xref: /openbmc/linux/mm/memory.c (revision f94909ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96 
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100 
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110 
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 					1;
120 #else
121 					2;
122 #endif
123 
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 	/*
128 	 * Those arches which don't have hw access flag feature need to
129 	 * implement their own helper. By default, "true" means pagefault
130 	 * will be hit on old pte.
131 	 */
132 	return true;
133 }
134 #endif
135 
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139 	/*
140 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 	 * some architectures, even if it's performed in hardware. By
142 	 * default, "false" means prefaulted entries will be 'young'.
143 	 */
144 	return false;
145 }
146 #endif
147 
148 static int __init disable_randmaps(char *s)
149 {
150 	randomize_va_space = 0;
151 	return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154 
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157 
158 unsigned long highest_memmap_pfn __read_mostly;
159 
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 	return 0;
167 }
168 early_initcall(init_zero_pfn);
169 
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172 	trace_rss_stat(mm, member, count);
173 }
174 
175 #if defined(SPLIT_RSS_COUNTING)
176 
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 	int i;
180 
181 	for (i = 0; i < NR_MM_COUNTERS; i++) {
182 		if (current->rss_stat.count[i]) {
183 			add_mm_counter(mm, i, current->rss_stat.count[i]);
184 			current->rss_stat.count[i] = 0;
185 		}
186 	}
187 	current->rss_stat.events = 0;
188 }
189 
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 	struct task_struct *task = current;
193 
194 	if (likely(task->mm == mm))
195 		task->rss_stat.count[member] += val;
196 	else
197 		add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201 
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH	(64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 	if (unlikely(task != current))
207 		return;
208 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 		sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212 
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215 
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219 
220 #endif /* SPLIT_RSS_COUNTING */
221 
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 			   unsigned long addr)
228 {
229 	pgtable_t token = pmd_pgtable(*pmd);
230 	pmd_clear(pmd);
231 	pte_free_tlb(tlb, token, addr);
232 	mm_dec_nr_ptes(tlb->mm);
233 }
234 
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 				unsigned long addr, unsigned long end,
237 				unsigned long floor, unsigned long ceiling)
238 {
239 	pmd_t *pmd;
240 	unsigned long next;
241 	unsigned long start;
242 
243 	start = addr;
244 	pmd = pmd_offset(pud, addr);
245 	do {
246 		next = pmd_addr_end(addr, end);
247 		if (pmd_none_or_clear_bad(pmd))
248 			continue;
249 		free_pte_range(tlb, pmd, addr);
250 	} while (pmd++, addr = next, addr != end);
251 
252 	start &= PUD_MASK;
253 	if (start < floor)
254 		return;
255 	if (ceiling) {
256 		ceiling &= PUD_MASK;
257 		if (!ceiling)
258 			return;
259 	}
260 	if (end - 1 > ceiling - 1)
261 		return;
262 
263 	pmd = pmd_offset(pud, start);
264 	pud_clear(pud);
265 	pmd_free_tlb(tlb, pmd, start);
266 	mm_dec_nr_pmds(tlb->mm);
267 }
268 
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 				unsigned long addr, unsigned long end,
271 				unsigned long floor, unsigned long ceiling)
272 {
273 	pud_t *pud;
274 	unsigned long next;
275 	unsigned long start;
276 
277 	start = addr;
278 	pud = pud_offset(p4d, addr);
279 	do {
280 		next = pud_addr_end(addr, end);
281 		if (pud_none_or_clear_bad(pud))
282 			continue;
283 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 	} while (pud++, addr = next, addr != end);
285 
286 	start &= P4D_MASK;
287 	if (start < floor)
288 		return;
289 	if (ceiling) {
290 		ceiling &= P4D_MASK;
291 		if (!ceiling)
292 			return;
293 	}
294 	if (end - 1 > ceiling - 1)
295 		return;
296 
297 	pud = pud_offset(p4d, start);
298 	p4d_clear(p4d);
299 	pud_free_tlb(tlb, pud, start);
300 	mm_dec_nr_puds(tlb->mm);
301 }
302 
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 				unsigned long addr, unsigned long end,
305 				unsigned long floor, unsigned long ceiling)
306 {
307 	p4d_t *p4d;
308 	unsigned long next;
309 	unsigned long start;
310 
311 	start = addr;
312 	p4d = p4d_offset(pgd, addr);
313 	do {
314 		next = p4d_addr_end(addr, end);
315 		if (p4d_none_or_clear_bad(p4d))
316 			continue;
317 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 	} while (p4d++, addr = next, addr != end);
319 
320 	start &= PGDIR_MASK;
321 	if (start < floor)
322 		return;
323 	if (ceiling) {
324 		ceiling &= PGDIR_MASK;
325 		if (!ceiling)
326 			return;
327 	}
328 	if (end - 1 > ceiling - 1)
329 		return;
330 
331 	p4d = p4d_offset(pgd, start);
332 	pgd_clear(pgd);
333 	p4d_free_tlb(tlb, p4d, start);
334 }
335 
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340 			unsigned long addr, unsigned long end,
341 			unsigned long floor, unsigned long ceiling)
342 {
343 	pgd_t *pgd;
344 	unsigned long next;
345 
346 	/*
347 	 * The next few lines have given us lots of grief...
348 	 *
349 	 * Why are we testing PMD* at this top level?  Because often
350 	 * there will be no work to do at all, and we'd prefer not to
351 	 * go all the way down to the bottom just to discover that.
352 	 *
353 	 * Why all these "- 1"s?  Because 0 represents both the bottom
354 	 * of the address space and the top of it (using -1 for the
355 	 * top wouldn't help much: the masks would do the wrong thing).
356 	 * The rule is that addr 0 and floor 0 refer to the bottom of
357 	 * the address space, but end 0 and ceiling 0 refer to the top
358 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 	 * that end 0 case should be mythical).
360 	 *
361 	 * Wherever addr is brought up or ceiling brought down, we must
362 	 * be careful to reject "the opposite 0" before it confuses the
363 	 * subsequent tests.  But what about where end is brought down
364 	 * by PMD_SIZE below? no, end can't go down to 0 there.
365 	 *
366 	 * Whereas we round start (addr) and ceiling down, by different
367 	 * masks at different levels, in order to test whether a table
368 	 * now has no other vmas using it, so can be freed, we don't
369 	 * bother to round floor or end up - the tests don't need that.
370 	 */
371 
372 	addr &= PMD_MASK;
373 	if (addr < floor) {
374 		addr += PMD_SIZE;
375 		if (!addr)
376 			return;
377 	}
378 	if (ceiling) {
379 		ceiling &= PMD_MASK;
380 		if (!ceiling)
381 			return;
382 	}
383 	if (end - 1 > ceiling - 1)
384 		end -= PMD_SIZE;
385 	if (addr > end - 1)
386 		return;
387 	/*
388 	 * We add page table cache pages with PAGE_SIZE,
389 	 * (see pte_free_tlb()), flush the tlb if we need
390 	 */
391 	tlb_change_page_size(tlb, PAGE_SIZE);
392 	pgd = pgd_offset(tlb->mm, addr);
393 	do {
394 		next = pgd_addr_end(addr, end);
395 		if (pgd_none_or_clear_bad(pgd))
396 			continue;
397 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 	} while (pgd++, addr = next, addr != end);
399 }
400 
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 		unsigned long floor, unsigned long ceiling)
403 {
404 	while (vma) {
405 		struct vm_area_struct *next = vma->vm_next;
406 		unsigned long addr = vma->vm_start;
407 
408 		/*
409 		 * Hide vma from rmap and truncate_pagecache before freeing
410 		 * pgtables
411 		 */
412 		unlink_anon_vmas(vma);
413 		unlink_file_vma(vma);
414 
415 		if (is_vm_hugetlb_page(vma)) {
416 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		} else {
419 			/*
420 			 * Optimization: gather nearby vmas into one call down
421 			 */
422 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 			       && !is_vm_hugetlb_page(next)) {
424 				vma = next;
425 				next = vma->vm_next;
426 				unlink_anon_vmas(vma);
427 				unlink_file_vma(vma);
428 			}
429 			free_pgd_range(tlb, addr, vma->vm_end,
430 				floor, next ? next->vm_start : ceiling);
431 		}
432 		vma = next;
433 	}
434 }
435 
436 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
437 {
438 	spinlock_t *ptl = pmd_lock(mm, pmd);
439 
440 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
441 		mm_inc_nr_ptes(mm);
442 		/*
443 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
444 		 * visible before the pte is made visible to other CPUs by being
445 		 * put into page tables.
446 		 *
447 		 * The other side of the story is the pointer chasing in the page
448 		 * table walking code (when walking the page table without locking;
449 		 * ie. most of the time). Fortunately, these data accesses consist
450 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
451 		 * being the notable exception) will already guarantee loads are
452 		 * seen in-order. See the alpha page table accessors for the
453 		 * smp_rmb() barriers in page table walking code.
454 		 */
455 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
456 		pmd_populate(mm, pmd, *pte);
457 		*pte = NULL;
458 	}
459 	spin_unlock(ptl);
460 }
461 
462 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
463 {
464 	pgtable_t new = pte_alloc_one(mm);
465 	if (!new)
466 		return -ENOMEM;
467 
468 	pmd_install(mm, pmd, &new);
469 	if (new)
470 		pte_free(mm, new);
471 	return 0;
472 }
473 
474 int __pte_alloc_kernel(pmd_t *pmd)
475 {
476 	pte_t *new = pte_alloc_one_kernel(&init_mm);
477 	if (!new)
478 		return -ENOMEM;
479 
480 	spin_lock(&init_mm.page_table_lock);
481 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
482 		smp_wmb(); /* See comment in pmd_install() */
483 		pmd_populate_kernel(&init_mm, pmd, new);
484 		new = NULL;
485 	}
486 	spin_unlock(&init_mm.page_table_lock);
487 	if (new)
488 		pte_free_kernel(&init_mm, new);
489 	return 0;
490 }
491 
492 static inline void init_rss_vec(int *rss)
493 {
494 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
495 }
496 
497 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
498 {
499 	int i;
500 
501 	if (current->mm == mm)
502 		sync_mm_rss(mm);
503 	for (i = 0; i < NR_MM_COUNTERS; i++)
504 		if (rss[i])
505 			add_mm_counter(mm, i, rss[i]);
506 }
507 
508 /*
509  * This function is called to print an error when a bad pte
510  * is found. For example, we might have a PFN-mapped pte in
511  * a region that doesn't allow it.
512  *
513  * The calling function must still handle the error.
514  */
515 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
516 			  pte_t pte, struct page *page)
517 {
518 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
519 	p4d_t *p4d = p4d_offset(pgd, addr);
520 	pud_t *pud = pud_offset(p4d, addr);
521 	pmd_t *pmd = pmd_offset(pud, addr);
522 	struct address_space *mapping;
523 	pgoff_t index;
524 	static unsigned long resume;
525 	static unsigned long nr_shown;
526 	static unsigned long nr_unshown;
527 
528 	/*
529 	 * Allow a burst of 60 reports, then keep quiet for that minute;
530 	 * or allow a steady drip of one report per second.
531 	 */
532 	if (nr_shown == 60) {
533 		if (time_before(jiffies, resume)) {
534 			nr_unshown++;
535 			return;
536 		}
537 		if (nr_unshown) {
538 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
539 				 nr_unshown);
540 			nr_unshown = 0;
541 		}
542 		nr_shown = 0;
543 	}
544 	if (nr_shown++ == 0)
545 		resume = jiffies + 60 * HZ;
546 
547 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
548 	index = linear_page_index(vma, addr);
549 
550 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
551 		 current->comm,
552 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
553 	if (page)
554 		dump_page(page, "bad pte");
555 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
556 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
557 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
558 		 vma->vm_file,
559 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
560 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
561 		 mapping ? mapping->a_ops->readpage : NULL);
562 	dump_stack();
563 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
564 }
565 
566 /*
567  * vm_normal_page -- This function gets the "struct page" associated with a pte.
568  *
569  * "Special" mappings do not wish to be associated with a "struct page" (either
570  * it doesn't exist, or it exists but they don't want to touch it). In this
571  * case, NULL is returned here. "Normal" mappings do have a struct page.
572  *
573  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
574  * pte bit, in which case this function is trivial. Secondly, an architecture
575  * may not have a spare pte bit, which requires a more complicated scheme,
576  * described below.
577  *
578  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
579  * special mapping (even if there are underlying and valid "struct pages").
580  * COWed pages of a VM_PFNMAP are always normal.
581  *
582  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
583  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
584  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
585  * mapping will always honor the rule
586  *
587  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
588  *
589  * And for normal mappings this is false.
590  *
591  * This restricts such mappings to be a linear translation from virtual address
592  * to pfn. To get around this restriction, we allow arbitrary mappings so long
593  * as the vma is not a COW mapping; in that case, we know that all ptes are
594  * special (because none can have been COWed).
595  *
596  *
597  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
598  *
599  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
600  * page" backing, however the difference is that _all_ pages with a struct
601  * page (that is, those where pfn_valid is true) are refcounted and considered
602  * normal pages by the VM. The disadvantage is that pages are refcounted
603  * (which can be slower and simply not an option for some PFNMAP users). The
604  * advantage is that we don't have to follow the strict linearity rule of
605  * PFNMAP mappings in order to support COWable mappings.
606  *
607  */
608 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
609 			    pte_t pte)
610 {
611 	unsigned long pfn = pte_pfn(pte);
612 
613 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
614 		if (likely(!pte_special(pte)))
615 			goto check_pfn;
616 		if (vma->vm_ops && vma->vm_ops->find_special_page)
617 			return vma->vm_ops->find_special_page(vma, addr);
618 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
619 			return NULL;
620 		if (is_zero_pfn(pfn))
621 			return NULL;
622 		if (pte_devmap(pte))
623 			return NULL;
624 
625 		print_bad_pte(vma, addr, pte, NULL);
626 		return NULL;
627 	}
628 
629 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
630 
631 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
632 		if (vma->vm_flags & VM_MIXEDMAP) {
633 			if (!pfn_valid(pfn))
634 				return NULL;
635 			goto out;
636 		} else {
637 			unsigned long off;
638 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
639 			if (pfn == vma->vm_pgoff + off)
640 				return NULL;
641 			if (!is_cow_mapping(vma->vm_flags))
642 				return NULL;
643 		}
644 	}
645 
646 	if (is_zero_pfn(pfn))
647 		return NULL;
648 
649 check_pfn:
650 	if (unlikely(pfn > highest_memmap_pfn)) {
651 		print_bad_pte(vma, addr, pte, NULL);
652 		return NULL;
653 	}
654 
655 	/*
656 	 * NOTE! We still have PageReserved() pages in the page tables.
657 	 * eg. VDSO mappings can cause them to exist.
658 	 */
659 out:
660 	return pfn_to_page(pfn);
661 }
662 
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
665 				pmd_t pmd)
666 {
667 	unsigned long pfn = pmd_pfn(pmd);
668 
669 	/*
670 	 * There is no pmd_special() but there may be special pmds, e.g.
671 	 * in a direct-access (dax) mapping, so let's just replicate the
672 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
673 	 */
674 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675 		if (vma->vm_flags & VM_MIXEDMAP) {
676 			if (!pfn_valid(pfn))
677 				return NULL;
678 			goto out;
679 		} else {
680 			unsigned long off;
681 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
682 			if (pfn == vma->vm_pgoff + off)
683 				return NULL;
684 			if (!is_cow_mapping(vma->vm_flags))
685 				return NULL;
686 		}
687 	}
688 
689 	if (pmd_devmap(pmd))
690 		return NULL;
691 	if (is_huge_zero_pmd(pmd))
692 		return NULL;
693 	if (unlikely(pfn > highest_memmap_pfn))
694 		return NULL;
695 
696 	/*
697 	 * NOTE! We still have PageReserved() pages in the page tables.
698 	 * eg. VDSO mappings can cause them to exist.
699 	 */
700 out:
701 	return pfn_to_page(pfn);
702 }
703 #endif
704 
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706 				  struct page *page, unsigned long address,
707 				  pte_t *ptep)
708 {
709 	pte_t pte;
710 	swp_entry_t entry;
711 
712 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
713 	if (pte_swp_soft_dirty(*ptep))
714 		pte = pte_mksoft_dirty(pte);
715 
716 	entry = pte_to_swp_entry(*ptep);
717 	if (pte_swp_uffd_wp(*ptep))
718 		pte = pte_mkuffd_wp(pte);
719 	else if (is_writable_device_exclusive_entry(entry))
720 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
721 
722 	set_pte_at(vma->vm_mm, address, ptep, pte);
723 
724 	/*
725 	 * No need to take a page reference as one was already
726 	 * created when the swap entry was made.
727 	 */
728 	if (PageAnon(page))
729 		page_add_anon_rmap(page, vma, address, false);
730 	else
731 		/*
732 		 * Currently device exclusive access only supports anonymous
733 		 * memory so the entry shouldn't point to a filebacked page.
734 		 */
735 		WARN_ON_ONCE(!PageAnon(page));
736 
737 	if (vma->vm_flags & VM_LOCKED)
738 		mlock_vma_page(page);
739 
740 	/*
741 	 * No need to invalidate - it was non-present before. However
742 	 * secondary CPUs may have mappings that need invalidating.
743 	 */
744 	update_mmu_cache(vma, address, ptep);
745 }
746 
747 /*
748  * Tries to restore an exclusive pte if the page lock can be acquired without
749  * sleeping.
750  */
751 static int
752 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753 			unsigned long addr)
754 {
755 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
756 	struct page *page = pfn_swap_entry_to_page(entry);
757 
758 	if (trylock_page(page)) {
759 		restore_exclusive_pte(vma, page, addr, src_pte);
760 		unlock_page(page);
761 		return 0;
762 	}
763 
764 	return -EBUSY;
765 }
766 
767 /*
768  * copy one vm_area from one task to the other. Assumes the page tables
769  * already present in the new task to be cleared in the whole range
770  * covered by this vma.
771  */
772 
773 static unsigned long
774 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
775 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
777 {
778 	unsigned long vm_flags = dst_vma->vm_flags;
779 	pte_t pte = *src_pte;
780 	struct page *page;
781 	swp_entry_t entry = pte_to_swp_entry(pte);
782 
783 	if (likely(!non_swap_entry(entry))) {
784 		if (swap_duplicate(entry) < 0)
785 			return -EIO;
786 
787 		/* make sure dst_mm is on swapoff's mmlist. */
788 		if (unlikely(list_empty(&dst_mm->mmlist))) {
789 			spin_lock(&mmlist_lock);
790 			if (list_empty(&dst_mm->mmlist))
791 				list_add(&dst_mm->mmlist,
792 						&src_mm->mmlist);
793 			spin_unlock(&mmlist_lock);
794 		}
795 		rss[MM_SWAPENTS]++;
796 	} else if (is_migration_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		rss[mm_counter(page)]++;
800 
801 		if (is_writable_migration_entry(entry) &&
802 				is_cow_mapping(vm_flags)) {
803 			/*
804 			 * COW mappings require pages in both
805 			 * parent and child to be set to read.
806 			 */
807 			entry = make_readable_migration_entry(
808 							swp_offset(entry));
809 			pte = swp_entry_to_pte(entry);
810 			if (pte_swp_soft_dirty(*src_pte))
811 				pte = pte_swp_mksoft_dirty(pte);
812 			if (pte_swp_uffd_wp(*src_pte))
813 				pte = pte_swp_mkuffd_wp(pte);
814 			set_pte_at(src_mm, addr, src_pte, pte);
815 		}
816 	} else if (is_device_private_entry(entry)) {
817 		page = pfn_swap_entry_to_page(entry);
818 
819 		/*
820 		 * Update rss count even for unaddressable pages, as
821 		 * they should treated just like normal pages in this
822 		 * respect.
823 		 *
824 		 * We will likely want to have some new rss counters
825 		 * for unaddressable pages, at some point. But for now
826 		 * keep things as they are.
827 		 */
828 		get_page(page);
829 		rss[mm_counter(page)]++;
830 		page_dup_rmap(page, false);
831 
832 		/*
833 		 * We do not preserve soft-dirty information, because so
834 		 * far, checkpoint/restore is the only feature that
835 		 * requires that. And checkpoint/restore does not work
836 		 * when a device driver is involved (you cannot easily
837 		 * save and restore device driver state).
838 		 */
839 		if (is_writable_device_private_entry(entry) &&
840 		    is_cow_mapping(vm_flags)) {
841 			entry = make_readable_device_private_entry(
842 							swp_offset(entry));
843 			pte = swp_entry_to_pte(entry);
844 			if (pte_swp_uffd_wp(*src_pte))
845 				pte = pte_swp_mkuffd_wp(pte);
846 			set_pte_at(src_mm, addr, src_pte, pte);
847 		}
848 	} else if (is_device_exclusive_entry(entry)) {
849 		/*
850 		 * Make device exclusive entries present by restoring the
851 		 * original entry then copying as for a present pte. Device
852 		 * exclusive entries currently only support private writable
853 		 * (ie. COW) mappings.
854 		 */
855 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 			return -EBUSY;
858 		return -ENOENT;
859 	}
860 	if (!userfaultfd_wp(dst_vma))
861 		pte = pte_swp_clear_uffd_wp(pte);
862 	set_pte_at(dst_mm, addr, dst_pte, pte);
863 	return 0;
864 }
865 
866 /*
867  * Copy a present and normal page if necessary.
868  *
869  * NOTE! The usual case is that this doesn't need to do
870  * anything, and can just return a positive value. That
871  * will let the caller know that it can just increase
872  * the page refcount and re-use the pte the traditional
873  * way.
874  *
875  * But _if_ we need to copy it because it needs to be
876  * pinned in the parent (and the child should get its own
877  * copy rather than just a reference to the same page),
878  * we'll do that here and return zero to let the caller
879  * know we're done.
880  *
881  * And if we need a pre-allocated page but don't yet have
882  * one, return a negative error to let the preallocation
883  * code know so that it can do so outside the page table
884  * lock.
885  */
886 static inline int
887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889 		  struct page **prealloc, pte_t pte, struct page *page)
890 {
891 	struct page *new_page;
892 
893 	/*
894 	 * What we want to do is to check whether this page may
895 	 * have been pinned by the parent process.  If so,
896 	 * instead of wrprotect the pte on both sides, we copy
897 	 * the page immediately so that we'll always guarantee
898 	 * the pinned page won't be randomly replaced in the
899 	 * future.
900 	 *
901 	 * The page pinning checks are just "has this mm ever
902 	 * seen pinning", along with the (inexact) check of
903 	 * the page count. That might give false positives for
904 	 * for pinning, but it will work correctly.
905 	 */
906 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
907 		return 1;
908 
909 	new_page = *prealloc;
910 	if (!new_page)
911 		return -EAGAIN;
912 
913 	/*
914 	 * We have a prealloc page, all good!  Take it
915 	 * over and copy the page & arm it.
916 	 */
917 	*prealloc = NULL;
918 	copy_user_highpage(new_page, page, addr, src_vma);
919 	__SetPageUptodate(new_page);
920 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
921 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
922 	rss[mm_counter(new_page)]++;
923 
924 	/* All done, just insert the new page copy in the child */
925 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
926 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
927 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
928 		/* Uffd-wp needs to be delivered to dest pte as well */
929 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
930 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
931 	return 0;
932 }
933 
934 /*
935  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
936  * is required to copy this pte.
937  */
938 static inline int
939 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
940 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
941 		 struct page **prealloc)
942 {
943 	struct mm_struct *src_mm = src_vma->vm_mm;
944 	unsigned long vm_flags = src_vma->vm_flags;
945 	pte_t pte = *src_pte;
946 	struct page *page;
947 
948 	page = vm_normal_page(src_vma, addr, pte);
949 	if (page) {
950 		int retval;
951 
952 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953 					   addr, rss, prealloc, pte, page);
954 		if (retval <= 0)
955 			return retval;
956 
957 		get_page(page);
958 		page_dup_rmap(page, false);
959 		rss[mm_counter(page)]++;
960 	}
961 
962 	/*
963 	 * If it's a COW mapping, write protect it both
964 	 * in the parent and the child
965 	 */
966 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
967 		ptep_set_wrprotect(src_mm, addr, src_pte);
968 		pte = pte_wrprotect(pte);
969 	}
970 
971 	/*
972 	 * If it's a shared mapping, mark it clean in
973 	 * the child
974 	 */
975 	if (vm_flags & VM_SHARED)
976 		pte = pte_mkclean(pte);
977 	pte = pte_mkold(pte);
978 
979 	if (!userfaultfd_wp(dst_vma))
980 		pte = pte_clear_uffd_wp(pte);
981 
982 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
983 	return 0;
984 }
985 
986 static inline struct page *
987 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
988 		   unsigned long addr)
989 {
990 	struct page *new_page;
991 
992 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
993 	if (!new_page)
994 		return NULL;
995 
996 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
997 		put_page(new_page);
998 		return NULL;
999 	}
1000 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1001 
1002 	return new_page;
1003 }
1004 
1005 static int
1006 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008 	       unsigned long end)
1009 {
1010 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1011 	struct mm_struct *src_mm = src_vma->vm_mm;
1012 	pte_t *orig_src_pte, *orig_dst_pte;
1013 	pte_t *src_pte, *dst_pte;
1014 	spinlock_t *src_ptl, *dst_ptl;
1015 	int progress, ret = 0;
1016 	int rss[NR_MM_COUNTERS];
1017 	swp_entry_t entry = (swp_entry_t){0};
1018 	struct page *prealloc = NULL;
1019 
1020 again:
1021 	progress = 0;
1022 	init_rss_vec(rss);
1023 
1024 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1025 	if (!dst_pte) {
1026 		ret = -ENOMEM;
1027 		goto out;
1028 	}
1029 	src_pte = pte_offset_map(src_pmd, addr);
1030 	src_ptl = pte_lockptr(src_mm, src_pmd);
1031 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032 	orig_src_pte = src_pte;
1033 	orig_dst_pte = dst_pte;
1034 	arch_enter_lazy_mmu_mode();
1035 
1036 	do {
1037 		/*
1038 		 * We are holding two locks at this point - either of them
1039 		 * could generate latencies in another task on another CPU.
1040 		 */
1041 		if (progress >= 32) {
1042 			progress = 0;
1043 			if (need_resched() ||
1044 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1045 				break;
1046 		}
1047 		if (pte_none(*src_pte)) {
1048 			progress++;
1049 			continue;
1050 		}
1051 		if (unlikely(!pte_present(*src_pte))) {
1052 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1053 						  dst_pte, src_pte,
1054 						  dst_vma, src_vma,
1055 						  addr, rss);
1056 			if (ret == -EIO) {
1057 				entry = pte_to_swp_entry(*src_pte);
1058 				break;
1059 			} else if (ret == -EBUSY) {
1060 				break;
1061 			} else if (!ret) {
1062 				progress += 8;
1063 				continue;
1064 			}
1065 
1066 			/*
1067 			 * Device exclusive entry restored, continue by copying
1068 			 * the now present pte.
1069 			 */
1070 			WARN_ON_ONCE(ret != -ENOENT);
1071 		}
1072 		/* copy_present_pte() will clear `*prealloc' if consumed */
1073 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074 				       addr, rss, &prealloc);
1075 		/*
1076 		 * If we need a pre-allocated page for this pte, drop the
1077 		 * locks, allocate, and try again.
1078 		 */
1079 		if (unlikely(ret == -EAGAIN))
1080 			break;
1081 		if (unlikely(prealloc)) {
1082 			/*
1083 			 * pre-alloc page cannot be reused by next time so as
1084 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1085 			 * will allocate page according to address).  This
1086 			 * could only happen if one pinned pte changed.
1087 			 */
1088 			put_page(prealloc);
1089 			prealloc = NULL;
1090 		}
1091 		progress += 8;
1092 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1093 
1094 	arch_leave_lazy_mmu_mode();
1095 	spin_unlock(src_ptl);
1096 	pte_unmap(orig_src_pte);
1097 	add_mm_rss_vec(dst_mm, rss);
1098 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1099 	cond_resched();
1100 
1101 	if (ret == -EIO) {
1102 		VM_WARN_ON_ONCE(!entry.val);
1103 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104 			ret = -ENOMEM;
1105 			goto out;
1106 		}
1107 		entry.val = 0;
1108 	} else if (ret == -EBUSY) {
1109 		goto out;
1110 	} else if (ret ==  -EAGAIN) {
1111 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1112 		if (!prealloc)
1113 			return -ENOMEM;
1114 	} else if (ret) {
1115 		VM_WARN_ON_ONCE(1);
1116 	}
1117 
1118 	/* We've captured and resolved the error. Reset, try again. */
1119 	ret = 0;
1120 
1121 	if (addr != end)
1122 		goto again;
1123 out:
1124 	if (unlikely(prealloc))
1125 		put_page(prealloc);
1126 	return ret;
1127 }
1128 
1129 static inline int
1130 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132 	       unsigned long end)
1133 {
1134 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 	struct mm_struct *src_mm = src_vma->vm_mm;
1136 	pmd_t *src_pmd, *dst_pmd;
1137 	unsigned long next;
1138 
1139 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140 	if (!dst_pmd)
1141 		return -ENOMEM;
1142 	src_pmd = pmd_offset(src_pud, addr);
1143 	do {
1144 		next = pmd_addr_end(addr, end);
1145 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146 			|| pmd_devmap(*src_pmd)) {
1147 			int err;
1148 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1149 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150 					    addr, dst_vma, src_vma);
1151 			if (err == -ENOMEM)
1152 				return -ENOMEM;
1153 			if (!err)
1154 				continue;
1155 			/* fall through */
1156 		}
1157 		if (pmd_none_or_clear_bad(src_pmd))
1158 			continue;
1159 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160 				   addr, next))
1161 			return -ENOMEM;
1162 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163 	return 0;
1164 }
1165 
1166 static inline int
1167 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169 	       unsigned long end)
1170 {
1171 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1172 	struct mm_struct *src_mm = src_vma->vm_mm;
1173 	pud_t *src_pud, *dst_pud;
1174 	unsigned long next;
1175 
1176 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1177 	if (!dst_pud)
1178 		return -ENOMEM;
1179 	src_pud = pud_offset(src_p4d, addr);
1180 	do {
1181 		next = pud_addr_end(addr, end);
1182 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183 			int err;
1184 
1185 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1186 			err = copy_huge_pud(dst_mm, src_mm,
1187 					    dst_pud, src_pud, addr, src_vma);
1188 			if (err == -ENOMEM)
1189 				return -ENOMEM;
1190 			if (!err)
1191 				continue;
1192 			/* fall through */
1193 		}
1194 		if (pud_none_or_clear_bad(src_pud))
1195 			continue;
1196 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197 				   addr, next))
1198 			return -ENOMEM;
1199 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1200 	return 0;
1201 }
1202 
1203 static inline int
1204 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206 	       unsigned long end)
1207 {
1208 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1209 	p4d_t *src_p4d, *dst_p4d;
1210 	unsigned long next;
1211 
1212 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213 	if (!dst_p4d)
1214 		return -ENOMEM;
1215 	src_p4d = p4d_offset(src_pgd, addr);
1216 	do {
1217 		next = p4d_addr_end(addr, end);
1218 		if (p4d_none_or_clear_bad(src_p4d))
1219 			continue;
1220 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221 				   addr, next))
1222 			return -ENOMEM;
1223 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224 	return 0;
1225 }
1226 
1227 int
1228 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1229 {
1230 	pgd_t *src_pgd, *dst_pgd;
1231 	unsigned long next;
1232 	unsigned long addr = src_vma->vm_start;
1233 	unsigned long end = src_vma->vm_end;
1234 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1235 	struct mm_struct *src_mm = src_vma->vm_mm;
1236 	struct mmu_notifier_range range;
1237 	bool is_cow;
1238 	int ret;
1239 
1240 	/*
1241 	 * Don't copy ptes where a page fault will fill them correctly.
1242 	 * Fork becomes much lighter when there are big shared or private
1243 	 * readonly mappings. The tradeoff is that copy_page_range is more
1244 	 * efficient than faulting.
1245 	 */
1246 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247 	    !src_vma->anon_vma)
1248 		return 0;
1249 
1250 	if (is_vm_hugetlb_page(src_vma))
1251 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1252 
1253 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1254 		/*
1255 		 * We do not free on error cases below as remove_vma
1256 		 * gets called on error from higher level routine
1257 		 */
1258 		ret = track_pfn_copy(src_vma);
1259 		if (ret)
1260 			return ret;
1261 	}
1262 
1263 	/*
1264 	 * We need to invalidate the secondary MMU mappings only when
1265 	 * there could be a permission downgrade on the ptes of the
1266 	 * parent mm. And a permission downgrade will only happen if
1267 	 * is_cow_mapping() returns true.
1268 	 */
1269 	is_cow = is_cow_mapping(src_vma->vm_flags);
1270 
1271 	if (is_cow) {
1272 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1273 					0, src_vma, src_mm, addr, end);
1274 		mmu_notifier_invalidate_range_start(&range);
1275 		/*
1276 		 * Disabling preemption is not needed for the write side, as
1277 		 * the read side doesn't spin, but goes to the mmap_lock.
1278 		 *
1279 		 * Use the raw variant of the seqcount_t write API to avoid
1280 		 * lockdep complaining about preemptibility.
1281 		 */
1282 		mmap_assert_write_locked(src_mm);
1283 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1284 	}
1285 
1286 	ret = 0;
1287 	dst_pgd = pgd_offset(dst_mm, addr);
1288 	src_pgd = pgd_offset(src_mm, addr);
1289 	do {
1290 		next = pgd_addr_end(addr, end);
1291 		if (pgd_none_or_clear_bad(src_pgd))
1292 			continue;
1293 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1294 					    addr, next))) {
1295 			ret = -ENOMEM;
1296 			break;
1297 		}
1298 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1299 
1300 	if (is_cow) {
1301 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1302 		mmu_notifier_invalidate_range_end(&range);
1303 	}
1304 	return ret;
1305 }
1306 
1307 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1308 				struct vm_area_struct *vma, pmd_t *pmd,
1309 				unsigned long addr, unsigned long end,
1310 				struct zap_details *details)
1311 {
1312 	struct mm_struct *mm = tlb->mm;
1313 	int force_flush = 0;
1314 	int rss[NR_MM_COUNTERS];
1315 	spinlock_t *ptl;
1316 	pte_t *start_pte;
1317 	pte_t *pte;
1318 	swp_entry_t entry;
1319 
1320 	tlb_change_page_size(tlb, PAGE_SIZE);
1321 again:
1322 	init_rss_vec(rss);
1323 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1324 	pte = start_pte;
1325 	flush_tlb_batched_pending(mm);
1326 	arch_enter_lazy_mmu_mode();
1327 	do {
1328 		pte_t ptent = *pte;
1329 		if (pte_none(ptent))
1330 			continue;
1331 
1332 		if (need_resched())
1333 			break;
1334 
1335 		if (pte_present(ptent)) {
1336 			struct page *page;
1337 
1338 			page = vm_normal_page(vma, addr, ptent);
1339 			if (unlikely(zap_skip_check_mapping(details, page)))
1340 				continue;
1341 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1342 							tlb->fullmm);
1343 			tlb_remove_tlb_entry(tlb, pte, addr);
1344 			if (unlikely(!page))
1345 				continue;
1346 
1347 			if (!PageAnon(page)) {
1348 				if (pte_dirty(ptent)) {
1349 					force_flush = 1;
1350 					set_page_dirty(page);
1351 				}
1352 				if (pte_young(ptent) &&
1353 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1354 					mark_page_accessed(page);
1355 			}
1356 			rss[mm_counter(page)]--;
1357 			page_remove_rmap(page, false);
1358 			if (unlikely(page_mapcount(page) < 0))
1359 				print_bad_pte(vma, addr, ptent, page);
1360 			if (unlikely(__tlb_remove_page(tlb, page))) {
1361 				force_flush = 1;
1362 				addr += PAGE_SIZE;
1363 				break;
1364 			}
1365 			continue;
1366 		}
1367 
1368 		entry = pte_to_swp_entry(ptent);
1369 		if (is_device_private_entry(entry) ||
1370 		    is_device_exclusive_entry(entry)) {
1371 			struct page *page = pfn_swap_entry_to_page(entry);
1372 
1373 			if (unlikely(zap_skip_check_mapping(details, page)))
1374 				continue;
1375 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1376 			rss[mm_counter(page)]--;
1377 
1378 			if (is_device_private_entry(entry))
1379 				page_remove_rmap(page, false);
1380 
1381 			put_page(page);
1382 			continue;
1383 		}
1384 
1385 		/* If details->check_mapping, we leave swap entries. */
1386 		if (unlikely(details))
1387 			continue;
1388 
1389 		if (!non_swap_entry(entry))
1390 			rss[MM_SWAPENTS]--;
1391 		else if (is_migration_entry(entry)) {
1392 			struct page *page;
1393 
1394 			page = pfn_swap_entry_to_page(entry);
1395 			rss[mm_counter(page)]--;
1396 		}
1397 		if (unlikely(!free_swap_and_cache(entry)))
1398 			print_bad_pte(vma, addr, ptent, NULL);
1399 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1400 	} while (pte++, addr += PAGE_SIZE, addr != end);
1401 
1402 	add_mm_rss_vec(mm, rss);
1403 	arch_leave_lazy_mmu_mode();
1404 
1405 	/* Do the actual TLB flush before dropping ptl */
1406 	if (force_flush)
1407 		tlb_flush_mmu_tlbonly(tlb);
1408 	pte_unmap_unlock(start_pte, ptl);
1409 
1410 	/*
1411 	 * If we forced a TLB flush (either due to running out of
1412 	 * batch buffers or because we needed to flush dirty TLB
1413 	 * entries before releasing the ptl), free the batched
1414 	 * memory too. Restart if we didn't do everything.
1415 	 */
1416 	if (force_flush) {
1417 		force_flush = 0;
1418 		tlb_flush_mmu(tlb);
1419 	}
1420 
1421 	if (addr != end) {
1422 		cond_resched();
1423 		goto again;
1424 	}
1425 
1426 	return addr;
1427 }
1428 
1429 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1430 				struct vm_area_struct *vma, pud_t *pud,
1431 				unsigned long addr, unsigned long end,
1432 				struct zap_details *details)
1433 {
1434 	pmd_t *pmd;
1435 	unsigned long next;
1436 
1437 	pmd = pmd_offset(pud, addr);
1438 	do {
1439 		next = pmd_addr_end(addr, end);
1440 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1441 			if (next - addr != HPAGE_PMD_SIZE)
1442 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1443 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1444 				goto next;
1445 			/* fall through */
1446 		} else if (details && details->single_page &&
1447 			   PageTransCompound(details->single_page) &&
1448 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1449 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1450 			/*
1451 			 * Take and drop THP pmd lock so that we cannot return
1452 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1453 			 * but not yet decremented compound_mapcount().
1454 			 */
1455 			spin_unlock(ptl);
1456 		}
1457 
1458 		/*
1459 		 * Here there can be other concurrent MADV_DONTNEED or
1460 		 * trans huge page faults running, and if the pmd is
1461 		 * none or trans huge it can change under us. This is
1462 		 * because MADV_DONTNEED holds the mmap_lock in read
1463 		 * mode.
1464 		 */
1465 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1466 			goto next;
1467 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1468 next:
1469 		cond_resched();
1470 	} while (pmd++, addr = next, addr != end);
1471 
1472 	return addr;
1473 }
1474 
1475 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1476 				struct vm_area_struct *vma, p4d_t *p4d,
1477 				unsigned long addr, unsigned long end,
1478 				struct zap_details *details)
1479 {
1480 	pud_t *pud;
1481 	unsigned long next;
1482 
1483 	pud = pud_offset(p4d, addr);
1484 	do {
1485 		next = pud_addr_end(addr, end);
1486 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1487 			if (next - addr != HPAGE_PUD_SIZE) {
1488 				mmap_assert_locked(tlb->mm);
1489 				split_huge_pud(vma, pud, addr);
1490 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1491 				goto next;
1492 			/* fall through */
1493 		}
1494 		if (pud_none_or_clear_bad(pud))
1495 			continue;
1496 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1497 next:
1498 		cond_resched();
1499 	} while (pud++, addr = next, addr != end);
1500 
1501 	return addr;
1502 }
1503 
1504 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1505 				struct vm_area_struct *vma, pgd_t *pgd,
1506 				unsigned long addr, unsigned long end,
1507 				struct zap_details *details)
1508 {
1509 	p4d_t *p4d;
1510 	unsigned long next;
1511 
1512 	p4d = p4d_offset(pgd, addr);
1513 	do {
1514 		next = p4d_addr_end(addr, end);
1515 		if (p4d_none_or_clear_bad(p4d))
1516 			continue;
1517 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1518 	} while (p4d++, addr = next, addr != end);
1519 
1520 	return addr;
1521 }
1522 
1523 void unmap_page_range(struct mmu_gather *tlb,
1524 			     struct vm_area_struct *vma,
1525 			     unsigned long addr, unsigned long end,
1526 			     struct zap_details *details)
1527 {
1528 	pgd_t *pgd;
1529 	unsigned long next;
1530 
1531 	BUG_ON(addr >= end);
1532 	tlb_start_vma(tlb, vma);
1533 	pgd = pgd_offset(vma->vm_mm, addr);
1534 	do {
1535 		next = pgd_addr_end(addr, end);
1536 		if (pgd_none_or_clear_bad(pgd))
1537 			continue;
1538 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1539 	} while (pgd++, addr = next, addr != end);
1540 	tlb_end_vma(tlb, vma);
1541 }
1542 
1543 
1544 static void unmap_single_vma(struct mmu_gather *tlb,
1545 		struct vm_area_struct *vma, unsigned long start_addr,
1546 		unsigned long end_addr,
1547 		struct zap_details *details)
1548 {
1549 	unsigned long start = max(vma->vm_start, start_addr);
1550 	unsigned long end;
1551 
1552 	if (start >= vma->vm_end)
1553 		return;
1554 	end = min(vma->vm_end, end_addr);
1555 	if (end <= vma->vm_start)
1556 		return;
1557 
1558 	if (vma->vm_file)
1559 		uprobe_munmap(vma, start, end);
1560 
1561 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1562 		untrack_pfn(vma, 0, 0);
1563 
1564 	if (start != end) {
1565 		if (unlikely(is_vm_hugetlb_page(vma))) {
1566 			/*
1567 			 * It is undesirable to test vma->vm_file as it
1568 			 * should be non-null for valid hugetlb area.
1569 			 * However, vm_file will be NULL in the error
1570 			 * cleanup path of mmap_region. When
1571 			 * hugetlbfs ->mmap method fails,
1572 			 * mmap_region() nullifies vma->vm_file
1573 			 * before calling this function to clean up.
1574 			 * Since no pte has actually been setup, it is
1575 			 * safe to do nothing in this case.
1576 			 */
1577 			if (vma->vm_file) {
1578 				i_mmap_lock_write(vma->vm_file->f_mapping);
1579 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1580 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1581 			}
1582 		} else
1583 			unmap_page_range(tlb, vma, start, end, details);
1584 	}
1585 }
1586 
1587 /**
1588  * unmap_vmas - unmap a range of memory covered by a list of vma's
1589  * @tlb: address of the caller's struct mmu_gather
1590  * @vma: the starting vma
1591  * @start_addr: virtual address at which to start unmapping
1592  * @end_addr: virtual address at which to end unmapping
1593  *
1594  * Unmap all pages in the vma list.
1595  *
1596  * Only addresses between `start' and `end' will be unmapped.
1597  *
1598  * The VMA list must be sorted in ascending virtual address order.
1599  *
1600  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1601  * range after unmap_vmas() returns.  So the only responsibility here is to
1602  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1603  * drops the lock and schedules.
1604  */
1605 void unmap_vmas(struct mmu_gather *tlb,
1606 		struct vm_area_struct *vma, unsigned long start_addr,
1607 		unsigned long end_addr)
1608 {
1609 	struct mmu_notifier_range range;
1610 
1611 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1612 				start_addr, end_addr);
1613 	mmu_notifier_invalidate_range_start(&range);
1614 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1615 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1616 	mmu_notifier_invalidate_range_end(&range);
1617 }
1618 
1619 /**
1620  * zap_page_range - remove user pages in a given range
1621  * @vma: vm_area_struct holding the applicable pages
1622  * @start: starting address of pages to zap
1623  * @size: number of bytes to zap
1624  *
1625  * Caller must protect the VMA list
1626  */
1627 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1628 		unsigned long size)
1629 {
1630 	struct mmu_notifier_range range;
1631 	struct mmu_gather tlb;
1632 
1633 	lru_add_drain();
1634 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1635 				start, start + size);
1636 	tlb_gather_mmu(&tlb, vma->vm_mm);
1637 	update_hiwater_rss(vma->vm_mm);
1638 	mmu_notifier_invalidate_range_start(&range);
1639 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1640 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1641 	mmu_notifier_invalidate_range_end(&range);
1642 	tlb_finish_mmu(&tlb);
1643 }
1644 
1645 /**
1646  * zap_page_range_single - remove user pages in a given range
1647  * @vma: vm_area_struct holding the applicable pages
1648  * @address: starting address of pages to zap
1649  * @size: number of bytes to zap
1650  * @details: details of shared cache invalidation
1651  *
1652  * The range must fit into one VMA.
1653  */
1654 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1655 		unsigned long size, struct zap_details *details)
1656 {
1657 	struct mmu_notifier_range range;
1658 	struct mmu_gather tlb;
1659 
1660 	lru_add_drain();
1661 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1662 				address, address + size);
1663 	tlb_gather_mmu(&tlb, vma->vm_mm);
1664 	update_hiwater_rss(vma->vm_mm);
1665 	mmu_notifier_invalidate_range_start(&range);
1666 	unmap_single_vma(&tlb, vma, address, range.end, details);
1667 	mmu_notifier_invalidate_range_end(&range);
1668 	tlb_finish_mmu(&tlb);
1669 }
1670 
1671 /**
1672  * zap_vma_ptes - remove ptes mapping the vma
1673  * @vma: vm_area_struct holding ptes to be zapped
1674  * @address: starting address of pages to zap
1675  * @size: number of bytes to zap
1676  *
1677  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1678  *
1679  * The entire address range must be fully contained within the vma.
1680  *
1681  */
1682 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1683 		unsigned long size)
1684 {
1685 	if (address < vma->vm_start || address + size > vma->vm_end ||
1686 	    		!(vma->vm_flags & VM_PFNMAP))
1687 		return;
1688 
1689 	zap_page_range_single(vma, address, size, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1692 
1693 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1694 {
1695 	pgd_t *pgd;
1696 	p4d_t *p4d;
1697 	pud_t *pud;
1698 	pmd_t *pmd;
1699 
1700 	pgd = pgd_offset(mm, addr);
1701 	p4d = p4d_alloc(mm, pgd, addr);
1702 	if (!p4d)
1703 		return NULL;
1704 	pud = pud_alloc(mm, p4d, addr);
1705 	if (!pud)
1706 		return NULL;
1707 	pmd = pmd_alloc(mm, pud, addr);
1708 	if (!pmd)
1709 		return NULL;
1710 
1711 	VM_BUG_ON(pmd_trans_huge(*pmd));
1712 	return pmd;
1713 }
1714 
1715 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716 			spinlock_t **ptl)
1717 {
1718 	pmd_t *pmd = walk_to_pmd(mm, addr);
1719 
1720 	if (!pmd)
1721 		return NULL;
1722 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1723 }
1724 
1725 static int validate_page_before_insert(struct page *page)
1726 {
1727 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1728 		return -EINVAL;
1729 	flush_dcache_page(page);
1730 	return 0;
1731 }
1732 
1733 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1734 			unsigned long addr, struct page *page, pgprot_t prot)
1735 {
1736 	if (!pte_none(*pte))
1737 		return -EBUSY;
1738 	/* Ok, finally just insert the thing.. */
1739 	get_page(page);
1740 	inc_mm_counter_fast(mm, mm_counter_file(page));
1741 	page_add_file_rmap(page, false);
1742 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1743 	return 0;
1744 }
1745 
1746 /*
1747  * This is the old fallback for page remapping.
1748  *
1749  * For historical reasons, it only allows reserved pages. Only
1750  * old drivers should use this, and they needed to mark their
1751  * pages reserved for the old functions anyway.
1752  */
1753 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1754 			struct page *page, pgprot_t prot)
1755 {
1756 	struct mm_struct *mm = vma->vm_mm;
1757 	int retval;
1758 	pte_t *pte;
1759 	spinlock_t *ptl;
1760 
1761 	retval = validate_page_before_insert(page);
1762 	if (retval)
1763 		goto out;
1764 	retval = -ENOMEM;
1765 	pte = get_locked_pte(mm, addr, &ptl);
1766 	if (!pte)
1767 		goto out;
1768 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1769 	pte_unmap_unlock(pte, ptl);
1770 out:
1771 	return retval;
1772 }
1773 
1774 #ifdef pte_index
1775 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1776 			unsigned long addr, struct page *page, pgprot_t prot)
1777 {
1778 	int err;
1779 
1780 	if (!page_count(page))
1781 		return -EINVAL;
1782 	err = validate_page_before_insert(page);
1783 	if (err)
1784 		return err;
1785 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1786 }
1787 
1788 /* insert_pages() amortizes the cost of spinlock operations
1789  * when inserting pages in a loop. Arch *must* define pte_index.
1790  */
1791 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1792 			struct page **pages, unsigned long *num, pgprot_t prot)
1793 {
1794 	pmd_t *pmd = NULL;
1795 	pte_t *start_pte, *pte;
1796 	spinlock_t *pte_lock;
1797 	struct mm_struct *const mm = vma->vm_mm;
1798 	unsigned long curr_page_idx = 0;
1799 	unsigned long remaining_pages_total = *num;
1800 	unsigned long pages_to_write_in_pmd;
1801 	int ret;
1802 more:
1803 	ret = -EFAULT;
1804 	pmd = walk_to_pmd(mm, addr);
1805 	if (!pmd)
1806 		goto out;
1807 
1808 	pages_to_write_in_pmd = min_t(unsigned long,
1809 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1810 
1811 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1812 	ret = -ENOMEM;
1813 	if (pte_alloc(mm, pmd))
1814 		goto out;
1815 
1816 	while (pages_to_write_in_pmd) {
1817 		int pte_idx = 0;
1818 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1819 
1820 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1821 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1822 			int err = insert_page_in_batch_locked(mm, pte,
1823 				addr, pages[curr_page_idx], prot);
1824 			if (unlikely(err)) {
1825 				pte_unmap_unlock(start_pte, pte_lock);
1826 				ret = err;
1827 				remaining_pages_total -= pte_idx;
1828 				goto out;
1829 			}
1830 			addr += PAGE_SIZE;
1831 			++curr_page_idx;
1832 		}
1833 		pte_unmap_unlock(start_pte, pte_lock);
1834 		pages_to_write_in_pmd -= batch_size;
1835 		remaining_pages_total -= batch_size;
1836 	}
1837 	if (remaining_pages_total)
1838 		goto more;
1839 	ret = 0;
1840 out:
1841 	*num = remaining_pages_total;
1842 	return ret;
1843 }
1844 #endif  /* ifdef pte_index */
1845 
1846 /**
1847  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1848  * @vma: user vma to map to
1849  * @addr: target start user address of these pages
1850  * @pages: source kernel pages
1851  * @num: in: number of pages to map. out: number of pages that were *not*
1852  * mapped. (0 means all pages were successfully mapped).
1853  *
1854  * Preferred over vm_insert_page() when inserting multiple pages.
1855  *
1856  * In case of error, we may have mapped a subset of the provided
1857  * pages. It is the caller's responsibility to account for this case.
1858  *
1859  * The same restrictions apply as in vm_insert_page().
1860  */
1861 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1862 			struct page **pages, unsigned long *num)
1863 {
1864 #ifdef pte_index
1865 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1866 
1867 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1868 		return -EFAULT;
1869 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1870 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1871 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1872 		vma->vm_flags |= VM_MIXEDMAP;
1873 	}
1874 	/* Defer page refcount checking till we're about to map that page. */
1875 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1876 #else
1877 	unsigned long idx = 0, pgcount = *num;
1878 	int err = -EINVAL;
1879 
1880 	for (; idx < pgcount; ++idx) {
1881 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1882 		if (err)
1883 			break;
1884 	}
1885 	*num = pgcount - idx;
1886 	return err;
1887 #endif  /* ifdef pte_index */
1888 }
1889 EXPORT_SYMBOL(vm_insert_pages);
1890 
1891 /**
1892  * vm_insert_page - insert single page into user vma
1893  * @vma: user vma to map to
1894  * @addr: target user address of this page
1895  * @page: source kernel page
1896  *
1897  * This allows drivers to insert individual pages they've allocated
1898  * into a user vma.
1899  *
1900  * The page has to be a nice clean _individual_ kernel allocation.
1901  * If you allocate a compound page, you need to have marked it as
1902  * such (__GFP_COMP), or manually just split the page up yourself
1903  * (see split_page()).
1904  *
1905  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1906  * took an arbitrary page protection parameter. This doesn't allow
1907  * that. Your vma protection will have to be set up correctly, which
1908  * means that if you want a shared writable mapping, you'd better
1909  * ask for a shared writable mapping!
1910  *
1911  * The page does not need to be reserved.
1912  *
1913  * Usually this function is called from f_op->mmap() handler
1914  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1915  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1916  * function from other places, for example from page-fault handler.
1917  *
1918  * Return: %0 on success, negative error code otherwise.
1919  */
1920 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1921 			struct page *page)
1922 {
1923 	if (addr < vma->vm_start || addr >= vma->vm_end)
1924 		return -EFAULT;
1925 	if (!page_count(page))
1926 		return -EINVAL;
1927 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1928 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1929 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1930 		vma->vm_flags |= VM_MIXEDMAP;
1931 	}
1932 	return insert_page(vma, addr, page, vma->vm_page_prot);
1933 }
1934 EXPORT_SYMBOL(vm_insert_page);
1935 
1936 /*
1937  * __vm_map_pages - maps range of kernel pages into user vma
1938  * @vma: user vma to map to
1939  * @pages: pointer to array of source kernel pages
1940  * @num: number of pages in page array
1941  * @offset: user's requested vm_pgoff
1942  *
1943  * This allows drivers to map range of kernel pages into a user vma.
1944  *
1945  * Return: 0 on success and error code otherwise.
1946  */
1947 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1948 				unsigned long num, unsigned long offset)
1949 {
1950 	unsigned long count = vma_pages(vma);
1951 	unsigned long uaddr = vma->vm_start;
1952 	int ret, i;
1953 
1954 	/* Fail if the user requested offset is beyond the end of the object */
1955 	if (offset >= num)
1956 		return -ENXIO;
1957 
1958 	/* Fail if the user requested size exceeds available object size */
1959 	if (count > num - offset)
1960 		return -ENXIO;
1961 
1962 	for (i = 0; i < count; i++) {
1963 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1964 		if (ret < 0)
1965 			return ret;
1966 		uaddr += PAGE_SIZE;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * vm_map_pages - maps range of kernel pages starts with non zero offset
1974  * @vma: user vma to map to
1975  * @pages: pointer to array of source kernel pages
1976  * @num: number of pages in page array
1977  *
1978  * Maps an object consisting of @num pages, catering for the user's
1979  * requested vm_pgoff
1980  *
1981  * If we fail to insert any page into the vma, the function will return
1982  * immediately leaving any previously inserted pages present.  Callers
1983  * from the mmap handler may immediately return the error as their caller
1984  * will destroy the vma, removing any successfully inserted pages. Other
1985  * callers should make their own arrangements for calling unmap_region().
1986  *
1987  * Context: Process context. Called by mmap handlers.
1988  * Return: 0 on success and error code otherwise.
1989  */
1990 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1991 				unsigned long num)
1992 {
1993 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1994 }
1995 EXPORT_SYMBOL(vm_map_pages);
1996 
1997 /**
1998  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1999  * @vma: user vma to map to
2000  * @pages: pointer to array of source kernel pages
2001  * @num: number of pages in page array
2002  *
2003  * Similar to vm_map_pages(), except that it explicitly sets the offset
2004  * to 0. This function is intended for the drivers that did not consider
2005  * vm_pgoff.
2006  *
2007  * Context: Process context. Called by mmap handlers.
2008  * Return: 0 on success and error code otherwise.
2009  */
2010 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2011 				unsigned long num)
2012 {
2013 	return __vm_map_pages(vma, pages, num, 0);
2014 }
2015 EXPORT_SYMBOL(vm_map_pages_zero);
2016 
2017 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2018 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2019 {
2020 	struct mm_struct *mm = vma->vm_mm;
2021 	pte_t *pte, entry;
2022 	spinlock_t *ptl;
2023 
2024 	pte = get_locked_pte(mm, addr, &ptl);
2025 	if (!pte)
2026 		return VM_FAULT_OOM;
2027 	if (!pte_none(*pte)) {
2028 		if (mkwrite) {
2029 			/*
2030 			 * For read faults on private mappings the PFN passed
2031 			 * in may not match the PFN we have mapped if the
2032 			 * mapped PFN is a writeable COW page.  In the mkwrite
2033 			 * case we are creating a writable PTE for a shared
2034 			 * mapping and we expect the PFNs to match. If they
2035 			 * don't match, we are likely racing with block
2036 			 * allocation and mapping invalidation so just skip the
2037 			 * update.
2038 			 */
2039 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2040 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2041 				goto out_unlock;
2042 			}
2043 			entry = pte_mkyoung(*pte);
2044 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2046 				update_mmu_cache(vma, addr, pte);
2047 		}
2048 		goto out_unlock;
2049 	}
2050 
2051 	/* Ok, finally just insert the thing.. */
2052 	if (pfn_t_devmap(pfn))
2053 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2054 	else
2055 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2056 
2057 	if (mkwrite) {
2058 		entry = pte_mkyoung(entry);
2059 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060 	}
2061 
2062 	set_pte_at(mm, addr, pte, entry);
2063 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2064 
2065 out_unlock:
2066 	pte_unmap_unlock(pte, ptl);
2067 	return VM_FAULT_NOPAGE;
2068 }
2069 
2070 /**
2071  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2072  * @vma: user vma to map to
2073  * @addr: target user address of this page
2074  * @pfn: source kernel pfn
2075  * @pgprot: pgprot flags for the inserted page
2076  *
2077  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2078  * to override pgprot on a per-page basis.
2079  *
2080  * This only makes sense for IO mappings, and it makes no sense for
2081  * COW mappings.  In general, using multiple vmas is preferable;
2082  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2083  * impractical.
2084  *
2085  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2086  * a value of @pgprot different from that of @vma->vm_page_prot.
2087  *
2088  * Context: Process context.  May allocate using %GFP_KERNEL.
2089  * Return: vm_fault_t value.
2090  */
2091 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2092 			unsigned long pfn, pgprot_t pgprot)
2093 {
2094 	/*
2095 	 * Technically, architectures with pte_special can avoid all these
2096 	 * restrictions (same for remap_pfn_range).  However we would like
2097 	 * consistency in testing and feature parity among all, so we should
2098 	 * try to keep these invariants in place for everybody.
2099 	 */
2100 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2101 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2102 						(VM_PFNMAP|VM_MIXEDMAP));
2103 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2104 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2105 
2106 	if (addr < vma->vm_start || addr >= vma->vm_end)
2107 		return VM_FAULT_SIGBUS;
2108 
2109 	if (!pfn_modify_allowed(pfn, pgprot))
2110 		return VM_FAULT_SIGBUS;
2111 
2112 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2113 
2114 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2115 			false);
2116 }
2117 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2118 
2119 /**
2120  * vmf_insert_pfn - insert single pfn into user vma
2121  * @vma: user vma to map to
2122  * @addr: target user address of this page
2123  * @pfn: source kernel pfn
2124  *
2125  * Similar to vm_insert_page, this allows drivers to insert individual pages
2126  * they've allocated into a user vma. Same comments apply.
2127  *
2128  * This function should only be called from a vm_ops->fault handler, and
2129  * in that case the handler should return the result of this function.
2130  *
2131  * vma cannot be a COW mapping.
2132  *
2133  * As this is called only for pages that do not currently exist, we
2134  * do not need to flush old virtual caches or the TLB.
2135  *
2136  * Context: Process context.  May allocate using %GFP_KERNEL.
2137  * Return: vm_fault_t value.
2138  */
2139 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 			unsigned long pfn)
2141 {
2142 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_pfn);
2145 
2146 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2147 {
2148 	/* these checks mirror the abort conditions in vm_normal_page */
2149 	if (vma->vm_flags & VM_MIXEDMAP)
2150 		return true;
2151 	if (pfn_t_devmap(pfn))
2152 		return true;
2153 	if (pfn_t_special(pfn))
2154 		return true;
2155 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2156 		return true;
2157 	return false;
2158 }
2159 
2160 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2161 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2162 		bool mkwrite)
2163 {
2164 	int err;
2165 
2166 	BUG_ON(!vm_mixed_ok(vma, pfn));
2167 
2168 	if (addr < vma->vm_start || addr >= vma->vm_end)
2169 		return VM_FAULT_SIGBUS;
2170 
2171 	track_pfn_insert(vma, &pgprot, pfn);
2172 
2173 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2174 		return VM_FAULT_SIGBUS;
2175 
2176 	/*
2177 	 * If we don't have pte special, then we have to use the pfn_valid()
2178 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2179 	 * refcount the page if pfn_valid is true (hence insert_page rather
2180 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2181 	 * without pte special, it would there be refcounted as a normal page.
2182 	 */
2183 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2184 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2185 		struct page *page;
2186 
2187 		/*
2188 		 * At this point we are committed to insert_page()
2189 		 * regardless of whether the caller specified flags that
2190 		 * result in pfn_t_has_page() == false.
2191 		 */
2192 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2193 		err = insert_page(vma, addr, page, pgprot);
2194 	} else {
2195 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2196 	}
2197 
2198 	if (err == -ENOMEM)
2199 		return VM_FAULT_OOM;
2200 	if (err < 0 && err != -EBUSY)
2201 		return VM_FAULT_SIGBUS;
2202 
2203 	return VM_FAULT_NOPAGE;
2204 }
2205 
2206 /**
2207  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2208  * @vma: user vma to map to
2209  * @addr: target user address of this page
2210  * @pfn: source kernel pfn
2211  * @pgprot: pgprot flags for the inserted page
2212  *
2213  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2214  * to override pgprot on a per-page basis.
2215  *
2216  * Typically this function should be used by drivers to set caching- and
2217  * encryption bits different than those of @vma->vm_page_prot, because
2218  * the caching- or encryption mode may not be known at mmap() time.
2219  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2220  * to set caching and encryption bits for those vmas (except for COW pages).
2221  * This is ensured by core vm only modifying these page table entries using
2222  * functions that don't touch caching- or encryption bits, using pte_modify()
2223  * if needed. (See for example mprotect()).
2224  * Also when new page-table entries are created, this is only done using the
2225  * fault() callback, and never using the value of vma->vm_page_prot,
2226  * except for page-table entries that point to anonymous pages as the result
2227  * of COW.
2228  *
2229  * Context: Process context.  May allocate using %GFP_KERNEL.
2230  * Return: vm_fault_t value.
2231  */
2232 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2233 				 pfn_t pfn, pgprot_t pgprot)
2234 {
2235 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2236 }
2237 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2238 
2239 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2240 		pfn_t pfn)
2241 {
2242 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2243 }
2244 EXPORT_SYMBOL(vmf_insert_mixed);
2245 
2246 /*
2247  *  If the insertion of PTE failed because someone else already added a
2248  *  different entry in the mean time, we treat that as success as we assume
2249  *  the same entry was actually inserted.
2250  */
2251 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2252 		unsigned long addr, pfn_t pfn)
2253 {
2254 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2255 }
2256 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2257 
2258 /*
2259  * maps a range of physical memory into the requested pages. the old
2260  * mappings are removed. any references to nonexistent pages results
2261  * in null mappings (currently treated as "copy-on-access")
2262  */
2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264 			unsigned long addr, unsigned long end,
2265 			unsigned long pfn, pgprot_t prot)
2266 {
2267 	pte_t *pte, *mapped_pte;
2268 	spinlock_t *ptl;
2269 	int err = 0;
2270 
2271 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2272 	if (!pte)
2273 		return -ENOMEM;
2274 	arch_enter_lazy_mmu_mode();
2275 	do {
2276 		BUG_ON(!pte_none(*pte));
2277 		if (!pfn_modify_allowed(pfn, prot)) {
2278 			err = -EACCES;
2279 			break;
2280 		}
2281 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2282 		pfn++;
2283 	} while (pte++, addr += PAGE_SIZE, addr != end);
2284 	arch_leave_lazy_mmu_mode();
2285 	pte_unmap_unlock(mapped_pte, ptl);
2286 	return err;
2287 }
2288 
2289 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2290 			unsigned long addr, unsigned long end,
2291 			unsigned long pfn, pgprot_t prot)
2292 {
2293 	pmd_t *pmd;
2294 	unsigned long next;
2295 	int err;
2296 
2297 	pfn -= addr >> PAGE_SHIFT;
2298 	pmd = pmd_alloc(mm, pud, addr);
2299 	if (!pmd)
2300 		return -ENOMEM;
2301 	VM_BUG_ON(pmd_trans_huge(*pmd));
2302 	do {
2303 		next = pmd_addr_end(addr, end);
2304 		err = remap_pte_range(mm, pmd, addr, next,
2305 				pfn + (addr >> PAGE_SHIFT), prot);
2306 		if (err)
2307 			return err;
2308 	} while (pmd++, addr = next, addr != end);
2309 	return 0;
2310 }
2311 
2312 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2313 			unsigned long addr, unsigned long end,
2314 			unsigned long pfn, pgprot_t prot)
2315 {
2316 	pud_t *pud;
2317 	unsigned long next;
2318 	int err;
2319 
2320 	pfn -= addr >> PAGE_SHIFT;
2321 	pud = pud_alloc(mm, p4d, addr);
2322 	if (!pud)
2323 		return -ENOMEM;
2324 	do {
2325 		next = pud_addr_end(addr, end);
2326 		err = remap_pmd_range(mm, pud, addr, next,
2327 				pfn + (addr >> PAGE_SHIFT), prot);
2328 		if (err)
2329 			return err;
2330 	} while (pud++, addr = next, addr != end);
2331 	return 0;
2332 }
2333 
2334 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2335 			unsigned long addr, unsigned long end,
2336 			unsigned long pfn, pgprot_t prot)
2337 {
2338 	p4d_t *p4d;
2339 	unsigned long next;
2340 	int err;
2341 
2342 	pfn -= addr >> PAGE_SHIFT;
2343 	p4d = p4d_alloc(mm, pgd, addr);
2344 	if (!p4d)
2345 		return -ENOMEM;
2346 	do {
2347 		next = p4d_addr_end(addr, end);
2348 		err = remap_pud_range(mm, p4d, addr, next,
2349 				pfn + (addr >> PAGE_SHIFT), prot);
2350 		if (err)
2351 			return err;
2352 	} while (p4d++, addr = next, addr != end);
2353 	return 0;
2354 }
2355 
2356 /*
2357  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2358  * must have pre-validated the caching bits of the pgprot_t.
2359  */
2360 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2361 		unsigned long pfn, unsigned long size, pgprot_t prot)
2362 {
2363 	pgd_t *pgd;
2364 	unsigned long next;
2365 	unsigned long end = addr + PAGE_ALIGN(size);
2366 	struct mm_struct *mm = vma->vm_mm;
2367 	int err;
2368 
2369 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2370 		return -EINVAL;
2371 
2372 	/*
2373 	 * Physically remapped pages are special. Tell the
2374 	 * rest of the world about it:
2375 	 *   VM_IO tells people not to look at these pages
2376 	 *	(accesses can have side effects).
2377 	 *   VM_PFNMAP tells the core MM that the base pages are just
2378 	 *	raw PFN mappings, and do not have a "struct page" associated
2379 	 *	with them.
2380 	 *   VM_DONTEXPAND
2381 	 *      Disable vma merging and expanding with mremap().
2382 	 *   VM_DONTDUMP
2383 	 *      Omit vma from core dump, even when VM_IO turned off.
2384 	 *
2385 	 * There's a horrible special case to handle copy-on-write
2386 	 * behaviour that some programs depend on. We mark the "original"
2387 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2388 	 * See vm_normal_page() for details.
2389 	 */
2390 	if (is_cow_mapping(vma->vm_flags)) {
2391 		if (addr != vma->vm_start || end != vma->vm_end)
2392 			return -EINVAL;
2393 		vma->vm_pgoff = pfn;
2394 	}
2395 
2396 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2397 
2398 	BUG_ON(addr >= end);
2399 	pfn -= addr >> PAGE_SHIFT;
2400 	pgd = pgd_offset(mm, addr);
2401 	flush_cache_range(vma, addr, end);
2402 	do {
2403 		next = pgd_addr_end(addr, end);
2404 		err = remap_p4d_range(mm, pgd, addr, next,
2405 				pfn + (addr >> PAGE_SHIFT), prot);
2406 		if (err)
2407 			return err;
2408 	} while (pgd++, addr = next, addr != end);
2409 
2410 	return 0;
2411 }
2412 
2413 /**
2414  * remap_pfn_range - remap kernel memory to userspace
2415  * @vma: user vma to map to
2416  * @addr: target page aligned user address to start at
2417  * @pfn: page frame number of kernel physical memory address
2418  * @size: size of mapping area
2419  * @prot: page protection flags for this mapping
2420  *
2421  * Note: this is only safe if the mm semaphore is held when called.
2422  *
2423  * Return: %0 on success, negative error code otherwise.
2424  */
2425 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2426 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2427 {
2428 	int err;
2429 
2430 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2431 	if (err)
2432 		return -EINVAL;
2433 
2434 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2435 	if (err)
2436 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2437 	return err;
2438 }
2439 EXPORT_SYMBOL(remap_pfn_range);
2440 
2441 /**
2442  * vm_iomap_memory - remap memory to userspace
2443  * @vma: user vma to map to
2444  * @start: start of the physical memory to be mapped
2445  * @len: size of area
2446  *
2447  * This is a simplified io_remap_pfn_range() for common driver use. The
2448  * driver just needs to give us the physical memory range to be mapped,
2449  * we'll figure out the rest from the vma information.
2450  *
2451  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2452  * whatever write-combining details or similar.
2453  *
2454  * Return: %0 on success, negative error code otherwise.
2455  */
2456 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2457 {
2458 	unsigned long vm_len, pfn, pages;
2459 
2460 	/* Check that the physical memory area passed in looks valid */
2461 	if (start + len < start)
2462 		return -EINVAL;
2463 	/*
2464 	 * You *really* shouldn't map things that aren't page-aligned,
2465 	 * but we've historically allowed it because IO memory might
2466 	 * just have smaller alignment.
2467 	 */
2468 	len += start & ~PAGE_MASK;
2469 	pfn = start >> PAGE_SHIFT;
2470 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2471 	if (pfn + pages < pfn)
2472 		return -EINVAL;
2473 
2474 	/* We start the mapping 'vm_pgoff' pages into the area */
2475 	if (vma->vm_pgoff > pages)
2476 		return -EINVAL;
2477 	pfn += vma->vm_pgoff;
2478 	pages -= vma->vm_pgoff;
2479 
2480 	/* Can we fit all of the mapping? */
2481 	vm_len = vma->vm_end - vma->vm_start;
2482 	if (vm_len >> PAGE_SHIFT > pages)
2483 		return -EINVAL;
2484 
2485 	/* Ok, let it rip */
2486 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2487 }
2488 EXPORT_SYMBOL(vm_iomap_memory);
2489 
2490 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2491 				     unsigned long addr, unsigned long end,
2492 				     pte_fn_t fn, void *data, bool create,
2493 				     pgtbl_mod_mask *mask)
2494 {
2495 	pte_t *pte, *mapped_pte;
2496 	int err = 0;
2497 	spinlock_t *ptl;
2498 
2499 	if (create) {
2500 		mapped_pte = pte = (mm == &init_mm) ?
2501 			pte_alloc_kernel_track(pmd, addr, mask) :
2502 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2503 		if (!pte)
2504 			return -ENOMEM;
2505 	} else {
2506 		mapped_pte = pte = (mm == &init_mm) ?
2507 			pte_offset_kernel(pmd, addr) :
2508 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2509 	}
2510 
2511 	BUG_ON(pmd_huge(*pmd));
2512 
2513 	arch_enter_lazy_mmu_mode();
2514 
2515 	if (fn) {
2516 		do {
2517 			if (create || !pte_none(*pte)) {
2518 				err = fn(pte++, addr, data);
2519 				if (err)
2520 					break;
2521 			}
2522 		} while (addr += PAGE_SIZE, addr != end);
2523 	}
2524 	*mask |= PGTBL_PTE_MODIFIED;
2525 
2526 	arch_leave_lazy_mmu_mode();
2527 
2528 	if (mm != &init_mm)
2529 		pte_unmap_unlock(mapped_pte, ptl);
2530 	return err;
2531 }
2532 
2533 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2534 				     unsigned long addr, unsigned long end,
2535 				     pte_fn_t fn, void *data, bool create,
2536 				     pgtbl_mod_mask *mask)
2537 {
2538 	pmd_t *pmd;
2539 	unsigned long next;
2540 	int err = 0;
2541 
2542 	BUG_ON(pud_huge(*pud));
2543 
2544 	if (create) {
2545 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2546 		if (!pmd)
2547 			return -ENOMEM;
2548 	} else {
2549 		pmd = pmd_offset(pud, addr);
2550 	}
2551 	do {
2552 		next = pmd_addr_end(addr, end);
2553 		if (pmd_none(*pmd) && !create)
2554 			continue;
2555 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2556 			return -EINVAL;
2557 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2558 			if (!create)
2559 				continue;
2560 			pmd_clear_bad(pmd);
2561 		}
2562 		err = apply_to_pte_range(mm, pmd, addr, next,
2563 					 fn, data, create, mask);
2564 		if (err)
2565 			break;
2566 	} while (pmd++, addr = next, addr != end);
2567 
2568 	return err;
2569 }
2570 
2571 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2572 				     unsigned long addr, unsigned long end,
2573 				     pte_fn_t fn, void *data, bool create,
2574 				     pgtbl_mod_mask *mask)
2575 {
2576 	pud_t *pud;
2577 	unsigned long next;
2578 	int err = 0;
2579 
2580 	if (create) {
2581 		pud = pud_alloc_track(mm, p4d, addr, mask);
2582 		if (!pud)
2583 			return -ENOMEM;
2584 	} else {
2585 		pud = pud_offset(p4d, addr);
2586 	}
2587 	do {
2588 		next = pud_addr_end(addr, end);
2589 		if (pud_none(*pud) && !create)
2590 			continue;
2591 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2592 			return -EINVAL;
2593 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2594 			if (!create)
2595 				continue;
2596 			pud_clear_bad(pud);
2597 		}
2598 		err = apply_to_pmd_range(mm, pud, addr, next,
2599 					 fn, data, create, mask);
2600 		if (err)
2601 			break;
2602 	} while (pud++, addr = next, addr != end);
2603 
2604 	return err;
2605 }
2606 
2607 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2608 				     unsigned long addr, unsigned long end,
2609 				     pte_fn_t fn, void *data, bool create,
2610 				     pgtbl_mod_mask *mask)
2611 {
2612 	p4d_t *p4d;
2613 	unsigned long next;
2614 	int err = 0;
2615 
2616 	if (create) {
2617 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2618 		if (!p4d)
2619 			return -ENOMEM;
2620 	} else {
2621 		p4d = p4d_offset(pgd, addr);
2622 	}
2623 	do {
2624 		next = p4d_addr_end(addr, end);
2625 		if (p4d_none(*p4d) && !create)
2626 			continue;
2627 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2628 			return -EINVAL;
2629 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2630 			if (!create)
2631 				continue;
2632 			p4d_clear_bad(p4d);
2633 		}
2634 		err = apply_to_pud_range(mm, p4d, addr, next,
2635 					 fn, data, create, mask);
2636 		if (err)
2637 			break;
2638 	} while (p4d++, addr = next, addr != end);
2639 
2640 	return err;
2641 }
2642 
2643 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2644 				 unsigned long size, pte_fn_t fn,
2645 				 void *data, bool create)
2646 {
2647 	pgd_t *pgd;
2648 	unsigned long start = addr, next;
2649 	unsigned long end = addr + size;
2650 	pgtbl_mod_mask mask = 0;
2651 	int err = 0;
2652 
2653 	if (WARN_ON(addr >= end))
2654 		return -EINVAL;
2655 
2656 	pgd = pgd_offset(mm, addr);
2657 	do {
2658 		next = pgd_addr_end(addr, end);
2659 		if (pgd_none(*pgd) && !create)
2660 			continue;
2661 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2662 			return -EINVAL;
2663 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2664 			if (!create)
2665 				continue;
2666 			pgd_clear_bad(pgd);
2667 		}
2668 		err = apply_to_p4d_range(mm, pgd, addr, next,
2669 					 fn, data, create, &mask);
2670 		if (err)
2671 			break;
2672 	} while (pgd++, addr = next, addr != end);
2673 
2674 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2675 		arch_sync_kernel_mappings(start, start + size);
2676 
2677 	return err;
2678 }
2679 
2680 /*
2681  * Scan a region of virtual memory, filling in page tables as necessary
2682  * and calling a provided function on each leaf page table.
2683  */
2684 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2685 			unsigned long size, pte_fn_t fn, void *data)
2686 {
2687 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2688 }
2689 EXPORT_SYMBOL_GPL(apply_to_page_range);
2690 
2691 /*
2692  * Scan a region of virtual memory, calling a provided function on
2693  * each leaf page table where it exists.
2694  *
2695  * Unlike apply_to_page_range, this does _not_ fill in page tables
2696  * where they are absent.
2697  */
2698 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2699 				 unsigned long size, pte_fn_t fn, void *data)
2700 {
2701 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2702 }
2703 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2704 
2705 /*
2706  * handle_pte_fault chooses page fault handler according to an entry which was
2707  * read non-atomically.  Before making any commitment, on those architectures
2708  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2709  * parts, do_swap_page must check under lock before unmapping the pte and
2710  * proceeding (but do_wp_page is only called after already making such a check;
2711  * and do_anonymous_page can safely check later on).
2712  */
2713 static inline int pte_unmap_same(struct vm_fault *vmf)
2714 {
2715 	int same = 1;
2716 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2717 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2718 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2719 		spin_lock(ptl);
2720 		same = pte_same(*vmf->pte, vmf->orig_pte);
2721 		spin_unlock(ptl);
2722 	}
2723 #endif
2724 	pte_unmap(vmf->pte);
2725 	vmf->pte = NULL;
2726 	return same;
2727 }
2728 
2729 static inline bool cow_user_page(struct page *dst, struct page *src,
2730 				 struct vm_fault *vmf)
2731 {
2732 	bool ret;
2733 	void *kaddr;
2734 	void __user *uaddr;
2735 	bool locked = false;
2736 	struct vm_area_struct *vma = vmf->vma;
2737 	struct mm_struct *mm = vma->vm_mm;
2738 	unsigned long addr = vmf->address;
2739 
2740 	if (likely(src)) {
2741 		copy_user_highpage(dst, src, addr, vma);
2742 		return true;
2743 	}
2744 
2745 	/*
2746 	 * If the source page was a PFN mapping, we don't have
2747 	 * a "struct page" for it. We do a best-effort copy by
2748 	 * just copying from the original user address. If that
2749 	 * fails, we just zero-fill it. Live with it.
2750 	 */
2751 	kaddr = kmap_atomic(dst);
2752 	uaddr = (void __user *)(addr & PAGE_MASK);
2753 
2754 	/*
2755 	 * On architectures with software "accessed" bits, we would
2756 	 * take a double page fault, so mark it accessed here.
2757 	 */
2758 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2759 		pte_t entry;
2760 
2761 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2762 		locked = true;
2763 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2764 			/*
2765 			 * Other thread has already handled the fault
2766 			 * and update local tlb only
2767 			 */
2768 			update_mmu_tlb(vma, addr, vmf->pte);
2769 			ret = false;
2770 			goto pte_unlock;
2771 		}
2772 
2773 		entry = pte_mkyoung(vmf->orig_pte);
2774 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2775 			update_mmu_cache(vma, addr, vmf->pte);
2776 	}
2777 
2778 	/*
2779 	 * This really shouldn't fail, because the page is there
2780 	 * in the page tables. But it might just be unreadable,
2781 	 * in which case we just give up and fill the result with
2782 	 * zeroes.
2783 	 */
2784 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2785 		if (locked)
2786 			goto warn;
2787 
2788 		/* Re-validate under PTL if the page is still mapped */
2789 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2790 		locked = true;
2791 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2792 			/* The PTE changed under us, update local tlb */
2793 			update_mmu_tlb(vma, addr, vmf->pte);
2794 			ret = false;
2795 			goto pte_unlock;
2796 		}
2797 
2798 		/*
2799 		 * The same page can be mapped back since last copy attempt.
2800 		 * Try to copy again under PTL.
2801 		 */
2802 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2803 			/*
2804 			 * Give a warn in case there can be some obscure
2805 			 * use-case
2806 			 */
2807 warn:
2808 			WARN_ON_ONCE(1);
2809 			clear_page(kaddr);
2810 		}
2811 	}
2812 
2813 	ret = true;
2814 
2815 pte_unlock:
2816 	if (locked)
2817 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 	kunmap_atomic(kaddr);
2819 	flush_dcache_page(dst);
2820 
2821 	return ret;
2822 }
2823 
2824 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2825 {
2826 	struct file *vm_file = vma->vm_file;
2827 
2828 	if (vm_file)
2829 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2830 
2831 	/*
2832 	 * Special mappings (e.g. VDSO) do not have any file so fake
2833 	 * a default GFP_KERNEL for them.
2834 	 */
2835 	return GFP_KERNEL;
2836 }
2837 
2838 /*
2839  * Notify the address space that the page is about to become writable so that
2840  * it can prohibit this or wait for the page to get into an appropriate state.
2841  *
2842  * We do this without the lock held, so that it can sleep if it needs to.
2843  */
2844 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2845 {
2846 	vm_fault_t ret;
2847 	struct page *page = vmf->page;
2848 	unsigned int old_flags = vmf->flags;
2849 
2850 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2851 
2852 	if (vmf->vma->vm_file &&
2853 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2854 		return VM_FAULT_SIGBUS;
2855 
2856 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2857 	/* Restore original flags so that caller is not surprised */
2858 	vmf->flags = old_flags;
2859 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2860 		return ret;
2861 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2862 		lock_page(page);
2863 		if (!page->mapping) {
2864 			unlock_page(page);
2865 			return 0; /* retry */
2866 		}
2867 		ret |= VM_FAULT_LOCKED;
2868 	} else
2869 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2870 	return ret;
2871 }
2872 
2873 /*
2874  * Handle dirtying of a page in shared file mapping on a write fault.
2875  *
2876  * The function expects the page to be locked and unlocks it.
2877  */
2878 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2879 {
2880 	struct vm_area_struct *vma = vmf->vma;
2881 	struct address_space *mapping;
2882 	struct page *page = vmf->page;
2883 	bool dirtied;
2884 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2885 
2886 	dirtied = set_page_dirty(page);
2887 	VM_BUG_ON_PAGE(PageAnon(page), page);
2888 	/*
2889 	 * Take a local copy of the address_space - page.mapping may be zeroed
2890 	 * by truncate after unlock_page().   The address_space itself remains
2891 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2892 	 * release semantics to prevent the compiler from undoing this copying.
2893 	 */
2894 	mapping = page_rmapping(page);
2895 	unlock_page(page);
2896 
2897 	if (!page_mkwrite)
2898 		file_update_time(vma->vm_file);
2899 
2900 	/*
2901 	 * Throttle page dirtying rate down to writeback speed.
2902 	 *
2903 	 * mapping may be NULL here because some device drivers do not
2904 	 * set page.mapping but still dirty their pages
2905 	 *
2906 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2907 	 * is pinning the mapping, as per above.
2908 	 */
2909 	if ((dirtied || page_mkwrite) && mapping) {
2910 		struct file *fpin;
2911 
2912 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2913 		balance_dirty_pages_ratelimited(mapping);
2914 		if (fpin) {
2915 			fput(fpin);
2916 			return VM_FAULT_RETRY;
2917 		}
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 /*
2924  * Handle write page faults for pages that can be reused in the current vma
2925  *
2926  * This can happen either due to the mapping being with the VM_SHARED flag,
2927  * or due to us being the last reference standing to the page. In either
2928  * case, all we need to do here is to mark the page as writable and update
2929  * any related book-keeping.
2930  */
2931 static inline void wp_page_reuse(struct vm_fault *vmf)
2932 	__releases(vmf->ptl)
2933 {
2934 	struct vm_area_struct *vma = vmf->vma;
2935 	struct page *page = vmf->page;
2936 	pte_t entry;
2937 	/*
2938 	 * Clear the pages cpupid information as the existing
2939 	 * information potentially belongs to a now completely
2940 	 * unrelated process.
2941 	 */
2942 	if (page)
2943 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2944 
2945 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2946 	entry = pte_mkyoung(vmf->orig_pte);
2947 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2948 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2949 		update_mmu_cache(vma, vmf->address, vmf->pte);
2950 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2951 	count_vm_event(PGREUSE);
2952 }
2953 
2954 /*
2955  * Handle the case of a page which we actually need to copy to a new page.
2956  *
2957  * Called with mmap_lock locked and the old page referenced, but
2958  * without the ptl held.
2959  *
2960  * High level logic flow:
2961  *
2962  * - Allocate a page, copy the content of the old page to the new one.
2963  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2964  * - Take the PTL. If the pte changed, bail out and release the allocated page
2965  * - If the pte is still the way we remember it, update the page table and all
2966  *   relevant references. This includes dropping the reference the page-table
2967  *   held to the old page, as well as updating the rmap.
2968  * - In any case, unlock the PTL and drop the reference we took to the old page.
2969  */
2970 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2971 {
2972 	struct vm_area_struct *vma = vmf->vma;
2973 	struct mm_struct *mm = vma->vm_mm;
2974 	struct page *old_page = vmf->page;
2975 	struct page *new_page = NULL;
2976 	pte_t entry;
2977 	int page_copied = 0;
2978 	struct mmu_notifier_range range;
2979 
2980 	if (unlikely(anon_vma_prepare(vma)))
2981 		goto oom;
2982 
2983 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2984 		new_page = alloc_zeroed_user_highpage_movable(vma,
2985 							      vmf->address);
2986 		if (!new_page)
2987 			goto oom;
2988 	} else {
2989 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2990 				vmf->address);
2991 		if (!new_page)
2992 			goto oom;
2993 
2994 		if (!cow_user_page(new_page, old_page, vmf)) {
2995 			/*
2996 			 * COW failed, if the fault was solved by other,
2997 			 * it's fine. If not, userspace would re-fault on
2998 			 * the same address and we will handle the fault
2999 			 * from the second attempt.
3000 			 */
3001 			put_page(new_page);
3002 			if (old_page)
3003 				put_page(old_page);
3004 			return 0;
3005 		}
3006 	}
3007 
3008 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3009 		goto oom_free_new;
3010 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3011 
3012 	__SetPageUptodate(new_page);
3013 
3014 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3015 				vmf->address & PAGE_MASK,
3016 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3017 	mmu_notifier_invalidate_range_start(&range);
3018 
3019 	/*
3020 	 * Re-check the pte - we dropped the lock
3021 	 */
3022 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3023 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3024 		if (old_page) {
3025 			if (!PageAnon(old_page)) {
3026 				dec_mm_counter_fast(mm,
3027 						mm_counter_file(old_page));
3028 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3029 			}
3030 		} else {
3031 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3032 		}
3033 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3034 		entry = mk_pte(new_page, vma->vm_page_prot);
3035 		entry = pte_sw_mkyoung(entry);
3036 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3037 
3038 		/*
3039 		 * Clear the pte entry and flush it first, before updating the
3040 		 * pte with the new entry, to keep TLBs on different CPUs in
3041 		 * sync. This code used to set the new PTE then flush TLBs, but
3042 		 * that left a window where the new PTE could be loaded into
3043 		 * some TLBs while the old PTE remains in others.
3044 		 */
3045 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3046 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3047 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3048 		/*
3049 		 * We call the notify macro here because, when using secondary
3050 		 * mmu page tables (such as kvm shadow page tables), we want the
3051 		 * new page to be mapped directly into the secondary page table.
3052 		 */
3053 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3054 		update_mmu_cache(vma, vmf->address, vmf->pte);
3055 		if (old_page) {
3056 			/*
3057 			 * Only after switching the pte to the new page may
3058 			 * we remove the mapcount here. Otherwise another
3059 			 * process may come and find the rmap count decremented
3060 			 * before the pte is switched to the new page, and
3061 			 * "reuse" the old page writing into it while our pte
3062 			 * here still points into it and can be read by other
3063 			 * threads.
3064 			 *
3065 			 * The critical issue is to order this
3066 			 * page_remove_rmap with the ptp_clear_flush above.
3067 			 * Those stores are ordered by (if nothing else,)
3068 			 * the barrier present in the atomic_add_negative
3069 			 * in page_remove_rmap.
3070 			 *
3071 			 * Then the TLB flush in ptep_clear_flush ensures that
3072 			 * no process can access the old page before the
3073 			 * decremented mapcount is visible. And the old page
3074 			 * cannot be reused until after the decremented
3075 			 * mapcount is visible. So transitively, TLBs to
3076 			 * old page will be flushed before it can be reused.
3077 			 */
3078 			page_remove_rmap(old_page, false);
3079 		}
3080 
3081 		/* Free the old page.. */
3082 		new_page = old_page;
3083 		page_copied = 1;
3084 	} else {
3085 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3086 	}
3087 
3088 	if (new_page)
3089 		put_page(new_page);
3090 
3091 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 	/*
3093 	 * No need to double call mmu_notifier->invalidate_range() callback as
3094 	 * the above ptep_clear_flush_notify() did already call it.
3095 	 */
3096 	mmu_notifier_invalidate_range_only_end(&range);
3097 	if (old_page) {
3098 		/*
3099 		 * Don't let another task, with possibly unlocked vma,
3100 		 * keep the mlocked page.
3101 		 */
3102 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3103 			lock_page(old_page);	/* LRU manipulation */
3104 			if (PageMlocked(old_page))
3105 				munlock_vma_page(old_page);
3106 			unlock_page(old_page);
3107 		}
3108 		if (page_copied)
3109 			free_swap_cache(old_page);
3110 		put_page(old_page);
3111 	}
3112 	return page_copied ? VM_FAULT_WRITE : 0;
3113 oom_free_new:
3114 	put_page(new_page);
3115 oom:
3116 	if (old_page)
3117 		put_page(old_page);
3118 	return VM_FAULT_OOM;
3119 }
3120 
3121 /**
3122  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3123  *			  writeable once the page is prepared
3124  *
3125  * @vmf: structure describing the fault
3126  *
3127  * This function handles all that is needed to finish a write page fault in a
3128  * shared mapping due to PTE being read-only once the mapped page is prepared.
3129  * It handles locking of PTE and modifying it.
3130  *
3131  * The function expects the page to be locked or other protection against
3132  * concurrent faults / writeback (such as DAX radix tree locks).
3133  *
3134  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3135  * we acquired PTE lock.
3136  */
3137 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3138 {
3139 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3140 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3141 				       &vmf->ptl);
3142 	/*
3143 	 * We might have raced with another page fault while we released the
3144 	 * pte_offset_map_lock.
3145 	 */
3146 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3147 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3148 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3149 		return VM_FAULT_NOPAGE;
3150 	}
3151 	wp_page_reuse(vmf);
3152 	return 0;
3153 }
3154 
3155 /*
3156  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3157  * mapping
3158  */
3159 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3160 {
3161 	struct vm_area_struct *vma = vmf->vma;
3162 
3163 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3164 		vm_fault_t ret;
3165 
3166 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3167 		vmf->flags |= FAULT_FLAG_MKWRITE;
3168 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3169 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3170 			return ret;
3171 		return finish_mkwrite_fault(vmf);
3172 	}
3173 	wp_page_reuse(vmf);
3174 	return VM_FAULT_WRITE;
3175 }
3176 
3177 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3178 	__releases(vmf->ptl)
3179 {
3180 	struct vm_area_struct *vma = vmf->vma;
3181 	vm_fault_t ret = VM_FAULT_WRITE;
3182 
3183 	get_page(vmf->page);
3184 
3185 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3186 		vm_fault_t tmp;
3187 
3188 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 		tmp = do_page_mkwrite(vmf);
3190 		if (unlikely(!tmp || (tmp &
3191 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3192 			put_page(vmf->page);
3193 			return tmp;
3194 		}
3195 		tmp = finish_mkwrite_fault(vmf);
3196 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3197 			unlock_page(vmf->page);
3198 			put_page(vmf->page);
3199 			return tmp;
3200 		}
3201 	} else {
3202 		wp_page_reuse(vmf);
3203 		lock_page(vmf->page);
3204 	}
3205 	ret |= fault_dirty_shared_page(vmf);
3206 	put_page(vmf->page);
3207 
3208 	return ret;
3209 }
3210 
3211 /*
3212  * This routine handles present pages, when users try to write
3213  * to a shared page. It is done by copying the page to a new address
3214  * and decrementing the shared-page counter for the old page.
3215  *
3216  * Note that this routine assumes that the protection checks have been
3217  * done by the caller (the low-level page fault routine in most cases).
3218  * Thus we can safely just mark it writable once we've done any necessary
3219  * COW.
3220  *
3221  * We also mark the page dirty at this point even though the page will
3222  * change only once the write actually happens. This avoids a few races,
3223  * and potentially makes it more efficient.
3224  *
3225  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3226  * but allow concurrent faults), with pte both mapped and locked.
3227  * We return with mmap_lock still held, but pte unmapped and unlocked.
3228  */
3229 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3230 	__releases(vmf->ptl)
3231 {
3232 	struct vm_area_struct *vma = vmf->vma;
3233 
3234 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3235 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 		return handle_userfault(vmf, VM_UFFD_WP);
3237 	}
3238 
3239 	/*
3240 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3241 	 * is flushed in this case before copying.
3242 	 */
3243 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3244 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3245 		flush_tlb_page(vmf->vma, vmf->address);
3246 
3247 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3248 	if (!vmf->page) {
3249 		/*
3250 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3251 		 * VM_PFNMAP VMA.
3252 		 *
3253 		 * We should not cow pages in a shared writeable mapping.
3254 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3255 		 */
3256 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3257 				     (VM_WRITE|VM_SHARED))
3258 			return wp_pfn_shared(vmf);
3259 
3260 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3261 		return wp_page_copy(vmf);
3262 	}
3263 
3264 	/*
3265 	 * Take out anonymous pages first, anonymous shared vmas are
3266 	 * not dirty accountable.
3267 	 */
3268 	if (PageAnon(vmf->page)) {
3269 		struct page *page = vmf->page;
3270 
3271 		/* PageKsm() doesn't necessarily raise the page refcount */
3272 		if (PageKsm(page) || page_count(page) != 1)
3273 			goto copy;
3274 		if (!trylock_page(page))
3275 			goto copy;
3276 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3277 			unlock_page(page);
3278 			goto copy;
3279 		}
3280 		/*
3281 		 * Ok, we've got the only map reference, and the only
3282 		 * page count reference, and the page is locked,
3283 		 * it's dark out, and we're wearing sunglasses. Hit it.
3284 		 */
3285 		unlock_page(page);
3286 		wp_page_reuse(vmf);
3287 		return VM_FAULT_WRITE;
3288 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3289 					(VM_WRITE|VM_SHARED))) {
3290 		return wp_page_shared(vmf);
3291 	}
3292 copy:
3293 	/*
3294 	 * Ok, we need to copy. Oh, well..
3295 	 */
3296 	get_page(vmf->page);
3297 
3298 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 	return wp_page_copy(vmf);
3300 }
3301 
3302 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3303 		unsigned long start_addr, unsigned long end_addr,
3304 		struct zap_details *details)
3305 {
3306 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3307 }
3308 
3309 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3310 					    pgoff_t first_index,
3311 					    pgoff_t last_index,
3312 					    struct zap_details *details)
3313 {
3314 	struct vm_area_struct *vma;
3315 	pgoff_t vba, vea, zba, zea;
3316 
3317 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3318 		vba = vma->vm_pgoff;
3319 		vea = vba + vma_pages(vma) - 1;
3320 		zba = first_index;
3321 		if (zba < vba)
3322 			zba = vba;
3323 		zea = last_index;
3324 		if (zea > vea)
3325 			zea = vea;
3326 
3327 		unmap_mapping_range_vma(vma,
3328 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3329 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3330 				details);
3331 	}
3332 }
3333 
3334 /**
3335  * unmap_mapping_page() - Unmap single page from processes.
3336  * @page: The locked page to be unmapped.
3337  *
3338  * Unmap this page from any userspace process which still has it mmaped.
3339  * Typically, for efficiency, the range of nearby pages has already been
3340  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3341  * truncation or invalidation holds the lock on a page, it may find that
3342  * the page has been remapped again: and then uses unmap_mapping_page()
3343  * to unmap it finally.
3344  */
3345 void unmap_mapping_page(struct page *page)
3346 {
3347 	struct address_space *mapping = page->mapping;
3348 	struct zap_details details = { };
3349 	pgoff_t	first_index;
3350 	pgoff_t	last_index;
3351 
3352 	VM_BUG_ON(!PageLocked(page));
3353 	VM_BUG_ON(PageTail(page));
3354 
3355 	first_index = page->index;
3356 	last_index = page->index + thp_nr_pages(page) - 1;
3357 
3358 	details.zap_mapping = mapping;
3359 	details.single_page = page;
3360 
3361 	i_mmap_lock_write(mapping);
3362 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3363 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3364 					 last_index, &details);
3365 	i_mmap_unlock_write(mapping);
3366 }
3367 
3368 /**
3369  * unmap_mapping_pages() - Unmap pages from processes.
3370  * @mapping: The address space containing pages to be unmapped.
3371  * @start: Index of first page to be unmapped.
3372  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3373  * @even_cows: Whether to unmap even private COWed pages.
3374  *
3375  * Unmap the pages in this address space from any userspace process which
3376  * has them mmaped.  Generally, you want to remove COWed pages as well when
3377  * a file is being truncated, but not when invalidating pages from the page
3378  * cache.
3379  */
3380 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3381 		pgoff_t nr, bool even_cows)
3382 {
3383 	struct zap_details details = { };
3384 	pgoff_t	first_index = start;
3385 	pgoff_t	last_index = start + nr - 1;
3386 
3387 	details.zap_mapping = even_cows ? NULL : mapping;
3388 	if (last_index < first_index)
3389 		last_index = ULONG_MAX;
3390 
3391 	i_mmap_lock_write(mapping);
3392 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3393 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394 					 last_index, &details);
3395 	i_mmap_unlock_write(mapping);
3396 }
3397 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3398 
3399 /**
3400  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3401  * address_space corresponding to the specified byte range in the underlying
3402  * file.
3403  *
3404  * @mapping: the address space containing mmaps to be unmapped.
3405  * @holebegin: byte in first page to unmap, relative to the start of
3406  * the underlying file.  This will be rounded down to a PAGE_SIZE
3407  * boundary.  Note that this is different from truncate_pagecache(), which
3408  * must keep the partial page.  In contrast, we must get rid of
3409  * partial pages.
3410  * @holelen: size of prospective hole in bytes.  This will be rounded
3411  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3412  * end of the file.
3413  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3414  * but 0 when invalidating pagecache, don't throw away private data.
3415  */
3416 void unmap_mapping_range(struct address_space *mapping,
3417 		loff_t const holebegin, loff_t const holelen, int even_cows)
3418 {
3419 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3420 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3421 
3422 	/* Check for overflow. */
3423 	if (sizeof(holelen) > sizeof(hlen)) {
3424 		long long holeend =
3425 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3426 		if (holeend & ~(long long)ULONG_MAX)
3427 			hlen = ULONG_MAX - hba + 1;
3428 	}
3429 
3430 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3431 }
3432 EXPORT_SYMBOL(unmap_mapping_range);
3433 
3434 /*
3435  * Restore a potential device exclusive pte to a working pte entry
3436  */
3437 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3438 {
3439 	struct page *page = vmf->page;
3440 	struct vm_area_struct *vma = vmf->vma;
3441 	struct mmu_notifier_range range;
3442 
3443 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3444 		return VM_FAULT_RETRY;
3445 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3446 				vma->vm_mm, vmf->address & PAGE_MASK,
3447 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3448 	mmu_notifier_invalidate_range_start(&range);
3449 
3450 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3451 				&vmf->ptl);
3452 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3453 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3454 
3455 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3456 	unlock_page(page);
3457 
3458 	mmu_notifier_invalidate_range_end(&range);
3459 	return 0;
3460 }
3461 
3462 /*
3463  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464  * but allow concurrent faults), and pte mapped but not yet locked.
3465  * We return with pte unmapped and unlocked.
3466  *
3467  * We return with the mmap_lock locked or unlocked in the same cases
3468  * as does filemap_fault().
3469  */
3470 vm_fault_t do_swap_page(struct vm_fault *vmf)
3471 {
3472 	struct vm_area_struct *vma = vmf->vma;
3473 	struct page *page = NULL, *swapcache;
3474 	struct swap_info_struct *si = NULL;
3475 	swp_entry_t entry;
3476 	pte_t pte;
3477 	int locked;
3478 	int exclusive = 0;
3479 	vm_fault_t ret = 0;
3480 	void *shadow = NULL;
3481 
3482 	if (!pte_unmap_same(vmf))
3483 		goto out;
3484 
3485 	entry = pte_to_swp_entry(vmf->orig_pte);
3486 	if (unlikely(non_swap_entry(entry))) {
3487 		if (is_migration_entry(entry)) {
3488 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3489 					     vmf->address);
3490 		} else if (is_device_exclusive_entry(entry)) {
3491 			vmf->page = pfn_swap_entry_to_page(entry);
3492 			ret = remove_device_exclusive_entry(vmf);
3493 		} else if (is_device_private_entry(entry)) {
3494 			vmf->page = pfn_swap_entry_to_page(entry);
3495 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3496 		} else if (is_hwpoison_entry(entry)) {
3497 			ret = VM_FAULT_HWPOISON;
3498 		} else {
3499 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3500 			ret = VM_FAULT_SIGBUS;
3501 		}
3502 		goto out;
3503 	}
3504 
3505 	/* Prevent swapoff from happening to us. */
3506 	si = get_swap_device(entry);
3507 	if (unlikely(!si))
3508 		goto out;
3509 
3510 	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3511 	page = lookup_swap_cache(entry, vma, vmf->address);
3512 	swapcache = page;
3513 
3514 	if (!page) {
3515 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3516 		    __swap_count(entry) == 1) {
3517 			/* skip swapcache */
3518 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3519 							vmf->address);
3520 			if (page) {
3521 				__SetPageLocked(page);
3522 				__SetPageSwapBacked(page);
3523 
3524 				if (mem_cgroup_swapin_charge_page(page,
3525 					vma->vm_mm, GFP_KERNEL, entry)) {
3526 					ret = VM_FAULT_OOM;
3527 					goto out_page;
3528 				}
3529 				mem_cgroup_swapin_uncharge_swap(entry);
3530 
3531 				shadow = get_shadow_from_swap_cache(entry);
3532 				if (shadow)
3533 					workingset_refault(page_folio(page),
3534 								shadow);
3535 
3536 				lru_cache_add(page);
3537 
3538 				/* To provide entry to swap_readpage() */
3539 				set_page_private(page, entry.val);
3540 				swap_readpage(page, true);
3541 				set_page_private(page, 0);
3542 			}
3543 		} else {
3544 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3545 						vmf);
3546 			swapcache = page;
3547 		}
3548 
3549 		if (!page) {
3550 			/*
3551 			 * Back out if somebody else faulted in this pte
3552 			 * while we released the pte lock.
3553 			 */
3554 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3555 					vmf->address, &vmf->ptl);
3556 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3557 				ret = VM_FAULT_OOM;
3558 			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3559 			goto unlock;
3560 		}
3561 
3562 		/* Had to read the page from swap area: Major fault */
3563 		ret = VM_FAULT_MAJOR;
3564 		count_vm_event(PGMAJFAULT);
3565 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3566 	} else if (PageHWPoison(page)) {
3567 		/*
3568 		 * hwpoisoned dirty swapcache pages are kept for killing
3569 		 * owner processes (which may be unknown at hwpoison time)
3570 		 */
3571 		ret = VM_FAULT_HWPOISON;
3572 		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3573 		goto out_release;
3574 	}
3575 
3576 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3577 
3578 	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3579 	if (!locked) {
3580 		ret |= VM_FAULT_RETRY;
3581 		goto out_release;
3582 	}
3583 
3584 	/*
3585 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3586 	 * release the swapcache from under us.  The page pin, and pte_same
3587 	 * test below, are not enough to exclude that.  Even if it is still
3588 	 * swapcache, we need to check that the page's swap has not changed.
3589 	 */
3590 	if (unlikely((!PageSwapCache(page) ||
3591 			page_private(page) != entry.val)) && swapcache)
3592 		goto out_page;
3593 
3594 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3595 	if (unlikely(!page)) {
3596 		ret = VM_FAULT_OOM;
3597 		page = swapcache;
3598 		goto out_page;
3599 	}
3600 
3601 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3602 
3603 	/*
3604 	 * Back out if somebody else already faulted in this pte.
3605 	 */
3606 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607 			&vmf->ptl);
3608 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3609 		goto out_nomap;
3610 
3611 	if (unlikely(!PageUptodate(page))) {
3612 		ret = VM_FAULT_SIGBUS;
3613 		goto out_nomap;
3614 	}
3615 
3616 	/*
3617 	 * The page isn't present yet, go ahead with the fault.
3618 	 *
3619 	 * Be careful about the sequence of operations here.
3620 	 * To get its accounting right, reuse_swap_page() must be called
3621 	 * while the page is counted on swap but not yet in mapcount i.e.
3622 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3623 	 * must be called after the swap_free(), or it will never succeed.
3624 	 */
3625 
3626 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3627 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3628 	pte = mk_pte(page, vma->vm_page_prot);
3629 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3630 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3631 		vmf->flags &= ~FAULT_FLAG_WRITE;
3632 		ret |= VM_FAULT_WRITE;
3633 		exclusive = RMAP_EXCLUSIVE;
3634 	}
3635 	flush_icache_page(vma, page);
3636 	if (pte_swp_soft_dirty(vmf->orig_pte))
3637 		pte = pte_mksoft_dirty(pte);
3638 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3639 		pte = pte_mkuffd_wp(pte);
3640 		pte = pte_wrprotect(pte);
3641 	}
3642 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3643 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3644 	vmf->orig_pte = pte;
3645 
3646 	/* ksm created a completely new copy */
3647 	if (unlikely(page != swapcache && swapcache)) {
3648 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3649 		lru_cache_add_inactive_or_unevictable(page, vma);
3650 	} else {
3651 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3652 	}
3653 
3654 	swap_free(entry);
3655 	if (mem_cgroup_swap_full(page) ||
3656 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3657 		try_to_free_swap(page);
3658 	unlock_page(page);
3659 	if (page != swapcache && swapcache) {
3660 		/*
3661 		 * Hold the lock to avoid the swap entry to be reused
3662 		 * until we take the PT lock for the pte_same() check
3663 		 * (to avoid false positives from pte_same). For
3664 		 * further safety release the lock after the swap_free
3665 		 * so that the swap count won't change under a
3666 		 * parallel locked swapcache.
3667 		 */
3668 		unlock_page(swapcache);
3669 		put_page(swapcache);
3670 	}
3671 
3672 	if (vmf->flags & FAULT_FLAG_WRITE) {
3673 		ret |= do_wp_page(vmf);
3674 		if (ret & VM_FAULT_ERROR)
3675 			ret &= VM_FAULT_ERROR;
3676 		goto out;
3677 	}
3678 
3679 	/* No need to invalidate - it was non-present before */
3680 	update_mmu_cache(vma, vmf->address, vmf->pte);
3681 unlock:
3682 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3683 out:
3684 	if (si)
3685 		put_swap_device(si);
3686 	return ret;
3687 out_nomap:
3688 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3689 out_page:
3690 	unlock_page(page);
3691 out_release:
3692 	put_page(page);
3693 	if (page != swapcache && swapcache) {
3694 		unlock_page(swapcache);
3695 		put_page(swapcache);
3696 	}
3697 	if (si)
3698 		put_swap_device(si);
3699 	return ret;
3700 }
3701 
3702 /*
3703  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3704  * but allow concurrent faults), and pte mapped but not yet locked.
3705  * We return with mmap_lock still held, but pte unmapped and unlocked.
3706  */
3707 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3708 {
3709 	struct vm_area_struct *vma = vmf->vma;
3710 	struct page *page;
3711 	vm_fault_t ret = 0;
3712 	pte_t entry;
3713 
3714 	/* File mapping without ->vm_ops ? */
3715 	if (vma->vm_flags & VM_SHARED)
3716 		return VM_FAULT_SIGBUS;
3717 
3718 	/*
3719 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3720 	 * pte_offset_map() on pmds where a huge pmd might be created
3721 	 * from a different thread.
3722 	 *
3723 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3724 	 * parallel threads are excluded by other means.
3725 	 *
3726 	 * Here we only have mmap_read_lock(mm).
3727 	 */
3728 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3729 		return VM_FAULT_OOM;
3730 
3731 	/* See comment in handle_pte_fault() */
3732 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3733 		return 0;
3734 
3735 	/* Use the zero-page for reads */
3736 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3737 			!mm_forbids_zeropage(vma->vm_mm)) {
3738 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3739 						vma->vm_page_prot));
3740 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3741 				vmf->address, &vmf->ptl);
3742 		if (!pte_none(*vmf->pte)) {
3743 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3744 			goto unlock;
3745 		}
3746 		ret = check_stable_address_space(vma->vm_mm);
3747 		if (ret)
3748 			goto unlock;
3749 		/* Deliver the page fault to userland, check inside PT lock */
3750 		if (userfaultfd_missing(vma)) {
3751 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3752 			return handle_userfault(vmf, VM_UFFD_MISSING);
3753 		}
3754 		goto setpte;
3755 	}
3756 
3757 	/* Allocate our own private page. */
3758 	if (unlikely(anon_vma_prepare(vma)))
3759 		goto oom;
3760 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3761 	if (!page)
3762 		goto oom;
3763 
3764 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3765 		goto oom_free_page;
3766 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3767 
3768 	/*
3769 	 * The memory barrier inside __SetPageUptodate makes sure that
3770 	 * preceding stores to the page contents become visible before
3771 	 * the set_pte_at() write.
3772 	 */
3773 	__SetPageUptodate(page);
3774 
3775 	entry = mk_pte(page, vma->vm_page_prot);
3776 	entry = pte_sw_mkyoung(entry);
3777 	if (vma->vm_flags & VM_WRITE)
3778 		entry = pte_mkwrite(pte_mkdirty(entry));
3779 
3780 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3781 			&vmf->ptl);
3782 	if (!pte_none(*vmf->pte)) {
3783 		update_mmu_cache(vma, vmf->address, vmf->pte);
3784 		goto release;
3785 	}
3786 
3787 	ret = check_stable_address_space(vma->vm_mm);
3788 	if (ret)
3789 		goto release;
3790 
3791 	/* Deliver the page fault to userland, check inside PT lock */
3792 	if (userfaultfd_missing(vma)) {
3793 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3794 		put_page(page);
3795 		return handle_userfault(vmf, VM_UFFD_MISSING);
3796 	}
3797 
3798 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3799 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3800 	lru_cache_add_inactive_or_unevictable(page, vma);
3801 setpte:
3802 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3803 
3804 	/* No need to invalidate - it was non-present before */
3805 	update_mmu_cache(vma, vmf->address, vmf->pte);
3806 unlock:
3807 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3808 	return ret;
3809 release:
3810 	put_page(page);
3811 	goto unlock;
3812 oom_free_page:
3813 	put_page(page);
3814 oom:
3815 	return VM_FAULT_OOM;
3816 }
3817 
3818 /*
3819  * The mmap_lock must have been held on entry, and may have been
3820  * released depending on flags and vma->vm_ops->fault() return value.
3821  * See filemap_fault() and __lock_page_retry().
3822  */
3823 static vm_fault_t __do_fault(struct vm_fault *vmf)
3824 {
3825 	struct vm_area_struct *vma = vmf->vma;
3826 	vm_fault_t ret;
3827 
3828 	/*
3829 	 * Preallocate pte before we take page_lock because this might lead to
3830 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3831 	 *				lock_page(A)
3832 	 *				SetPageWriteback(A)
3833 	 *				unlock_page(A)
3834 	 * lock_page(B)
3835 	 *				lock_page(B)
3836 	 * pte_alloc_one
3837 	 *   shrink_page_list
3838 	 *     wait_on_page_writeback(A)
3839 	 *				SetPageWriteback(B)
3840 	 *				unlock_page(B)
3841 	 *				# flush A, B to clear the writeback
3842 	 */
3843 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3844 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3845 		if (!vmf->prealloc_pte)
3846 			return VM_FAULT_OOM;
3847 	}
3848 
3849 	ret = vma->vm_ops->fault(vmf);
3850 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3851 			    VM_FAULT_DONE_COW)))
3852 		return ret;
3853 
3854 	if (unlikely(PageHWPoison(vmf->page))) {
3855 		if (ret & VM_FAULT_LOCKED)
3856 			unlock_page(vmf->page);
3857 		put_page(vmf->page);
3858 		vmf->page = NULL;
3859 		return VM_FAULT_HWPOISON;
3860 	}
3861 
3862 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3863 		lock_page(vmf->page);
3864 	else
3865 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3866 
3867 	return ret;
3868 }
3869 
3870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3871 static void deposit_prealloc_pte(struct vm_fault *vmf)
3872 {
3873 	struct vm_area_struct *vma = vmf->vma;
3874 
3875 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3876 	/*
3877 	 * We are going to consume the prealloc table,
3878 	 * count that as nr_ptes.
3879 	 */
3880 	mm_inc_nr_ptes(vma->vm_mm);
3881 	vmf->prealloc_pte = NULL;
3882 }
3883 
3884 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3885 {
3886 	struct vm_area_struct *vma = vmf->vma;
3887 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3888 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3889 	pmd_t entry;
3890 	int i;
3891 	vm_fault_t ret = VM_FAULT_FALLBACK;
3892 
3893 	if (!transhuge_vma_suitable(vma, haddr))
3894 		return ret;
3895 
3896 	page = compound_head(page);
3897 	if (compound_order(page) != HPAGE_PMD_ORDER)
3898 		return ret;
3899 
3900 	/*
3901 	 * Just backoff if any subpage of a THP is corrupted otherwise
3902 	 * the corrupted page may mapped by PMD silently to escape the
3903 	 * check.  This kind of THP just can be PTE mapped.  Access to
3904 	 * the corrupted subpage should trigger SIGBUS as expected.
3905 	 */
3906 	if (unlikely(PageHasHWPoisoned(page)))
3907 		return ret;
3908 
3909 	/*
3910 	 * Archs like ppc64 need additional space to store information
3911 	 * related to pte entry. Use the preallocated table for that.
3912 	 */
3913 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3914 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3915 		if (!vmf->prealloc_pte)
3916 			return VM_FAULT_OOM;
3917 	}
3918 
3919 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920 	if (unlikely(!pmd_none(*vmf->pmd)))
3921 		goto out;
3922 
3923 	for (i = 0; i < HPAGE_PMD_NR; i++)
3924 		flush_icache_page(vma, page + i);
3925 
3926 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3927 	if (write)
3928 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3929 
3930 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931 	page_add_file_rmap(page, true);
3932 	/*
3933 	 * deposit and withdraw with pmd lock held
3934 	 */
3935 	if (arch_needs_pgtable_deposit())
3936 		deposit_prealloc_pte(vmf);
3937 
3938 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3939 
3940 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3941 
3942 	/* fault is handled */
3943 	ret = 0;
3944 	count_vm_event(THP_FILE_MAPPED);
3945 out:
3946 	spin_unlock(vmf->ptl);
3947 	return ret;
3948 }
3949 #else
3950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951 {
3952 	return VM_FAULT_FALLBACK;
3953 }
3954 #endif
3955 
3956 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3957 {
3958 	struct vm_area_struct *vma = vmf->vma;
3959 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3960 	bool prefault = vmf->address != addr;
3961 	pte_t entry;
3962 
3963 	flush_icache_page(vma, page);
3964 	entry = mk_pte(page, vma->vm_page_prot);
3965 
3966 	if (prefault && arch_wants_old_prefaulted_pte())
3967 		entry = pte_mkold(entry);
3968 	else
3969 		entry = pte_sw_mkyoung(entry);
3970 
3971 	if (write)
3972 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973 	/* copy-on-write page */
3974 	if (write && !(vma->vm_flags & VM_SHARED)) {
3975 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976 		page_add_new_anon_rmap(page, vma, addr, false);
3977 		lru_cache_add_inactive_or_unevictable(page, vma);
3978 	} else {
3979 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980 		page_add_file_rmap(page, false);
3981 	}
3982 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3983 }
3984 
3985 /**
3986  * finish_fault - finish page fault once we have prepared the page to fault
3987  *
3988  * @vmf: structure describing the fault
3989  *
3990  * This function handles all that is needed to finish a page fault once the
3991  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992  * given page, adds reverse page mapping, handles memcg charges and LRU
3993  * addition.
3994  *
3995  * The function expects the page to be locked and on success it consumes a
3996  * reference of a page being mapped (for the PTE which maps it).
3997  *
3998  * Return: %0 on success, %VM_FAULT_ code in case of error.
3999  */
4000 vm_fault_t finish_fault(struct vm_fault *vmf)
4001 {
4002 	struct vm_area_struct *vma = vmf->vma;
4003 	struct page *page;
4004 	vm_fault_t ret;
4005 
4006 	/* Did we COW the page? */
4007 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4008 		page = vmf->cow_page;
4009 	else
4010 		page = vmf->page;
4011 
4012 	/*
4013 	 * check even for read faults because we might have lost our CoWed
4014 	 * page
4015 	 */
4016 	if (!(vma->vm_flags & VM_SHARED)) {
4017 		ret = check_stable_address_space(vma->vm_mm);
4018 		if (ret)
4019 			return ret;
4020 	}
4021 
4022 	if (pmd_none(*vmf->pmd)) {
4023 		if (PageTransCompound(page)) {
4024 			ret = do_set_pmd(vmf, page);
4025 			if (ret != VM_FAULT_FALLBACK)
4026 				return ret;
4027 		}
4028 
4029 		if (vmf->prealloc_pte)
4030 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4031 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4032 			return VM_FAULT_OOM;
4033 	}
4034 
4035 	/* See comment in handle_pte_fault() */
4036 	if (pmd_devmap_trans_unstable(vmf->pmd))
4037 		return 0;
4038 
4039 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4040 				      vmf->address, &vmf->ptl);
4041 	ret = 0;
4042 	/* Re-check under ptl */
4043 	if (likely(pte_none(*vmf->pte)))
4044 		do_set_pte(vmf, page, vmf->address);
4045 	else
4046 		ret = VM_FAULT_NOPAGE;
4047 
4048 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4049 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4050 	return ret;
4051 }
4052 
4053 static unsigned long fault_around_bytes __read_mostly =
4054 	rounddown_pow_of_two(65536);
4055 
4056 #ifdef CONFIG_DEBUG_FS
4057 static int fault_around_bytes_get(void *data, u64 *val)
4058 {
4059 	*val = fault_around_bytes;
4060 	return 0;
4061 }
4062 
4063 /*
4064  * fault_around_bytes must be rounded down to the nearest page order as it's
4065  * what do_fault_around() expects to see.
4066  */
4067 static int fault_around_bytes_set(void *data, u64 val)
4068 {
4069 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4070 		return -EINVAL;
4071 	if (val > PAGE_SIZE)
4072 		fault_around_bytes = rounddown_pow_of_two(val);
4073 	else
4074 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4075 	return 0;
4076 }
4077 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4078 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4079 
4080 static int __init fault_around_debugfs(void)
4081 {
4082 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4083 				   &fault_around_bytes_fops);
4084 	return 0;
4085 }
4086 late_initcall(fault_around_debugfs);
4087 #endif
4088 
4089 /*
4090  * do_fault_around() tries to map few pages around the fault address. The hope
4091  * is that the pages will be needed soon and this will lower the number of
4092  * faults to handle.
4093  *
4094  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4095  * not ready to be mapped: not up-to-date, locked, etc.
4096  *
4097  * This function is called with the page table lock taken. In the split ptlock
4098  * case the page table lock only protects only those entries which belong to
4099  * the page table corresponding to the fault address.
4100  *
4101  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4102  * only once.
4103  *
4104  * fault_around_bytes defines how many bytes we'll try to map.
4105  * do_fault_around() expects it to be set to a power of two less than or equal
4106  * to PTRS_PER_PTE.
4107  *
4108  * The virtual address of the area that we map is naturally aligned to
4109  * fault_around_bytes rounded down to the machine page size
4110  * (and therefore to page order).  This way it's easier to guarantee
4111  * that we don't cross page table boundaries.
4112  */
4113 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4114 {
4115 	unsigned long address = vmf->address, nr_pages, mask;
4116 	pgoff_t start_pgoff = vmf->pgoff;
4117 	pgoff_t end_pgoff;
4118 	int off;
4119 
4120 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4121 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4122 
4123 	address = max(address & mask, vmf->vma->vm_start);
4124 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4125 	start_pgoff -= off;
4126 
4127 	/*
4128 	 *  end_pgoff is either the end of the page table, the end of
4129 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4130 	 */
4131 	end_pgoff = start_pgoff -
4132 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4133 		PTRS_PER_PTE - 1;
4134 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4135 			start_pgoff + nr_pages - 1);
4136 
4137 	if (pmd_none(*vmf->pmd)) {
4138 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4139 		if (!vmf->prealloc_pte)
4140 			return VM_FAULT_OOM;
4141 	}
4142 
4143 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4144 }
4145 
4146 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4147 {
4148 	struct vm_area_struct *vma = vmf->vma;
4149 	vm_fault_t ret = 0;
4150 
4151 	/*
4152 	 * Let's call ->map_pages() first and use ->fault() as fallback
4153 	 * if page by the offset is not ready to be mapped (cold cache or
4154 	 * something).
4155 	 */
4156 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4157 		if (likely(!userfaultfd_minor(vmf->vma))) {
4158 			ret = do_fault_around(vmf);
4159 			if (ret)
4160 				return ret;
4161 		}
4162 	}
4163 
4164 	ret = __do_fault(vmf);
4165 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4166 		return ret;
4167 
4168 	ret |= finish_fault(vmf);
4169 	unlock_page(vmf->page);
4170 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4171 		put_page(vmf->page);
4172 	return ret;
4173 }
4174 
4175 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4176 {
4177 	struct vm_area_struct *vma = vmf->vma;
4178 	vm_fault_t ret;
4179 
4180 	if (unlikely(anon_vma_prepare(vma)))
4181 		return VM_FAULT_OOM;
4182 
4183 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4184 	if (!vmf->cow_page)
4185 		return VM_FAULT_OOM;
4186 
4187 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4188 				GFP_KERNEL)) {
4189 		put_page(vmf->cow_page);
4190 		return VM_FAULT_OOM;
4191 	}
4192 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4193 
4194 	ret = __do_fault(vmf);
4195 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4196 		goto uncharge_out;
4197 	if (ret & VM_FAULT_DONE_COW)
4198 		return ret;
4199 
4200 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4201 	__SetPageUptodate(vmf->cow_page);
4202 
4203 	ret |= finish_fault(vmf);
4204 	unlock_page(vmf->page);
4205 	put_page(vmf->page);
4206 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4207 		goto uncharge_out;
4208 	return ret;
4209 uncharge_out:
4210 	put_page(vmf->cow_page);
4211 	return ret;
4212 }
4213 
4214 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4215 {
4216 	struct vm_area_struct *vma = vmf->vma;
4217 	vm_fault_t ret, tmp;
4218 
4219 	ret = __do_fault(vmf);
4220 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4221 		return ret;
4222 
4223 	/*
4224 	 * Check if the backing address space wants to know that the page is
4225 	 * about to become writable
4226 	 */
4227 	if (vma->vm_ops->page_mkwrite) {
4228 		unlock_page(vmf->page);
4229 		tmp = do_page_mkwrite(vmf);
4230 		if (unlikely(!tmp ||
4231 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4232 			put_page(vmf->page);
4233 			return tmp;
4234 		}
4235 	}
4236 
4237 	ret |= finish_fault(vmf);
4238 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4239 					VM_FAULT_RETRY))) {
4240 		unlock_page(vmf->page);
4241 		put_page(vmf->page);
4242 		return ret;
4243 	}
4244 
4245 	ret |= fault_dirty_shared_page(vmf);
4246 	return ret;
4247 }
4248 
4249 /*
4250  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4251  * but allow concurrent faults).
4252  * The mmap_lock may have been released depending on flags and our
4253  * return value.  See filemap_fault() and __folio_lock_or_retry().
4254  * If mmap_lock is released, vma may become invalid (for example
4255  * by other thread calling munmap()).
4256  */
4257 static vm_fault_t do_fault(struct vm_fault *vmf)
4258 {
4259 	struct vm_area_struct *vma = vmf->vma;
4260 	struct mm_struct *vm_mm = vma->vm_mm;
4261 	vm_fault_t ret;
4262 
4263 	/*
4264 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4265 	 */
4266 	if (!vma->vm_ops->fault) {
4267 		/*
4268 		 * If we find a migration pmd entry or a none pmd entry, which
4269 		 * should never happen, return SIGBUS
4270 		 */
4271 		if (unlikely(!pmd_present(*vmf->pmd)))
4272 			ret = VM_FAULT_SIGBUS;
4273 		else {
4274 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4275 						       vmf->pmd,
4276 						       vmf->address,
4277 						       &vmf->ptl);
4278 			/*
4279 			 * Make sure this is not a temporary clearing of pte
4280 			 * by holding ptl and checking again. A R/M/W update
4281 			 * of pte involves: take ptl, clearing the pte so that
4282 			 * we don't have concurrent modification by hardware
4283 			 * followed by an update.
4284 			 */
4285 			if (unlikely(pte_none(*vmf->pte)))
4286 				ret = VM_FAULT_SIGBUS;
4287 			else
4288 				ret = VM_FAULT_NOPAGE;
4289 
4290 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4291 		}
4292 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4293 		ret = do_read_fault(vmf);
4294 	else if (!(vma->vm_flags & VM_SHARED))
4295 		ret = do_cow_fault(vmf);
4296 	else
4297 		ret = do_shared_fault(vmf);
4298 
4299 	/* preallocated pagetable is unused: free it */
4300 	if (vmf->prealloc_pte) {
4301 		pte_free(vm_mm, vmf->prealloc_pte);
4302 		vmf->prealloc_pte = NULL;
4303 	}
4304 	return ret;
4305 }
4306 
4307 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4308 		      unsigned long addr, int page_nid, int *flags)
4309 {
4310 	get_page(page);
4311 
4312 	count_vm_numa_event(NUMA_HINT_FAULTS);
4313 	if (page_nid == numa_node_id()) {
4314 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4315 		*flags |= TNF_FAULT_LOCAL;
4316 	}
4317 
4318 	return mpol_misplaced(page, vma, addr);
4319 }
4320 
4321 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4322 {
4323 	struct vm_area_struct *vma = vmf->vma;
4324 	struct page *page = NULL;
4325 	int page_nid = NUMA_NO_NODE;
4326 	int last_cpupid;
4327 	int target_nid;
4328 	pte_t pte, old_pte;
4329 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4330 	int flags = 0;
4331 
4332 	/*
4333 	 * The "pte" at this point cannot be used safely without
4334 	 * validation through pte_unmap_same(). It's of NUMA type but
4335 	 * the pfn may be screwed if the read is non atomic.
4336 	 */
4337 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4338 	spin_lock(vmf->ptl);
4339 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4340 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4341 		goto out;
4342 	}
4343 
4344 	/* Get the normal PTE  */
4345 	old_pte = ptep_get(vmf->pte);
4346 	pte = pte_modify(old_pte, vma->vm_page_prot);
4347 
4348 	page = vm_normal_page(vma, vmf->address, pte);
4349 	if (!page)
4350 		goto out_map;
4351 
4352 	/* TODO: handle PTE-mapped THP */
4353 	if (PageCompound(page))
4354 		goto out_map;
4355 
4356 	/*
4357 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4358 	 * much anyway since they can be in shared cache state. This misses
4359 	 * the case where a mapping is writable but the process never writes
4360 	 * to it but pte_write gets cleared during protection updates and
4361 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4362 	 * background writeback, dirty balancing and application behaviour.
4363 	 */
4364 	if (!was_writable)
4365 		flags |= TNF_NO_GROUP;
4366 
4367 	/*
4368 	 * Flag if the page is shared between multiple address spaces. This
4369 	 * is later used when determining whether to group tasks together
4370 	 */
4371 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4372 		flags |= TNF_SHARED;
4373 
4374 	last_cpupid = page_cpupid_last(page);
4375 	page_nid = page_to_nid(page);
4376 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4377 			&flags);
4378 	if (target_nid == NUMA_NO_NODE) {
4379 		put_page(page);
4380 		goto out_map;
4381 	}
4382 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4383 
4384 	/* Migrate to the requested node */
4385 	if (migrate_misplaced_page(page, vma, target_nid)) {
4386 		page_nid = target_nid;
4387 		flags |= TNF_MIGRATED;
4388 	} else {
4389 		flags |= TNF_MIGRATE_FAIL;
4390 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4391 		spin_lock(vmf->ptl);
4392 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4393 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4394 			goto out;
4395 		}
4396 		goto out_map;
4397 	}
4398 
4399 out:
4400 	if (page_nid != NUMA_NO_NODE)
4401 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4402 	return 0;
4403 out_map:
4404 	/*
4405 	 * Make it present again, depending on how arch implements
4406 	 * non-accessible ptes, some can allow access by kernel mode.
4407 	 */
4408 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4409 	pte = pte_modify(old_pte, vma->vm_page_prot);
4410 	pte = pte_mkyoung(pte);
4411 	if (was_writable)
4412 		pte = pte_mkwrite(pte);
4413 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4414 	update_mmu_cache(vma, vmf->address, vmf->pte);
4415 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4416 	goto out;
4417 }
4418 
4419 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4420 {
4421 	if (vma_is_anonymous(vmf->vma))
4422 		return do_huge_pmd_anonymous_page(vmf);
4423 	if (vmf->vma->vm_ops->huge_fault)
4424 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4425 	return VM_FAULT_FALLBACK;
4426 }
4427 
4428 /* `inline' is required to avoid gcc 4.1.2 build error */
4429 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4430 {
4431 	if (vma_is_anonymous(vmf->vma)) {
4432 		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4433 			return handle_userfault(vmf, VM_UFFD_WP);
4434 		return do_huge_pmd_wp_page(vmf);
4435 	}
4436 	if (vmf->vma->vm_ops->huge_fault) {
4437 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4438 
4439 		if (!(ret & VM_FAULT_FALLBACK))
4440 			return ret;
4441 	}
4442 
4443 	/* COW or write-notify handled on pte level: split pmd. */
4444 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4445 
4446 	return VM_FAULT_FALLBACK;
4447 }
4448 
4449 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4450 {
4451 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4452 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4453 	/* No support for anonymous transparent PUD pages yet */
4454 	if (vma_is_anonymous(vmf->vma))
4455 		goto split;
4456 	if (vmf->vma->vm_ops->huge_fault) {
4457 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4458 
4459 		if (!(ret & VM_FAULT_FALLBACK))
4460 			return ret;
4461 	}
4462 split:
4463 	/* COW or write-notify not handled on PUD level: split pud.*/
4464 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4466 	return VM_FAULT_FALLBACK;
4467 }
4468 
4469 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4470 {
4471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4472 	/* No support for anonymous transparent PUD pages yet */
4473 	if (vma_is_anonymous(vmf->vma))
4474 		return VM_FAULT_FALLBACK;
4475 	if (vmf->vma->vm_ops->huge_fault)
4476 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4478 	return VM_FAULT_FALLBACK;
4479 }
4480 
4481 /*
4482  * These routines also need to handle stuff like marking pages dirty
4483  * and/or accessed for architectures that don't do it in hardware (most
4484  * RISC architectures).  The early dirtying is also good on the i386.
4485  *
4486  * There is also a hook called "update_mmu_cache()" that architectures
4487  * with external mmu caches can use to update those (ie the Sparc or
4488  * PowerPC hashed page tables that act as extended TLBs).
4489  *
4490  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4491  * concurrent faults).
4492  *
4493  * The mmap_lock may have been released depending on flags and our return value.
4494  * See filemap_fault() and __folio_lock_or_retry().
4495  */
4496 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4497 {
4498 	pte_t entry;
4499 
4500 	if (unlikely(pmd_none(*vmf->pmd))) {
4501 		/*
4502 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4503 		 * want to allocate huge page, and if we expose page table
4504 		 * for an instant, it will be difficult to retract from
4505 		 * concurrent faults and from rmap lookups.
4506 		 */
4507 		vmf->pte = NULL;
4508 	} else {
4509 		/*
4510 		 * If a huge pmd materialized under us just retry later.  Use
4511 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4512 		 * of pmd_trans_huge() to ensure the pmd didn't become
4513 		 * pmd_trans_huge under us and then back to pmd_none, as a
4514 		 * result of MADV_DONTNEED running immediately after a huge pmd
4515 		 * fault in a different thread of this mm, in turn leading to a
4516 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4517 		 * that it is a regular pmd that we can walk with
4518 		 * pte_offset_map() and we can do that through an atomic read
4519 		 * in C, which is what pmd_trans_unstable() provides.
4520 		 */
4521 		if (pmd_devmap_trans_unstable(vmf->pmd))
4522 			return 0;
4523 		/*
4524 		 * A regular pmd is established and it can't morph into a huge
4525 		 * pmd from under us anymore at this point because we hold the
4526 		 * mmap_lock read mode and khugepaged takes it in write mode.
4527 		 * So now it's safe to run pte_offset_map().
4528 		 */
4529 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4530 		vmf->orig_pte = *vmf->pte;
4531 
4532 		/*
4533 		 * some architectures can have larger ptes than wordsize,
4534 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4535 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4536 		 * accesses.  The code below just needs a consistent view
4537 		 * for the ifs and we later double check anyway with the
4538 		 * ptl lock held. So here a barrier will do.
4539 		 */
4540 		barrier();
4541 		if (pte_none(vmf->orig_pte)) {
4542 			pte_unmap(vmf->pte);
4543 			vmf->pte = NULL;
4544 		}
4545 	}
4546 
4547 	if (!vmf->pte) {
4548 		if (vma_is_anonymous(vmf->vma))
4549 			return do_anonymous_page(vmf);
4550 		else
4551 			return do_fault(vmf);
4552 	}
4553 
4554 	if (!pte_present(vmf->orig_pte))
4555 		return do_swap_page(vmf);
4556 
4557 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4558 		return do_numa_page(vmf);
4559 
4560 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4561 	spin_lock(vmf->ptl);
4562 	entry = vmf->orig_pte;
4563 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4564 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4565 		goto unlock;
4566 	}
4567 	if (vmf->flags & FAULT_FLAG_WRITE) {
4568 		if (!pte_write(entry))
4569 			return do_wp_page(vmf);
4570 		entry = pte_mkdirty(entry);
4571 	}
4572 	entry = pte_mkyoung(entry);
4573 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4574 				vmf->flags & FAULT_FLAG_WRITE)) {
4575 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4576 	} else {
4577 		/* Skip spurious TLB flush for retried page fault */
4578 		if (vmf->flags & FAULT_FLAG_TRIED)
4579 			goto unlock;
4580 		/*
4581 		 * This is needed only for protection faults but the arch code
4582 		 * is not yet telling us if this is a protection fault or not.
4583 		 * This still avoids useless tlb flushes for .text page faults
4584 		 * with threads.
4585 		 */
4586 		if (vmf->flags & FAULT_FLAG_WRITE)
4587 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4588 	}
4589 unlock:
4590 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4591 	return 0;
4592 }
4593 
4594 /*
4595  * By the time we get here, we already hold the mm semaphore
4596  *
4597  * The mmap_lock may have been released depending on flags and our
4598  * return value.  See filemap_fault() and __folio_lock_or_retry().
4599  */
4600 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4601 		unsigned long address, unsigned int flags)
4602 {
4603 	struct vm_fault vmf = {
4604 		.vma = vma,
4605 		.address = address & PAGE_MASK,
4606 		.flags = flags,
4607 		.pgoff = linear_page_index(vma, address),
4608 		.gfp_mask = __get_fault_gfp_mask(vma),
4609 	};
4610 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4611 	struct mm_struct *mm = vma->vm_mm;
4612 	pgd_t *pgd;
4613 	p4d_t *p4d;
4614 	vm_fault_t ret;
4615 
4616 	pgd = pgd_offset(mm, address);
4617 	p4d = p4d_alloc(mm, pgd, address);
4618 	if (!p4d)
4619 		return VM_FAULT_OOM;
4620 
4621 	vmf.pud = pud_alloc(mm, p4d, address);
4622 	if (!vmf.pud)
4623 		return VM_FAULT_OOM;
4624 retry_pud:
4625 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4626 		ret = create_huge_pud(&vmf);
4627 		if (!(ret & VM_FAULT_FALLBACK))
4628 			return ret;
4629 	} else {
4630 		pud_t orig_pud = *vmf.pud;
4631 
4632 		barrier();
4633 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4634 
4635 			/* NUMA case for anonymous PUDs would go here */
4636 
4637 			if (dirty && !pud_write(orig_pud)) {
4638 				ret = wp_huge_pud(&vmf, orig_pud);
4639 				if (!(ret & VM_FAULT_FALLBACK))
4640 					return ret;
4641 			} else {
4642 				huge_pud_set_accessed(&vmf, orig_pud);
4643 				return 0;
4644 			}
4645 		}
4646 	}
4647 
4648 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4649 	if (!vmf.pmd)
4650 		return VM_FAULT_OOM;
4651 
4652 	/* Huge pud page fault raced with pmd_alloc? */
4653 	if (pud_trans_unstable(vmf.pud))
4654 		goto retry_pud;
4655 
4656 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4657 		ret = create_huge_pmd(&vmf);
4658 		if (!(ret & VM_FAULT_FALLBACK))
4659 			return ret;
4660 	} else {
4661 		vmf.orig_pmd = *vmf.pmd;
4662 
4663 		barrier();
4664 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4665 			VM_BUG_ON(thp_migration_supported() &&
4666 					  !is_pmd_migration_entry(vmf.orig_pmd));
4667 			if (is_pmd_migration_entry(vmf.orig_pmd))
4668 				pmd_migration_entry_wait(mm, vmf.pmd);
4669 			return 0;
4670 		}
4671 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4672 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4673 				return do_huge_pmd_numa_page(&vmf);
4674 
4675 			if (dirty && !pmd_write(vmf.orig_pmd)) {
4676 				ret = wp_huge_pmd(&vmf);
4677 				if (!(ret & VM_FAULT_FALLBACK))
4678 					return ret;
4679 			} else {
4680 				huge_pmd_set_accessed(&vmf);
4681 				return 0;
4682 			}
4683 		}
4684 	}
4685 
4686 	return handle_pte_fault(&vmf);
4687 }
4688 
4689 /**
4690  * mm_account_fault - Do page fault accounting
4691  *
4692  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4693  *        of perf event counters, but we'll still do the per-task accounting to
4694  *        the task who triggered this page fault.
4695  * @address: the faulted address.
4696  * @flags: the fault flags.
4697  * @ret: the fault retcode.
4698  *
4699  * This will take care of most of the page fault accounting.  Meanwhile, it
4700  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4701  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4702  * still be in per-arch page fault handlers at the entry of page fault.
4703  */
4704 static inline void mm_account_fault(struct pt_regs *regs,
4705 				    unsigned long address, unsigned int flags,
4706 				    vm_fault_t ret)
4707 {
4708 	bool major;
4709 
4710 	/*
4711 	 * We don't do accounting for some specific faults:
4712 	 *
4713 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4714 	 *   includes arch_vma_access_permitted() failing before reaching here.
4715 	 *   So this is not a "this many hardware page faults" counter.  We
4716 	 *   should use the hw profiling for that.
4717 	 *
4718 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4719 	 *   once they're completed.
4720 	 */
4721 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4722 		return;
4723 
4724 	/*
4725 	 * We define the fault as a major fault when the final successful fault
4726 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4727 	 * handle it immediately previously).
4728 	 */
4729 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4730 
4731 	if (major)
4732 		current->maj_flt++;
4733 	else
4734 		current->min_flt++;
4735 
4736 	/*
4737 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4738 	 * accounting for the per thread fault counters who triggered the
4739 	 * fault, and we skip the perf event updates.
4740 	 */
4741 	if (!regs)
4742 		return;
4743 
4744 	if (major)
4745 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4746 	else
4747 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4748 }
4749 
4750 /*
4751  * By the time we get here, we already hold the mm semaphore
4752  *
4753  * The mmap_lock may have been released depending on flags and our
4754  * return value.  See filemap_fault() and __folio_lock_or_retry().
4755  */
4756 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4757 			   unsigned int flags, struct pt_regs *regs)
4758 {
4759 	vm_fault_t ret;
4760 
4761 	__set_current_state(TASK_RUNNING);
4762 
4763 	count_vm_event(PGFAULT);
4764 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4765 
4766 	/* do counter updates before entering really critical section. */
4767 	check_sync_rss_stat(current);
4768 
4769 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4770 					    flags & FAULT_FLAG_INSTRUCTION,
4771 					    flags & FAULT_FLAG_REMOTE))
4772 		return VM_FAULT_SIGSEGV;
4773 
4774 	/*
4775 	 * Enable the memcg OOM handling for faults triggered in user
4776 	 * space.  Kernel faults are handled more gracefully.
4777 	 */
4778 	if (flags & FAULT_FLAG_USER)
4779 		mem_cgroup_enter_user_fault();
4780 
4781 	if (unlikely(is_vm_hugetlb_page(vma)))
4782 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4783 	else
4784 		ret = __handle_mm_fault(vma, address, flags);
4785 
4786 	if (flags & FAULT_FLAG_USER) {
4787 		mem_cgroup_exit_user_fault();
4788 		/*
4789 		 * The task may have entered a memcg OOM situation but
4790 		 * if the allocation error was handled gracefully (no
4791 		 * VM_FAULT_OOM), there is no need to kill anything.
4792 		 * Just clean up the OOM state peacefully.
4793 		 */
4794 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4795 			mem_cgroup_oom_synchronize(false);
4796 	}
4797 
4798 	mm_account_fault(regs, address, flags, ret);
4799 
4800 	return ret;
4801 }
4802 EXPORT_SYMBOL_GPL(handle_mm_fault);
4803 
4804 #ifndef __PAGETABLE_P4D_FOLDED
4805 /*
4806  * Allocate p4d page table.
4807  * We've already handled the fast-path in-line.
4808  */
4809 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4810 {
4811 	p4d_t *new = p4d_alloc_one(mm, address);
4812 	if (!new)
4813 		return -ENOMEM;
4814 
4815 	spin_lock(&mm->page_table_lock);
4816 	if (pgd_present(*pgd)) {	/* Another has populated it */
4817 		p4d_free(mm, new);
4818 	} else {
4819 		smp_wmb(); /* See comment in pmd_install() */
4820 		pgd_populate(mm, pgd, new);
4821 	}
4822 	spin_unlock(&mm->page_table_lock);
4823 	return 0;
4824 }
4825 #endif /* __PAGETABLE_P4D_FOLDED */
4826 
4827 #ifndef __PAGETABLE_PUD_FOLDED
4828 /*
4829  * Allocate page upper directory.
4830  * We've already handled the fast-path in-line.
4831  */
4832 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4833 {
4834 	pud_t *new = pud_alloc_one(mm, address);
4835 	if (!new)
4836 		return -ENOMEM;
4837 
4838 	spin_lock(&mm->page_table_lock);
4839 	if (!p4d_present(*p4d)) {
4840 		mm_inc_nr_puds(mm);
4841 		smp_wmb(); /* See comment in pmd_install() */
4842 		p4d_populate(mm, p4d, new);
4843 	} else	/* Another has populated it */
4844 		pud_free(mm, new);
4845 	spin_unlock(&mm->page_table_lock);
4846 	return 0;
4847 }
4848 #endif /* __PAGETABLE_PUD_FOLDED */
4849 
4850 #ifndef __PAGETABLE_PMD_FOLDED
4851 /*
4852  * Allocate page middle directory.
4853  * We've already handled the fast-path in-line.
4854  */
4855 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4856 {
4857 	spinlock_t *ptl;
4858 	pmd_t *new = pmd_alloc_one(mm, address);
4859 	if (!new)
4860 		return -ENOMEM;
4861 
4862 	ptl = pud_lock(mm, pud);
4863 	if (!pud_present(*pud)) {
4864 		mm_inc_nr_pmds(mm);
4865 		smp_wmb(); /* See comment in pmd_install() */
4866 		pud_populate(mm, pud, new);
4867 	} else {	/* Another has populated it */
4868 		pmd_free(mm, new);
4869 	}
4870 	spin_unlock(ptl);
4871 	return 0;
4872 }
4873 #endif /* __PAGETABLE_PMD_FOLDED */
4874 
4875 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4876 			  struct mmu_notifier_range *range, pte_t **ptepp,
4877 			  pmd_t **pmdpp, spinlock_t **ptlp)
4878 {
4879 	pgd_t *pgd;
4880 	p4d_t *p4d;
4881 	pud_t *pud;
4882 	pmd_t *pmd;
4883 	pte_t *ptep;
4884 
4885 	pgd = pgd_offset(mm, address);
4886 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4887 		goto out;
4888 
4889 	p4d = p4d_offset(pgd, address);
4890 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4891 		goto out;
4892 
4893 	pud = pud_offset(p4d, address);
4894 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4895 		goto out;
4896 
4897 	pmd = pmd_offset(pud, address);
4898 	VM_BUG_ON(pmd_trans_huge(*pmd));
4899 
4900 	if (pmd_huge(*pmd)) {
4901 		if (!pmdpp)
4902 			goto out;
4903 
4904 		if (range) {
4905 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4906 						NULL, mm, address & PMD_MASK,
4907 						(address & PMD_MASK) + PMD_SIZE);
4908 			mmu_notifier_invalidate_range_start(range);
4909 		}
4910 		*ptlp = pmd_lock(mm, pmd);
4911 		if (pmd_huge(*pmd)) {
4912 			*pmdpp = pmd;
4913 			return 0;
4914 		}
4915 		spin_unlock(*ptlp);
4916 		if (range)
4917 			mmu_notifier_invalidate_range_end(range);
4918 	}
4919 
4920 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4921 		goto out;
4922 
4923 	if (range) {
4924 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4925 					address & PAGE_MASK,
4926 					(address & PAGE_MASK) + PAGE_SIZE);
4927 		mmu_notifier_invalidate_range_start(range);
4928 	}
4929 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4930 	if (!pte_present(*ptep))
4931 		goto unlock;
4932 	*ptepp = ptep;
4933 	return 0;
4934 unlock:
4935 	pte_unmap_unlock(ptep, *ptlp);
4936 	if (range)
4937 		mmu_notifier_invalidate_range_end(range);
4938 out:
4939 	return -EINVAL;
4940 }
4941 
4942 /**
4943  * follow_pte - look up PTE at a user virtual address
4944  * @mm: the mm_struct of the target address space
4945  * @address: user virtual address
4946  * @ptepp: location to store found PTE
4947  * @ptlp: location to store the lock for the PTE
4948  *
4949  * On a successful return, the pointer to the PTE is stored in @ptepp;
4950  * the corresponding lock is taken and its location is stored in @ptlp.
4951  * The contents of the PTE are only stable until @ptlp is released;
4952  * any further use, if any, must be protected against invalidation
4953  * with MMU notifiers.
4954  *
4955  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4956  * should be taken for read.
4957  *
4958  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4959  * it is not a good general-purpose API.
4960  *
4961  * Return: zero on success, -ve otherwise.
4962  */
4963 int follow_pte(struct mm_struct *mm, unsigned long address,
4964 	       pte_t **ptepp, spinlock_t **ptlp)
4965 {
4966 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4967 }
4968 EXPORT_SYMBOL_GPL(follow_pte);
4969 
4970 /**
4971  * follow_pfn - look up PFN at a user virtual address
4972  * @vma: memory mapping
4973  * @address: user virtual address
4974  * @pfn: location to store found PFN
4975  *
4976  * Only IO mappings and raw PFN mappings are allowed.
4977  *
4978  * This function does not allow the caller to read the permissions
4979  * of the PTE.  Do not use it.
4980  *
4981  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4982  */
4983 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4984 	unsigned long *pfn)
4985 {
4986 	int ret = -EINVAL;
4987 	spinlock_t *ptl;
4988 	pte_t *ptep;
4989 
4990 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4991 		return ret;
4992 
4993 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4994 	if (ret)
4995 		return ret;
4996 	*pfn = pte_pfn(*ptep);
4997 	pte_unmap_unlock(ptep, ptl);
4998 	return 0;
4999 }
5000 EXPORT_SYMBOL(follow_pfn);
5001 
5002 #ifdef CONFIG_HAVE_IOREMAP_PROT
5003 int follow_phys(struct vm_area_struct *vma,
5004 		unsigned long address, unsigned int flags,
5005 		unsigned long *prot, resource_size_t *phys)
5006 {
5007 	int ret = -EINVAL;
5008 	pte_t *ptep, pte;
5009 	spinlock_t *ptl;
5010 
5011 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5012 		goto out;
5013 
5014 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5015 		goto out;
5016 	pte = *ptep;
5017 
5018 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5019 		goto unlock;
5020 
5021 	*prot = pgprot_val(pte_pgprot(pte));
5022 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5023 
5024 	ret = 0;
5025 unlock:
5026 	pte_unmap_unlock(ptep, ptl);
5027 out:
5028 	return ret;
5029 }
5030 
5031 /**
5032  * generic_access_phys - generic implementation for iomem mmap access
5033  * @vma: the vma to access
5034  * @addr: userspace address, not relative offset within @vma
5035  * @buf: buffer to read/write
5036  * @len: length of transfer
5037  * @write: set to FOLL_WRITE when writing, otherwise reading
5038  *
5039  * This is a generic implementation for &vm_operations_struct.access for an
5040  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5041  * not page based.
5042  */
5043 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5044 			void *buf, int len, int write)
5045 {
5046 	resource_size_t phys_addr;
5047 	unsigned long prot = 0;
5048 	void __iomem *maddr;
5049 	pte_t *ptep, pte;
5050 	spinlock_t *ptl;
5051 	int offset = offset_in_page(addr);
5052 	int ret = -EINVAL;
5053 
5054 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5055 		return -EINVAL;
5056 
5057 retry:
5058 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5059 		return -EINVAL;
5060 	pte = *ptep;
5061 	pte_unmap_unlock(ptep, ptl);
5062 
5063 	prot = pgprot_val(pte_pgprot(pte));
5064 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5065 
5066 	if ((write & FOLL_WRITE) && !pte_write(pte))
5067 		return -EINVAL;
5068 
5069 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5070 	if (!maddr)
5071 		return -ENOMEM;
5072 
5073 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5074 		goto out_unmap;
5075 
5076 	if (!pte_same(pte, *ptep)) {
5077 		pte_unmap_unlock(ptep, ptl);
5078 		iounmap(maddr);
5079 
5080 		goto retry;
5081 	}
5082 
5083 	if (write)
5084 		memcpy_toio(maddr + offset, buf, len);
5085 	else
5086 		memcpy_fromio(buf, maddr + offset, len);
5087 	ret = len;
5088 	pte_unmap_unlock(ptep, ptl);
5089 out_unmap:
5090 	iounmap(maddr);
5091 
5092 	return ret;
5093 }
5094 EXPORT_SYMBOL_GPL(generic_access_phys);
5095 #endif
5096 
5097 /*
5098  * Access another process' address space as given in mm.
5099  */
5100 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5101 		       int len, unsigned int gup_flags)
5102 {
5103 	struct vm_area_struct *vma;
5104 	void *old_buf = buf;
5105 	int write = gup_flags & FOLL_WRITE;
5106 
5107 	if (mmap_read_lock_killable(mm))
5108 		return 0;
5109 
5110 	/* ignore errors, just check how much was successfully transferred */
5111 	while (len) {
5112 		int bytes, ret, offset;
5113 		void *maddr;
5114 		struct page *page = NULL;
5115 
5116 		ret = get_user_pages_remote(mm, addr, 1,
5117 				gup_flags, &page, &vma, NULL);
5118 		if (ret <= 0) {
5119 #ifndef CONFIG_HAVE_IOREMAP_PROT
5120 			break;
5121 #else
5122 			/*
5123 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5124 			 * we can access using slightly different code.
5125 			 */
5126 			vma = vma_lookup(mm, addr);
5127 			if (!vma)
5128 				break;
5129 			if (vma->vm_ops && vma->vm_ops->access)
5130 				ret = vma->vm_ops->access(vma, addr, buf,
5131 							  len, write);
5132 			if (ret <= 0)
5133 				break;
5134 			bytes = ret;
5135 #endif
5136 		} else {
5137 			bytes = len;
5138 			offset = addr & (PAGE_SIZE-1);
5139 			if (bytes > PAGE_SIZE-offset)
5140 				bytes = PAGE_SIZE-offset;
5141 
5142 			maddr = kmap(page);
5143 			if (write) {
5144 				copy_to_user_page(vma, page, addr,
5145 						  maddr + offset, buf, bytes);
5146 				set_page_dirty_lock(page);
5147 			} else {
5148 				copy_from_user_page(vma, page, addr,
5149 						    buf, maddr + offset, bytes);
5150 			}
5151 			kunmap(page);
5152 			put_page(page);
5153 		}
5154 		len -= bytes;
5155 		buf += bytes;
5156 		addr += bytes;
5157 	}
5158 	mmap_read_unlock(mm);
5159 
5160 	return buf - old_buf;
5161 }
5162 
5163 /**
5164  * access_remote_vm - access another process' address space
5165  * @mm:		the mm_struct of the target address space
5166  * @addr:	start address to access
5167  * @buf:	source or destination buffer
5168  * @len:	number of bytes to transfer
5169  * @gup_flags:	flags modifying lookup behaviour
5170  *
5171  * The caller must hold a reference on @mm.
5172  *
5173  * Return: number of bytes copied from source to destination.
5174  */
5175 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5176 		void *buf, int len, unsigned int gup_flags)
5177 {
5178 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5179 }
5180 
5181 /*
5182  * Access another process' address space.
5183  * Source/target buffer must be kernel space,
5184  * Do not walk the page table directly, use get_user_pages
5185  */
5186 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5187 		void *buf, int len, unsigned int gup_flags)
5188 {
5189 	struct mm_struct *mm;
5190 	int ret;
5191 
5192 	mm = get_task_mm(tsk);
5193 	if (!mm)
5194 		return 0;
5195 
5196 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5197 
5198 	mmput(mm);
5199 
5200 	return ret;
5201 }
5202 EXPORT_SYMBOL_GPL(access_process_vm);
5203 
5204 /*
5205  * Print the name of a VMA.
5206  */
5207 void print_vma_addr(char *prefix, unsigned long ip)
5208 {
5209 	struct mm_struct *mm = current->mm;
5210 	struct vm_area_struct *vma;
5211 
5212 	/*
5213 	 * we might be running from an atomic context so we cannot sleep
5214 	 */
5215 	if (!mmap_read_trylock(mm))
5216 		return;
5217 
5218 	vma = find_vma(mm, ip);
5219 	if (vma && vma->vm_file) {
5220 		struct file *f = vma->vm_file;
5221 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5222 		if (buf) {
5223 			char *p;
5224 
5225 			p = file_path(f, buf, PAGE_SIZE);
5226 			if (IS_ERR(p))
5227 				p = "?";
5228 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5229 					vma->vm_start,
5230 					vma->vm_end - vma->vm_start);
5231 			free_page((unsigned long)buf);
5232 		}
5233 	}
5234 	mmap_read_unlock(mm);
5235 }
5236 
5237 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5238 void __might_fault(const char *file, int line)
5239 {
5240 	/*
5241 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5242 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5243 	 * get paged out, therefore we'll never actually fault, and the
5244 	 * below annotations will generate false positives.
5245 	 */
5246 	if (uaccess_kernel())
5247 		return;
5248 	if (pagefault_disabled())
5249 		return;
5250 	__might_sleep(file, line);
5251 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5252 	if (current->mm)
5253 		might_lock_read(&current->mm->mmap_lock);
5254 #endif
5255 }
5256 EXPORT_SYMBOL(__might_fault);
5257 #endif
5258 
5259 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5260 /*
5261  * Process all subpages of the specified huge page with the specified
5262  * operation.  The target subpage will be processed last to keep its
5263  * cache lines hot.
5264  */
5265 static inline void process_huge_page(
5266 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5267 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5268 	void *arg)
5269 {
5270 	int i, n, base, l;
5271 	unsigned long addr = addr_hint &
5272 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5273 
5274 	/* Process target subpage last to keep its cache lines hot */
5275 	might_sleep();
5276 	n = (addr_hint - addr) / PAGE_SIZE;
5277 	if (2 * n <= pages_per_huge_page) {
5278 		/* If target subpage in first half of huge page */
5279 		base = 0;
5280 		l = n;
5281 		/* Process subpages at the end of huge page */
5282 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5283 			cond_resched();
5284 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5285 		}
5286 	} else {
5287 		/* If target subpage in second half of huge page */
5288 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5289 		l = pages_per_huge_page - n;
5290 		/* Process subpages at the begin of huge page */
5291 		for (i = 0; i < base; i++) {
5292 			cond_resched();
5293 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5294 		}
5295 	}
5296 	/*
5297 	 * Process remaining subpages in left-right-left-right pattern
5298 	 * towards the target subpage
5299 	 */
5300 	for (i = 0; i < l; i++) {
5301 		int left_idx = base + i;
5302 		int right_idx = base + 2 * l - 1 - i;
5303 
5304 		cond_resched();
5305 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5306 		cond_resched();
5307 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5308 	}
5309 }
5310 
5311 static void clear_gigantic_page(struct page *page,
5312 				unsigned long addr,
5313 				unsigned int pages_per_huge_page)
5314 {
5315 	int i;
5316 	struct page *p = page;
5317 
5318 	might_sleep();
5319 	for (i = 0; i < pages_per_huge_page;
5320 	     i++, p = mem_map_next(p, page, i)) {
5321 		cond_resched();
5322 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5323 	}
5324 }
5325 
5326 static void clear_subpage(unsigned long addr, int idx, void *arg)
5327 {
5328 	struct page *page = arg;
5329 
5330 	clear_user_highpage(page + idx, addr);
5331 }
5332 
5333 void clear_huge_page(struct page *page,
5334 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5335 {
5336 	unsigned long addr = addr_hint &
5337 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5338 
5339 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5340 		clear_gigantic_page(page, addr, pages_per_huge_page);
5341 		return;
5342 	}
5343 
5344 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5345 }
5346 
5347 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5348 				    unsigned long addr,
5349 				    struct vm_area_struct *vma,
5350 				    unsigned int pages_per_huge_page)
5351 {
5352 	int i;
5353 	struct page *dst_base = dst;
5354 	struct page *src_base = src;
5355 
5356 	for (i = 0; i < pages_per_huge_page; ) {
5357 		cond_resched();
5358 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5359 
5360 		i++;
5361 		dst = mem_map_next(dst, dst_base, i);
5362 		src = mem_map_next(src, src_base, i);
5363 	}
5364 }
5365 
5366 struct copy_subpage_arg {
5367 	struct page *dst;
5368 	struct page *src;
5369 	struct vm_area_struct *vma;
5370 };
5371 
5372 static void copy_subpage(unsigned long addr, int idx, void *arg)
5373 {
5374 	struct copy_subpage_arg *copy_arg = arg;
5375 
5376 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5377 			   addr, copy_arg->vma);
5378 }
5379 
5380 void copy_user_huge_page(struct page *dst, struct page *src,
5381 			 unsigned long addr_hint, struct vm_area_struct *vma,
5382 			 unsigned int pages_per_huge_page)
5383 {
5384 	unsigned long addr = addr_hint &
5385 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5386 	struct copy_subpage_arg arg = {
5387 		.dst = dst,
5388 		.src = src,
5389 		.vma = vma,
5390 	};
5391 
5392 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5393 		copy_user_gigantic_page(dst, src, addr, vma,
5394 					pages_per_huge_page);
5395 		return;
5396 	}
5397 
5398 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5399 }
5400 
5401 long copy_huge_page_from_user(struct page *dst_page,
5402 				const void __user *usr_src,
5403 				unsigned int pages_per_huge_page,
5404 				bool allow_pagefault)
5405 {
5406 	void *page_kaddr;
5407 	unsigned long i, rc = 0;
5408 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5409 	struct page *subpage = dst_page;
5410 
5411 	for (i = 0; i < pages_per_huge_page;
5412 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5413 		if (allow_pagefault)
5414 			page_kaddr = kmap(subpage);
5415 		else
5416 			page_kaddr = kmap_atomic(subpage);
5417 		rc = copy_from_user(page_kaddr,
5418 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5419 		if (allow_pagefault)
5420 			kunmap(subpage);
5421 		else
5422 			kunmap_atomic(page_kaddr);
5423 
5424 		ret_val -= (PAGE_SIZE - rc);
5425 		if (rc)
5426 			break;
5427 
5428 		cond_resched();
5429 	}
5430 	return ret_val;
5431 }
5432 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5433 
5434 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5435 
5436 static struct kmem_cache *page_ptl_cachep;
5437 
5438 void __init ptlock_cache_init(void)
5439 {
5440 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5441 			SLAB_PANIC, NULL);
5442 }
5443 
5444 bool ptlock_alloc(struct page *page)
5445 {
5446 	spinlock_t *ptl;
5447 
5448 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5449 	if (!ptl)
5450 		return false;
5451 	page->ptl = ptl;
5452 	return true;
5453 }
5454 
5455 void ptlock_free(struct page *page)
5456 {
5457 	kmem_cache_free(page_ptl_cachep, page->ptl);
5458 }
5459 #endif
5460