xref: /openbmc/linux/mm/memory.c (revision f7d84fa7)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79 
80 #include "internal.h"
81 
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85 
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90 
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94 
95 /*
96  * A number of key systems in x86 including ioremap() rely on the assumption
97  * that high_memory defines the upper bound on direct map memory, then end
98  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
99  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100  * and ZONE_HIGHMEM.
101  */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104 
105 /*
106  * Randomize the address space (stacks, mmaps, brk, etc.).
107  *
108  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109  *   as ancient (libc5 based) binaries can segfault. )
110  */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 					1;
114 #else
115 					2;
116 #endif
117 
118 static int __init disable_randmaps(char *s)
119 {
120 	randomize_va_space = 0;
121 	return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124 
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127 
128 unsigned long highest_memmap_pfn __read_mostly;
129 
130 /*
131  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132  */
133 static int __init init_zero_pfn(void)
134 {
135 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 	return 0;
137 }
138 core_initcall(init_zero_pfn);
139 
140 
141 #if defined(SPLIT_RSS_COUNTING)
142 
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 	int i;
146 
147 	for (i = 0; i < NR_MM_COUNTERS; i++) {
148 		if (current->rss_stat.count[i]) {
149 			add_mm_counter(mm, i, current->rss_stat.count[i]);
150 			current->rss_stat.count[i] = 0;
151 		}
152 	}
153 	current->rss_stat.events = 0;
154 }
155 
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 	struct task_struct *task = current;
159 
160 	if (likely(task->mm == mm))
161 		task->rss_stat.count[member] += val;
162 	else
163 		add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167 
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH	(64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 	if (unlikely(task != current))
173 		return;
174 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 		sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178 
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181 
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185 
186 #endif /* SPLIT_RSS_COUNTING */
187 
188 #ifdef HAVE_GENERIC_MMU_GATHER
189 
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 	struct mmu_gather_batch *batch;
193 
194 	batch = tlb->active;
195 	if (batch->next) {
196 		tlb->active = batch->next;
197 		return true;
198 	}
199 
200 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 		return false;
202 
203 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 	if (!batch)
205 		return false;
206 
207 	tlb->batch_count++;
208 	batch->next = NULL;
209 	batch->nr   = 0;
210 	batch->max  = MAX_GATHER_BATCH;
211 
212 	tlb->active->next = batch;
213 	tlb->active = batch;
214 
215 	return true;
216 }
217 
218 /* tlb_gather_mmu
219  *	Called to initialize an (on-stack) mmu_gather structure for page-table
220  *	tear-down from @mm. The @fullmm argument is used when @mm is without
221  *	users and we're going to destroy the full address space (exit/execve).
222  */
223 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
224 {
225 	tlb->mm = mm;
226 
227 	/* Is it from 0 to ~0? */
228 	tlb->fullmm     = !(start | (end+1));
229 	tlb->need_flush_all = 0;
230 	tlb->local.next = NULL;
231 	tlb->local.nr   = 0;
232 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
233 	tlb->active     = &tlb->local;
234 	tlb->batch_count = 0;
235 
236 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 	tlb->batch = NULL;
238 #endif
239 	tlb->page_size = 0;
240 
241 	__tlb_reset_range(tlb);
242 }
243 
244 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
245 {
246 	if (!tlb->end)
247 		return;
248 
249 	tlb_flush(tlb);
250 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
251 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
252 	tlb_table_flush(tlb);
253 #endif
254 	__tlb_reset_range(tlb);
255 }
256 
257 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
258 {
259 	struct mmu_gather_batch *batch;
260 
261 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
262 		free_pages_and_swap_cache(batch->pages, batch->nr);
263 		batch->nr = 0;
264 	}
265 	tlb->active = &tlb->local;
266 }
267 
268 void tlb_flush_mmu(struct mmu_gather *tlb)
269 {
270 	tlb_flush_mmu_tlbonly(tlb);
271 	tlb_flush_mmu_free(tlb);
272 }
273 
274 /* tlb_finish_mmu
275  *	Called at the end of the shootdown operation to free up any resources
276  *	that were required.
277  */
278 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
279 {
280 	struct mmu_gather_batch *batch, *next;
281 
282 	tlb_flush_mmu(tlb);
283 
284 	/* keep the page table cache within bounds */
285 	check_pgt_cache();
286 
287 	for (batch = tlb->local.next; batch; batch = next) {
288 		next = batch->next;
289 		free_pages((unsigned long)batch, 0);
290 	}
291 	tlb->local.next = NULL;
292 }
293 
294 /* __tlb_remove_page
295  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
296  *	handling the additional races in SMP caused by other CPUs caching valid
297  *	mappings in their TLBs. Returns the number of free page slots left.
298  *	When out of page slots we must call tlb_flush_mmu().
299  *returns true if the caller should flush.
300  */
301 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
302 {
303 	struct mmu_gather_batch *batch;
304 
305 	VM_BUG_ON(!tlb->end);
306 	VM_WARN_ON(tlb->page_size != page_size);
307 
308 	batch = tlb->active;
309 	/*
310 	 * Add the page and check if we are full. If so
311 	 * force a flush.
312 	 */
313 	batch->pages[batch->nr++] = page;
314 	if (batch->nr == batch->max) {
315 		if (!tlb_next_batch(tlb))
316 			return true;
317 		batch = tlb->active;
318 	}
319 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
320 
321 	return false;
322 }
323 
324 #endif /* HAVE_GENERIC_MMU_GATHER */
325 
326 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327 
328 /*
329  * See the comment near struct mmu_table_batch.
330  */
331 
332 static void tlb_remove_table_smp_sync(void *arg)
333 {
334 	/* Simply deliver the interrupt */
335 }
336 
337 static void tlb_remove_table_one(void *table)
338 {
339 	/*
340 	 * This isn't an RCU grace period and hence the page-tables cannot be
341 	 * assumed to be actually RCU-freed.
342 	 *
343 	 * It is however sufficient for software page-table walkers that rely on
344 	 * IRQ disabling. See the comment near struct mmu_table_batch.
345 	 */
346 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
347 	__tlb_remove_table(table);
348 }
349 
350 static void tlb_remove_table_rcu(struct rcu_head *head)
351 {
352 	struct mmu_table_batch *batch;
353 	int i;
354 
355 	batch = container_of(head, struct mmu_table_batch, rcu);
356 
357 	for (i = 0; i < batch->nr; i++)
358 		__tlb_remove_table(batch->tables[i]);
359 
360 	free_page((unsigned long)batch);
361 }
362 
363 void tlb_table_flush(struct mmu_gather *tlb)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	if (*batch) {
368 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
369 		*batch = NULL;
370 	}
371 }
372 
373 void tlb_remove_table(struct mmu_gather *tlb, void *table)
374 {
375 	struct mmu_table_batch **batch = &tlb->batch;
376 
377 	/*
378 	 * When there's less then two users of this mm there cannot be a
379 	 * concurrent page-table walk.
380 	 */
381 	if (atomic_read(&tlb->mm->mm_users) < 2) {
382 		__tlb_remove_table(table);
383 		return;
384 	}
385 
386 	if (*batch == NULL) {
387 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
388 		if (*batch == NULL) {
389 			tlb_remove_table_one(table);
390 			return;
391 		}
392 		(*batch)->nr = 0;
393 	}
394 	(*batch)->tables[(*batch)->nr++] = table;
395 	if ((*batch)->nr == MAX_TABLE_BATCH)
396 		tlb_table_flush(tlb);
397 }
398 
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 			   unsigned long addr)
407 {
408 	pgtable_t token = pmd_pgtable(*pmd);
409 	pmd_clear(pmd);
410 	pte_free_tlb(tlb, token, addr);
411 	atomic_long_dec(&tlb->mm->nr_ptes);
412 }
413 
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 				unsigned long addr, unsigned long end,
416 				unsigned long floor, unsigned long ceiling)
417 {
418 	pmd_t *pmd;
419 	unsigned long next;
420 	unsigned long start;
421 
422 	start = addr;
423 	pmd = pmd_offset(pud, addr);
424 	do {
425 		next = pmd_addr_end(addr, end);
426 		if (pmd_none_or_clear_bad(pmd))
427 			continue;
428 		free_pte_range(tlb, pmd, addr);
429 	} while (pmd++, addr = next, addr != end);
430 
431 	start &= PUD_MASK;
432 	if (start < floor)
433 		return;
434 	if (ceiling) {
435 		ceiling &= PUD_MASK;
436 		if (!ceiling)
437 			return;
438 	}
439 	if (end - 1 > ceiling - 1)
440 		return;
441 
442 	pmd = pmd_offset(pud, start);
443 	pud_clear(pud);
444 	pmd_free_tlb(tlb, pmd, start);
445 	mm_dec_nr_pmds(tlb->mm);
446 }
447 
448 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
449 				unsigned long addr, unsigned long end,
450 				unsigned long floor, unsigned long ceiling)
451 {
452 	pud_t *pud;
453 	unsigned long next;
454 	unsigned long start;
455 
456 	start = addr;
457 	pud = pud_offset(p4d, addr);
458 	do {
459 		next = pud_addr_end(addr, end);
460 		if (pud_none_or_clear_bad(pud))
461 			continue;
462 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 	} while (pud++, addr = next, addr != end);
464 
465 	start &= P4D_MASK;
466 	if (start < floor)
467 		return;
468 	if (ceiling) {
469 		ceiling &= P4D_MASK;
470 		if (!ceiling)
471 			return;
472 	}
473 	if (end - 1 > ceiling - 1)
474 		return;
475 
476 	pud = pud_offset(p4d, start);
477 	p4d_clear(p4d);
478 	pud_free_tlb(tlb, pud, start);
479 }
480 
481 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
482 				unsigned long addr, unsigned long end,
483 				unsigned long floor, unsigned long ceiling)
484 {
485 	p4d_t *p4d;
486 	unsigned long next;
487 	unsigned long start;
488 
489 	start = addr;
490 	p4d = p4d_offset(pgd, addr);
491 	do {
492 		next = p4d_addr_end(addr, end);
493 		if (p4d_none_or_clear_bad(p4d))
494 			continue;
495 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
496 	} while (p4d++, addr = next, addr != end);
497 
498 	start &= PGDIR_MASK;
499 	if (start < floor)
500 		return;
501 	if (ceiling) {
502 		ceiling &= PGDIR_MASK;
503 		if (!ceiling)
504 			return;
505 	}
506 	if (end - 1 > ceiling - 1)
507 		return;
508 
509 	p4d = p4d_offset(pgd, start);
510 	pgd_clear(pgd);
511 	p4d_free_tlb(tlb, p4d, start);
512 }
513 
514 /*
515  * This function frees user-level page tables of a process.
516  */
517 void free_pgd_range(struct mmu_gather *tlb,
518 			unsigned long addr, unsigned long end,
519 			unsigned long floor, unsigned long ceiling)
520 {
521 	pgd_t *pgd;
522 	unsigned long next;
523 
524 	/*
525 	 * The next few lines have given us lots of grief...
526 	 *
527 	 * Why are we testing PMD* at this top level?  Because often
528 	 * there will be no work to do at all, and we'd prefer not to
529 	 * go all the way down to the bottom just to discover that.
530 	 *
531 	 * Why all these "- 1"s?  Because 0 represents both the bottom
532 	 * of the address space and the top of it (using -1 for the
533 	 * top wouldn't help much: the masks would do the wrong thing).
534 	 * The rule is that addr 0 and floor 0 refer to the bottom of
535 	 * the address space, but end 0 and ceiling 0 refer to the top
536 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
537 	 * that end 0 case should be mythical).
538 	 *
539 	 * Wherever addr is brought up or ceiling brought down, we must
540 	 * be careful to reject "the opposite 0" before it confuses the
541 	 * subsequent tests.  But what about where end is brought down
542 	 * by PMD_SIZE below? no, end can't go down to 0 there.
543 	 *
544 	 * Whereas we round start (addr) and ceiling down, by different
545 	 * masks at different levels, in order to test whether a table
546 	 * now has no other vmas using it, so can be freed, we don't
547 	 * bother to round floor or end up - the tests don't need that.
548 	 */
549 
550 	addr &= PMD_MASK;
551 	if (addr < floor) {
552 		addr += PMD_SIZE;
553 		if (!addr)
554 			return;
555 	}
556 	if (ceiling) {
557 		ceiling &= PMD_MASK;
558 		if (!ceiling)
559 			return;
560 	}
561 	if (end - 1 > ceiling - 1)
562 		end -= PMD_SIZE;
563 	if (addr > end - 1)
564 		return;
565 	/*
566 	 * We add page table cache pages with PAGE_SIZE,
567 	 * (see pte_free_tlb()), flush the tlb if we need
568 	 */
569 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
570 	pgd = pgd_offset(tlb->mm, addr);
571 	do {
572 		next = pgd_addr_end(addr, end);
573 		if (pgd_none_or_clear_bad(pgd))
574 			continue;
575 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
576 	} while (pgd++, addr = next, addr != end);
577 }
578 
579 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
580 		unsigned long floor, unsigned long ceiling)
581 {
582 	while (vma) {
583 		struct vm_area_struct *next = vma->vm_next;
584 		unsigned long addr = vma->vm_start;
585 
586 		/*
587 		 * Hide vma from rmap and truncate_pagecache before freeing
588 		 * pgtables
589 		 */
590 		unlink_anon_vmas(vma);
591 		unlink_file_vma(vma);
592 
593 		if (is_vm_hugetlb_page(vma)) {
594 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
595 				floor, next ? next->vm_start : ceiling);
596 		} else {
597 			/*
598 			 * Optimization: gather nearby vmas into one call down
599 			 */
600 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
601 			       && !is_vm_hugetlb_page(next)) {
602 				vma = next;
603 				next = vma->vm_next;
604 				unlink_anon_vmas(vma);
605 				unlink_file_vma(vma);
606 			}
607 			free_pgd_range(tlb, addr, vma->vm_end,
608 				floor, next ? next->vm_start : ceiling);
609 		}
610 		vma = next;
611 	}
612 }
613 
614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
615 {
616 	spinlock_t *ptl;
617 	pgtable_t new = pte_alloc_one(mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	/*
622 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
623 	 * visible before the pte is made visible to other CPUs by being
624 	 * put into page tables.
625 	 *
626 	 * The other side of the story is the pointer chasing in the page
627 	 * table walking code (when walking the page table without locking;
628 	 * ie. most of the time). Fortunately, these data accesses consist
629 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
630 	 * being the notable exception) will already guarantee loads are
631 	 * seen in-order. See the alpha page table accessors for the
632 	 * smp_read_barrier_depends() barriers in page table walking code.
633 	 */
634 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
635 
636 	ptl = pmd_lock(mm, pmd);
637 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
638 		atomic_long_inc(&mm->nr_ptes);
639 		pmd_populate(mm, pmd, new);
640 		new = NULL;
641 	}
642 	spin_unlock(ptl);
643 	if (new)
644 		pte_free(mm, new);
645 	return 0;
646 }
647 
648 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
649 {
650 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
651 	if (!new)
652 		return -ENOMEM;
653 
654 	smp_wmb(); /* See comment in __pte_alloc */
655 
656 	spin_lock(&init_mm.page_table_lock);
657 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
658 		pmd_populate_kernel(&init_mm, pmd, new);
659 		new = NULL;
660 	}
661 	spin_unlock(&init_mm.page_table_lock);
662 	if (new)
663 		pte_free_kernel(&init_mm, new);
664 	return 0;
665 }
666 
667 static inline void init_rss_vec(int *rss)
668 {
669 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
670 }
671 
672 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
673 {
674 	int i;
675 
676 	if (current->mm == mm)
677 		sync_mm_rss(mm);
678 	for (i = 0; i < NR_MM_COUNTERS; i++)
679 		if (rss[i])
680 			add_mm_counter(mm, i, rss[i]);
681 }
682 
683 /*
684  * This function is called to print an error when a bad pte
685  * is found. For example, we might have a PFN-mapped pte in
686  * a region that doesn't allow it.
687  *
688  * The calling function must still handle the error.
689  */
690 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
691 			  pte_t pte, struct page *page)
692 {
693 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
694 	p4d_t *p4d = p4d_offset(pgd, addr);
695 	pud_t *pud = pud_offset(p4d, addr);
696 	pmd_t *pmd = pmd_offset(pud, addr);
697 	struct address_space *mapping;
698 	pgoff_t index;
699 	static unsigned long resume;
700 	static unsigned long nr_shown;
701 	static unsigned long nr_unshown;
702 
703 	/*
704 	 * Allow a burst of 60 reports, then keep quiet for that minute;
705 	 * or allow a steady drip of one report per second.
706 	 */
707 	if (nr_shown == 60) {
708 		if (time_before(jiffies, resume)) {
709 			nr_unshown++;
710 			return;
711 		}
712 		if (nr_unshown) {
713 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
714 				 nr_unshown);
715 			nr_unshown = 0;
716 		}
717 		nr_shown = 0;
718 	}
719 	if (nr_shown++ == 0)
720 		resume = jiffies + 60 * HZ;
721 
722 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
723 	index = linear_page_index(vma, addr);
724 
725 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
726 		 current->comm,
727 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
728 	if (page)
729 		dump_page(page, "bad pte");
730 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
731 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
732 	/*
733 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
734 	 */
735 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
736 		 vma->vm_file,
737 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
738 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
739 		 mapping ? mapping->a_ops->readpage : NULL);
740 	dump_stack();
741 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
742 }
743 
744 /*
745  * vm_normal_page -- This function gets the "struct page" associated with a pte.
746  *
747  * "Special" mappings do not wish to be associated with a "struct page" (either
748  * it doesn't exist, or it exists but they don't want to touch it). In this
749  * case, NULL is returned here. "Normal" mappings do have a struct page.
750  *
751  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
752  * pte bit, in which case this function is trivial. Secondly, an architecture
753  * may not have a spare pte bit, which requires a more complicated scheme,
754  * described below.
755  *
756  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
757  * special mapping (even if there are underlying and valid "struct pages").
758  * COWed pages of a VM_PFNMAP are always normal.
759  *
760  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
761  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
762  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
763  * mapping will always honor the rule
764  *
765  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
766  *
767  * And for normal mappings this is false.
768  *
769  * This restricts such mappings to be a linear translation from virtual address
770  * to pfn. To get around this restriction, we allow arbitrary mappings so long
771  * as the vma is not a COW mapping; in that case, we know that all ptes are
772  * special (because none can have been COWed).
773  *
774  *
775  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
776  *
777  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
778  * page" backing, however the difference is that _all_ pages with a struct
779  * page (that is, those where pfn_valid is true) are refcounted and considered
780  * normal pages by the VM. The disadvantage is that pages are refcounted
781  * (which can be slower and simply not an option for some PFNMAP users). The
782  * advantage is that we don't have to follow the strict linearity rule of
783  * PFNMAP mappings in order to support COWable mappings.
784  *
785  */
786 #ifdef __HAVE_ARCH_PTE_SPECIAL
787 # define HAVE_PTE_SPECIAL 1
788 #else
789 # define HAVE_PTE_SPECIAL 0
790 #endif
791 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
792 				pte_t pte)
793 {
794 	unsigned long pfn = pte_pfn(pte);
795 
796 	if (HAVE_PTE_SPECIAL) {
797 		if (likely(!pte_special(pte)))
798 			goto check_pfn;
799 		if (vma->vm_ops && vma->vm_ops->find_special_page)
800 			return vma->vm_ops->find_special_page(vma, addr);
801 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
802 			return NULL;
803 		if (!is_zero_pfn(pfn))
804 			print_bad_pte(vma, addr, pte, NULL);
805 		return NULL;
806 	}
807 
808 	/* !HAVE_PTE_SPECIAL case follows: */
809 
810 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
811 		if (vma->vm_flags & VM_MIXEDMAP) {
812 			if (!pfn_valid(pfn))
813 				return NULL;
814 			goto out;
815 		} else {
816 			unsigned long off;
817 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
818 			if (pfn == vma->vm_pgoff + off)
819 				return NULL;
820 			if (!is_cow_mapping(vma->vm_flags))
821 				return NULL;
822 		}
823 	}
824 
825 	if (is_zero_pfn(pfn))
826 		return NULL;
827 check_pfn:
828 	if (unlikely(pfn > highest_memmap_pfn)) {
829 		print_bad_pte(vma, addr, pte, NULL);
830 		return NULL;
831 	}
832 
833 	/*
834 	 * NOTE! We still have PageReserved() pages in the page tables.
835 	 * eg. VDSO mappings can cause them to exist.
836 	 */
837 out:
838 	return pfn_to_page(pfn);
839 }
840 
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
843 				pmd_t pmd)
844 {
845 	unsigned long pfn = pmd_pfn(pmd);
846 
847 	/*
848 	 * There is no pmd_special() but there may be special pmds, e.g.
849 	 * in a direct-access (dax) mapping, so let's just replicate the
850 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
851 	 */
852 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
853 		if (vma->vm_flags & VM_MIXEDMAP) {
854 			if (!pfn_valid(pfn))
855 				return NULL;
856 			goto out;
857 		} else {
858 			unsigned long off;
859 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
860 			if (pfn == vma->vm_pgoff + off)
861 				return NULL;
862 			if (!is_cow_mapping(vma->vm_flags))
863 				return NULL;
864 		}
865 	}
866 
867 	if (is_zero_pfn(pfn))
868 		return NULL;
869 	if (unlikely(pfn > highest_memmap_pfn))
870 		return NULL;
871 
872 	/*
873 	 * NOTE! We still have PageReserved() pages in the page tables.
874 	 * eg. VDSO mappings can cause them to exist.
875 	 */
876 out:
877 	return pfn_to_page(pfn);
878 }
879 #endif
880 
881 /*
882  * copy one vm_area from one task to the other. Assumes the page tables
883  * already present in the new task to be cleared in the whole range
884  * covered by this vma.
885  */
886 
887 static inline unsigned long
888 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
890 		unsigned long addr, int *rss)
891 {
892 	unsigned long vm_flags = vma->vm_flags;
893 	pte_t pte = *src_pte;
894 	struct page *page;
895 
896 	/* pte contains position in swap or file, so copy. */
897 	if (unlikely(!pte_present(pte))) {
898 		swp_entry_t entry = pte_to_swp_entry(pte);
899 
900 		if (likely(!non_swap_entry(entry))) {
901 			if (swap_duplicate(entry) < 0)
902 				return entry.val;
903 
904 			/* make sure dst_mm is on swapoff's mmlist. */
905 			if (unlikely(list_empty(&dst_mm->mmlist))) {
906 				spin_lock(&mmlist_lock);
907 				if (list_empty(&dst_mm->mmlist))
908 					list_add(&dst_mm->mmlist,
909 							&src_mm->mmlist);
910 				spin_unlock(&mmlist_lock);
911 			}
912 			rss[MM_SWAPENTS]++;
913 		} else if (is_migration_entry(entry)) {
914 			page = migration_entry_to_page(entry);
915 
916 			rss[mm_counter(page)]++;
917 
918 			if (is_write_migration_entry(entry) &&
919 					is_cow_mapping(vm_flags)) {
920 				/*
921 				 * COW mappings require pages in both
922 				 * parent and child to be set to read.
923 				 */
924 				make_migration_entry_read(&entry);
925 				pte = swp_entry_to_pte(entry);
926 				if (pte_swp_soft_dirty(*src_pte))
927 					pte = pte_swp_mksoft_dirty(pte);
928 				set_pte_at(src_mm, addr, src_pte, pte);
929 			}
930 		}
931 		goto out_set_pte;
932 	}
933 
934 	/*
935 	 * If it's a COW mapping, write protect it both
936 	 * in the parent and the child
937 	 */
938 	if (is_cow_mapping(vm_flags)) {
939 		ptep_set_wrprotect(src_mm, addr, src_pte);
940 		pte = pte_wrprotect(pte);
941 	}
942 
943 	/*
944 	 * If it's a shared mapping, mark it clean in
945 	 * the child
946 	 */
947 	if (vm_flags & VM_SHARED)
948 		pte = pte_mkclean(pte);
949 	pte = pte_mkold(pte);
950 
951 	page = vm_normal_page(vma, addr, pte);
952 	if (page) {
953 		get_page(page);
954 		page_dup_rmap(page, false);
955 		rss[mm_counter(page)]++;
956 	}
957 
958 out_set_pte:
959 	set_pte_at(dst_mm, addr, dst_pte, pte);
960 	return 0;
961 }
962 
963 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
964 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
965 		   unsigned long addr, unsigned long end)
966 {
967 	pte_t *orig_src_pte, *orig_dst_pte;
968 	pte_t *src_pte, *dst_pte;
969 	spinlock_t *src_ptl, *dst_ptl;
970 	int progress = 0;
971 	int rss[NR_MM_COUNTERS];
972 	swp_entry_t entry = (swp_entry_t){0};
973 
974 again:
975 	init_rss_vec(rss);
976 
977 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
978 	if (!dst_pte)
979 		return -ENOMEM;
980 	src_pte = pte_offset_map(src_pmd, addr);
981 	src_ptl = pte_lockptr(src_mm, src_pmd);
982 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
983 	orig_src_pte = src_pte;
984 	orig_dst_pte = dst_pte;
985 	arch_enter_lazy_mmu_mode();
986 
987 	do {
988 		/*
989 		 * We are holding two locks at this point - either of them
990 		 * could generate latencies in another task on another CPU.
991 		 */
992 		if (progress >= 32) {
993 			progress = 0;
994 			if (need_resched() ||
995 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
996 				break;
997 		}
998 		if (pte_none(*src_pte)) {
999 			progress++;
1000 			continue;
1001 		}
1002 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1003 							vma, addr, rss);
1004 		if (entry.val)
1005 			break;
1006 		progress += 8;
1007 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1008 
1009 	arch_leave_lazy_mmu_mode();
1010 	spin_unlock(src_ptl);
1011 	pte_unmap(orig_src_pte);
1012 	add_mm_rss_vec(dst_mm, rss);
1013 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1014 	cond_resched();
1015 
1016 	if (entry.val) {
1017 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1018 			return -ENOMEM;
1019 		progress = 0;
1020 	}
1021 	if (addr != end)
1022 		goto again;
1023 	return 0;
1024 }
1025 
1026 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1027 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1028 		unsigned long addr, unsigned long end)
1029 {
1030 	pmd_t *src_pmd, *dst_pmd;
1031 	unsigned long next;
1032 
1033 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1034 	if (!dst_pmd)
1035 		return -ENOMEM;
1036 	src_pmd = pmd_offset(src_pud, addr);
1037 	do {
1038 		next = pmd_addr_end(addr, end);
1039 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1040 			int err;
1041 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1042 			err = copy_huge_pmd(dst_mm, src_mm,
1043 					    dst_pmd, src_pmd, addr, vma);
1044 			if (err == -ENOMEM)
1045 				return -ENOMEM;
1046 			if (!err)
1047 				continue;
1048 			/* fall through */
1049 		}
1050 		if (pmd_none_or_clear_bad(src_pmd))
1051 			continue;
1052 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1053 						vma, addr, next))
1054 			return -ENOMEM;
1055 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1056 	return 0;
1057 }
1058 
1059 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1061 		unsigned long addr, unsigned long end)
1062 {
1063 	pud_t *src_pud, *dst_pud;
1064 	unsigned long next;
1065 
1066 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1067 	if (!dst_pud)
1068 		return -ENOMEM;
1069 	src_pud = pud_offset(src_p4d, addr);
1070 	do {
1071 		next = pud_addr_end(addr, end);
1072 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1073 			int err;
1074 
1075 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1076 			err = copy_huge_pud(dst_mm, src_mm,
1077 					    dst_pud, src_pud, addr, vma);
1078 			if (err == -ENOMEM)
1079 				return -ENOMEM;
1080 			if (!err)
1081 				continue;
1082 			/* fall through */
1083 		}
1084 		if (pud_none_or_clear_bad(src_pud))
1085 			continue;
1086 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1087 						vma, addr, next))
1088 			return -ENOMEM;
1089 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1090 	return 0;
1091 }
1092 
1093 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1095 		unsigned long addr, unsigned long end)
1096 {
1097 	p4d_t *src_p4d, *dst_p4d;
1098 	unsigned long next;
1099 
1100 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1101 	if (!dst_p4d)
1102 		return -ENOMEM;
1103 	src_p4d = p4d_offset(src_pgd, addr);
1104 	do {
1105 		next = p4d_addr_end(addr, end);
1106 		if (p4d_none_or_clear_bad(src_p4d))
1107 			continue;
1108 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1109 						vma, addr, next))
1110 			return -ENOMEM;
1111 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1112 	return 0;
1113 }
1114 
1115 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1116 		struct vm_area_struct *vma)
1117 {
1118 	pgd_t *src_pgd, *dst_pgd;
1119 	unsigned long next;
1120 	unsigned long addr = vma->vm_start;
1121 	unsigned long end = vma->vm_end;
1122 	unsigned long mmun_start;	/* For mmu_notifiers */
1123 	unsigned long mmun_end;		/* For mmu_notifiers */
1124 	bool is_cow;
1125 	int ret;
1126 
1127 	/*
1128 	 * Don't copy ptes where a page fault will fill them correctly.
1129 	 * Fork becomes much lighter when there are big shared or private
1130 	 * readonly mappings. The tradeoff is that copy_page_range is more
1131 	 * efficient than faulting.
1132 	 */
1133 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1134 			!vma->anon_vma)
1135 		return 0;
1136 
1137 	if (is_vm_hugetlb_page(vma))
1138 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1139 
1140 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1141 		/*
1142 		 * We do not free on error cases below as remove_vma
1143 		 * gets called on error from higher level routine
1144 		 */
1145 		ret = track_pfn_copy(vma);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 
1150 	/*
1151 	 * We need to invalidate the secondary MMU mappings only when
1152 	 * there could be a permission downgrade on the ptes of the
1153 	 * parent mm. And a permission downgrade will only happen if
1154 	 * is_cow_mapping() returns true.
1155 	 */
1156 	is_cow = is_cow_mapping(vma->vm_flags);
1157 	mmun_start = addr;
1158 	mmun_end   = end;
1159 	if (is_cow)
1160 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1161 						    mmun_end);
1162 
1163 	ret = 0;
1164 	dst_pgd = pgd_offset(dst_mm, addr);
1165 	src_pgd = pgd_offset(src_mm, addr);
1166 	do {
1167 		next = pgd_addr_end(addr, end);
1168 		if (pgd_none_or_clear_bad(src_pgd))
1169 			continue;
1170 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1171 					    vma, addr, next))) {
1172 			ret = -ENOMEM;
1173 			break;
1174 		}
1175 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1176 
1177 	if (is_cow)
1178 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1179 	return ret;
1180 }
1181 
1182 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1183 				struct vm_area_struct *vma, pmd_t *pmd,
1184 				unsigned long addr, unsigned long end,
1185 				struct zap_details *details)
1186 {
1187 	struct mm_struct *mm = tlb->mm;
1188 	int force_flush = 0;
1189 	int rss[NR_MM_COUNTERS];
1190 	spinlock_t *ptl;
1191 	pte_t *start_pte;
1192 	pte_t *pte;
1193 	swp_entry_t entry;
1194 
1195 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1196 again:
1197 	init_rss_vec(rss);
1198 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1199 	pte = start_pte;
1200 	arch_enter_lazy_mmu_mode();
1201 	do {
1202 		pte_t ptent = *pte;
1203 		if (pte_none(ptent))
1204 			continue;
1205 
1206 		if (pte_present(ptent)) {
1207 			struct page *page;
1208 
1209 			page = vm_normal_page(vma, addr, ptent);
1210 			if (unlikely(details) && page) {
1211 				/*
1212 				 * unmap_shared_mapping_pages() wants to
1213 				 * invalidate cache without truncating:
1214 				 * unmap shared but keep private pages.
1215 				 */
1216 				if (details->check_mapping &&
1217 				    details->check_mapping != page_rmapping(page))
1218 					continue;
1219 			}
1220 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1221 							tlb->fullmm);
1222 			tlb_remove_tlb_entry(tlb, pte, addr);
1223 			if (unlikely(!page))
1224 				continue;
1225 
1226 			if (!PageAnon(page)) {
1227 				if (pte_dirty(ptent)) {
1228 					force_flush = 1;
1229 					set_page_dirty(page);
1230 				}
1231 				if (pte_young(ptent) &&
1232 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1233 					mark_page_accessed(page);
1234 			}
1235 			rss[mm_counter(page)]--;
1236 			page_remove_rmap(page, false);
1237 			if (unlikely(page_mapcount(page) < 0))
1238 				print_bad_pte(vma, addr, ptent, page);
1239 			if (unlikely(__tlb_remove_page(tlb, page))) {
1240 				force_flush = 1;
1241 				addr += PAGE_SIZE;
1242 				break;
1243 			}
1244 			continue;
1245 		}
1246 		/* If details->check_mapping, we leave swap entries. */
1247 		if (unlikely(details))
1248 			continue;
1249 
1250 		entry = pte_to_swp_entry(ptent);
1251 		if (!non_swap_entry(entry))
1252 			rss[MM_SWAPENTS]--;
1253 		else if (is_migration_entry(entry)) {
1254 			struct page *page;
1255 
1256 			page = migration_entry_to_page(entry);
1257 			rss[mm_counter(page)]--;
1258 		}
1259 		if (unlikely(!free_swap_and_cache(entry)))
1260 			print_bad_pte(vma, addr, ptent, NULL);
1261 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1262 	} while (pte++, addr += PAGE_SIZE, addr != end);
1263 
1264 	add_mm_rss_vec(mm, rss);
1265 	arch_leave_lazy_mmu_mode();
1266 
1267 	/* Do the actual TLB flush before dropping ptl */
1268 	if (force_flush)
1269 		tlb_flush_mmu_tlbonly(tlb);
1270 	pte_unmap_unlock(start_pte, ptl);
1271 
1272 	/*
1273 	 * If we forced a TLB flush (either due to running out of
1274 	 * batch buffers or because we needed to flush dirty TLB
1275 	 * entries before releasing the ptl), free the batched
1276 	 * memory too. Restart if we didn't do everything.
1277 	 */
1278 	if (force_flush) {
1279 		force_flush = 0;
1280 		tlb_flush_mmu_free(tlb);
1281 		if (addr != end)
1282 			goto again;
1283 	}
1284 
1285 	return addr;
1286 }
1287 
1288 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1289 				struct vm_area_struct *vma, pud_t *pud,
1290 				unsigned long addr, unsigned long end,
1291 				struct zap_details *details)
1292 {
1293 	pmd_t *pmd;
1294 	unsigned long next;
1295 
1296 	pmd = pmd_offset(pud, addr);
1297 	do {
1298 		next = pmd_addr_end(addr, end);
1299 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1300 			if (next - addr != HPAGE_PMD_SIZE) {
1301 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1302 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1303 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1304 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1305 				goto next;
1306 			/* fall through */
1307 		}
1308 		/*
1309 		 * Here there can be other concurrent MADV_DONTNEED or
1310 		 * trans huge page faults running, and if the pmd is
1311 		 * none or trans huge it can change under us. This is
1312 		 * because MADV_DONTNEED holds the mmap_sem in read
1313 		 * mode.
1314 		 */
1315 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1316 			goto next;
1317 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1318 next:
1319 		cond_resched();
1320 	} while (pmd++, addr = next, addr != end);
1321 
1322 	return addr;
1323 }
1324 
1325 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1326 				struct vm_area_struct *vma, p4d_t *p4d,
1327 				unsigned long addr, unsigned long end,
1328 				struct zap_details *details)
1329 {
1330 	pud_t *pud;
1331 	unsigned long next;
1332 
1333 	pud = pud_offset(p4d, addr);
1334 	do {
1335 		next = pud_addr_end(addr, end);
1336 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1337 			if (next - addr != HPAGE_PUD_SIZE) {
1338 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1339 				split_huge_pud(vma, pud, addr);
1340 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1341 				goto next;
1342 			/* fall through */
1343 		}
1344 		if (pud_none_or_clear_bad(pud))
1345 			continue;
1346 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1347 next:
1348 		cond_resched();
1349 	} while (pud++, addr = next, addr != end);
1350 
1351 	return addr;
1352 }
1353 
1354 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1355 				struct vm_area_struct *vma, pgd_t *pgd,
1356 				unsigned long addr, unsigned long end,
1357 				struct zap_details *details)
1358 {
1359 	p4d_t *p4d;
1360 	unsigned long next;
1361 
1362 	p4d = p4d_offset(pgd, addr);
1363 	do {
1364 		next = p4d_addr_end(addr, end);
1365 		if (p4d_none_or_clear_bad(p4d))
1366 			continue;
1367 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1368 	} while (p4d++, addr = next, addr != end);
1369 
1370 	return addr;
1371 }
1372 
1373 void unmap_page_range(struct mmu_gather *tlb,
1374 			     struct vm_area_struct *vma,
1375 			     unsigned long addr, unsigned long end,
1376 			     struct zap_details *details)
1377 {
1378 	pgd_t *pgd;
1379 	unsigned long next;
1380 
1381 	BUG_ON(addr >= end);
1382 	tlb_start_vma(tlb, vma);
1383 	pgd = pgd_offset(vma->vm_mm, addr);
1384 	do {
1385 		next = pgd_addr_end(addr, end);
1386 		if (pgd_none_or_clear_bad(pgd))
1387 			continue;
1388 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1389 	} while (pgd++, addr = next, addr != end);
1390 	tlb_end_vma(tlb, vma);
1391 }
1392 
1393 
1394 static void unmap_single_vma(struct mmu_gather *tlb,
1395 		struct vm_area_struct *vma, unsigned long start_addr,
1396 		unsigned long end_addr,
1397 		struct zap_details *details)
1398 {
1399 	unsigned long start = max(vma->vm_start, start_addr);
1400 	unsigned long end;
1401 
1402 	if (start >= vma->vm_end)
1403 		return;
1404 	end = min(vma->vm_end, end_addr);
1405 	if (end <= vma->vm_start)
1406 		return;
1407 
1408 	if (vma->vm_file)
1409 		uprobe_munmap(vma, start, end);
1410 
1411 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1412 		untrack_pfn(vma, 0, 0);
1413 
1414 	if (start != end) {
1415 		if (unlikely(is_vm_hugetlb_page(vma))) {
1416 			/*
1417 			 * It is undesirable to test vma->vm_file as it
1418 			 * should be non-null for valid hugetlb area.
1419 			 * However, vm_file will be NULL in the error
1420 			 * cleanup path of mmap_region. When
1421 			 * hugetlbfs ->mmap method fails,
1422 			 * mmap_region() nullifies vma->vm_file
1423 			 * before calling this function to clean up.
1424 			 * Since no pte has actually been setup, it is
1425 			 * safe to do nothing in this case.
1426 			 */
1427 			if (vma->vm_file) {
1428 				i_mmap_lock_write(vma->vm_file->f_mapping);
1429 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1430 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1431 			}
1432 		} else
1433 			unmap_page_range(tlb, vma, start, end, details);
1434 	}
1435 }
1436 
1437 /**
1438  * unmap_vmas - unmap a range of memory covered by a list of vma's
1439  * @tlb: address of the caller's struct mmu_gather
1440  * @vma: the starting vma
1441  * @start_addr: virtual address at which to start unmapping
1442  * @end_addr: virtual address at which to end unmapping
1443  *
1444  * Unmap all pages in the vma list.
1445  *
1446  * Only addresses between `start' and `end' will be unmapped.
1447  *
1448  * The VMA list must be sorted in ascending virtual address order.
1449  *
1450  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1451  * range after unmap_vmas() returns.  So the only responsibility here is to
1452  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1453  * drops the lock and schedules.
1454  */
1455 void unmap_vmas(struct mmu_gather *tlb,
1456 		struct vm_area_struct *vma, unsigned long start_addr,
1457 		unsigned long end_addr)
1458 {
1459 	struct mm_struct *mm = vma->vm_mm;
1460 
1461 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1462 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1463 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1464 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1465 }
1466 
1467 /**
1468  * zap_page_range - remove user pages in a given range
1469  * @vma: vm_area_struct holding the applicable pages
1470  * @start: starting address of pages to zap
1471  * @size: number of bytes to zap
1472  *
1473  * Caller must protect the VMA list
1474  */
1475 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1476 		unsigned long size)
1477 {
1478 	struct mm_struct *mm = vma->vm_mm;
1479 	struct mmu_gather tlb;
1480 	unsigned long end = start + size;
1481 
1482 	lru_add_drain();
1483 	tlb_gather_mmu(&tlb, mm, start, end);
1484 	update_hiwater_rss(mm);
1485 	mmu_notifier_invalidate_range_start(mm, start, end);
1486 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1487 		unmap_single_vma(&tlb, vma, start, end, NULL);
1488 	mmu_notifier_invalidate_range_end(mm, start, end);
1489 	tlb_finish_mmu(&tlb, start, end);
1490 }
1491 
1492 /**
1493  * zap_page_range_single - remove user pages in a given range
1494  * @vma: vm_area_struct holding the applicable pages
1495  * @address: starting address of pages to zap
1496  * @size: number of bytes to zap
1497  * @details: details of shared cache invalidation
1498  *
1499  * The range must fit into one VMA.
1500  */
1501 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1502 		unsigned long size, struct zap_details *details)
1503 {
1504 	struct mm_struct *mm = vma->vm_mm;
1505 	struct mmu_gather tlb;
1506 	unsigned long end = address + size;
1507 
1508 	lru_add_drain();
1509 	tlb_gather_mmu(&tlb, mm, address, end);
1510 	update_hiwater_rss(mm);
1511 	mmu_notifier_invalidate_range_start(mm, address, end);
1512 	unmap_single_vma(&tlb, vma, address, end, details);
1513 	mmu_notifier_invalidate_range_end(mm, address, end);
1514 	tlb_finish_mmu(&tlb, address, end);
1515 }
1516 
1517 /**
1518  * zap_vma_ptes - remove ptes mapping the vma
1519  * @vma: vm_area_struct holding ptes to be zapped
1520  * @address: starting address of pages to zap
1521  * @size: number of bytes to zap
1522  *
1523  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1524  *
1525  * The entire address range must be fully contained within the vma.
1526  *
1527  * Returns 0 if successful.
1528  */
1529 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1530 		unsigned long size)
1531 {
1532 	if (address < vma->vm_start || address + size > vma->vm_end ||
1533 	    		!(vma->vm_flags & VM_PFNMAP))
1534 		return -1;
1535 	zap_page_range_single(vma, address, size, NULL);
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1539 
1540 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1541 			spinlock_t **ptl)
1542 {
1543 	pgd_t *pgd;
1544 	p4d_t *p4d;
1545 	pud_t *pud;
1546 	pmd_t *pmd;
1547 
1548 	pgd = pgd_offset(mm, addr);
1549 	p4d = p4d_alloc(mm, pgd, addr);
1550 	if (!p4d)
1551 		return NULL;
1552 	pud = pud_alloc(mm, p4d, addr);
1553 	if (!pud)
1554 		return NULL;
1555 	pmd = pmd_alloc(mm, pud, addr);
1556 	if (!pmd)
1557 		return NULL;
1558 
1559 	VM_BUG_ON(pmd_trans_huge(*pmd));
1560 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1561 }
1562 
1563 /*
1564  * This is the old fallback for page remapping.
1565  *
1566  * For historical reasons, it only allows reserved pages. Only
1567  * old drivers should use this, and they needed to mark their
1568  * pages reserved for the old functions anyway.
1569  */
1570 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1571 			struct page *page, pgprot_t prot)
1572 {
1573 	struct mm_struct *mm = vma->vm_mm;
1574 	int retval;
1575 	pte_t *pte;
1576 	spinlock_t *ptl;
1577 
1578 	retval = -EINVAL;
1579 	if (PageAnon(page))
1580 		goto out;
1581 	retval = -ENOMEM;
1582 	flush_dcache_page(page);
1583 	pte = get_locked_pte(mm, addr, &ptl);
1584 	if (!pte)
1585 		goto out;
1586 	retval = -EBUSY;
1587 	if (!pte_none(*pte))
1588 		goto out_unlock;
1589 
1590 	/* Ok, finally just insert the thing.. */
1591 	get_page(page);
1592 	inc_mm_counter_fast(mm, mm_counter_file(page));
1593 	page_add_file_rmap(page, false);
1594 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1595 
1596 	retval = 0;
1597 	pte_unmap_unlock(pte, ptl);
1598 	return retval;
1599 out_unlock:
1600 	pte_unmap_unlock(pte, ptl);
1601 out:
1602 	return retval;
1603 }
1604 
1605 /**
1606  * vm_insert_page - insert single page into user vma
1607  * @vma: user vma to map to
1608  * @addr: target user address of this page
1609  * @page: source kernel page
1610  *
1611  * This allows drivers to insert individual pages they've allocated
1612  * into a user vma.
1613  *
1614  * The page has to be a nice clean _individual_ kernel allocation.
1615  * If you allocate a compound page, you need to have marked it as
1616  * such (__GFP_COMP), or manually just split the page up yourself
1617  * (see split_page()).
1618  *
1619  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1620  * took an arbitrary page protection parameter. This doesn't allow
1621  * that. Your vma protection will have to be set up correctly, which
1622  * means that if you want a shared writable mapping, you'd better
1623  * ask for a shared writable mapping!
1624  *
1625  * The page does not need to be reserved.
1626  *
1627  * Usually this function is called from f_op->mmap() handler
1628  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1629  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1630  * function from other places, for example from page-fault handler.
1631  */
1632 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1633 			struct page *page)
1634 {
1635 	if (addr < vma->vm_start || addr >= vma->vm_end)
1636 		return -EFAULT;
1637 	if (!page_count(page))
1638 		return -EINVAL;
1639 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1640 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1641 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1642 		vma->vm_flags |= VM_MIXEDMAP;
1643 	}
1644 	return insert_page(vma, addr, page, vma->vm_page_prot);
1645 }
1646 EXPORT_SYMBOL(vm_insert_page);
1647 
1648 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1649 			pfn_t pfn, pgprot_t prot)
1650 {
1651 	struct mm_struct *mm = vma->vm_mm;
1652 	int retval;
1653 	pte_t *pte, entry;
1654 	spinlock_t *ptl;
1655 
1656 	retval = -ENOMEM;
1657 	pte = get_locked_pte(mm, addr, &ptl);
1658 	if (!pte)
1659 		goto out;
1660 	retval = -EBUSY;
1661 	if (!pte_none(*pte))
1662 		goto out_unlock;
1663 
1664 	/* Ok, finally just insert the thing.. */
1665 	if (pfn_t_devmap(pfn))
1666 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1667 	else
1668 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1669 	set_pte_at(mm, addr, pte, entry);
1670 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1671 
1672 	retval = 0;
1673 out_unlock:
1674 	pte_unmap_unlock(pte, ptl);
1675 out:
1676 	return retval;
1677 }
1678 
1679 /**
1680  * vm_insert_pfn - insert single pfn into user vma
1681  * @vma: user vma to map to
1682  * @addr: target user address of this page
1683  * @pfn: source kernel pfn
1684  *
1685  * Similar to vm_insert_page, this allows drivers to insert individual pages
1686  * they've allocated into a user vma. Same comments apply.
1687  *
1688  * This function should only be called from a vm_ops->fault handler, and
1689  * in that case the handler should return NULL.
1690  *
1691  * vma cannot be a COW mapping.
1692  *
1693  * As this is called only for pages that do not currently exist, we
1694  * do not need to flush old virtual caches or the TLB.
1695  */
1696 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1697 			unsigned long pfn)
1698 {
1699 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1700 }
1701 EXPORT_SYMBOL(vm_insert_pfn);
1702 
1703 /**
1704  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1705  * @vma: user vma to map to
1706  * @addr: target user address of this page
1707  * @pfn: source kernel pfn
1708  * @pgprot: pgprot flags for the inserted page
1709  *
1710  * This is exactly like vm_insert_pfn, except that it allows drivers to
1711  * to override pgprot on a per-page basis.
1712  *
1713  * This only makes sense for IO mappings, and it makes no sense for
1714  * cow mappings.  In general, using multiple vmas is preferable;
1715  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1716  * impractical.
1717  */
1718 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1719 			unsigned long pfn, pgprot_t pgprot)
1720 {
1721 	int ret;
1722 	/*
1723 	 * Technically, architectures with pte_special can avoid all these
1724 	 * restrictions (same for remap_pfn_range).  However we would like
1725 	 * consistency in testing and feature parity among all, so we should
1726 	 * try to keep these invariants in place for everybody.
1727 	 */
1728 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1729 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1730 						(VM_PFNMAP|VM_MIXEDMAP));
1731 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1732 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1733 
1734 	if (addr < vma->vm_start || addr >= vma->vm_end)
1735 		return -EFAULT;
1736 
1737 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1738 
1739 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1740 
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL(vm_insert_pfn_prot);
1744 
1745 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1746 			pfn_t pfn)
1747 {
1748 	pgprot_t pgprot = vma->vm_page_prot;
1749 
1750 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1751 
1752 	if (addr < vma->vm_start || addr >= vma->vm_end)
1753 		return -EFAULT;
1754 
1755 	track_pfn_insert(vma, &pgprot, pfn);
1756 
1757 	/*
1758 	 * If we don't have pte special, then we have to use the pfn_valid()
1759 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1760 	 * refcount the page if pfn_valid is true (hence insert_page rather
1761 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1762 	 * without pte special, it would there be refcounted as a normal page.
1763 	 */
1764 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1765 		struct page *page;
1766 
1767 		/*
1768 		 * At this point we are committed to insert_page()
1769 		 * regardless of whether the caller specified flags that
1770 		 * result in pfn_t_has_page() == false.
1771 		 */
1772 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1773 		return insert_page(vma, addr, page, pgprot);
1774 	}
1775 	return insert_pfn(vma, addr, pfn, pgprot);
1776 }
1777 EXPORT_SYMBOL(vm_insert_mixed);
1778 
1779 /*
1780  * maps a range of physical memory into the requested pages. the old
1781  * mappings are removed. any references to nonexistent pages results
1782  * in null mappings (currently treated as "copy-on-access")
1783  */
1784 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1785 			unsigned long addr, unsigned long end,
1786 			unsigned long pfn, pgprot_t prot)
1787 {
1788 	pte_t *pte;
1789 	spinlock_t *ptl;
1790 
1791 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1792 	if (!pte)
1793 		return -ENOMEM;
1794 	arch_enter_lazy_mmu_mode();
1795 	do {
1796 		BUG_ON(!pte_none(*pte));
1797 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1798 		pfn++;
1799 	} while (pte++, addr += PAGE_SIZE, addr != end);
1800 	arch_leave_lazy_mmu_mode();
1801 	pte_unmap_unlock(pte - 1, ptl);
1802 	return 0;
1803 }
1804 
1805 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1806 			unsigned long addr, unsigned long end,
1807 			unsigned long pfn, pgprot_t prot)
1808 {
1809 	pmd_t *pmd;
1810 	unsigned long next;
1811 
1812 	pfn -= addr >> PAGE_SHIFT;
1813 	pmd = pmd_alloc(mm, pud, addr);
1814 	if (!pmd)
1815 		return -ENOMEM;
1816 	VM_BUG_ON(pmd_trans_huge(*pmd));
1817 	do {
1818 		next = pmd_addr_end(addr, end);
1819 		if (remap_pte_range(mm, pmd, addr, next,
1820 				pfn + (addr >> PAGE_SHIFT), prot))
1821 			return -ENOMEM;
1822 	} while (pmd++, addr = next, addr != end);
1823 	return 0;
1824 }
1825 
1826 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1827 			unsigned long addr, unsigned long end,
1828 			unsigned long pfn, pgprot_t prot)
1829 {
1830 	pud_t *pud;
1831 	unsigned long next;
1832 
1833 	pfn -= addr >> PAGE_SHIFT;
1834 	pud = pud_alloc(mm, p4d, addr);
1835 	if (!pud)
1836 		return -ENOMEM;
1837 	do {
1838 		next = pud_addr_end(addr, end);
1839 		if (remap_pmd_range(mm, pud, addr, next,
1840 				pfn + (addr >> PAGE_SHIFT), prot))
1841 			return -ENOMEM;
1842 	} while (pud++, addr = next, addr != end);
1843 	return 0;
1844 }
1845 
1846 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1847 			unsigned long addr, unsigned long end,
1848 			unsigned long pfn, pgprot_t prot)
1849 {
1850 	p4d_t *p4d;
1851 	unsigned long next;
1852 
1853 	pfn -= addr >> PAGE_SHIFT;
1854 	p4d = p4d_alloc(mm, pgd, addr);
1855 	if (!p4d)
1856 		return -ENOMEM;
1857 	do {
1858 		next = p4d_addr_end(addr, end);
1859 		if (remap_pud_range(mm, p4d, addr, next,
1860 				pfn + (addr >> PAGE_SHIFT), prot))
1861 			return -ENOMEM;
1862 	} while (p4d++, addr = next, addr != end);
1863 	return 0;
1864 }
1865 
1866 /**
1867  * remap_pfn_range - remap kernel memory to userspace
1868  * @vma: user vma to map to
1869  * @addr: target user address to start at
1870  * @pfn: physical address of kernel memory
1871  * @size: size of map area
1872  * @prot: page protection flags for this mapping
1873  *
1874  *  Note: this is only safe if the mm semaphore is held when called.
1875  */
1876 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1877 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1878 {
1879 	pgd_t *pgd;
1880 	unsigned long next;
1881 	unsigned long end = addr + PAGE_ALIGN(size);
1882 	struct mm_struct *mm = vma->vm_mm;
1883 	unsigned long remap_pfn = pfn;
1884 	int err;
1885 
1886 	/*
1887 	 * Physically remapped pages are special. Tell the
1888 	 * rest of the world about it:
1889 	 *   VM_IO tells people not to look at these pages
1890 	 *	(accesses can have side effects).
1891 	 *   VM_PFNMAP tells the core MM that the base pages are just
1892 	 *	raw PFN mappings, and do not have a "struct page" associated
1893 	 *	with them.
1894 	 *   VM_DONTEXPAND
1895 	 *      Disable vma merging and expanding with mremap().
1896 	 *   VM_DONTDUMP
1897 	 *      Omit vma from core dump, even when VM_IO turned off.
1898 	 *
1899 	 * There's a horrible special case to handle copy-on-write
1900 	 * behaviour that some programs depend on. We mark the "original"
1901 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1902 	 * See vm_normal_page() for details.
1903 	 */
1904 	if (is_cow_mapping(vma->vm_flags)) {
1905 		if (addr != vma->vm_start || end != vma->vm_end)
1906 			return -EINVAL;
1907 		vma->vm_pgoff = pfn;
1908 	}
1909 
1910 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1911 	if (err)
1912 		return -EINVAL;
1913 
1914 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1915 
1916 	BUG_ON(addr >= end);
1917 	pfn -= addr >> PAGE_SHIFT;
1918 	pgd = pgd_offset(mm, addr);
1919 	flush_cache_range(vma, addr, end);
1920 	do {
1921 		next = pgd_addr_end(addr, end);
1922 		err = remap_p4d_range(mm, pgd, addr, next,
1923 				pfn + (addr >> PAGE_SHIFT), prot);
1924 		if (err)
1925 			break;
1926 	} while (pgd++, addr = next, addr != end);
1927 
1928 	if (err)
1929 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1930 
1931 	return err;
1932 }
1933 EXPORT_SYMBOL(remap_pfn_range);
1934 
1935 /**
1936  * vm_iomap_memory - remap memory to userspace
1937  * @vma: user vma to map to
1938  * @start: start of area
1939  * @len: size of area
1940  *
1941  * This is a simplified io_remap_pfn_range() for common driver use. The
1942  * driver just needs to give us the physical memory range to be mapped,
1943  * we'll figure out the rest from the vma information.
1944  *
1945  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1946  * whatever write-combining details or similar.
1947  */
1948 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1949 {
1950 	unsigned long vm_len, pfn, pages;
1951 
1952 	/* Check that the physical memory area passed in looks valid */
1953 	if (start + len < start)
1954 		return -EINVAL;
1955 	/*
1956 	 * You *really* shouldn't map things that aren't page-aligned,
1957 	 * but we've historically allowed it because IO memory might
1958 	 * just have smaller alignment.
1959 	 */
1960 	len += start & ~PAGE_MASK;
1961 	pfn = start >> PAGE_SHIFT;
1962 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1963 	if (pfn + pages < pfn)
1964 		return -EINVAL;
1965 
1966 	/* We start the mapping 'vm_pgoff' pages into the area */
1967 	if (vma->vm_pgoff > pages)
1968 		return -EINVAL;
1969 	pfn += vma->vm_pgoff;
1970 	pages -= vma->vm_pgoff;
1971 
1972 	/* Can we fit all of the mapping? */
1973 	vm_len = vma->vm_end - vma->vm_start;
1974 	if (vm_len >> PAGE_SHIFT > pages)
1975 		return -EINVAL;
1976 
1977 	/* Ok, let it rip */
1978 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1979 }
1980 EXPORT_SYMBOL(vm_iomap_memory);
1981 
1982 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983 				     unsigned long addr, unsigned long end,
1984 				     pte_fn_t fn, void *data)
1985 {
1986 	pte_t *pte;
1987 	int err;
1988 	pgtable_t token;
1989 	spinlock_t *uninitialized_var(ptl);
1990 
1991 	pte = (mm == &init_mm) ?
1992 		pte_alloc_kernel(pmd, addr) :
1993 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1994 	if (!pte)
1995 		return -ENOMEM;
1996 
1997 	BUG_ON(pmd_huge(*pmd));
1998 
1999 	arch_enter_lazy_mmu_mode();
2000 
2001 	token = pmd_pgtable(*pmd);
2002 
2003 	do {
2004 		err = fn(pte++, token, addr, data);
2005 		if (err)
2006 			break;
2007 	} while (addr += PAGE_SIZE, addr != end);
2008 
2009 	arch_leave_lazy_mmu_mode();
2010 
2011 	if (mm != &init_mm)
2012 		pte_unmap_unlock(pte-1, ptl);
2013 	return err;
2014 }
2015 
2016 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2017 				     unsigned long addr, unsigned long end,
2018 				     pte_fn_t fn, void *data)
2019 {
2020 	pmd_t *pmd;
2021 	unsigned long next;
2022 	int err;
2023 
2024 	BUG_ON(pud_huge(*pud));
2025 
2026 	pmd = pmd_alloc(mm, pud, addr);
2027 	if (!pmd)
2028 		return -ENOMEM;
2029 	do {
2030 		next = pmd_addr_end(addr, end);
2031 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2032 		if (err)
2033 			break;
2034 	} while (pmd++, addr = next, addr != end);
2035 	return err;
2036 }
2037 
2038 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 				     unsigned long addr, unsigned long end,
2040 				     pte_fn_t fn, void *data)
2041 {
2042 	pud_t *pud;
2043 	unsigned long next;
2044 	int err;
2045 
2046 	pud = pud_alloc(mm, p4d, addr);
2047 	if (!pud)
2048 		return -ENOMEM;
2049 	do {
2050 		next = pud_addr_end(addr, end);
2051 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2052 		if (err)
2053 			break;
2054 	} while (pud++, addr = next, addr != end);
2055 	return err;
2056 }
2057 
2058 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2059 				     unsigned long addr, unsigned long end,
2060 				     pte_fn_t fn, void *data)
2061 {
2062 	p4d_t *p4d;
2063 	unsigned long next;
2064 	int err;
2065 
2066 	p4d = p4d_alloc(mm, pgd, addr);
2067 	if (!p4d)
2068 		return -ENOMEM;
2069 	do {
2070 		next = p4d_addr_end(addr, end);
2071 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2072 		if (err)
2073 			break;
2074 	} while (p4d++, addr = next, addr != end);
2075 	return err;
2076 }
2077 
2078 /*
2079  * Scan a region of virtual memory, filling in page tables as necessary
2080  * and calling a provided function on each leaf page table.
2081  */
2082 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2083 			unsigned long size, pte_fn_t fn, void *data)
2084 {
2085 	pgd_t *pgd;
2086 	unsigned long next;
2087 	unsigned long end = addr + size;
2088 	int err;
2089 
2090 	if (WARN_ON(addr >= end))
2091 		return -EINVAL;
2092 
2093 	pgd = pgd_offset(mm, addr);
2094 	do {
2095 		next = pgd_addr_end(addr, end);
2096 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2097 		if (err)
2098 			break;
2099 	} while (pgd++, addr = next, addr != end);
2100 
2101 	return err;
2102 }
2103 EXPORT_SYMBOL_GPL(apply_to_page_range);
2104 
2105 /*
2106  * handle_pte_fault chooses page fault handler according to an entry which was
2107  * read non-atomically.  Before making any commitment, on those architectures
2108  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2109  * parts, do_swap_page must check under lock before unmapping the pte and
2110  * proceeding (but do_wp_page is only called after already making such a check;
2111  * and do_anonymous_page can safely check later on).
2112  */
2113 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2114 				pte_t *page_table, pte_t orig_pte)
2115 {
2116 	int same = 1;
2117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2118 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2119 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2120 		spin_lock(ptl);
2121 		same = pte_same(*page_table, orig_pte);
2122 		spin_unlock(ptl);
2123 	}
2124 #endif
2125 	pte_unmap(page_table);
2126 	return same;
2127 }
2128 
2129 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2130 {
2131 	debug_dma_assert_idle(src);
2132 
2133 	/*
2134 	 * If the source page was a PFN mapping, we don't have
2135 	 * a "struct page" for it. We do a best-effort copy by
2136 	 * just copying from the original user address. If that
2137 	 * fails, we just zero-fill it. Live with it.
2138 	 */
2139 	if (unlikely(!src)) {
2140 		void *kaddr = kmap_atomic(dst);
2141 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2142 
2143 		/*
2144 		 * This really shouldn't fail, because the page is there
2145 		 * in the page tables. But it might just be unreadable,
2146 		 * in which case we just give up and fill the result with
2147 		 * zeroes.
2148 		 */
2149 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2150 			clear_page(kaddr);
2151 		kunmap_atomic(kaddr);
2152 		flush_dcache_page(dst);
2153 	} else
2154 		copy_user_highpage(dst, src, va, vma);
2155 }
2156 
2157 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2158 {
2159 	struct file *vm_file = vma->vm_file;
2160 
2161 	if (vm_file)
2162 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2163 
2164 	/*
2165 	 * Special mappings (e.g. VDSO) do not have any file so fake
2166 	 * a default GFP_KERNEL for them.
2167 	 */
2168 	return GFP_KERNEL;
2169 }
2170 
2171 /*
2172  * Notify the address space that the page is about to become writable so that
2173  * it can prohibit this or wait for the page to get into an appropriate state.
2174  *
2175  * We do this without the lock held, so that it can sleep if it needs to.
2176  */
2177 static int do_page_mkwrite(struct vm_fault *vmf)
2178 {
2179 	int ret;
2180 	struct page *page = vmf->page;
2181 	unsigned int old_flags = vmf->flags;
2182 
2183 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2184 
2185 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2186 	/* Restore original flags so that caller is not surprised */
2187 	vmf->flags = old_flags;
2188 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2189 		return ret;
2190 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2191 		lock_page(page);
2192 		if (!page->mapping) {
2193 			unlock_page(page);
2194 			return 0; /* retry */
2195 		}
2196 		ret |= VM_FAULT_LOCKED;
2197 	} else
2198 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2199 	return ret;
2200 }
2201 
2202 /*
2203  * Handle dirtying of a page in shared file mapping on a write fault.
2204  *
2205  * The function expects the page to be locked and unlocks it.
2206  */
2207 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2208 				    struct page *page)
2209 {
2210 	struct address_space *mapping;
2211 	bool dirtied;
2212 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2213 
2214 	dirtied = set_page_dirty(page);
2215 	VM_BUG_ON_PAGE(PageAnon(page), page);
2216 	/*
2217 	 * Take a local copy of the address_space - page.mapping may be zeroed
2218 	 * by truncate after unlock_page().   The address_space itself remains
2219 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2220 	 * release semantics to prevent the compiler from undoing this copying.
2221 	 */
2222 	mapping = page_rmapping(page);
2223 	unlock_page(page);
2224 
2225 	if ((dirtied || page_mkwrite) && mapping) {
2226 		/*
2227 		 * Some device drivers do not set page.mapping
2228 		 * but still dirty their pages
2229 		 */
2230 		balance_dirty_pages_ratelimited(mapping);
2231 	}
2232 
2233 	if (!page_mkwrite)
2234 		file_update_time(vma->vm_file);
2235 }
2236 
2237 /*
2238  * Handle write page faults for pages that can be reused in the current vma
2239  *
2240  * This can happen either due to the mapping being with the VM_SHARED flag,
2241  * or due to us being the last reference standing to the page. In either
2242  * case, all we need to do here is to mark the page as writable and update
2243  * any related book-keeping.
2244  */
2245 static inline void wp_page_reuse(struct vm_fault *vmf)
2246 	__releases(vmf->ptl)
2247 {
2248 	struct vm_area_struct *vma = vmf->vma;
2249 	struct page *page = vmf->page;
2250 	pte_t entry;
2251 	/*
2252 	 * Clear the pages cpupid information as the existing
2253 	 * information potentially belongs to a now completely
2254 	 * unrelated process.
2255 	 */
2256 	if (page)
2257 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2258 
2259 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2260 	entry = pte_mkyoung(vmf->orig_pte);
2261 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2262 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2263 		update_mmu_cache(vma, vmf->address, vmf->pte);
2264 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2265 }
2266 
2267 /*
2268  * Handle the case of a page which we actually need to copy to a new page.
2269  *
2270  * Called with mmap_sem locked and the old page referenced, but
2271  * without the ptl held.
2272  *
2273  * High level logic flow:
2274  *
2275  * - Allocate a page, copy the content of the old page to the new one.
2276  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2277  * - Take the PTL. If the pte changed, bail out and release the allocated page
2278  * - If the pte is still the way we remember it, update the page table and all
2279  *   relevant references. This includes dropping the reference the page-table
2280  *   held to the old page, as well as updating the rmap.
2281  * - In any case, unlock the PTL and drop the reference we took to the old page.
2282  */
2283 static int wp_page_copy(struct vm_fault *vmf)
2284 {
2285 	struct vm_area_struct *vma = vmf->vma;
2286 	struct mm_struct *mm = vma->vm_mm;
2287 	struct page *old_page = vmf->page;
2288 	struct page *new_page = NULL;
2289 	pte_t entry;
2290 	int page_copied = 0;
2291 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2292 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2293 	struct mem_cgroup *memcg;
2294 
2295 	if (unlikely(anon_vma_prepare(vma)))
2296 		goto oom;
2297 
2298 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2299 		new_page = alloc_zeroed_user_highpage_movable(vma,
2300 							      vmf->address);
2301 		if (!new_page)
2302 			goto oom;
2303 	} else {
2304 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2305 				vmf->address);
2306 		if (!new_page)
2307 			goto oom;
2308 		cow_user_page(new_page, old_page, vmf->address, vma);
2309 	}
2310 
2311 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2312 		goto oom_free_new;
2313 
2314 	__SetPageUptodate(new_page);
2315 
2316 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2317 
2318 	/*
2319 	 * Re-check the pte - we dropped the lock
2320 	 */
2321 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2322 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2323 		if (old_page) {
2324 			if (!PageAnon(old_page)) {
2325 				dec_mm_counter_fast(mm,
2326 						mm_counter_file(old_page));
2327 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2328 			}
2329 		} else {
2330 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2331 		}
2332 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2333 		entry = mk_pte(new_page, vma->vm_page_prot);
2334 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2335 		/*
2336 		 * Clear the pte entry and flush it first, before updating the
2337 		 * pte with the new entry. This will avoid a race condition
2338 		 * seen in the presence of one thread doing SMC and another
2339 		 * thread doing COW.
2340 		 */
2341 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2342 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2343 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2344 		lru_cache_add_active_or_unevictable(new_page, vma);
2345 		/*
2346 		 * We call the notify macro here because, when using secondary
2347 		 * mmu page tables (such as kvm shadow page tables), we want the
2348 		 * new page to be mapped directly into the secondary page table.
2349 		 */
2350 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2351 		update_mmu_cache(vma, vmf->address, vmf->pte);
2352 		if (old_page) {
2353 			/*
2354 			 * Only after switching the pte to the new page may
2355 			 * we remove the mapcount here. Otherwise another
2356 			 * process may come and find the rmap count decremented
2357 			 * before the pte is switched to the new page, and
2358 			 * "reuse" the old page writing into it while our pte
2359 			 * here still points into it and can be read by other
2360 			 * threads.
2361 			 *
2362 			 * The critical issue is to order this
2363 			 * page_remove_rmap with the ptp_clear_flush above.
2364 			 * Those stores are ordered by (if nothing else,)
2365 			 * the barrier present in the atomic_add_negative
2366 			 * in page_remove_rmap.
2367 			 *
2368 			 * Then the TLB flush in ptep_clear_flush ensures that
2369 			 * no process can access the old page before the
2370 			 * decremented mapcount is visible. And the old page
2371 			 * cannot be reused until after the decremented
2372 			 * mapcount is visible. So transitively, TLBs to
2373 			 * old page will be flushed before it can be reused.
2374 			 */
2375 			page_remove_rmap(old_page, false);
2376 		}
2377 
2378 		/* Free the old page.. */
2379 		new_page = old_page;
2380 		page_copied = 1;
2381 	} else {
2382 		mem_cgroup_cancel_charge(new_page, memcg, false);
2383 	}
2384 
2385 	if (new_page)
2386 		put_page(new_page);
2387 
2388 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2389 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2390 	if (old_page) {
2391 		/*
2392 		 * Don't let another task, with possibly unlocked vma,
2393 		 * keep the mlocked page.
2394 		 */
2395 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2396 			lock_page(old_page);	/* LRU manipulation */
2397 			if (PageMlocked(old_page))
2398 				munlock_vma_page(old_page);
2399 			unlock_page(old_page);
2400 		}
2401 		put_page(old_page);
2402 	}
2403 	return page_copied ? VM_FAULT_WRITE : 0;
2404 oom_free_new:
2405 	put_page(new_page);
2406 oom:
2407 	if (old_page)
2408 		put_page(old_page);
2409 	return VM_FAULT_OOM;
2410 }
2411 
2412 /**
2413  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2414  *			  writeable once the page is prepared
2415  *
2416  * @vmf: structure describing the fault
2417  *
2418  * This function handles all that is needed to finish a write page fault in a
2419  * shared mapping due to PTE being read-only once the mapped page is prepared.
2420  * It handles locking of PTE and modifying it. The function returns
2421  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2422  * lock.
2423  *
2424  * The function expects the page to be locked or other protection against
2425  * concurrent faults / writeback (such as DAX radix tree locks).
2426  */
2427 int finish_mkwrite_fault(struct vm_fault *vmf)
2428 {
2429 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2430 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2431 				       &vmf->ptl);
2432 	/*
2433 	 * We might have raced with another page fault while we released the
2434 	 * pte_offset_map_lock.
2435 	 */
2436 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2437 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2438 		return VM_FAULT_NOPAGE;
2439 	}
2440 	wp_page_reuse(vmf);
2441 	return 0;
2442 }
2443 
2444 /*
2445  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2446  * mapping
2447  */
2448 static int wp_pfn_shared(struct vm_fault *vmf)
2449 {
2450 	struct vm_area_struct *vma = vmf->vma;
2451 
2452 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2453 		int ret;
2454 
2455 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2456 		vmf->flags |= FAULT_FLAG_MKWRITE;
2457 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2458 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2459 			return ret;
2460 		return finish_mkwrite_fault(vmf);
2461 	}
2462 	wp_page_reuse(vmf);
2463 	return VM_FAULT_WRITE;
2464 }
2465 
2466 static int wp_page_shared(struct vm_fault *vmf)
2467 	__releases(vmf->ptl)
2468 {
2469 	struct vm_area_struct *vma = vmf->vma;
2470 
2471 	get_page(vmf->page);
2472 
2473 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2474 		int tmp;
2475 
2476 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2477 		tmp = do_page_mkwrite(vmf);
2478 		if (unlikely(!tmp || (tmp &
2479 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2480 			put_page(vmf->page);
2481 			return tmp;
2482 		}
2483 		tmp = finish_mkwrite_fault(vmf);
2484 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2485 			unlock_page(vmf->page);
2486 			put_page(vmf->page);
2487 			return tmp;
2488 		}
2489 	} else {
2490 		wp_page_reuse(vmf);
2491 		lock_page(vmf->page);
2492 	}
2493 	fault_dirty_shared_page(vma, vmf->page);
2494 	put_page(vmf->page);
2495 
2496 	return VM_FAULT_WRITE;
2497 }
2498 
2499 /*
2500  * This routine handles present pages, when users try to write
2501  * to a shared page. It is done by copying the page to a new address
2502  * and decrementing the shared-page counter for the old page.
2503  *
2504  * Note that this routine assumes that the protection checks have been
2505  * done by the caller (the low-level page fault routine in most cases).
2506  * Thus we can safely just mark it writable once we've done any necessary
2507  * COW.
2508  *
2509  * We also mark the page dirty at this point even though the page will
2510  * change only once the write actually happens. This avoids a few races,
2511  * and potentially makes it more efficient.
2512  *
2513  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514  * but allow concurrent faults), with pte both mapped and locked.
2515  * We return with mmap_sem still held, but pte unmapped and unlocked.
2516  */
2517 static int do_wp_page(struct vm_fault *vmf)
2518 	__releases(vmf->ptl)
2519 {
2520 	struct vm_area_struct *vma = vmf->vma;
2521 
2522 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2523 	if (!vmf->page) {
2524 		/*
2525 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2526 		 * VM_PFNMAP VMA.
2527 		 *
2528 		 * We should not cow pages in a shared writeable mapping.
2529 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2530 		 */
2531 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2532 				     (VM_WRITE|VM_SHARED))
2533 			return wp_pfn_shared(vmf);
2534 
2535 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2536 		return wp_page_copy(vmf);
2537 	}
2538 
2539 	/*
2540 	 * Take out anonymous pages first, anonymous shared vmas are
2541 	 * not dirty accountable.
2542 	 */
2543 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2544 		int total_mapcount;
2545 		if (!trylock_page(vmf->page)) {
2546 			get_page(vmf->page);
2547 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2548 			lock_page(vmf->page);
2549 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2550 					vmf->address, &vmf->ptl);
2551 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2552 				unlock_page(vmf->page);
2553 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2554 				put_page(vmf->page);
2555 				return 0;
2556 			}
2557 			put_page(vmf->page);
2558 		}
2559 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2560 			if (total_mapcount == 1) {
2561 				/*
2562 				 * The page is all ours. Move it to
2563 				 * our anon_vma so the rmap code will
2564 				 * not search our parent or siblings.
2565 				 * Protected against the rmap code by
2566 				 * the page lock.
2567 				 */
2568 				page_move_anon_rmap(vmf->page, vma);
2569 			}
2570 			unlock_page(vmf->page);
2571 			wp_page_reuse(vmf);
2572 			return VM_FAULT_WRITE;
2573 		}
2574 		unlock_page(vmf->page);
2575 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2576 					(VM_WRITE|VM_SHARED))) {
2577 		return wp_page_shared(vmf);
2578 	}
2579 
2580 	/*
2581 	 * Ok, we need to copy. Oh, well..
2582 	 */
2583 	get_page(vmf->page);
2584 
2585 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2586 	return wp_page_copy(vmf);
2587 }
2588 
2589 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2590 		unsigned long start_addr, unsigned long end_addr,
2591 		struct zap_details *details)
2592 {
2593 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2594 }
2595 
2596 static inline void unmap_mapping_range_tree(struct rb_root *root,
2597 					    struct zap_details *details)
2598 {
2599 	struct vm_area_struct *vma;
2600 	pgoff_t vba, vea, zba, zea;
2601 
2602 	vma_interval_tree_foreach(vma, root,
2603 			details->first_index, details->last_index) {
2604 
2605 		vba = vma->vm_pgoff;
2606 		vea = vba + vma_pages(vma) - 1;
2607 		zba = details->first_index;
2608 		if (zba < vba)
2609 			zba = vba;
2610 		zea = details->last_index;
2611 		if (zea > vea)
2612 			zea = vea;
2613 
2614 		unmap_mapping_range_vma(vma,
2615 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2616 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2617 				details);
2618 	}
2619 }
2620 
2621 /**
2622  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2623  * address_space corresponding to the specified page range in the underlying
2624  * file.
2625  *
2626  * @mapping: the address space containing mmaps to be unmapped.
2627  * @holebegin: byte in first page to unmap, relative to the start of
2628  * the underlying file.  This will be rounded down to a PAGE_SIZE
2629  * boundary.  Note that this is different from truncate_pagecache(), which
2630  * must keep the partial page.  In contrast, we must get rid of
2631  * partial pages.
2632  * @holelen: size of prospective hole in bytes.  This will be rounded
2633  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2634  * end of the file.
2635  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2636  * but 0 when invalidating pagecache, don't throw away private data.
2637  */
2638 void unmap_mapping_range(struct address_space *mapping,
2639 		loff_t const holebegin, loff_t const holelen, int even_cows)
2640 {
2641 	struct zap_details details = { };
2642 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2643 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2644 
2645 	/* Check for overflow. */
2646 	if (sizeof(holelen) > sizeof(hlen)) {
2647 		long long holeend =
2648 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2649 		if (holeend & ~(long long)ULONG_MAX)
2650 			hlen = ULONG_MAX - hba + 1;
2651 	}
2652 
2653 	details.check_mapping = even_cows ? NULL : mapping;
2654 	details.first_index = hba;
2655 	details.last_index = hba + hlen - 1;
2656 	if (details.last_index < details.first_index)
2657 		details.last_index = ULONG_MAX;
2658 
2659 	i_mmap_lock_write(mapping);
2660 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2661 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2662 	i_mmap_unlock_write(mapping);
2663 }
2664 EXPORT_SYMBOL(unmap_mapping_range);
2665 
2666 /*
2667  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2668  * but allow concurrent faults), and pte mapped but not yet locked.
2669  * We return with pte unmapped and unlocked.
2670  *
2671  * We return with the mmap_sem locked or unlocked in the same cases
2672  * as does filemap_fault().
2673  */
2674 int do_swap_page(struct vm_fault *vmf)
2675 {
2676 	struct vm_area_struct *vma = vmf->vma;
2677 	struct page *page, *swapcache;
2678 	struct mem_cgroup *memcg;
2679 	swp_entry_t entry;
2680 	pte_t pte;
2681 	int locked;
2682 	int exclusive = 0;
2683 	int ret = 0;
2684 
2685 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2686 		goto out;
2687 
2688 	entry = pte_to_swp_entry(vmf->orig_pte);
2689 	if (unlikely(non_swap_entry(entry))) {
2690 		if (is_migration_entry(entry)) {
2691 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2692 					     vmf->address);
2693 		} else if (is_hwpoison_entry(entry)) {
2694 			ret = VM_FAULT_HWPOISON;
2695 		} else {
2696 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2697 			ret = VM_FAULT_SIGBUS;
2698 		}
2699 		goto out;
2700 	}
2701 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2702 	page = lookup_swap_cache(entry);
2703 	if (!page) {
2704 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2705 					vmf->address);
2706 		if (!page) {
2707 			/*
2708 			 * Back out if somebody else faulted in this pte
2709 			 * while we released the pte lock.
2710 			 */
2711 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2712 					vmf->address, &vmf->ptl);
2713 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2714 				ret = VM_FAULT_OOM;
2715 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2716 			goto unlock;
2717 		}
2718 
2719 		/* Had to read the page from swap area: Major fault */
2720 		ret = VM_FAULT_MAJOR;
2721 		count_vm_event(PGMAJFAULT);
2722 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2723 	} else if (PageHWPoison(page)) {
2724 		/*
2725 		 * hwpoisoned dirty swapcache pages are kept for killing
2726 		 * owner processes (which may be unknown at hwpoison time)
2727 		 */
2728 		ret = VM_FAULT_HWPOISON;
2729 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2730 		swapcache = page;
2731 		goto out_release;
2732 	}
2733 
2734 	swapcache = page;
2735 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2736 
2737 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2738 	if (!locked) {
2739 		ret |= VM_FAULT_RETRY;
2740 		goto out_release;
2741 	}
2742 
2743 	/*
2744 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2745 	 * release the swapcache from under us.  The page pin, and pte_same
2746 	 * test below, are not enough to exclude that.  Even if it is still
2747 	 * swapcache, we need to check that the page's swap has not changed.
2748 	 */
2749 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2750 		goto out_page;
2751 
2752 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2753 	if (unlikely(!page)) {
2754 		ret = VM_FAULT_OOM;
2755 		page = swapcache;
2756 		goto out_page;
2757 	}
2758 
2759 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2760 				&memcg, false)) {
2761 		ret = VM_FAULT_OOM;
2762 		goto out_page;
2763 	}
2764 
2765 	/*
2766 	 * Back out if somebody else already faulted in this pte.
2767 	 */
2768 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2769 			&vmf->ptl);
2770 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2771 		goto out_nomap;
2772 
2773 	if (unlikely(!PageUptodate(page))) {
2774 		ret = VM_FAULT_SIGBUS;
2775 		goto out_nomap;
2776 	}
2777 
2778 	/*
2779 	 * The page isn't present yet, go ahead with the fault.
2780 	 *
2781 	 * Be careful about the sequence of operations here.
2782 	 * To get its accounting right, reuse_swap_page() must be called
2783 	 * while the page is counted on swap but not yet in mapcount i.e.
2784 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2785 	 * must be called after the swap_free(), or it will never succeed.
2786 	 */
2787 
2788 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2789 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2790 	pte = mk_pte(page, vma->vm_page_prot);
2791 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2792 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2793 		vmf->flags &= ~FAULT_FLAG_WRITE;
2794 		ret |= VM_FAULT_WRITE;
2795 		exclusive = RMAP_EXCLUSIVE;
2796 	}
2797 	flush_icache_page(vma, page);
2798 	if (pte_swp_soft_dirty(vmf->orig_pte))
2799 		pte = pte_mksoft_dirty(pte);
2800 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2801 	vmf->orig_pte = pte;
2802 	if (page == swapcache) {
2803 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2804 		mem_cgroup_commit_charge(page, memcg, true, false);
2805 		activate_page(page);
2806 	} else { /* ksm created a completely new copy */
2807 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2808 		mem_cgroup_commit_charge(page, memcg, false, false);
2809 		lru_cache_add_active_or_unevictable(page, vma);
2810 	}
2811 
2812 	swap_free(entry);
2813 	if (mem_cgroup_swap_full(page) ||
2814 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2815 		try_to_free_swap(page);
2816 	unlock_page(page);
2817 	if (page != swapcache) {
2818 		/*
2819 		 * Hold the lock to avoid the swap entry to be reused
2820 		 * until we take the PT lock for the pte_same() check
2821 		 * (to avoid false positives from pte_same). For
2822 		 * further safety release the lock after the swap_free
2823 		 * so that the swap count won't change under a
2824 		 * parallel locked swapcache.
2825 		 */
2826 		unlock_page(swapcache);
2827 		put_page(swapcache);
2828 	}
2829 
2830 	if (vmf->flags & FAULT_FLAG_WRITE) {
2831 		ret |= do_wp_page(vmf);
2832 		if (ret & VM_FAULT_ERROR)
2833 			ret &= VM_FAULT_ERROR;
2834 		goto out;
2835 	}
2836 
2837 	/* No need to invalidate - it was non-present before */
2838 	update_mmu_cache(vma, vmf->address, vmf->pte);
2839 unlock:
2840 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2841 out:
2842 	return ret;
2843 out_nomap:
2844 	mem_cgroup_cancel_charge(page, memcg, false);
2845 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2846 out_page:
2847 	unlock_page(page);
2848 out_release:
2849 	put_page(page);
2850 	if (page != swapcache) {
2851 		unlock_page(swapcache);
2852 		put_page(swapcache);
2853 	}
2854 	return ret;
2855 }
2856 
2857 /*
2858  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2859  * but allow concurrent faults), and pte mapped but not yet locked.
2860  * We return with mmap_sem still held, but pte unmapped and unlocked.
2861  */
2862 static int do_anonymous_page(struct vm_fault *vmf)
2863 {
2864 	struct vm_area_struct *vma = vmf->vma;
2865 	struct mem_cgroup *memcg;
2866 	struct page *page;
2867 	pte_t entry;
2868 
2869 	/* File mapping without ->vm_ops ? */
2870 	if (vma->vm_flags & VM_SHARED)
2871 		return VM_FAULT_SIGBUS;
2872 
2873 	/*
2874 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2875 	 * pte_offset_map() on pmds where a huge pmd might be created
2876 	 * from a different thread.
2877 	 *
2878 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2879 	 * parallel threads are excluded by other means.
2880 	 *
2881 	 * Here we only have down_read(mmap_sem).
2882 	 */
2883 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2884 		return VM_FAULT_OOM;
2885 
2886 	/* See the comment in pte_alloc_one_map() */
2887 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2888 		return 0;
2889 
2890 	/* Use the zero-page for reads */
2891 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2892 			!mm_forbids_zeropage(vma->vm_mm)) {
2893 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2894 						vma->vm_page_prot));
2895 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2896 				vmf->address, &vmf->ptl);
2897 		if (!pte_none(*vmf->pte))
2898 			goto unlock;
2899 		/* Deliver the page fault to userland, check inside PT lock */
2900 		if (userfaultfd_missing(vma)) {
2901 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2902 			return handle_userfault(vmf, VM_UFFD_MISSING);
2903 		}
2904 		goto setpte;
2905 	}
2906 
2907 	/* Allocate our own private page. */
2908 	if (unlikely(anon_vma_prepare(vma)))
2909 		goto oom;
2910 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2911 	if (!page)
2912 		goto oom;
2913 
2914 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2915 		goto oom_free_page;
2916 
2917 	/*
2918 	 * The memory barrier inside __SetPageUptodate makes sure that
2919 	 * preceeding stores to the page contents become visible before
2920 	 * the set_pte_at() write.
2921 	 */
2922 	__SetPageUptodate(page);
2923 
2924 	entry = mk_pte(page, vma->vm_page_prot);
2925 	if (vma->vm_flags & VM_WRITE)
2926 		entry = pte_mkwrite(pte_mkdirty(entry));
2927 
2928 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2929 			&vmf->ptl);
2930 	if (!pte_none(*vmf->pte))
2931 		goto release;
2932 
2933 	/* Deliver the page fault to userland, check inside PT lock */
2934 	if (userfaultfd_missing(vma)) {
2935 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 		mem_cgroup_cancel_charge(page, memcg, false);
2937 		put_page(page);
2938 		return handle_userfault(vmf, VM_UFFD_MISSING);
2939 	}
2940 
2941 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2942 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2943 	mem_cgroup_commit_charge(page, memcg, false, false);
2944 	lru_cache_add_active_or_unevictable(page, vma);
2945 setpte:
2946 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2947 
2948 	/* No need to invalidate - it was non-present before */
2949 	update_mmu_cache(vma, vmf->address, vmf->pte);
2950 unlock:
2951 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2952 	return 0;
2953 release:
2954 	mem_cgroup_cancel_charge(page, memcg, false);
2955 	put_page(page);
2956 	goto unlock;
2957 oom_free_page:
2958 	put_page(page);
2959 oom:
2960 	return VM_FAULT_OOM;
2961 }
2962 
2963 /*
2964  * The mmap_sem must have been held on entry, and may have been
2965  * released depending on flags and vma->vm_ops->fault() return value.
2966  * See filemap_fault() and __lock_page_retry().
2967  */
2968 static int __do_fault(struct vm_fault *vmf)
2969 {
2970 	struct vm_area_struct *vma = vmf->vma;
2971 	int ret;
2972 
2973 	ret = vma->vm_ops->fault(vmf);
2974 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2975 			    VM_FAULT_DONE_COW)))
2976 		return ret;
2977 
2978 	if (unlikely(PageHWPoison(vmf->page))) {
2979 		if (ret & VM_FAULT_LOCKED)
2980 			unlock_page(vmf->page);
2981 		put_page(vmf->page);
2982 		vmf->page = NULL;
2983 		return VM_FAULT_HWPOISON;
2984 	}
2985 
2986 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2987 		lock_page(vmf->page);
2988 	else
2989 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2990 
2991 	return ret;
2992 }
2993 
2994 /*
2995  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2996  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2997  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2998  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2999  */
3000 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3001 {
3002 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3003 }
3004 
3005 static int pte_alloc_one_map(struct vm_fault *vmf)
3006 {
3007 	struct vm_area_struct *vma = vmf->vma;
3008 
3009 	if (!pmd_none(*vmf->pmd))
3010 		goto map_pte;
3011 	if (vmf->prealloc_pte) {
3012 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3013 		if (unlikely(!pmd_none(*vmf->pmd))) {
3014 			spin_unlock(vmf->ptl);
3015 			goto map_pte;
3016 		}
3017 
3018 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3019 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3020 		spin_unlock(vmf->ptl);
3021 		vmf->prealloc_pte = NULL;
3022 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3023 		return VM_FAULT_OOM;
3024 	}
3025 map_pte:
3026 	/*
3027 	 * If a huge pmd materialized under us just retry later.  Use
3028 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3029 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3030 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3031 	 * running immediately after a huge pmd fault in a different thread of
3032 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3033 	 * All we have to ensure is that it is a regular pmd that we can walk
3034 	 * with pte_offset_map() and we can do that through an atomic read in
3035 	 * C, which is what pmd_trans_unstable() provides.
3036 	 */
3037 	if (pmd_devmap_trans_unstable(vmf->pmd))
3038 		return VM_FAULT_NOPAGE;
3039 
3040 	/*
3041 	 * At this point we know that our vmf->pmd points to a page of ptes
3042 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3043 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3044 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3045 	 * be valid and we will re-check to make sure the vmf->pte isn't
3046 	 * pte_none() under vmf->ptl protection when we return to
3047 	 * alloc_set_pte().
3048 	 */
3049 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3050 			&vmf->ptl);
3051 	return 0;
3052 }
3053 
3054 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3055 
3056 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3057 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3058 		unsigned long haddr)
3059 {
3060 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3061 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3062 		return false;
3063 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3064 		return false;
3065 	return true;
3066 }
3067 
3068 static void deposit_prealloc_pte(struct vm_fault *vmf)
3069 {
3070 	struct vm_area_struct *vma = vmf->vma;
3071 
3072 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3073 	/*
3074 	 * We are going to consume the prealloc table,
3075 	 * count that as nr_ptes.
3076 	 */
3077 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3078 	vmf->prealloc_pte = NULL;
3079 }
3080 
3081 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3082 {
3083 	struct vm_area_struct *vma = vmf->vma;
3084 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3085 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3086 	pmd_t entry;
3087 	int i, ret;
3088 
3089 	if (!transhuge_vma_suitable(vma, haddr))
3090 		return VM_FAULT_FALLBACK;
3091 
3092 	ret = VM_FAULT_FALLBACK;
3093 	page = compound_head(page);
3094 
3095 	/*
3096 	 * Archs like ppc64 need additonal space to store information
3097 	 * related to pte entry. Use the preallocated table for that.
3098 	 */
3099 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3100 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3101 		if (!vmf->prealloc_pte)
3102 			return VM_FAULT_OOM;
3103 		smp_wmb(); /* See comment in __pte_alloc() */
3104 	}
3105 
3106 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3107 	if (unlikely(!pmd_none(*vmf->pmd)))
3108 		goto out;
3109 
3110 	for (i = 0; i < HPAGE_PMD_NR; i++)
3111 		flush_icache_page(vma, page + i);
3112 
3113 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3114 	if (write)
3115 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3116 
3117 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3118 	page_add_file_rmap(page, true);
3119 	/*
3120 	 * deposit and withdraw with pmd lock held
3121 	 */
3122 	if (arch_needs_pgtable_deposit())
3123 		deposit_prealloc_pte(vmf);
3124 
3125 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3126 
3127 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3128 
3129 	/* fault is handled */
3130 	ret = 0;
3131 	count_vm_event(THP_FILE_MAPPED);
3132 out:
3133 	spin_unlock(vmf->ptl);
3134 	return ret;
3135 }
3136 #else
3137 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3138 {
3139 	BUILD_BUG();
3140 	return 0;
3141 }
3142 #endif
3143 
3144 /**
3145  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3146  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3147  *
3148  * @vmf: fault environment
3149  * @memcg: memcg to charge page (only for private mappings)
3150  * @page: page to map
3151  *
3152  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3153  * return.
3154  *
3155  * Target users are page handler itself and implementations of
3156  * vm_ops->map_pages.
3157  */
3158 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3159 		struct page *page)
3160 {
3161 	struct vm_area_struct *vma = vmf->vma;
3162 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3163 	pte_t entry;
3164 	int ret;
3165 
3166 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3167 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3168 		/* THP on COW? */
3169 		VM_BUG_ON_PAGE(memcg, page);
3170 
3171 		ret = do_set_pmd(vmf, page);
3172 		if (ret != VM_FAULT_FALLBACK)
3173 			return ret;
3174 	}
3175 
3176 	if (!vmf->pte) {
3177 		ret = pte_alloc_one_map(vmf);
3178 		if (ret)
3179 			return ret;
3180 	}
3181 
3182 	/* Re-check under ptl */
3183 	if (unlikely(!pte_none(*vmf->pte)))
3184 		return VM_FAULT_NOPAGE;
3185 
3186 	flush_icache_page(vma, page);
3187 	entry = mk_pte(page, vma->vm_page_prot);
3188 	if (write)
3189 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3190 	/* copy-on-write page */
3191 	if (write && !(vma->vm_flags & VM_SHARED)) {
3192 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3193 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3194 		mem_cgroup_commit_charge(page, memcg, false, false);
3195 		lru_cache_add_active_or_unevictable(page, vma);
3196 	} else {
3197 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3198 		page_add_file_rmap(page, false);
3199 	}
3200 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3201 
3202 	/* no need to invalidate: a not-present page won't be cached */
3203 	update_mmu_cache(vma, vmf->address, vmf->pte);
3204 
3205 	return 0;
3206 }
3207 
3208 
3209 /**
3210  * finish_fault - finish page fault once we have prepared the page to fault
3211  *
3212  * @vmf: structure describing the fault
3213  *
3214  * This function handles all that is needed to finish a page fault once the
3215  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3216  * given page, adds reverse page mapping, handles memcg charges and LRU
3217  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3218  * error.
3219  *
3220  * The function expects the page to be locked and on success it consumes a
3221  * reference of a page being mapped (for the PTE which maps it).
3222  */
3223 int finish_fault(struct vm_fault *vmf)
3224 {
3225 	struct page *page;
3226 	int ret;
3227 
3228 	/* Did we COW the page? */
3229 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3230 	    !(vmf->vma->vm_flags & VM_SHARED))
3231 		page = vmf->cow_page;
3232 	else
3233 		page = vmf->page;
3234 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3235 	if (vmf->pte)
3236 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3237 	return ret;
3238 }
3239 
3240 static unsigned long fault_around_bytes __read_mostly =
3241 	rounddown_pow_of_two(65536);
3242 
3243 #ifdef CONFIG_DEBUG_FS
3244 static int fault_around_bytes_get(void *data, u64 *val)
3245 {
3246 	*val = fault_around_bytes;
3247 	return 0;
3248 }
3249 
3250 /*
3251  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3252  * rounded down to nearest page order. It's what do_fault_around() expects to
3253  * see.
3254  */
3255 static int fault_around_bytes_set(void *data, u64 val)
3256 {
3257 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3258 		return -EINVAL;
3259 	if (val > PAGE_SIZE)
3260 		fault_around_bytes = rounddown_pow_of_two(val);
3261 	else
3262 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3263 	return 0;
3264 }
3265 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3266 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3267 
3268 static int __init fault_around_debugfs(void)
3269 {
3270 	void *ret;
3271 
3272 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3273 			&fault_around_bytes_fops);
3274 	if (!ret)
3275 		pr_warn("Failed to create fault_around_bytes in debugfs");
3276 	return 0;
3277 }
3278 late_initcall(fault_around_debugfs);
3279 #endif
3280 
3281 /*
3282  * do_fault_around() tries to map few pages around the fault address. The hope
3283  * is that the pages will be needed soon and this will lower the number of
3284  * faults to handle.
3285  *
3286  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3287  * not ready to be mapped: not up-to-date, locked, etc.
3288  *
3289  * This function is called with the page table lock taken. In the split ptlock
3290  * case the page table lock only protects only those entries which belong to
3291  * the page table corresponding to the fault address.
3292  *
3293  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3294  * only once.
3295  *
3296  * fault_around_pages() defines how many pages we'll try to map.
3297  * do_fault_around() expects it to return a power of two less than or equal to
3298  * PTRS_PER_PTE.
3299  *
3300  * The virtual address of the area that we map is naturally aligned to the
3301  * fault_around_pages() value (and therefore to page order).  This way it's
3302  * easier to guarantee that we don't cross page table boundaries.
3303  */
3304 static int do_fault_around(struct vm_fault *vmf)
3305 {
3306 	unsigned long address = vmf->address, nr_pages, mask;
3307 	pgoff_t start_pgoff = vmf->pgoff;
3308 	pgoff_t end_pgoff;
3309 	int off, ret = 0;
3310 
3311 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3312 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3313 
3314 	vmf->address = max(address & mask, vmf->vma->vm_start);
3315 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3316 	start_pgoff -= off;
3317 
3318 	/*
3319 	 *  end_pgoff is either end of page table or end of vma
3320 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3321 	 */
3322 	end_pgoff = start_pgoff -
3323 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3324 		PTRS_PER_PTE - 1;
3325 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3326 			start_pgoff + nr_pages - 1);
3327 
3328 	if (pmd_none(*vmf->pmd)) {
3329 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3330 						  vmf->address);
3331 		if (!vmf->prealloc_pte)
3332 			goto out;
3333 		smp_wmb(); /* See comment in __pte_alloc() */
3334 	}
3335 
3336 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3337 
3338 	/* Huge page is mapped? Page fault is solved */
3339 	if (pmd_trans_huge(*vmf->pmd)) {
3340 		ret = VM_FAULT_NOPAGE;
3341 		goto out;
3342 	}
3343 
3344 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3345 	if (!vmf->pte)
3346 		goto out;
3347 
3348 	/* check if the page fault is solved */
3349 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3350 	if (!pte_none(*vmf->pte))
3351 		ret = VM_FAULT_NOPAGE;
3352 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3353 out:
3354 	vmf->address = address;
3355 	vmf->pte = NULL;
3356 	return ret;
3357 }
3358 
3359 static int do_read_fault(struct vm_fault *vmf)
3360 {
3361 	struct vm_area_struct *vma = vmf->vma;
3362 	int ret = 0;
3363 
3364 	/*
3365 	 * Let's call ->map_pages() first and use ->fault() as fallback
3366 	 * if page by the offset is not ready to be mapped (cold cache or
3367 	 * something).
3368 	 */
3369 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3370 		ret = do_fault_around(vmf);
3371 		if (ret)
3372 			return ret;
3373 	}
3374 
3375 	ret = __do_fault(vmf);
3376 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3377 		return ret;
3378 
3379 	ret |= finish_fault(vmf);
3380 	unlock_page(vmf->page);
3381 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3382 		put_page(vmf->page);
3383 	return ret;
3384 }
3385 
3386 static int do_cow_fault(struct vm_fault *vmf)
3387 {
3388 	struct vm_area_struct *vma = vmf->vma;
3389 	int ret;
3390 
3391 	if (unlikely(anon_vma_prepare(vma)))
3392 		return VM_FAULT_OOM;
3393 
3394 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3395 	if (!vmf->cow_page)
3396 		return VM_FAULT_OOM;
3397 
3398 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3399 				&vmf->memcg, false)) {
3400 		put_page(vmf->cow_page);
3401 		return VM_FAULT_OOM;
3402 	}
3403 
3404 	ret = __do_fault(vmf);
3405 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3406 		goto uncharge_out;
3407 	if (ret & VM_FAULT_DONE_COW)
3408 		return ret;
3409 
3410 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3411 	__SetPageUptodate(vmf->cow_page);
3412 
3413 	ret |= finish_fault(vmf);
3414 	unlock_page(vmf->page);
3415 	put_page(vmf->page);
3416 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3417 		goto uncharge_out;
3418 	return ret;
3419 uncharge_out:
3420 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3421 	put_page(vmf->cow_page);
3422 	return ret;
3423 }
3424 
3425 static int do_shared_fault(struct vm_fault *vmf)
3426 {
3427 	struct vm_area_struct *vma = vmf->vma;
3428 	int ret, tmp;
3429 
3430 	ret = __do_fault(vmf);
3431 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432 		return ret;
3433 
3434 	/*
3435 	 * Check if the backing address space wants to know that the page is
3436 	 * about to become writable
3437 	 */
3438 	if (vma->vm_ops->page_mkwrite) {
3439 		unlock_page(vmf->page);
3440 		tmp = do_page_mkwrite(vmf);
3441 		if (unlikely(!tmp ||
3442 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3443 			put_page(vmf->page);
3444 			return tmp;
3445 		}
3446 	}
3447 
3448 	ret |= finish_fault(vmf);
3449 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3450 					VM_FAULT_RETRY))) {
3451 		unlock_page(vmf->page);
3452 		put_page(vmf->page);
3453 		return ret;
3454 	}
3455 
3456 	fault_dirty_shared_page(vma, vmf->page);
3457 	return ret;
3458 }
3459 
3460 /*
3461  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3462  * but allow concurrent faults).
3463  * The mmap_sem may have been released depending on flags and our
3464  * return value.  See filemap_fault() and __lock_page_or_retry().
3465  */
3466 static int do_fault(struct vm_fault *vmf)
3467 {
3468 	struct vm_area_struct *vma = vmf->vma;
3469 	int ret;
3470 
3471 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3472 	if (!vma->vm_ops->fault)
3473 		ret = VM_FAULT_SIGBUS;
3474 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3475 		ret = do_read_fault(vmf);
3476 	else if (!(vma->vm_flags & VM_SHARED))
3477 		ret = do_cow_fault(vmf);
3478 	else
3479 		ret = do_shared_fault(vmf);
3480 
3481 	/* preallocated pagetable is unused: free it */
3482 	if (vmf->prealloc_pte) {
3483 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3484 		vmf->prealloc_pte = NULL;
3485 	}
3486 	return ret;
3487 }
3488 
3489 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3490 				unsigned long addr, int page_nid,
3491 				int *flags)
3492 {
3493 	get_page(page);
3494 
3495 	count_vm_numa_event(NUMA_HINT_FAULTS);
3496 	if (page_nid == numa_node_id()) {
3497 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3498 		*flags |= TNF_FAULT_LOCAL;
3499 	}
3500 
3501 	return mpol_misplaced(page, vma, addr);
3502 }
3503 
3504 static int do_numa_page(struct vm_fault *vmf)
3505 {
3506 	struct vm_area_struct *vma = vmf->vma;
3507 	struct page *page = NULL;
3508 	int page_nid = -1;
3509 	int last_cpupid;
3510 	int target_nid;
3511 	bool migrated = false;
3512 	pte_t pte;
3513 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3514 	int flags = 0;
3515 
3516 	/*
3517 	 * The "pte" at this point cannot be used safely without
3518 	 * validation through pte_unmap_same(). It's of NUMA type but
3519 	 * the pfn may be screwed if the read is non atomic.
3520 	 */
3521 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3522 	spin_lock(vmf->ptl);
3523 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3524 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3525 		goto out;
3526 	}
3527 
3528 	/*
3529 	 * Make it present again, Depending on how arch implementes non
3530 	 * accessible ptes, some can allow access by kernel mode.
3531 	 */
3532 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3533 	pte = pte_modify(pte, vma->vm_page_prot);
3534 	pte = pte_mkyoung(pte);
3535 	if (was_writable)
3536 		pte = pte_mkwrite(pte);
3537 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3538 	update_mmu_cache(vma, vmf->address, vmf->pte);
3539 
3540 	page = vm_normal_page(vma, vmf->address, pte);
3541 	if (!page) {
3542 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3543 		return 0;
3544 	}
3545 
3546 	/* TODO: handle PTE-mapped THP */
3547 	if (PageCompound(page)) {
3548 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3549 		return 0;
3550 	}
3551 
3552 	/*
3553 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3554 	 * much anyway since they can be in shared cache state. This misses
3555 	 * the case where a mapping is writable but the process never writes
3556 	 * to it but pte_write gets cleared during protection updates and
3557 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3558 	 * background writeback, dirty balancing and application behaviour.
3559 	 */
3560 	if (!pte_write(pte))
3561 		flags |= TNF_NO_GROUP;
3562 
3563 	/*
3564 	 * Flag if the page is shared between multiple address spaces. This
3565 	 * is later used when determining whether to group tasks together
3566 	 */
3567 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3568 		flags |= TNF_SHARED;
3569 
3570 	last_cpupid = page_cpupid_last(page);
3571 	page_nid = page_to_nid(page);
3572 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3573 			&flags);
3574 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3575 	if (target_nid == -1) {
3576 		put_page(page);
3577 		goto out;
3578 	}
3579 
3580 	/* Migrate to the requested node */
3581 	migrated = migrate_misplaced_page(page, vma, target_nid);
3582 	if (migrated) {
3583 		page_nid = target_nid;
3584 		flags |= TNF_MIGRATED;
3585 	} else
3586 		flags |= TNF_MIGRATE_FAIL;
3587 
3588 out:
3589 	if (page_nid != -1)
3590 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3591 	return 0;
3592 }
3593 
3594 static int create_huge_pmd(struct vm_fault *vmf)
3595 {
3596 	if (vma_is_anonymous(vmf->vma))
3597 		return do_huge_pmd_anonymous_page(vmf);
3598 	if (vmf->vma->vm_ops->huge_fault)
3599 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3600 	return VM_FAULT_FALLBACK;
3601 }
3602 
3603 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3604 {
3605 	if (vma_is_anonymous(vmf->vma))
3606 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3607 	if (vmf->vma->vm_ops->huge_fault)
3608 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3609 
3610 	/* COW handled on pte level: split pmd */
3611 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3612 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3613 
3614 	return VM_FAULT_FALLBACK;
3615 }
3616 
3617 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3618 {
3619 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3620 }
3621 
3622 static int create_huge_pud(struct vm_fault *vmf)
3623 {
3624 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3625 	/* No support for anonymous transparent PUD pages yet */
3626 	if (vma_is_anonymous(vmf->vma))
3627 		return VM_FAULT_FALLBACK;
3628 	if (vmf->vma->vm_ops->huge_fault)
3629 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3630 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3631 	return VM_FAULT_FALLBACK;
3632 }
3633 
3634 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3635 {
3636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3637 	/* No support for anonymous transparent PUD pages yet */
3638 	if (vma_is_anonymous(vmf->vma))
3639 		return VM_FAULT_FALLBACK;
3640 	if (vmf->vma->vm_ops->huge_fault)
3641 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3642 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3643 	return VM_FAULT_FALLBACK;
3644 }
3645 
3646 /*
3647  * These routines also need to handle stuff like marking pages dirty
3648  * and/or accessed for architectures that don't do it in hardware (most
3649  * RISC architectures).  The early dirtying is also good on the i386.
3650  *
3651  * There is also a hook called "update_mmu_cache()" that architectures
3652  * with external mmu caches can use to update those (ie the Sparc or
3653  * PowerPC hashed page tables that act as extended TLBs).
3654  *
3655  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3656  * concurrent faults).
3657  *
3658  * The mmap_sem may have been released depending on flags and our return value.
3659  * See filemap_fault() and __lock_page_or_retry().
3660  */
3661 static int handle_pte_fault(struct vm_fault *vmf)
3662 {
3663 	pte_t entry;
3664 
3665 	if (unlikely(pmd_none(*vmf->pmd))) {
3666 		/*
3667 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3668 		 * want to allocate huge page, and if we expose page table
3669 		 * for an instant, it will be difficult to retract from
3670 		 * concurrent faults and from rmap lookups.
3671 		 */
3672 		vmf->pte = NULL;
3673 	} else {
3674 		/* See comment in pte_alloc_one_map() */
3675 		if (pmd_devmap_trans_unstable(vmf->pmd))
3676 			return 0;
3677 		/*
3678 		 * A regular pmd is established and it can't morph into a huge
3679 		 * pmd from under us anymore at this point because we hold the
3680 		 * mmap_sem read mode and khugepaged takes it in write mode.
3681 		 * So now it's safe to run pte_offset_map().
3682 		 */
3683 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3684 		vmf->orig_pte = *vmf->pte;
3685 
3686 		/*
3687 		 * some architectures can have larger ptes than wordsize,
3688 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3689 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3690 		 * atomic accesses.  The code below just needs a consistent
3691 		 * view for the ifs and we later double check anyway with the
3692 		 * ptl lock held. So here a barrier will do.
3693 		 */
3694 		barrier();
3695 		if (pte_none(vmf->orig_pte)) {
3696 			pte_unmap(vmf->pte);
3697 			vmf->pte = NULL;
3698 		}
3699 	}
3700 
3701 	if (!vmf->pte) {
3702 		if (vma_is_anonymous(vmf->vma))
3703 			return do_anonymous_page(vmf);
3704 		else
3705 			return do_fault(vmf);
3706 	}
3707 
3708 	if (!pte_present(vmf->orig_pte))
3709 		return do_swap_page(vmf);
3710 
3711 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3712 		return do_numa_page(vmf);
3713 
3714 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3715 	spin_lock(vmf->ptl);
3716 	entry = vmf->orig_pte;
3717 	if (unlikely(!pte_same(*vmf->pte, entry)))
3718 		goto unlock;
3719 	if (vmf->flags & FAULT_FLAG_WRITE) {
3720 		if (!pte_write(entry))
3721 			return do_wp_page(vmf);
3722 		entry = pte_mkdirty(entry);
3723 	}
3724 	entry = pte_mkyoung(entry);
3725 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3726 				vmf->flags & FAULT_FLAG_WRITE)) {
3727 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3728 	} else {
3729 		/*
3730 		 * This is needed only for protection faults but the arch code
3731 		 * is not yet telling us if this is a protection fault or not.
3732 		 * This still avoids useless tlb flushes for .text page faults
3733 		 * with threads.
3734 		 */
3735 		if (vmf->flags & FAULT_FLAG_WRITE)
3736 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3737 	}
3738 unlock:
3739 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 	return 0;
3741 }
3742 
3743 /*
3744  * By the time we get here, we already hold the mm semaphore
3745  *
3746  * The mmap_sem may have been released depending on flags and our
3747  * return value.  See filemap_fault() and __lock_page_or_retry().
3748  */
3749 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3750 		unsigned int flags)
3751 {
3752 	struct vm_fault vmf = {
3753 		.vma = vma,
3754 		.address = address & PAGE_MASK,
3755 		.flags = flags,
3756 		.pgoff = linear_page_index(vma, address),
3757 		.gfp_mask = __get_fault_gfp_mask(vma),
3758 	};
3759 	struct mm_struct *mm = vma->vm_mm;
3760 	pgd_t *pgd;
3761 	p4d_t *p4d;
3762 	int ret;
3763 
3764 	pgd = pgd_offset(mm, address);
3765 	p4d = p4d_alloc(mm, pgd, address);
3766 	if (!p4d)
3767 		return VM_FAULT_OOM;
3768 
3769 	vmf.pud = pud_alloc(mm, p4d, address);
3770 	if (!vmf.pud)
3771 		return VM_FAULT_OOM;
3772 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3773 		ret = create_huge_pud(&vmf);
3774 		if (!(ret & VM_FAULT_FALLBACK))
3775 			return ret;
3776 	} else {
3777 		pud_t orig_pud = *vmf.pud;
3778 
3779 		barrier();
3780 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3781 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3782 
3783 			/* NUMA case for anonymous PUDs would go here */
3784 
3785 			if (dirty && !pud_write(orig_pud)) {
3786 				ret = wp_huge_pud(&vmf, orig_pud);
3787 				if (!(ret & VM_FAULT_FALLBACK))
3788 					return ret;
3789 			} else {
3790 				huge_pud_set_accessed(&vmf, orig_pud);
3791 				return 0;
3792 			}
3793 		}
3794 	}
3795 
3796 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3797 	if (!vmf.pmd)
3798 		return VM_FAULT_OOM;
3799 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3800 		ret = create_huge_pmd(&vmf);
3801 		if (!(ret & VM_FAULT_FALLBACK))
3802 			return ret;
3803 	} else {
3804 		pmd_t orig_pmd = *vmf.pmd;
3805 
3806 		barrier();
3807 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3808 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3809 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3810 
3811 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3812 					!pmd_write(orig_pmd)) {
3813 				ret = wp_huge_pmd(&vmf, orig_pmd);
3814 				if (!(ret & VM_FAULT_FALLBACK))
3815 					return ret;
3816 			} else {
3817 				huge_pmd_set_accessed(&vmf, orig_pmd);
3818 				return 0;
3819 			}
3820 		}
3821 	}
3822 
3823 	return handle_pte_fault(&vmf);
3824 }
3825 
3826 /*
3827  * By the time we get here, we already hold the mm semaphore
3828  *
3829  * The mmap_sem may have been released depending on flags and our
3830  * return value.  See filemap_fault() and __lock_page_or_retry().
3831  */
3832 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3833 		unsigned int flags)
3834 {
3835 	int ret;
3836 
3837 	__set_current_state(TASK_RUNNING);
3838 
3839 	count_vm_event(PGFAULT);
3840 	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3841 
3842 	/* do counter updates before entering really critical section. */
3843 	check_sync_rss_stat(current);
3844 
3845 	/*
3846 	 * Enable the memcg OOM handling for faults triggered in user
3847 	 * space.  Kernel faults are handled more gracefully.
3848 	 */
3849 	if (flags & FAULT_FLAG_USER)
3850 		mem_cgroup_oom_enable();
3851 
3852 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3853 					    flags & FAULT_FLAG_INSTRUCTION,
3854 					    flags & FAULT_FLAG_REMOTE))
3855 		return VM_FAULT_SIGSEGV;
3856 
3857 	if (unlikely(is_vm_hugetlb_page(vma)))
3858 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3859 	else
3860 		ret = __handle_mm_fault(vma, address, flags);
3861 
3862 	if (flags & FAULT_FLAG_USER) {
3863 		mem_cgroup_oom_disable();
3864 		/*
3865 		 * The task may have entered a memcg OOM situation but
3866 		 * if the allocation error was handled gracefully (no
3867 		 * VM_FAULT_OOM), there is no need to kill anything.
3868 		 * Just clean up the OOM state peacefully.
3869 		 */
3870 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3871 			mem_cgroup_oom_synchronize(false);
3872 	}
3873 
3874 	/*
3875 	 * This mm has been already reaped by the oom reaper and so the
3876 	 * refault cannot be trusted in general. Anonymous refaults would
3877 	 * lose data and give a zero page instead e.g. This is especially
3878 	 * problem for use_mm() because regular tasks will just die and
3879 	 * the corrupted data will not be visible anywhere while kthread
3880 	 * will outlive the oom victim and potentially propagate the date
3881 	 * further.
3882 	 */
3883 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3884 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3885 		ret = VM_FAULT_SIGBUS;
3886 
3887 	return ret;
3888 }
3889 EXPORT_SYMBOL_GPL(handle_mm_fault);
3890 
3891 #ifndef __PAGETABLE_P4D_FOLDED
3892 /*
3893  * Allocate p4d page table.
3894  * We've already handled the fast-path in-line.
3895  */
3896 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3897 {
3898 	p4d_t *new = p4d_alloc_one(mm, address);
3899 	if (!new)
3900 		return -ENOMEM;
3901 
3902 	smp_wmb(); /* See comment in __pte_alloc */
3903 
3904 	spin_lock(&mm->page_table_lock);
3905 	if (pgd_present(*pgd))		/* Another has populated it */
3906 		p4d_free(mm, new);
3907 	else
3908 		pgd_populate(mm, pgd, new);
3909 	spin_unlock(&mm->page_table_lock);
3910 	return 0;
3911 }
3912 #endif /* __PAGETABLE_P4D_FOLDED */
3913 
3914 #ifndef __PAGETABLE_PUD_FOLDED
3915 /*
3916  * Allocate page upper directory.
3917  * We've already handled the fast-path in-line.
3918  */
3919 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3920 {
3921 	pud_t *new = pud_alloc_one(mm, address);
3922 	if (!new)
3923 		return -ENOMEM;
3924 
3925 	smp_wmb(); /* See comment in __pte_alloc */
3926 
3927 	spin_lock(&mm->page_table_lock);
3928 #ifndef __ARCH_HAS_5LEVEL_HACK
3929 	if (p4d_present(*p4d))		/* Another has populated it */
3930 		pud_free(mm, new);
3931 	else
3932 		p4d_populate(mm, p4d, new);
3933 #else
3934 	if (pgd_present(*p4d))		/* Another has populated it */
3935 		pud_free(mm, new);
3936 	else
3937 		pgd_populate(mm, p4d, new);
3938 #endif /* __ARCH_HAS_5LEVEL_HACK */
3939 	spin_unlock(&mm->page_table_lock);
3940 	return 0;
3941 }
3942 #endif /* __PAGETABLE_PUD_FOLDED */
3943 
3944 #ifndef __PAGETABLE_PMD_FOLDED
3945 /*
3946  * Allocate page middle directory.
3947  * We've already handled the fast-path in-line.
3948  */
3949 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3950 {
3951 	spinlock_t *ptl;
3952 	pmd_t *new = pmd_alloc_one(mm, address);
3953 	if (!new)
3954 		return -ENOMEM;
3955 
3956 	smp_wmb(); /* See comment in __pte_alloc */
3957 
3958 	ptl = pud_lock(mm, pud);
3959 #ifndef __ARCH_HAS_4LEVEL_HACK
3960 	if (!pud_present(*pud)) {
3961 		mm_inc_nr_pmds(mm);
3962 		pud_populate(mm, pud, new);
3963 	} else	/* Another has populated it */
3964 		pmd_free(mm, new);
3965 #else
3966 	if (!pgd_present(*pud)) {
3967 		mm_inc_nr_pmds(mm);
3968 		pgd_populate(mm, pud, new);
3969 	} else /* Another has populated it */
3970 		pmd_free(mm, new);
3971 #endif /* __ARCH_HAS_4LEVEL_HACK */
3972 	spin_unlock(ptl);
3973 	return 0;
3974 }
3975 #endif /* __PAGETABLE_PMD_FOLDED */
3976 
3977 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3978 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3979 {
3980 	pgd_t *pgd;
3981 	p4d_t *p4d;
3982 	pud_t *pud;
3983 	pmd_t *pmd;
3984 	pte_t *ptep;
3985 
3986 	pgd = pgd_offset(mm, address);
3987 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3988 		goto out;
3989 
3990 	p4d = p4d_offset(pgd, address);
3991 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
3992 		goto out;
3993 
3994 	pud = pud_offset(p4d, address);
3995 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3996 		goto out;
3997 
3998 	pmd = pmd_offset(pud, address);
3999 	VM_BUG_ON(pmd_trans_huge(*pmd));
4000 
4001 	if (pmd_huge(*pmd)) {
4002 		if (!pmdpp)
4003 			goto out;
4004 
4005 		*ptlp = pmd_lock(mm, pmd);
4006 		if (pmd_huge(*pmd)) {
4007 			*pmdpp = pmd;
4008 			return 0;
4009 		}
4010 		spin_unlock(*ptlp);
4011 	}
4012 
4013 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4014 		goto out;
4015 
4016 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4017 	if (!ptep)
4018 		goto out;
4019 	if (!pte_present(*ptep))
4020 		goto unlock;
4021 	*ptepp = ptep;
4022 	return 0;
4023 unlock:
4024 	pte_unmap_unlock(ptep, *ptlp);
4025 out:
4026 	return -EINVAL;
4027 }
4028 
4029 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4030 			     pte_t **ptepp, spinlock_t **ptlp)
4031 {
4032 	int res;
4033 
4034 	/* (void) is needed to make gcc happy */
4035 	(void) __cond_lock(*ptlp,
4036 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4037 					   ptlp)));
4038 	return res;
4039 }
4040 
4041 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4042 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4043 {
4044 	int res;
4045 
4046 	/* (void) is needed to make gcc happy */
4047 	(void) __cond_lock(*ptlp,
4048 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4049 					   ptlp)));
4050 	return res;
4051 }
4052 EXPORT_SYMBOL(follow_pte_pmd);
4053 
4054 /**
4055  * follow_pfn - look up PFN at a user virtual address
4056  * @vma: memory mapping
4057  * @address: user virtual address
4058  * @pfn: location to store found PFN
4059  *
4060  * Only IO mappings and raw PFN mappings are allowed.
4061  *
4062  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4063  */
4064 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4065 	unsigned long *pfn)
4066 {
4067 	int ret = -EINVAL;
4068 	spinlock_t *ptl;
4069 	pte_t *ptep;
4070 
4071 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4072 		return ret;
4073 
4074 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4075 	if (ret)
4076 		return ret;
4077 	*pfn = pte_pfn(*ptep);
4078 	pte_unmap_unlock(ptep, ptl);
4079 	return 0;
4080 }
4081 EXPORT_SYMBOL(follow_pfn);
4082 
4083 #ifdef CONFIG_HAVE_IOREMAP_PROT
4084 int follow_phys(struct vm_area_struct *vma,
4085 		unsigned long address, unsigned int flags,
4086 		unsigned long *prot, resource_size_t *phys)
4087 {
4088 	int ret = -EINVAL;
4089 	pte_t *ptep, pte;
4090 	spinlock_t *ptl;
4091 
4092 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4093 		goto out;
4094 
4095 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4096 		goto out;
4097 	pte = *ptep;
4098 
4099 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4100 		goto unlock;
4101 
4102 	*prot = pgprot_val(pte_pgprot(pte));
4103 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4104 
4105 	ret = 0;
4106 unlock:
4107 	pte_unmap_unlock(ptep, ptl);
4108 out:
4109 	return ret;
4110 }
4111 
4112 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4113 			void *buf, int len, int write)
4114 {
4115 	resource_size_t phys_addr;
4116 	unsigned long prot = 0;
4117 	void __iomem *maddr;
4118 	int offset = addr & (PAGE_SIZE-1);
4119 
4120 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4121 		return -EINVAL;
4122 
4123 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4124 	if (write)
4125 		memcpy_toio(maddr + offset, buf, len);
4126 	else
4127 		memcpy_fromio(buf, maddr + offset, len);
4128 	iounmap(maddr);
4129 
4130 	return len;
4131 }
4132 EXPORT_SYMBOL_GPL(generic_access_phys);
4133 #endif
4134 
4135 /*
4136  * Access another process' address space as given in mm.  If non-NULL, use the
4137  * given task for page fault accounting.
4138  */
4139 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4140 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4141 {
4142 	struct vm_area_struct *vma;
4143 	void *old_buf = buf;
4144 	int write = gup_flags & FOLL_WRITE;
4145 
4146 	down_read(&mm->mmap_sem);
4147 	/* ignore errors, just check how much was successfully transferred */
4148 	while (len) {
4149 		int bytes, ret, offset;
4150 		void *maddr;
4151 		struct page *page = NULL;
4152 
4153 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4154 				gup_flags, &page, &vma, NULL);
4155 		if (ret <= 0) {
4156 #ifndef CONFIG_HAVE_IOREMAP_PROT
4157 			break;
4158 #else
4159 			/*
4160 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4161 			 * we can access using slightly different code.
4162 			 */
4163 			vma = find_vma(mm, addr);
4164 			if (!vma || vma->vm_start > addr)
4165 				break;
4166 			if (vma->vm_ops && vma->vm_ops->access)
4167 				ret = vma->vm_ops->access(vma, addr, buf,
4168 							  len, write);
4169 			if (ret <= 0)
4170 				break;
4171 			bytes = ret;
4172 #endif
4173 		} else {
4174 			bytes = len;
4175 			offset = addr & (PAGE_SIZE-1);
4176 			if (bytes > PAGE_SIZE-offset)
4177 				bytes = PAGE_SIZE-offset;
4178 
4179 			maddr = kmap(page);
4180 			if (write) {
4181 				copy_to_user_page(vma, page, addr,
4182 						  maddr + offset, buf, bytes);
4183 				set_page_dirty_lock(page);
4184 			} else {
4185 				copy_from_user_page(vma, page, addr,
4186 						    buf, maddr + offset, bytes);
4187 			}
4188 			kunmap(page);
4189 			put_page(page);
4190 		}
4191 		len -= bytes;
4192 		buf += bytes;
4193 		addr += bytes;
4194 	}
4195 	up_read(&mm->mmap_sem);
4196 
4197 	return buf - old_buf;
4198 }
4199 
4200 /**
4201  * access_remote_vm - access another process' address space
4202  * @mm:		the mm_struct of the target address space
4203  * @addr:	start address to access
4204  * @buf:	source or destination buffer
4205  * @len:	number of bytes to transfer
4206  * @gup_flags:	flags modifying lookup behaviour
4207  *
4208  * The caller must hold a reference on @mm.
4209  */
4210 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4211 		void *buf, int len, unsigned int gup_flags)
4212 {
4213 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4214 }
4215 
4216 /*
4217  * Access another process' address space.
4218  * Source/target buffer must be kernel space,
4219  * Do not walk the page table directly, use get_user_pages
4220  */
4221 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4222 		void *buf, int len, unsigned int gup_flags)
4223 {
4224 	struct mm_struct *mm;
4225 	int ret;
4226 
4227 	mm = get_task_mm(tsk);
4228 	if (!mm)
4229 		return 0;
4230 
4231 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4232 
4233 	mmput(mm);
4234 
4235 	return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(access_process_vm);
4238 
4239 /*
4240  * Print the name of a VMA.
4241  */
4242 void print_vma_addr(char *prefix, unsigned long ip)
4243 {
4244 	struct mm_struct *mm = current->mm;
4245 	struct vm_area_struct *vma;
4246 
4247 	/*
4248 	 * Do not print if we are in atomic
4249 	 * contexts (in exception stacks, etc.):
4250 	 */
4251 	if (preempt_count())
4252 		return;
4253 
4254 	down_read(&mm->mmap_sem);
4255 	vma = find_vma(mm, ip);
4256 	if (vma && vma->vm_file) {
4257 		struct file *f = vma->vm_file;
4258 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4259 		if (buf) {
4260 			char *p;
4261 
4262 			p = file_path(f, buf, PAGE_SIZE);
4263 			if (IS_ERR(p))
4264 				p = "?";
4265 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4266 					vma->vm_start,
4267 					vma->vm_end - vma->vm_start);
4268 			free_page((unsigned long)buf);
4269 		}
4270 	}
4271 	up_read(&mm->mmap_sem);
4272 }
4273 
4274 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4275 void __might_fault(const char *file, int line)
4276 {
4277 	/*
4278 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4279 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4280 	 * get paged out, therefore we'll never actually fault, and the
4281 	 * below annotations will generate false positives.
4282 	 */
4283 	if (uaccess_kernel())
4284 		return;
4285 	if (pagefault_disabled())
4286 		return;
4287 	__might_sleep(file, line, 0);
4288 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4289 	if (current->mm)
4290 		might_lock_read(&current->mm->mmap_sem);
4291 #endif
4292 }
4293 EXPORT_SYMBOL(__might_fault);
4294 #endif
4295 
4296 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4297 static void clear_gigantic_page(struct page *page,
4298 				unsigned long addr,
4299 				unsigned int pages_per_huge_page)
4300 {
4301 	int i;
4302 	struct page *p = page;
4303 
4304 	might_sleep();
4305 	for (i = 0; i < pages_per_huge_page;
4306 	     i++, p = mem_map_next(p, page, i)) {
4307 		cond_resched();
4308 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4309 	}
4310 }
4311 void clear_huge_page(struct page *page,
4312 		     unsigned long addr, unsigned int pages_per_huge_page)
4313 {
4314 	int i;
4315 
4316 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4317 		clear_gigantic_page(page, addr, pages_per_huge_page);
4318 		return;
4319 	}
4320 
4321 	might_sleep();
4322 	for (i = 0; i < pages_per_huge_page; i++) {
4323 		cond_resched();
4324 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4325 	}
4326 }
4327 
4328 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4329 				    unsigned long addr,
4330 				    struct vm_area_struct *vma,
4331 				    unsigned int pages_per_huge_page)
4332 {
4333 	int i;
4334 	struct page *dst_base = dst;
4335 	struct page *src_base = src;
4336 
4337 	for (i = 0; i < pages_per_huge_page; ) {
4338 		cond_resched();
4339 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4340 
4341 		i++;
4342 		dst = mem_map_next(dst, dst_base, i);
4343 		src = mem_map_next(src, src_base, i);
4344 	}
4345 }
4346 
4347 void copy_user_huge_page(struct page *dst, struct page *src,
4348 			 unsigned long addr, struct vm_area_struct *vma,
4349 			 unsigned int pages_per_huge_page)
4350 {
4351 	int i;
4352 
4353 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4354 		copy_user_gigantic_page(dst, src, addr, vma,
4355 					pages_per_huge_page);
4356 		return;
4357 	}
4358 
4359 	might_sleep();
4360 	for (i = 0; i < pages_per_huge_page; i++) {
4361 		cond_resched();
4362 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4363 	}
4364 }
4365 
4366 long copy_huge_page_from_user(struct page *dst_page,
4367 				const void __user *usr_src,
4368 				unsigned int pages_per_huge_page,
4369 				bool allow_pagefault)
4370 {
4371 	void *src = (void *)usr_src;
4372 	void *page_kaddr;
4373 	unsigned long i, rc = 0;
4374 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4375 
4376 	for (i = 0; i < pages_per_huge_page; i++) {
4377 		if (allow_pagefault)
4378 			page_kaddr = kmap(dst_page + i);
4379 		else
4380 			page_kaddr = kmap_atomic(dst_page + i);
4381 		rc = copy_from_user(page_kaddr,
4382 				(const void __user *)(src + i * PAGE_SIZE),
4383 				PAGE_SIZE);
4384 		if (allow_pagefault)
4385 			kunmap(dst_page + i);
4386 		else
4387 			kunmap_atomic(page_kaddr);
4388 
4389 		ret_val -= (PAGE_SIZE - rc);
4390 		if (rc)
4391 			break;
4392 
4393 		cond_resched();
4394 	}
4395 	return ret_val;
4396 }
4397 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4398 
4399 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4400 
4401 static struct kmem_cache *page_ptl_cachep;
4402 
4403 void __init ptlock_cache_init(void)
4404 {
4405 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4406 			SLAB_PANIC, NULL);
4407 }
4408 
4409 bool ptlock_alloc(struct page *page)
4410 {
4411 	spinlock_t *ptl;
4412 
4413 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4414 	if (!ptl)
4415 		return false;
4416 	page->ptl = ptl;
4417 	return true;
4418 }
4419 
4420 void ptlock_free(struct page *page)
4421 {
4422 	kmem_cache_free(page_ptl_cachep, page->ptl);
4423 }
4424 #endif
4425