1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 /* 46 * online_page_callback contains pointer to current page onlining function. 47 * Initially it is generic_online_page(). If it is required it could be 48 * changed by calling set_online_page_callback() for callback registration 49 * and restore_online_page_callback() for generic callback restore. 50 */ 51 52 static void generic_online_page(struct page *page, unsigned int order); 53 54 static online_page_callback_t online_page_callback = generic_online_page; 55 static DEFINE_MUTEX(online_page_callback_lock); 56 57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 58 59 void get_online_mems(void) 60 { 61 percpu_down_read(&mem_hotplug_lock); 62 } 63 64 void put_online_mems(void) 65 { 66 percpu_up_read(&mem_hotplug_lock); 67 } 68 69 bool movable_node_enabled = false; 70 71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 72 bool memhp_auto_online; 73 #else 74 bool memhp_auto_online = true; 75 #endif 76 EXPORT_SYMBOL_GPL(memhp_auto_online); 77 78 static int __init setup_memhp_default_state(char *str) 79 { 80 if (!strcmp(str, "online")) 81 memhp_auto_online = true; 82 else if (!strcmp(str, "offline")) 83 memhp_auto_online = false; 84 85 return 1; 86 } 87 __setup("memhp_default_state=", setup_memhp_default_state); 88 89 void mem_hotplug_begin(void) 90 { 91 cpus_read_lock(); 92 percpu_down_write(&mem_hotplug_lock); 93 } 94 95 void mem_hotplug_done(void) 96 { 97 percpu_up_write(&mem_hotplug_lock); 98 cpus_read_unlock(); 99 } 100 101 u64 max_mem_size = U64_MAX; 102 103 /* add this memory to iomem resource */ 104 static struct resource *register_memory_resource(u64 start, u64 size) 105 { 106 struct resource *res; 107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 108 char *resource_name = "System RAM"; 109 110 if (start + size > max_mem_size) 111 return ERR_PTR(-E2BIG); 112 113 /* 114 * Request ownership of the new memory range. This might be 115 * a child of an existing resource that was present but 116 * not marked as busy. 117 */ 118 res = __request_region(&iomem_resource, start, size, 119 resource_name, flags); 120 121 if (!res) { 122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 123 start, start + size); 124 return ERR_PTR(-EEXIST); 125 } 126 return res; 127 } 128 129 static void release_memory_resource(struct resource *res) 130 { 131 if (!res) 132 return; 133 release_resource(res); 134 kfree(res); 135 return; 136 } 137 138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 139 void get_page_bootmem(unsigned long info, struct page *page, 140 unsigned long type) 141 { 142 page->freelist = (void *)type; 143 SetPagePrivate(page); 144 set_page_private(page, info); 145 page_ref_inc(page); 146 } 147 148 void put_page_bootmem(struct page *page) 149 { 150 unsigned long type; 151 152 type = (unsigned long) page->freelist; 153 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 154 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 155 156 if (page_ref_dec_return(page) == 1) { 157 page->freelist = NULL; 158 ClearPagePrivate(page); 159 set_page_private(page, 0); 160 INIT_LIST_HEAD(&page->lru); 161 free_reserved_page(page); 162 } 163 } 164 165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 166 #ifndef CONFIG_SPARSEMEM_VMEMMAP 167 static void register_page_bootmem_info_section(unsigned long start_pfn) 168 { 169 unsigned long *usemap, mapsize, section_nr, i; 170 struct mem_section *ms; 171 struct page *page, *memmap; 172 173 section_nr = pfn_to_section_nr(start_pfn); 174 ms = __nr_to_section(section_nr); 175 176 /* Get section's memmap address */ 177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 178 179 /* 180 * Get page for the memmap's phys address 181 * XXX: need more consideration for sparse_vmemmap... 182 */ 183 page = virt_to_page(memmap); 184 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 186 187 /* remember memmap's page */ 188 for (i = 0; i < mapsize; i++, page++) 189 get_page_bootmem(section_nr, page, SECTION_INFO); 190 191 usemap = ms->pageblock_flags; 192 page = virt_to_page(usemap); 193 194 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 195 196 for (i = 0; i < mapsize; i++, page++) 197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 198 199 } 200 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 201 static void register_page_bootmem_info_section(unsigned long start_pfn) 202 { 203 unsigned long *usemap, mapsize, section_nr, i; 204 struct mem_section *ms; 205 struct page *page, *memmap; 206 207 section_nr = pfn_to_section_nr(start_pfn); 208 ms = __nr_to_section(section_nr); 209 210 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 211 212 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 213 214 usemap = ms->pageblock_flags; 215 page = virt_to_page(usemap); 216 217 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 218 219 for (i = 0; i < mapsize; i++, page++) 220 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 221 } 222 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 223 224 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 225 { 226 unsigned long i, pfn, end_pfn, nr_pages; 227 int node = pgdat->node_id; 228 struct page *page; 229 230 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 231 page = virt_to_page(pgdat); 232 233 for (i = 0; i < nr_pages; i++, page++) 234 get_page_bootmem(node, page, NODE_INFO); 235 236 pfn = pgdat->node_start_pfn; 237 end_pfn = pgdat_end_pfn(pgdat); 238 239 /* register section info */ 240 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 241 /* 242 * Some platforms can assign the same pfn to multiple nodes - on 243 * node0 as well as nodeN. To avoid registering a pfn against 244 * multiple nodes we check that this pfn does not already 245 * reside in some other nodes. 246 */ 247 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 248 register_page_bootmem_info_section(pfn); 249 } 250 } 251 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 252 253 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 254 struct vmem_altmap *altmap, bool want_memblock) 255 { 256 int ret; 257 258 if (pfn_valid(phys_start_pfn)) 259 return -EEXIST; 260 261 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 262 if (ret < 0) 263 return ret; 264 265 if (!want_memblock) 266 return 0; 267 268 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 269 } 270 271 /* 272 * Reasonably generic function for adding memory. It is 273 * expected that archs that support memory hotplug will 274 * call this function after deciding the zone to which to 275 * add the new pages. 276 */ 277 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 278 unsigned long nr_pages, struct mhp_restrictions *restrictions) 279 { 280 unsigned long i; 281 int err = 0; 282 int start_sec, end_sec; 283 struct vmem_altmap *altmap = restrictions->altmap; 284 285 /* during initialize mem_map, align hot-added range to section */ 286 start_sec = pfn_to_section_nr(phys_start_pfn); 287 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 288 289 if (altmap) { 290 /* 291 * Validate altmap is within bounds of the total request 292 */ 293 if (altmap->base_pfn != phys_start_pfn 294 || vmem_altmap_offset(altmap) > nr_pages) { 295 pr_warn_once("memory add fail, invalid altmap\n"); 296 err = -EINVAL; 297 goto out; 298 } 299 altmap->alloc = 0; 300 } 301 302 for (i = start_sec; i <= end_sec; i++) { 303 err = __add_section(nid, section_nr_to_pfn(i), altmap, 304 restrictions->flags & MHP_MEMBLOCK_API); 305 306 /* 307 * EEXIST is finally dealt with by ioresource collision 308 * check. see add_memory() => register_memory_resource() 309 * Warning will be printed if there is collision. 310 */ 311 if (err && (err != -EEXIST)) 312 break; 313 err = 0; 314 cond_resched(); 315 } 316 vmemmap_populate_print_last(); 317 out: 318 return err; 319 } 320 321 #ifdef CONFIG_MEMORY_HOTREMOVE 322 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 323 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 324 unsigned long start_pfn, 325 unsigned long end_pfn) 326 { 327 struct mem_section *ms; 328 329 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 330 ms = __pfn_to_section(start_pfn); 331 332 if (unlikely(!valid_section(ms))) 333 continue; 334 335 if (unlikely(pfn_to_nid(start_pfn) != nid)) 336 continue; 337 338 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 339 continue; 340 341 return start_pfn; 342 } 343 344 return 0; 345 } 346 347 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 348 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 349 unsigned long start_pfn, 350 unsigned long end_pfn) 351 { 352 struct mem_section *ms; 353 unsigned long pfn; 354 355 /* pfn is the end pfn of a memory section. */ 356 pfn = end_pfn - 1; 357 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 358 ms = __pfn_to_section(pfn); 359 360 if (unlikely(!valid_section(ms))) 361 continue; 362 363 if (unlikely(pfn_to_nid(pfn) != nid)) 364 continue; 365 366 if (zone && zone != page_zone(pfn_to_page(pfn))) 367 continue; 368 369 return pfn; 370 } 371 372 return 0; 373 } 374 375 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 376 unsigned long end_pfn) 377 { 378 unsigned long zone_start_pfn = zone->zone_start_pfn; 379 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 380 unsigned long zone_end_pfn = z; 381 unsigned long pfn; 382 struct mem_section *ms; 383 int nid = zone_to_nid(zone); 384 385 zone_span_writelock(zone); 386 if (zone_start_pfn == start_pfn) { 387 /* 388 * If the section is smallest section in the zone, it need 389 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 390 * In this case, we find second smallest valid mem_section 391 * for shrinking zone. 392 */ 393 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 394 zone_end_pfn); 395 if (pfn) { 396 zone->zone_start_pfn = pfn; 397 zone->spanned_pages = zone_end_pfn - pfn; 398 } 399 } else if (zone_end_pfn == end_pfn) { 400 /* 401 * If the section is biggest section in the zone, it need 402 * shrink zone->spanned_pages. 403 * In this case, we find second biggest valid mem_section for 404 * shrinking zone. 405 */ 406 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 407 start_pfn); 408 if (pfn) 409 zone->spanned_pages = pfn - zone_start_pfn + 1; 410 } 411 412 /* 413 * The section is not biggest or smallest mem_section in the zone, it 414 * only creates a hole in the zone. So in this case, we need not 415 * change the zone. But perhaps, the zone has only hole data. Thus 416 * it check the zone has only hole or not. 417 */ 418 pfn = zone_start_pfn; 419 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 420 ms = __pfn_to_section(pfn); 421 422 if (unlikely(!valid_section(ms))) 423 continue; 424 425 if (page_zone(pfn_to_page(pfn)) != zone) 426 continue; 427 428 /* If the section is current section, it continues the loop */ 429 if (start_pfn == pfn) 430 continue; 431 432 /* If we find valid section, we have nothing to do */ 433 zone_span_writeunlock(zone); 434 return; 435 } 436 437 /* The zone has no valid section */ 438 zone->zone_start_pfn = 0; 439 zone->spanned_pages = 0; 440 zone_span_writeunlock(zone); 441 } 442 443 static void shrink_pgdat_span(struct pglist_data *pgdat, 444 unsigned long start_pfn, unsigned long end_pfn) 445 { 446 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 447 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 448 unsigned long pgdat_end_pfn = p; 449 unsigned long pfn; 450 struct mem_section *ms; 451 int nid = pgdat->node_id; 452 453 if (pgdat_start_pfn == start_pfn) { 454 /* 455 * If the section is smallest section in the pgdat, it need 456 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 457 * In this case, we find second smallest valid mem_section 458 * for shrinking zone. 459 */ 460 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 461 pgdat_end_pfn); 462 if (pfn) { 463 pgdat->node_start_pfn = pfn; 464 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 465 } 466 } else if (pgdat_end_pfn == end_pfn) { 467 /* 468 * If the section is biggest section in the pgdat, it need 469 * shrink pgdat->node_spanned_pages. 470 * In this case, we find second biggest valid mem_section for 471 * shrinking zone. 472 */ 473 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 474 start_pfn); 475 if (pfn) 476 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 477 } 478 479 /* 480 * If the section is not biggest or smallest mem_section in the pgdat, 481 * it only creates a hole in the pgdat. So in this case, we need not 482 * change the pgdat. 483 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 484 * has only hole or not. 485 */ 486 pfn = pgdat_start_pfn; 487 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 488 ms = __pfn_to_section(pfn); 489 490 if (unlikely(!valid_section(ms))) 491 continue; 492 493 if (pfn_to_nid(pfn) != nid) 494 continue; 495 496 /* If the section is current section, it continues the loop */ 497 if (start_pfn == pfn) 498 continue; 499 500 /* If we find valid section, we have nothing to do */ 501 return; 502 } 503 504 /* The pgdat has no valid section */ 505 pgdat->node_start_pfn = 0; 506 pgdat->node_spanned_pages = 0; 507 } 508 509 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 510 { 511 struct pglist_data *pgdat = zone->zone_pgdat; 512 int nr_pages = PAGES_PER_SECTION; 513 unsigned long flags; 514 515 pgdat_resize_lock(zone->zone_pgdat, &flags); 516 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 517 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 518 pgdat_resize_unlock(zone->zone_pgdat, &flags); 519 } 520 521 static void __remove_section(struct zone *zone, struct mem_section *ms, 522 unsigned long map_offset, 523 struct vmem_altmap *altmap) 524 { 525 unsigned long start_pfn; 526 int scn_nr; 527 528 if (WARN_ON_ONCE(!valid_section(ms))) 529 return; 530 531 unregister_memory_section(ms); 532 533 scn_nr = __section_nr(ms); 534 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 535 __remove_zone(zone, start_pfn); 536 537 sparse_remove_one_section(zone, ms, map_offset, altmap); 538 } 539 540 /** 541 * __remove_pages() - remove sections of pages from a zone 542 * @zone: zone from which pages need to be removed 543 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 544 * @nr_pages: number of pages to remove (must be multiple of section size) 545 * @altmap: alternative device page map or %NULL if default memmap is used 546 * 547 * Generic helper function to remove section mappings and sysfs entries 548 * for the section of the memory we are removing. Caller needs to make 549 * sure that pages are marked reserved and zones are adjust properly by 550 * calling offline_pages(). 551 */ 552 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 553 unsigned long nr_pages, struct vmem_altmap *altmap) 554 { 555 unsigned long i; 556 unsigned long map_offset = 0; 557 int sections_to_remove; 558 559 /* In the ZONE_DEVICE case device driver owns the memory region */ 560 if (is_dev_zone(zone)) 561 map_offset = vmem_altmap_offset(altmap); 562 563 clear_zone_contiguous(zone); 564 565 /* 566 * We can only remove entire sections 567 */ 568 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 569 BUG_ON(nr_pages % PAGES_PER_SECTION); 570 571 sections_to_remove = nr_pages / PAGES_PER_SECTION; 572 for (i = 0; i < sections_to_remove; i++) { 573 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 574 575 cond_resched(); 576 __remove_section(zone, __pfn_to_section(pfn), map_offset, 577 altmap); 578 map_offset = 0; 579 } 580 581 set_zone_contiguous(zone); 582 } 583 #endif /* CONFIG_MEMORY_HOTREMOVE */ 584 585 int set_online_page_callback(online_page_callback_t callback) 586 { 587 int rc = -EINVAL; 588 589 get_online_mems(); 590 mutex_lock(&online_page_callback_lock); 591 592 if (online_page_callback == generic_online_page) { 593 online_page_callback = callback; 594 rc = 0; 595 } 596 597 mutex_unlock(&online_page_callback_lock); 598 put_online_mems(); 599 600 return rc; 601 } 602 EXPORT_SYMBOL_GPL(set_online_page_callback); 603 604 int restore_online_page_callback(online_page_callback_t callback) 605 { 606 int rc = -EINVAL; 607 608 get_online_mems(); 609 mutex_lock(&online_page_callback_lock); 610 611 if (online_page_callback == callback) { 612 online_page_callback = generic_online_page; 613 rc = 0; 614 } 615 616 mutex_unlock(&online_page_callback_lock); 617 put_online_mems(); 618 619 return rc; 620 } 621 EXPORT_SYMBOL_GPL(restore_online_page_callback); 622 623 void __online_page_set_limits(struct page *page) 624 { 625 } 626 EXPORT_SYMBOL_GPL(__online_page_set_limits); 627 628 void __online_page_increment_counters(struct page *page) 629 { 630 adjust_managed_page_count(page, 1); 631 } 632 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 633 634 void __online_page_free(struct page *page) 635 { 636 __free_reserved_page(page); 637 } 638 EXPORT_SYMBOL_GPL(__online_page_free); 639 640 static void generic_online_page(struct page *page, unsigned int order) 641 { 642 kernel_map_pages(page, 1 << order, 1); 643 __free_pages_core(page, order); 644 totalram_pages_add(1UL << order); 645 #ifdef CONFIG_HIGHMEM 646 if (PageHighMem(page)) 647 totalhigh_pages_add(1UL << order); 648 #endif 649 } 650 651 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 652 { 653 unsigned long end = start + nr_pages; 654 int order, onlined_pages = 0; 655 656 while (start < end) { 657 order = min(MAX_ORDER - 1, 658 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 659 (*online_page_callback)(pfn_to_page(start), order); 660 661 onlined_pages += (1UL << order); 662 start += (1UL << order); 663 } 664 return onlined_pages; 665 } 666 667 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 668 void *arg) 669 { 670 unsigned long onlined_pages = *(unsigned long *)arg; 671 672 if (PageReserved(pfn_to_page(start_pfn))) 673 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 674 675 online_mem_sections(start_pfn, start_pfn + nr_pages); 676 677 *(unsigned long *)arg = onlined_pages; 678 return 0; 679 } 680 681 /* check which state of node_states will be changed when online memory */ 682 static void node_states_check_changes_online(unsigned long nr_pages, 683 struct zone *zone, struct memory_notify *arg) 684 { 685 int nid = zone_to_nid(zone); 686 687 arg->status_change_nid = NUMA_NO_NODE; 688 arg->status_change_nid_normal = NUMA_NO_NODE; 689 arg->status_change_nid_high = NUMA_NO_NODE; 690 691 if (!node_state(nid, N_MEMORY)) 692 arg->status_change_nid = nid; 693 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 694 arg->status_change_nid_normal = nid; 695 #ifdef CONFIG_HIGHMEM 696 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 697 arg->status_change_nid_high = nid; 698 #endif 699 } 700 701 static void node_states_set_node(int node, struct memory_notify *arg) 702 { 703 if (arg->status_change_nid_normal >= 0) 704 node_set_state(node, N_NORMAL_MEMORY); 705 706 if (arg->status_change_nid_high >= 0) 707 node_set_state(node, N_HIGH_MEMORY); 708 709 if (arg->status_change_nid >= 0) 710 node_set_state(node, N_MEMORY); 711 } 712 713 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 714 unsigned long nr_pages) 715 { 716 unsigned long old_end_pfn = zone_end_pfn(zone); 717 718 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 719 zone->zone_start_pfn = start_pfn; 720 721 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 722 } 723 724 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 725 unsigned long nr_pages) 726 { 727 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 728 729 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 730 pgdat->node_start_pfn = start_pfn; 731 732 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 733 } 734 735 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 736 unsigned long nr_pages, struct vmem_altmap *altmap) 737 { 738 struct pglist_data *pgdat = zone->zone_pgdat; 739 int nid = pgdat->node_id; 740 unsigned long flags; 741 742 clear_zone_contiguous(zone); 743 744 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 745 pgdat_resize_lock(pgdat, &flags); 746 zone_span_writelock(zone); 747 if (zone_is_empty(zone)) 748 init_currently_empty_zone(zone, start_pfn, nr_pages); 749 resize_zone_range(zone, start_pfn, nr_pages); 750 zone_span_writeunlock(zone); 751 resize_pgdat_range(pgdat, start_pfn, nr_pages); 752 pgdat_resize_unlock(pgdat, &flags); 753 754 /* 755 * TODO now we have a visible range of pages which are not associated 756 * with their zone properly. Not nice but set_pfnblock_flags_mask 757 * expects the zone spans the pfn range. All the pages in the range 758 * are reserved so nobody should be touching them so we should be safe 759 */ 760 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 761 MEMMAP_HOTPLUG, altmap); 762 763 set_zone_contiguous(zone); 764 } 765 766 /* 767 * Returns a default kernel memory zone for the given pfn range. 768 * If no kernel zone covers this pfn range it will automatically go 769 * to the ZONE_NORMAL. 770 */ 771 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 772 unsigned long nr_pages) 773 { 774 struct pglist_data *pgdat = NODE_DATA(nid); 775 int zid; 776 777 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 778 struct zone *zone = &pgdat->node_zones[zid]; 779 780 if (zone_intersects(zone, start_pfn, nr_pages)) 781 return zone; 782 } 783 784 return &pgdat->node_zones[ZONE_NORMAL]; 785 } 786 787 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 788 unsigned long nr_pages) 789 { 790 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 791 nr_pages); 792 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 793 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 794 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 795 796 /* 797 * We inherit the existing zone in a simple case where zones do not 798 * overlap in the given range 799 */ 800 if (in_kernel ^ in_movable) 801 return (in_kernel) ? kernel_zone : movable_zone; 802 803 /* 804 * If the range doesn't belong to any zone or two zones overlap in the 805 * given range then we use movable zone only if movable_node is 806 * enabled because we always online to a kernel zone by default. 807 */ 808 return movable_node_enabled ? movable_zone : kernel_zone; 809 } 810 811 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 812 unsigned long nr_pages) 813 { 814 if (online_type == MMOP_ONLINE_KERNEL) 815 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 816 817 if (online_type == MMOP_ONLINE_MOVABLE) 818 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 819 820 return default_zone_for_pfn(nid, start_pfn, nr_pages); 821 } 822 823 /* 824 * Associates the given pfn range with the given node and the zone appropriate 825 * for the given online type. 826 */ 827 static struct zone * __meminit move_pfn_range(int online_type, int nid, 828 unsigned long start_pfn, unsigned long nr_pages) 829 { 830 struct zone *zone; 831 832 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 833 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 834 return zone; 835 } 836 837 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 838 { 839 unsigned long flags; 840 unsigned long onlined_pages = 0; 841 struct zone *zone; 842 int need_zonelists_rebuild = 0; 843 int nid; 844 int ret; 845 struct memory_notify arg; 846 struct memory_block *mem; 847 848 mem_hotplug_begin(); 849 850 /* 851 * We can't use pfn_to_nid() because nid might be stored in struct page 852 * which is not yet initialized. Instead, we find nid from memory block. 853 */ 854 mem = find_memory_block(__pfn_to_section(pfn)); 855 nid = mem->nid; 856 put_device(&mem->dev); 857 858 /* associate pfn range with the zone */ 859 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 860 861 arg.start_pfn = pfn; 862 arg.nr_pages = nr_pages; 863 node_states_check_changes_online(nr_pages, zone, &arg); 864 865 ret = memory_notify(MEM_GOING_ONLINE, &arg); 866 ret = notifier_to_errno(ret); 867 if (ret) 868 goto failed_addition; 869 870 /* 871 * If this zone is not populated, then it is not in zonelist. 872 * This means the page allocator ignores this zone. 873 * So, zonelist must be updated after online. 874 */ 875 if (!populated_zone(zone)) { 876 need_zonelists_rebuild = 1; 877 setup_zone_pageset(zone); 878 } 879 880 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 881 online_pages_range); 882 if (ret) { 883 if (need_zonelists_rebuild) 884 zone_pcp_reset(zone); 885 goto failed_addition; 886 } 887 888 zone->present_pages += onlined_pages; 889 890 pgdat_resize_lock(zone->zone_pgdat, &flags); 891 zone->zone_pgdat->node_present_pages += onlined_pages; 892 pgdat_resize_unlock(zone->zone_pgdat, &flags); 893 894 shuffle_zone(zone); 895 896 if (onlined_pages) { 897 node_states_set_node(nid, &arg); 898 if (need_zonelists_rebuild) 899 build_all_zonelists(NULL); 900 else 901 zone_pcp_update(zone); 902 } 903 904 init_per_zone_wmark_min(); 905 906 if (onlined_pages) { 907 kswapd_run(nid); 908 kcompactd_run(nid); 909 } 910 911 vm_total_pages = nr_free_pagecache_pages(); 912 913 writeback_set_ratelimit(); 914 915 if (onlined_pages) 916 memory_notify(MEM_ONLINE, &arg); 917 mem_hotplug_done(); 918 return 0; 919 920 failed_addition: 921 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 922 (unsigned long long) pfn << PAGE_SHIFT, 923 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 924 memory_notify(MEM_CANCEL_ONLINE, &arg); 925 mem_hotplug_done(); 926 return ret; 927 } 928 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 929 930 static void reset_node_present_pages(pg_data_t *pgdat) 931 { 932 struct zone *z; 933 934 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 935 z->present_pages = 0; 936 937 pgdat->node_present_pages = 0; 938 } 939 940 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 941 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 942 { 943 struct pglist_data *pgdat; 944 unsigned long start_pfn = PFN_DOWN(start); 945 946 pgdat = NODE_DATA(nid); 947 if (!pgdat) { 948 pgdat = arch_alloc_nodedata(nid); 949 if (!pgdat) 950 return NULL; 951 952 arch_refresh_nodedata(nid, pgdat); 953 } else { 954 /* 955 * Reset the nr_zones, order and classzone_idx before reuse. 956 * Note that kswapd will init kswapd_classzone_idx properly 957 * when it starts in the near future. 958 */ 959 pgdat->nr_zones = 0; 960 pgdat->kswapd_order = 0; 961 pgdat->kswapd_classzone_idx = 0; 962 } 963 964 /* we can use NODE_DATA(nid) from here */ 965 966 pgdat->node_id = nid; 967 pgdat->node_start_pfn = start_pfn; 968 969 /* init node's zones as empty zones, we don't have any present pages.*/ 970 free_area_init_core_hotplug(nid); 971 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 972 973 /* 974 * The node we allocated has no zone fallback lists. For avoiding 975 * to access not-initialized zonelist, build here. 976 */ 977 build_all_zonelists(pgdat); 978 979 /* 980 * When memory is hot-added, all the memory is in offline state. So 981 * clear all zones' present_pages because they will be updated in 982 * online_pages() and offline_pages(). 983 */ 984 reset_node_managed_pages(pgdat); 985 reset_node_present_pages(pgdat); 986 987 return pgdat; 988 } 989 990 static void rollback_node_hotadd(int nid) 991 { 992 pg_data_t *pgdat = NODE_DATA(nid); 993 994 arch_refresh_nodedata(nid, NULL); 995 free_percpu(pgdat->per_cpu_nodestats); 996 arch_free_nodedata(pgdat); 997 return; 998 } 999 1000 1001 /** 1002 * try_online_node - online a node if offlined 1003 * @nid: the node ID 1004 * @start: start addr of the node 1005 * @set_node_online: Whether we want to online the node 1006 * called by cpu_up() to online a node without onlined memory. 1007 * 1008 * Returns: 1009 * 1 -> a new node has been allocated 1010 * 0 -> the node is already online 1011 * -ENOMEM -> the node could not be allocated 1012 */ 1013 static int __try_online_node(int nid, u64 start, bool set_node_online) 1014 { 1015 pg_data_t *pgdat; 1016 int ret = 1; 1017 1018 if (node_online(nid)) 1019 return 0; 1020 1021 pgdat = hotadd_new_pgdat(nid, start); 1022 if (!pgdat) { 1023 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1024 ret = -ENOMEM; 1025 goto out; 1026 } 1027 1028 if (set_node_online) { 1029 node_set_online(nid); 1030 ret = register_one_node(nid); 1031 BUG_ON(ret); 1032 } 1033 out: 1034 return ret; 1035 } 1036 1037 /* 1038 * Users of this function always want to online/register the node 1039 */ 1040 int try_online_node(int nid) 1041 { 1042 int ret; 1043 1044 mem_hotplug_begin(); 1045 ret = __try_online_node(nid, 0, true); 1046 mem_hotplug_done(); 1047 return ret; 1048 } 1049 1050 static int check_hotplug_memory_range(u64 start, u64 size) 1051 { 1052 unsigned long block_sz = memory_block_size_bytes(); 1053 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1054 u64 nr_pages = size >> PAGE_SHIFT; 1055 u64 start_pfn = PFN_DOWN(start); 1056 1057 /* memory range must be block size aligned */ 1058 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1059 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1060 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1061 block_sz, start, size); 1062 return -EINVAL; 1063 } 1064 1065 return 0; 1066 } 1067 1068 static int online_memory_block(struct memory_block *mem, void *arg) 1069 { 1070 return device_online(&mem->dev); 1071 } 1072 1073 /* 1074 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1075 * and online/offline operations (triggered e.g. by sysfs). 1076 * 1077 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1078 */ 1079 int __ref add_memory_resource(int nid, struct resource *res) 1080 { 1081 struct mhp_restrictions restrictions = { 1082 .flags = MHP_MEMBLOCK_API, 1083 }; 1084 u64 start, size; 1085 bool new_node = false; 1086 int ret; 1087 1088 start = res->start; 1089 size = resource_size(res); 1090 1091 ret = check_hotplug_memory_range(start, size); 1092 if (ret) 1093 return ret; 1094 1095 mem_hotplug_begin(); 1096 1097 /* 1098 * Add new range to memblock so that when hotadd_new_pgdat() is called 1099 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1100 * this new range and calculate total pages correctly. The range will 1101 * be removed at hot-remove time. 1102 */ 1103 memblock_add_node(start, size, nid); 1104 1105 ret = __try_online_node(nid, start, false); 1106 if (ret < 0) 1107 goto error; 1108 new_node = ret; 1109 1110 /* call arch's memory hotadd */ 1111 ret = arch_add_memory(nid, start, size, &restrictions); 1112 if (ret < 0) 1113 goto error; 1114 1115 if (new_node) { 1116 /* If sysfs file of new node can't be created, cpu on the node 1117 * can't be hot-added. There is no rollback way now. 1118 * So, check by BUG_ON() to catch it reluctantly.. 1119 * We online node here. We can't roll back from here. 1120 */ 1121 node_set_online(nid); 1122 ret = __register_one_node(nid); 1123 BUG_ON(ret); 1124 } 1125 1126 /* link memory sections under this node.*/ 1127 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1128 BUG_ON(ret); 1129 1130 /* create new memmap entry */ 1131 firmware_map_add_hotplug(start, start + size, "System RAM"); 1132 1133 /* device_online() will take the lock when calling online_pages() */ 1134 mem_hotplug_done(); 1135 1136 /* online pages if requested */ 1137 if (memhp_auto_online) 1138 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1139 NULL, online_memory_block); 1140 1141 return ret; 1142 error: 1143 /* rollback pgdat allocation and others */ 1144 if (new_node) 1145 rollback_node_hotadd(nid); 1146 memblock_remove(start, size); 1147 mem_hotplug_done(); 1148 return ret; 1149 } 1150 1151 /* requires device_hotplug_lock, see add_memory_resource() */ 1152 int __ref __add_memory(int nid, u64 start, u64 size) 1153 { 1154 struct resource *res; 1155 int ret; 1156 1157 res = register_memory_resource(start, size); 1158 if (IS_ERR(res)) 1159 return PTR_ERR(res); 1160 1161 ret = add_memory_resource(nid, res); 1162 if (ret < 0) 1163 release_memory_resource(res); 1164 return ret; 1165 } 1166 1167 int add_memory(int nid, u64 start, u64 size) 1168 { 1169 int rc; 1170 1171 lock_device_hotplug(); 1172 rc = __add_memory(nid, start, size); 1173 unlock_device_hotplug(); 1174 1175 return rc; 1176 } 1177 EXPORT_SYMBOL_GPL(add_memory); 1178 1179 #ifdef CONFIG_MEMORY_HOTREMOVE 1180 /* 1181 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1182 * set and the size of the free page is given by page_order(). Using this, 1183 * the function determines if the pageblock contains only free pages. 1184 * Due to buddy contraints, a free page at least the size of a pageblock will 1185 * be located at the start of the pageblock 1186 */ 1187 static inline int pageblock_free(struct page *page) 1188 { 1189 return PageBuddy(page) && page_order(page) >= pageblock_order; 1190 } 1191 1192 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1193 static unsigned long next_active_pageblock(unsigned long pfn) 1194 { 1195 struct page *page = pfn_to_page(pfn); 1196 1197 /* Ensure the starting page is pageblock-aligned */ 1198 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1199 1200 /* If the entire pageblock is free, move to the end of free page */ 1201 if (pageblock_free(page)) { 1202 int order; 1203 /* be careful. we don't have locks, page_order can be changed.*/ 1204 order = page_order(page); 1205 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1206 return pfn + (1 << order); 1207 } 1208 1209 return pfn + pageblock_nr_pages; 1210 } 1211 1212 static bool is_pageblock_removable_nolock(unsigned long pfn) 1213 { 1214 struct page *page = pfn_to_page(pfn); 1215 struct zone *zone; 1216 1217 /* 1218 * We have to be careful here because we are iterating over memory 1219 * sections which are not zone aware so we might end up outside of 1220 * the zone but still within the section. 1221 * We have to take care about the node as well. If the node is offline 1222 * its NODE_DATA will be NULL - see page_zone. 1223 */ 1224 if (!node_online(page_to_nid(page))) 1225 return false; 1226 1227 zone = page_zone(page); 1228 pfn = page_to_pfn(page); 1229 if (!zone_spans_pfn(zone, pfn)) 1230 return false; 1231 1232 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1233 } 1234 1235 /* Checks if this range of memory is likely to be hot-removable. */ 1236 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1237 { 1238 unsigned long end_pfn, pfn; 1239 1240 end_pfn = min(start_pfn + nr_pages, 1241 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1242 1243 /* Check the starting page of each pageblock within the range */ 1244 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1245 if (!is_pageblock_removable_nolock(pfn)) 1246 return false; 1247 cond_resched(); 1248 } 1249 1250 /* All pageblocks in the memory block are likely to be hot-removable */ 1251 return true; 1252 } 1253 1254 /* 1255 * Confirm all pages in a range [start, end) belong to the same zone. 1256 * When true, return its valid [start, end). 1257 */ 1258 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1259 unsigned long *valid_start, unsigned long *valid_end) 1260 { 1261 unsigned long pfn, sec_end_pfn; 1262 unsigned long start, end; 1263 struct zone *zone = NULL; 1264 struct page *page; 1265 int i; 1266 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1267 pfn < end_pfn; 1268 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1269 /* Make sure the memory section is present first */ 1270 if (!present_section_nr(pfn_to_section_nr(pfn))) 1271 continue; 1272 for (; pfn < sec_end_pfn && pfn < end_pfn; 1273 pfn += MAX_ORDER_NR_PAGES) { 1274 i = 0; 1275 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1276 while ((i < MAX_ORDER_NR_PAGES) && 1277 !pfn_valid_within(pfn + i)) 1278 i++; 1279 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1280 continue; 1281 /* Check if we got outside of the zone */ 1282 if (zone && !zone_spans_pfn(zone, pfn + i)) 1283 return 0; 1284 page = pfn_to_page(pfn + i); 1285 if (zone && page_zone(page) != zone) 1286 return 0; 1287 if (!zone) 1288 start = pfn + i; 1289 zone = page_zone(page); 1290 end = pfn + MAX_ORDER_NR_PAGES; 1291 } 1292 } 1293 1294 if (zone) { 1295 *valid_start = start; 1296 *valid_end = min(end, end_pfn); 1297 return 1; 1298 } else { 1299 return 0; 1300 } 1301 } 1302 1303 /* 1304 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1305 * non-lru movable pages and hugepages). We scan pfn because it's much 1306 * easier than scanning over linked list. This function returns the pfn 1307 * of the first found movable page if it's found, otherwise 0. 1308 */ 1309 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1310 { 1311 unsigned long pfn; 1312 1313 for (pfn = start; pfn < end; pfn++) { 1314 struct page *page, *head; 1315 unsigned long skip; 1316 1317 if (!pfn_valid(pfn)) 1318 continue; 1319 page = pfn_to_page(pfn); 1320 if (PageLRU(page)) 1321 return pfn; 1322 if (__PageMovable(page)) 1323 return pfn; 1324 1325 if (!PageHuge(page)) 1326 continue; 1327 head = compound_head(page); 1328 if (page_huge_active(head)) 1329 return pfn; 1330 skip = (1 << compound_order(head)) - (page - head); 1331 pfn += skip - 1; 1332 } 1333 return 0; 1334 } 1335 1336 static struct page *new_node_page(struct page *page, unsigned long private) 1337 { 1338 int nid = page_to_nid(page); 1339 nodemask_t nmask = node_states[N_MEMORY]; 1340 1341 /* 1342 * try to allocate from a different node but reuse this node if there 1343 * are no other online nodes to be used (e.g. we are offlining a part 1344 * of the only existing node) 1345 */ 1346 node_clear(nid, nmask); 1347 if (nodes_empty(nmask)) 1348 node_set(nid, nmask); 1349 1350 return new_page_nodemask(page, nid, &nmask); 1351 } 1352 1353 static int 1354 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1355 { 1356 unsigned long pfn; 1357 struct page *page; 1358 int ret = 0; 1359 LIST_HEAD(source); 1360 1361 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1362 if (!pfn_valid(pfn)) 1363 continue; 1364 page = pfn_to_page(pfn); 1365 1366 if (PageHuge(page)) { 1367 struct page *head = compound_head(page); 1368 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1369 isolate_huge_page(head, &source); 1370 continue; 1371 } else if (PageTransHuge(page)) 1372 pfn = page_to_pfn(compound_head(page)) 1373 + hpage_nr_pages(page) - 1; 1374 1375 /* 1376 * HWPoison pages have elevated reference counts so the migration would 1377 * fail on them. It also doesn't make any sense to migrate them in the 1378 * first place. Still try to unmap such a page in case it is still mapped 1379 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1380 * the unmap as the catch all safety net). 1381 */ 1382 if (PageHWPoison(page)) { 1383 if (WARN_ON(PageLRU(page))) 1384 isolate_lru_page(page); 1385 if (page_mapped(page)) 1386 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1387 continue; 1388 } 1389 1390 if (!get_page_unless_zero(page)) 1391 continue; 1392 /* 1393 * We can skip free pages. And we can deal with pages on 1394 * LRU and non-lru movable pages. 1395 */ 1396 if (PageLRU(page)) 1397 ret = isolate_lru_page(page); 1398 else 1399 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1400 if (!ret) { /* Success */ 1401 list_add_tail(&page->lru, &source); 1402 if (!__PageMovable(page)) 1403 inc_node_page_state(page, NR_ISOLATED_ANON + 1404 page_is_file_cache(page)); 1405 1406 } else { 1407 pr_warn("failed to isolate pfn %lx\n", pfn); 1408 dump_page(page, "isolation failed"); 1409 } 1410 put_page(page); 1411 } 1412 if (!list_empty(&source)) { 1413 /* Allocate a new page from the nearest neighbor node */ 1414 ret = migrate_pages(&source, new_node_page, NULL, 0, 1415 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1416 if (ret) { 1417 list_for_each_entry(page, &source, lru) { 1418 pr_warn("migrating pfn %lx failed ret:%d ", 1419 page_to_pfn(page), ret); 1420 dump_page(page, "migration failure"); 1421 } 1422 putback_movable_pages(&source); 1423 } 1424 } 1425 1426 return ret; 1427 } 1428 1429 /* 1430 * remove from free_area[] and mark all as Reserved. 1431 */ 1432 static int 1433 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1434 void *data) 1435 { 1436 unsigned long *offlined_pages = (unsigned long *)data; 1437 1438 *offlined_pages += __offline_isolated_pages(start, start + nr_pages); 1439 return 0; 1440 } 1441 1442 /* 1443 * Check all pages in range, recoreded as memory resource, are isolated. 1444 */ 1445 static int 1446 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1447 void *data) 1448 { 1449 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1450 } 1451 1452 static int __init cmdline_parse_movable_node(char *p) 1453 { 1454 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1455 movable_node_enabled = true; 1456 #else 1457 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1458 #endif 1459 return 0; 1460 } 1461 early_param("movable_node", cmdline_parse_movable_node); 1462 1463 /* check which state of node_states will be changed when offline memory */ 1464 static void node_states_check_changes_offline(unsigned long nr_pages, 1465 struct zone *zone, struct memory_notify *arg) 1466 { 1467 struct pglist_data *pgdat = zone->zone_pgdat; 1468 unsigned long present_pages = 0; 1469 enum zone_type zt; 1470 1471 arg->status_change_nid = NUMA_NO_NODE; 1472 arg->status_change_nid_normal = NUMA_NO_NODE; 1473 arg->status_change_nid_high = NUMA_NO_NODE; 1474 1475 /* 1476 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1477 * If the memory to be offline is within the range 1478 * [0..ZONE_NORMAL], and it is the last present memory there, 1479 * the zones in that range will become empty after the offlining, 1480 * thus we can determine that we need to clear the node from 1481 * node_states[N_NORMAL_MEMORY]. 1482 */ 1483 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1484 present_pages += pgdat->node_zones[zt].present_pages; 1485 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1486 arg->status_change_nid_normal = zone_to_nid(zone); 1487 1488 #ifdef CONFIG_HIGHMEM 1489 /* 1490 * node_states[N_HIGH_MEMORY] contains nodes which 1491 * have normal memory or high memory. 1492 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1493 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1494 * we determine that the zones in that range become empty, 1495 * we need to clear the node for N_HIGH_MEMORY. 1496 */ 1497 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1498 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1499 arg->status_change_nid_high = zone_to_nid(zone); 1500 #endif 1501 1502 /* 1503 * We have accounted the pages from [0..ZONE_NORMAL), and 1504 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1505 * as well. 1506 * Here we count the possible pages from ZONE_MOVABLE. 1507 * If after having accounted all the pages, we see that the nr_pages 1508 * to be offlined is over or equal to the accounted pages, 1509 * we know that the node will become empty, and so, we can clear 1510 * it for N_MEMORY as well. 1511 */ 1512 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1513 1514 if (nr_pages >= present_pages) 1515 arg->status_change_nid = zone_to_nid(zone); 1516 } 1517 1518 static void node_states_clear_node(int node, struct memory_notify *arg) 1519 { 1520 if (arg->status_change_nid_normal >= 0) 1521 node_clear_state(node, N_NORMAL_MEMORY); 1522 1523 if (arg->status_change_nid_high >= 0) 1524 node_clear_state(node, N_HIGH_MEMORY); 1525 1526 if (arg->status_change_nid >= 0) 1527 node_clear_state(node, N_MEMORY); 1528 } 1529 1530 static int __ref __offline_pages(unsigned long start_pfn, 1531 unsigned long end_pfn) 1532 { 1533 unsigned long pfn, nr_pages; 1534 unsigned long offlined_pages = 0; 1535 int ret, node, nr_isolate_pageblock; 1536 unsigned long flags; 1537 unsigned long valid_start, valid_end; 1538 struct zone *zone; 1539 struct memory_notify arg; 1540 char *reason; 1541 1542 mem_hotplug_begin(); 1543 1544 /* This makes hotplug much easier...and readable. 1545 we assume this for now. .*/ 1546 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1547 &valid_end)) { 1548 ret = -EINVAL; 1549 reason = "multizone range"; 1550 goto failed_removal; 1551 } 1552 1553 zone = page_zone(pfn_to_page(valid_start)); 1554 node = zone_to_nid(zone); 1555 nr_pages = end_pfn - start_pfn; 1556 1557 /* set above range as isolated */ 1558 ret = start_isolate_page_range(start_pfn, end_pfn, 1559 MIGRATE_MOVABLE, 1560 SKIP_HWPOISON | REPORT_FAILURE); 1561 if (ret < 0) { 1562 reason = "failure to isolate range"; 1563 goto failed_removal; 1564 } 1565 nr_isolate_pageblock = ret; 1566 1567 arg.start_pfn = start_pfn; 1568 arg.nr_pages = nr_pages; 1569 node_states_check_changes_offline(nr_pages, zone, &arg); 1570 1571 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1572 ret = notifier_to_errno(ret); 1573 if (ret) { 1574 reason = "notifier failure"; 1575 goto failed_removal_isolated; 1576 } 1577 1578 do { 1579 for (pfn = start_pfn; pfn;) { 1580 if (signal_pending(current)) { 1581 ret = -EINTR; 1582 reason = "signal backoff"; 1583 goto failed_removal_isolated; 1584 } 1585 1586 cond_resched(); 1587 lru_add_drain_all(); 1588 1589 pfn = scan_movable_pages(pfn, end_pfn); 1590 if (pfn) { 1591 /* 1592 * TODO: fatal migration failures should bail 1593 * out 1594 */ 1595 do_migrate_range(pfn, end_pfn); 1596 } 1597 } 1598 1599 /* 1600 * Dissolve free hugepages in the memory block before doing 1601 * offlining actually in order to make hugetlbfs's object 1602 * counting consistent. 1603 */ 1604 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1605 if (ret) { 1606 reason = "failure to dissolve huge pages"; 1607 goto failed_removal_isolated; 1608 } 1609 /* check again */ 1610 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1611 NULL, check_pages_isolated_cb); 1612 } while (ret); 1613 1614 /* Ok, all of our target is isolated. 1615 We cannot do rollback at this point. */ 1616 walk_system_ram_range(start_pfn, end_pfn - start_pfn, 1617 &offlined_pages, offline_isolated_pages_cb); 1618 pr_info("Offlined Pages %ld\n", offlined_pages); 1619 /* 1620 * Onlining will reset pagetype flags and makes migrate type 1621 * MOVABLE, so just need to decrease the number of isolated 1622 * pageblocks zone counter here. 1623 */ 1624 spin_lock_irqsave(&zone->lock, flags); 1625 zone->nr_isolate_pageblock -= nr_isolate_pageblock; 1626 spin_unlock_irqrestore(&zone->lock, flags); 1627 1628 /* removal success */ 1629 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1630 zone->present_pages -= offlined_pages; 1631 1632 pgdat_resize_lock(zone->zone_pgdat, &flags); 1633 zone->zone_pgdat->node_present_pages -= offlined_pages; 1634 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1635 1636 init_per_zone_wmark_min(); 1637 1638 if (!populated_zone(zone)) { 1639 zone_pcp_reset(zone); 1640 build_all_zonelists(NULL); 1641 } else 1642 zone_pcp_update(zone); 1643 1644 node_states_clear_node(node, &arg); 1645 if (arg.status_change_nid >= 0) { 1646 kswapd_stop(node); 1647 kcompactd_stop(node); 1648 } 1649 1650 vm_total_pages = nr_free_pagecache_pages(); 1651 writeback_set_ratelimit(); 1652 1653 memory_notify(MEM_OFFLINE, &arg); 1654 mem_hotplug_done(); 1655 return 0; 1656 1657 failed_removal_isolated: 1658 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1659 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1660 failed_removal: 1661 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1662 (unsigned long long) start_pfn << PAGE_SHIFT, 1663 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1664 reason); 1665 /* pushback to free area */ 1666 mem_hotplug_done(); 1667 return ret; 1668 } 1669 1670 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1671 { 1672 return __offline_pages(start_pfn, start_pfn + nr_pages); 1673 } 1674 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1675 1676 /** 1677 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1678 * @start_pfn: start pfn of the memory range 1679 * @end_pfn: end pfn of the memory range 1680 * @arg: argument passed to func 1681 * @func: callback for each memory section walked 1682 * 1683 * This function walks through all present mem sections in range 1684 * [start_pfn, end_pfn) and call func on each mem section. 1685 * 1686 * Returns the return value of func. 1687 */ 1688 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1689 void *arg, int (*func)(struct memory_block *, void *)) 1690 { 1691 struct memory_block *mem = NULL; 1692 struct mem_section *section; 1693 unsigned long pfn, section_nr; 1694 int ret; 1695 1696 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1697 section_nr = pfn_to_section_nr(pfn); 1698 if (!present_section_nr(section_nr)) 1699 continue; 1700 1701 section = __nr_to_section(section_nr); 1702 /* same memblock? */ 1703 if (mem) 1704 if ((section_nr >= mem->start_section_nr) && 1705 (section_nr <= mem->end_section_nr)) 1706 continue; 1707 1708 mem = find_memory_block_hinted(section, mem); 1709 if (!mem) 1710 continue; 1711 1712 ret = func(mem, arg); 1713 if (ret) { 1714 kobject_put(&mem->dev.kobj); 1715 return ret; 1716 } 1717 } 1718 1719 if (mem) 1720 kobject_put(&mem->dev.kobj); 1721 1722 return 0; 1723 } 1724 1725 #ifdef CONFIG_MEMORY_HOTREMOVE 1726 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1727 { 1728 int ret = !is_memblock_offlined(mem); 1729 1730 if (unlikely(ret)) { 1731 phys_addr_t beginpa, endpa; 1732 1733 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1734 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1735 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1736 &beginpa, &endpa); 1737 } 1738 1739 return ret; 1740 } 1741 1742 static int check_cpu_on_node(pg_data_t *pgdat) 1743 { 1744 int cpu; 1745 1746 for_each_present_cpu(cpu) { 1747 if (cpu_to_node(cpu) == pgdat->node_id) 1748 /* 1749 * the cpu on this node isn't removed, and we can't 1750 * offline this node. 1751 */ 1752 return -EBUSY; 1753 } 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * try_offline_node 1760 * @nid: the node ID 1761 * 1762 * Offline a node if all memory sections and cpus of the node are removed. 1763 * 1764 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1765 * and online/offline operations before this call. 1766 */ 1767 void try_offline_node(int nid) 1768 { 1769 pg_data_t *pgdat = NODE_DATA(nid); 1770 unsigned long start_pfn = pgdat->node_start_pfn; 1771 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1772 unsigned long pfn; 1773 1774 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1775 unsigned long section_nr = pfn_to_section_nr(pfn); 1776 1777 if (!present_section_nr(section_nr)) 1778 continue; 1779 1780 if (pfn_to_nid(pfn) != nid) 1781 continue; 1782 1783 /* 1784 * some memory sections of this node are not removed, and we 1785 * can't offline node now. 1786 */ 1787 return; 1788 } 1789 1790 if (check_cpu_on_node(pgdat)) 1791 return; 1792 1793 /* 1794 * all memory/cpu of this node are removed, we can offline this 1795 * node now. 1796 */ 1797 node_set_offline(nid); 1798 unregister_one_node(nid); 1799 } 1800 EXPORT_SYMBOL(try_offline_node); 1801 1802 static void __release_memory_resource(resource_size_t start, 1803 resource_size_t size) 1804 { 1805 int ret; 1806 1807 /* 1808 * When removing memory in the same granularity as it was added, 1809 * this function never fails. It might only fail if resources 1810 * have to be adjusted or split. We'll ignore the error, as 1811 * removing of memory cannot fail. 1812 */ 1813 ret = release_mem_region_adjustable(&iomem_resource, start, size); 1814 if (ret) { 1815 resource_size_t endres = start + size - 1; 1816 1817 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 1818 &start, &endres, ret); 1819 } 1820 } 1821 1822 /** 1823 * remove_memory 1824 * @nid: the node ID 1825 * @start: physical address of the region to remove 1826 * @size: size of the region to remove 1827 * 1828 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1829 * and online/offline operations before this call, as required by 1830 * try_offline_node(). 1831 */ 1832 void __ref __remove_memory(int nid, u64 start, u64 size) 1833 { 1834 int ret; 1835 1836 BUG_ON(check_hotplug_memory_range(start, size)); 1837 1838 mem_hotplug_begin(); 1839 1840 /* 1841 * All memory blocks must be offlined before removing memory. Check 1842 * whether all memory blocks in question are offline and trigger a BUG() 1843 * if this is not the case. 1844 */ 1845 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1846 check_memblock_offlined_cb); 1847 if (ret) 1848 BUG(); 1849 1850 /* remove memmap entry */ 1851 firmware_map_remove(start, start + size, "System RAM"); 1852 memblock_free(start, size); 1853 memblock_remove(start, size); 1854 1855 arch_remove_memory(nid, start, size, NULL); 1856 __release_memory_resource(start, size); 1857 1858 try_offline_node(nid); 1859 1860 mem_hotplug_done(); 1861 } 1862 1863 void remove_memory(int nid, u64 start, u64 size) 1864 { 1865 lock_device_hotplug(); 1866 __remove_memory(nid, start, size); 1867 unlock_device_hotplug(); 1868 } 1869 EXPORT_SYMBOL_GPL(remove_memory); 1870 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1871