1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 #include <linux/module.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 46 /* 47 * memory_hotplug.memmap_on_memory parameter 48 */ 49 static bool memmap_on_memory __ro_after_init; 50 module_param(memmap_on_memory, bool, 0444); 51 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 52 53 static inline bool mhp_memmap_on_memory(void) 54 { 55 return memmap_on_memory; 56 } 57 #else 58 static inline bool mhp_memmap_on_memory(void) 59 { 60 return false; 61 } 62 #endif 63 64 enum { 65 ONLINE_POLICY_CONTIG_ZONES = 0, 66 ONLINE_POLICY_AUTO_MOVABLE, 67 }; 68 69 static const char * const online_policy_to_str[] = { 70 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 71 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 72 }; 73 74 static int set_online_policy(const char *val, const struct kernel_param *kp) 75 { 76 int ret = sysfs_match_string(online_policy_to_str, val); 77 78 if (ret < 0) 79 return ret; 80 *((int *)kp->arg) = ret; 81 return 0; 82 } 83 84 static int get_online_policy(char *buffer, const struct kernel_param *kp) 85 { 86 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 87 } 88 89 /* 90 * memory_hotplug.online_policy: configure online behavior when onlining without 91 * specifying a zone (MMOP_ONLINE) 92 * 93 * "contig-zones": keep zone contiguous 94 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 95 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 96 */ 97 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 98 static const struct kernel_param_ops online_policy_ops = { 99 .set = set_online_policy, 100 .get = get_online_policy, 101 }; 102 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 103 MODULE_PARM_DESC(online_policy, 104 "Set the online policy (\"contig-zones\", \"auto-movable\") " 105 "Default: \"contig-zones\""); 106 107 /* 108 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 109 * 110 * The ratio represent an upper limit and the kernel might decide to not 111 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 112 * doesn't allow for more MOVABLE memory. 113 */ 114 static unsigned int auto_movable_ratio __read_mostly = 301; 115 module_param(auto_movable_ratio, uint, 0644); 116 MODULE_PARM_DESC(auto_movable_ratio, 117 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 118 "in percent for \"auto-movable\" online policy. Default: 301"); 119 120 /* 121 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 122 */ 123 #ifdef CONFIG_NUMA 124 static bool auto_movable_numa_aware __read_mostly = true; 125 module_param(auto_movable_numa_aware, bool, 0644); 126 MODULE_PARM_DESC(auto_movable_numa_aware, 127 "Consider numa node stats in addition to global stats in " 128 "\"auto-movable\" online policy. Default: true"); 129 #endif /* CONFIG_NUMA */ 130 131 /* 132 * online_page_callback contains pointer to current page onlining function. 133 * Initially it is generic_online_page(). If it is required it could be 134 * changed by calling set_online_page_callback() for callback registration 135 * and restore_online_page_callback() for generic callback restore. 136 */ 137 138 static online_page_callback_t online_page_callback = generic_online_page; 139 static DEFINE_MUTEX(online_page_callback_lock); 140 141 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 142 143 void get_online_mems(void) 144 { 145 percpu_down_read(&mem_hotplug_lock); 146 } 147 148 void put_online_mems(void) 149 { 150 percpu_up_read(&mem_hotplug_lock); 151 } 152 153 bool movable_node_enabled = false; 154 155 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 156 int mhp_default_online_type = MMOP_OFFLINE; 157 #else 158 int mhp_default_online_type = MMOP_ONLINE; 159 #endif 160 161 static int __init setup_memhp_default_state(char *str) 162 { 163 const int online_type = mhp_online_type_from_str(str); 164 165 if (online_type >= 0) 166 mhp_default_online_type = online_type; 167 168 return 1; 169 } 170 __setup("memhp_default_state=", setup_memhp_default_state); 171 172 void mem_hotplug_begin(void) 173 { 174 cpus_read_lock(); 175 percpu_down_write(&mem_hotplug_lock); 176 } 177 178 void mem_hotplug_done(void) 179 { 180 percpu_up_write(&mem_hotplug_lock); 181 cpus_read_unlock(); 182 } 183 184 u64 max_mem_size = U64_MAX; 185 186 /* add this memory to iomem resource */ 187 static struct resource *register_memory_resource(u64 start, u64 size, 188 const char *resource_name) 189 { 190 struct resource *res; 191 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 192 193 if (strcmp(resource_name, "System RAM")) 194 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 195 196 if (!mhp_range_allowed(start, size, true)) 197 return ERR_PTR(-E2BIG); 198 199 /* 200 * Make sure value parsed from 'mem=' only restricts memory adding 201 * while booting, so that memory hotplug won't be impacted. Please 202 * refer to document of 'mem=' in kernel-parameters.txt for more 203 * details. 204 */ 205 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 206 return ERR_PTR(-E2BIG); 207 208 /* 209 * Request ownership of the new memory range. This might be 210 * a child of an existing resource that was present but 211 * not marked as busy. 212 */ 213 res = __request_region(&iomem_resource, start, size, 214 resource_name, flags); 215 216 if (!res) { 217 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 218 start, start + size); 219 return ERR_PTR(-EEXIST); 220 } 221 return res; 222 } 223 224 static void release_memory_resource(struct resource *res) 225 { 226 if (!res) 227 return; 228 release_resource(res); 229 kfree(res); 230 } 231 232 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 233 { 234 /* 235 * Disallow all operations smaller than a sub-section and only 236 * allow operations smaller than a section for 237 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 238 * enforces a larger memory_block_size_bytes() granularity for 239 * memory that will be marked online, so this check should only 240 * fire for direct arch_{add,remove}_memory() users outside of 241 * add_memory_resource(). 242 */ 243 unsigned long min_align; 244 245 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 246 min_align = PAGES_PER_SUBSECTION; 247 else 248 min_align = PAGES_PER_SECTION; 249 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 250 return -EINVAL; 251 return 0; 252 } 253 254 /* 255 * Return page for the valid pfn only if the page is online. All pfn 256 * walkers which rely on the fully initialized page->flags and others 257 * should use this rather than pfn_valid && pfn_to_page 258 */ 259 struct page *pfn_to_online_page(unsigned long pfn) 260 { 261 unsigned long nr = pfn_to_section_nr(pfn); 262 struct dev_pagemap *pgmap; 263 struct mem_section *ms; 264 265 if (nr >= NR_MEM_SECTIONS) 266 return NULL; 267 268 ms = __nr_to_section(nr); 269 if (!online_section(ms)) 270 return NULL; 271 272 /* 273 * Save some code text when online_section() + 274 * pfn_section_valid() are sufficient. 275 */ 276 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 277 return NULL; 278 279 if (!pfn_section_valid(ms, pfn)) 280 return NULL; 281 282 if (!online_device_section(ms)) 283 return pfn_to_page(pfn); 284 285 /* 286 * Slowpath: when ZONE_DEVICE collides with 287 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 288 * the section may be 'offline' but 'valid'. Only 289 * get_dev_pagemap() can determine sub-section online status. 290 */ 291 pgmap = get_dev_pagemap(pfn, NULL); 292 put_dev_pagemap(pgmap); 293 294 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 295 if (pgmap) 296 return NULL; 297 298 return pfn_to_page(pfn); 299 } 300 EXPORT_SYMBOL_GPL(pfn_to_online_page); 301 302 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 303 struct mhp_params *params) 304 { 305 const unsigned long end_pfn = pfn + nr_pages; 306 unsigned long cur_nr_pages; 307 int err; 308 struct vmem_altmap *altmap = params->altmap; 309 310 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 311 return -EINVAL; 312 313 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 314 315 if (altmap) { 316 /* 317 * Validate altmap is within bounds of the total request 318 */ 319 if (altmap->base_pfn != pfn 320 || vmem_altmap_offset(altmap) > nr_pages) { 321 pr_warn_once("memory add fail, invalid altmap\n"); 322 return -EINVAL; 323 } 324 altmap->alloc = 0; 325 } 326 327 if (check_pfn_span(pfn, nr_pages)) { 328 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1); 329 return -EINVAL; 330 } 331 332 for (; pfn < end_pfn; pfn += cur_nr_pages) { 333 /* Select all remaining pages up to the next section boundary */ 334 cur_nr_pages = min(end_pfn - pfn, 335 SECTION_ALIGN_UP(pfn + 1) - pfn); 336 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 337 params->pgmap); 338 if (err) 339 break; 340 cond_resched(); 341 } 342 vmemmap_populate_print_last(); 343 return err; 344 } 345 346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 348 unsigned long start_pfn, 349 unsigned long end_pfn) 350 { 351 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 352 if (unlikely(!pfn_to_online_page(start_pfn))) 353 continue; 354 355 if (unlikely(pfn_to_nid(start_pfn) != nid)) 356 continue; 357 358 if (zone != page_zone(pfn_to_page(start_pfn))) 359 continue; 360 361 return start_pfn; 362 } 363 364 return 0; 365 } 366 367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 369 unsigned long start_pfn, 370 unsigned long end_pfn) 371 { 372 unsigned long pfn; 373 374 /* pfn is the end pfn of a memory section. */ 375 pfn = end_pfn - 1; 376 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 377 if (unlikely(!pfn_to_online_page(pfn))) 378 continue; 379 380 if (unlikely(pfn_to_nid(pfn) != nid)) 381 continue; 382 383 if (zone != page_zone(pfn_to_page(pfn))) 384 continue; 385 386 return pfn; 387 } 388 389 return 0; 390 } 391 392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 393 unsigned long end_pfn) 394 { 395 unsigned long pfn; 396 int nid = zone_to_nid(zone); 397 398 if (zone->zone_start_pfn == start_pfn) { 399 /* 400 * If the section is smallest section in the zone, it need 401 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 402 * In this case, we find second smallest valid mem_section 403 * for shrinking zone. 404 */ 405 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 406 zone_end_pfn(zone)); 407 if (pfn) { 408 zone->spanned_pages = zone_end_pfn(zone) - pfn; 409 zone->zone_start_pfn = pfn; 410 } else { 411 zone->zone_start_pfn = 0; 412 zone->spanned_pages = 0; 413 } 414 } else if (zone_end_pfn(zone) == end_pfn) { 415 /* 416 * If the section is biggest section in the zone, it need 417 * shrink zone->spanned_pages. 418 * In this case, we find second biggest valid mem_section for 419 * shrinking zone. 420 */ 421 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 422 start_pfn); 423 if (pfn) 424 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 425 else { 426 zone->zone_start_pfn = 0; 427 zone->spanned_pages = 0; 428 } 429 } 430 } 431 432 static void update_pgdat_span(struct pglist_data *pgdat) 433 { 434 unsigned long node_start_pfn = 0, node_end_pfn = 0; 435 struct zone *zone; 436 437 for (zone = pgdat->node_zones; 438 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 439 unsigned long end_pfn = zone_end_pfn(zone); 440 441 /* No need to lock the zones, they can't change. */ 442 if (!zone->spanned_pages) 443 continue; 444 if (!node_end_pfn) { 445 node_start_pfn = zone->zone_start_pfn; 446 node_end_pfn = end_pfn; 447 continue; 448 } 449 450 if (end_pfn > node_end_pfn) 451 node_end_pfn = end_pfn; 452 if (zone->zone_start_pfn < node_start_pfn) 453 node_start_pfn = zone->zone_start_pfn; 454 } 455 456 pgdat->node_start_pfn = node_start_pfn; 457 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 458 } 459 460 void __ref remove_pfn_range_from_zone(struct zone *zone, 461 unsigned long start_pfn, 462 unsigned long nr_pages) 463 { 464 const unsigned long end_pfn = start_pfn + nr_pages; 465 struct pglist_data *pgdat = zone->zone_pgdat; 466 unsigned long pfn, cur_nr_pages; 467 468 /* Poison struct pages because they are now uninitialized again. */ 469 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 470 cond_resched(); 471 472 /* Select all remaining pages up to the next section boundary */ 473 cur_nr_pages = 474 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 475 page_init_poison(pfn_to_page(pfn), 476 sizeof(struct page) * cur_nr_pages); 477 } 478 479 /* 480 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 481 * we will not try to shrink the zones - which is okay as 482 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 483 */ 484 if (zone_is_zone_device(zone)) 485 return; 486 487 clear_zone_contiguous(zone); 488 489 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 490 update_pgdat_span(pgdat); 491 492 set_zone_contiguous(zone); 493 } 494 495 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 496 unsigned long map_offset, 497 struct vmem_altmap *altmap) 498 { 499 struct mem_section *ms = __pfn_to_section(pfn); 500 501 if (WARN_ON_ONCE(!valid_section(ms))) 502 return; 503 504 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 505 } 506 507 /** 508 * __remove_pages() - remove sections of pages 509 * @pfn: starting pageframe (must be aligned to start of a section) 510 * @nr_pages: number of pages to remove (must be multiple of section size) 511 * @altmap: alternative device page map or %NULL if default memmap is used 512 * 513 * Generic helper function to remove section mappings and sysfs entries 514 * for the section of the memory we are removing. Caller needs to make 515 * sure that pages are marked reserved and zones are adjust properly by 516 * calling offline_pages(). 517 */ 518 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 519 struct vmem_altmap *altmap) 520 { 521 const unsigned long end_pfn = pfn + nr_pages; 522 unsigned long cur_nr_pages; 523 unsigned long map_offset = 0; 524 525 map_offset = vmem_altmap_offset(altmap); 526 527 if (check_pfn_span(pfn, nr_pages)) { 528 WARN(1, "Misaligned %s start: %#lx end: #%lx\n", __func__, pfn, pfn + nr_pages - 1); 529 return; 530 } 531 532 for (; pfn < end_pfn; pfn += cur_nr_pages) { 533 cond_resched(); 534 /* Select all remaining pages up to the next section boundary */ 535 cur_nr_pages = min(end_pfn - pfn, 536 SECTION_ALIGN_UP(pfn + 1) - pfn); 537 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 538 map_offset = 0; 539 } 540 } 541 542 int set_online_page_callback(online_page_callback_t callback) 543 { 544 int rc = -EINVAL; 545 546 get_online_mems(); 547 mutex_lock(&online_page_callback_lock); 548 549 if (online_page_callback == generic_online_page) { 550 online_page_callback = callback; 551 rc = 0; 552 } 553 554 mutex_unlock(&online_page_callback_lock); 555 put_online_mems(); 556 557 return rc; 558 } 559 EXPORT_SYMBOL_GPL(set_online_page_callback); 560 561 int restore_online_page_callback(online_page_callback_t callback) 562 { 563 int rc = -EINVAL; 564 565 get_online_mems(); 566 mutex_lock(&online_page_callback_lock); 567 568 if (online_page_callback == callback) { 569 online_page_callback = generic_online_page; 570 rc = 0; 571 } 572 573 mutex_unlock(&online_page_callback_lock); 574 put_online_mems(); 575 576 return rc; 577 } 578 EXPORT_SYMBOL_GPL(restore_online_page_callback); 579 580 void generic_online_page(struct page *page, unsigned int order) 581 { 582 /* 583 * Freeing the page with debug_pagealloc enabled will try to unmap it, 584 * so we should map it first. This is better than introducing a special 585 * case in page freeing fast path. 586 */ 587 debug_pagealloc_map_pages(page, 1 << order); 588 __free_pages_core(page, order); 589 totalram_pages_add(1UL << order); 590 } 591 EXPORT_SYMBOL_GPL(generic_online_page); 592 593 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 594 { 595 const unsigned long end_pfn = start_pfn + nr_pages; 596 unsigned long pfn; 597 598 /* 599 * Online the pages in MAX_ORDER aligned chunks. The callback might 600 * decide to not expose all pages to the buddy (e.g., expose them 601 * later). We account all pages as being online and belonging to this 602 * zone ("present"). 603 * When using memmap_on_memory, the range might not be aligned to 604 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 605 * this and the first chunk to online will be pageblock_nr_pages. 606 */ 607 for (pfn = start_pfn; pfn < end_pfn;) { 608 int order; 609 610 /* 611 * Free to online pages in the largest chunks alignment allows. 612 * 613 * __ffs() behaviour is undefined for 0. start == 0 is 614 * MAX_ORDER-aligned, Set order to MAX_ORDER for the case. 615 */ 616 if (pfn) 617 order = min_t(int, MAX_ORDER, __ffs(pfn)); 618 else 619 order = MAX_ORDER; 620 621 (*online_page_callback)(pfn_to_page(pfn), order); 622 pfn += (1UL << order); 623 } 624 625 /* mark all involved sections as online */ 626 online_mem_sections(start_pfn, end_pfn); 627 } 628 629 /* check which state of node_states will be changed when online memory */ 630 static void node_states_check_changes_online(unsigned long nr_pages, 631 struct zone *zone, struct memory_notify *arg) 632 { 633 int nid = zone_to_nid(zone); 634 635 arg->status_change_nid = NUMA_NO_NODE; 636 arg->status_change_nid_normal = NUMA_NO_NODE; 637 638 if (!node_state(nid, N_MEMORY)) 639 arg->status_change_nid = nid; 640 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 641 arg->status_change_nid_normal = nid; 642 } 643 644 static void node_states_set_node(int node, struct memory_notify *arg) 645 { 646 if (arg->status_change_nid_normal >= 0) 647 node_set_state(node, N_NORMAL_MEMORY); 648 649 if (arg->status_change_nid >= 0) 650 node_set_state(node, N_MEMORY); 651 } 652 653 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 654 unsigned long nr_pages) 655 { 656 unsigned long old_end_pfn = zone_end_pfn(zone); 657 658 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 659 zone->zone_start_pfn = start_pfn; 660 661 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 662 } 663 664 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 665 unsigned long nr_pages) 666 { 667 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 668 669 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 670 pgdat->node_start_pfn = start_pfn; 671 672 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 673 674 } 675 676 #ifdef CONFIG_ZONE_DEVICE 677 static void section_taint_zone_device(unsigned long pfn) 678 { 679 struct mem_section *ms = __pfn_to_section(pfn); 680 681 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 682 } 683 #else 684 static inline void section_taint_zone_device(unsigned long pfn) 685 { 686 } 687 #endif 688 689 /* 690 * Associate the pfn range with the given zone, initializing the memmaps 691 * and resizing the pgdat/zone data to span the added pages. After this 692 * call, all affected pages are PG_reserved. 693 * 694 * All aligned pageblocks are initialized to the specified migratetype 695 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 696 * zone stats (e.g., nr_isolate_pageblock) are touched. 697 */ 698 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 699 unsigned long nr_pages, 700 struct vmem_altmap *altmap, int migratetype) 701 { 702 struct pglist_data *pgdat = zone->zone_pgdat; 703 int nid = pgdat->node_id; 704 705 clear_zone_contiguous(zone); 706 707 if (zone_is_empty(zone)) 708 init_currently_empty_zone(zone, start_pfn, nr_pages); 709 resize_zone_range(zone, start_pfn, nr_pages); 710 resize_pgdat_range(pgdat, start_pfn, nr_pages); 711 712 /* 713 * Subsection population requires care in pfn_to_online_page(). 714 * Set the taint to enable the slow path detection of 715 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 716 * section. 717 */ 718 if (zone_is_zone_device(zone)) { 719 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 720 section_taint_zone_device(start_pfn); 721 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 722 section_taint_zone_device(start_pfn + nr_pages); 723 } 724 725 /* 726 * TODO now we have a visible range of pages which are not associated 727 * with their zone properly. Not nice but set_pfnblock_flags_mask 728 * expects the zone spans the pfn range. All the pages in the range 729 * are reserved so nobody should be touching them so we should be safe 730 */ 731 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 732 MEMINIT_HOTPLUG, altmap, migratetype); 733 734 set_zone_contiguous(zone); 735 } 736 737 struct auto_movable_stats { 738 unsigned long kernel_early_pages; 739 unsigned long movable_pages; 740 }; 741 742 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 743 struct zone *zone) 744 { 745 if (zone_idx(zone) == ZONE_MOVABLE) { 746 stats->movable_pages += zone->present_pages; 747 } else { 748 stats->kernel_early_pages += zone->present_early_pages; 749 #ifdef CONFIG_CMA 750 /* 751 * CMA pages (never on hotplugged memory) behave like 752 * ZONE_MOVABLE. 753 */ 754 stats->movable_pages += zone->cma_pages; 755 stats->kernel_early_pages -= zone->cma_pages; 756 #endif /* CONFIG_CMA */ 757 } 758 } 759 struct auto_movable_group_stats { 760 unsigned long movable_pages; 761 unsigned long req_kernel_early_pages; 762 }; 763 764 static int auto_movable_stats_account_group(struct memory_group *group, 765 void *arg) 766 { 767 const int ratio = READ_ONCE(auto_movable_ratio); 768 struct auto_movable_group_stats *stats = arg; 769 long pages; 770 771 /* 772 * We don't support modifying the config while the auto-movable online 773 * policy is already enabled. Just avoid the division by zero below. 774 */ 775 if (!ratio) 776 return 0; 777 778 /* 779 * Calculate how many early kernel pages this group requires to 780 * satisfy the configured zone ratio. 781 */ 782 pages = group->present_movable_pages * 100 / ratio; 783 pages -= group->present_kernel_pages; 784 785 if (pages > 0) 786 stats->req_kernel_early_pages += pages; 787 stats->movable_pages += group->present_movable_pages; 788 return 0; 789 } 790 791 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 792 unsigned long nr_pages) 793 { 794 unsigned long kernel_early_pages, movable_pages; 795 struct auto_movable_group_stats group_stats = {}; 796 struct auto_movable_stats stats = {}; 797 pg_data_t *pgdat = NODE_DATA(nid); 798 struct zone *zone; 799 int i; 800 801 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 802 if (nid == NUMA_NO_NODE) { 803 /* TODO: cache values */ 804 for_each_populated_zone(zone) 805 auto_movable_stats_account_zone(&stats, zone); 806 } else { 807 for (i = 0; i < MAX_NR_ZONES; i++) { 808 zone = pgdat->node_zones + i; 809 if (populated_zone(zone)) 810 auto_movable_stats_account_zone(&stats, zone); 811 } 812 } 813 814 kernel_early_pages = stats.kernel_early_pages; 815 movable_pages = stats.movable_pages; 816 817 /* 818 * Kernel memory inside dynamic memory group allows for more MOVABLE 819 * memory within the same group. Remove the effect of all but the 820 * current group from the stats. 821 */ 822 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 823 group, &group_stats); 824 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 825 return false; 826 kernel_early_pages -= group_stats.req_kernel_early_pages; 827 movable_pages -= group_stats.movable_pages; 828 829 if (group && group->is_dynamic) 830 kernel_early_pages += group->present_kernel_pages; 831 832 /* 833 * Test if we could online the given number of pages to ZONE_MOVABLE 834 * and still stay in the configured ratio. 835 */ 836 movable_pages += nr_pages; 837 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 838 } 839 840 /* 841 * Returns a default kernel memory zone for the given pfn range. 842 * If no kernel zone covers this pfn range it will automatically go 843 * to the ZONE_NORMAL. 844 */ 845 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 846 unsigned long nr_pages) 847 { 848 struct pglist_data *pgdat = NODE_DATA(nid); 849 int zid; 850 851 for (zid = 0; zid < ZONE_NORMAL; zid++) { 852 struct zone *zone = &pgdat->node_zones[zid]; 853 854 if (zone_intersects(zone, start_pfn, nr_pages)) 855 return zone; 856 } 857 858 return &pgdat->node_zones[ZONE_NORMAL]; 859 } 860 861 /* 862 * Determine to which zone to online memory dynamically based on user 863 * configuration and system stats. We care about the following ratio: 864 * 865 * MOVABLE : KERNEL 866 * 867 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 868 * one of the kernel zones. CMA pages inside one of the kernel zones really 869 * behaves like ZONE_MOVABLE, so we treat them accordingly. 870 * 871 * We don't allow for hotplugged memory in a KERNEL zone to increase the 872 * amount of MOVABLE memory we can have, so we end up with: 873 * 874 * MOVABLE : KERNEL_EARLY 875 * 876 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 877 * boot. We base our calculation on KERNEL_EARLY internally, because: 878 * 879 * a) Hotplugged memory in one of the kernel zones can sometimes still get 880 * hotunplugged, especially when hot(un)plugging individual memory blocks. 881 * There is no coordination across memory devices, therefore "automatic" 882 * hotunplugging, as implemented in hypervisors, could result in zone 883 * imbalances. 884 * b) Early/boot memory in one of the kernel zones can usually not get 885 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 886 * with unmovable allocations). While there are corner cases where it might 887 * still work, it is barely relevant in practice. 888 * 889 * Exceptions are dynamic memory groups, which allow for more MOVABLE 890 * memory within the same memory group -- because in that case, there is 891 * coordination within the single memory device managed by a single driver. 892 * 893 * We rely on "present pages" instead of "managed pages", as the latter is 894 * highly unreliable and dynamic in virtualized environments, and does not 895 * consider boot time allocations. For example, memory ballooning adjusts the 896 * managed pages when inflating/deflating the balloon, and balloon compaction 897 * can even migrate inflated pages between zones. 898 * 899 * Using "present pages" is better but some things to keep in mind are: 900 * 901 * a) Some memblock allocations, such as for the crashkernel area, are 902 * effectively unused by the kernel, yet they account to "present pages". 903 * Fortunately, these allocations are comparatively small in relevant setups 904 * (e.g., fraction of system memory). 905 * b) Some hotplugged memory blocks in virtualized environments, esecially 906 * hotplugged by virtio-mem, look like they are completely present, however, 907 * only parts of the memory block are actually currently usable. 908 * "present pages" is an upper limit that can get reached at runtime. As 909 * we base our calculations on KERNEL_EARLY, this is not an issue. 910 */ 911 static struct zone *auto_movable_zone_for_pfn(int nid, 912 struct memory_group *group, 913 unsigned long pfn, 914 unsigned long nr_pages) 915 { 916 unsigned long online_pages = 0, max_pages, end_pfn; 917 struct page *page; 918 919 if (!auto_movable_ratio) 920 goto kernel_zone; 921 922 if (group && !group->is_dynamic) { 923 max_pages = group->s.max_pages; 924 online_pages = group->present_movable_pages; 925 926 /* If anything is !MOVABLE online the rest !MOVABLE. */ 927 if (group->present_kernel_pages) 928 goto kernel_zone; 929 } else if (!group || group->d.unit_pages == nr_pages) { 930 max_pages = nr_pages; 931 } else { 932 max_pages = group->d.unit_pages; 933 /* 934 * Take a look at all online sections in the current unit. 935 * We can safely assume that all pages within a section belong 936 * to the same zone, because dynamic memory groups only deal 937 * with hotplugged memory. 938 */ 939 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 940 end_pfn = pfn + group->d.unit_pages; 941 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 942 page = pfn_to_online_page(pfn); 943 if (!page) 944 continue; 945 /* If anything is !MOVABLE online the rest !MOVABLE. */ 946 if (!is_zone_movable_page(page)) 947 goto kernel_zone; 948 online_pages += PAGES_PER_SECTION; 949 } 950 } 951 952 /* 953 * Online MOVABLE if we could *currently* online all remaining parts 954 * MOVABLE. We expect to (add+) online them immediately next, so if 955 * nobody interferes, all will be MOVABLE if possible. 956 */ 957 nr_pages = max_pages - online_pages; 958 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 959 goto kernel_zone; 960 961 #ifdef CONFIG_NUMA 962 if (auto_movable_numa_aware && 963 !auto_movable_can_online_movable(nid, group, nr_pages)) 964 goto kernel_zone; 965 #endif /* CONFIG_NUMA */ 966 967 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 968 kernel_zone: 969 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 970 } 971 972 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 973 unsigned long nr_pages) 974 { 975 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 976 nr_pages); 977 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 978 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 979 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 980 981 /* 982 * We inherit the existing zone in a simple case where zones do not 983 * overlap in the given range 984 */ 985 if (in_kernel ^ in_movable) 986 return (in_kernel) ? kernel_zone : movable_zone; 987 988 /* 989 * If the range doesn't belong to any zone or two zones overlap in the 990 * given range then we use movable zone only if movable_node is 991 * enabled because we always online to a kernel zone by default. 992 */ 993 return movable_node_enabled ? movable_zone : kernel_zone; 994 } 995 996 struct zone *zone_for_pfn_range(int online_type, int nid, 997 struct memory_group *group, unsigned long start_pfn, 998 unsigned long nr_pages) 999 { 1000 if (online_type == MMOP_ONLINE_KERNEL) 1001 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1002 1003 if (online_type == MMOP_ONLINE_MOVABLE) 1004 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1005 1006 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1007 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1008 1009 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1010 } 1011 1012 /* 1013 * This function should only be called by memory_block_{online,offline}, 1014 * and {online,offline}_pages. 1015 */ 1016 void adjust_present_page_count(struct page *page, struct memory_group *group, 1017 long nr_pages) 1018 { 1019 struct zone *zone = page_zone(page); 1020 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1021 1022 /* 1023 * We only support onlining/offlining/adding/removing of complete 1024 * memory blocks; therefore, either all is either early or hotplugged. 1025 */ 1026 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1027 zone->present_early_pages += nr_pages; 1028 zone->present_pages += nr_pages; 1029 zone->zone_pgdat->node_present_pages += nr_pages; 1030 1031 if (group && movable) 1032 group->present_movable_pages += nr_pages; 1033 else if (group && !movable) 1034 group->present_kernel_pages += nr_pages; 1035 } 1036 1037 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1038 struct zone *zone) 1039 { 1040 unsigned long end_pfn = pfn + nr_pages; 1041 int ret, i; 1042 1043 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1044 if (ret) 1045 return ret; 1046 1047 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1048 1049 for (i = 0; i < nr_pages; i++) 1050 SetPageVmemmapSelfHosted(pfn_to_page(pfn + i)); 1051 1052 /* 1053 * It might be that the vmemmap_pages fully span sections. If that is 1054 * the case, mark those sections online here as otherwise they will be 1055 * left offline. 1056 */ 1057 if (nr_pages >= PAGES_PER_SECTION) 1058 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1059 1060 return ret; 1061 } 1062 1063 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1064 { 1065 unsigned long end_pfn = pfn + nr_pages; 1066 1067 /* 1068 * It might be that the vmemmap_pages fully span sections. If that is 1069 * the case, mark those sections offline here as otherwise they will be 1070 * left online. 1071 */ 1072 if (nr_pages >= PAGES_PER_SECTION) 1073 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1074 1075 /* 1076 * The pages associated with this vmemmap have been offlined, so 1077 * we can reset its state here. 1078 */ 1079 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1080 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1081 } 1082 1083 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1084 struct zone *zone, struct memory_group *group) 1085 { 1086 unsigned long flags; 1087 int need_zonelists_rebuild = 0; 1088 const int nid = zone_to_nid(zone); 1089 int ret; 1090 struct memory_notify arg; 1091 1092 /* 1093 * {on,off}lining is constrained to full memory sections (or more 1094 * precisely to memory blocks from the user space POV). 1095 * memmap_on_memory is an exception because it reserves initial part 1096 * of the physical memory space for vmemmaps. That space is pageblock 1097 * aligned. 1098 */ 1099 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1100 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1101 return -EINVAL; 1102 1103 mem_hotplug_begin(); 1104 1105 /* associate pfn range with the zone */ 1106 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1107 1108 arg.start_pfn = pfn; 1109 arg.nr_pages = nr_pages; 1110 node_states_check_changes_online(nr_pages, zone, &arg); 1111 1112 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1113 ret = notifier_to_errno(ret); 1114 if (ret) 1115 goto failed_addition; 1116 1117 /* 1118 * Fixup the number of isolated pageblocks before marking the sections 1119 * onlining, such that undo_isolate_page_range() works correctly. 1120 */ 1121 spin_lock_irqsave(&zone->lock, flags); 1122 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1123 spin_unlock_irqrestore(&zone->lock, flags); 1124 1125 /* 1126 * If this zone is not populated, then it is not in zonelist. 1127 * This means the page allocator ignores this zone. 1128 * So, zonelist must be updated after online. 1129 */ 1130 if (!populated_zone(zone)) { 1131 need_zonelists_rebuild = 1; 1132 setup_zone_pageset(zone); 1133 } 1134 1135 online_pages_range(pfn, nr_pages); 1136 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1137 1138 node_states_set_node(nid, &arg); 1139 if (need_zonelists_rebuild) 1140 build_all_zonelists(NULL); 1141 1142 /* Basic onlining is complete, allow allocation of onlined pages. */ 1143 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1144 1145 /* 1146 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1147 * the tail of the freelist when undoing isolation). Shuffle the whole 1148 * zone to make sure the just onlined pages are properly distributed 1149 * across the whole freelist - to create an initial shuffle. 1150 */ 1151 shuffle_zone(zone); 1152 1153 /* reinitialise watermarks and update pcp limits */ 1154 init_per_zone_wmark_min(); 1155 1156 kswapd_run(nid); 1157 kcompactd_run(nid); 1158 1159 writeback_set_ratelimit(); 1160 1161 memory_notify(MEM_ONLINE, &arg); 1162 mem_hotplug_done(); 1163 return 0; 1164 1165 failed_addition: 1166 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1167 (unsigned long long) pfn << PAGE_SHIFT, 1168 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1169 memory_notify(MEM_CANCEL_ONLINE, &arg); 1170 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1171 mem_hotplug_done(); 1172 return ret; 1173 } 1174 1175 static void reset_node_present_pages(pg_data_t *pgdat) 1176 { 1177 struct zone *z; 1178 1179 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1180 z->present_pages = 0; 1181 1182 pgdat->node_present_pages = 0; 1183 } 1184 1185 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1186 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1187 { 1188 struct pglist_data *pgdat; 1189 1190 /* 1191 * NODE_DATA is preallocated (free_area_init) but its internal 1192 * state is not allocated completely. Add missing pieces. 1193 * Completely offline nodes stay around and they just need 1194 * reintialization. 1195 */ 1196 pgdat = NODE_DATA(nid); 1197 1198 /* init node's zones as empty zones, we don't have any present pages.*/ 1199 free_area_init_core_hotplug(pgdat); 1200 1201 /* 1202 * The node we allocated has no zone fallback lists. For avoiding 1203 * to access not-initialized zonelist, build here. 1204 */ 1205 build_all_zonelists(pgdat); 1206 1207 /* 1208 * When memory is hot-added, all the memory is in offline state. So 1209 * clear all zones' present_pages because they will be updated in 1210 * online_pages() and offline_pages(). 1211 * TODO: should be in free_area_init_core_hotplug? 1212 */ 1213 reset_node_managed_pages(pgdat); 1214 reset_node_present_pages(pgdat); 1215 1216 return pgdat; 1217 } 1218 1219 /* 1220 * __try_online_node - online a node if offlined 1221 * @nid: the node ID 1222 * @set_node_online: Whether we want to online the node 1223 * called by cpu_up() to online a node without onlined memory. 1224 * 1225 * Returns: 1226 * 1 -> a new node has been allocated 1227 * 0 -> the node is already online 1228 * -ENOMEM -> the node could not be allocated 1229 */ 1230 static int __try_online_node(int nid, bool set_node_online) 1231 { 1232 pg_data_t *pgdat; 1233 int ret = 1; 1234 1235 if (node_online(nid)) 1236 return 0; 1237 1238 pgdat = hotadd_init_pgdat(nid); 1239 if (!pgdat) { 1240 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1241 ret = -ENOMEM; 1242 goto out; 1243 } 1244 1245 if (set_node_online) { 1246 node_set_online(nid); 1247 ret = register_one_node(nid); 1248 BUG_ON(ret); 1249 } 1250 out: 1251 return ret; 1252 } 1253 1254 /* 1255 * Users of this function always want to online/register the node 1256 */ 1257 int try_online_node(int nid) 1258 { 1259 int ret; 1260 1261 mem_hotplug_begin(); 1262 ret = __try_online_node(nid, true); 1263 mem_hotplug_done(); 1264 return ret; 1265 } 1266 1267 static int check_hotplug_memory_range(u64 start, u64 size) 1268 { 1269 /* memory range must be block size aligned */ 1270 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1271 !IS_ALIGNED(size, memory_block_size_bytes())) { 1272 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1273 memory_block_size_bytes(), start, size); 1274 return -EINVAL; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int online_memory_block(struct memory_block *mem, void *arg) 1281 { 1282 mem->online_type = mhp_default_online_type; 1283 return device_online(&mem->dev); 1284 } 1285 1286 bool mhp_supports_memmap_on_memory(unsigned long size) 1287 { 1288 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1289 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1290 unsigned long remaining_size = size - vmemmap_size; 1291 1292 /* 1293 * Besides having arch support and the feature enabled at runtime, we 1294 * need a few more assumptions to hold true: 1295 * 1296 * a) We span a single memory block: memory onlining/offlinin;g happens 1297 * in memory block granularity. We don't want the vmemmap of online 1298 * memory blocks to reside on offline memory blocks. In the future, 1299 * we might want to support variable-sized memory blocks to make the 1300 * feature more versatile. 1301 * 1302 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1303 * to populate memory from the altmap for unrelated parts (i.e., 1304 * other memory blocks) 1305 * 1306 * c) The vmemmap pages (and thereby the pages that will be exposed to 1307 * the buddy) have to cover full pageblocks: memory onlining/offlining 1308 * code requires applicable ranges to be page-aligned, for example, to 1309 * set the migratetypes properly. 1310 * 1311 * TODO: Although we have a check here to make sure that vmemmap pages 1312 * fully populate a PMD, it is not the right place to check for 1313 * this. A much better solution involves improving vmemmap code 1314 * to fallback to base pages when trying to populate vmemmap using 1315 * altmap as an alternative source of memory, and we do not exactly 1316 * populate a single PMD. 1317 */ 1318 return mhp_memmap_on_memory() && 1319 size == memory_block_size_bytes() && 1320 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1321 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1322 } 1323 1324 /* 1325 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1326 * and online/offline operations (triggered e.g. by sysfs). 1327 * 1328 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1329 */ 1330 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1331 { 1332 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1333 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1334 struct vmem_altmap mhp_altmap = {}; 1335 struct memory_group *group = NULL; 1336 u64 start, size; 1337 bool new_node = false; 1338 int ret; 1339 1340 start = res->start; 1341 size = resource_size(res); 1342 1343 ret = check_hotplug_memory_range(start, size); 1344 if (ret) 1345 return ret; 1346 1347 if (mhp_flags & MHP_NID_IS_MGID) { 1348 group = memory_group_find_by_id(nid); 1349 if (!group) 1350 return -EINVAL; 1351 nid = group->nid; 1352 } 1353 1354 if (!node_possible(nid)) { 1355 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1356 return -EINVAL; 1357 } 1358 1359 mem_hotplug_begin(); 1360 1361 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1362 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1363 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1364 ret = memblock_add_node(start, size, nid, memblock_flags); 1365 if (ret) 1366 goto error_mem_hotplug_end; 1367 } 1368 1369 ret = __try_online_node(nid, false); 1370 if (ret < 0) 1371 goto error; 1372 new_node = ret; 1373 1374 /* 1375 * Self hosted memmap array 1376 */ 1377 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1378 if (!mhp_supports_memmap_on_memory(size)) { 1379 ret = -EINVAL; 1380 goto error; 1381 } 1382 mhp_altmap.free = PHYS_PFN(size); 1383 mhp_altmap.base_pfn = PHYS_PFN(start); 1384 params.altmap = &mhp_altmap; 1385 } 1386 1387 /* call arch's memory hotadd */ 1388 ret = arch_add_memory(nid, start, size, ¶ms); 1389 if (ret < 0) 1390 goto error; 1391 1392 /* create memory block devices after memory was added */ 1393 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1394 group); 1395 if (ret) { 1396 arch_remove_memory(start, size, NULL); 1397 goto error; 1398 } 1399 1400 if (new_node) { 1401 /* If sysfs file of new node can't be created, cpu on the node 1402 * can't be hot-added. There is no rollback way now. 1403 * So, check by BUG_ON() to catch it reluctantly.. 1404 * We online node here. We can't roll back from here. 1405 */ 1406 node_set_online(nid); 1407 ret = __register_one_node(nid); 1408 BUG_ON(ret); 1409 } 1410 1411 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1412 PFN_UP(start + size - 1), 1413 MEMINIT_HOTPLUG); 1414 1415 /* create new memmap entry */ 1416 if (!strcmp(res->name, "System RAM")) 1417 firmware_map_add_hotplug(start, start + size, "System RAM"); 1418 1419 /* device_online() will take the lock when calling online_pages() */ 1420 mem_hotplug_done(); 1421 1422 /* 1423 * In case we're allowed to merge the resource, flag it and trigger 1424 * merging now that adding succeeded. 1425 */ 1426 if (mhp_flags & MHP_MERGE_RESOURCE) 1427 merge_system_ram_resource(res); 1428 1429 /* online pages if requested */ 1430 if (mhp_default_online_type != MMOP_OFFLINE) 1431 walk_memory_blocks(start, size, NULL, online_memory_block); 1432 1433 return ret; 1434 error: 1435 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1436 memblock_remove(start, size); 1437 error_mem_hotplug_end: 1438 mem_hotplug_done(); 1439 return ret; 1440 } 1441 1442 /* requires device_hotplug_lock, see add_memory_resource() */ 1443 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1444 { 1445 struct resource *res; 1446 int ret; 1447 1448 res = register_memory_resource(start, size, "System RAM"); 1449 if (IS_ERR(res)) 1450 return PTR_ERR(res); 1451 1452 ret = add_memory_resource(nid, res, mhp_flags); 1453 if (ret < 0) 1454 release_memory_resource(res); 1455 return ret; 1456 } 1457 1458 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1459 { 1460 int rc; 1461 1462 lock_device_hotplug(); 1463 rc = __add_memory(nid, start, size, mhp_flags); 1464 unlock_device_hotplug(); 1465 1466 return rc; 1467 } 1468 EXPORT_SYMBOL_GPL(add_memory); 1469 1470 /* 1471 * Add special, driver-managed memory to the system as system RAM. Such 1472 * memory is not exposed via the raw firmware-provided memmap as system 1473 * RAM, instead, it is detected and added by a driver - during cold boot, 1474 * after a reboot, and after kexec. 1475 * 1476 * Reasons why this memory should not be used for the initial memmap of a 1477 * kexec kernel or for placing kexec images: 1478 * - The booting kernel is in charge of determining how this memory will be 1479 * used (e.g., use persistent memory as system RAM) 1480 * - Coordination with a hypervisor is required before this memory 1481 * can be used (e.g., inaccessible parts). 1482 * 1483 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1484 * memory map") are created. Also, the created memory resource is flagged 1485 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1486 * this memory as well (esp., not place kexec images onto it). 1487 * 1488 * The resource_name (visible via /proc/iomem) has to have the format 1489 * "System RAM ($DRIVER)". 1490 */ 1491 int add_memory_driver_managed(int nid, u64 start, u64 size, 1492 const char *resource_name, mhp_t mhp_flags) 1493 { 1494 struct resource *res; 1495 int rc; 1496 1497 if (!resource_name || 1498 strstr(resource_name, "System RAM (") != resource_name || 1499 resource_name[strlen(resource_name) - 1] != ')') 1500 return -EINVAL; 1501 1502 lock_device_hotplug(); 1503 1504 res = register_memory_resource(start, size, resource_name); 1505 if (IS_ERR(res)) { 1506 rc = PTR_ERR(res); 1507 goto out_unlock; 1508 } 1509 1510 rc = add_memory_resource(nid, res, mhp_flags); 1511 if (rc < 0) 1512 release_memory_resource(res); 1513 1514 out_unlock: 1515 unlock_device_hotplug(); 1516 return rc; 1517 } 1518 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1519 1520 /* 1521 * Platforms should define arch_get_mappable_range() that provides 1522 * maximum possible addressable physical memory range for which the 1523 * linear mapping could be created. The platform returned address 1524 * range must adhere to these following semantics. 1525 * 1526 * - range.start <= range.end 1527 * - Range includes both end points [range.start..range.end] 1528 * 1529 * There is also a fallback definition provided here, allowing the 1530 * entire possible physical address range in case any platform does 1531 * not define arch_get_mappable_range(). 1532 */ 1533 struct range __weak arch_get_mappable_range(void) 1534 { 1535 struct range mhp_range = { 1536 .start = 0UL, 1537 .end = -1ULL, 1538 }; 1539 return mhp_range; 1540 } 1541 1542 struct range mhp_get_pluggable_range(bool need_mapping) 1543 { 1544 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1545 struct range mhp_range; 1546 1547 if (need_mapping) { 1548 mhp_range = arch_get_mappable_range(); 1549 if (mhp_range.start > max_phys) { 1550 mhp_range.start = 0; 1551 mhp_range.end = 0; 1552 } 1553 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1554 } else { 1555 mhp_range.start = 0; 1556 mhp_range.end = max_phys; 1557 } 1558 return mhp_range; 1559 } 1560 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1561 1562 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1563 { 1564 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1565 u64 end = start + size; 1566 1567 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1568 return true; 1569 1570 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1571 start, end, mhp_range.start, mhp_range.end); 1572 return false; 1573 } 1574 1575 #ifdef CONFIG_MEMORY_HOTREMOVE 1576 /* 1577 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1578 * non-lru movable pages and hugepages). Will skip over most unmovable 1579 * pages (esp., pages that can be skipped when offlining), but bail out on 1580 * definitely unmovable pages. 1581 * 1582 * Returns: 1583 * 0 in case a movable page is found and movable_pfn was updated. 1584 * -ENOENT in case no movable page was found. 1585 * -EBUSY in case a definitely unmovable page was found. 1586 */ 1587 static int scan_movable_pages(unsigned long start, unsigned long end, 1588 unsigned long *movable_pfn) 1589 { 1590 unsigned long pfn; 1591 1592 for (pfn = start; pfn < end; pfn++) { 1593 struct page *page, *head; 1594 unsigned long skip; 1595 1596 if (!pfn_valid(pfn)) 1597 continue; 1598 page = pfn_to_page(pfn); 1599 if (PageLRU(page)) 1600 goto found; 1601 if (__PageMovable(page)) 1602 goto found; 1603 1604 /* 1605 * PageOffline() pages that are not marked __PageMovable() and 1606 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1607 * definitely unmovable. If their reference count would be 0, 1608 * they could at least be skipped when offlining memory. 1609 */ 1610 if (PageOffline(page) && page_count(page)) 1611 return -EBUSY; 1612 1613 if (!PageHuge(page)) 1614 continue; 1615 head = compound_head(page); 1616 /* 1617 * This test is racy as we hold no reference or lock. The 1618 * hugetlb page could have been free'ed and head is no longer 1619 * a hugetlb page before the following check. In such unlikely 1620 * cases false positives and negatives are possible. Calling 1621 * code must deal with these scenarios. 1622 */ 1623 if (HPageMigratable(head)) 1624 goto found; 1625 skip = compound_nr(head) - (page - head); 1626 pfn += skip - 1; 1627 } 1628 return -ENOENT; 1629 found: 1630 *movable_pfn = pfn; 1631 return 0; 1632 } 1633 1634 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1635 { 1636 unsigned long pfn; 1637 struct page *page, *head; 1638 LIST_HEAD(source); 1639 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1640 DEFAULT_RATELIMIT_BURST); 1641 1642 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1643 struct folio *folio; 1644 bool isolated; 1645 1646 if (!pfn_valid(pfn)) 1647 continue; 1648 page = pfn_to_page(pfn); 1649 folio = page_folio(page); 1650 head = &folio->page; 1651 1652 if (PageHuge(page)) { 1653 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1654 isolate_hugetlb(folio, &source); 1655 continue; 1656 } else if (PageTransHuge(page)) 1657 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1658 1659 /* 1660 * HWPoison pages have elevated reference counts so the migration would 1661 * fail on them. It also doesn't make any sense to migrate them in the 1662 * first place. Still try to unmap such a page in case it is still mapped 1663 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1664 * the unmap as the catch all safety net). 1665 */ 1666 if (PageHWPoison(page)) { 1667 if (WARN_ON(folio_test_lru(folio))) 1668 folio_isolate_lru(folio); 1669 if (folio_mapped(folio)) 1670 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1671 continue; 1672 } 1673 1674 if (!get_page_unless_zero(page)) 1675 continue; 1676 /* 1677 * We can skip free pages. And we can deal with pages on 1678 * LRU and non-lru movable pages. 1679 */ 1680 if (PageLRU(page)) 1681 isolated = isolate_lru_page(page); 1682 else 1683 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1684 if (isolated) { 1685 list_add_tail(&page->lru, &source); 1686 if (!__PageMovable(page)) 1687 inc_node_page_state(page, NR_ISOLATED_ANON + 1688 page_is_file_lru(page)); 1689 1690 } else { 1691 if (__ratelimit(&migrate_rs)) { 1692 pr_warn("failed to isolate pfn %lx\n", pfn); 1693 dump_page(page, "isolation failed"); 1694 } 1695 } 1696 put_page(page); 1697 } 1698 if (!list_empty(&source)) { 1699 nodemask_t nmask = node_states[N_MEMORY]; 1700 struct migration_target_control mtc = { 1701 .nmask = &nmask, 1702 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1703 }; 1704 int ret; 1705 1706 /* 1707 * We have checked that migration range is on a single zone so 1708 * we can use the nid of the first page to all the others. 1709 */ 1710 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1711 1712 /* 1713 * try to allocate from a different node but reuse this node 1714 * if there are no other online nodes to be used (e.g. we are 1715 * offlining a part of the only existing node) 1716 */ 1717 node_clear(mtc.nid, nmask); 1718 if (nodes_empty(nmask)) 1719 node_set(mtc.nid, nmask); 1720 ret = migrate_pages(&source, alloc_migration_target, NULL, 1721 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1722 if (ret) { 1723 list_for_each_entry(page, &source, lru) { 1724 if (__ratelimit(&migrate_rs)) { 1725 pr_warn("migrating pfn %lx failed ret:%d\n", 1726 page_to_pfn(page), ret); 1727 dump_page(page, "migration failure"); 1728 } 1729 } 1730 putback_movable_pages(&source); 1731 } 1732 } 1733 } 1734 1735 static int __init cmdline_parse_movable_node(char *p) 1736 { 1737 movable_node_enabled = true; 1738 return 0; 1739 } 1740 early_param("movable_node", cmdline_parse_movable_node); 1741 1742 /* check which state of node_states will be changed when offline memory */ 1743 static void node_states_check_changes_offline(unsigned long nr_pages, 1744 struct zone *zone, struct memory_notify *arg) 1745 { 1746 struct pglist_data *pgdat = zone->zone_pgdat; 1747 unsigned long present_pages = 0; 1748 enum zone_type zt; 1749 1750 arg->status_change_nid = NUMA_NO_NODE; 1751 arg->status_change_nid_normal = NUMA_NO_NODE; 1752 1753 /* 1754 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1755 * If the memory to be offline is within the range 1756 * [0..ZONE_NORMAL], and it is the last present memory there, 1757 * the zones in that range will become empty after the offlining, 1758 * thus we can determine that we need to clear the node from 1759 * node_states[N_NORMAL_MEMORY]. 1760 */ 1761 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1762 present_pages += pgdat->node_zones[zt].present_pages; 1763 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1764 arg->status_change_nid_normal = zone_to_nid(zone); 1765 1766 /* 1767 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1768 * does not apply as we don't support 32bit. 1769 * Here we count the possible pages from ZONE_MOVABLE. 1770 * If after having accounted all the pages, we see that the nr_pages 1771 * to be offlined is over or equal to the accounted pages, 1772 * we know that the node will become empty, and so, we can clear 1773 * it for N_MEMORY as well. 1774 */ 1775 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1776 1777 if (nr_pages >= present_pages) 1778 arg->status_change_nid = zone_to_nid(zone); 1779 } 1780 1781 static void node_states_clear_node(int node, struct memory_notify *arg) 1782 { 1783 if (arg->status_change_nid_normal >= 0) 1784 node_clear_state(node, N_NORMAL_MEMORY); 1785 1786 if (arg->status_change_nid >= 0) 1787 node_clear_state(node, N_MEMORY); 1788 } 1789 1790 static int count_system_ram_pages_cb(unsigned long start_pfn, 1791 unsigned long nr_pages, void *data) 1792 { 1793 unsigned long *nr_system_ram_pages = data; 1794 1795 *nr_system_ram_pages += nr_pages; 1796 return 0; 1797 } 1798 1799 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1800 struct zone *zone, struct memory_group *group) 1801 { 1802 const unsigned long end_pfn = start_pfn + nr_pages; 1803 unsigned long pfn, system_ram_pages = 0; 1804 const int node = zone_to_nid(zone); 1805 unsigned long flags; 1806 struct memory_notify arg; 1807 char *reason; 1808 int ret; 1809 1810 /* 1811 * {on,off}lining is constrained to full memory sections (or more 1812 * precisely to memory blocks from the user space POV). 1813 * memmap_on_memory is an exception because it reserves initial part 1814 * of the physical memory space for vmemmaps. That space is pageblock 1815 * aligned. 1816 */ 1817 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1818 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1819 return -EINVAL; 1820 1821 mem_hotplug_begin(); 1822 1823 /* 1824 * Don't allow to offline memory blocks that contain holes. 1825 * Consequently, memory blocks with holes can never get onlined 1826 * via the hotplug path - online_pages() - as hotplugged memory has 1827 * no holes. This way, we e.g., don't have to worry about marking 1828 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1829 * avoid using walk_system_ram_range() later. 1830 */ 1831 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1832 count_system_ram_pages_cb); 1833 if (system_ram_pages != nr_pages) { 1834 ret = -EINVAL; 1835 reason = "memory holes"; 1836 goto failed_removal; 1837 } 1838 1839 /* 1840 * We only support offlining of memory blocks managed by a single zone, 1841 * checked by calling code. This is just a sanity check that we might 1842 * want to remove in the future. 1843 */ 1844 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1845 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1846 ret = -EINVAL; 1847 reason = "multizone range"; 1848 goto failed_removal; 1849 } 1850 1851 /* 1852 * Disable pcplists so that page isolation cannot race with freeing 1853 * in a way that pages from isolated pageblock are left on pcplists. 1854 */ 1855 zone_pcp_disable(zone); 1856 lru_cache_disable(); 1857 1858 /* set above range as isolated */ 1859 ret = start_isolate_page_range(start_pfn, end_pfn, 1860 MIGRATE_MOVABLE, 1861 MEMORY_OFFLINE | REPORT_FAILURE, 1862 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 1863 if (ret) { 1864 reason = "failure to isolate range"; 1865 goto failed_removal_pcplists_disabled; 1866 } 1867 1868 arg.start_pfn = start_pfn; 1869 arg.nr_pages = nr_pages; 1870 node_states_check_changes_offline(nr_pages, zone, &arg); 1871 1872 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1873 ret = notifier_to_errno(ret); 1874 if (ret) { 1875 reason = "notifier failure"; 1876 goto failed_removal_isolated; 1877 } 1878 1879 do { 1880 pfn = start_pfn; 1881 do { 1882 if (signal_pending(current)) { 1883 ret = -EINTR; 1884 reason = "signal backoff"; 1885 goto failed_removal_isolated; 1886 } 1887 1888 cond_resched(); 1889 1890 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1891 if (!ret) { 1892 /* 1893 * TODO: fatal migration failures should bail 1894 * out 1895 */ 1896 do_migrate_range(pfn, end_pfn); 1897 } 1898 } while (!ret); 1899 1900 if (ret != -ENOENT) { 1901 reason = "unmovable page"; 1902 goto failed_removal_isolated; 1903 } 1904 1905 /* 1906 * Dissolve free hugepages in the memory block before doing 1907 * offlining actually in order to make hugetlbfs's object 1908 * counting consistent. 1909 */ 1910 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1911 if (ret) { 1912 reason = "failure to dissolve huge pages"; 1913 goto failed_removal_isolated; 1914 } 1915 1916 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1917 1918 } while (ret); 1919 1920 /* Mark all sections offline and remove free pages from the buddy. */ 1921 __offline_isolated_pages(start_pfn, end_pfn); 1922 pr_debug("Offlined Pages %ld\n", nr_pages); 1923 1924 /* 1925 * The memory sections are marked offline, and the pageblock flags 1926 * effectively stale; nobody should be touching them. Fixup the number 1927 * of isolated pageblocks, memory onlining will properly revert this. 1928 */ 1929 spin_lock_irqsave(&zone->lock, flags); 1930 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 1931 spin_unlock_irqrestore(&zone->lock, flags); 1932 1933 lru_cache_enable(); 1934 zone_pcp_enable(zone); 1935 1936 /* removal success */ 1937 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 1938 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 1939 1940 /* reinitialise watermarks and update pcp limits */ 1941 init_per_zone_wmark_min(); 1942 1943 if (!populated_zone(zone)) { 1944 zone_pcp_reset(zone); 1945 build_all_zonelists(NULL); 1946 } 1947 1948 node_states_clear_node(node, &arg); 1949 if (arg.status_change_nid >= 0) { 1950 kcompactd_stop(node); 1951 kswapd_stop(node); 1952 } 1953 1954 writeback_set_ratelimit(); 1955 1956 memory_notify(MEM_OFFLINE, &arg); 1957 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 1958 mem_hotplug_done(); 1959 return 0; 1960 1961 failed_removal_isolated: 1962 /* pushback to free area */ 1963 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1964 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1965 failed_removal_pcplists_disabled: 1966 lru_cache_enable(); 1967 zone_pcp_enable(zone); 1968 failed_removal: 1969 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1970 (unsigned long long) start_pfn << PAGE_SHIFT, 1971 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1972 reason); 1973 mem_hotplug_done(); 1974 return ret; 1975 } 1976 1977 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1978 { 1979 int *nid = arg; 1980 1981 *nid = mem->nid; 1982 if (unlikely(mem->state != MEM_OFFLINE)) { 1983 phys_addr_t beginpa, endpa; 1984 1985 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1986 endpa = beginpa + memory_block_size_bytes() - 1; 1987 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1988 &beginpa, &endpa); 1989 1990 return -EBUSY; 1991 } 1992 return 0; 1993 } 1994 1995 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 1996 { 1997 /* 1998 * If not set, continue with the next block. 1999 */ 2000 return mem->nr_vmemmap_pages; 2001 } 2002 2003 static int check_cpu_on_node(int nid) 2004 { 2005 int cpu; 2006 2007 for_each_present_cpu(cpu) { 2008 if (cpu_to_node(cpu) == nid) 2009 /* 2010 * the cpu on this node isn't removed, and we can't 2011 * offline this node. 2012 */ 2013 return -EBUSY; 2014 } 2015 2016 return 0; 2017 } 2018 2019 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2020 { 2021 int nid = *(int *)arg; 2022 2023 /* 2024 * If a memory block belongs to multiple nodes, the stored nid is not 2025 * reliable. However, such blocks are always online (e.g., cannot get 2026 * offlined) and, therefore, are still spanned by the node. 2027 */ 2028 return mem->nid == nid ? -EEXIST : 0; 2029 } 2030 2031 /** 2032 * try_offline_node 2033 * @nid: the node ID 2034 * 2035 * Offline a node if all memory sections and cpus of the node are removed. 2036 * 2037 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2038 * and online/offline operations before this call. 2039 */ 2040 void try_offline_node(int nid) 2041 { 2042 int rc; 2043 2044 /* 2045 * If the node still spans pages (especially ZONE_DEVICE), don't 2046 * offline it. A node spans memory after move_pfn_range_to_zone(), 2047 * e.g., after the memory block was onlined. 2048 */ 2049 if (node_spanned_pages(nid)) 2050 return; 2051 2052 /* 2053 * Especially offline memory blocks might not be spanned by the 2054 * node. They will get spanned by the node once they get onlined. 2055 * However, they link to the node in sysfs and can get onlined later. 2056 */ 2057 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2058 if (rc) 2059 return; 2060 2061 if (check_cpu_on_node(nid)) 2062 return; 2063 2064 /* 2065 * all memory/cpu of this node are removed, we can offline this 2066 * node now. 2067 */ 2068 node_set_offline(nid); 2069 unregister_one_node(nid); 2070 } 2071 EXPORT_SYMBOL(try_offline_node); 2072 2073 static int __ref try_remove_memory(u64 start, u64 size) 2074 { 2075 struct vmem_altmap mhp_altmap = {}; 2076 struct vmem_altmap *altmap = NULL; 2077 unsigned long nr_vmemmap_pages; 2078 int rc = 0, nid = NUMA_NO_NODE; 2079 2080 BUG_ON(check_hotplug_memory_range(start, size)); 2081 2082 /* 2083 * All memory blocks must be offlined before removing memory. Check 2084 * whether all memory blocks in question are offline and return error 2085 * if this is not the case. 2086 * 2087 * While at it, determine the nid. Note that if we'd have mixed nodes, 2088 * we'd only try to offline the last determined one -- which is good 2089 * enough for the cases we care about. 2090 */ 2091 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2092 if (rc) 2093 return rc; 2094 2095 /* 2096 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2097 * the same granularity it was added - a single memory block. 2098 */ 2099 if (mhp_memmap_on_memory()) { 2100 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2101 get_nr_vmemmap_pages_cb); 2102 if (nr_vmemmap_pages) { 2103 if (size != memory_block_size_bytes()) { 2104 pr_warn("Refuse to remove %#llx - %#llx," 2105 "wrong granularity\n", 2106 start, start + size); 2107 return -EINVAL; 2108 } 2109 2110 /* 2111 * Let remove_pmd_table->free_hugepage_table do the 2112 * right thing if we used vmem_altmap when hot-adding 2113 * the range. 2114 */ 2115 mhp_altmap.alloc = nr_vmemmap_pages; 2116 altmap = &mhp_altmap; 2117 } 2118 } 2119 2120 /* remove memmap entry */ 2121 firmware_map_remove(start, start + size, "System RAM"); 2122 2123 /* 2124 * Memory block device removal under the device_hotplug_lock is 2125 * a barrier against racing online attempts. 2126 */ 2127 remove_memory_block_devices(start, size); 2128 2129 mem_hotplug_begin(); 2130 2131 arch_remove_memory(start, size, altmap); 2132 2133 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2134 memblock_phys_free(start, size); 2135 memblock_remove(start, size); 2136 } 2137 2138 release_mem_region_adjustable(start, size); 2139 2140 if (nid != NUMA_NO_NODE) 2141 try_offline_node(nid); 2142 2143 mem_hotplug_done(); 2144 return 0; 2145 } 2146 2147 /** 2148 * __remove_memory - Remove memory if every memory block is offline 2149 * @start: physical address of the region to remove 2150 * @size: size of the region to remove 2151 * 2152 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2153 * and online/offline operations before this call, as required by 2154 * try_offline_node(). 2155 */ 2156 void __remove_memory(u64 start, u64 size) 2157 { 2158 2159 /* 2160 * trigger BUG() if some memory is not offlined prior to calling this 2161 * function 2162 */ 2163 if (try_remove_memory(start, size)) 2164 BUG(); 2165 } 2166 2167 /* 2168 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2169 * some memory is not offline 2170 */ 2171 int remove_memory(u64 start, u64 size) 2172 { 2173 int rc; 2174 2175 lock_device_hotplug(); 2176 rc = try_remove_memory(start, size); 2177 unlock_device_hotplug(); 2178 2179 return rc; 2180 } 2181 EXPORT_SYMBOL_GPL(remove_memory); 2182 2183 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2184 { 2185 uint8_t online_type = MMOP_ONLINE_KERNEL; 2186 uint8_t **online_types = arg; 2187 struct page *page; 2188 int rc; 2189 2190 /* 2191 * Sense the online_type via the zone of the memory block. Offlining 2192 * with multiple zones within one memory block will be rejected 2193 * by offlining code ... so we don't care about that. 2194 */ 2195 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2196 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2197 online_type = MMOP_ONLINE_MOVABLE; 2198 2199 rc = device_offline(&mem->dev); 2200 /* 2201 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2202 * so try_reonline_memory_block() can do the right thing. 2203 */ 2204 if (!rc) 2205 **online_types = online_type; 2206 2207 (*online_types)++; 2208 /* Ignore if already offline. */ 2209 return rc < 0 ? rc : 0; 2210 } 2211 2212 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2213 { 2214 uint8_t **online_types = arg; 2215 int rc; 2216 2217 if (**online_types != MMOP_OFFLINE) { 2218 mem->online_type = **online_types; 2219 rc = device_online(&mem->dev); 2220 if (rc < 0) 2221 pr_warn("%s: Failed to re-online memory: %d", 2222 __func__, rc); 2223 } 2224 2225 /* Continue processing all remaining memory blocks. */ 2226 (*online_types)++; 2227 return 0; 2228 } 2229 2230 /* 2231 * Try to offline and remove memory. Might take a long time to finish in case 2232 * memory is still in use. Primarily useful for memory devices that logically 2233 * unplugged all memory (so it's no longer in use) and want to offline + remove 2234 * that memory. 2235 */ 2236 int offline_and_remove_memory(u64 start, u64 size) 2237 { 2238 const unsigned long mb_count = size / memory_block_size_bytes(); 2239 uint8_t *online_types, *tmp; 2240 int rc; 2241 2242 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2243 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2244 return -EINVAL; 2245 2246 /* 2247 * We'll remember the old online type of each memory block, so we can 2248 * try to revert whatever we did when offlining one memory block fails 2249 * after offlining some others succeeded. 2250 */ 2251 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2252 GFP_KERNEL); 2253 if (!online_types) 2254 return -ENOMEM; 2255 /* 2256 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2257 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2258 * try_reonline_memory_block(). 2259 */ 2260 memset(online_types, MMOP_OFFLINE, mb_count); 2261 2262 lock_device_hotplug(); 2263 2264 tmp = online_types; 2265 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2266 2267 /* 2268 * In case we succeeded to offline all memory, remove it. 2269 * This cannot fail as it cannot get onlined in the meantime. 2270 */ 2271 if (!rc) { 2272 rc = try_remove_memory(start, size); 2273 if (rc) 2274 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2275 } 2276 2277 /* 2278 * Rollback what we did. While memory onlining might theoretically fail 2279 * (nacked by a notifier), it barely ever happens. 2280 */ 2281 if (rc) { 2282 tmp = online_types; 2283 walk_memory_blocks(start, size, &tmp, 2284 try_reonline_memory_block); 2285 } 2286 unlock_device_hotplug(); 2287 2288 kfree(online_types); 2289 return rc; 2290 } 2291 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2292 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2293