xref: /openbmc/linux/mm/memory_hotplug.c (revision 12eb4683)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 
36 #include <asm/tlbflush.h>
37 
38 #include "internal.h"
39 
40 /*
41  * online_page_callback contains pointer to current page onlining function.
42  * Initially it is generic_online_page(). If it is required it could be
43  * changed by calling set_online_page_callback() for callback registration
44  * and restore_online_page_callback() for generic callback restore.
45  */
46 
47 static void generic_online_page(struct page *page);
48 
49 static online_page_callback_t online_page_callback = generic_online_page;
50 
51 DEFINE_MUTEX(mem_hotplug_mutex);
52 
53 void lock_memory_hotplug(void)
54 {
55 	mutex_lock(&mem_hotplug_mutex);
56 }
57 
58 void unlock_memory_hotplug(void)
59 {
60 	mutex_unlock(&mem_hotplug_mutex);
61 }
62 
63 
64 /* add this memory to iomem resource */
65 static struct resource *register_memory_resource(u64 start, u64 size)
66 {
67 	struct resource *res;
68 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
69 	BUG_ON(!res);
70 
71 	res->name = "System RAM";
72 	res->start = start;
73 	res->end = start + size - 1;
74 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
75 	if (request_resource(&iomem_resource, res) < 0) {
76 		pr_debug("System RAM resource %pR cannot be added\n", res);
77 		kfree(res);
78 		res = NULL;
79 	}
80 	return res;
81 }
82 
83 static void release_memory_resource(struct resource *res)
84 {
85 	if (!res)
86 		return;
87 	release_resource(res);
88 	kfree(res);
89 	return;
90 }
91 
92 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
93 void get_page_bootmem(unsigned long info,  struct page *page,
94 		      unsigned long type)
95 {
96 	page->lru.next = (struct list_head *) type;
97 	SetPagePrivate(page);
98 	set_page_private(page, info);
99 	atomic_inc(&page->_count);
100 }
101 
102 void put_page_bootmem(struct page *page)
103 {
104 	unsigned long type;
105 
106 	type = (unsigned long) page->lru.next;
107 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
108 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
109 
110 	if (atomic_dec_return(&page->_count) == 1) {
111 		ClearPagePrivate(page);
112 		set_page_private(page, 0);
113 		INIT_LIST_HEAD(&page->lru);
114 		free_reserved_page(page);
115 	}
116 }
117 
118 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
119 #ifndef CONFIG_SPARSEMEM_VMEMMAP
120 static void register_page_bootmem_info_section(unsigned long start_pfn)
121 {
122 	unsigned long *usemap, mapsize, section_nr, i;
123 	struct mem_section *ms;
124 	struct page *page, *memmap;
125 
126 	section_nr = pfn_to_section_nr(start_pfn);
127 	ms = __nr_to_section(section_nr);
128 
129 	/* Get section's memmap address */
130 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
131 
132 	/*
133 	 * Get page for the memmap's phys address
134 	 * XXX: need more consideration for sparse_vmemmap...
135 	 */
136 	page = virt_to_page(memmap);
137 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
138 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
139 
140 	/* remember memmap's page */
141 	for (i = 0; i < mapsize; i++, page++)
142 		get_page_bootmem(section_nr, page, SECTION_INFO);
143 
144 	usemap = __nr_to_section(section_nr)->pageblock_flags;
145 	page = virt_to_page(usemap);
146 
147 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
148 
149 	for (i = 0; i < mapsize; i++, page++)
150 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
151 
152 }
153 #else /* CONFIG_SPARSEMEM_VMEMMAP */
154 static void register_page_bootmem_info_section(unsigned long start_pfn)
155 {
156 	unsigned long *usemap, mapsize, section_nr, i;
157 	struct mem_section *ms;
158 	struct page *page, *memmap;
159 
160 	if (!pfn_valid(start_pfn))
161 		return;
162 
163 	section_nr = pfn_to_section_nr(start_pfn);
164 	ms = __nr_to_section(section_nr);
165 
166 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
167 
168 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
169 
170 	usemap = __nr_to_section(section_nr)->pageblock_flags;
171 	page = virt_to_page(usemap);
172 
173 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
174 
175 	for (i = 0; i < mapsize; i++, page++)
176 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
177 }
178 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
179 
180 void register_page_bootmem_info_node(struct pglist_data *pgdat)
181 {
182 	unsigned long i, pfn, end_pfn, nr_pages;
183 	int node = pgdat->node_id;
184 	struct page *page;
185 	struct zone *zone;
186 
187 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
188 	page = virt_to_page(pgdat);
189 
190 	for (i = 0; i < nr_pages; i++, page++)
191 		get_page_bootmem(node, page, NODE_INFO);
192 
193 	zone = &pgdat->node_zones[0];
194 	for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
195 		if (zone_is_initialized(zone)) {
196 			nr_pages = zone->wait_table_hash_nr_entries
197 				* sizeof(wait_queue_head_t);
198 			nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
199 			page = virt_to_page(zone->wait_table);
200 
201 			for (i = 0; i < nr_pages; i++, page++)
202 				get_page_bootmem(node, page, NODE_INFO);
203 		}
204 	}
205 
206 	pfn = pgdat->node_start_pfn;
207 	end_pfn = pgdat_end_pfn(pgdat);
208 
209 	/* register section info */
210 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
211 		/*
212 		 * Some platforms can assign the same pfn to multiple nodes - on
213 		 * node0 as well as nodeN.  To avoid registering a pfn against
214 		 * multiple nodes we check that this pfn does not already
215 		 * reside in some other nodes.
216 		 */
217 		if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
218 			register_page_bootmem_info_section(pfn);
219 	}
220 }
221 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
222 
223 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
224 			   unsigned long end_pfn)
225 {
226 	unsigned long old_zone_end_pfn;
227 
228 	zone_span_writelock(zone);
229 
230 	old_zone_end_pfn = zone_end_pfn(zone);
231 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
232 		zone->zone_start_pfn = start_pfn;
233 
234 	zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
235 				zone->zone_start_pfn;
236 
237 	zone_span_writeunlock(zone);
238 }
239 
240 static void resize_zone(struct zone *zone, unsigned long start_pfn,
241 		unsigned long end_pfn)
242 {
243 	zone_span_writelock(zone);
244 
245 	if (end_pfn - start_pfn) {
246 		zone->zone_start_pfn = start_pfn;
247 		zone->spanned_pages = end_pfn - start_pfn;
248 	} else {
249 		/*
250 		 * make it consist as free_area_init_core(),
251 		 * if spanned_pages = 0, then keep start_pfn = 0
252 		 */
253 		zone->zone_start_pfn = 0;
254 		zone->spanned_pages = 0;
255 	}
256 
257 	zone_span_writeunlock(zone);
258 }
259 
260 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
261 		unsigned long end_pfn)
262 {
263 	enum zone_type zid = zone_idx(zone);
264 	int nid = zone->zone_pgdat->node_id;
265 	unsigned long pfn;
266 
267 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
268 		set_page_links(pfn_to_page(pfn), zid, nid, pfn);
269 }
270 
271 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
272  * alloc_bootmem_node_nopanic() */
273 static int __ref ensure_zone_is_initialized(struct zone *zone,
274 			unsigned long start_pfn, unsigned long num_pages)
275 {
276 	if (!zone_is_initialized(zone))
277 		return init_currently_empty_zone(zone, start_pfn, num_pages,
278 						 MEMMAP_HOTPLUG);
279 	return 0;
280 }
281 
282 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
283 		unsigned long start_pfn, unsigned long end_pfn)
284 {
285 	int ret;
286 	unsigned long flags;
287 	unsigned long z1_start_pfn;
288 
289 	ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
290 	if (ret)
291 		return ret;
292 
293 	pgdat_resize_lock(z1->zone_pgdat, &flags);
294 
295 	/* can't move pfns which are higher than @z2 */
296 	if (end_pfn > zone_end_pfn(z2))
297 		goto out_fail;
298 	/* the move out part must be at the left most of @z2 */
299 	if (start_pfn > z2->zone_start_pfn)
300 		goto out_fail;
301 	/* must included/overlap */
302 	if (end_pfn <= z2->zone_start_pfn)
303 		goto out_fail;
304 
305 	/* use start_pfn for z1's start_pfn if z1 is empty */
306 	if (!zone_is_empty(z1))
307 		z1_start_pfn = z1->zone_start_pfn;
308 	else
309 		z1_start_pfn = start_pfn;
310 
311 	resize_zone(z1, z1_start_pfn, end_pfn);
312 	resize_zone(z2, end_pfn, zone_end_pfn(z2));
313 
314 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
315 
316 	fix_zone_id(z1, start_pfn, end_pfn);
317 
318 	return 0;
319 out_fail:
320 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
321 	return -1;
322 }
323 
324 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
325 		unsigned long start_pfn, unsigned long end_pfn)
326 {
327 	int ret;
328 	unsigned long flags;
329 	unsigned long z2_end_pfn;
330 
331 	ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
332 	if (ret)
333 		return ret;
334 
335 	pgdat_resize_lock(z1->zone_pgdat, &flags);
336 
337 	/* can't move pfns which are lower than @z1 */
338 	if (z1->zone_start_pfn > start_pfn)
339 		goto out_fail;
340 	/* the move out part mast at the right most of @z1 */
341 	if (zone_end_pfn(z1) >  end_pfn)
342 		goto out_fail;
343 	/* must included/overlap */
344 	if (start_pfn >= zone_end_pfn(z1))
345 		goto out_fail;
346 
347 	/* use end_pfn for z2's end_pfn if z2 is empty */
348 	if (!zone_is_empty(z2))
349 		z2_end_pfn = zone_end_pfn(z2);
350 	else
351 		z2_end_pfn = end_pfn;
352 
353 	resize_zone(z1, z1->zone_start_pfn, start_pfn);
354 	resize_zone(z2, start_pfn, z2_end_pfn);
355 
356 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
357 
358 	fix_zone_id(z2, start_pfn, end_pfn);
359 
360 	return 0;
361 out_fail:
362 	pgdat_resize_unlock(z1->zone_pgdat, &flags);
363 	return -1;
364 }
365 
366 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
367 			    unsigned long end_pfn)
368 {
369 	unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
370 
371 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
372 		pgdat->node_start_pfn = start_pfn;
373 
374 	pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
375 					pgdat->node_start_pfn;
376 }
377 
378 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
379 {
380 	struct pglist_data *pgdat = zone->zone_pgdat;
381 	int nr_pages = PAGES_PER_SECTION;
382 	int nid = pgdat->node_id;
383 	int zone_type;
384 	unsigned long flags;
385 	int ret;
386 
387 	zone_type = zone - pgdat->node_zones;
388 	ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
389 	if (ret)
390 		return ret;
391 
392 	pgdat_resize_lock(zone->zone_pgdat, &flags);
393 	grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
394 	grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
395 			phys_start_pfn + nr_pages);
396 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
397 	memmap_init_zone(nr_pages, nid, zone_type,
398 			 phys_start_pfn, MEMMAP_HOTPLUG);
399 	return 0;
400 }
401 
402 static int __meminit __add_section(int nid, struct zone *zone,
403 					unsigned long phys_start_pfn)
404 {
405 	int ret;
406 
407 	if (pfn_valid(phys_start_pfn))
408 		return -EEXIST;
409 
410 	ret = sparse_add_one_section(zone, phys_start_pfn);
411 
412 	if (ret < 0)
413 		return ret;
414 
415 	ret = __add_zone(zone, phys_start_pfn);
416 
417 	if (ret < 0)
418 		return ret;
419 
420 	return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
421 }
422 
423 /*
424  * Reasonably generic function for adding memory.  It is
425  * expected that archs that support memory hotplug will
426  * call this function after deciding the zone to which to
427  * add the new pages.
428  */
429 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
430 			unsigned long nr_pages)
431 {
432 	unsigned long i;
433 	int err = 0;
434 	int start_sec, end_sec;
435 	/* during initialize mem_map, align hot-added range to section */
436 	start_sec = pfn_to_section_nr(phys_start_pfn);
437 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
438 
439 	for (i = start_sec; i <= end_sec; i++) {
440 		err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
441 
442 		/*
443 		 * EEXIST is finally dealt with by ioresource collision
444 		 * check. see add_memory() => register_memory_resource()
445 		 * Warning will be printed if there is collision.
446 		 */
447 		if (err && (err != -EEXIST))
448 			break;
449 		err = 0;
450 	}
451 
452 	return err;
453 }
454 EXPORT_SYMBOL_GPL(__add_pages);
455 
456 #ifdef CONFIG_MEMORY_HOTREMOVE
457 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
458 static int find_smallest_section_pfn(int nid, struct zone *zone,
459 				     unsigned long start_pfn,
460 				     unsigned long end_pfn)
461 {
462 	struct mem_section *ms;
463 
464 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
465 		ms = __pfn_to_section(start_pfn);
466 
467 		if (unlikely(!valid_section(ms)))
468 			continue;
469 
470 		if (unlikely(pfn_to_nid(start_pfn) != nid))
471 			continue;
472 
473 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
474 			continue;
475 
476 		return start_pfn;
477 	}
478 
479 	return 0;
480 }
481 
482 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
483 static int find_biggest_section_pfn(int nid, struct zone *zone,
484 				    unsigned long start_pfn,
485 				    unsigned long end_pfn)
486 {
487 	struct mem_section *ms;
488 	unsigned long pfn;
489 
490 	/* pfn is the end pfn of a memory section. */
491 	pfn = end_pfn - 1;
492 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
493 		ms = __pfn_to_section(pfn);
494 
495 		if (unlikely(!valid_section(ms)))
496 			continue;
497 
498 		if (unlikely(pfn_to_nid(pfn) != nid))
499 			continue;
500 
501 		if (zone && zone != page_zone(pfn_to_page(pfn)))
502 			continue;
503 
504 		return pfn;
505 	}
506 
507 	return 0;
508 }
509 
510 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
511 			     unsigned long end_pfn)
512 {
513 	unsigned long zone_start_pfn = zone->zone_start_pfn;
514 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
515 	unsigned long zone_end_pfn = z;
516 	unsigned long pfn;
517 	struct mem_section *ms;
518 	int nid = zone_to_nid(zone);
519 
520 	zone_span_writelock(zone);
521 	if (zone_start_pfn == start_pfn) {
522 		/*
523 		 * If the section is smallest section in the zone, it need
524 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
525 		 * In this case, we find second smallest valid mem_section
526 		 * for shrinking zone.
527 		 */
528 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
529 						zone_end_pfn);
530 		if (pfn) {
531 			zone->zone_start_pfn = pfn;
532 			zone->spanned_pages = zone_end_pfn - pfn;
533 		}
534 	} else if (zone_end_pfn == end_pfn) {
535 		/*
536 		 * If the section is biggest section in the zone, it need
537 		 * shrink zone->spanned_pages.
538 		 * In this case, we find second biggest valid mem_section for
539 		 * shrinking zone.
540 		 */
541 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
542 					       start_pfn);
543 		if (pfn)
544 			zone->spanned_pages = pfn - zone_start_pfn + 1;
545 	}
546 
547 	/*
548 	 * The section is not biggest or smallest mem_section in the zone, it
549 	 * only creates a hole in the zone. So in this case, we need not
550 	 * change the zone. But perhaps, the zone has only hole data. Thus
551 	 * it check the zone has only hole or not.
552 	 */
553 	pfn = zone_start_pfn;
554 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
555 		ms = __pfn_to_section(pfn);
556 
557 		if (unlikely(!valid_section(ms)))
558 			continue;
559 
560 		if (page_zone(pfn_to_page(pfn)) != zone)
561 			continue;
562 
563 		 /* If the section is current section, it continues the loop */
564 		if (start_pfn == pfn)
565 			continue;
566 
567 		/* If we find valid section, we have nothing to do */
568 		zone_span_writeunlock(zone);
569 		return;
570 	}
571 
572 	/* The zone has no valid section */
573 	zone->zone_start_pfn = 0;
574 	zone->spanned_pages = 0;
575 	zone_span_writeunlock(zone);
576 }
577 
578 static void shrink_pgdat_span(struct pglist_data *pgdat,
579 			      unsigned long start_pfn, unsigned long end_pfn)
580 {
581 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
582 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
583 	unsigned long pgdat_end_pfn = p;
584 	unsigned long pfn;
585 	struct mem_section *ms;
586 	int nid = pgdat->node_id;
587 
588 	if (pgdat_start_pfn == start_pfn) {
589 		/*
590 		 * If the section is smallest section in the pgdat, it need
591 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
592 		 * In this case, we find second smallest valid mem_section
593 		 * for shrinking zone.
594 		 */
595 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
596 						pgdat_end_pfn);
597 		if (pfn) {
598 			pgdat->node_start_pfn = pfn;
599 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
600 		}
601 	} else if (pgdat_end_pfn == end_pfn) {
602 		/*
603 		 * If the section is biggest section in the pgdat, it need
604 		 * shrink pgdat->node_spanned_pages.
605 		 * In this case, we find second biggest valid mem_section for
606 		 * shrinking zone.
607 		 */
608 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
609 					       start_pfn);
610 		if (pfn)
611 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
612 	}
613 
614 	/*
615 	 * If the section is not biggest or smallest mem_section in the pgdat,
616 	 * it only creates a hole in the pgdat. So in this case, we need not
617 	 * change the pgdat.
618 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
619 	 * has only hole or not.
620 	 */
621 	pfn = pgdat_start_pfn;
622 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
623 		ms = __pfn_to_section(pfn);
624 
625 		if (unlikely(!valid_section(ms)))
626 			continue;
627 
628 		if (pfn_to_nid(pfn) != nid)
629 			continue;
630 
631 		 /* If the section is current section, it continues the loop */
632 		if (start_pfn == pfn)
633 			continue;
634 
635 		/* If we find valid section, we have nothing to do */
636 		return;
637 	}
638 
639 	/* The pgdat has no valid section */
640 	pgdat->node_start_pfn = 0;
641 	pgdat->node_spanned_pages = 0;
642 }
643 
644 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
645 {
646 	struct pglist_data *pgdat = zone->zone_pgdat;
647 	int nr_pages = PAGES_PER_SECTION;
648 	int zone_type;
649 	unsigned long flags;
650 
651 	zone_type = zone - pgdat->node_zones;
652 
653 	pgdat_resize_lock(zone->zone_pgdat, &flags);
654 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
655 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
656 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
657 }
658 
659 static int __remove_section(struct zone *zone, struct mem_section *ms)
660 {
661 	unsigned long start_pfn;
662 	int scn_nr;
663 	int ret = -EINVAL;
664 
665 	if (!valid_section(ms))
666 		return ret;
667 
668 	ret = unregister_memory_section(ms);
669 	if (ret)
670 		return ret;
671 
672 	scn_nr = __section_nr(ms);
673 	start_pfn = section_nr_to_pfn(scn_nr);
674 	__remove_zone(zone, start_pfn);
675 
676 	sparse_remove_one_section(zone, ms);
677 	return 0;
678 }
679 
680 /**
681  * __remove_pages() - remove sections of pages from a zone
682  * @zone: zone from which pages need to be removed
683  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
684  * @nr_pages: number of pages to remove (must be multiple of section size)
685  *
686  * Generic helper function to remove section mappings and sysfs entries
687  * for the section of the memory we are removing. Caller needs to make
688  * sure that pages are marked reserved and zones are adjust properly by
689  * calling offline_pages().
690  */
691 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
692 		 unsigned long nr_pages)
693 {
694 	unsigned long i;
695 	int sections_to_remove;
696 	resource_size_t start, size;
697 	int ret = 0;
698 
699 	/*
700 	 * We can only remove entire sections
701 	 */
702 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
703 	BUG_ON(nr_pages % PAGES_PER_SECTION);
704 
705 	start = phys_start_pfn << PAGE_SHIFT;
706 	size = nr_pages * PAGE_SIZE;
707 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
708 	if (ret) {
709 		resource_size_t endres = start + size - 1;
710 
711 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
712 				&start, &endres, ret);
713 	}
714 
715 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
716 	for (i = 0; i < sections_to_remove; i++) {
717 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
718 		ret = __remove_section(zone, __pfn_to_section(pfn));
719 		if (ret)
720 			break;
721 	}
722 	return ret;
723 }
724 EXPORT_SYMBOL_GPL(__remove_pages);
725 #endif /* CONFIG_MEMORY_HOTREMOVE */
726 
727 int set_online_page_callback(online_page_callback_t callback)
728 {
729 	int rc = -EINVAL;
730 
731 	lock_memory_hotplug();
732 
733 	if (online_page_callback == generic_online_page) {
734 		online_page_callback = callback;
735 		rc = 0;
736 	}
737 
738 	unlock_memory_hotplug();
739 
740 	return rc;
741 }
742 EXPORT_SYMBOL_GPL(set_online_page_callback);
743 
744 int restore_online_page_callback(online_page_callback_t callback)
745 {
746 	int rc = -EINVAL;
747 
748 	lock_memory_hotplug();
749 
750 	if (online_page_callback == callback) {
751 		online_page_callback = generic_online_page;
752 		rc = 0;
753 	}
754 
755 	unlock_memory_hotplug();
756 
757 	return rc;
758 }
759 EXPORT_SYMBOL_GPL(restore_online_page_callback);
760 
761 void __online_page_set_limits(struct page *page)
762 {
763 }
764 EXPORT_SYMBOL_GPL(__online_page_set_limits);
765 
766 void __online_page_increment_counters(struct page *page)
767 {
768 	adjust_managed_page_count(page, 1);
769 }
770 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
771 
772 void __online_page_free(struct page *page)
773 {
774 	__free_reserved_page(page);
775 }
776 EXPORT_SYMBOL_GPL(__online_page_free);
777 
778 static void generic_online_page(struct page *page)
779 {
780 	__online_page_set_limits(page);
781 	__online_page_increment_counters(page);
782 	__online_page_free(page);
783 }
784 
785 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
786 			void *arg)
787 {
788 	unsigned long i;
789 	unsigned long onlined_pages = *(unsigned long *)arg;
790 	struct page *page;
791 	if (PageReserved(pfn_to_page(start_pfn)))
792 		for (i = 0; i < nr_pages; i++) {
793 			page = pfn_to_page(start_pfn + i);
794 			(*online_page_callback)(page);
795 			onlined_pages++;
796 		}
797 	*(unsigned long *)arg = onlined_pages;
798 	return 0;
799 }
800 
801 #ifdef CONFIG_MOVABLE_NODE
802 /*
803  * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
804  * normal memory.
805  */
806 static bool can_online_high_movable(struct zone *zone)
807 {
808 	return true;
809 }
810 #else /* CONFIG_MOVABLE_NODE */
811 /* ensure every online node has NORMAL memory */
812 static bool can_online_high_movable(struct zone *zone)
813 {
814 	return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
815 }
816 #endif /* CONFIG_MOVABLE_NODE */
817 
818 /* check which state of node_states will be changed when online memory */
819 static void node_states_check_changes_online(unsigned long nr_pages,
820 	struct zone *zone, struct memory_notify *arg)
821 {
822 	int nid = zone_to_nid(zone);
823 	enum zone_type zone_last = ZONE_NORMAL;
824 
825 	/*
826 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
827 	 * contains nodes which have zones of 0...ZONE_NORMAL,
828 	 * set zone_last to ZONE_NORMAL.
829 	 *
830 	 * If we don't have HIGHMEM nor movable node,
831 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
832 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
833 	 */
834 	if (N_MEMORY == N_NORMAL_MEMORY)
835 		zone_last = ZONE_MOVABLE;
836 
837 	/*
838 	 * if the memory to be online is in a zone of 0...zone_last, and
839 	 * the zones of 0...zone_last don't have memory before online, we will
840 	 * need to set the node to node_states[N_NORMAL_MEMORY] after
841 	 * the memory is online.
842 	 */
843 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
844 		arg->status_change_nid_normal = nid;
845 	else
846 		arg->status_change_nid_normal = -1;
847 
848 #ifdef CONFIG_HIGHMEM
849 	/*
850 	 * If we have movable node, node_states[N_HIGH_MEMORY]
851 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
852 	 * set zone_last to ZONE_HIGHMEM.
853 	 *
854 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
855 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
856 	 * set zone_last to ZONE_MOVABLE.
857 	 */
858 	zone_last = ZONE_HIGHMEM;
859 	if (N_MEMORY == N_HIGH_MEMORY)
860 		zone_last = ZONE_MOVABLE;
861 
862 	if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
863 		arg->status_change_nid_high = nid;
864 	else
865 		arg->status_change_nid_high = -1;
866 #else
867 	arg->status_change_nid_high = arg->status_change_nid_normal;
868 #endif
869 
870 	/*
871 	 * if the node don't have memory befor online, we will need to
872 	 * set the node to node_states[N_MEMORY] after the memory
873 	 * is online.
874 	 */
875 	if (!node_state(nid, N_MEMORY))
876 		arg->status_change_nid = nid;
877 	else
878 		arg->status_change_nid = -1;
879 }
880 
881 static void node_states_set_node(int node, struct memory_notify *arg)
882 {
883 	if (arg->status_change_nid_normal >= 0)
884 		node_set_state(node, N_NORMAL_MEMORY);
885 
886 	if (arg->status_change_nid_high >= 0)
887 		node_set_state(node, N_HIGH_MEMORY);
888 
889 	node_set_state(node, N_MEMORY);
890 }
891 
892 
893 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
894 {
895 	unsigned long flags;
896 	unsigned long onlined_pages = 0;
897 	struct zone *zone;
898 	int need_zonelists_rebuild = 0;
899 	int nid;
900 	int ret;
901 	struct memory_notify arg;
902 
903 	lock_memory_hotplug();
904 	/*
905 	 * This doesn't need a lock to do pfn_to_page().
906 	 * The section can't be removed here because of the
907 	 * memory_block->state_mutex.
908 	 */
909 	zone = page_zone(pfn_to_page(pfn));
910 
911 	if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
912 	    !can_online_high_movable(zone)) {
913 		unlock_memory_hotplug();
914 		return -EINVAL;
915 	}
916 
917 	if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
918 		if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
919 			unlock_memory_hotplug();
920 			return -EINVAL;
921 		}
922 	}
923 	if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
924 		if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
925 			unlock_memory_hotplug();
926 			return -EINVAL;
927 		}
928 	}
929 
930 	/* Previous code may changed the zone of the pfn range */
931 	zone = page_zone(pfn_to_page(pfn));
932 
933 	arg.start_pfn = pfn;
934 	arg.nr_pages = nr_pages;
935 	node_states_check_changes_online(nr_pages, zone, &arg);
936 
937 	nid = pfn_to_nid(pfn);
938 
939 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
940 	ret = notifier_to_errno(ret);
941 	if (ret) {
942 		memory_notify(MEM_CANCEL_ONLINE, &arg);
943 		unlock_memory_hotplug();
944 		return ret;
945 	}
946 	/*
947 	 * If this zone is not populated, then it is not in zonelist.
948 	 * This means the page allocator ignores this zone.
949 	 * So, zonelist must be updated after online.
950 	 */
951 	mutex_lock(&zonelists_mutex);
952 	if (!populated_zone(zone)) {
953 		need_zonelists_rebuild = 1;
954 		build_all_zonelists(NULL, zone);
955 	}
956 
957 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
958 		online_pages_range);
959 	if (ret) {
960 		if (need_zonelists_rebuild)
961 			zone_pcp_reset(zone);
962 		mutex_unlock(&zonelists_mutex);
963 		printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
964 		       (unsigned long long) pfn << PAGE_SHIFT,
965 		       (((unsigned long long) pfn + nr_pages)
966 			    << PAGE_SHIFT) - 1);
967 		memory_notify(MEM_CANCEL_ONLINE, &arg);
968 		unlock_memory_hotplug();
969 		return ret;
970 	}
971 
972 	zone->present_pages += onlined_pages;
973 
974 	pgdat_resize_lock(zone->zone_pgdat, &flags);
975 	zone->zone_pgdat->node_present_pages += onlined_pages;
976 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
977 
978 	if (onlined_pages) {
979 		node_states_set_node(zone_to_nid(zone), &arg);
980 		if (need_zonelists_rebuild)
981 			build_all_zonelists(NULL, NULL);
982 		else
983 			zone_pcp_update(zone);
984 	}
985 
986 	mutex_unlock(&zonelists_mutex);
987 
988 	init_per_zone_wmark_min();
989 
990 	if (onlined_pages)
991 		kswapd_run(zone_to_nid(zone));
992 
993 	vm_total_pages = nr_free_pagecache_pages();
994 
995 	writeback_set_ratelimit();
996 
997 	if (onlined_pages)
998 		memory_notify(MEM_ONLINE, &arg);
999 	unlock_memory_hotplug();
1000 
1001 	return 0;
1002 }
1003 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1004 
1005 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1006 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1007 {
1008 	struct pglist_data *pgdat;
1009 	unsigned long zones_size[MAX_NR_ZONES] = {0};
1010 	unsigned long zholes_size[MAX_NR_ZONES] = {0};
1011 	unsigned long start_pfn = start >> PAGE_SHIFT;
1012 
1013 	pgdat = NODE_DATA(nid);
1014 	if (!pgdat) {
1015 		pgdat = arch_alloc_nodedata(nid);
1016 		if (!pgdat)
1017 			return NULL;
1018 
1019 		arch_refresh_nodedata(nid, pgdat);
1020 	}
1021 
1022 	/* we can use NODE_DATA(nid) from here */
1023 
1024 	/* init node's zones as empty zones, we don't have any present pages.*/
1025 	free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1026 
1027 	/*
1028 	 * The node we allocated has no zone fallback lists. For avoiding
1029 	 * to access not-initialized zonelist, build here.
1030 	 */
1031 	mutex_lock(&zonelists_mutex);
1032 	build_all_zonelists(pgdat, NULL);
1033 	mutex_unlock(&zonelists_mutex);
1034 
1035 	return pgdat;
1036 }
1037 
1038 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1039 {
1040 	arch_refresh_nodedata(nid, NULL);
1041 	arch_free_nodedata(pgdat);
1042 	return;
1043 }
1044 
1045 
1046 /**
1047  * try_online_node - online a node if offlined
1048  *
1049  * called by cpu_up() to online a node without onlined memory.
1050  */
1051 int try_online_node(int nid)
1052 {
1053 	pg_data_t	*pgdat;
1054 	int	ret;
1055 
1056 	if (node_online(nid))
1057 		return 0;
1058 
1059 	lock_memory_hotplug();
1060 	pgdat = hotadd_new_pgdat(nid, 0);
1061 	if (!pgdat) {
1062 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1063 		ret = -ENOMEM;
1064 		goto out;
1065 	}
1066 	node_set_online(nid);
1067 	ret = register_one_node(nid);
1068 	BUG_ON(ret);
1069 
1070 	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1071 		mutex_lock(&zonelists_mutex);
1072 		build_all_zonelists(NULL, NULL);
1073 		mutex_unlock(&zonelists_mutex);
1074 	}
1075 
1076 out:
1077 	unlock_memory_hotplug();
1078 	return ret;
1079 }
1080 
1081 static int check_hotplug_memory_range(u64 start, u64 size)
1082 {
1083 	u64 start_pfn = start >> PAGE_SHIFT;
1084 	u64 nr_pages = size >> PAGE_SHIFT;
1085 
1086 	/* Memory range must be aligned with section */
1087 	if ((start_pfn & ~PAGE_SECTION_MASK) ||
1088 	    (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1089 		pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1090 				(unsigned long long)start,
1091 				(unsigned long long)size);
1092 		return -EINVAL;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1099 int __ref add_memory(int nid, u64 start, u64 size)
1100 {
1101 	pg_data_t *pgdat = NULL;
1102 	bool new_pgdat;
1103 	bool new_node;
1104 	struct resource *res;
1105 	int ret;
1106 
1107 	ret = check_hotplug_memory_range(start, size);
1108 	if (ret)
1109 		return ret;
1110 
1111 	lock_memory_hotplug();
1112 
1113 	res = register_memory_resource(start, size);
1114 	ret = -EEXIST;
1115 	if (!res)
1116 		goto out;
1117 
1118 	{	/* Stupid hack to suppress address-never-null warning */
1119 		void *p = NODE_DATA(nid);
1120 		new_pgdat = !p;
1121 	}
1122 	new_node = !node_online(nid);
1123 	if (new_node) {
1124 		pgdat = hotadd_new_pgdat(nid, start);
1125 		ret = -ENOMEM;
1126 		if (!pgdat)
1127 			goto error;
1128 	}
1129 
1130 	/* call arch's memory hotadd */
1131 	ret = arch_add_memory(nid, start, size);
1132 
1133 	if (ret < 0)
1134 		goto error;
1135 
1136 	/* we online node here. we can't roll back from here. */
1137 	node_set_online(nid);
1138 
1139 	if (new_node) {
1140 		ret = register_one_node(nid);
1141 		/*
1142 		 * If sysfs file of new node can't create, cpu on the node
1143 		 * can't be hot-added. There is no rollback way now.
1144 		 * So, check by BUG_ON() to catch it reluctantly..
1145 		 */
1146 		BUG_ON(ret);
1147 	}
1148 
1149 	/* create new memmap entry */
1150 	firmware_map_add_hotplug(start, start + size, "System RAM");
1151 
1152 	goto out;
1153 
1154 error:
1155 	/* rollback pgdat allocation and others */
1156 	if (new_pgdat)
1157 		rollback_node_hotadd(nid, pgdat);
1158 	release_memory_resource(res);
1159 
1160 out:
1161 	unlock_memory_hotplug();
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(add_memory);
1165 
1166 #ifdef CONFIG_MEMORY_HOTREMOVE
1167 /*
1168  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1169  * set and the size of the free page is given by page_order(). Using this,
1170  * the function determines if the pageblock contains only free pages.
1171  * Due to buddy contraints, a free page at least the size of a pageblock will
1172  * be located at the start of the pageblock
1173  */
1174 static inline int pageblock_free(struct page *page)
1175 {
1176 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1177 }
1178 
1179 /* Return the start of the next active pageblock after a given page */
1180 static struct page *next_active_pageblock(struct page *page)
1181 {
1182 	/* Ensure the starting page is pageblock-aligned */
1183 	BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1184 
1185 	/* If the entire pageblock is free, move to the end of free page */
1186 	if (pageblock_free(page)) {
1187 		int order;
1188 		/* be careful. we don't have locks, page_order can be changed.*/
1189 		order = page_order(page);
1190 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1191 			return page + (1 << order);
1192 	}
1193 
1194 	return page + pageblock_nr_pages;
1195 }
1196 
1197 /* Checks if this range of memory is likely to be hot-removable. */
1198 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1199 {
1200 	struct page *page = pfn_to_page(start_pfn);
1201 	struct page *end_page = page + nr_pages;
1202 
1203 	/* Check the starting page of each pageblock within the range */
1204 	for (; page < end_page; page = next_active_pageblock(page)) {
1205 		if (!is_pageblock_removable_nolock(page))
1206 			return 0;
1207 		cond_resched();
1208 	}
1209 
1210 	/* All pageblocks in the memory block are likely to be hot-removable */
1211 	return 1;
1212 }
1213 
1214 /*
1215  * Confirm all pages in a range [start, end) is belongs to the same zone.
1216  */
1217 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1218 {
1219 	unsigned long pfn;
1220 	struct zone *zone = NULL;
1221 	struct page *page;
1222 	int i;
1223 	for (pfn = start_pfn;
1224 	     pfn < end_pfn;
1225 	     pfn += MAX_ORDER_NR_PAGES) {
1226 		i = 0;
1227 		/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1228 		while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1229 			i++;
1230 		if (i == MAX_ORDER_NR_PAGES)
1231 			continue;
1232 		page = pfn_to_page(pfn + i);
1233 		if (zone && page_zone(page) != zone)
1234 			return 0;
1235 		zone = page_zone(page);
1236 	}
1237 	return 1;
1238 }
1239 
1240 /*
1241  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1242  * and hugepages). We scan pfn because it's much easier than scanning over
1243  * linked list. This function returns the pfn of the first found movable
1244  * page if it's found, otherwise 0.
1245  */
1246 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1247 {
1248 	unsigned long pfn;
1249 	struct page *page;
1250 	for (pfn = start; pfn < end; pfn++) {
1251 		if (pfn_valid(pfn)) {
1252 			page = pfn_to_page(pfn);
1253 			if (PageLRU(page))
1254 				return pfn;
1255 			if (PageHuge(page)) {
1256 				if (is_hugepage_active(page))
1257 					return pfn;
1258 				else
1259 					pfn = round_up(pfn + 1,
1260 						1 << compound_order(page)) - 1;
1261 			}
1262 		}
1263 	}
1264 	return 0;
1265 }
1266 
1267 #define NR_OFFLINE_AT_ONCE_PAGES	(256)
1268 static int
1269 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1270 {
1271 	unsigned long pfn;
1272 	struct page *page;
1273 	int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1274 	int not_managed = 0;
1275 	int ret = 0;
1276 	LIST_HEAD(source);
1277 
1278 	for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1279 		if (!pfn_valid(pfn))
1280 			continue;
1281 		page = pfn_to_page(pfn);
1282 
1283 		if (PageHuge(page)) {
1284 			struct page *head = compound_head(page);
1285 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1286 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1287 				ret = -EBUSY;
1288 				break;
1289 			}
1290 			if (isolate_huge_page(page, &source))
1291 				move_pages -= 1 << compound_order(head);
1292 			continue;
1293 		}
1294 
1295 		if (!get_page_unless_zero(page))
1296 			continue;
1297 		/*
1298 		 * We can skip free pages. And we can only deal with pages on
1299 		 * LRU.
1300 		 */
1301 		ret = isolate_lru_page(page);
1302 		if (!ret) { /* Success */
1303 			put_page(page);
1304 			list_add_tail(&page->lru, &source);
1305 			move_pages--;
1306 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 					    page_is_file_cache(page));
1308 
1309 		} else {
1310 #ifdef CONFIG_DEBUG_VM
1311 			printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1312 			       pfn);
1313 			dump_page(page);
1314 #endif
1315 			put_page(page);
1316 			/* Because we don't have big zone->lock. we should
1317 			   check this again here. */
1318 			if (page_count(page)) {
1319 				not_managed++;
1320 				ret = -EBUSY;
1321 				break;
1322 			}
1323 		}
1324 	}
1325 	if (!list_empty(&source)) {
1326 		if (not_managed) {
1327 			putback_movable_pages(&source);
1328 			goto out;
1329 		}
1330 
1331 		/*
1332 		 * alloc_migrate_target should be improooooved!!
1333 		 * migrate_pages returns # of failed pages.
1334 		 */
1335 		ret = migrate_pages(&source, alloc_migrate_target, 0,
1336 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1337 		if (ret)
1338 			putback_movable_pages(&source);
1339 	}
1340 out:
1341 	return ret;
1342 }
1343 
1344 /*
1345  * remove from free_area[] and mark all as Reserved.
1346  */
1347 static int
1348 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1349 			void *data)
1350 {
1351 	__offline_isolated_pages(start, start + nr_pages);
1352 	return 0;
1353 }
1354 
1355 static void
1356 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1357 {
1358 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1359 				offline_isolated_pages_cb);
1360 }
1361 
1362 /*
1363  * Check all pages in range, recoreded as memory resource, are isolated.
1364  */
1365 static int
1366 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367 			void *data)
1368 {
1369 	int ret;
1370 	long offlined = *(long *)data;
1371 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1372 	offlined = nr_pages;
1373 	if (!ret)
1374 		*(long *)data += offlined;
1375 	return ret;
1376 }
1377 
1378 static long
1379 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1380 {
1381 	long offlined = 0;
1382 	int ret;
1383 
1384 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1385 			check_pages_isolated_cb);
1386 	if (ret < 0)
1387 		offlined = (long)ret;
1388 	return offlined;
1389 }
1390 
1391 #ifdef CONFIG_MOVABLE_NODE
1392 /*
1393  * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1394  * normal memory.
1395  */
1396 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1397 {
1398 	return true;
1399 }
1400 #else /* CONFIG_MOVABLE_NODE */
1401 /* ensure the node has NORMAL memory if it is still online */
1402 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1403 {
1404 	struct pglist_data *pgdat = zone->zone_pgdat;
1405 	unsigned long present_pages = 0;
1406 	enum zone_type zt;
1407 
1408 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1409 		present_pages += pgdat->node_zones[zt].present_pages;
1410 
1411 	if (present_pages > nr_pages)
1412 		return true;
1413 
1414 	present_pages = 0;
1415 	for (; zt <= ZONE_MOVABLE; zt++)
1416 		present_pages += pgdat->node_zones[zt].present_pages;
1417 
1418 	/*
1419 	 * we can't offline the last normal memory until all
1420 	 * higher memory is offlined.
1421 	 */
1422 	return present_pages == 0;
1423 }
1424 #endif /* CONFIG_MOVABLE_NODE */
1425 
1426 static int __init cmdline_parse_movable_node(char *p)
1427 {
1428 #ifdef CONFIG_MOVABLE_NODE
1429 	/*
1430 	 * Memory used by the kernel cannot be hot-removed because Linux
1431 	 * cannot migrate the kernel pages. When memory hotplug is
1432 	 * enabled, we should prevent memblock from allocating memory
1433 	 * for the kernel.
1434 	 *
1435 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1436 	 * SRAT is parsed, we don't know about it.
1437 	 *
1438 	 * The kernel image is loaded into memory at very early time. We
1439 	 * cannot prevent this anyway. So on NUMA system, we set any
1440 	 * node the kernel resides in as un-hotpluggable.
1441 	 *
1442 	 * Since on modern servers, one node could have double-digit
1443 	 * gigabytes memory, we can assume the memory around the kernel
1444 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1445 	 * allocate memory near the kernel image to try the best to keep
1446 	 * the kernel away from hotpluggable memory.
1447 	 */
1448 	memblock_set_bottom_up(true);
1449 #else
1450 	pr_warn("movable_node option not supported\n");
1451 #endif
1452 	return 0;
1453 }
1454 early_param("movable_node", cmdline_parse_movable_node);
1455 
1456 /* check which state of node_states will be changed when offline memory */
1457 static void node_states_check_changes_offline(unsigned long nr_pages,
1458 		struct zone *zone, struct memory_notify *arg)
1459 {
1460 	struct pglist_data *pgdat = zone->zone_pgdat;
1461 	unsigned long present_pages = 0;
1462 	enum zone_type zt, zone_last = ZONE_NORMAL;
1463 
1464 	/*
1465 	 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1466 	 * contains nodes which have zones of 0...ZONE_NORMAL,
1467 	 * set zone_last to ZONE_NORMAL.
1468 	 *
1469 	 * If we don't have HIGHMEM nor movable node,
1470 	 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1471 	 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1472 	 */
1473 	if (N_MEMORY == N_NORMAL_MEMORY)
1474 		zone_last = ZONE_MOVABLE;
1475 
1476 	/*
1477 	 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1478 	 * If the memory to be offline is in a zone of 0...zone_last,
1479 	 * and it is the last present memory, 0...zone_last will
1480 	 * become empty after offline , thus we can determind we will
1481 	 * need to clear the node from node_states[N_NORMAL_MEMORY].
1482 	 */
1483 	for (zt = 0; zt <= zone_last; zt++)
1484 		present_pages += pgdat->node_zones[zt].present_pages;
1485 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1486 		arg->status_change_nid_normal = zone_to_nid(zone);
1487 	else
1488 		arg->status_change_nid_normal = -1;
1489 
1490 #ifdef CONFIG_HIGHMEM
1491 	/*
1492 	 * If we have movable node, node_states[N_HIGH_MEMORY]
1493 	 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1494 	 * set zone_last to ZONE_HIGHMEM.
1495 	 *
1496 	 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1497 	 * contains nodes which have zones of 0...ZONE_MOVABLE,
1498 	 * set zone_last to ZONE_MOVABLE.
1499 	 */
1500 	zone_last = ZONE_HIGHMEM;
1501 	if (N_MEMORY == N_HIGH_MEMORY)
1502 		zone_last = ZONE_MOVABLE;
1503 
1504 	for (; zt <= zone_last; zt++)
1505 		present_pages += pgdat->node_zones[zt].present_pages;
1506 	if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1507 		arg->status_change_nid_high = zone_to_nid(zone);
1508 	else
1509 		arg->status_change_nid_high = -1;
1510 #else
1511 	arg->status_change_nid_high = arg->status_change_nid_normal;
1512 #endif
1513 
1514 	/*
1515 	 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1516 	 */
1517 	zone_last = ZONE_MOVABLE;
1518 
1519 	/*
1520 	 * check whether node_states[N_HIGH_MEMORY] will be changed
1521 	 * If we try to offline the last present @nr_pages from the node,
1522 	 * we can determind we will need to clear the node from
1523 	 * node_states[N_HIGH_MEMORY].
1524 	 */
1525 	for (; zt <= zone_last; zt++)
1526 		present_pages += pgdat->node_zones[zt].present_pages;
1527 	if (nr_pages >= present_pages)
1528 		arg->status_change_nid = zone_to_nid(zone);
1529 	else
1530 		arg->status_change_nid = -1;
1531 }
1532 
1533 static void node_states_clear_node(int node, struct memory_notify *arg)
1534 {
1535 	if (arg->status_change_nid_normal >= 0)
1536 		node_clear_state(node, N_NORMAL_MEMORY);
1537 
1538 	if ((N_MEMORY != N_NORMAL_MEMORY) &&
1539 	    (arg->status_change_nid_high >= 0))
1540 		node_clear_state(node, N_HIGH_MEMORY);
1541 
1542 	if ((N_MEMORY != N_HIGH_MEMORY) &&
1543 	    (arg->status_change_nid >= 0))
1544 		node_clear_state(node, N_MEMORY);
1545 }
1546 
1547 static int __ref __offline_pages(unsigned long start_pfn,
1548 		  unsigned long end_pfn, unsigned long timeout)
1549 {
1550 	unsigned long pfn, nr_pages, expire;
1551 	long offlined_pages;
1552 	int ret, drain, retry_max, node;
1553 	unsigned long flags;
1554 	struct zone *zone;
1555 	struct memory_notify arg;
1556 
1557 	/* at least, alignment against pageblock is necessary */
1558 	if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1559 		return -EINVAL;
1560 	if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1561 		return -EINVAL;
1562 	/* This makes hotplug much easier...and readable.
1563 	   we assume this for now. .*/
1564 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
1565 		return -EINVAL;
1566 
1567 	lock_memory_hotplug();
1568 
1569 	zone = page_zone(pfn_to_page(start_pfn));
1570 	node = zone_to_nid(zone);
1571 	nr_pages = end_pfn - start_pfn;
1572 
1573 	ret = -EINVAL;
1574 	if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1575 		goto out;
1576 
1577 	/* set above range as isolated */
1578 	ret = start_isolate_page_range(start_pfn, end_pfn,
1579 				       MIGRATE_MOVABLE, true);
1580 	if (ret)
1581 		goto out;
1582 
1583 	arg.start_pfn = start_pfn;
1584 	arg.nr_pages = nr_pages;
1585 	node_states_check_changes_offline(nr_pages, zone, &arg);
1586 
1587 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1588 	ret = notifier_to_errno(ret);
1589 	if (ret)
1590 		goto failed_removal;
1591 
1592 	pfn = start_pfn;
1593 	expire = jiffies + timeout;
1594 	drain = 0;
1595 	retry_max = 5;
1596 repeat:
1597 	/* start memory hot removal */
1598 	ret = -EAGAIN;
1599 	if (time_after(jiffies, expire))
1600 		goto failed_removal;
1601 	ret = -EINTR;
1602 	if (signal_pending(current))
1603 		goto failed_removal;
1604 	ret = 0;
1605 	if (drain) {
1606 		lru_add_drain_all();
1607 		cond_resched();
1608 		drain_all_pages();
1609 	}
1610 
1611 	pfn = scan_movable_pages(start_pfn, end_pfn);
1612 	if (pfn) { /* We have movable pages */
1613 		ret = do_migrate_range(pfn, end_pfn);
1614 		if (!ret) {
1615 			drain = 1;
1616 			goto repeat;
1617 		} else {
1618 			if (ret < 0)
1619 				if (--retry_max == 0)
1620 					goto failed_removal;
1621 			yield();
1622 			drain = 1;
1623 			goto repeat;
1624 		}
1625 	}
1626 	/* drain all zone's lru pagevec, this is asynchronous... */
1627 	lru_add_drain_all();
1628 	yield();
1629 	/* drain pcp pages, this is synchronous. */
1630 	drain_all_pages();
1631 	/*
1632 	 * dissolve free hugepages in the memory block before doing offlining
1633 	 * actually in order to make hugetlbfs's object counting consistent.
1634 	 */
1635 	dissolve_free_huge_pages(start_pfn, end_pfn);
1636 	/* check again */
1637 	offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1638 	if (offlined_pages < 0) {
1639 		ret = -EBUSY;
1640 		goto failed_removal;
1641 	}
1642 	printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1643 	/* Ok, all of our target is isolated.
1644 	   We cannot do rollback at this point. */
1645 	offline_isolated_pages(start_pfn, end_pfn);
1646 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1647 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1648 	/* removal success */
1649 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1650 	zone->present_pages -= offlined_pages;
1651 
1652 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1653 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1654 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1655 
1656 	init_per_zone_wmark_min();
1657 
1658 	if (!populated_zone(zone)) {
1659 		zone_pcp_reset(zone);
1660 		mutex_lock(&zonelists_mutex);
1661 		build_all_zonelists(NULL, NULL);
1662 		mutex_unlock(&zonelists_mutex);
1663 	} else
1664 		zone_pcp_update(zone);
1665 
1666 	node_states_clear_node(node, &arg);
1667 	if (arg.status_change_nid >= 0)
1668 		kswapd_stop(node);
1669 
1670 	vm_total_pages = nr_free_pagecache_pages();
1671 	writeback_set_ratelimit();
1672 
1673 	memory_notify(MEM_OFFLINE, &arg);
1674 	unlock_memory_hotplug();
1675 	return 0;
1676 
1677 failed_removal:
1678 	printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1679 	       (unsigned long long) start_pfn << PAGE_SHIFT,
1680 	       ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1681 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1682 	/* pushback to free area */
1683 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1684 
1685 out:
1686 	unlock_memory_hotplug();
1687 	return ret;
1688 }
1689 
1690 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1691 {
1692 	return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1693 }
1694 #endif /* CONFIG_MEMORY_HOTREMOVE */
1695 
1696 /**
1697  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1698  * @start_pfn: start pfn of the memory range
1699  * @end_pfn: end pfn of the memory range
1700  * @arg: argument passed to func
1701  * @func: callback for each memory section walked
1702  *
1703  * This function walks through all present mem sections in range
1704  * [start_pfn, end_pfn) and call func on each mem section.
1705  *
1706  * Returns the return value of func.
1707  */
1708 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1709 		void *arg, int (*func)(struct memory_block *, void *))
1710 {
1711 	struct memory_block *mem = NULL;
1712 	struct mem_section *section;
1713 	unsigned long pfn, section_nr;
1714 	int ret;
1715 
1716 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1717 		section_nr = pfn_to_section_nr(pfn);
1718 		if (!present_section_nr(section_nr))
1719 			continue;
1720 
1721 		section = __nr_to_section(section_nr);
1722 		/* same memblock? */
1723 		if (mem)
1724 			if ((section_nr >= mem->start_section_nr) &&
1725 			    (section_nr <= mem->end_section_nr))
1726 				continue;
1727 
1728 		mem = find_memory_block_hinted(section, mem);
1729 		if (!mem)
1730 			continue;
1731 
1732 		ret = func(mem, arg);
1733 		if (ret) {
1734 			kobject_put(&mem->dev.kobj);
1735 			return ret;
1736 		}
1737 	}
1738 
1739 	if (mem)
1740 		kobject_put(&mem->dev.kobj);
1741 
1742 	return 0;
1743 }
1744 
1745 #ifdef CONFIG_MEMORY_HOTREMOVE
1746 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1747 {
1748 	int ret = !is_memblock_offlined(mem);
1749 
1750 	if (unlikely(ret)) {
1751 		phys_addr_t beginpa, endpa;
1752 
1753 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1754 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1755 		pr_warn("removing memory fails, because memory "
1756 			"[%pa-%pa] is onlined\n",
1757 			&beginpa, &endpa);
1758 	}
1759 
1760 	return ret;
1761 }
1762 
1763 static int check_cpu_on_node(pg_data_t *pgdat)
1764 {
1765 	int cpu;
1766 
1767 	for_each_present_cpu(cpu) {
1768 		if (cpu_to_node(cpu) == pgdat->node_id)
1769 			/*
1770 			 * the cpu on this node isn't removed, and we can't
1771 			 * offline this node.
1772 			 */
1773 			return -EBUSY;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static void unmap_cpu_on_node(pg_data_t *pgdat)
1780 {
1781 #ifdef CONFIG_ACPI_NUMA
1782 	int cpu;
1783 
1784 	for_each_possible_cpu(cpu)
1785 		if (cpu_to_node(cpu) == pgdat->node_id)
1786 			numa_clear_node(cpu);
1787 #endif
1788 }
1789 
1790 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1791 {
1792 	int ret;
1793 
1794 	ret = check_cpu_on_node(pgdat);
1795 	if (ret)
1796 		return ret;
1797 
1798 	/*
1799 	 * the node will be offlined when we come here, so we can clear
1800 	 * the cpu_to_node() now.
1801 	 */
1802 
1803 	unmap_cpu_on_node(pgdat);
1804 	return 0;
1805 }
1806 
1807 /**
1808  * try_offline_node
1809  *
1810  * Offline a node if all memory sections and cpus of the node are removed.
1811  *
1812  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1813  * and online/offline operations before this call.
1814  */
1815 void try_offline_node(int nid)
1816 {
1817 	pg_data_t *pgdat = NODE_DATA(nid);
1818 	unsigned long start_pfn = pgdat->node_start_pfn;
1819 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1820 	unsigned long pfn;
1821 	struct page *pgdat_page = virt_to_page(pgdat);
1822 	int i;
1823 
1824 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1825 		unsigned long section_nr = pfn_to_section_nr(pfn);
1826 
1827 		if (!present_section_nr(section_nr))
1828 			continue;
1829 
1830 		if (pfn_to_nid(pfn) != nid)
1831 			continue;
1832 
1833 		/*
1834 		 * some memory sections of this node are not removed, and we
1835 		 * can't offline node now.
1836 		 */
1837 		return;
1838 	}
1839 
1840 	if (check_and_unmap_cpu_on_node(pgdat))
1841 		return;
1842 
1843 	/*
1844 	 * all memory/cpu of this node are removed, we can offline this
1845 	 * node now.
1846 	 */
1847 	node_set_offline(nid);
1848 	unregister_one_node(nid);
1849 
1850 	if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1851 		/* node data is allocated from boot memory */
1852 		return;
1853 
1854 	/* free waittable in each zone */
1855 	for (i = 0; i < MAX_NR_ZONES; i++) {
1856 		struct zone *zone = pgdat->node_zones + i;
1857 
1858 		/*
1859 		 * wait_table may be allocated from boot memory,
1860 		 * here only free if it's allocated by vmalloc.
1861 		 */
1862 		if (is_vmalloc_addr(zone->wait_table))
1863 			vfree(zone->wait_table);
1864 	}
1865 
1866 	/*
1867 	 * Since there is no way to guarentee the address of pgdat/zone is not
1868 	 * on stack of any kernel threads or used by other kernel objects
1869 	 * without reference counting or other symchronizing method, do not
1870 	 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1871 	 * the memory when the node is online again.
1872 	 */
1873 	memset(pgdat, 0, sizeof(*pgdat));
1874 }
1875 EXPORT_SYMBOL(try_offline_node);
1876 
1877 /**
1878  * remove_memory
1879  *
1880  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1881  * and online/offline operations before this call, as required by
1882  * try_offline_node().
1883  */
1884 void __ref remove_memory(int nid, u64 start, u64 size)
1885 {
1886 	int ret;
1887 
1888 	BUG_ON(check_hotplug_memory_range(start, size));
1889 
1890 	lock_memory_hotplug();
1891 
1892 	/*
1893 	 * All memory blocks must be offlined before removing memory.  Check
1894 	 * whether all memory blocks in question are offline and trigger a BUG()
1895 	 * if this is not the case.
1896 	 */
1897 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1898 				check_memblock_offlined_cb);
1899 	if (ret) {
1900 		unlock_memory_hotplug();
1901 		BUG();
1902 	}
1903 
1904 	/* remove memmap entry */
1905 	firmware_map_remove(start, start + size, "System RAM");
1906 
1907 	arch_remove_memory(start, size);
1908 
1909 	try_offline_node(nid);
1910 
1911 	unlock_memory_hotplug();
1912 }
1913 EXPORT_SYMBOL_GPL(remove_memory);
1914 #endif /* CONFIG_MEMORY_HOTREMOVE */
1915