1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/export.h> 55 #include <linux/delayacct.h> 56 #include <linux/init.h> 57 #include <linux/pfn_t.h> 58 #include <linux/writeback.h> 59 #include <linux/memcontrol.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/kallsyms.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 72 #include <asm/io.h> 73 #include <asm/mmu_context.h> 74 #include <asm/pgalloc.h> 75 #include <linux/uaccess.h> 76 #include <asm/tlb.h> 77 #include <asm/tlbflush.h> 78 #include <asm/pgtable.h> 79 80 #include "internal.h" 81 82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 84 #endif 85 86 #ifndef CONFIG_NEED_MULTIPLE_NODES 87 /* use the per-pgdat data instead for discontigmem - mbligh */ 88 unsigned long max_mapnr; 89 EXPORT_SYMBOL(max_mapnr); 90 91 struct page *mem_map; 92 EXPORT_SYMBOL(mem_map); 93 #endif 94 95 /* 96 * A number of key systems in x86 including ioremap() rely on the assumption 97 * that high_memory defines the upper bound on direct map memory, then end 98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 100 * and ZONE_HIGHMEM. 101 */ 102 void *high_memory; 103 EXPORT_SYMBOL(high_memory); 104 105 /* 106 * Randomize the address space (stacks, mmaps, brk, etc.). 107 * 108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 109 * as ancient (libc5 based) binaries can segfault. ) 110 */ 111 int randomize_va_space __read_mostly = 112 #ifdef CONFIG_COMPAT_BRK 113 1; 114 #else 115 2; 116 #endif 117 118 static int __init disable_randmaps(char *s) 119 { 120 randomize_va_space = 0; 121 return 1; 122 } 123 __setup("norandmaps", disable_randmaps); 124 125 unsigned long zero_pfn __read_mostly; 126 EXPORT_SYMBOL(zero_pfn); 127 128 unsigned long highest_memmap_pfn __read_mostly; 129 130 /* 131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 132 */ 133 static int __init init_zero_pfn(void) 134 { 135 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 136 return 0; 137 } 138 core_initcall(init_zero_pfn); 139 140 141 #if defined(SPLIT_RSS_COUNTING) 142 143 void sync_mm_rss(struct mm_struct *mm) 144 { 145 int i; 146 147 for (i = 0; i < NR_MM_COUNTERS; i++) { 148 if (current->rss_stat.count[i]) { 149 add_mm_counter(mm, i, current->rss_stat.count[i]); 150 current->rss_stat.count[i] = 0; 151 } 152 } 153 current->rss_stat.events = 0; 154 } 155 156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 157 { 158 struct task_struct *task = current; 159 160 if (likely(task->mm == mm)) 161 task->rss_stat.count[member] += val; 162 else 163 add_mm_counter(mm, member, val); 164 } 165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 167 168 /* sync counter once per 64 page faults */ 169 #define TASK_RSS_EVENTS_THRESH (64) 170 static void check_sync_rss_stat(struct task_struct *task) 171 { 172 if (unlikely(task != current)) 173 return; 174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 175 sync_mm_rss(task->mm); 176 } 177 #else /* SPLIT_RSS_COUNTING */ 178 179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 181 182 static void check_sync_rss_stat(struct task_struct *task) 183 { 184 } 185 186 #endif /* SPLIT_RSS_COUNTING */ 187 188 #ifdef HAVE_GENERIC_MMU_GATHER 189 190 static bool tlb_next_batch(struct mmu_gather *tlb) 191 { 192 struct mmu_gather_batch *batch; 193 194 batch = tlb->active; 195 if (batch->next) { 196 tlb->active = batch->next; 197 return true; 198 } 199 200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 201 return false; 202 203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 204 if (!batch) 205 return false; 206 207 tlb->batch_count++; 208 batch->next = NULL; 209 batch->nr = 0; 210 batch->max = MAX_GATHER_BATCH; 211 212 tlb->active->next = batch; 213 tlb->active = batch; 214 215 return true; 216 } 217 218 /* tlb_gather_mmu 219 * Called to initialize an (on-stack) mmu_gather structure for page-table 220 * tear-down from @mm. The @fullmm argument is used when @mm is without 221 * users and we're going to destroy the full address space (exit/execve). 222 */ 223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 224 { 225 tlb->mm = mm; 226 227 /* Is it from 0 to ~0? */ 228 tlb->fullmm = !(start | (end+1)); 229 tlb->need_flush_all = 0; 230 tlb->local.next = NULL; 231 tlb->local.nr = 0; 232 tlb->local.max = ARRAY_SIZE(tlb->__pages); 233 tlb->active = &tlb->local; 234 tlb->batch_count = 0; 235 236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 237 tlb->batch = NULL; 238 #endif 239 tlb->page_size = 0; 240 241 __tlb_reset_range(tlb); 242 } 243 244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 245 { 246 if (!tlb->end) 247 return; 248 249 tlb_flush(tlb); 250 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 252 tlb_table_flush(tlb); 253 #endif 254 __tlb_reset_range(tlb); 255 } 256 257 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 258 { 259 struct mmu_gather_batch *batch; 260 261 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 262 free_pages_and_swap_cache(batch->pages, batch->nr); 263 batch->nr = 0; 264 } 265 tlb->active = &tlb->local; 266 } 267 268 void tlb_flush_mmu(struct mmu_gather *tlb) 269 { 270 tlb_flush_mmu_tlbonly(tlb); 271 tlb_flush_mmu_free(tlb); 272 } 273 274 /* tlb_finish_mmu 275 * Called at the end of the shootdown operation to free up any resources 276 * that were required. 277 */ 278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 279 { 280 struct mmu_gather_batch *batch, *next; 281 282 tlb_flush_mmu(tlb); 283 284 /* keep the page table cache within bounds */ 285 check_pgt_cache(); 286 287 for (batch = tlb->local.next; batch; batch = next) { 288 next = batch->next; 289 free_pages((unsigned long)batch, 0); 290 } 291 tlb->local.next = NULL; 292 } 293 294 /* __tlb_remove_page 295 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 296 * handling the additional races in SMP caused by other CPUs caching valid 297 * mappings in their TLBs. Returns the number of free page slots left. 298 * When out of page slots we must call tlb_flush_mmu(). 299 *returns true if the caller should flush. 300 */ 301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 302 { 303 struct mmu_gather_batch *batch; 304 305 VM_BUG_ON(!tlb->end); 306 VM_WARN_ON(tlb->page_size != page_size); 307 308 batch = tlb->active; 309 /* 310 * Add the page and check if we are full. If so 311 * force a flush. 312 */ 313 batch->pages[batch->nr++] = page; 314 if (batch->nr == batch->max) { 315 if (!tlb_next_batch(tlb)) 316 return true; 317 batch = tlb->active; 318 } 319 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 320 321 return false; 322 } 323 324 #endif /* HAVE_GENERIC_MMU_GATHER */ 325 326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 327 328 /* 329 * See the comment near struct mmu_table_batch. 330 */ 331 332 static void tlb_remove_table_smp_sync(void *arg) 333 { 334 /* Simply deliver the interrupt */ 335 } 336 337 static void tlb_remove_table_one(void *table) 338 { 339 /* 340 * This isn't an RCU grace period and hence the page-tables cannot be 341 * assumed to be actually RCU-freed. 342 * 343 * It is however sufficient for software page-table walkers that rely on 344 * IRQ disabling. See the comment near struct mmu_table_batch. 345 */ 346 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 347 __tlb_remove_table(table); 348 } 349 350 static void tlb_remove_table_rcu(struct rcu_head *head) 351 { 352 struct mmu_table_batch *batch; 353 int i; 354 355 batch = container_of(head, struct mmu_table_batch, rcu); 356 357 for (i = 0; i < batch->nr; i++) 358 __tlb_remove_table(batch->tables[i]); 359 360 free_page((unsigned long)batch); 361 } 362 363 void tlb_table_flush(struct mmu_gather *tlb) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 if (*batch) { 368 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 369 *batch = NULL; 370 } 371 } 372 373 void tlb_remove_table(struct mmu_gather *tlb, void *table) 374 { 375 struct mmu_table_batch **batch = &tlb->batch; 376 377 /* 378 * When there's less then two users of this mm there cannot be a 379 * concurrent page-table walk. 380 */ 381 if (atomic_read(&tlb->mm->mm_users) < 2) { 382 __tlb_remove_table(table); 383 return; 384 } 385 386 if (*batch == NULL) { 387 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 388 if (*batch == NULL) { 389 tlb_remove_table_one(table); 390 return; 391 } 392 (*batch)->nr = 0; 393 } 394 (*batch)->tables[(*batch)->nr++] = table; 395 if ((*batch)->nr == MAX_TABLE_BATCH) 396 tlb_table_flush(tlb); 397 } 398 399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 400 401 /* 402 * Note: this doesn't free the actual pages themselves. That 403 * has been handled earlier when unmapping all the memory regions. 404 */ 405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 406 unsigned long addr) 407 { 408 pgtable_t token = pmd_pgtable(*pmd); 409 pmd_clear(pmd); 410 pte_free_tlb(tlb, token, addr); 411 atomic_long_dec(&tlb->mm->nr_ptes); 412 } 413 414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 415 unsigned long addr, unsigned long end, 416 unsigned long floor, unsigned long ceiling) 417 { 418 pmd_t *pmd; 419 unsigned long next; 420 unsigned long start; 421 422 start = addr; 423 pmd = pmd_offset(pud, addr); 424 do { 425 next = pmd_addr_end(addr, end); 426 if (pmd_none_or_clear_bad(pmd)) 427 continue; 428 free_pte_range(tlb, pmd, addr); 429 } while (pmd++, addr = next, addr != end); 430 431 start &= PUD_MASK; 432 if (start < floor) 433 return; 434 if (ceiling) { 435 ceiling &= PUD_MASK; 436 if (!ceiling) 437 return; 438 } 439 if (end - 1 > ceiling - 1) 440 return; 441 442 pmd = pmd_offset(pud, start); 443 pud_clear(pud); 444 pmd_free_tlb(tlb, pmd, start); 445 mm_dec_nr_pmds(tlb->mm); 446 } 447 448 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 449 unsigned long addr, unsigned long end, 450 unsigned long floor, unsigned long ceiling) 451 { 452 pud_t *pud; 453 unsigned long next; 454 unsigned long start; 455 456 start = addr; 457 pud = pud_offset(p4d, addr); 458 do { 459 next = pud_addr_end(addr, end); 460 if (pud_none_or_clear_bad(pud)) 461 continue; 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 463 } while (pud++, addr = next, addr != end); 464 465 start &= P4D_MASK; 466 if (start < floor) 467 return; 468 if (ceiling) { 469 ceiling &= P4D_MASK; 470 if (!ceiling) 471 return; 472 } 473 if (end - 1 > ceiling - 1) 474 return; 475 476 pud = pud_offset(p4d, start); 477 p4d_clear(p4d); 478 pud_free_tlb(tlb, pud, start); 479 } 480 481 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 482 unsigned long addr, unsigned long end, 483 unsigned long floor, unsigned long ceiling) 484 { 485 p4d_t *p4d; 486 unsigned long next; 487 unsigned long start; 488 489 start = addr; 490 p4d = p4d_offset(pgd, addr); 491 do { 492 next = p4d_addr_end(addr, end); 493 if (p4d_none_or_clear_bad(p4d)) 494 continue; 495 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 496 } while (p4d++, addr = next, addr != end); 497 498 start &= PGDIR_MASK; 499 if (start < floor) 500 return; 501 if (ceiling) { 502 ceiling &= PGDIR_MASK; 503 if (!ceiling) 504 return; 505 } 506 if (end - 1 > ceiling - 1) 507 return; 508 509 p4d = p4d_offset(pgd, start); 510 pgd_clear(pgd); 511 p4d_free_tlb(tlb, p4d, start); 512 } 513 514 /* 515 * This function frees user-level page tables of a process. 516 */ 517 void free_pgd_range(struct mmu_gather *tlb, 518 unsigned long addr, unsigned long end, 519 unsigned long floor, unsigned long ceiling) 520 { 521 pgd_t *pgd; 522 unsigned long next; 523 524 /* 525 * The next few lines have given us lots of grief... 526 * 527 * Why are we testing PMD* at this top level? Because often 528 * there will be no work to do at all, and we'd prefer not to 529 * go all the way down to the bottom just to discover that. 530 * 531 * Why all these "- 1"s? Because 0 represents both the bottom 532 * of the address space and the top of it (using -1 for the 533 * top wouldn't help much: the masks would do the wrong thing). 534 * The rule is that addr 0 and floor 0 refer to the bottom of 535 * the address space, but end 0 and ceiling 0 refer to the top 536 * Comparisons need to use "end - 1" and "ceiling - 1" (though 537 * that end 0 case should be mythical). 538 * 539 * Wherever addr is brought up or ceiling brought down, we must 540 * be careful to reject "the opposite 0" before it confuses the 541 * subsequent tests. But what about where end is brought down 542 * by PMD_SIZE below? no, end can't go down to 0 there. 543 * 544 * Whereas we round start (addr) and ceiling down, by different 545 * masks at different levels, in order to test whether a table 546 * now has no other vmas using it, so can be freed, we don't 547 * bother to round floor or end up - the tests don't need that. 548 */ 549 550 addr &= PMD_MASK; 551 if (addr < floor) { 552 addr += PMD_SIZE; 553 if (!addr) 554 return; 555 } 556 if (ceiling) { 557 ceiling &= PMD_MASK; 558 if (!ceiling) 559 return; 560 } 561 if (end - 1 > ceiling - 1) 562 end -= PMD_SIZE; 563 if (addr > end - 1) 564 return; 565 /* 566 * We add page table cache pages with PAGE_SIZE, 567 * (see pte_free_tlb()), flush the tlb if we need 568 */ 569 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 570 pgd = pgd_offset(tlb->mm, addr); 571 do { 572 next = pgd_addr_end(addr, end); 573 if (pgd_none_or_clear_bad(pgd)) 574 continue; 575 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 576 } while (pgd++, addr = next, addr != end); 577 } 578 579 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 580 unsigned long floor, unsigned long ceiling) 581 { 582 while (vma) { 583 struct vm_area_struct *next = vma->vm_next; 584 unsigned long addr = vma->vm_start; 585 586 /* 587 * Hide vma from rmap and truncate_pagecache before freeing 588 * pgtables 589 */ 590 unlink_anon_vmas(vma); 591 unlink_file_vma(vma); 592 593 if (is_vm_hugetlb_page(vma)) { 594 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 595 floor, next ? next->vm_start : ceiling); 596 } else { 597 /* 598 * Optimization: gather nearby vmas into one call down 599 */ 600 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 601 && !is_vm_hugetlb_page(next)) { 602 vma = next; 603 next = vma->vm_next; 604 unlink_anon_vmas(vma); 605 unlink_file_vma(vma); 606 } 607 free_pgd_range(tlb, addr, vma->vm_end, 608 floor, next ? next->vm_start : ceiling); 609 } 610 vma = next; 611 } 612 } 613 614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 615 { 616 spinlock_t *ptl; 617 pgtable_t new = pte_alloc_one(mm, address); 618 if (!new) 619 return -ENOMEM; 620 621 /* 622 * Ensure all pte setup (eg. pte page lock and page clearing) are 623 * visible before the pte is made visible to other CPUs by being 624 * put into page tables. 625 * 626 * The other side of the story is the pointer chasing in the page 627 * table walking code (when walking the page table without locking; 628 * ie. most of the time). Fortunately, these data accesses consist 629 * of a chain of data-dependent loads, meaning most CPUs (alpha 630 * being the notable exception) will already guarantee loads are 631 * seen in-order. See the alpha page table accessors for the 632 * smp_read_barrier_depends() barriers in page table walking code. 633 */ 634 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 635 636 ptl = pmd_lock(mm, pmd); 637 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 638 atomic_long_inc(&mm->nr_ptes); 639 pmd_populate(mm, pmd, new); 640 new = NULL; 641 } 642 spin_unlock(ptl); 643 if (new) 644 pte_free(mm, new); 645 return 0; 646 } 647 648 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 649 { 650 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 651 if (!new) 652 return -ENOMEM; 653 654 smp_wmb(); /* See comment in __pte_alloc */ 655 656 spin_lock(&init_mm.page_table_lock); 657 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 658 pmd_populate_kernel(&init_mm, pmd, new); 659 new = NULL; 660 } 661 spin_unlock(&init_mm.page_table_lock); 662 if (new) 663 pte_free_kernel(&init_mm, new); 664 return 0; 665 } 666 667 static inline void init_rss_vec(int *rss) 668 { 669 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 670 } 671 672 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 673 { 674 int i; 675 676 if (current->mm == mm) 677 sync_mm_rss(mm); 678 for (i = 0; i < NR_MM_COUNTERS; i++) 679 if (rss[i]) 680 add_mm_counter(mm, i, rss[i]); 681 } 682 683 /* 684 * This function is called to print an error when a bad pte 685 * is found. For example, we might have a PFN-mapped pte in 686 * a region that doesn't allow it. 687 * 688 * The calling function must still handle the error. 689 */ 690 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 691 pte_t pte, struct page *page) 692 { 693 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 694 p4d_t *p4d = p4d_offset(pgd, addr); 695 pud_t *pud = pud_offset(p4d, addr); 696 pmd_t *pmd = pmd_offset(pud, addr); 697 struct address_space *mapping; 698 pgoff_t index; 699 static unsigned long resume; 700 static unsigned long nr_shown; 701 static unsigned long nr_unshown; 702 703 /* 704 * Allow a burst of 60 reports, then keep quiet for that minute; 705 * or allow a steady drip of one report per second. 706 */ 707 if (nr_shown == 60) { 708 if (time_before(jiffies, resume)) { 709 nr_unshown++; 710 return; 711 } 712 if (nr_unshown) { 713 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 714 nr_unshown); 715 nr_unshown = 0; 716 } 717 nr_shown = 0; 718 } 719 if (nr_shown++ == 0) 720 resume = jiffies + 60 * HZ; 721 722 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 723 index = linear_page_index(vma, addr); 724 725 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 726 current->comm, 727 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 728 if (page) 729 dump_page(page, "bad pte"); 730 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 731 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 732 /* 733 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 734 */ 735 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 736 vma->vm_file, 737 vma->vm_ops ? vma->vm_ops->fault : NULL, 738 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 739 mapping ? mapping->a_ops->readpage : NULL); 740 dump_stack(); 741 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 742 } 743 744 /* 745 * vm_normal_page -- This function gets the "struct page" associated with a pte. 746 * 747 * "Special" mappings do not wish to be associated with a "struct page" (either 748 * it doesn't exist, or it exists but they don't want to touch it). In this 749 * case, NULL is returned here. "Normal" mappings do have a struct page. 750 * 751 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 752 * pte bit, in which case this function is trivial. Secondly, an architecture 753 * may not have a spare pte bit, which requires a more complicated scheme, 754 * described below. 755 * 756 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 757 * special mapping (even if there are underlying and valid "struct pages"). 758 * COWed pages of a VM_PFNMAP are always normal. 759 * 760 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 761 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 762 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 763 * mapping will always honor the rule 764 * 765 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 766 * 767 * And for normal mappings this is false. 768 * 769 * This restricts such mappings to be a linear translation from virtual address 770 * to pfn. To get around this restriction, we allow arbitrary mappings so long 771 * as the vma is not a COW mapping; in that case, we know that all ptes are 772 * special (because none can have been COWed). 773 * 774 * 775 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 776 * 777 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 778 * page" backing, however the difference is that _all_ pages with a struct 779 * page (that is, those where pfn_valid is true) are refcounted and considered 780 * normal pages by the VM. The disadvantage is that pages are refcounted 781 * (which can be slower and simply not an option for some PFNMAP users). The 782 * advantage is that we don't have to follow the strict linearity rule of 783 * PFNMAP mappings in order to support COWable mappings. 784 * 785 */ 786 #ifdef __HAVE_ARCH_PTE_SPECIAL 787 # define HAVE_PTE_SPECIAL 1 788 #else 789 # define HAVE_PTE_SPECIAL 0 790 #endif 791 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 792 pte_t pte) 793 { 794 unsigned long pfn = pte_pfn(pte); 795 796 if (HAVE_PTE_SPECIAL) { 797 if (likely(!pte_special(pte))) 798 goto check_pfn; 799 if (vma->vm_ops && vma->vm_ops->find_special_page) 800 return vma->vm_ops->find_special_page(vma, addr); 801 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 802 return NULL; 803 if (!is_zero_pfn(pfn)) 804 print_bad_pte(vma, addr, pte, NULL); 805 return NULL; 806 } 807 808 /* !HAVE_PTE_SPECIAL case follows: */ 809 810 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 811 if (vma->vm_flags & VM_MIXEDMAP) { 812 if (!pfn_valid(pfn)) 813 return NULL; 814 goto out; 815 } else { 816 unsigned long off; 817 off = (addr - vma->vm_start) >> PAGE_SHIFT; 818 if (pfn == vma->vm_pgoff + off) 819 return NULL; 820 if (!is_cow_mapping(vma->vm_flags)) 821 return NULL; 822 } 823 } 824 825 if (is_zero_pfn(pfn)) 826 return NULL; 827 check_pfn: 828 if (unlikely(pfn > highest_memmap_pfn)) { 829 print_bad_pte(vma, addr, pte, NULL); 830 return NULL; 831 } 832 833 /* 834 * NOTE! We still have PageReserved() pages in the page tables. 835 * eg. VDSO mappings can cause them to exist. 836 */ 837 out: 838 return pfn_to_page(pfn); 839 } 840 841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 843 pmd_t pmd) 844 { 845 unsigned long pfn = pmd_pfn(pmd); 846 847 /* 848 * There is no pmd_special() but there may be special pmds, e.g. 849 * in a direct-access (dax) mapping, so let's just replicate the 850 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 851 */ 852 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 853 if (vma->vm_flags & VM_MIXEDMAP) { 854 if (!pfn_valid(pfn)) 855 return NULL; 856 goto out; 857 } else { 858 unsigned long off; 859 off = (addr - vma->vm_start) >> PAGE_SHIFT; 860 if (pfn == vma->vm_pgoff + off) 861 return NULL; 862 if (!is_cow_mapping(vma->vm_flags)) 863 return NULL; 864 } 865 } 866 867 if (is_zero_pfn(pfn)) 868 return NULL; 869 if (unlikely(pfn > highest_memmap_pfn)) 870 return NULL; 871 872 /* 873 * NOTE! We still have PageReserved() pages in the page tables. 874 * eg. VDSO mappings can cause them to exist. 875 */ 876 out: 877 return pfn_to_page(pfn); 878 } 879 #endif 880 881 /* 882 * copy one vm_area from one task to the other. Assumes the page tables 883 * already present in the new task to be cleared in the whole range 884 * covered by this vma. 885 */ 886 887 static inline unsigned long 888 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 889 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 890 unsigned long addr, int *rss) 891 { 892 unsigned long vm_flags = vma->vm_flags; 893 pte_t pte = *src_pte; 894 struct page *page; 895 896 /* pte contains position in swap or file, so copy. */ 897 if (unlikely(!pte_present(pte))) { 898 swp_entry_t entry = pte_to_swp_entry(pte); 899 900 if (likely(!non_swap_entry(entry))) { 901 if (swap_duplicate(entry) < 0) 902 return entry.val; 903 904 /* make sure dst_mm is on swapoff's mmlist. */ 905 if (unlikely(list_empty(&dst_mm->mmlist))) { 906 spin_lock(&mmlist_lock); 907 if (list_empty(&dst_mm->mmlist)) 908 list_add(&dst_mm->mmlist, 909 &src_mm->mmlist); 910 spin_unlock(&mmlist_lock); 911 } 912 rss[MM_SWAPENTS]++; 913 } else if (is_migration_entry(entry)) { 914 page = migration_entry_to_page(entry); 915 916 rss[mm_counter(page)]++; 917 918 if (is_write_migration_entry(entry) && 919 is_cow_mapping(vm_flags)) { 920 /* 921 * COW mappings require pages in both 922 * parent and child to be set to read. 923 */ 924 make_migration_entry_read(&entry); 925 pte = swp_entry_to_pte(entry); 926 if (pte_swp_soft_dirty(*src_pte)) 927 pte = pte_swp_mksoft_dirty(pte); 928 set_pte_at(src_mm, addr, src_pte, pte); 929 } 930 } 931 goto out_set_pte; 932 } 933 934 /* 935 * If it's a COW mapping, write protect it both 936 * in the parent and the child 937 */ 938 if (is_cow_mapping(vm_flags)) { 939 ptep_set_wrprotect(src_mm, addr, src_pte); 940 pte = pte_wrprotect(pte); 941 } 942 943 /* 944 * If it's a shared mapping, mark it clean in 945 * the child 946 */ 947 if (vm_flags & VM_SHARED) 948 pte = pte_mkclean(pte); 949 pte = pte_mkold(pte); 950 951 page = vm_normal_page(vma, addr, pte); 952 if (page) { 953 get_page(page); 954 page_dup_rmap(page, false); 955 rss[mm_counter(page)]++; 956 } 957 958 out_set_pte: 959 set_pte_at(dst_mm, addr, dst_pte, pte); 960 return 0; 961 } 962 963 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 964 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 965 unsigned long addr, unsigned long end) 966 { 967 pte_t *orig_src_pte, *orig_dst_pte; 968 pte_t *src_pte, *dst_pte; 969 spinlock_t *src_ptl, *dst_ptl; 970 int progress = 0; 971 int rss[NR_MM_COUNTERS]; 972 swp_entry_t entry = (swp_entry_t){0}; 973 974 again: 975 init_rss_vec(rss); 976 977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 978 if (!dst_pte) 979 return -ENOMEM; 980 src_pte = pte_offset_map(src_pmd, addr); 981 src_ptl = pte_lockptr(src_mm, src_pmd); 982 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 983 orig_src_pte = src_pte; 984 orig_dst_pte = dst_pte; 985 arch_enter_lazy_mmu_mode(); 986 987 do { 988 /* 989 * We are holding two locks at this point - either of them 990 * could generate latencies in another task on another CPU. 991 */ 992 if (progress >= 32) { 993 progress = 0; 994 if (need_resched() || 995 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 996 break; 997 } 998 if (pte_none(*src_pte)) { 999 progress++; 1000 continue; 1001 } 1002 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1003 vma, addr, rss); 1004 if (entry.val) 1005 break; 1006 progress += 8; 1007 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1008 1009 arch_leave_lazy_mmu_mode(); 1010 spin_unlock(src_ptl); 1011 pte_unmap(orig_src_pte); 1012 add_mm_rss_vec(dst_mm, rss); 1013 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1014 cond_resched(); 1015 1016 if (entry.val) { 1017 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1018 return -ENOMEM; 1019 progress = 0; 1020 } 1021 if (addr != end) 1022 goto again; 1023 return 0; 1024 } 1025 1026 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1027 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1028 unsigned long addr, unsigned long end) 1029 { 1030 pmd_t *src_pmd, *dst_pmd; 1031 unsigned long next; 1032 1033 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1034 if (!dst_pmd) 1035 return -ENOMEM; 1036 src_pmd = pmd_offset(src_pud, addr); 1037 do { 1038 next = pmd_addr_end(addr, end); 1039 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1040 int err; 1041 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1042 err = copy_huge_pmd(dst_mm, src_mm, 1043 dst_pmd, src_pmd, addr, vma); 1044 if (err == -ENOMEM) 1045 return -ENOMEM; 1046 if (!err) 1047 continue; 1048 /* fall through */ 1049 } 1050 if (pmd_none_or_clear_bad(src_pmd)) 1051 continue; 1052 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1053 vma, addr, next)) 1054 return -ENOMEM; 1055 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1056 return 0; 1057 } 1058 1059 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1060 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1061 unsigned long addr, unsigned long end) 1062 { 1063 pud_t *src_pud, *dst_pud; 1064 unsigned long next; 1065 1066 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1067 if (!dst_pud) 1068 return -ENOMEM; 1069 src_pud = pud_offset(src_p4d, addr); 1070 do { 1071 next = pud_addr_end(addr, end); 1072 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1073 int err; 1074 1075 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1076 err = copy_huge_pud(dst_mm, src_mm, 1077 dst_pud, src_pud, addr, vma); 1078 if (err == -ENOMEM) 1079 return -ENOMEM; 1080 if (!err) 1081 continue; 1082 /* fall through */ 1083 } 1084 if (pud_none_or_clear_bad(src_pud)) 1085 continue; 1086 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1087 vma, addr, next)) 1088 return -ENOMEM; 1089 } while (dst_pud++, src_pud++, addr = next, addr != end); 1090 return 0; 1091 } 1092 1093 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1094 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1095 unsigned long addr, unsigned long end) 1096 { 1097 p4d_t *src_p4d, *dst_p4d; 1098 unsigned long next; 1099 1100 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1101 if (!dst_p4d) 1102 return -ENOMEM; 1103 src_p4d = p4d_offset(src_pgd, addr); 1104 do { 1105 next = p4d_addr_end(addr, end); 1106 if (p4d_none_or_clear_bad(src_p4d)) 1107 continue; 1108 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1109 vma, addr, next)) 1110 return -ENOMEM; 1111 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1112 return 0; 1113 } 1114 1115 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1116 struct vm_area_struct *vma) 1117 { 1118 pgd_t *src_pgd, *dst_pgd; 1119 unsigned long next; 1120 unsigned long addr = vma->vm_start; 1121 unsigned long end = vma->vm_end; 1122 unsigned long mmun_start; /* For mmu_notifiers */ 1123 unsigned long mmun_end; /* For mmu_notifiers */ 1124 bool is_cow; 1125 int ret; 1126 1127 /* 1128 * Don't copy ptes where a page fault will fill them correctly. 1129 * Fork becomes much lighter when there are big shared or private 1130 * readonly mappings. The tradeoff is that copy_page_range is more 1131 * efficient than faulting. 1132 */ 1133 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1134 !vma->anon_vma) 1135 return 0; 1136 1137 if (is_vm_hugetlb_page(vma)) 1138 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1139 1140 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1141 /* 1142 * We do not free on error cases below as remove_vma 1143 * gets called on error from higher level routine 1144 */ 1145 ret = track_pfn_copy(vma); 1146 if (ret) 1147 return ret; 1148 } 1149 1150 /* 1151 * We need to invalidate the secondary MMU mappings only when 1152 * there could be a permission downgrade on the ptes of the 1153 * parent mm. And a permission downgrade will only happen if 1154 * is_cow_mapping() returns true. 1155 */ 1156 is_cow = is_cow_mapping(vma->vm_flags); 1157 mmun_start = addr; 1158 mmun_end = end; 1159 if (is_cow) 1160 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1161 mmun_end); 1162 1163 ret = 0; 1164 dst_pgd = pgd_offset(dst_mm, addr); 1165 src_pgd = pgd_offset(src_mm, addr); 1166 do { 1167 next = pgd_addr_end(addr, end); 1168 if (pgd_none_or_clear_bad(src_pgd)) 1169 continue; 1170 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1171 vma, addr, next))) { 1172 ret = -ENOMEM; 1173 break; 1174 } 1175 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1176 1177 if (is_cow) 1178 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1179 return ret; 1180 } 1181 1182 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1183 struct vm_area_struct *vma, pmd_t *pmd, 1184 unsigned long addr, unsigned long end, 1185 struct zap_details *details) 1186 { 1187 struct mm_struct *mm = tlb->mm; 1188 int force_flush = 0; 1189 int rss[NR_MM_COUNTERS]; 1190 spinlock_t *ptl; 1191 pte_t *start_pte; 1192 pte_t *pte; 1193 swp_entry_t entry; 1194 1195 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1196 again: 1197 init_rss_vec(rss); 1198 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1199 pte = start_pte; 1200 arch_enter_lazy_mmu_mode(); 1201 do { 1202 pte_t ptent = *pte; 1203 if (pte_none(ptent)) 1204 continue; 1205 1206 if (pte_present(ptent)) { 1207 struct page *page; 1208 1209 page = vm_normal_page(vma, addr, ptent); 1210 if (unlikely(details) && page) { 1211 /* 1212 * unmap_shared_mapping_pages() wants to 1213 * invalidate cache without truncating: 1214 * unmap shared but keep private pages. 1215 */ 1216 if (details->check_mapping && 1217 details->check_mapping != page_rmapping(page)) 1218 continue; 1219 } 1220 ptent = ptep_get_and_clear_full(mm, addr, pte, 1221 tlb->fullmm); 1222 tlb_remove_tlb_entry(tlb, pte, addr); 1223 if (unlikely(!page)) 1224 continue; 1225 1226 if (!PageAnon(page)) { 1227 if (pte_dirty(ptent)) { 1228 force_flush = 1; 1229 set_page_dirty(page); 1230 } 1231 if (pte_young(ptent) && 1232 likely(!(vma->vm_flags & VM_SEQ_READ))) 1233 mark_page_accessed(page); 1234 } 1235 rss[mm_counter(page)]--; 1236 page_remove_rmap(page, false); 1237 if (unlikely(page_mapcount(page) < 0)) 1238 print_bad_pte(vma, addr, ptent, page); 1239 if (unlikely(__tlb_remove_page(tlb, page))) { 1240 force_flush = 1; 1241 addr += PAGE_SIZE; 1242 break; 1243 } 1244 continue; 1245 } 1246 /* If details->check_mapping, we leave swap entries. */ 1247 if (unlikely(details)) 1248 continue; 1249 1250 entry = pte_to_swp_entry(ptent); 1251 if (!non_swap_entry(entry)) 1252 rss[MM_SWAPENTS]--; 1253 else if (is_migration_entry(entry)) { 1254 struct page *page; 1255 1256 page = migration_entry_to_page(entry); 1257 rss[mm_counter(page)]--; 1258 } 1259 if (unlikely(!free_swap_and_cache(entry))) 1260 print_bad_pte(vma, addr, ptent, NULL); 1261 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1262 } while (pte++, addr += PAGE_SIZE, addr != end); 1263 1264 add_mm_rss_vec(mm, rss); 1265 arch_leave_lazy_mmu_mode(); 1266 1267 /* Do the actual TLB flush before dropping ptl */ 1268 if (force_flush) 1269 tlb_flush_mmu_tlbonly(tlb); 1270 pte_unmap_unlock(start_pte, ptl); 1271 1272 /* 1273 * If we forced a TLB flush (either due to running out of 1274 * batch buffers or because we needed to flush dirty TLB 1275 * entries before releasing the ptl), free the batched 1276 * memory too. Restart if we didn't do everything. 1277 */ 1278 if (force_flush) { 1279 force_flush = 0; 1280 tlb_flush_mmu_free(tlb); 1281 if (addr != end) 1282 goto again; 1283 } 1284 1285 return addr; 1286 } 1287 1288 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1289 struct vm_area_struct *vma, pud_t *pud, 1290 unsigned long addr, unsigned long end, 1291 struct zap_details *details) 1292 { 1293 pmd_t *pmd; 1294 unsigned long next; 1295 1296 pmd = pmd_offset(pud, addr); 1297 do { 1298 next = pmd_addr_end(addr, end); 1299 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1300 if (next - addr != HPAGE_PMD_SIZE) { 1301 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1302 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1303 __split_huge_pmd(vma, pmd, addr, false, NULL); 1304 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1305 goto next; 1306 /* fall through */ 1307 } 1308 /* 1309 * Here there can be other concurrent MADV_DONTNEED or 1310 * trans huge page faults running, and if the pmd is 1311 * none or trans huge it can change under us. This is 1312 * because MADV_DONTNEED holds the mmap_sem in read 1313 * mode. 1314 */ 1315 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1316 goto next; 1317 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1318 next: 1319 cond_resched(); 1320 } while (pmd++, addr = next, addr != end); 1321 1322 return addr; 1323 } 1324 1325 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1326 struct vm_area_struct *vma, p4d_t *p4d, 1327 unsigned long addr, unsigned long end, 1328 struct zap_details *details) 1329 { 1330 pud_t *pud; 1331 unsigned long next; 1332 1333 pud = pud_offset(p4d, addr); 1334 do { 1335 next = pud_addr_end(addr, end); 1336 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1337 if (next - addr != HPAGE_PUD_SIZE) { 1338 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1339 split_huge_pud(vma, pud, addr); 1340 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1341 goto next; 1342 /* fall through */ 1343 } 1344 if (pud_none_or_clear_bad(pud)) 1345 continue; 1346 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1347 next: 1348 cond_resched(); 1349 } while (pud++, addr = next, addr != end); 1350 1351 return addr; 1352 } 1353 1354 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1355 struct vm_area_struct *vma, pgd_t *pgd, 1356 unsigned long addr, unsigned long end, 1357 struct zap_details *details) 1358 { 1359 p4d_t *p4d; 1360 unsigned long next; 1361 1362 p4d = p4d_offset(pgd, addr); 1363 do { 1364 next = p4d_addr_end(addr, end); 1365 if (p4d_none_or_clear_bad(p4d)) 1366 continue; 1367 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1368 } while (p4d++, addr = next, addr != end); 1369 1370 return addr; 1371 } 1372 1373 void unmap_page_range(struct mmu_gather *tlb, 1374 struct vm_area_struct *vma, 1375 unsigned long addr, unsigned long end, 1376 struct zap_details *details) 1377 { 1378 pgd_t *pgd; 1379 unsigned long next; 1380 1381 BUG_ON(addr >= end); 1382 tlb_start_vma(tlb, vma); 1383 pgd = pgd_offset(vma->vm_mm, addr); 1384 do { 1385 next = pgd_addr_end(addr, end); 1386 if (pgd_none_or_clear_bad(pgd)) 1387 continue; 1388 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1389 } while (pgd++, addr = next, addr != end); 1390 tlb_end_vma(tlb, vma); 1391 } 1392 1393 1394 static void unmap_single_vma(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, unsigned long start_addr, 1396 unsigned long end_addr, 1397 struct zap_details *details) 1398 { 1399 unsigned long start = max(vma->vm_start, start_addr); 1400 unsigned long end; 1401 1402 if (start >= vma->vm_end) 1403 return; 1404 end = min(vma->vm_end, end_addr); 1405 if (end <= vma->vm_start) 1406 return; 1407 1408 if (vma->vm_file) 1409 uprobe_munmap(vma, start, end); 1410 1411 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1412 untrack_pfn(vma, 0, 0); 1413 1414 if (start != end) { 1415 if (unlikely(is_vm_hugetlb_page(vma))) { 1416 /* 1417 * It is undesirable to test vma->vm_file as it 1418 * should be non-null for valid hugetlb area. 1419 * However, vm_file will be NULL in the error 1420 * cleanup path of mmap_region. When 1421 * hugetlbfs ->mmap method fails, 1422 * mmap_region() nullifies vma->vm_file 1423 * before calling this function to clean up. 1424 * Since no pte has actually been setup, it is 1425 * safe to do nothing in this case. 1426 */ 1427 if (vma->vm_file) { 1428 i_mmap_lock_write(vma->vm_file->f_mapping); 1429 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1430 i_mmap_unlock_write(vma->vm_file->f_mapping); 1431 } 1432 } else 1433 unmap_page_range(tlb, vma, start, end, details); 1434 } 1435 } 1436 1437 /** 1438 * unmap_vmas - unmap a range of memory covered by a list of vma's 1439 * @tlb: address of the caller's struct mmu_gather 1440 * @vma: the starting vma 1441 * @start_addr: virtual address at which to start unmapping 1442 * @end_addr: virtual address at which to end unmapping 1443 * 1444 * Unmap all pages in the vma list. 1445 * 1446 * Only addresses between `start' and `end' will be unmapped. 1447 * 1448 * The VMA list must be sorted in ascending virtual address order. 1449 * 1450 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1451 * range after unmap_vmas() returns. So the only responsibility here is to 1452 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1453 * drops the lock and schedules. 1454 */ 1455 void unmap_vmas(struct mmu_gather *tlb, 1456 struct vm_area_struct *vma, unsigned long start_addr, 1457 unsigned long end_addr) 1458 { 1459 struct mm_struct *mm = vma->vm_mm; 1460 1461 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1462 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1463 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1464 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1465 } 1466 1467 /** 1468 * zap_page_range - remove user pages in a given range 1469 * @vma: vm_area_struct holding the applicable pages 1470 * @start: starting address of pages to zap 1471 * @size: number of bytes to zap 1472 * 1473 * Caller must protect the VMA list 1474 */ 1475 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1476 unsigned long size) 1477 { 1478 struct mm_struct *mm = vma->vm_mm; 1479 struct mmu_gather tlb; 1480 unsigned long end = start + size; 1481 1482 lru_add_drain(); 1483 tlb_gather_mmu(&tlb, mm, start, end); 1484 update_hiwater_rss(mm); 1485 mmu_notifier_invalidate_range_start(mm, start, end); 1486 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1487 unmap_single_vma(&tlb, vma, start, end, NULL); 1488 mmu_notifier_invalidate_range_end(mm, start, end); 1489 tlb_finish_mmu(&tlb, start, end); 1490 } 1491 1492 /** 1493 * zap_page_range_single - remove user pages in a given range 1494 * @vma: vm_area_struct holding the applicable pages 1495 * @address: starting address of pages to zap 1496 * @size: number of bytes to zap 1497 * @details: details of shared cache invalidation 1498 * 1499 * The range must fit into one VMA. 1500 */ 1501 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1502 unsigned long size, struct zap_details *details) 1503 { 1504 struct mm_struct *mm = vma->vm_mm; 1505 struct mmu_gather tlb; 1506 unsigned long end = address + size; 1507 1508 lru_add_drain(); 1509 tlb_gather_mmu(&tlb, mm, address, end); 1510 update_hiwater_rss(mm); 1511 mmu_notifier_invalidate_range_start(mm, address, end); 1512 unmap_single_vma(&tlb, vma, address, end, details); 1513 mmu_notifier_invalidate_range_end(mm, address, end); 1514 tlb_finish_mmu(&tlb, address, end); 1515 } 1516 1517 /** 1518 * zap_vma_ptes - remove ptes mapping the vma 1519 * @vma: vm_area_struct holding ptes to be zapped 1520 * @address: starting address of pages to zap 1521 * @size: number of bytes to zap 1522 * 1523 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1524 * 1525 * The entire address range must be fully contained within the vma. 1526 * 1527 * Returns 0 if successful. 1528 */ 1529 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1530 unsigned long size) 1531 { 1532 if (address < vma->vm_start || address + size > vma->vm_end || 1533 !(vma->vm_flags & VM_PFNMAP)) 1534 return -1; 1535 zap_page_range_single(vma, address, size, NULL); 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1539 1540 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1541 spinlock_t **ptl) 1542 { 1543 pgd_t *pgd; 1544 p4d_t *p4d; 1545 pud_t *pud; 1546 pmd_t *pmd; 1547 1548 pgd = pgd_offset(mm, addr); 1549 p4d = p4d_alloc(mm, pgd, addr); 1550 if (!p4d) 1551 return NULL; 1552 pud = pud_alloc(mm, p4d, addr); 1553 if (!pud) 1554 return NULL; 1555 pmd = pmd_alloc(mm, pud, addr); 1556 if (!pmd) 1557 return NULL; 1558 1559 VM_BUG_ON(pmd_trans_huge(*pmd)); 1560 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1561 } 1562 1563 /* 1564 * This is the old fallback for page remapping. 1565 * 1566 * For historical reasons, it only allows reserved pages. Only 1567 * old drivers should use this, and they needed to mark their 1568 * pages reserved for the old functions anyway. 1569 */ 1570 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1571 struct page *page, pgprot_t prot) 1572 { 1573 struct mm_struct *mm = vma->vm_mm; 1574 int retval; 1575 pte_t *pte; 1576 spinlock_t *ptl; 1577 1578 retval = -EINVAL; 1579 if (PageAnon(page)) 1580 goto out; 1581 retval = -ENOMEM; 1582 flush_dcache_page(page); 1583 pte = get_locked_pte(mm, addr, &ptl); 1584 if (!pte) 1585 goto out; 1586 retval = -EBUSY; 1587 if (!pte_none(*pte)) 1588 goto out_unlock; 1589 1590 /* Ok, finally just insert the thing.. */ 1591 get_page(page); 1592 inc_mm_counter_fast(mm, mm_counter_file(page)); 1593 page_add_file_rmap(page, false); 1594 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1595 1596 retval = 0; 1597 pte_unmap_unlock(pte, ptl); 1598 return retval; 1599 out_unlock: 1600 pte_unmap_unlock(pte, ptl); 1601 out: 1602 return retval; 1603 } 1604 1605 /** 1606 * vm_insert_page - insert single page into user vma 1607 * @vma: user vma to map to 1608 * @addr: target user address of this page 1609 * @page: source kernel page 1610 * 1611 * This allows drivers to insert individual pages they've allocated 1612 * into a user vma. 1613 * 1614 * The page has to be a nice clean _individual_ kernel allocation. 1615 * If you allocate a compound page, you need to have marked it as 1616 * such (__GFP_COMP), or manually just split the page up yourself 1617 * (see split_page()). 1618 * 1619 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1620 * took an arbitrary page protection parameter. This doesn't allow 1621 * that. Your vma protection will have to be set up correctly, which 1622 * means that if you want a shared writable mapping, you'd better 1623 * ask for a shared writable mapping! 1624 * 1625 * The page does not need to be reserved. 1626 * 1627 * Usually this function is called from f_op->mmap() handler 1628 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1629 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1630 * function from other places, for example from page-fault handler. 1631 */ 1632 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1633 struct page *page) 1634 { 1635 if (addr < vma->vm_start || addr >= vma->vm_end) 1636 return -EFAULT; 1637 if (!page_count(page)) 1638 return -EINVAL; 1639 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1640 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1641 BUG_ON(vma->vm_flags & VM_PFNMAP); 1642 vma->vm_flags |= VM_MIXEDMAP; 1643 } 1644 return insert_page(vma, addr, page, vma->vm_page_prot); 1645 } 1646 EXPORT_SYMBOL(vm_insert_page); 1647 1648 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1649 pfn_t pfn, pgprot_t prot) 1650 { 1651 struct mm_struct *mm = vma->vm_mm; 1652 int retval; 1653 pte_t *pte, entry; 1654 spinlock_t *ptl; 1655 1656 retval = -ENOMEM; 1657 pte = get_locked_pte(mm, addr, &ptl); 1658 if (!pte) 1659 goto out; 1660 retval = -EBUSY; 1661 if (!pte_none(*pte)) 1662 goto out_unlock; 1663 1664 /* Ok, finally just insert the thing.. */ 1665 if (pfn_t_devmap(pfn)) 1666 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1667 else 1668 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1669 set_pte_at(mm, addr, pte, entry); 1670 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1671 1672 retval = 0; 1673 out_unlock: 1674 pte_unmap_unlock(pte, ptl); 1675 out: 1676 return retval; 1677 } 1678 1679 /** 1680 * vm_insert_pfn - insert single pfn into user vma 1681 * @vma: user vma to map to 1682 * @addr: target user address of this page 1683 * @pfn: source kernel pfn 1684 * 1685 * Similar to vm_insert_page, this allows drivers to insert individual pages 1686 * they've allocated into a user vma. Same comments apply. 1687 * 1688 * This function should only be called from a vm_ops->fault handler, and 1689 * in that case the handler should return NULL. 1690 * 1691 * vma cannot be a COW mapping. 1692 * 1693 * As this is called only for pages that do not currently exist, we 1694 * do not need to flush old virtual caches or the TLB. 1695 */ 1696 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1697 unsigned long pfn) 1698 { 1699 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1700 } 1701 EXPORT_SYMBOL(vm_insert_pfn); 1702 1703 /** 1704 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1705 * @vma: user vma to map to 1706 * @addr: target user address of this page 1707 * @pfn: source kernel pfn 1708 * @pgprot: pgprot flags for the inserted page 1709 * 1710 * This is exactly like vm_insert_pfn, except that it allows drivers to 1711 * to override pgprot on a per-page basis. 1712 * 1713 * This only makes sense for IO mappings, and it makes no sense for 1714 * cow mappings. In general, using multiple vmas is preferable; 1715 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1716 * impractical. 1717 */ 1718 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1719 unsigned long pfn, pgprot_t pgprot) 1720 { 1721 int ret; 1722 /* 1723 * Technically, architectures with pte_special can avoid all these 1724 * restrictions (same for remap_pfn_range). However we would like 1725 * consistency in testing and feature parity among all, so we should 1726 * try to keep these invariants in place for everybody. 1727 */ 1728 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1729 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1730 (VM_PFNMAP|VM_MIXEDMAP)); 1731 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1732 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1733 1734 if (addr < vma->vm_start || addr >= vma->vm_end) 1735 return -EFAULT; 1736 1737 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1738 1739 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1740 1741 return ret; 1742 } 1743 EXPORT_SYMBOL(vm_insert_pfn_prot); 1744 1745 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1746 pfn_t pfn) 1747 { 1748 pgprot_t pgprot = vma->vm_page_prot; 1749 1750 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1751 1752 if (addr < vma->vm_start || addr >= vma->vm_end) 1753 return -EFAULT; 1754 1755 track_pfn_insert(vma, &pgprot, pfn); 1756 1757 /* 1758 * If we don't have pte special, then we have to use the pfn_valid() 1759 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1760 * refcount the page if pfn_valid is true (hence insert_page rather 1761 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1762 * without pte special, it would there be refcounted as a normal page. 1763 */ 1764 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1765 struct page *page; 1766 1767 /* 1768 * At this point we are committed to insert_page() 1769 * regardless of whether the caller specified flags that 1770 * result in pfn_t_has_page() == false. 1771 */ 1772 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1773 return insert_page(vma, addr, page, pgprot); 1774 } 1775 return insert_pfn(vma, addr, pfn, pgprot); 1776 } 1777 EXPORT_SYMBOL(vm_insert_mixed); 1778 1779 /* 1780 * maps a range of physical memory into the requested pages. the old 1781 * mappings are removed. any references to nonexistent pages results 1782 * in null mappings (currently treated as "copy-on-access") 1783 */ 1784 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1785 unsigned long addr, unsigned long end, 1786 unsigned long pfn, pgprot_t prot) 1787 { 1788 pte_t *pte; 1789 spinlock_t *ptl; 1790 1791 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1792 if (!pte) 1793 return -ENOMEM; 1794 arch_enter_lazy_mmu_mode(); 1795 do { 1796 BUG_ON(!pte_none(*pte)); 1797 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1798 pfn++; 1799 } while (pte++, addr += PAGE_SIZE, addr != end); 1800 arch_leave_lazy_mmu_mode(); 1801 pte_unmap_unlock(pte - 1, ptl); 1802 return 0; 1803 } 1804 1805 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1806 unsigned long addr, unsigned long end, 1807 unsigned long pfn, pgprot_t prot) 1808 { 1809 pmd_t *pmd; 1810 unsigned long next; 1811 1812 pfn -= addr >> PAGE_SHIFT; 1813 pmd = pmd_alloc(mm, pud, addr); 1814 if (!pmd) 1815 return -ENOMEM; 1816 VM_BUG_ON(pmd_trans_huge(*pmd)); 1817 do { 1818 next = pmd_addr_end(addr, end); 1819 if (remap_pte_range(mm, pmd, addr, next, 1820 pfn + (addr >> PAGE_SHIFT), prot)) 1821 return -ENOMEM; 1822 } while (pmd++, addr = next, addr != end); 1823 return 0; 1824 } 1825 1826 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1827 unsigned long addr, unsigned long end, 1828 unsigned long pfn, pgprot_t prot) 1829 { 1830 pud_t *pud; 1831 unsigned long next; 1832 1833 pfn -= addr >> PAGE_SHIFT; 1834 pud = pud_alloc(mm, p4d, addr); 1835 if (!pud) 1836 return -ENOMEM; 1837 do { 1838 next = pud_addr_end(addr, end); 1839 if (remap_pmd_range(mm, pud, addr, next, 1840 pfn + (addr >> PAGE_SHIFT), prot)) 1841 return -ENOMEM; 1842 } while (pud++, addr = next, addr != end); 1843 return 0; 1844 } 1845 1846 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1847 unsigned long addr, unsigned long end, 1848 unsigned long pfn, pgprot_t prot) 1849 { 1850 p4d_t *p4d; 1851 unsigned long next; 1852 1853 pfn -= addr >> PAGE_SHIFT; 1854 p4d = p4d_alloc(mm, pgd, addr); 1855 if (!p4d) 1856 return -ENOMEM; 1857 do { 1858 next = p4d_addr_end(addr, end); 1859 if (remap_pud_range(mm, p4d, addr, next, 1860 pfn + (addr >> PAGE_SHIFT), prot)) 1861 return -ENOMEM; 1862 } while (p4d++, addr = next, addr != end); 1863 return 0; 1864 } 1865 1866 /** 1867 * remap_pfn_range - remap kernel memory to userspace 1868 * @vma: user vma to map to 1869 * @addr: target user address to start at 1870 * @pfn: physical address of kernel memory 1871 * @size: size of map area 1872 * @prot: page protection flags for this mapping 1873 * 1874 * Note: this is only safe if the mm semaphore is held when called. 1875 */ 1876 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1877 unsigned long pfn, unsigned long size, pgprot_t prot) 1878 { 1879 pgd_t *pgd; 1880 unsigned long next; 1881 unsigned long end = addr + PAGE_ALIGN(size); 1882 struct mm_struct *mm = vma->vm_mm; 1883 unsigned long remap_pfn = pfn; 1884 int err; 1885 1886 /* 1887 * Physically remapped pages are special. Tell the 1888 * rest of the world about it: 1889 * VM_IO tells people not to look at these pages 1890 * (accesses can have side effects). 1891 * VM_PFNMAP tells the core MM that the base pages are just 1892 * raw PFN mappings, and do not have a "struct page" associated 1893 * with them. 1894 * VM_DONTEXPAND 1895 * Disable vma merging and expanding with mremap(). 1896 * VM_DONTDUMP 1897 * Omit vma from core dump, even when VM_IO turned off. 1898 * 1899 * There's a horrible special case to handle copy-on-write 1900 * behaviour that some programs depend on. We mark the "original" 1901 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1902 * See vm_normal_page() for details. 1903 */ 1904 if (is_cow_mapping(vma->vm_flags)) { 1905 if (addr != vma->vm_start || end != vma->vm_end) 1906 return -EINVAL; 1907 vma->vm_pgoff = pfn; 1908 } 1909 1910 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1911 if (err) 1912 return -EINVAL; 1913 1914 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1915 1916 BUG_ON(addr >= end); 1917 pfn -= addr >> PAGE_SHIFT; 1918 pgd = pgd_offset(mm, addr); 1919 flush_cache_range(vma, addr, end); 1920 do { 1921 next = pgd_addr_end(addr, end); 1922 err = remap_p4d_range(mm, pgd, addr, next, 1923 pfn + (addr >> PAGE_SHIFT), prot); 1924 if (err) 1925 break; 1926 } while (pgd++, addr = next, addr != end); 1927 1928 if (err) 1929 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1930 1931 return err; 1932 } 1933 EXPORT_SYMBOL(remap_pfn_range); 1934 1935 /** 1936 * vm_iomap_memory - remap memory to userspace 1937 * @vma: user vma to map to 1938 * @start: start of area 1939 * @len: size of area 1940 * 1941 * This is a simplified io_remap_pfn_range() for common driver use. The 1942 * driver just needs to give us the physical memory range to be mapped, 1943 * we'll figure out the rest from the vma information. 1944 * 1945 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1946 * whatever write-combining details or similar. 1947 */ 1948 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1949 { 1950 unsigned long vm_len, pfn, pages; 1951 1952 /* Check that the physical memory area passed in looks valid */ 1953 if (start + len < start) 1954 return -EINVAL; 1955 /* 1956 * You *really* shouldn't map things that aren't page-aligned, 1957 * but we've historically allowed it because IO memory might 1958 * just have smaller alignment. 1959 */ 1960 len += start & ~PAGE_MASK; 1961 pfn = start >> PAGE_SHIFT; 1962 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1963 if (pfn + pages < pfn) 1964 return -EINVAL; 1965 1966 /* We start the mapping 'vm_pgoff' pages into the area */ 1967 if (vma->vm_pgoff > pages) 1968 return -EINVAL; 1969 pfn += vma->vm_pgoff; 1970 pages -= vma->vm_pgoff; 1971 1972 /* Can we fit all of the mapping? */ 1973 vm_len = vma->vm_end - vma->vm_start; 1974 if (vm_len >> PAGE_SHIFT > pages) 1975 return -EINVAL; 1976 1977 /* Ok, let it rip */ 1978 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1979 } 1980 EXPORT_SYMBOL(vm_iomap_memory); 1981 1982 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1983 unsigned long addr, unsigned long end, 1984 pte_fn_t fn, void *data) 1985 { 1986 pte_t *pte; 1987 int err; 1988 pgtable_t token; 1989 spinlock_t *uninitialized_var(ptl); 1990 1991 pte = (mm == &init_mm) ? 1992 pte_alloc_kernel(pmd, addr) : 1993 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1994 if (!pte) 1995 return -ENOMEM; 1996 1997 BUG_ON(pmd_huge(*pmd)); 1998 1999 arch_enter_lazy_mmu_mode(); 2000 2001 token = pmd_pgtable(*pmd); 2002 2003 do { 2004 err = fn(pte++, token, addr, data); 2005 if (err) 2006 break; 2007 } while (addr += PAGE_SIZE, addr != end); 2008 2009 arch_leave_lazy_mmu_mode(); 2010 2011 if (mm != &init_mm) 2012 pte_unmap_unlock(pte-1, ptl); 2013 return err; 2014 } 2015 2016 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2017 unsigned long addr, unsigned long end, 2018 pte_fn_t fn, void *data) 2019 { 2020 pmd_t *pmd; 2021 unsigned long next; 2022 int err; 2023 2024 BUG_ON(pud_huge(*pud)); 2025 2026 pmd = pmd_alloc(mm, pud, addr); 2027 if (!pmd) 2028 return -ENOMEM; 2029 do { 2030 next = pmd_addr_end(addr, end); 2031 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2032 if (err) 2033 break; 2034 } while (pmd++, addr = next, addr != end); 2035 return err; 2036 } 2037 2038 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2039 unsigned long addr, unsigned long end, 2040 pte_fn_t fn, void *data) 2041 { 2042 pud_t *pud; 2043 unsigned long next; 2044 int err; 2045 2046 pud = pud_alloc(mm, p4d, addr); 2047 if (!pud) 2048 return -ENOMEM; 2049 do { 2050 next = pud_addr_end(addr, end); 2051 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2052 if (err) 2053 break; 2054 } while (pud++, addr = next, addr != end); 2055 return err; 2056 } 2057 2058 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2059 unsigned long addr, unsigned long end, 2060 pte_fn_t fn, void *data) 2061 { 2062 p4d_t *p4d; 2063 unsigned long next; 2064 int err; 2065 2066 p4d = p4d_alloc(mm, pgd, addr); 2067 if (!p4d) 2068 return -ENOMEM; 2069 do { 2070 next = p4d_addr_end(addr, end); 2071 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2072 if (err) 2073 break; 2074 } while (p4d++, addr = next, addr != end); 2075 return err; 2076 } 2077 2078 /* 2079 * Scan a region of virtual memory, filling in page tables as necessary 2080 * and calling a provided function on each leaf page table. 2081 */ 2082 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2083 unsigned long size, pte_fn_t fn, void *data) 2084 { 2085 pgd_t *pgd; 2086 unsigned long next; 2087 unsigned long end = addr + size; 2088 int err; 2089 2090 if (WARN_ON(addr >= end)) 2091 return -EINVAL; 2092 2093 pgd = pgd_offset(mm, addr); 2094 do { 2095 next = pgd_addr_end(addr, end); 2096 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2097 if (err) 2098 break; 2099 } while (pgd++, addr = next, addr != end); 2100 2101 return err; 2102 } 2103 EXPORT_SYMBOL_GPL(apply_to_page_range); 2104 2105 /* 2106 * handle_pte_fault chooses page fault handler according to an entry which was 2107 * read non-atomically. Before making any commitment, on those architectures 2108 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2109 * parts, do_swap_page must check under lock before unmapping the pte and 2110 * proceeding (but do_wp_page is only called after already making such a check; 2111 * and do_anonymous_page can safely check later on). 2112 */ 2113 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2114 pte_t *page_table, pte_t orig_pte) 2115 { 2116 int same = 1; 2117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2118 if (sizeof(pte_t) > sizeof(unsigned long)) { 2119 spinlock_t *ptl = pte_lockptr(mm, pmd); 2120 spin_lock(ptl); 2121 same = pte_same(*page_table, orig_pte); 2122 spin_unlock(ptl); 2123 } 2124 #endif 2125 pte_unmap(page_table); 2126 return same; 2127 } 2128 2129 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2130 { 2131 debug_dma_assert_idle(src); 2132 2133 /* 2134 * If the source page was a PFN mapping, we don't have 2135 * a "struct page" for it. We do a best-effort copy by 2136 * just copying from the original user address. If that 2137 * fails, we just zero-fill it. Live with it. 2138 */ 2139 if (unlikely(!src)) { 2140 void *kaddr = kmap_atomic(dst); 2141 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2142 2143 /* 2144 * This really shouldn't fail, because the page is there 2145 * in the page tables. But it might just be unreadable, 2146 * in which case we just give up and fill the result with 2147 * zeroes. 2148 */ 2149 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2150 clear_page(kaddr); 2151 kunmap_atomic(kaddr); 2152 flush_dcache_page(dst); 2153 } else 2154 copy_user_highpage(dst, src, va, vma); 2155 } 2156 2157 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2158 { 2159 struct file *vm_file = vma->vm_file; 2160 2161 if (vm_file) 2162 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2163 2164 /* 2165 * Special mappings (e.g. VDSO) do not have any file so fake 2166 * a default GFP_KERNEL for them. 2167 */ 2168 return GFP_KERNEL; 2169 } 2170 2171 /* 2172 * Notify the address space that the page is about to become writable so that 2173 * it can prohibit this or wait for the page to get into an appropriate state. 2174 * 2175 * We do this without the lock held, so that it can sleep if it needs to. 2176 */ 2177 static int do_page_mkwrite(struct vm_fault *vmf) 2178 { 2179 int ret; 2180 struct page *page = vmf->page; 2181 unsigned int old_flags = vmf->flags; 2182 2183 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2184 2185 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2186 /* Restore original flags so that caller is not surprised */ 2187 vmf->flags = old_flags; 2188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2189 return ret; 2190 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2191 lock_page(page); 2192 if (!page->mapping) { 2193 unlock_page(page); 2194 return 0; /* retry */ 2195 } 2196 ret |= VM_FAULT_LOCKED; 2197 } else 2198 VM_BUG_ON_PAGE(!PageLocked(page), page); 2199 return ret; 2200 } 2201 2202 /* 2203 * Handle dirtying of a page in shared file mapping on a write fault. 2204 * 2205 * The function expects the page to be locked and unlocks it. 2206 */ 2207 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2208 struct page *page) 2209 { 2210 struct address_space *mapping; 2211 bool dirtied; 2212 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2213 2214 dirtied = set_page_dirty(page); 2215 VM_BUG_ON_PAGE(PageAnon(page), page); 2216 /* 2217 * Take a local copy of the address_space - page.mapping may be zeroed 2218 * by truncate after unlock_page(). The address_space itself remains 2219 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2220 * release semantics to prevent the compiler from undoing this copying. 2221 */ 2222 mapping = page_rmapping(page); 2223 unlock_page(page); 2224 2225 if ((dirtied || page_mkwrite) && mapping) { 2226 /* 2227 * Some device drivers do not set page.mapping 2228 * but still dirty their pages 2229 */ 2230 balance_dirty_pages_ratelimited(mapping); 2231 } 2232 2233 if (!page_mkwrite) 2234 file_update_time(vma->vm_file); 2235 } 2236 2237 /* 2238 * Handle write page faults for pages that can be reused in the current vma 2239 * 2240 * This can happen either due to the mapping being with the VM_SHARED flag, 2241 * or due to us being the last reference standing to the page. In either 2242 * case, all we need to do here is to mark the page as writable and update 2243 * any related book-keeping. 2244 */ 2245 static inline void wp_page_reuse(struct vm_fault *vmf) 2246 __releases(vmf->ptl) 2247 { 2248 struct vm_area_struct *vma = vmf->vma; 2249 struct page *page = vmf->page; 2250 pte_t entry; 2251 /* 2252 * Clear the pages cpupid information as the existing 2253 * information potentially belongs to a now completely 2254 * unrelated process. 2255 */ 2256 if (page) 2257 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2258 2259 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2260 entry = pte_mkyoung(vmf->orig_pte); 2261 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2262 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2263 update_mmu_cache(vma, vmf->address, vmf->pte); 2264 pte_unmap_unlock(vmf->pte, vmf->ptl); 2265 } 2266 2267 /* 2268 * Handle the case of a page which we actually need to copy to a new page. 2269 * 2270 * Called with mmap_sem locked and the old page referenced, but 2271 * without the ptl held. 2272 * 2273 * High level logic flow: 2274 * 2275 * - Allocate a page, copy the content of the old page to the new one. 2276 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2277 * - Take the PTL. If the pte changed, bail out and release the allocated page 2278 * - If the pte is still the way we remember it, update the page table and all 2279 * relevant references. This includes dropping the reference the page-table 2280 * held to the old page, as well as updating the rmap. 2281 * - In any case, unlock the PTL and drop the reference we took to the old page. 2282 */ 2283 static int wp_page_copy(struct vm_fault *vmf) 2284 { 2285 struct vm_area_struct *vma = vmf->vma; 2286 struct mm_struct *mm = vma->vm_mm; 2287 struct page *old_page = vmf->page; 2288 struct page *new_page = NULL; 2289 pte_t entry; 2290 int page_copied = 0; 2291 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2292 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2293 struct mem_cgroup *memcg; 2294 2295 if (unlikely(anon_vma_prepare(vma))) 2296 goto oom; 2297 2298 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2299 new_page = alloc_zeroed_user_highpage_movable(vma, 2300 vmf->address); 2301 if (!new_page) 2302 goto oom; 2303 } else { 2304 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2305 vmf->address); 2306 if (!new_page) 2307 goto oom; 2308 cow_user_page(new_page, old_page, vmf->address, vma); 2309 } 2310 2311 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2312 goto oom_free_new; 2313 2314 __SetPageUptodate(new_page); 2315 2316 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2317 2318 /* 2319 * Re-check the pte - we dropped the lock 2320 */ 2321 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2322 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2323 if (old_page) { 2324 if (!PageAnon(old_page)) { 2325 dec_mm_counter_fast(mm, 2326 mm_counter_file(old_page)); 2327 inc_mm_counter_fast(mm, MM_ANONPAGES); 2328 } 2329 } else { 2330 inc_mm_counter_fast(mm, MM_ANONPAGES); 2331 } 2332 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2333 entry = mk_pte(new_page, vma->vm_page_prot); 2334 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2335 /* 2336 * Clear the pte entry and flush it first, before updating the 2337 * pte with the new entry. This will avoid a race condition 2338 * seen in the presence of one thread doing SMC and another 2339 * thread doing COW. 2340 */ 2341 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2342 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2343 mem_cgroup_commit_charge(new_page, memcg, false, false); 2344 lru_cache_add_active_or_unevictable(new_page, vma); 2345 /* 2346 * We call the notify macro here because, when using secondary 2347 * mmu page tables (such as kvm shadow page tables), we want the 2348 * new page to be mapped directly into the secondary page table. 2349 */ 2350 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2351 update_mmu_cache(vma, vmf->address, vmf->pte); 2352 if (old_page) { 2353 /* 2354 * Only after switching the pte to the new page may 2355 * we remove the mapcount here. Otherwise another 2356 * process may come and find the rmap count decremented 2357 * before the pte is switched to the new page, and 2358 * "reuse" the old page writing into it while our pte 2359 * here still points into it and can be read by other 2360 * threads. 2361 * 2362 * The critical issue is to order this 2363 * page_remove_rmap with the ptp_clear_flush above. 2364 * Those stores are ordered by (if nothing else,) 2365 * the barrier present in the atomic_add_negative 2366 * in page_remove_rmap. 2367 * 2368 * Then the TLB flush in ptep_clear_flush ensures that 2369 * no process can access the old page before the 2370 * decremented mapcount is visible. And the old page 2371 * cannot be reused until after the decremented 2372 * mapcount is visible. So transitively, TLBs to 2373 * old page will be flushed before it can be reused. 2374 */ 2375 page_remove_rmap(old_page, false); 2376 } 2377 2378 /* Free the old page.. */ 2379 new_page = old_page; 2380 page_copied = 1; 2381 } else { 2382 mem_cgroup_cancel_charge(new_page, memcg, false); 2383 } 2384 2385 if (new_page) 2386 put_page(new_page); 2387 2388 pte_unmap_unlock(vmf->pte, vmf->ptl); 2389 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2390 if (old_page) { 2391 /* 2392 * Don't let another task, with possibly unlocked vma, 2393 * keep the mlocked page. 2394 */ 2395 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2396 lock_page(old_page); /* LRU manipulation */ 2397 if (PageMlocked(old_page)) 2398 munlock_vma_page(old_page); 2399 unlock_page(old_page); 2400 } 2401 put_page(old_page); 2402 } 2403 return page_copied ? VM_FAULT_WRITE : 0; 2404 oom_free_new: 2405 put_page(new_page); 2406 oom: 2407 if (old_page) 2408 put_page(old_page); 2409 return VM_FAULT_OOM; 2410 } 2411 2412 /** 2413 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2414 * writeable once the page is prepared 2415 * 2416 * @vmf: structure describing the fault 2417 * 2418 * This function handles all that is needed to finish a write page fault in a 2419 * shared mapping due to PTE being read-only once the mapped page is prepared. 2420 * It handles locking of PTE and modifying it. The function returns 2421 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2422 * lock. 2423 * 2424 * The function expects the page to be locked or other protection against 2425 * concurrent faults / writeback (such as DAX radix tree locks). 2426 */ 2427 int finish_mkwrite_fault(struct vm_fault *vmf) 2428 { 2429 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2430 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2431 &vmf->ptl); 2432 /* 2433 * We might have raced with another page fault while we released the 2434 * pte_offset_map_lock. 2435 */ 2436 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2437 pte_unmap_unlock(vmf->pte, vmf->ptl); 2438 return VM_FAULT_NOPAGE; 2439 } 2440 wp_page_reuse(vmf); 2441 return 0; 2442 } 2443 2444 /* 2445 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2446 * mapping 2447 */ 2448 static int wp_pfn_shared(struct vm_fault *vmf) 2449 { 2450 struct vm_area_struct *vma = vmf->vma; 2451 2452 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2453 int ret; 2454 2455 pte_unmap_unlock(vmf->pte, vmf->ptl); 2456 vmf->flags |= FAULT_FLAG_MKWRITE; 2457 ret = vma->vm_ops->pfn_mkwrite(vmf); 2458 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2459 return ret; 2460 return finish_mkwrite_fault(vmf); 2461 } 2462 wp_page_reuse(vmf); 2463 return VM_FAULT_WRITE; 2464 } 2465 2466 static int wp_page_shared(struct vm_fault *vmf) 2467 __releases(vmf->ptl) 2468 { 2469 struct vm_area_struct *vma = vmf->vma; 2470 2471 get_page(vmf->page); 2472 2473 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2474 int tmp; 2475 2476 pte_unmap_unlock(vmf->pte, vmf->ptl); 2477 tmp = do_page_mkwrite(vmf); 2478 if (unlikely(!tmp || (tmp & 2479 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2480 put_page(vmf->page); 2481 return tmp; 2482 } 2483 tmp = finish_mkwrite_fault(vmf); 2484 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2485 unlock_page(vmf->page); 2486 put_page(vmf->page); 2487 return tmp; 2488 } 2489 } else { 2490 wp_page_reuse(vmf); 2491 lock_page(vmf->page); 2492 } 2493 fault_dirty_shared_page(vma, vmf->page); 2494 put_page(vmf->page); 2495 2496 return VM_FAULT_WRITE; 2497 } 2498 2499 /* 2500 * This routine handles present pages, when users try to write 2501 * to a shared page. It is done by copying the page to a new address 2502 * and decrementing the shared-page counter for the old page. 2503 * 2504 * Note that this routine assumes that the protection checks have been 2505 * done by the caller (the low-level page fault routine in most cases). 2506 * Thus we can safely just mark it writable once we've done any necessary 2507 * COW. 2508 * 2509 * We also mark the page dirty at this point even though the page will 2510 * change only once the write actually happens. This avoids a few races, 2511 * and potentially makes it more efficient. 2512 * 2513 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2514 * but allow concurrent faults), with pte both mapped and locked. 2515 * We return with mmap_sem still held, but pte unmapped and unlocked. 2516 */ 2517 static int do_wp_page(struct vm_fault *vmf) 2518 __releases(vmf->ptl) 2519 { 2520 struct vm_area_struct *vma = vmf->vma; 2521 2522 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2523 if (!vmf->page) { 2524 /* 2525 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2526 * VM_PFNMAP VMA. 2527 * 2528 * We should not cow pages in a shared writeable mapping. 2529 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2530 */ 2531 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2532 (VM_WRITE|VM_SHARED)) 2533 return wp_pfn_shared(vmf); 2534 2535 pte_unmap_unlock(vmf->pte, vmf->ptl); 2536 return wp_page_copy(vmf); 2537 } 2538 2539 /* 2540 * Take out anonymous pages first, anonymous shared vmas are 2541 * not dirty accountable. 2542 */ 2543 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2544 int total_mapcount; 2545 if (!trylock_page(vmf->page)) { 2546 get_page(vmf->page); 2547 pte_unmap_unlock(vmf->pte, vmf->ptl); 2548 lock_page(vmf->page); 2549 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2550 vmf->address, &vmf->ptl); 2551 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2552 unlock_page(vmf->page); 2553 pte_unmap_unlock(vmf->pte, vmf->ptl); 2554 put_page(vmf->page); 2555 return 0; 2556 } 2557 put_page(vmf->page); 2558 } 2559 if (reuse_swap_page(vmf->page, &total_mapcount)) { 2560 if (total_mapcount == 1) { 2561 /* 2562 * The page is all ours. Move it to 2563 * our anon_vma so the rmap code will 2564 * not search our parent or siblings. 2565 * Protected against the rmap code by 2566 * the page lock. 2567 */ 2568 page_move_anon_rmap(vmf->page, vma); 2569 } 2570 unlock_page(vmf->page); 2571 wp_page_reuse(vmf); 2572 return VM_FAULT_WRITE; 2573 } 2574 unlock_page(vmf->page); 2575 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2576 (VM_WRITE|VM_SHARED))) { 2577 return wp_page_shared(vmf); 2578 } 2579 2580 /* 2581 * Ok, we need to copy. Oh, well.. 2582 */ 2583 get_page(vmf->page); 2584 2585 pte_unmap_unlock(vmf->pte, vmf->ptl); 2586 return wp_page_copy(vmf); 2587 } 2588 2589 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2590 unsigned long start_addr, unsigned long end_addr, 2591 struct zap_details *details) 2592 { 2593 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2594 } 2595 2596 static inline void unmap_mapping_range_tree(struct rb_root *root, 2597 struct zap_details *details) 2598 { 2599 struct vm_area_struct *vma; 2600 pgoff_t vba, vea, zba, zea; 2601 2602 vma_interval_tree_foreach(vma, root, 2603 details->first_index, details->last_index) { 2604 2605 vba = vma->vm_pgoff; 2606 vea = vba + vma_pages(vma) - 1; 2607 zba = details->first_index; 2608 if (zba < vba) 2609 zba = vba; 2610 zea = details->last_index; 2611 if (zea > vea) 2612 zea = vea; 2613 2614 unmap_mapping_range_vma(vma, 2615 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2616 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2617 details); 2618 } 2619 } 2620 2621 /** 2622 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2623 * address_space corresponding to the specified page range in the underlying 2624 * file. 2625 * 2626 * @mapping: the address space containing mmaps to be unmapped. 2627 * @holebegin: byte in first page to unmap, relative to the start of 2628 * the underlying file. This will be rounded down to a PAGE_SIZE 2629 * boundary. Note that this is different from truncate_pagecache(), which 2630 * must keep the partial page. In contrast, we must get rid of 2631 * partial pages. 2632 * @holelen: size of prospective hole in bytes. This will be rounded 2633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2634 * end of the file. 2635 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2636 * but 0 when invalidating pagecache, don't throw away private data. 2637 */ 2638 void unmap_mapping_range(struct address_space *mapping, 2639 loff_t const holebegin, loff_t const holelen, int even_cows) 2640 { 2641 struct zap_details details = { }; 2642 pgoff_t hba = holebegin >> PAGE_SHIFT; 2643 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2644 2645 /* Check for overflow. */ 2646 if (sizeof(holelen) > sizeof(hlen)) { 2647 long long holeend = 2648 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2649 if (holeend & ~(long long)ULONG_MAX) 2650 hlen = ULONG_MAX - hba + 1; 2651 } 2652 2653 details.check_mapping = even_cows ? NULL : mapping; 2654 details.first_index = hba; 2655 details.last_index = hba + hlen - 1; 2656 if (details.last_index < details.first_index) 2657 details.last_index = ULONG_MAX; 2658 2659 i_mmap_lock_write(mapping); 2660 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2661 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2662 i_mmap_unlock_write(mapping); 2663 } 2664 EXPORT_SYMBOL(unmap_mapping_range); 2665 2666 /* 2667 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2668 * but allow concurrent faults), and pte mapped but not yet locked. 2669 * We return with pte unmapped and unlocked. 2670 * 2671 * We return with the mmap_sem locked or unlocked in the same cases 2672 * as does filemap_fault(). 2673 */ 2674 int do_swap_page(struct vm_fault *vmf) 2675 { 2676 struct vm_area_struct *vma = vmf->vma; 2677 struct page *page, *swapcache; 2678 struct mem_cgroup *memcg; 2679 swp_entry_t entry; 2680 pte_t pte; 2681 int locked; 2682 int exclusive = 0; 2683 int ret = 0; 2684 2685 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2686 goto out; 2687 2688 entry = pte_to_swp_entry(vmf->orig_pte); 2689 if (unlikely(non_swap_entry(entry))) { 2690 if (is_migration_entry(entry)) { 2691 migration_entry_wait(vma->vm_mm, vmf->pmd, 2692 vmf->address); 2693 } else if (is_hwpoison_entry(entry)) { 2694 ret = VM_FAULT_HWPOISON; 2695 } else { 2696 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2697 ret = VM_FAULT_SIGBUS; 2698 } 2699 goto out; 2700 } 2701 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2702 page = lookup_swap_cache(entry); 2703 if (!page) { 2704 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, 2705 vmf->address); 2706 if (!page) { 2707 /* 2708 * Back out if somebody else faulted in this pte 2709 * while we released the pte lock. 2710 */ 2711 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2712 vmf->address, &vmf->ptl); 2713 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2714 ret = VM_FAULT_OOM; 2715 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2716 goto unlock; 2717 } 2718 2719 /* Had to read the page from swap area: Major fault */ 2720 ret = VM_FAULT_MAJOR; 2721 count_vm_event(PGMAJFAULT); 2722 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2723 } else if (PageHWPoison(page)) { 2724 /* 2725 * hwpoisoned dirty swapcache pages are kept for killing 2726 * owner processes (which may be unknown at hwpoison time) 2727 */ 2728 ret = VM_FAULT_HWPOISON; 2729 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2730 swapcache = page; 2731 goto out_release; 2732 } 2733 2734 swapcache = page; 2735 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2736 2737 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2738 if (!locked) { 2739 ret |= VM_FAULT_RETRY; 2740 goto out_release; 2741 } 2742 2743 /* 2744 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2745 * release the swapcache from under us. The page pin, and pte_same 2746 * test below, are not enough to exclude that. Even if it is still 2747 * swapcache, we need to check that the page's swap has not changed. 2748 */ 2749 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2750 goto out_page; 2751 2752 page = ksm_might_need_to_copy(page, vma, vmf->address); 2753 if (unlikely(!page)) { 2754 ret = VM_FAULT_OOM; 2755 page = swapcache; 2756 goto out_page; 2757 } 2758 2759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2760 &memcg, false)) { 2761 ret = VM_FAULT_OOM; 2762 goto out_page; 2763 } 2764 2765 /* 2766 * Back out if somebody else already faulted in this pte. 2767 */ 2768 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2769 &vmf->ptl); 2770 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2771 goto out_nomap; 2772 2773 if (unlikely(!PageUptodate(page))) { 2774 ret = VM_FAULT_SIGBUS; 2775 goto out_nomap; 2776 } 2777 2778 /* 2779 * The page isn't present yet, go ahead with the fault. 2780 * 2781 * Be careful about the sequence of operations here. 2782 * To get its accounting right, reuse_swap_page() must be called 2783 * while the page is counted on swap but not yet in mapcount i.e. 2784 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2785 * must be called after the swap_free(), or it will never succeed. 2786 */ 2787 2788 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2789 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2790 pte = mk_pte(page, vma->vm_page_prot); 2791 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2792 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2793 vmf->flags &= ~FAULT_FLAG_WRITE; 2794 ret |= VM_FAULT_WRITE; 2795 exclusive = RMAP_EXCLUSIVE; 2796 } 2797 flush_icache_page(vma, page); 2798 if (pte_swp_soft_dirty(vmf->orig_pte)) 2799 pte = pte_mksoft_dirty(pte); 2800 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2801 vmf->orig_pte = pte; 2802 if (page == swapcache) { 2803 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2804 mem_cgroup_commit_charge(page, memcg, true, false); 2805 activate_page(page); 2806 } else { /* ksm created a completely new copy */ 2807 page_add_new_anon_rmap(page, vma, vmf->address, false); 2808 mem_cgroup_commit_charge(page, memcg, false, false); 2809 lru_cache_add_active_or_unevictable(page, vma); 2810 } 2811 2812 swap_free(entry); 2813 if (mem_cgroup_swap_full(page) || 2814 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2815 try_to_free_swap(page); 2816 unlock_page(page); 2817 if (page != swapcache) { 2818 /* 2819 * Hold the lock to avoid the swap entry to be reused 2820 * until we take the PT lock for the pte_same() check 2821 * (to avoid false positives from pte_same). For 2822 * further safety release the lock after the swap_free 2823 * so that the swap count won't change under a 2824 * parallel locked swapcache. 2825 */ 2826 unlock_page(swapcache); 2827 put_page(swapcache); 2828 } 2829 2830 if (vmf->flags & FAULT_FLAG_WRITE) { 2831 ret |= do_wp_page(vmf); 2832 if (ret & VM_FAULT_ERROR) 2833 ret &= VM_FAULT_ERROR; 2834 goto out; 2835 } 2836 2837 /* No need to invalidate - it was non-present before */ 2838 update_mmu_cache(vma, vmf->address, vmf->pte); 2839 unlock: 2840 pte_unmap_unlock(vmf->pte, vmf->ptl); 2841 out: 2842 return ret; 2843 out_nomap: 2844 mem_cgroup_cancel_charge(page, memcg, false); 2845 pte_unmap_unlock(vmf->pte, vmf->ptl); 2846 out_page: 2847 unlock_page(page); 2848 out_release: 2849 put_page(page); 2850 if (page != swapcache) { 2851 unlock_page(swapcache); 2852 put_page(swapcache); 2853 } 2854 return ret; 2855 } 2856 2857 /* 2858 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2859 * but allow concurrent faults), and pte mapped but not yet locked. 2860 * We return with mmap_sem still held, but pte unmapped and unlocked. 2861 */ 2862 static int do_anonymous_page(struct vm_fault *vmf) 2863 { 2864 struct vm_area_struct *vma = vmf->vma; 2865 struct mem_cgroup *memcg; 2866 struct page *page; 2867 pte_t entry; 2868 2869 /* File mapping without ->vm_ops ? */ 2870 if (vma->vm_flags & VM_SHARED) 2871 return VM_FAULT_SIGBUS; 2872 2873 /* 2874 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2875 * pte_offset_map() on pmds where a huge pmd might be created 2876 * from a different thread. 2877 * 2878 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2879 * parallel threads are excluded by other means. 2880 * 2881 * Here we only have down_read(mmap_sem). 2882 */ 2883 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2884 return VM_FAULT_OOM; 2885 2886 /* See the comment in pte_alloc_one_map() */ 2887 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2888 return 0; 2889 2890 /* Use the zero-page for reads */ 2891 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2892 !mm_forbids_zeropage(vma->vm_mm)) { 2893 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2894 vma->vm_page_prot)); 2895 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2896 vmf->address, &vmf->ptl); 2897 if (!pte_none(*vmf->pte)) 2898 goto unlock; 2899 /* Deliver the page fault to userland, check inside PT lock */ 2900 if (userfaultfd_missing(vma)) { 2901 pte_unmap_unlock(vmf->pte, vmf->ptl); 2902 return handle_userfault(vmf, VM_UFFD_MISSING); 2903 } 2904 goto setpte; 2905 } 2906 2907 /* Allocate our own private page. */ 2908 if (unlikely(anon_vma_prepare(vma))) 2909 goto oom; 2910 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2911 if (!page) 2912 goto oom; 2913 2914 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2915 goto oom_free_page; 2916 2917 /* 2918 * The memory barrier inside __SetPageUptodate makes sure that 2919 * preceeding stores to the page contents become visible before 2920 * the set_pte_at() write. 2921 */ 2922 __SetPageUptodate(page); 2923 2924 entry = mk_pte(page, vma->vm_page_prot); 2925 if (vma->vm_flags & VM_WRITE) 2926 entry = pte_mkwrite(pte_mkdirty(entry)); 2927 2928 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2929 &vmf->ptl); 2930 if (!pte_none(*vmf->pte)) 2931 goto release; 2932 2933 /* Deliver the page fault to userland, check inside PT lock */ 2934 if (userfaultfd_missing(vma)) { 2935 pte_unmap_unlock(vmf->pte, vmf->ptl); 2936 mem_cgroup_cancel_charge(page, memcg, false); 2937 put_page(page); 2938 return handle_userfault(vmf, VM_UFFD_MISSING); 2939 } 2940 2941 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2942 page_add_new_anon_rmap(page, vma, vmf->address, false); 2943 mem_cgroup_commit_charge(page, memcg, false, false); 2944 lru_cache_add_active_or_unevictable(page, vma); 2945 setpte: 2946 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2947 2948 /* No need to invalidate - it was non-present before */ 2949 update_mmu_cache(vma, vmf->address, vmf->pte); 2950 unlock: 2951 pte_unmap_unlock(vmf->pte, vmf->ptl); 2952 return 0; 2953 release: 2954 mem_cgroup_cancel_charge(page, memcg, false); 2955 put_page(page); 2956 goto unlock; 2957 oom_free_page: 2958 put_page(page); 2959 oom: 2960 return VM_FAULT_OOM; 2961 } 2962 2963 /* 2964 * The mmap_sem must have been held on entry, and may have been 2965 * released depending on flags and vma->vm_ops->fault() return value. 2966 * See filemap_fault() and __lock_page_retry(). 2967 */ 2968 static int __do_fault(struct vm_fault *vmf) 2969 { 2970 struct vm_area_struct *vma = vmf->vma; 2971 int ret; 2972 2973 ret = vma->vm_ops->fault(vmf); 2974 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2975 VM_FAULT_DONE_COW))) 2976 return ret; 2977 2978 if (unlikely(PageHWPoison(vmf->page))) { 2979 if (ret & VM_FAULT_LOCKED) 2980 unlock_page(vmf->page); 2981 put_page(vmf->page); 2982 vmf->page = NULL; 2983 return VM_FAULT_HWPOISON; 2984 } 2985 2986 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2987 lock_page(vmf->page); 2988 else 2989 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 2990 2991 return ret; 2992 } 2993 2994 /* 2995 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 2996 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 2997 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 2998 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 2999 */ 3000 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3001 { 3002 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3003 } 3004 3005 static int pte_alloc_one_map(struct vm_fault *vmf) 3006 { 3007 struct vm_area_struct *vma = vmf->vma; 3008 3009 if (!pmd_none(*vmf->pmd)) 3010 goto map_pte; 3011 if (vmf->prealloc_pte) { 3012 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3013 if (unlikely(!pmd_none(*vmf->pmd))) { 3014 spin_unlock(vmf->ptl); 3015 goto map_pte; 3016 } 3017 3018 atomic_long_inc(&vma->vm_mm->nr_ptes); 3019 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3020 spin_unlock(vmf->ptl); 3021 vmf->prealloc_pte = NULL; 3022 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3023 return VM_FAULT_OOM; 3024 } 3025 map_pte: 3026 /* 3027 * If a huge pmd materialized under us just retry later. Use 3028 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3029 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3030 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3031 * running immediately after a huge pmd fault in a different thread of 3032 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3033 * All we have to ensure is that it is a regular pmd that we can walk 3034 * with pte_offset_map() and we can do that through an atomic read in 3035 * C, which is what pmd_trans_unstable() provides. 3036 */ 3037 if (pmd_devmap_trans_unstable(vmf->pmd)) 3038 return VM_FAULT_NOPAGE; 3039 3040 /* 3041 * At this point we know that our vmf->pmd points to a page of ptes 3042 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3043 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3044 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3045 * be valid and we will re-check to make sure the vmf->pte isn't 3046 * pte_none() under vmf->ptl protection when we return to 3047 * alloc_set_pte(). 3048 */ 3049 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3050 &vmf->ptl); 3051 return 0; 3052 } 3053 3054 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3055 3056 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3057 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3058 unsigned long haddr) 3059 { 3060 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3061 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3062 return false; 3063 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3064 return false; 3065 return true; 3066 } 3067 3068 static void deposit_prealloc_pte(struct vm_fault *vmf) 3069 { 3070 struct vm_area_struct *vma = vmf->vma; 3071 3072 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3073 /* 3074 * We are going to consume the prealloc table, 3075 * count that as nr_ptes. 3076 */ 3077 atomic_long_inc(&vma->vm_mm->nr_ptes); 3078 vmf->prealloc_pte = NULL; 3079 } 3080 3081 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3082 { 3083 struct vm_area_struct *vma = vmf->vma; 3084 bool write = vmf->flags & FAULT_FLAG_WRITE; 3085 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3086 pmd_t entry; 3087 int i, ret; 3088 3089 if (!transhuge_vma_suitable(vma, haddr)) 3090 return VM_FAULT_FALLBACK; 3091 3092 ret = VM_FAULT_FALLBACK; 3093 page = compound_head(page); 3094 3095 /* 3096 * Archs like ppc64 need additonal space to store information 3097 * related to pte entry. Use the preallocated table for that. 3098 */ 3099 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3100 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3101 if (!vmf->prealloc_pte) 3102 return VM_FAULT_OOM; 3103 smp_wmb(); /* See comment in __pte_alloc() */ 3104 } 3105 3106 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3107 if (unlikely(!pmd_none(*vmf->pmd))) 3108 goto out; 3109 3110 for (i = 0; i < HPAGE_PMD_NR; i++) 3111 flush_icache_page(vma, page + i); 3112 3113 entry = mk_huge_pmd(page, vma->vm_page_prot); 3114 if (write) 3115 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3116 3117 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3118 page_add_file_rmap(page, true); 3119 /* 3120 * deposit and withdraw with pmd lock held 3121 */ 3122 if (arch_needs_pgtable_deposit()) 3123 deposit_prealloc_pte(vmf); 3124 3125 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3126 3127 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3128 3129 /* fault is handled */ 3130 ret = 0; 3131 count_vm_event(THP_FILE_MAPPED); 3132 out: 3133 spin_unlock(vmf->ptl); 3134 return ret; 3135 } 3136 #else 3137 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3138 { 3139 BUILD_BUG(); 3140 return 0; 3141 } 3142 #endif 3143 3144 /** 3145 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3146 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3147 * 3148 * @vmf: fault environment 3149 * @memcg: memcg to charge page (only for private mappings) 3150 * @page: page to map 3151 * 3152 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3153 * return. 3154 * 3155 * Target users are page handler itself and implementations of 3156 * vm_ops->map_pages. 3157 */ 3158 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3159 struct page *page) 3160 { 3161 struct vm_area_struct *vma = vmf->vma; 3162 bool write = vmf->flags & FAULT_FLAG_WRITE; 3163 pte_t entry; 3164 int ret; 3165 3166 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3167 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3168 /* THP on COW? */ 3169 VM_BUG_ON_PAGE(memcg, page); 3170 3171 ret = do_set_pmd(vmf, page); 3172 if (ret != VM_FAULT_FALLBACK) 3173 return ret; 3174 } 3175 3176 if (!vmf->pte) { 3177 ret = pte_alloc_one_map(vmf); 3178 if (ret) 3179 return ret; 3180 } 3181 3182 /* Re-check under ptl */ 3183 if (unlikely(!pte_none(*vmf->pte))) 3184 return VM_FAULT_NOPAGE; 3185 3186 flush_icache_page(vma, page); 3187 entry = mk_pte(page, vma->vm_page_prot); 3188 if (write) 3189 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3190 /* copy-on-write page */ 3191 if (write && !(vma->vm_flags & VM_SHARED)) { 3192 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3193 page_add_new_anon_rmap(page, vma, vmf->address, false); 3194 mem_cgroup_commit_charge(page, memcg, false, false); 3195 lru_cache_add_active_or_unevictable(page, vma); 3196 } else { 3197 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3198 page_add_file_rmap(page, false); 3199 } 3200 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3201 3202 /* no need to invalidate: a not-present page won't be cached */ 3203 update_mmu_cache(vma, vmf->address, vmf->pte); 3204 3205 return 0; 3206 } 3207 3208 3209 /** 3210 * finish_fault - finish page fault once we have prepared the page to fault 3211 * 3212 * @vmf: structure describing the fault 3213 * 3214 * This function handles all that is needed to finish a page fault once the 3215 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3216 * given page, adds reverse page mapping, handles memcg charges and LRU 3217 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3218 * error. 3219 * 3220 * The function expects the page to be locked and on success it consumes a 3221 * reference of a page being mapped (for the PTE which maps it). 3222 */ 3223 int finish_fault(struct vm_fault *vmf) 3224 { 3225 struct page *page; 3226 int ret; 3227 3228 /* Did we COW the page? */ 3229 if ((vmf->flags & FAULT_FLAG_WRITE) && 3230 !(vmf->vma->vm_flags & VM_SHARED)) 3231 page = vmf->cow_page; 3232 else 3233 page = vmf->page; 3234 ret = alloc_set_pte(vmf, vmf->memcg, page); 3235 if (vmf->pte) 3236 pte_unmap_unlock(vmf->pte, vmf->ptl); 3237 return ret; 3238 } 3239 3240 static unsigned long fault_around_bytes __read_mostly = 3241 rounddown_pow_of_two(65536); 3242 3243 #ifdef CONFIG_DEBUG_FS 3244 static int fault_around_bytes_get(void *data, u64 *val) 3245 { 3246 *val = fault_around_bytes; 3247 return 0; 3248 } 3249 3250 /* 3251 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3252 * rounded down to nearest page order. It's what do_fault_around() expects to 3253 * see. 3254 */ 3255 static int fault_around_bytes_set(void *data, u64 val) 3256 { 3257 if (val / PAGE_SIZE > PTRS_PER_PTE) 3258 return -EINVAL; 3259 if (val > PAGE_SIZE) 3260 fault_around_bytes = rounddown_pow_of_two(val); 3261 else 3262 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3263 return 0; 3264 } 3265 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 3266 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3267 3268 static int __init fault_around_debugfs(void) 3269 { 3270 void *ret; 3271 3272 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 3273 &fault_around_bytes_fops); 3274 if (!ret) 3275 pr_warn("Failed to create fault_around_bytes in debugfs"); 3276 return 0; 3277 } 3278 late_initcall(fault_around_debugfs); 3279 #endif 3280 3281 /* 3282 * do_fault_around() tries to map few pages around the fault address. The hope 3283 * is that the pages will be needed soon and this will lower the number of 3284 * faults to handle. 3285 * 3286 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3287 * not ready to be mapped: not up-to-date, locked, etc. 3288 * 3289 * This function is called with the page table lock taken. In the split ptlock 3290 * case the page table lock only protects only those entries which belong to 3291 * the page table corresponding to the fault address. 3292 * 3293 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3294 * only once. 3295 * 3296 * fault_around_pages() defines how many pages we'll try to map. 3297 * do_fault_around() expects it to return a power of two less than or equal to 3298 * PTRS_PER_PTE. 3299 * 3300 * The virtual address of the area that we map is naturally aligned to the 3301 * fault_around_pages() value (and therefore to page order). This way it's 3302 * easier to guarantee that we don't cross page table boundaries. 3303 */ 3304 static int do_fault_around(struct vm_fault *vmf) 3305 { 3306 unsigned long address = vmf->address, nr_pages, mask; 3307 pgoff_t start_pgoff = vmf->pgoff; 3308 pgoff_t end_pgoff; 3309 int off, ret = 0; 3310 3311 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3312 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3313 3314 vmf->address = max(address & mask, vmf->vma->vm_start); 3315 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3316 start_pgoff -= off; 3317 3318 /* 3319 * end_pgoff is either end of page table or end of vma 3320 * or fault_around_pages() from start_pgoff, depending what is nearest. 3321 */ 3322 end_pgoff = start_pgoff - 3323 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3324 PTRS_PER_PTE - 1; 3325 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3326 start_pgoff + nr_pages - 1); 3327 3328 if (pmd_none(*vmf->pmd)) { 3329 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3330 vmf->address); 3331 if (!vmf->prealloc_pte) 3332 goto out; 3333 smp_wmb(); /* See comment in __pte_alloc() */ 3334 } 3335 3336 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3337 3338 /* Huge page is mapped? Page fault is solved */ 3339 if (pmd_trans_huge(*vmf->pmd)) { 3340 ret = VM_FAULT_NOPAGE; 3341 goto out; 3342 } 3343 3344 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3345 if (!vmf->pte) 3346 goto out; 3347 3348 /* check if the page fault is solved */ 3349 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3350 if (!pte_none(*vmf->pte)) 3351 ret = VM_FAULT_NOPAGE; 3352 pte_unmap_unlock(vmf->pte, vmf->ptl); 3353 out: 3354 vmf->address = address; 3355 vmf->pte = NULL; 3356 return ret; 3357 } 3358 3359 static int do_read_fault(struct vm_fault *vmf) 3360 { 3361 struct vm_area_struct *vma = vmf->vma; 3362 int ret = 0; 3363 3364 /* 3365 * Let's call ->map_pages() first and use ->fault() as fallback 3366 * if page by the offset is not ready to be mapped (cold cache or 3367 * something). 3368 */ 3369 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3370 ret = do_fault_around(vmf); 3371 if (ret) 3372 return ret; 3373 } 3374 3375 ret = __do_fault(vmf); 3376 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3377 return ret; 3378 3379 ret |= finish_fault(vmf); 3380 unlock_page(vmf->page); 3381 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3382 put_page(vmf->page); 3383 return ret; 3384 } 3385 3386 static int do_cow_fault(struct vm_fault *vmf) 3387 { 3388 struct vm_area_struct *vma = vmf->vma; 3389 int ret; 3390 3391 if (unlikely(anon_vma_prepare(vma))) 3392 return VM_FAULT_OOM; 3393 3394 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3395 if (!vmf->cow_page) 3396 return VM_FAULT_OOM; 3397 3398 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3399 &vmf->memcg, false)) { 3400 put_page(vmf->cow_page); 3401 return VM_FAULT_OOM; 3402 } 3403 3404 ret = __do_fault(vmf); 3405 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3406 goto uncharge_out; 3407 if (ret & VM_FAULT_DONE_COW) 3408 return ret; 3409 3410 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3411 __SetPageUptodate(vmf->cow_page); 3412 3413 ret |= finish_fault(vmf); 3414 unlock_page(vmf->page); 3415 put_page(vmf->page); 3416 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3417 goto uncharge_out; 3418 return ret; 3419 uncharge_out: 3420 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3421 put_page(vmf->cow_page); 3422 return ret; 3423 } 3424 3425 static int do_shared_fault(struct vm_fault *vmf) 3426 { 3427 struct vm_area_struct *vma = vmf->vma; 3428 int ret, tmp; 3429 3430 ret = __do_fault(vmf); 3431 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3432 return ret; 3433 3434 /* 3435 * Check if the backing address space wants to know that the page is 3436 * about to become writable 3437 */ 3438 if (vma->vm_ops->page_mkwrite) { 3439 unlock_page(vmf->page); 3440 tmp = do_page_mkwrite(vmf); 3441 if (unlikely(!tmp || 3442 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3443 put_page(vmf->page); 3444 return tmp; 3445 } 3446 } 3447 3448 ret |= finish_fault(vmf); 3449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3450 VM_FAULT_RETRY))) { 3451 unlock_page(vmf->page); 3452 put_page(vmf->page); 3453 return ret; 3454 } 3455 3456 fault_dirty_shared_page(vma, vmf->page); 3457 return ret; 3458 } 3459 3460 /* 3461 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3462 * but allow concurrent faults). 3463 * The mmap_sem may have been released depending on flags and our 3464 * return value. See filemap_fault() and __lock_page_or_retry(). 3465 */ 3466 static int do_fault(struct vm_fault *vmf) 3467 { 3468 struct vm_area_struct *vma = vmf->vma; 3469 int ret; 3470 3471 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3472 if (!vma->vm_ops->fault) 3473 ret = VM_FAULT_SIGBUS; 3474 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3475 ret = do_read_fault(vmf); 3476 else if (!(vma->vm_flags & VM_SHARED)) 3477 ret = do_cow_fault(vmf); 3478 else 3479 ret = do_shared_fault(vmf); 3480 3481 /* preallocated pagetable is unused: free it */ 3482 if (vmf->prealloc_pte) { 3483 pte_free(vma->vm_mm, vmf->prealloc_pte); 3484 vmf->prealloc_pte = NULL; 3485 } 3486 return ret; 3487 } 3488 3489 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3490 unsigned long addr, int page_nid, 3491 int *flags) 3492 { 3493 get_page(page); 3494 3495 count_vm_numa_event(NUMA_HINT_FAULTS); 3496 if (page_nid == numa_node_id()) { 3497 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3498 *flags |= TNF_FAULT_LOCAL; 3499 } 3500 3501 return mpol_misplaced(page, vma, addr); 3502 } 3503 3504 static int do_numa_page(struct vm_fault *vmf) 3505 { 3506 struct vm_area_struct *vma = vmf->vma; 3507 struct page *page = NULL; 3508 int page_nid = -1; 3509 int last_cpupid; 3510 int target_nid; 3511 bool migrated = false; 3512 pte_t pte; 3513 bool was_writable = pte_savedwrite(vmf->orig_pte); 3514 int flags = 0; 3515 3516 /* 3517 * The "pte" at this point cannot be used safely without 3518 * validation through pte_unmap_same(). It's of NUMA type but 3519 * the pfn may be screwed if the read is non atomic. 3520 */ 3521 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3522 spin_lock(vmf->ptl); 3523 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3524 pte_unmap_unlock(vmf->pte, vmf->ptl); 3525 goto out; 3526 } 3527 3528 /* 3529 * Make it present again, Depending on how arch implementes non 3530 * accessible ptes, some can allow access by kernel mode. 3531 */ 3532 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3533 pte = pte_modify(pte, vma->vm_page_prot); 3534 pte = pte_mkyoung(pte); 3535 if (was_writable) 3536 pte = pte_mkwrite(pte); 3537 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3538 update_mmu_cache(vma, vmf->address, vmf->pte); 3539 3540 page = vm_normal_page(vma, vmf->address, pte); 3541 if (!page) { 3542 pte_unmap_unlock(vmf->pte, vmf->ptl); 3543 return 0; 3544 } 3545 3546 /* TODO: handle PTE-mapped THP */ 3547 if (PageCompound(page)) { 3548 pte_unmap_unlock(vmf->pte, vmf->ptl); 3549 return 0; 3550 } 3551 3552 /* 3553 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3554 * much anyway since they can be in shared cache state. This misses 3555 * the case where a mapping is writable but the process never writes 3556 * to it but pte_write gets cleared during protection updates and 3557 * pte_dirty has unpredictable behaviour between PTE scan updates, 3558 * background writeback, dirty balancing and application behaviour. 3559 */ 3560 if (!pte_write(pte)) 3561 flags |= TNF_NO_GROUP; 3562 3563 /* 3564 * Flag if the page is shared between multiple address spaces. This 3565 * is later used when determining whether to group tasks together 3566 */ 3567 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3568 flags |= TNF_SHARED; 3569 3570 last_cpupid = page_cpupid_last(page); 3571 page_nid = page_to_nid(page); 3572 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3573 &flags); 3574 pte_unmap_unlock(vmf->pte, vmf->ptl); 3575 if (target_nid == -1) { 3576 put_page(page); 3577 goto out; 3578 } 3579 3580 /* Migrate to the requested node */ 3581 migrated = migrate_misplaced_page(page, vma, target_nid); 3582 if (migrated) { 3583 page_nid = target_nid; 3584 flags |= TNF_MIGRATED; 3585 } else 3586 flags |= TNF_MIGRATE_FAIL; 3587 3588 out: 3589 if (page_nid != -1) 3590 task_numa_fault(last_cpupid, page_nid, 1, flags); 3591 return 0; 3592 } 3593 3594 static int create_huge_pmd(struct vm_fault *vmf) 3595 { 3596 if (vma_is_anonymous(vmf->vma)) 3597 return do_huge_pmd_anonymous_page(vmf); 3598 if (vmf->vma->vm_ops->huge_fault) 3599 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3600 return VM_FAULT_FALLBACK; 3601 } 3602 3603 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3604 { 3605 if (vma_is_anonymous(vmf->vma)) 3606 return do_huge_pmd_wp_page(vmf, orig_pmd); 3607 if (vmf->vma->vm_ops->huge_fault) 3608 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3609 3610 /* COW handled on pte level: split pmd */ 3611 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3612 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3613 3614 return VM_FAULT_FALLBACK; 3615 } 3616 3617 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3618 { 3619 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3620 } 3621 3622 static int create_huge_pud(struct vm_fault *vmf) 3623 { 3624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3625 /* No support for anonymous transparent PUD pages yet */ 3626 if (vma_is_anonymous(vmf->vma)) 3627 return VM_FAULT_FALLBACK; 3628 if (vmf->vma->vm_ops->huge_fault) 3629 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3631 return VM_FAULT_FALLBACK; 3632 } 3633 3634 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3635 { 3636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3637 /* No support for anonymous transparent PUD pages yet */ 3638 if (vma_is_anonymous(vmf->vma)) 3639 return VM_FAULT_FALLBACK; 3640 if (vmf->vma->vm_ops->huge_fault) 3641 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3643 return VM_FAULT_FALLBACK; 3644 } 3645 3646 /* 3647 * These routines also need to handle stuff like marking pages dirty 3648 * and/or accessed for architectures that don't do it in hardware (most 3649 * RISC architectures). The early dirtying is also good on the i386. 3650 * 3651 * There is also a hook called "update_mmu_cache()" that architectures 3652 * with external mmu caches can use to update those (ie the Sparc or 3653 * PowerPC hashed page tables that act as extended TLBs). 3654 * 3655 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3656 * concurrent faults). 3657 * 3658 * The mmap_sem may have been released depending on flags and our return value. 3659 * See filemap_fault() and __lock_page_or_retry(). 3660 */ 3661 static int handle_pte_fault(struct vm_fault *vmf) 3662 { 3663 pte_t entry; 3664 3665 if (unlikely(pmd_none(*vmf->pmd))) { 3666 /* 3667 * Leave __pte_alloc() until later: because vm_ops->fault may 3668 * want to allocate huge page, and if we expose page table 3669 * for an instant, it will be difficult to retract from 3670 * concurrent faults and from rmap lookups. 3671 */ 3672 vmf->pte = NULL; 3673 } else { 3674 /* See comment in pte_alloc_one_map() */ 3675 if (pmd_devmap_trans_unstable(vmf->pmd)) 3676 return 0; 3677 /* 3678 * A regular pmd is established and it can't morph into a huge 3679 * pmd from under us anymore at this point because we hold the 3680 * mmap_sem read mode and khugepaged takes it in write mode. 3681 * So now it's safe to run pte_offset_map(). 3682 */ 3683 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3684 vmf->orig_pte = *vmf->pte; 3685 3686 /* 3687 * some architectures can have larger ptes than wordsize, 3688 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3689 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3690 * atomic accesses. The code below just needs a consistent 3691 * view for the ifs and we later double check anyway with the 3692 * ptl lock held. So here a barrier will do. 3693 */ 3694 barrier(); 3695 if (pte_none(vmf->orig_pte)) { 3696 pte_unmap(vmf->pte); 3697 vmf->pte = NULL; 3698 } 3699 } 3700 3701 if (!vmf->pte) { 3702 if (vma_is_anonymous(vmf->vma)) 3703 return do_anonymous_page(vmf); 3704 else 3705 return do_fault(vmf); 3706 } 3707 3708 if (!pte_present(vmf->orig_pte)) 3709 return do_swap_page(vmf); 3710 3711 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3712 return do_numa_page(vmf); 3713 3714 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3715 spin_lock(vmf->ptl); 3716 entry = vmf->orig_pte; 3717 if (unlikely(!pte_same(*vmf->pte, entry))) 3718 goto unlock; 3719 if (vmf->flags & FAULT_FLAG_WRITE) { 3720 if (!pte_write(entry)) 3721 return do_wp_page(vmf); 3722 entry = pte_mkdirty(entry); 3723 } 3724 entry = pte_mkyoung(entry); 3725 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3726 vmf->flags & FAULT_FLAG_WRITE)) { 3727 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3728 } else { 3729 /* 3730 * This is needed only for protection faults but the arch code 3731 * is not yet telling us if this is a protection fault or not. 3732 * This still avoids useless tlb flushes for .text page faults 3733 * with threads. 3734 */ 3735 if (vmf->flags & FAULT_FLAG_WRITE) 3736 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3737 } 3738 unlock: 3739 pte_unmap_unlock(vmf->pte, vmf->ptl); 3740 return 0; 3741 } 3742 3743 /* 3744 * By the time we get here, we already hold the mm semaphore 3745 * 3746 * The mmap_sem may have been released depending on flags and our 3747 * return value. See filemap_fault() and __lock_page_or_retry(). 3748 */ 3749 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3750 unsigned int flags) 3751 { 3752 struct vm_fault vmf = { 3753 .vma = vma, 3754 .address = address & PAGE_MASK, 3755 .flags = flags, 3756 .pgoff = linear_page_index(vma, address), 3757 .gfp_mask = __get_fault_gfp_mask(vma), 3758 }; 3759 struct mm_struct *mm = vma->vm_mm; 3760 pgd_t *pgd; 3761 p4d_t *p4d; 3762 int ret; 3763 3764 pgd = pgd_offset(mm, address); 3765 p4d = p4d_alloc(mm, pgd, address); 3766 if (!p4d) 3767 return VM_FAULT_OOM; 3768 3769 vmf.pud = pud_alloc(mm, p4d, address); 3770 if (!vmf.pud) 3771 return VM_FAULT_OOM; 3772 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3773 ret = create_huge_pud(&vmf); 3774 if (!(ret & VM_FAULT_FALLBACK)) 3775 return ret; 3776 } else { 3777 pud_t orig_pud = *vmf.pud; 3778 3779 barrier(); 3780 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3781 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3782 3783 /* NUMA case for anonymous PUDs would go here */ 3784 3785 if (dirty && !pud_write(orig_pud)) { 3786 ret = wp_huge_pud(&vmf, orig_pud); 3787 if (!(ret & VM_FAULT_FALLBACK)) 3788 return ret; 3789 } else { 3790 huge_pud_set_accessed(&vmf, orig_pud); 3791 return 0; 3792 } 3793 } 3794 } 3795 3796 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3797 if (!vmf.pmd) 3798 return VM_FAULT_OOM; 3799 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3800 ret = create_huge_pmd(&vmf); 3801 if (!(ret & VM_FAULT_FALLBACK)) 3802 return ret; 3803 } else { 3804 pmd_t orig_pmd = *vmf.pmd; 3805 3806 barrier(); 3807 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3808 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3809 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3810 3811 if ((vmf.flags & FAULT_FLAG_WRITE) && 3812 !pmd_write(orig_pmd)) { 3813 ret = wp_huge_pmd(&vmf, orig_pmd); 3814 if (!(ret & VM_FAULT_FALLBACK)) 3815 return ret; 3816 } else { 3817 huge_pmd_set_accessed(&vmf, orig_pmd); 3818 return 0; 3819 } 3820 } 3821 } 3822 3823 return handle_pte_fault(&vmf); 3824 } 3825 3826 /* 3827 * By the time we get here, we already hold the mm semaphore 3828 * 3829 * The mmap_sem may have been released depending on flags and our 3830 * return value. See filemap_fault() and __lock_page_or_retry(). 3831 */ 3832 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3833 unsigned int flags) 3834 { 3835 int ret; 3836 3837 __set_current_state(TASK_RUNNING); 3838 3839 count_vm_event(PGFAULT); 3840 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); 3841 3842 /* do counter updates before entering really critical section. */ 3843 check_sync_rss_stat(current); 3844 3845 /* 3846 * Enable the memcg OOM handling for faults triggered in user 3847 * space. Kernel faults are handled more gracefully. 3848 */ 3849 if (flags & FAULT_FLAG_USER) 3850 mem_cgroup_oom_enable(); 3851 3852 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3853 flags & FAULT_FLAG_INSTRUCTION, 3854 flags & FAULT_FLAG_REMOTE)) 3855 return VM_FAULT_SIGSEGV; 3856 3857 if (unlikely(is_vm_hugetlb_page(vma))) 3858 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3859 else 3860 ret = __handle_mm_fault(vma, address, flags); 3861 3862 if (flags & FAULT_FLAG_USER) { 3863 mem_cgroup_oom_disable(); 3864 /* 3865 * The task may have entered a memcg OOM situation but 3866 * if the allocation error was handled gracefully (no 3867 * VM_FAULT_OOM), there is no need to kill anything. 3868 * Just clean up the OOM state peacefully. 3869 */ 3870 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3871 mem_cgroup_oom_synchronize(false); 3872 } 3873 3874 /* 3875 * This mm has been already reaped by the oom reaper and so the 3876 * refault cannot be trusted in general. Anonymous refaults would 3877 * lose data and give a zero page instead e.g. This is especially 3878 * problem for use_mm() because regular tasks will just die and 3879 * the corrupted data will not be visible anywhere while kthread 3880 * will outlive the oom victim and potentially propagate the date 3881 * further. 3882 */ 3883 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) 3884 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) 3885 ret = VM_FAULT_SIGBUS; 3886 3887 return ret; 3888 } 3889 EXPORT_SYMBOL_GPL(handle_mm_fault); 3890 3891 #ifndef __PAGETABLE_P4D_FOLDED 3892 /* 3893 * Allocate p4d page table. 3894 * We've already handled the fast-path in-line. 3895 */ 3896 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3897 { 3898 p4d_t *new = p4d_alloc_one(mm, address); 3899 if (!new) 3900 return -ENOMEM; 3901 3902 smp_wmb(); /* See comment in __pte_alloc */ 3903 3904 spin_lock(&mm->page_table_lock); 3905 if (pgd_present(*pgd)) /* Another has populated it */ 3906 p4d_free(mm, new); 3907 else 3908 pgd_populate(mm, pgd, new); 3909 spin_unlock(&mm->page_table_lock); 3910 return 0; 3911 } 3912 #endif /* __PAGETABLE_P4D_FOLDED */ 3913 3914 #ifndef __PAGETABLE_PUD_FOLDED 3915 /* 3916 * Allocate page upper directory. 3917 * We've already handled the fast-path in-line. 3918 */ 3919 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3920 { 3921 pud_t *new = pud_alloc_one(mm, address); 3922 if (!new) 3923 return -ENOMEM; 3924 3925 smp_wmb(); /* See comment in __pte_alloc */ 3926 3927 spin_lock(&mm->page_table_lock); 3928 #ifndef __ARCH_HAS_5LEVEL_HACK 3929 if (p4d_present(*p4d)) /* Another has populated it */ 3930 pud_free(mm, new); 3931 else 3932 p4d_populate(mm, p4d, new); 3933 #else 3934 if (pgd_present(*p4d)) /* Another has populated it */ 3935 pud_free(mm, new); 3936 else 3937 pgd_populate(mm, p4d, new); 3938 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3939 spin_unlock(&mm->page_table_lock); 3940 return 0; 3941 } 3942 #endif /* __PAGETABLE_PUD_FOLDED */ 3943 3944 #ifndef __PAGETABLE_PMD_FOLDED 3945 /* 3946 * Allocate page middle directory. 3947 * We've already handled the fast-path in-line. 3948 */ 3949 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3950 { 3951 spinlock_t *ptl; 3952 pmd_t *new = pmd_alloc_one(mm, address); 3953 if (!new) 3954 return -ENOMEM; 3955 3956 smp_wmb(); /* See comment in __pte_alloc */ 3957 3958 ptl = pud_lock(mm, pud); 3959 #ifndef __ARCH_HAS_4LEVEL_HACK 3960 if (!pud_present(*pud)) { 3961 mm_inc_nr_pmds(mm); 3962 pud_populate(mm, pud, new); 3963 } else /* Another has populated it */ 3964 pmd_free(mm, new); 3965 #else 3966 if (!pgd_present(*pud)) { 3967 mm_inc_nr_pmds(mm); 3968 pgd_populate(mm, pud, new); 3969 } else /* Another has populated it */ 3970 pmd_free(mm, new); 3971 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3972 spin_unlock(ptl); 3973 return 0; 3974 } 3975 #endif /* __PAGETABLE_PMD_FOLDED */ 3976 3977 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 3978 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 3979 { 3980 pgd_t *pgd; 3981 p4d_t *p4d; 3982 pud_t *pud; 3983 pmd_t *pmd; 3984 pte_t *ptep; 3985 3986 pgd = pgd_offset(mm, address); 3987 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3988 goto out; 3989 3990 p4d = p4d_offset(pgd, address); 3991 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 3992 goto out; 3993 3994 pud = pud_offset(p4d, address); 3995 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3996 goto out; 3997 3998 pmd = pmd_offset(pud, address); 3999 VM_BUG_ON(pmd_trans_huge(*pmd)); 4000 4001 if (pmd_huge(*pmd)) { 4002 if (!pmdpp) 4003 goto out; 4004 4005 *ptlp = pmd_lock(mm, pmd); 4006 if (pmd_huge(*pmd)) { 4007 *pmdpp = pmd; 4008 return 0; 4009 } 4010 spin_unlock(*ptlp); 4011 } 4012 4013 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4014 goto out; 4015 4016 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4017 if (!ptep) 4018 goto out; 4019 if (!pte_present(*ptep)) 4020 goto unlock; 4021 *ptepp = ptep; 4022 return 0; 4023 unlock: 4024 pte_unmap_unlock(ptep, *ptlp); 4025 out: 4026 return -EINVAL; 4027 } 4028 4029 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4030 pte_t **ptepp, spinlock_t **ptlp) 4031 { 4032 int res; 4033 4034 /* (void) is needed to make gcc happy */ 4035 (void) __cond_lock(*ptlp, 4036 !(res = __follow_pte_pmd(mm, address, ptepp, NULL, 4037 ptlp))); 4038 return res; 4039 } 4040 4041 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4042 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4043 { 4044 int res; 4045 4046 /* (void) is needed to make gcc happy */ 4047 (void) __cond_lock(*ptlp, 4048 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, 4049 ptlp))); 4050 return res; 4051 } 4052 EXPORT_SYMBOL(follow_pte_pmd); 4053 4054 /** 4055 * follow_pfn - look up PFN at a user virtual address 4056 * @vma: memory mapping 4057 * @address: user virtual address 4058 * @pfn: location to store found PFN 4059 * 4060 * Only IO mappings and raw PFN mappings are allowed. 4061 * 4062 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4063 */ 4064 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4065 unsigned long *pfn) 4066 { 4067 int ret = -EINVAL; 4068 spinlock_t *ptl; 4069 pte_t *ptep; 4070 4071 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4072 return ret; 4073 4074 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4075 if (ret) 4076 return ret; 4077 *pfn = pte_pfn(*ptep); 4078 pte_unmap_unlock(ptep, ptl); 4079 return 0; 4080 } 4081 EXPORT_SYMBOL(follow_pfn); 4082 4083 #ifdef CONFIG_HAVE_IOREMAP_PROT 4084 int follow_phys(struct vm_area_struct *vma, 4085 unsigned long address, unsigned int flags, 4086 unsigned long *prot, resource_size_t *phys) 4087 { 4088 int ret = -EINVAL; 4089 pte_t *ptep, pte; 4090 spinlock_t *ptl; 4091 4092 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4093 goto out; 4094 4095 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4096 goto out; 4097 pte = *ptep; 4098 4099 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4100 goto unlock; 4101 4102 *prot = pgprot_val(pte_pgprot(pte)); 4103 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4104 4105 ret = 0; 4106 unlock: 4107 pte_unmap_unlock(ptep, ptl); 4108 out: 4109 return ret; 4110 } 4111 4112 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4113 void *buf, int len, int write) 4114 { 4115 resource_size_t phys_addr; 4116 unsigned long prot = 0; 4117 void __iomem *maddr; 4118 int offset = addr & (PAGE_SIZE-1); 4119 4120 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4121 return -EINVAL; 4122 4123 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4124 if (write) 4125 memcpy_toio(maddr + offset, buf, len); 4126 else 4127 memcpy_fromio(buf, maddr + offset, len); 4128 iounmap(maddr); 4129 4130 return len; 4131 } 4132 EXPORT_SYMBOL_GPL(generic_access_phys); 4133 #endif 4134 4135 /* 4136 * Access another process' address space as given in mm. If non-NULL, use the 4137 * given task for page fault accounting. 4138 */ 4139 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4140 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4141 { 4142 struct vm_area_struct *vma; 4143 void *old_buf = buf; 4144 int write = gup_flags & FOLL_WRITE; 4145 4146 down_read(&mm->mmap_sem); 4147 /* ignore errors, just check how much was successfully transferred */ 4148 while (len) { 4149 int bytes, ret, offset; 4150 void *maddr; 4151 struct page *page = NULL; 4152 4153 ret = get_user_pages_remote(tsk, mm, addr, 1, 4154 gup_flags, &page, &vma, NULL); 4155 if (ret <= 0) { 4156 #ifndef CONFIG_HAVE_IOREMAP_PROT 4157 break; 4158 #else 4159 /* 4160 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4161 * we can access using slightly different code. 4162 */ 4163 vma = find_vma(mm, addr); 4164 if (!vma || vma->vm_start > addr) 4165 break; 4166 if (vma->vm_ops && vma->vm_ops->access) 4167 ret = vma->vm_ops->access(vma, addr, buf, 4168 len, write); 4169 if (ret <= 0) 4170 break; 4171 bytes = ret; 4172 #endif 4173 } else { 4174 bytes = len; 4175 offset = addr & (PAGE_SIZE-1); 4176 if (bytes > PAGE_SIZE-offset) 4177 bytes = PAGE_SIZE-offset; 4178 4179 maddr = kmap(page); 4180 if (write) { 4181 copy_to_user_page(vma, page, addr, 4182 maddr + offset, buf, bytes); 4183 set_page_dirty_lock(page); 4184 } else { 4185 copy_from_user_page(vma, page, addr, 4186 buf, maddr + offset, bytes); 4187 } 4188 kunmap(page); 4189 put_page(page); 4190 } 4191 len -= bytes; 4192 buf += bytes; 4193 addr += bytes; 4194 } 4195 up_read(&mm->mmap_sem); 4196 4197 return buf - old_buf; 4198 } 4199 4200 /** 4201 * access_remote_vm - access another process' address space 4202 * @mm: the mm_struct of the target address space 4203 * @addr: start address to access 4204 * @buf: source or destination buffer 4205 * @len: number of bytes to transfer 4206 * @gup_flags: flags modifying lookup behaviour 4207 * 4208 * The caller must hold a reference on @mm. 4209 */ 4210 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4211 void *buf, int len, unsigned int gup_flags) 4212 { 4213 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4214 } 4215 4216 /* 4217 * Access another process' address space. 4218 * Source/target buffer must be kernel space, 4219 * Do not walk the page table directly, use get_user_pages 4220 */ 4221 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4222 void *buf, int len, unsigned int gup_flags) 4223 { 4224 struct mm_struct *mm; 4225 int ret; 4226 4227 mm = get_task_mm(tsk); 4228 if (!mm) 4229 return 0; 4230 4231 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4232 4233 mmput(mm); 4234 4235 return ret; 4236 } 4237 EXPORT_SYMBOL_GPL(access_process_vm); 4238 4239 /* 4240 * Print the name of a VMA. 4241 */ 4242 void print_vma_addr(char *prefix, unsigned long ip) 4243 { 4244 struct mm_struct *mm = current->mm; 4245 struct vm_area_struct *vma; 4246 4247 /* 4248 * Do not print if we are in atomic 4249 * contexts (in exception stacks, etc.): 4250 */ 4251 if (preempt_count()) 4252 return; 4253 4254 down_read(&mm->mmap_sem); 4255 vma = find_vma(mm, ip); 4256 if (vma && vma->vm_file) { 4257 struct file *f = vma->vm_file; 4258 char *buf = (char *)__get_free_page(GFP_KERNEL); 4259 if (buf) { 4260 char *p; 4261 4262 p = file_path(f, buf, PAGE_SIZE); 4263 if (IS_ERR(p)) 4264 p = "?"; 4265 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4266 vma->vm_start, 4267 vma->vm_end - vma->vm_start); 4268 free_page((unsigned long)buf); 4269 } 4270 } 4271 up_read(&mm->mmap_sem); 4272 } 4273 4274 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4275 void __might_fault(const char *file, int line) 4276 { 4277 /* 4278 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4279 * holding the mmap_sem, this is safe because kernel memory doesn't 4280 * get paged out, therefore we'll never actually fault, and the 4281 * below annotations will generate false positives. 4282 */ 4283 if (uaccess_kernel()) 4284 return; 4285 if (pagefault_disabled()) 4286 return; 4287 __might_sleep(file, line, 0); 4288 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4289 if (current->mm) 4290 might_lock_read(¤t->mm->mmap_sem); 4291 #endif 4292 } 4293 EXPORT_SYMBOL(__might_fault); 4294 #endif 4295 4296 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4297 static void clear_gigantic_page(struct page *page, 4298 unsigned long addr, 4299 unsigned int pages_per_huge_page) 4300 { 4301 int i; 4302 struct page *p = page; 4303 4304 might_sleep(); 4305 for (i = 0; i < pages_per_huge_page; 4306 i++, p = mem_map_next(p, page, i)) { 4307 cond_resched(); 4308 clear_user_highpage(p, addr + i * PAGE_SIZE); 4309 } 4310 } 4311 void clear_huge_page(struct page *page, 4312 unsigned long addr, unsigned int pages_per_huge_page) 4313 { 4314 int i; 4315 4316 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4317 clear_gigantic_page(page, addr, pages_per_huge_page); 4318 return; 4319 } 4320 4321 might_sleep(); 4322 for (i = 0; i < pages_per_huge_page; i++) { 4323 cond_resched(); 4324 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4325 } 4326 } 4327 4328 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4329 unsigned long addr, 4330 struct vm_area_struct *vma, 4331 unsigned int pages_per_huge_page) 4332 { 4333 int i; 4334 struct page *dst_base = dst; 4335 struct page *src_base = src; 4336 4337 for (i = 0; i < pages_per_huge_page; ) { 4338 cond_resched(); 4339 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4340 4341 i++; 4342 dst = mem_map_next(dst, dst_base, i); 4343 src = mem_map_next(src, src_base, i); 4344 } 4345 } 4346 4347 void copy_user_huge_page(struct page *dst, struct page *src, 4348 unsigned long addr, struct vm_area_struct *vma, 4349 unsigned int pages_per_huge_page) 4350 { 4351 int i; 4352 4353 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4354 copy_user_gigantic_page(dst, src, addr, vma, 4355 pages_per_huge_page); 4356 return; 4357 } 4358 4359 might_sleep(); 4360 for (i = 0; i < pages_per_huge_page; i++) { 4361 cond_resched(); 4362 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4363 } 4364 } 4365 4366 long copy_huge_page_from_user(struct page *dst_page, 4367 const void __user *usr_src, 4368 unsigned int pages_per_huge_page, 4369 bool allow_pagefault) 4370 { 4371 void *src = (void *)usr_src; 4372 void *page_kaddr; 4373 unsigned long i, rc = 0; 4374 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4375 4376 for (i = 0; i < pages_per_huge_page; i++) { 4377 if (allow_pagefault) 4378 page_kaddr = kmap(dst_page + i); 4379 else 4380 page_kaddr = kmap_atomic(dst_page + i); 4381 rc = copy_from_user(page_kaddr, 4382 (const void __user *)(src + i * PAGE_SIZE), 4383 PAGE_SIZE); 4384 if (allow_pagefault) 4385 kunmap(dst_page + i); 4386 else 4387 kunmap_atomic(page_kaddr); 4388 4389 ret_val -= (PAGE_SIZE - rc); 4390 if (rc) 4391 break; 4392 4393 cond_resched(); 4394 } 4395 return ret_val; 4396 } 4397 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4398 4399 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4400 4401 static struct kmem_cache *page_ptl_cachep; 4402 4403 void __init ptlock_cache_init(void) 4404 { 4405 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4406 SLAB_PANIC, NULL); 4407 } 4408 4409 bool ptlock_alloc(struct page *page) 4410 { 4411 spinlock_t *ptl; 4412 4413 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4414 if (!ptl) 4415 return false; 4416 page->ptl = ptl; 4417 return true; 4418 } 4419 4420 void ptlock_free(struct page *page) 4421 { 4422 kmem_cache_free(page_ptl_cachep, page->ptl); 4423 } 4424 #endif 4425