested */
1069 	if (memhp_default_online_type != MMOP_OFFLINE)
1070 		walk_memory_blocks(start, size, NULL, online_memory_block);
1071 
1072 	return ret;
1073 error:
1074 	/* rollback pgdat allocation and others */
1075 	if (new_node)
1076 		rollback_node_hotadd(nid);
1077 	memblock_remove(start, size);
1078 	mem_hotplug_done();
1079 	return ret;
1080 }
1081 
1082 /* requires device_hotplug_lock, see add_memory_resource() */
1083 int __ref __add_memory(int nid, u64 start, u64 size)
1084 {
1085 	struct resource *res;
1086 	int ret;
1087 
1088 	res = register_memory_resource(start, size);
1089 	if (IS_ERR(res))
1090 		return PTR_ERR(res);
1091 
1092 	ret = add_memory_resource(nid, res);
1093 	if (ret < 0)
1094 		release_memory_resource(res);
1095 	return ret;
1096 }
1097 
1098 int add_memory(int nid, u64 start, u64 size)
1099 {
1100 	int rc;
1101 
1102 	lock_device_hotplug();
1103 	rc = __add_memory(nid, start, size);
1104 	unlock_device_hotplug();
1105 
1106 	return rc;
1107 }
1108 EXPORT_SYMBOL_GPL(add_memory);
1109 
1110 #ifdef CONFIG_MEMORY_HOTREMOVE
1111 /*
1112  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1113  * set and the size of the free page is given by page_order(). Using this,
1114  * the function determines if the pageblock contains only free pages.
1115  * Due to buddy contraints, a free page at least the size of a pageblock will
1116  * be located at the start of the pageblock
1117  */
1118 static inline int pageblock_free(struct page *page)
1119 {
1120 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1121 }
1122 
1123 /* Return the pfn of the start of the next active pageblock after a given pfn */
1124 static unsigned long next_active_pageblock(unsigned long pfn)
1125 {
1126 	struct page *page = pfn_to_page(pfn);
1127 
1128 	/* Ensure the starting page is pageblock-aligned */
1129 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1130 
1131 	/* If the entire pageblock is free, move to the end of free page */
1132 	if (pageblock_free(page)) {
1133 		int order;
1134 		/* be careful. we don't have locks, page_order can be changed.*/
1135 		order = page_order(page);
1136 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1137 			return pfn + (1 << order);
1138 	}
1139 
1140 	return pfn + pageblock_nr_pages;
1141 }
1142 
1143 static bool is_pageblock_removable_nolock(unsigned long pfn)
1144 {
1145 	struct page *page = pfn_to_page(pfn);
1146 	struct zone *zone;
1147 
1148 	/*
1149 	 * We have to be careful here because we are iterating over memory
1150 	 * sections which are not zone aware so we might end up outside of
1151 	 * the zone but still within the section.
1152 	 * We have to take care about the node as well. If the node is offline
1153 	 * its NODE_DATA will be NULL - see page_zone.
1154 	 */
1155 	if (!node_online(page_to_nid(page)))
1156 		return false;
1157 
1158 	zone = page_zone(page);
1159 	pfn = page_to_pfn(page);
1160 	if (!zone_spans_pfn(zone, pfn))
1161 		return false;
1162 
1163 	return !has_unmovable_pages(zone, page, MIGRATE_MOVABLE,
1164 				    MEMORY_OFFLINE);
1165 }
1166 
1167 /* Checks if this range of memory is likely to be hot-removable. */
1168 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1169 {
1170 	unsigned long end_pfn, pfn;
1171 
1172 	end_pfn = min(start_pfn + nr_pages,
1173 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1174 
1175 	/* Check the starting page of each pageblock within the range */
1176 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1177 		if (!is_pageblock_removable_nolock(pfn))
1178 			return false;
1179 		cond_resched();
1180 	}
1181 
1182 	/* All pageblocks in the memory block are likely to be hot-removable */
1183 	return true;
1184 }
1185 
1186 /*
1187  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1188  * memory holes). When true, return the zone.
1189  */
1190 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1191 				  unsigned long end_pfn)
1192 {
1193 	unsigned long pfn, sec_end_pfn;
1194 	struct zone *zone = NULL;
1195 	struct page *page;
1196 	int i;
1197 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1198 	     pfn < end_pfn;
1199 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1200 		/* Make sure the memory section is present first */
1201 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1202 			continue;
1203 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1204 		     pfn += MAX_ORDER_NR_PAGES) {
1205 			i = 0;
1206 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1207 			while ((i < MAX_ORDER_NR_PAGES) &&
1208 				!pfn_valid_within(pfn + i))
1209 				i++;
1210 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1211 				continue;
1212 			/* Check if we got outside of the zone */
1213 			if (zone && !zone_spans_pfn(zone, pfn + i))
1214 				return NULL;
1215 			page = pfn_to_page(pfn + i);
1216 			if (zone && page_zone(page) != zone)
1217 				return NULL;
1218 			zone = page_zone(page);
1219 		}
1220 	}
1221 
1222 	return zone;
1223 }
1224 
1225 /*
1226  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1227  * non-lru movable pages and hugepages). We scan pfn because it's much
1228  * easier than scanning over linked list. This function returns the pfn
1229  * of the first found movable page if it's found, otherwise 0.
1230  */
1231 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1232 {
1233 	unsigned long pfn;
1234 
1235 	for (pfn = start; pfn < end; pfn++) {
1236 		struct page *page, *head;
1237 		unsigned long skip;
1238 
1239 		if (!pfn_valid(pfn))
1240 			continue;
1241 		page = pfn_to_page(pfn);
1242 		if (PageLRU(page))
1243 			return pfn;
1244 		if (__PageMovable(page))
1245 			return pfn;
1246 
1247 		if (!PageHuge(page))
1248 			continue;
1249 		head = compound_head(page);
1250 		if (page_huge_active(head))
1251 			return pfn;
1252 		skip = compound_nr(head) - (page - head);
1253 		pfn += skip - 1;
1254 	}
1255 	return 0;
1256 }
1257 
1258 static struct page *new_node_page(struct page *page, unsigned long private)
1259 {
1260 	int nid = page_to_nid(page);
1261 	nodemask_t nmask = node_states[N_MEMORY];
1262 
1263 	/*
1264 	 * try to allocate from a different node but reuse this node if there
1265 	 * are no other online nodes to be used (e.g. we are offlining a part
1266 	 * of the only existing node)
1267 	 */
1268 	node_clear(nid, nmask);
1269 	if (nodes_empty(nmask))
1270 		node_set(nid, nmask);
1271 
1272 	return new_page_nodemask(page, nid, &nmask);
1273 }
1274 
1275 static int
1276 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1277 {
1278 	unsigned long pfn;
1279 	struct page *page;
1280 	int ret = 0;
1281 	LIST_HEAD(source);
1282 
1283 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1284 		if (!pfn_valid(pfn))
1285 			continue;
1286 		page = pfn_to_page(pfn);
1287 
1288 		if (PageHuge(page)) {
1289 			struct page *head = compound_head(page);
1290 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1291 			isolate_huge_page(head, &source);
1292 			continue;
1293 		} else if (PageTransHuge(page))
1294 			pfn = page_to_pfn(compound_head(page))
1295 				+ hpage_nr_pages(page) - 1;
1296 
1297 		/*
1298 		 * HWPoison pages have elevated reference counts so the migration would
1299 		 * fail on them. It also doesn't make any sense to migrate them in the
1300 		 * first place. Still try to unmap such a page in case it is still mapped
1301 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1302 		 * the unmap as the catch all safety net).
1303 		 */
1304 		if (PageHWPoison(page)) {
1305 			if (WARN_ON(PageLRU(page)))
1306 				isolate_lru_page(page);
1307 			if (page_mapped(page))
1308 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1309 			continue;
1310 		}
1311 
1312 		if (!get_page_unless_zero(page))
1313 			continue;
1314 		/*
1315 		 * We can skip free pages. And we can deal with pages on
1316 		 * LRU and non-lru movable pages.
1317 		 */
1318 		if (PageLRU(page))
1319 			ret = isolate_lru_page(page);
1320 		else
1321 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1322 		if (!ret) { /* Success */
1323 			list_add_tail(&page->lru, &source);
1324 			if (!__PageMovable(page))
1325 				inc_node_page_state(page, NR_ISOLATED_ANON +
1326 						    page_is_file_lru(page));
1327 
1328 		} else {
1329 			pr_warn("failed to isolate pfn %lx\n", pfn);
1330 			dump_page(page, "isolation failed");
1331 		}
1332 		put_page(page);
1333 	}
1334 	if (!list_empty(&source)) {
1335 		/* Allocate a new page from the nearest neighbor node */
1336 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1337 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1338 		if (ret) {
1339 			list_for_each_entry(page, &source, lru) {
1340 				pr_warn("migrating pfn %lx failed ret:%d ",
1341 				       page_to_pfn(page), ret);
1342 				dump_page(page, "migration failure");
1343 			}
1344 			putback_movable_pages(&source);
1345 		}
1346 	}
1347 
1348 	return ret;
1349 }
1350 
1351 /* Mark all sections offline and remove all free pages from the buddy. */
1352 static int
1353 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1354 			void *data)
1355 {
1356 	unsigned long *offlined_pages = (unsigned long *)data;
1357 
1358 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Check all pages in range, recoreded as memory resource, are isolated.
1364  */
1365 static int
1366 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367 			void *data)
1368 {
1369 	return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1370 				   MEMORY_OFFLINE);
1371 }
1372 
1373 static int __init cmdline_parse_movable_node(char *p)
1374 {
1375 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1376 	movable_node_enabled = true;
1377 #else
1378 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1379 #endif
1380 	return 0;
1381 }
1382 early_param("movable_node", cmdline_parse_movable_node);
1383 
1384 /* check which state of node_states will be changed when offline memory */
1385 static void node_states_check_changes_offline(unsigned long nr_pages,
1386 		struct zone *zone, struct memory_notify *arg)
1387 {
1388 	struct pglist_data *pgdat = zone->zone_pgdat;
1389 	unsigned long present_pages = 0;
1390 	enum zone_type zt;
1391 
1392 	arg->status_change_nid = NUMA_NO_NODE;
1393 	arg->status_change_nid_normal = NUMA_NO_NODE;
1394 	arg->status_change_nid_high = NUMA_NO_NODE;
1395 
1396 	/*
1397 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1398 	 * If the memory to be offline is within the range
1399 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1400 	 * the zones in that range will become empty after the offlining,
1401 	 * thus we can determine that we need to clear the node from
1402 	 * node_states[N_NORMAL_MEMORY].
1403 	 */
1404 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1405 		present_pages += pgdat->node_zones[zt].present_pages;
1406 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1407 		arg->status_change_nid_normal = zone_to_nid(zone);
1408 
1409 #ifdef CONFIG_HIGHMEM
1410 	/*
1411 	 * node_states[N_HIGH_MEMORY] contains nodes which
1412 	 * have normal memory or high memory.
1413 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1414 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1415 	 * we determine that the zones in that range become empty,
1416 	 * we need to clear the node for N_HIGH_MEMORY.
1417 	 */
1418 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1419 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1420 		arg->status_change_nid_high = zone_to_nid(zone);
1421 #endif
1422 
1423 	/*
1424 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1425 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1426 	 * as well.
1427 	 * Here we count the possible pages from ZONE_MOVABLE.
1428 	 * If after having accounted all the pages, we see that the nr_pages
1429 	 * to be offlined is over or equal to the accounted pages,
1430 	 * we know that the node will become empty, and so, we can clear
1431 	 * it for N_MEMORY as well.
1432 	 */
1433 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1434 
1435 	if (nr_pages >= present_pages)
1436 		arg->status_change_nid = zone_to_nid(zone);
1437 }
1438 
1439 static void node_states_clear_node(int node, struct memory_notify *arg)
1440 {
1441 	if (arg->status_change_nid_normal >= 0)
1442 		node_clear_state(node, N_NORMAL_MEMORY);
1443 
1444 	if (arg->status_change_nid_high >= 0)
1445 		node_clear_state(node, N_HIGH_MEMORY);
1446 
1447 	if (arg->status_change_nid >= 0)
1448 		node_clear_state(node, N_MEMORY);
1449 }
1450 
1451 static int count_system_ram_pages_cb(unsigned long start_pfn,
1452 				     unsigned long nr_pages, void *data)
1453 {
1454 	unsigned long *nr_system_ram_pages = data;
1455 
1456 	*nr_system_ram_pages += nr_pages;
1457 	return 0;
1458 }
1459 
1460 static int __ref __offline_pages(unsigned long start_pfn,
1461 		  unsigned long end_pfn)
1462 {
1463 	unsigned long pfn, nr_pages = 0;
1464 	unsigned long offlined_pages = 0;
1465 	int ret, node, nr_isolate_pageblock;
1466 	unsigned long flags;
1467 	struct zone *zone;
1468 	struct memory_notify arg;
1469 	char *reason;
1470 
1471 	mem_hotplug_begin();
1472 
1473 	/*
1474 	 * Don't allow to offline memory blocks that contain holes.
1475 	 * Consequently, memory blocks with holes can never get onlined
1476 	 * via the hotplug path - online_pages() - as hotplugged memory has
1477 	 * no holes. This way, we e.g., don't have to worry about marking
1478 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1479 	 * avoid using walk_system_ram_range() later.
1480 	 */
1481 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1482 			      count_system_ram_pages_cb);
1483 	if (nr_pages != end_pfn - start_pfn) {
1484 		ret = -EINVAL;
1485 		reason = "memory holes";
1486 		goto failed_removal;
1487 	}
1488 
1489 	/* This makes hotplug much easier...and readable.
1490 	   we assume this for now. .*/
1491 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1492 	if (!zone) {
1493 		ret = -EINVAL;
1494 		reason = "multizone range";
1495 		goto failed_removal;
1496 	}
1497 	node = zone_to_nid(zone);
1498 
1499 	/* set above range as isolated */
1500 	ret = start_isolate_page_range(start_pfn, end_pfn,
1501 				       MIGRATE_MOVABLE,
1502 				       MEMORY_OFFLINE | REPORT_FAILURE);
1503 	if (ret < 0) {
1504 		reason = "failure to isolate range";
1505 		goto failed_removal;
1506 	}
1507 	nr_isolate_pageblock = ret;
1508 
1509 	arg.start_pfn = start_pfn;
1510 	arg.nr_pages = nr_pages;
1511 	node_states_check_changes_offline(nr_pages, zone, &arg);
1512 
1513 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1514 	ret = notifier_to_errno(ret);
1515 	if (ret) {
1516 		reason = "notifier failure";
1517 		goto failed_removal_isolated;
1518 	}
1519 
1520 	do {
1521 		for (pfn = start_pfn; pfn;) {
1522 			if (signal_pending(current)) {
1523 				ret = -EINTR;
1524 				reason = "signal backoff";
1525 				goto failed_removal_isolated;
1526 			}
1527 
1528 			cond_resched();
1529 			lru_add_drain_all();
1530 
1531 			pfn = scan_movable_pages(pfn, end_pfn);
1532 			if (pfn) {
1533 				/*
1534 				 * TODO: fatal migration failures should bail
1535 				 * out
1536 				 */
1537 				do_migrate_range(pfn, end_pfn);
1538 			}
1539 		}
1540 
1541 		/*
1542 		 * Dissolve free hugepages in the memory block before doing
1543 		 * offlining actually in order to make hugetlbfs's object
1544 		 * counting consistent.
1545 		 */
1546 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1547 		if (ret) {
1548 			reason = "failure to dissolve huge pages";
1549 			goto failed_removal_isolated;
1550 		}
1551 		/* check again */
1552 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1553 					    NULL, check_pages_isolated_cb);
1554 	} while (ret);
1555 
1556 	/* Ok, all of our target is isolated.
1557 	   We cannot do rollback at this point. */
1558 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1559 			      &offlined_pages, offline_isolated_pages_cb);
1560 	pr_info("Offlined Pages %ld\n", offlined_pages);
1561 	/*
1562 	 * Onlining will reset pagetype flags and makes migrate type
1563 	 * MOVABLE, so just need to decrease the number of isolated
1564 	 * pageblocks zone counter here.
1565 	 */
1566 	spin_lock_irqsave(&zone->lock, flags);
1567 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1568 	spin_unlock_irqrestore(&zone->lock, flags);
1569 
1570 	/* removal success */
1571 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1572 	zone->present_pages -= offlined_pages;
1573 
1574 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1575 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1576 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1577 
1578 	init_per_zone_wmark_min();
1579 
1580 	if (!populated_zone(zone)) {
1581 		zone_pcp_reset(zone);
1582 		build_all_zonelists(NULL);
1583 	} else
1584 		zone_pcp_update(zone);
1585 
1586 	node_states_clear_node(node, &arg);
1587 	if (arg.status_change_nid >= 0) {
1588 		kswapd_stop(node);
1589 		kcompactd_stop(node);
1590 	}
1591 
1592 	vm_total_pages = nr_free_pagecache_pages();
1593 	writeback_set_ratelimit();
1594 
1595 	memory_notify(MEM_OFFLINE, &arg);
1596 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1597 	mem_hotplug_done();
1598 	return 0;
1599 
1600 failed_removal_isolated:
1601 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1602 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1603 failed_removal:
1604 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1605 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1606 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1607 		 reason);
1608 	/* pushback to free area */
1609 	mem_hotplug_done();
1610 	return ret;
1611 }
1612 
1613 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1614 {
1615 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1616 }
1617 
1618 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1619 {
1620 	int ret = !is_memblock_offlined(mem);
1621 
1622 	if (unlikely(ret)) {
1623 		phys_addr_t beginpa, endpa;
1624 
1625 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1626 		endpa = beginpa + memory_block_size_bytes() - 1;
1627 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1628 			&beginpa, &endpa);
1629 
1630 		return -EBUSY;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int check_cpu_on_node(pg_data_t *pgdat)
1636 {
1637 	int cpu;
1638 
1639 	for_each_present_cpu(cpu) {
1640 		if (cpu_to_node(cpu) == pgdat->node_id)
1641 			/*
1642 			 * the cpu on this node isn't removed, and we can't
1643 			 * offline this node.
1644 			 */
1645 			return -EBUSY;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1652 {
1653 	int nid = *(int *)arg;
1654 
1655 	/*
1656 	 * If a memory block belongs to multiple nodes, the stored nid is not
1657 	 * reliable. However, such blocks are always online (e.g., cannot get
1658 	 * offlined) and, therefore, are still spanned by the node.
1659 	 */
1660 	return mem->nid == nid ? -EEXIST : 0;
1661 }
1662 
1663 /**
1664  * try_offline_node
1665  * @nid: the node ID
1666  *
1667  * Offline a node if all memory sections and cpus of the node are removed.
1668  *
1669  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1670  * and online/offline operations before this call.
1671  */
1672 void try_offline_node(int nid)
1673 {
1674 	pg_data_t *pgdat = NODE_DATA(nid);
1675 	int rc;
1676 
1677 	/*
1678 	 * If the node still spans pages (especially ZONE_DEVICE), don't
1679 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
1680 	 * e.g., after the memory block was onlined.
1681 	 */
1682 	if (pgdat->node_spanned_pages)
1683 		return;
1684 
1685 	/*
1686 	 * Especially offline memory blocks might not be spanned by the
1687 	 * node. They will get spanned by the node once they get onlined.
1688 	 * However, they link to the node in sysfs and can get onlined later.
1689 	 */
1690 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1691 	if (rc)
1692 		return;
1693 
1694 	if (check_cpu_on_node(pgdat))
1695 		return;
1696 
1697 	/*
1698 	 * all memory/cpu of this node are removed, we can offline this
1699 	 * node now.
1700 	 */
1701 	node_set_offline(nid);
1702 	unregister_one_node(nid);
1703 }
1704 EXPORT_SYMBOL(try_offline_node);
1705 
1706 static void __release_memory_resource(resource_size_t start,
1707 				      resource_size_t size)
1708 {
1709 	int ret;
1710 
1711 	/*
1712 	 * When removing memory in the same granularity as it was added,
1713 	 * this function never fails. It might only fail if resources
1714 	 * have to be adjusted or split. We'll ignore the error, as
1715 	 * removing of memory cannot fail.
1716 	 */
1717 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1718 	if (ret) {
1719 		resource_size_t endres = start + size - 1;
1720 
1721 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1722 			&start, &endres, ret);
1723 	}
1724 }
1725 
1726 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1727 {
1728 	int rc = 0;
1729 
1730 	BUG_ON(check_hotplug_memory_range(start, size));
1731 
1732 	/*
1733 	 * All memory blocks must be offlined before removing memory.  Check
1734 	 * whether all memory blocks in question are offline and return error
1735 	 * if this is not the case.
1736 	 */
1737 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1738 	if (rc)
1739 		goto done;
1740 
1741 	/* remove memmap entry */
1742 	firmware_map_remove(start, start + size, "System RAM");
1743 
1744 	/*
1745 	 * Memory block device removal under the device_hotplug_lock is
1746 	 * a barrier against racing online attempts.
1747 	 */
1748 	remove_memory_block_devices(start, size);
1749 
1750 	mem_hotplug_begin();
1751 
1752 	arch_remove_memory(nid, start, size, NULL);
1753 	memblock_free(start, size);
1754 	memblock_remove(start, size);
1755 	__release_memory_resource(start, size);
1756 
1757 	try_offline_node(nid);
1758 
1759 done:
1760 	mem_hotplug_done();
1761 	return rc;
1762 }
1763 
1764 /**
1765  * remove_memory
1766  * @nid: the node ID
1767  * @start: physical address of the region to remove
1768  * @size: size of the region to remove
1769  *
1770  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1771  * and online/offline operations before this call, as required by
1772  * try_offline_node().
1773  */
1774 void __remove_memory(int nid, u64 start, u64 size)
1775 {
1776 
1777 	/*
1778 	 * trigger BUG() if some memory is not offlined prior to calling this
1779 	 * function
1780 	 */
1781 	if (try_remove_memory(nid, start, size))
1782 		BUG();
1783 }
1784 
1785 /*
1786  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1787  * some memory is not offline
1788  */
1789 int remove_memory(int nid, u64 start, u64 size)
1790 {
1791 	int rc;
1792 
1793 	lock_device_hotplug();
1794 	rc  = try_remove_memory(nid, start, size);
1795 	unlock_device_hotplug();
1796 
1797 	return rc;
1798 }
1799 EXPORT_SYMBOL_GPL(remove_memory);
1800 #endif /* CONFIG_MEMORY_HOTREMOVE */
1801