xref: /openbmc/linux/mm/memory.c (revision f699b7f351dceb754d58a836c8c16cf3de749cfc)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66 
67 #include "internal.h"
68 
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73 
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77 
78 unsigned long num_physpages;
79 /*
80  * A number of key systems in x86 including ioremap() rely on the assumption
81  * that high_memory defines the upper bound on direct map memory, then end
82  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84  * and ZONE_HIGHMEM.
85  */
86 void * high_memory;
87 
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90 
91 /*
92  * Randomize the address space (stacks, mmaps, brk, etc.).
93  *
94  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95  *   as ancient (libc5 based) binaries can segfault. )
96  */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 					1;
100 #else
101 					2;
102 #endif
103 
104 static int __init disable_randmaps(char *s)
105 {
106 	randomize_va_space = 0;
107 	return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110 
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113 
114 /*
115  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116  */
117 static int __init init_zero_pfn(void)
118 {
119 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 	return 0;
121 }
122 core_initcall(init_zero_pfn);
123 
124 /*
125  * If a p?d_bad entry is found while walking page tables, report
126  * the error, before resetting entry to p?d_none.  Usually (but
127  * very seldom) called out from the p?d_none_or_clear_bad macros.
128  */
129 
130 void pgd_clear_bad(pgd_t *pgd)
131 {
132 	pgd_ERROR(*pgd);
133 	pgd_clear(pgd);
134 }
135 
136 void pud_clear_bad(pud_t *pud)
137 {
138 	pud_ERROR(*pud);
139 	pud_clear(pud);
140 }
141 
142 void pmd_clear_bad(pmd_t *pmd)
143 {
144 	pmd_ERROR(*pmd);
145 	pmd_clear(pmd);
146 }
147 
148 /*
149  * Note: this doesn't free the actual pages themselves. That
150  * has been handled earlier when unmapping all the memory regions.
151  */
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 			   unsigned long addr)
154 {
155 	pgtable_t token = pmd_pgtable(*pmd);
156 	pmd_clear(pmd);
157 	pte_free_tlb(tlb, token, addr);
158 	tlb->mm->nr_ptes--;
159 }
160 
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 				unsigned long addr, unsigned long end,
163 				unsigned long floor, unsigned long ceiling)
164 {
165 	pmd_t *pmd;
166 	unsigned long next;
167 	unsigned long start;
168 
169 	start = addr;
170 	pmd = pmd_offset(pud, addr);
171 	do {
172 		next = pmd_addr_end(addr, end);
173 		if (pmd_none_or_clear_bad(pmd))
174 			continue;
175 		free_pte_range(tlb, pmd, addr);
176 	} while (pmd++, addr = next, addr != end);
177 
178 	start &= PUD_MASK;
179 	if (start < floor)
180 		return;
181 	if (ceiling) {
182 		ceiling &= PUD_MASK;
183 		if (!ceiling)
184 			return;
185 	}
186 	if (end - 1 > ceiling - 1)
187 		return;
188 
189 	pmd = pmd_offset(pud, start);
190 	pud_clear(pud);
191 	pmd_free_tlb(tlb, pmd, start);
192 }
193 
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 				unsigned long addr, unsigned long end,
196 				unsigned long floor, unsigned long ceiling)
197 {
198 	pud_t *pud;
199 	unsigned long next;
200 	unsigned long start;
201 
202 	start = addr;
203 	pud = pud_offset(pgd, addr);
204 	do {
205 		next = pud_addr_end(addr, end);
206 		if (pud_none_or_clear_bad(pud))
207 			continue;
208 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 	} while (pud++, addr = next, addr != end);
210 
211 	start &= PGDIR_MASK;
212 	if (start < floor)
213 		return;
214 	if (ceiling) {
215 		ceiling &= PGDIR_MASK;
216 		if (!ceiling)
217 			return;
218 	}
219 	if (end - 1 > ceiling - 1)
220 		return;
221 
222 	pud = pud_offset(pgd, start);
223 	pgd_clear(pgd);
224 	pud_free_tlb(tlb, pud, start);
225 }
226 
227 /*
228  * This function frees user-level page tables of a process.
229  *
230  * Must be called with pagetable lock held.
231  */
232 void free_pgd_range(struct mmu_gather *tlb,
233 			unsigned long addr, unsigned long end,
234 			unsigned long floor, unsigned long ceiling)
235 {
236 	pgd_t *pgd;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	/*
241 	 * The next few lines have given us lots of grief...
242 	 *
243 	 * Why are we testing PMD* at this top level?  Because often
244 	 * there will be no work to do at all, and we'd prefer not to
245 	 * go all the way down to the bottom just to discover that.
246 	 *
247 	 * Why all these "- 1"s?  Because 0 represents both the bottom
248 	 * of the address space and the top of it (using -1 for the
249 	 * top wouldn't help much: the masks would do the wrong thing).
250 	 * The rule is that addr 0 and floor 0 refer to the bottom of
251 	 * the address space, but end 0 and ceiling 0 refer to the top
252 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 	 * that end 0 case should be mythical).
254 	 *
255 	 * Wherever addr is brought up or ceiling brought down, we must
256 	 * be careful to reject "the opposite 0" before it confuses the
257 	 * subsequent tests.  But what about where end is brought down
258 	 * by PMD_SIZE below? no, end can't go down to 0 there.
259 	 *
260 	 * Whereas we round start (addr) and ceiling down, by different
261 	 * masks at different levels, in order to test whether a table
262 	 * now has no other vmas using it, so can be freed, we don't
263 	 * bother to round floor or end up - the tests don't need that.
264 	 */
265 
266 	addr &= PMD_MASK;
267 	if (addr < floor) {
268 		addr += PMD_SIZE;
269 		if (!addr)
270 			return;
271 	}
272 	if (ceiling) {
273 		ceiling &= PMD_MASK;
274 		if (!ceiling)
275 			return;
276 	}
277 	if (end - 1 > ceiling - 1)
278 		end -= PMD_SIZE;
279 	if (addr > end - 1)
280 		return;
281 
282 	start = addr;
283 	pgd = pgd_offset(tlb->mm, addr);
284 	do {
285 		next = pgd_addr_end(addr, end);
286 		if (pgd_none_or_clear_bad(pgd))
287 			continue;
288 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 	} while (pgd++, addr = next, addr != end);
290 }
291 
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 		unsigned long floor, unsigned long ceiling)
294 {
295 	while (vma) {
296 		struct vm_area_struct *next = vma->vm_next;
297 		unsigned long addr = vma->vm_start;
298 
299 		/*
300 		 * Hide vma from rmap and truncate_pagecache before freeing
301 		 * pgtables
302 		 */
303 		anon_vma_unlink(vma);
304 		unlink_file_vma(vma);
305 
306 		if (is_vm_hugetlb_page(vma)) {
307 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
308 				floor, next? next->vm_start: ceiling);
309 		} else {
310 			/*
311 			 * Optimization: gather nearby vmas into one call down
312 			 */
313 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
314 			       && !is_vm_hugetlb_page(next)) {
315 				vma = next;
316 				next = vma->vm_next;
317 				anon_vma_unlink(vma);
318 				unlink_file_vma(vma);
319 			}
320 			free_pgd_range(tlb, addr, vma->vm_end,
321 				floor, next? next->vm_start: ceiling);
322 		}
323 		vma = next;
324 	}
325 }
326 
327 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
328 {
329 	pgtable_t new = pte_alloc_one(mm, address);
330 	if (!new)
331 		return -ENOMEM;
332 
333 	/*
334 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 	 * visible before the pte is made visible to other CPUs by being
336 	 * put into page tables.
337 	 *
338 	 * The other side of the story is the pointer chasing in the page
339 	 * table walking code (when walking the page table without locking;
340 	 * ie. most of the time). Fortunately, these data accesses consist
341 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 	 * being the notable exception) will already guarantee loads are
343 	 * seen in-order. See the alpha page table accessors for the
344 	 * smp_read_barrier_depends() barriers in page table walking code.
345 	 */
346 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
347 
348 	spin_lock(&mm->page_table_lock);
349 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
350 		mm->nr_ptes++;
351 		pmd_populate(mm, pmd, new);
352 		new = NULL;
353 	}
354 	spin_unlock(&mm->page_table_lock);
355 	if (new)
356 		pte_free(mm, new);
357 	return 0;
358 }
359 
360 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
361 {
362 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
363 	if (!new)
364 		return -ENOMEM;
365 
366 	smp_wmb(); /* See comment in __pte_alloc */
367 
368 	spin_lock(&init_mm.page_table_lock);
369 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
370 		pmd_populate_kernel(&init_mm, pmd, new);
371 		new = NULL;
372 	}
373 	spin_unlock(&init_mm.page_table_lock);
374 	if (new)
375 		pte_free_kernel(&init_mm, new);
376 	return 0;
377 }
378 
379 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
380 {
381 	if (file_rss)
382 		add_mm_counter(mm, file_rss, file_rss);
383 	if (anon_rss)
384 		add_mm_counter(mm, anon_rss, anon_rss);
385 }
386 
387 /*
388  * This function is called to print an error when a bad pte
389  * is found. For example, we might have a PFN-mapped pte in
390  * a region that doesn't allow it.
391  *
392  * The calling function must still handle the error.
393  */
394 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
395 			  pte_t pte, struct page *page)
396 {
397 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
398 	pud_t *pud = pud_offset(pgd, addr);
399 	pmd_t *pmd = pmd_offset(pud, addr);
400 	struct address_space *mapping;
401 	pgoff_t index;
402 	static unsigned long resume;
403 	static unsigned long nr_shown;
404 	static unsigned long nr_unshown;
405 
406 	/*
407 	 * Allow a burst of 60 reports, then keep quiet for that minute;
408 	 * or allow a steady drip of one report per second.
409 	 */
410 	if (nr_shown == 60) {
411 		if (time_before(jiffies, resume)) {
412 			nr_unshown++;
413 			return;
414 		}
415 		if (nr_unshown) {
416 			printk(KERN_ALERT
417 				"BUG: Bad page map: %lu messages suppressed\n",
418 				nr_unshown);
419 			nr_unshown = 0;
420 		}
421 		nr_shown = 0;
422 	}
423 	if (nr_shown++ == 0)
424 		resume = jiffies + 60 * HZ;
425 
426 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
427 	index = linear_page_index(vma, addr);
428 
429 	printk(KERN_ALERT
430 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
431 		current->comm,
432 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
433 	if (page) {
434 		printk(KERN_ALERT
435 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 		page, (void *)page->flags, page_count(page),
437 		page_mapcount(page), page->mapping, page->index);
438 	}
439 	printk(KERN_ALERT
440 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
442 	/*
443 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
444 	 */
445 	if (vma->vm_ops)
446 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
447 				(unsigned long)vma->vm_ops->fault);
448 	if (vma->vm_file && vma->vm_file->f_op)
449 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
450 				(unsigned long)vma->vm_file->f_op->mmap);
451 	dump_stack();
452 	add_taint(TAINT_BAD_PAGE);
453 }
454 
455 static inline int is_cow_mapping(unsigned int flags)
456 {
457 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
458 }
459 
460 #ifndef is_zero_pfn
461 static inline int is_zero_pfn(unsigned long pfn)
462 {
463 	return pfn == zero_pfn;
464 }
465 #endif
466 
467 #ifndef my_zero_pfn
468 static inline unsigned long my_zero_pfn(unsigned long addr)
469 {
470 	return zero_pfn;
471 }
472 #endif
473 
474 /*
475  * vm_normal_page -- This function gets the "struct page" associated with a pte.
476  *
477  * "Special" mappings do not wish to be associated with a "struct page" (either
478  * it doesn't exist, or it exists but they don't want to touch it). In this
479  * case, NULL is returned here. "Normal" mappings do have a struct page.
480  *
481  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482  * pte bit, in which case this function is trivial. Secondly, an architecture
483  * may not have a spare pte bit, which requires a more complicated scheme,
484  * described below.
485  *
486  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487  * special mapping (even if there are underlying and valid "struct pages").
488  * COWed pages of a VM_PFNMAP are always normal.
489  *
490  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493  * mapping will always honor the rule
494  *
495  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
496  *
497  * And for normal mappings this is false.
498  *
499  * This restricts such mappings to be a linear translation from virtual address
500  * to pfn. To get around this restriction, we allow arbitrary mappings so long
501  * as the vma is not a COW mapping; in that case, we know that all ptes are
502  * special (because none can have been COWed).
503  *
504  *
505  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
506  *
507  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508  * page" backing, however the difference is that _all_ pages with a struct
509  * page (that is, those where pfn_valid is true) are refcounted and considered
510  * normal pages by the VM. The disadvantage is that pages are refcounted
511  * (which can be slower and simply not an option for some PFNMAP users). The
512  * advantage is that we don't have to follow the strict linearity rule of
513  * PFNMAP mappings in order to support COWable mappings.
514  *
515  */
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
518 #else
519 # define HAVE_PTE_SPECIAL 0
520 #endif
521 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
522 				pte_t pte)
523 {
524 	unsigned long pfn = pte_pfn(pte);
525 
526 	if (HAVE_PTE_SPECIAL) {
527 		if (likely(!pte_special(pte)))
528 			goto check_pfn;
529 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
530 			return NULL;
531 		if (!is_zero_pfn(pfn))
532 			print_bad_pte(vma, addr, pte, NULL);
533 		return NULL;
534 	}
535 
536 	/* !HAVE_PTE_SPECIAL case follows: */
537 
538 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
539 		if (vma->vm_flags & VM_MIXEDMAP) {
540 			if (!pfn_valid(pfn))
541 				return NULL;
542 			goto out;
543 		} else {
544 			unsigned long off;
545 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
546 			if (pfn == vma->vm_pgoff + off)
547 				return NULL;
548 			if (!is_cow_mapping(vma->vm_flags))
549 				return NULL;
550 		}
551 	}
552 
553 	if (is_zero_pfn(pfn))
554 		return NULL;
555 check_pfn:
556 	if (unlikely(pfn > highest_memmap_pfn)) {
557 		print_bad_pte(vma, addr, pte, NULL);
558 		return NULL;
559 	}
560 
561 	/*
562 	 * NOTE! We still have PageReserved() pages in the page tables.
563 	 * eg. VDSO mappings can cause them to exist.
564 	 */
565 out:
566 	return pfn_to_page(pfn);
567 }
568 
569 /*
570  * copy one vm_area from one task to the other. Assumes the page tables
571  * already present in the new task to be cleared in the whole range
572  * covered by this vma.
573  */
574 
575 static inline void
576 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578 		unsigned long addr, int *rss)
579 {
580 	unsigned long vm_flags = vma->vm_flags;
581 	pte_t pte = *src_pte;
582 	struct page *page;
583 
584 	/* pte contains position in swap or file, so copy. */
585 	if (unlikely(!pte_present(pte))) {
586 		if (!pte_file(pte)) {
587 			swp_entry_t entry = pte_to_swp_entry(pte);
588 
589 			swap_duplicate(entry);
590 			/* make sure dst_mm is on swapoff's mmlist. */
591 			if (unlikely(list_empty(&dst_mm->mmlist))) {
592 				spin_lock(&mmlist_lock);
593 				if (list_empty(&dst_mm->mmlist))
594 					list_add(&dst_mm->mmlist,
595 						 &src_mm->mmlist);
596 				spin_unlock(&mmlist_lock);
597 			}
598 			if (is_write_migration_entry(entry) &&
599 					is_cow_mapping(vm_flags)) {
600 				/*
601 				 * COW mappings require pages in both parent
602 				 * and child to be set to read.
603 				 */
604 				make_migration_entry_read(&entry);
605 				pte = swp_entry_to_pte(entry);
606 				set_pte_at(src_mm, addr, src_pte, pte);
607 			}
608 		}
609 		goto out_set_pte;
610 	}
611 
612 	/*
613 	 * If it's a COW mapping, write protect it both
614 	 * in the parent and the child
615 	 */
616 	if (is_cow_mapping(vm_flags)) {
617 		ptep_set_wrprotect(src_mm, addr, src_pte);
618 		pte = pte_wrprotect(pte);
619 	}
620 
621 	/*
622 	 * If it's a shared mapping, mark it clean in
623 	 * the child
624 	 */
625 	if (vm_flags & VM_SHARED)
626 		pte = pte_mkclean(pte);
627 	pte = pte_mkold(pte);
628 
629 	page = vm_normal_page(vma, addr, pte);
630 	if (page) {
631 		get_page(page);
632 		page_dup_rmap(page);
633 		rss[PageAnon(page)]++;
634 	}
635 
636 out_set_pte:
637 	set_pte_at(dst_mm, addr, dst_pte, pte);
638 }
639 
640 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
641 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
642 		unsigned long addr, unsigned long end)
643 {
644 	pte_t *orig_src_pte, *orig_dst_pte;
645 	pte_t *src_pte, *dst_pte;
646 	spinlock_t *src_ptl, *dst_ptl;
647 	int progress = 0;
648 	int rss[2];
649 
650 again:
651 	rss[1] = rss[0] = 0;
652 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
653 	if (!dst_pte)
654 		return -ENOMEM;
655 	src_pte = pte_offset_map_nested(src_pmd, addr);
656 	src_ptl = pte_lockptr(src_mm, src_pmd);
657 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
658 	orig_src_pte = src_pte;
659 	orig_dst_pte = dst_pte;
660 	arch_enter_lazy_mmu_mode();
661 
662 	do {
663 		/*
664 		 * We are holding two locks at this point - either of them
665 		 * could generate latencies in another task on another CPU.
666 		 */
667 		if (progress >= 32) {
668 			progress = 0;
669 			if (need_resched() ||
670 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
671 				break;
672 		}
673 		if (pte_none(*src_pte)) {
674 			progress++;
675 			continue;
676 		}
677 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
678 		progress += 8;
679 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
680 
681 	arch_leave_lazy_mmu_mode();
682 	spin_unlock(src_ptl);
683 	pte_unmap_nested(orig_src_pte);
684 	add_mm_rss(dst_mm, rss[0], rss[1]);
685 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
686 	cond_resched();
687 	if (addr != end)
688 		goto again;
689 	return 0;
690 }
691 
692 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
693 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
694 		unsigned long addr, unsigned long end)
695 {
696 	pmd_t *src_pmd, *dst_pmd;
697 	unsigned long next;
698 
699 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
700 	if (!dst_pmd)
701 		return -ENOMEM;
702 	src_pmd = pmd_offset(src_pud, addr);
703 	do {
704 		next = pmd_addr_end(addr, end);
705 		if (pmd_none_or_clear_bad(src_pmd))
706 			continue;
707 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
708 						vma, addr, next))
709 			return -ENOMEM;
710 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
711 	return 0;
712 }
713 
714 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
715 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
716 		unsigned long addr, unsigned long end)
717 {
718 	pud_t *src_pud, *dst_pud;
719 	unsigned long next;
720 
721 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
722 	if (!dst_pud)
723 		return -ENOMEM;
724 	src_pud = pud_offset(src_pgd, addr);
725 	do {
726 		next = pud_addr_end(addr, end);
727 		if (pud_none_or_clear_bad(src_pud))
728 			continue;
729 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
730 						vma, addr, next))
731 			return -ENOMEM;
732 	} while (dst_pud++, src_pud++, addr = next, addr != end);
733 	return 0;
734 }
735 
736 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
737 		struct vm_area_struct *vma)
738 {
739 	pgd_t *src_pgd, *dst_pgd;
740 	unsigned long next;
741 	unsigned long addr = vma->vm_start;
742 	unsigned long end = vma->vm_end;
743 	int ret;
744 
745 	/*
746 	 * Don't copy ptes where a page fault will fill them correctly.
747 	 * Fork becomes much lighter when there are big shared or private
748 	 * readonly mappings. The tradeoff is that copy_page_range is more
749 	 * efficient than faulting.
750 	 */
751 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
752 		if (!vma->anon_vma)
753 			return 0;
754 	}
755 
756 	if (is_vm_hugetlb_page(vma))
757 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
758 
759 	if (unlikely(is_pfn_mapping(vma))) {
760 		/*
761 		 * We do not free on error cases below as remove_vma
762 		 * gets called on error from higher level routine
763 		 */
764 		ret = track_pfn_vma_copy(vma);
765 		if (ret)
766 			return ret;
767 	}
768 
769 	/*
770 	 * We need to invalidate the secondary MMU mappings only when
771 	 * there could be a permission downgrade on the ptes of the
772 	 * parent mm. And a permission downgrade will only happen if
773 	 * is_cow_mapping() returns true.
774 	 */
775 	if (is_cow_mapping(vma->vm_flags))
776 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
777 
778 	ret = 0;
779 	dst_pgd = pgd_offset(dst_mm, addr);
780 	src_pgd = pgd_offset(src_mm, addr);
781 	do {
782 		next = pgd_addr_end(addr, end);
783 		if (pgd_none_or_clear_bad(src_pgd))
784 			continue;
785 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
786 					    vma, addr, next))) {
787 			ret = -ENOMEM;
788 			break;
789 		}
790 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
791 
792 	if (is_cow_mapping(vma->vm_flags))
793 		mmu_notifier_invalidate_range_end(src_mm,
794 						  vma->vm_start, end);
795 	return ret;
796 }
797 
798 static unsigned long zap_pte_range(struct mmu_gather *tlb,
799 				struct vm_area_struct *vma, pmd_t *pmd,
800 				unsigned long addr, unsigned long end,
801 				long *zap_work, struct zap_details *details)
802 {
803 	struct mm_struct *mm = tlb->mm;
804 	pte_t *pte;
805 	spinlock_t *ptl;
806 	int file_rss = 0;
807 	int anon_rss = 0;
808 
809 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
810 	arch_enter_lazy_mmu_mode();
811 	do {
812 		pte_t ptent = *pte;
813 		if (pte_none(ptent)) {
814 			(*zap_work)--;
815 			continue;
816 		}
817 
818 		(*zap_work) -= PAGE_SIZE;
819 
820 		if (pte_present(ptent)) {
821 			struct page *page;
822 
823 			page = vm_normal_page(vma, addr, ptent);
824 			if (unlikely(details) && page) {
825 				/*
826 				 * unmap_shared_mapping_pages() wants to
827 				 * invalidate cache without truncating:
828 				 * unmap shared but keep private pages.
829 				 */
830 				if (details->check_mapping &&
831 				    details->check_mapping != page->mapping)
832 					continue;
833 				/*
834 				 * Each page->index must be checked when
835 				 * invalidating or truncating nonlinear.
836 				 */
837 				if (details->nonlinear_vma &&
838 				    (page->index < details->first_index ||
839 				     page->index > details->last_index))
840 					continue;
841 			}
842 			ptent = ptep_get_and_clear_full(mm, addr, pte,
843 							tlb->fullmm);
844 			tlb_remove_tlb_entry(tlb, pte, addr);
845 			if (unlikely(!page))
846 				continue;
847 			if (unlikely(details) && details->nonlinear_vma
848 			    && linear_page_index(details->nonlinear_vma,
849 						addr) != page->index)
850 				set_pte_at(mm, addr, pte,
851 					   pgoff_to_pte(page->index));
852 			if (PageAnon(page))
853 				anon_rss--;
854 			else {
855 				if (pte_dirty(ptent))
856 					set_page_dirty(page);
857 				if (pte_young(ptent) &&
858 				    likely(!VM_SequentialReadHint(vma)))
859 					mark_page_accessed(page);
860 				file_rss--;
861 			}
862 			page_remove_rmap(page);
863 			if (unlikely(page_mapcount(page) < 0))
864 				print_bad_pte(vma, addr, ptent, page);
865 			tlb_remove_page(tlb, page);
866 			continue;
867 		}
868 		/*
869 		 * If details->check_mapping, we leave swap entries;
870 		 * if details->nonlinear_vma, we leave file entries.
871 		 */
872 		if (unlikely(details))
873 			continue;
874 		if (pte_file(ptent)) {
875 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
876 				print_bad_pte(vma, addr, ptent, NULL);
877 		} else if
878 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
879 			print_bad_pte(vma, addr, ptent, NULL);
880 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
881 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
882 
883 	add_mm_rss(mm, file_rss, anon_rss);
884 	arch_leave_lazy_mmu_mode();
885 	pte_unmap_unlock(pte - 1, ptl);
886 
887 	return addr;
888 }
889 
890 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
891 				struct vm_area_struct *vma, pud_t *pud,
892 				unsigned long addr, unsigned long end,
893 				long *zap_work, struct zap_details *details)
894 {
895 	pmd_t *pmd;
896 	unsigned long next;
897 
898 	pmd = pmd_offset(pud, addr);
899 	do {
900 		next = pmd_addr_end(addr, end);
901 		if (pmd_none_or_clear_bad(pmd)) {
902 			(*zap_work)--;
903 			continue;
904 		}
905 		next = zap_pte_range(tlb, vma, pmd, addr, next,
906 						zap_work, details);
907 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
908 
909 	return addr;
910 }
911 
912 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
913 				struct vm_area_struct *vma, pgd_t *pgd,
914 				unsigned long addr, unsigned long end,
915 				long *zap_work, struct zap_details *details)
916 {
917 	pud_t *pud;
918 	unsigned long next;
919 
920 	pud = pud_offset(pgd, addr);
921 	do {
922 		next = pud_addr_end(addr, end);
923 		if (pud_none_or_clear_bad(pud)) {
924 			(*zap_work)--;
925 			continue;
926 		}
927 		next = zap_pmd_range(tlb, vma, pud, addr, next,
928 						zap_work, details);
929 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
930 
931 	return addr;
932 }
933 
934 static unsigned long unmap_page_range(struct mmu_gather *tlb,
935 				struct vm_area_struct *vma,
936 				unsigned long addr, unsigned long end,
937 				long *zap_work, struct zap_details *details)
938 {
939 	pgd_t *pgd;
940 	unsigned long next;
941 
942 	if (details && !details->check_mapping && !details->nonlinear_vma)
943 		details = NULL;
944 
945 	BUG_ON(addr >= end);
946 	tlb_start_vma(tlb, vma);
947 	pgd = pgd_offset(vma->vm_mm, addr);
948 	do {
949 		next = pgd_addr_end(addr, end);
950 		if (pgd_none_or_clear_bad(pgd)) {
951 			(*zap_work)--;
952 			continue;
953 		}
954 		next = zap_pud_range(tlb, vma, pgd, addr, next,
955 						zap_work, details);
956 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
957 	tlb_end_vma(tlb, vma);
958 
959 	return addr;
960 }
961 
962 #ifdef CONFIG_PREEMPT
963 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
964 #else
965 /* No preempt: go for improved straight-line efficiency */
966 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
967 #endif
968 
969 /**
970  * unmap_vmas - unmap a range of memory covered by a list of vma's
971  * @tlbp: address of the caller's struct mmu_gather
972  * @vma: the starting vma
973  * @start_addr: virtual address at which to start unmapping
974  * @end_addr: virtual address at which to end unmapping
975  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
976  * @details: details of nonlinear truncation or shared cache invalidation
977  *
978  * Returns the end address of the unmapping (restart addr if interrupted).
979  *
980  * Unmap all pages in the vma list.
981  *
982  * We aim to not hold locks for too long (for scheduling latency reasons).
983  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
984  * return the ending mmu_gather to the caller.
985  *
986  * Only addresses between `start' and `end' will be unmapped.
987  *
988  * The VMA list must be sorted in ascending virtual address order.
989  *
990  * unmap_vmas() assumes that the caller will flush the whole unmapped address
991  * range after unmap_vmas() returns.  So the only responsibility here is to
992  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
993  * drops the lock and schedules.
994  */
995 unsigned long unmap_vmas(struct mmu_gather **tlbp,
996 		struct vm_area_struct *vma, unsigned long start_addr,
997 		unsigned long end_addr, unsigned long *nr_accounted,
998 		struct zap_details *details)
999 {
1000 	long zap_work = ZAP_BLOCK_SIZE;
1001 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1002 	int tlb_start_valid = 0;
1003 	unsigned long start = start_addr;
1004 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1005 	int fullmm = (*tlbp)->fullmm;
1006 	struct mm_struct *mm = vma->vm_mm;
1007 
1008 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1009 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1010 		unsigned long end;
1011 
1012 		start = max(vma->vm_start, start_addr);
1013 		if (start >= vma->vm_end)
1014 			continue;
1015 		end = min(vma->vm_end, end_addr);
1016 		if (end <= vma->vm_start)
1017 			continue;
1018 
1019 		if (vma->vm_flags & VM_ACCOUNT)
1020 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1021 
1022 		if (unlikely(is_pfn_mapping(vma)))
1023 			untrack_pfn_vma(vma, 0, 0);
1024 
1025 		while (start != end) {
1026 			if (!tlb_start_valid) {
1027 				tlb_start = start;
1028 				tlb_start_valid = 1;
1029 			}
1030 
1031 			if (unlikely(is_vm_hugetlb_page(vma))) {
1032 				/*
1033 				 * It is undesirable to test vma->vm_file as it
1034 				 * should be non-null for valid hugetlb area.
1035 				 * However, vm_file will be NULL in the error
1036 				 * cleanup path of do_mmap_pgoff. When
1037 				 * hugetlbfs ->mmap method fails,
1038 				 * do_mmap_pgoff() nullifies vma->vm_file
1039 				 * before calling this function to clean up.
1040 				 * Since no pte has actually been setup, it is
1041 				 * safe to do nothing in this case.
1042 				 */
1043 				if (vma->vm_file) {
1044 					unmap_hugepage_range(vma, start, end, NULL);
1045 					zap_work -= (end - start) /
1046 					pages_per_huge_page(hstate_vma(vma));
1047 				}
1048 
1049 				start = end;
1050 			} else
1051 				start = unmap_page_range(*tlbp, vma,
1052 						start, end, &zap_work, details);
1053 
1054 			if (zap_work > 0) {
1055 				BUG_ON(start != end);
1056 				break;
1057 			}
1058 
1059 			tlb_finish_mmu(*tlbp, tlb_start, start);
1060 
1061 			if (need_resched() ||
1062 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1063 				if (i_mmap_lock) {
1064 					*tlbp = NULL;
1065 					goto out;
1066 				}
1067 				cond_resched();
1068 			}
1069 
1070 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1071 			tlb_start_valid = 0;
1072 			zap_work = ZAP_BLOCK_SIZE;
1073 		}
1074 	}
1075 out:
1076 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1077 	return start;	/* which is now the end (or restart) address */
1078 }
1079 
1080 /**
1081  * zap_page_range - remove user pages in a given range
1082  * @vma: vm_area_struct holding the applicable pages
1083  * @address: starting address of pages to zap
1084  * @size: number of bytes to zap
1085  * @details: details of nonlinear truncation or shared cache invalidation
1086  */
1087 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1088 		unsigned long size, struct zap_details *details)
1089 {
1090 	struct mm_struct *mm = vma->vm_mm;
1091 	struct mmu_gather *tlb;
1092 	unsigned long end = address + size;
1093 	unsigned long nr_accounted = 0;
1094 
1095 	lru_add_drain();
1096 	tlb = tlb_gather_mmu(mm, 0);
1097 	update_hiwater_rss(mm);
1098 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1099 	if (tlb)
1100 		tlb_finish_mmu(tlb, address, end);
1101 	return end;
1102 }
1103 
1104 /**
1105  * zap_vma_ptes - remove ptes mapping the vma
1106  * @vma: vm_area_struct holding ptes to be zapped
1107  * @address: starting address of pages to zap
1108  * @size: number of bytes to zap
1109  *
1110  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1111  *
1112  * The entire address range must be fully contained within the vma.
1113  *
1114  * Returns 0 if successful.
1115  */
1116 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1117 		unsigned long size)
1118 {
1119 	if (address < vma->vm_start || address + size > vma->vm_end ||
1120 	    		!(vma->vm_flags & VM_PFNMAP))
1121 		return -1;
1122 	zap_page_range(vma, address, size, NULL);
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1126 
1127 /*
1128  * Do a quick page-table lookup for a single page.
1129  */
1130 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1131 			unsigned int flags)
1132 {
1133 	pgd_t *pgd;
1134 	pud_t *pud;
1135 	pmd_t *pmd;
1136 	pte_t *ptep, pte;
1137 	spinlock_t *ptl;
1138 	struct page *page;
1139 	struct mm_struct *mm = vma->vm_mm;
1140 
1141 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1142 	if (!IS_ERR(page)) {
1143 		BUG_ON(flags & FOLL_GET);
1144 		goto out;
1145 	}
1146 
1147 	page = NULL;
1148 	pgd = pgd_offset(mm, address);
1149 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1150 		goto no_page_table;
1151 
1152 	pud = pud_offset(pgd, address);
1153 	if (pud_none(*pud))
1154 		goto no_page_table;
1155 	if (pud_huge(*pud)) {
1156 		BUG_ON(flags & FOLL_GET);
1157 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1158 		goto out;
1159 	}
1160 	if (unlikely(pud_bad(*pud)))
1161 		goto no_page_table;
1162 
1163 	pmd = pmd_offset(pud, address);
1164 	if (pmd_none(*pmd))
1165 		goto no_page_table;
1166 	if (pmd_huge(*pmd)) {
1167 		BUG_ON(flags & FOLL_GET);
1168 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1169 		goto out;
1170 	}
1171 	if (unlikely(pmd_bad(*pmd)))
1172 		goto no_page_table;
1173 
1174 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1175 
1176 	pte = *ptep;
1177 	if (!pte_present(pte))
1178 		goto no_page;
1179 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1180 		goto unlock;
1181 
1182 	page = vm_normal_page(vma, address, pte);
1183 	if (unlikely(!page)) {
1184 		if ((flags & FOLL_DUMP) ||
1185 		    !is_zero_pfn(pte_pfn(pte)))
1186 			goto bad_page;
1187 		page = pte_page(pte);
1188 	}
1189 
1190 	if (flags & FOLL_GET)
1191 		get_page(page);
1192 	if (flags & FOLL_TOUCH) {
1193 		if ((flags & FOLL_WRITE) &&
1194 		    !pte_dirty(pte) && !PageDirty(page))
1195 			set_page_dirty(page);
1196 		/*
1197 		 * pte_mkyoung() would be more correct here, but atomic care
1198 		 * is needed to avoid losing the dirty bit: it is easier to use
1199 		 * mark_page_accessed().
1200 		 */
1201 		mark_page_accessed(page);
1202 	}
1203 unlock:
1204 	pte_unmap_unlock(ptep, ptl);
1205 out:
1206 	return page;
1207 
1208 bad_page:
1209 	pte_unmap_unlock(ptep, ptl);
1210 	return ERR_PTR(-EFAULT);
1211 
1212 no_page:
1213 	pte_unmap_unlock(ptep, ptl);
1214 	if (!pte_none(pte))
1215 		return page;
1216 
1217 no_page_table:
1218 	/*
1219 	 * When core dumping an enormous anonymous area that nobody
1220 	 * has touched so far, we don't want to allocate unnecessary pages or
1221 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1222 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1223 	 * But we can only make this optimization where a hole would surely
1224 	 * be zero-filled if handle_mm_fault() actually did handle it.
1225 	 */
1226 	if ((flags & FOLL_DUMP) &&
1227 	    (!vma->vm_ops || !vma->vm_ops->fault))
1228 		return ERR_PTR(-EFAULT);
1229 	return page;
1230 }
1231 
1232 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1233 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1234 		     struct page **pages, struct vm_area_struct **vmas)
1235 {
1236 	int i;
1237 	unsigned long vm_flags;
1238 
1239 	if (nr_pages <= 0)
1240 		return 0;
1241 
1242 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1243 
1244 	/*
1245 	 * Require read or write permissions.
1246 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1247 	 */
1248 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1249 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1250 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1251 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1252 	i = 0;
1253 
1254 	do {
1255 		struct vm_area_struct *vma;
1256 
1257 		vma = find_extend_vma(mm, start);
1258 		if (!vma && in_gate_area(tsk, start)) {
1259 			unsigned long pg = start & PAGE_MASK;
1260 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1261 			pgd_t *pgd;
1262 			pud_t *pud;
1263 			pmd_t *pmd;
1264 			pte_t *pte;
1265 
1266 			/* user gate pages are read-only */
1267 			if (gup_flags & FOLL_WRITE)
1268 				return i ? : -EFAULT;
1269 			if (pg > TASK_SIZE)
1270 				pgd = pgd_offset_k(pg);
1271 			else
1272 				pgd = pgd_offset_gate(mm, pg);
1273 			BUG_ON(pgd_none(*pgd));
1274 			pud = pud_offset(pgd, pg);
1275 			BUG_ON(pud_none(*pud));
1276 			pmd = pmd_offset(pud, pg);
1277 			if (pmd_none(*pmd))
1278 				return i ? : -EFAULT;
1279 			pte = pte_offset_map(pmd, pg);
1280 			if (pte_none(*pte)) {
1281 				pte_unmap(pte);
1282 				return i ? : -EFAULT;
1283 			}
1284 			if (pages) {
1285 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1286 				pages[i] = page;
1287 				if (page)
1288 					get_page(page);
1289 			}
1290 			pte_unmap(pte);
1291 			if (vmas)
1292 				vmas[i] = gate_vma;
1293 			i++;
1294 			start += PAGE_SIZE;
1295 			nr_pages--;
1296 			continue;
1297 		}
1298 
1299 		if (!vma ||
1300 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1301 		    !(vm_flags & vma->vm_flags))
1302 			return i ? : -EFAULT;
1303 
1304 		if (is_vm_hugetlb_page(vma)) {
1305 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1306 					&start, &nr_pages, i, gup_flags);
1307 			continue;
1308 		}
1309 
1310 		do {
1311 			struct page *page;
1312 			unsigned int foll_flags = gup_flags;
1313 
1314 			/*
1315 			 * If we have a pending SIGKILL, don't keep faulting
1316 			 * pages and potentially allocating memory.
1317 			 */
1318 			if (unlikely(fatal_signal_pending(current)))
1319 				return i ? i : -ERESTARTSYS;
1320 
1321 			cond_resched();
1322 			while (!(page = follow_page(vma, start, foll_flags))) {
1323 				int ret;
1324 
1325 				ret = handle_mm_fault(mm, vma, start,
1326 					(foll_flags & FOLL_WRITE) ?
1327 					FAULT_FLAG_WRITE : 0);
1328 
1329 				if (ret & VM_FAULT_ERROR) {
1330 					if (ret & VM_FAULT_OOM)
1331 						return i ? i : -ENOMEM;
1332 					if (ret &
1333 					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1334 						return i ? i : -EFAULT;
1335 					BUG();
1336 				}
1337 				if (ret & VM_FAULT_MAJOR)
1338 					tsk->maj_flt++;
1339 				else
1340 					tsk->min_flt++;
1341 
1342 				/*
1343 				 * The VM_FAULT_WRITE bit tells us that
1344 				 * do_wp_page has broken COW when necessary,
1345 				 * even if maybe_mkwrite decided not to set
1346 				 * pte_write. We can thus safely do subsequent
1347 				 * page lookups as if they were reads. But only
1348 				 * do so when looping for pte_write is futile:
1349 				 * in some cases userspace may also be wanting
1350 				 * to write to the gotten user page, which a
1351 				 * read fault here might prevent (a readonly
1352 				 * page might get reCOWed by userspace write).
1353 				 */
1354 				if ((ret & VM_FAULT_WRITE) &&
1355 				    !(vma->vm_flags & VM_WRITE))
1356 					foll_flags &= ~FOLL_WRITE;
1357 
1358 				cond_resched();
1359 			}
1360 			if (IS_ERR(page))
1361 				return i ? i : PTR_ERR(page);
1362 			if (pages) {
1363 				pages[i] = page;
1364 
1365 				flush_anon_page(vma, page, start);
1366 				flush_dcache_page(page);
1367 			}
1368 			if (vmas)
1369 				vmas[i] = vma;
1370 			i++;
1371 			start += PAGE_SIZE;
1372 			nr_pages--;
1373 		} while (nr_pages && start < vma->vm_end);
1374 	} while (nr_pages);
1375 	return i;
1376 }
1377 
1378 /**
1379  * get_user_pages() - pin user pages in memory
1380  * @tsk:	task_struct of target task
1381  * @mm:		mm_struct of target mm
1382  * @start:	starting user address
1383  * @nr_pages:	number of pages from start to pin
1384  * @write:	whether pages will be written to by the caller
1385  * @force:	whether to force write access even if user mapping is
1386  *		readonly. This will result in the page being COWed even
1387  *		in MAP_SHARED mappings. You do not want this.
1388  * @pages:	array that receives pointers to the pages pinned.
1389  *		Should be at least nr_pages long. Or NULL, if caller
1390  *		only intends to ensure the pages are faulted in.
1391  * @vmas:	array of pointers to vmas corresponding to each page.
1392  *		Or NULL if the caller does not require them.
1393  *
1394  * Returns number of pages pinned. This may be fewer than the number
1395  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1396  * were pinned, returns -errno. Each page returned must be released
1397  * with a put_page() call when it is finished with. vmas will only
1398  * remain valid while mmap_sem is held.
1399  *
1400  * Must be called with mmap_sem held for read or write.
1401  *
1402  * get_user_pages walks a process's page tables and takes a reference to
1403  * each struct page that each user address corresponds to at a given
1404  * instant. That is, it takes the page that would be accessed if a user
1405  * thread accesses the given user virtual address at that instant.
1406  *
1407  * This does not guarantee that the page exists in the user mappings when
1408  * get_user_pages returns, and there may even be a completely different
1409  * page there in some cases (eg. if mmapped pagecache has been invalidated
1410  * and subsequently re faulted). However it does guarantee that the page
1411  * won't be freed completely. And mostly callers simply care that the page
1412  * contains data that was valid *at some point in time*. Typically, an IO
1413  * or similar operation cannot guarantee anything stronger anyway because
1414  * locks can't be held over the syscall boundary.
1415  *
1416  * If write=0, the page must not be written to. If the page is written to,
1417  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1418  * after the page is finished with, and before put_page is called.
1419  *
1420  * get_user_pages is typically used for fewer-copy IO operations, to get a
1421  * handle on the memory by some means other than accesses via the user virtual
1422  * addresses. The pages may be submitted for DMA to devices or accessed via
1423  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1424  * use the correct cache flushing APIs.
1425  *
1426  * See also get_user_pages_fast, for performance critical applications.
1427  */
1428 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1429 		unsigned long start, int nr_pages, int write, int force,
1430 		struct page **pages, struct vm_area_struct **vmas)
1431 {
1432 	int flags = FOLL_TOUCH;
1433 
1434 	if (pages)
1435 		flags |= FOLL_GET;
1436 	if (write)
1437 		flags |= FOLL_WRITE;
1438 	if (force)
1439 		flags |= FOLL_FORCE;
1440 
1441 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1442 }
1443 EXPORT_SYMBOL(get_user_pages);
1444 
1445 /**
1446  * get_dump_page() - pin user page in memory while writing it to core dump
1447  * @addr: user address
1448  *
1449  * Returns struct page pointer of user page pinned for dump,
1450  * to be freed afterwards by page_cache_release() or put_page().
1451  *
1452  * Returns NULL on any kind of failure - a hole must then be inserted into
1453  * the corefile, to preserve alignment with its headers; and also returns
1454  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1455  * allowing a hole to be left in the corefile to save diskspace.
1456  *
1457  * Called without mmap_sem, but after all other threads have been killed.
1458  */
1459 #ifdef CONFIG_ELF_CORE
1460 struct page *get_dump_page(unsigned long addr)
1461 {
1462 	struct vm_area_struct *vma;
1463 	struct page *page;
1464 
1465 	if (__get_user_pages(current, current->mm, addr, 1,
1466 			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1467 		return NULL;
1468 	flush_cache_page(vma, addr, page_to_pfn(page));
1469 	return page;
1470 }
1471 #endif /* CONFIG_ELF_CORE */
1472 
1473 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1474 			spinlock_t **ptl)
1475 {
1476 	pgd_t * pgd = pgd_offset(mm, addr);
1477 	pud_t * pud = pud_alloc(mm, pgd, addr);
1478 	if (pud) {
1479 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1480 		if (pmd)
1481 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1482 	}
1483 	return NULL;
1484 }
1485 
1486 /*
1487  * This is the old fallback for page remapping.
1488  *
1489  * For historical reasons, it only allows reserved pages. Only
1490  * old drivers should use this, and they needed to mark their
1491  * pages reserved for the old functions anyway.
1492  */
1493 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1494 			struct page *page, pgprot_t prot)
1495 {
1496 	struct mm_struct *mm = vma->vm_mm;
1497 	int retval;
1498 	pte_t *pte;
1499 	spinlock_t *ptl;
1500 
1501 	retval = -EINVAL;
1502 	if (PageAnon(page))
1503 		goto out;
1504 	retval = -ENOMEM;
1505 	flush_dcache_page(page);
1506 	pte = get_locked_pte(mm, addr, &ptl);
1507 	if (!pte)
1508 		goto out;
1509 	retval = -EBUSY;
1510 	if (!pte_none(*pte))
1511 		goto out_unlock;
1512 
1513 	/* Ok, finally just insert the thing.. */
1514 	get_page(page);
1515 	inc_mm_counter(mm, file_rss);
1516 	page_add_file_rmap(page);
1517 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1518 
1519 	retval = 0;
1520 	pte_unmap_unlock(pte, ptl);
1521 	return retval;
1522 out_unlock:
1523 	pte_unmap_unlock(pte, ptl);
1524 out:
1525 	return retval;
1526 }
1527 
1528 /**
1529  * vm_insert_page - insert single page into user vma
1530  * @vma: user vma to map to
1531  * @addr: target user address of this page
1532  * @page: source kernel page
1533  *
1534  * This allows drivers to insert individual pages they've allocated
1535  * into a user vma.
1536  *
1537  * The page has to be a nice clean _individual_ kernel allocation.
1538  * If you allocate a compound page, you need to have marked it as
1539  * such (__GFP_COMP), or manually just split the page up yourself
1540  * (see split_page()).
1541  *
1542  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1543  * took an arbitrary page protection parameter. This doesn't allow
1544  * that. Your vma protection will have to be set up correctly, which
1545  * means that if you want a shared writable mapping, you'd better
1546  * ask for a shared writable mapping!
1547  *
1548  * The page does not need to be reserved.
1549  */
1550 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1551 			struct page *page)
1552 {
1553 	if (addr < vma->vm_start || addr >= vma->vm_end)
1554 		return -EFAULT;
1555 	if (!page_count(page))
1556 		return -EINVAL;
1557 	vma->vm_flags |= VM_INSERTPAGE;
1558 	return insert_page(vma, addr, page, vma->vm_page_prot);
1559 }
1560 EXPORT_SYMBOL(vm_insert_page);
1561 
1562 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1563 			unsigned long pfn, pgprot_t prot)
1564 {
1565 	struct mm_struct *mm = vma->vm_mm;
1566 	int retval;
1567 	pte_t *pte, entry;
1568 	spinlock_t *ptl;
1569 
1570 	retval = -ENOMEM;
1571 	pte = get_locked_pte(mm, addr, &ptl);
1572 	if (!pte)
1573 		goto out;
1574 	retval = -EBUSY;
1575 	if (!pte_none(*pte))
1576 		goto out_unlock;
1577 
1578 	/* Ok, finally just insert the thing.. */
1579 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1580 	set_pte_at(mm, addr, pte, entry);
1581 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1582 
1583 	retval = 0;
1584 out_unlock:
1585 	pte_unmap_unlock(pte, ptl);
1586 out:
1587 	return retval;
1588 }
1589 
1590 /**
1591  * vm_insert_pfn - insert single pfn into user vma
1592  * @vma: user vma to map to
1593  * @addr: target user address of this page
1594  * @pfn: source kernel pfn
1595  *
1596  * Similar to vm_inert_page, this allows drivers to insert individual pages
1597  * they've allocated into a user vma. Same comments apply.
1598  *
1599  * This function should only be called from a vm_ops->fault handler, and
1600  * in that case the handler should return NULL.
1601  *
1602  * vma cannot be a COW mapping.
1603  *
1604  * As this is called only for pages that do not currently exist, we
1605  * do not need to flush old virtual caches or the TLB.
1606  */
1607 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1608 			unsigned long pfn)
1609 {
1610 	int ret;
1611 	pgprot_t pgprot = vma->vm_page_prot;
1612 	/*
1613 	 * Technically, architectures with pte_special can avoid all these
1614 	 * restrictions (same for remap_pfn_range).  However we would like
1615 	 * consistency in testing and feature parity among all, so we should
1616 	 * try to keep these invariants in place for everybody.
1617 	 */
1618 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1619 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1620 						(VM_PFNMAP|VM_MIXEDMAP));
1621 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1622 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1623 
1624 	if (addr < vma->vm_start || addr >= vma->vm_end)
1625 		return -EFAULT;
1626 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1627 		return -EINVAL;
1628 
1629 	ret = insert_pfn(vma, addr, pfn, pgprot);
1630 
1631 	if (ret)
1632 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL(vm_insert_pfn);
1637 
1638 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1639 			unsigned long pfn)
1640 {
1641 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1642 
1643 	if (addr < vma->vm_start || addr >= vma->vm_end)
1644 		return -EFAULT;
1645 
1646 	/*
1647 	 * If we don't have pte special, then we have to use the pfn_valid()
1648 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1649 	 * refcount the page if pfn_valid is true (hence insert_page rather
1650 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1651 	 * without pte special, it would there be refcounted as a normal page.
1652 	 */
1653 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1654 		struct page *page;
1655 
1656 		page = pfn_to_page(pfn);
1657 		return insert_page(vma, addr, page, vma->vm_page_prot);
1658 	}
1659 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1660 }
1661 EXPORT_SYMBOL(vm_insert_mixed);
1662 
1663 /*
1664  * maps a range of physical memory into the requested pages. the old
1665  * mappings are removed. any references to nonexistent pages results
1666  * in null mappings (currently treated as "copy-on-access")
1667  */
1668 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669 			unsigned long addr, unsigned long end,
1670 			unsigned long pfn, pgprot_t prot)
1671 {
1672 	pte_t *pte;
1673 	spinlock_t *ptl;
1674 
1675 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676 	if (!pte)
1677 		return -ENOMEM;
1678 	arch_enter_lazy_mmu_mode();
1679 	do {
1680 		BUG_ON(!pte_none(*pte));
1681 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682 		pfn++;
1683 	} while (pte++, addr += PAGE_SIZE, addr != end);
1684 	arch_leave_lazy_mmu_mode();
1685 	pte_unmap_unlock(pte - 1, ptl);
1686 	return 0;
1687 }
1688 
1689 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690 			unsigned long addr, unsigned long end,
1691 			unsigned long pfn, pgprot_t prot)
1692 {
1693 	pmd_t *pmd;
1694 	unsigned long next;
1695 
1696 	pfn -= addr >> PAGE_SHIFT;
1697 	pmd = pmd_alloc(mm, pud, addr);
1698 	if (!pmd)
1699 		return -ENOMEM;
1700 	do {
1701 		next = pmd_addr_end(addr, end);
1702 		if (remap_pte_range(mm, pmd, addr, next,
1703 				pfn + (addr >> PAGE_SHIFT), prot))
1704 			return -ENOMEM;
1705 	} while (pmd++, addr = next, addr != end);
1706 	return 0;
1707 }
1708 
1709 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1710 			unsigned long addr, unsigned long end,
1711 			unsigned long pfn, pgprot_t prot)
1712 {
1713 	pud_t *pud;
1714 	unsigned long next;
1715 
1716 	pfn -= addr >> PAGE_SHIFT;
1717 	pud = pud_alloc(mm, pgd, addr);
1718 	if (!pud)
1719 		return -ENOMEM;
1720 	do {
1721 		next = pud_addr_end(addr, end);
1722 		if (remap_pmd_range(mm, pud, addr, next,
1723 				pfn + (addr >> PAGE_SHIFT), prot))
1724 			return -ENOMEM;
1725 	} while (pud++, addr = next, addr != end);
1726 	return 0;
1727 }
1728 
1729 /**
1730  * remap_pfn_range - remap kernel memory to userspace
1731  * @vma: user vma to map to
1732  * @addr: target user address to start at
1733  * @pfn: physical address of kernel memory
1734  * @size: size of map area
1735  * @prot: page protection flags for this mapping
1736  *
1737  *  Note: this is only safe if the mm semaphore is held when called.
1738  */
1739 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1740 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1741 {
1742 	pgd_t *pgd;
1743 	unsigned long next;
1744 	unsigned long end = addr + PAGE_ALIGN(size);
1745 	struct mm_struct *mm = vma->vm_mm;
1746 	int err;
1747 
1748 	/*
1749 	 * Physically remapped pages are special. Tell the
1750 	 * rest of the world about it:
1751 	 *   VM_IO tells people not to look at these pages
1752 	 *	(accesses can have side effects).
1753 	 *   VM_RESERVED is specified all over the place, because
1754 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1755 	 *	in 2.6 the LRU scan won't even find its pages, so this
1756 	 *	flag means no more than count its pages in reserved_vm,
1757 	 * 	and omit it from core dump, even when VM_IO turned off.
1758 	 *   VM_PFNMAP tells the core MM that the base pages are just
1759 	 *	raw PFN mappings, and do not have a "struct page" associated
1760 	 *	with them.
1761 	 *
1762 	 * There's a horrible special case to handle copy-on-write
1763 	 * behaviour that some programs depend on. We mark the "original"
1764 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765 	 */
1766 	if (addr == vma->vm_start && end == vma->vm_end) {
1767 		vma->vm_pgoff = pfn;
1768 		vma->vm_flags |= VM_PFN_AT_MMAP;
1769 	} else if (is_cow_mapping(vma->vm_flags))
1770 		return -EINVAL;
1771 
1772 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1773 
1774 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1775 	if (err) {
1776 		/*
1777 		 * To indicate that track_pfn related cleanup is not
1778 		 * needed from higher level routine calling unmap_vmas
1779 		 */
1780 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1781 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1782 		return -EINVAL;
1783 	}
1784 
1785 	BUG_ON(addr >= end);
1786 	pfn -= addr >> PAGE_SHIFT;
1787 	pgd = pgd_offset(mm, addr);
1788 	flush_cache_range(vma, addr, end);
1789 	do {
1790 		next = pgd_addr_end(addr, end);
1791 		err = remap_pud_range(mm, pgd, addr, next,
1792 				pfn + (addr >> PAGE_SHIFT), prot);
1793 		if (err)
1794 			break;
1795 	} while (pgd++, addr = next, addr != end);
1796 
1797 	if (err)
1798 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1799 
1800 	return err;
1801 }
1802 EXPORT_SYMBOL(remap_pfn_range);
1803 
1804 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1805 				     unsigned long addr, unsigned long end,
1806 				     pte_fn_t fn, void *data)
1807 {
1808 	pte_t *pte;
1809 	int err;
1810 	pgtable_t token;
1811 	spinlock_t *uninitialized_var(ptl);
1812 
1813 	pte = (mm == &init_mm) ?
1814 		pte_alloc_kernel(pmd, addr) :
1815 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1816 	if (!pte)
1817 		return -ENOMEM;
1818 
1819 	BUG_ON(pmd_huge(*pmd));
1820 
1821 	arch_enter_lazy_mmu_mode();
1822 
1823 	token = pmd_pgtable(*pmd);
1824 
1825 	do {
1826 		err = fn(pte++, token, addr, data);
1827 		if (err)
1828 			break;
1829 	} while (addr += PAGE_SIZE, addr != end);
1830 
1831 	arch_leave_lazy_mmu_mode();
1832 
1833 	if (mm != &init_mm)
1834 		pte_unmap_unlock(pte-1, ptl);
1835 	return err;
1836 }
1837 
1838 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1839 				     unsigned long addr, unsigned long end,
1840 				     pte_fn_t fn, void *data)
1841 {
1842 	pmd_t *pmd;
1843 	unsigned long next;
1844 	int err;
1845 
1846 	BUG_ON(pud_huge(*pud));
1847 
1848 	pmd = pmd_alloc(mm, pud, addr);
1849 	if (!pmd)
1850 		return -ENOMEM;
1851 	do {
1852 		next = pmd_addr_end(addr, end);
1853 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1854 		if (err)
1855 			break;
1856 	} while (pmd++, addr = next, addr != end);
1857 	return err;
1858 }
1859 
1860 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1861 				     unsigned long addr, unsigned long end,
1862 				     pte_fn_t fn, void *data)
1863 {
1864 	pud_t *pud;
1865 	unsigned long next;
1866 	int err;
1867 
1868 	pud = pud_alloc(mm, pgd, addr);
1869 	if (!pud)
1870 		return -ENOMEM;
1871 	do {
1872 		next = pud_addr_end(addr, end);
1873 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1874 		if (err)
1875 			break;
1876 	} while (pud++, addr = next, addr != end);
1877 	return err;
1878 }
1879 
1880 /*
1881  * Scan a region of virtual memory, filling in page tables as necessary
1882  * and calling a provided function on each leaf page table.
1883  */
1884 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1885 			unsigned long size, pte_fn_t fn, void *data)
1886 {
1887 	pgd_t *pgd;
1888 	unsigned long next;
1889 	unsigned long start = addr, end = addr + size;
1890 	int err;
1891 
1892 	BUG_ON(addr >= end);
1893 	mmu_notifier_invalidate_range_start(mm, start, end);
1894 	pgd = pgd_offset(mm, addr);
1895 	do {
1896 		next = pgd_addr_end(addr, end);
1897 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1898 		if (err)
1899 			break;
1900 	} while (pgd++, addr = next, addr != end);
1901 	mmu_notifier_invalidate_range_end(mm, start, end);
1902 	return err;
1903 }
1904 EXPORT_SYMBOL_GPL(apply_to_page_range);
1905 
1906 /*
1907  * handle_pte_fault chooses page fault handler according to an entry
1908  * which was read non-atomically.  Before making any commitment, on
1909  * those architectures or configurations (e.g. i386 with PAE) which
1910  * might give a mix of unmatched parts, do_swap_page and do_file_page
1911  * must check under lock before unmapping the pte and proceeding
1912  * (but do_wp_page is only called after already making such a check;
1913  * and do_anonymous_page and do_no_page can safely check later on).
1914  */
1915 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1916 				pte_t *page_table, pte_t orig_pte)
1917 {
1918 	int same = 1;
1919 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1920 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1921 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1922 		spin_lock(ptl);
1923 		same = pte_same(*page_table, orig_pte);
1924 		spin_unlock(ptl);
1925 	}
1926 #endif
1927 	pte_unmap(page_table);
1928 	return same;
1929 }
1930 
1931 /*
1932  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1933  * servicing faults for write access.  In the normal case, do always want
1934  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1935  * that do not have writing enabled, when used by access_process_vm.
1936  */
1937 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1938 {
1939 	if (likely(vma->vm_flags & VM_WRITE))
1940 		pte = pte_mkwrite(pte);
1941 	return pte;
1942 }
1943 
1944 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1945 {
1946 	/*
1947 	 * If the source page was a PFN mapping, we don't have
1948 	 * a "struct page" for it. We do a best-effort copy by
1949 	 * just copying from the original user address. If that
1950 	 * fails, we just zero-fill it. Live with it.
1951 	 */
1952 	if (unlikely(!src)) {
1953 		void *kaddr = kmap_atomic(dst, KM_USER0);
1954 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1955 
1956 		/*
1957 		 * This really shouldn't fail, because the page is there
1958 		 * in the page tables. But it might just be unreadable,
1959 		 * in which case we just give up and fill the result with
1960 		 * zeroes.
1961 		 */
1962 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1963 			memset(kaddr, 0, PAGE_SIZE);
1964 		kunmap_atomic(kaddr, KM_USER0);
1965 		flush_dcache_page(dst);
1966 	} else
1967 		copy_user_highpage(dst, src, va, vma);
1968 }
1969 
1970 /*
1971  * This routine handles present pages, when users try to write
1972  * to a shared page. It is done by copying the page to a new address
1973  * and decrementing the shared-page counter for the old page.
1974  *
1975  * Note that this routine assumes that the protection checks have been
1976  * done by the caller (the low-level page fault routine in most cases).
1977  * Thus we can safely just mark it writable once we've done any necessary
1978  * COW.
1979  *
1980  * We also mark the page dirty at this point even though the page will
1981  * change only once the write actually happens. This avoids a few races,
1982  * and potentially makes it more efficient.
1983  *
1984  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1985  * but allow concurrent faults), with pte both mapped and locked.
1986  * We return with mmap_sem still held, but pte unmapped and unlocked.
1987  */
1988 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1990 		spinlock_t *ptl, pte_t orig_pte)
1991 {
1992 	struct page *old_page, *new_page;
1993 	pte_t entry;
1994 	int reuse = 0, ret = 0;
1995 	int page_mkwrite = 0;
1996 	struct page *dirty_page = NULL;
1997 
1998 	old_page = vm_normal_page(vma, address, orig_pte);
1999 	if (!old_page) {
2000 		/*
2001 		 * VM_MIXEDMAP !pfn_valid() case
2002 		 *
2003 		 * We should not cow pages in a shared writeable mapping.
2004 		 * Just mark the pages writable as we can't do any dirty
2005 		 * accounting on raw pfn maps.
2006 		 */
2007 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2008 				     (VM_WRITE|VM_SHARED))
2009 			goto reuse;
2010 		goto gotten;
2011 	}
2012 
2013 	/*
2014 	 * Take out anonymous pages first, anonymous shared vmas are
2015 	 * not dirty accountable.
2016 	 */
2017 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2018 		if (!trylock_page(old_page)) {
2019 			page_cache_get(old_page);
2020 			pte_unmap_unlock(page_table, ptl);
2021 			lock_page(old_page);
2022 			page_table = pte_offset_map_lock(mm, pmd, address,
2023 							 &ptl);
2024 			if (!pte_same(*page_table, orig_pte)) {
2025 				unlock_page(old_page);
2026 				page_cache_release(old_page);
2027 				goto unlock;
2028 			}
2029 			page_cache_release(old_page);
2030 		}
2031 		reuse = reuse_swap_page(old_page);
2032 		unlock_page(old_page);
2033 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2034 					(VM_WRITE|VM_SHARED))) {
2035 		/*
2036 		 * Only catch write-faults on shared writable pages,
2037 		 * read-only shared pages can get COWed by
2038 		 * get_user_pages(.write=1, .force=1).
2039 		 */
2040 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2041 			struct vm_fault vmf;
2042 			int tmp;
2043 
2044 			vmf.virtual_address = (void __user *)(address &
2045 								PAGE_MASK);
2046 			vmf.pgoff = old_page->index;
2047 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2048 			vmf.page = old_page;
2049 
2050 			/*
2051 			 * Notify the address space that the page is about to
2052 			 * become writable so that it can prohibit this or wait
2053 			 * for the page to get into an appropriate state.
2054 			 *
2055 			 * We do this without the lock held, so that it can
2056 			 * sleep if it needs to.
2057 			 */
2058 			page_cache_get(old_page);
2059 			pte_unmap_unlock(page_table, ptl);
2060 
2061 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2062 			if (unlikely(tmp &
2063 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2064 				ret = tmp;
2065 				goto unwritable_page;
2066 			}
2067 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2068 				lock_page(old_page);
2069 				if (!old_page->mapping) {
2070 					ret = 0; /* retry the fault */
2071 					unlock_page(old_page);
2072 					goto unwritable_page;
2073 				}
2074 			} else
2075 				VM_BUG_ON(!PageLocked(old_page));
2076 
2077 			/*
2078 			 * Since we dropped the lock we need to revalidate
2079 			 * the PTE as someone else may have changed it.  If
2080 			 * they did, we just return, as we can count on the
2081 			 * MMU to tell us if they didn't also make it writable.
2082 			 */
2083 			page_table = pte_offset_map_lock(mm, pmd, address,
2084 							 &ptl);
2085 			if (!pte_same(*page_table, orig_pte)) {
2086 				unlock_page(old_page);
2087 				page_cache_release(old_page);
2088 				goto unlock;
2089 			}
2090 
2091 			page_mkwrite = 1;
2092 		}
2093 		dirty_page = old_page;
2094 		get_page(dirty_page);
2095 		reuse = 1;
2096 	}
2097 
2098 	if (reuse) {
2099 reuse:
2100 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2101 		entry = pte_mkyoung(orig_pte);
2102 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2103 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2104 			update_mmu_cache(vma, address, entry);
2105 		ret |= VM_FAULT_WRITE;
2106 		goto unlock;
2107 	}
2108 
2109 	/*
2110 	 * Ok, we need to copy. Oh, well..
2111 	 */
2112 	page_cache_get(old_page);
2113 gotten:
2114 	pte_unmap_unlock(page_table, ptl);
2115 
2116 	if (unlikely(anon_vma_prepare(vma)))
2117 		goto oom;
2118 
2119 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2120 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2121 		if (!new_page)
2122 			goto oom;
2123 	} else {
2124 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2125 		if (!new_page)
2126 			goto oom;
2127 		cow_user_page(new_page, old_page, address, vma);
2128 	}
2129 	__SetPageUptodate(new_page);
2130 
2131 	/*
2132 	 * Don't let another task, with possibly unlocked vma,
2133 	 * keep the mlocked page.
2134 	 */
2135 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2136 		lock_page(old_page);	/* for LRU manipulation */
2137 		clear_page_mlock(old_page);
2138 		unlock_page(old_page);
2139 	}
2140 
2141 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2142 		goto oom_free_new;
2143 
2144 	/*
2145 	 * Re-check the pte - we dropped the lock
2146 	 */
2147 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2148 	if (likely(pte_same(*page_table, orig_pte))) {
2149 		if (old_page) {
2150 			if (!PageAnon(old_page)) {
2151 				dec_mm_counter(mm, file_rss);
2152 				inc_mm_counter(mm, anon_rss);
2153 			}
2154 		} else
2155 			inc_mm_counter(mm, anon_rss);
2156 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2157 		entry = mk_pte(new_page, vma->vm_page_prot);
2158 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159 		/*
2160 		 * Clear the pte entry and flush it first, before updating the
2161 		 * pte with the new entry. This will avoid a race condition
2162 		 * seen in the presence of one thread doing SMC and another
2163 		 * thread doing COW.
2164 		 */
2165 		ptep_clear_flush(vma, address, page_table);
2166 		page_add_new_anon_rmap(new_page, vma, address);
2167 		/*
2168 		 * We call the notify macro here because, when using secondary
2169 		 * mmu page tables (such as kvm shadow page tables), we want the
2170 		 * new page to be mapped directly into the secondary page table.
2171 		 */
2172 		set_pte_at_notify(mm, address, page_table, entry);
2173 		update_mmu_cache(vma, address, entry);
2174 		if (old_page) {
2175 			/*
2176 			 * Only after switching the pte to the new page may
2177 			 * we remove the mapcount here. Otherwise another
2178 			 * process may come and find the rmap count decremented
2179 			 * before the pte is switched to the new page, and
2180 			 * "reuse" the old page writing into it while our pte
2181 			 * here still points into it and can be read by other
2182 			 * threads.
2183 			 *
2184 			 * The critical issue is to order this
2185 			 * page_remove_rmap with the ptp_clear_flush above.
2186 			 * Those stores are ordered by (if nothing else,)
2187 			 * the barrier present in the atomic_add_negative
2188 			 * in page_remove_rmap.
2189 			 *
2190 			 * Then the TLB flush in ptep_clear_flush ensures that
2191 			 * no process can access the old page before the
2192 			 * decremented mapcount is visible. And the old page
2193 			 * cannot be reused until after the decremented
2194 			 * mapcount is visible. So transitively, TLBs to
2195 			 * old page will be flushed before it can be reused.
2196 			 */
2197 			page_remove_rmap(old_page);
2198 		}
2199 
2200 		/* Free the old page.. */
2201 		new_page = old_page;
2202 		ret |= VM_FAULT_WRITE;
2203 	} else
2204 		mem_cgroup_uncharge_page(new_page);
2205 
2206 	if (new_page)
2207 		page_cache_release(new_page);
2208 	if (old_page)
2209 		page_cache_release(old_page);
2210 unlock:
2211 	pte_unmap_unlock(page_table, ptl);
2212 	if (dirty_page) {
2213 		/*
2214 		 * Yes, Virginia, this is actually required to prevent a race
2215 		 * with clear_page_dirty_for_io() from clearing the page dirty
2216 		 * bit after it clear all dirty ptes, but before a racing
2217 		 * do_wp_page installs a dirty pte.
2218 		 *
2219 		 * do_no_page is protected similarly.
2220 		 */
2221 		if (!page_mkwrite) {
2222 			wait_on_page_locked(dirty_page);
2223 			set_page_dirty_balance(dirty_page, page_mkwrite);
2224 		}
2225 		put_page(dirty_page);
2226 		if (page_mkwrite) {
2227 			struct address_space *mapping = dirty_page->mapping;
2228 
2229 			set_page_dirty(dirty_page);
2230 			unlock_page(dirty_page);
2231 			page_cache_release(dirty_page);
2232 			if (mapping)	{
2233 				/*
2234 				 * Some device drivers do not set page.mapping
2235 				 * but still dirty their pages
2236 				 */
2237 				balance_dirty_pages_ratelimited(mapping);
2238 			}
2239 		}
2240 
2241 		/* file_update_time outside page_lock */
2242 		if (vma->vm_file)
2243 			file_update_time(vma->vm_file);
2244 	}
2245 	return ret;
2246 oom_free_new:
2247 	page_cache_release(new_page);
2248 oom:
2249 	if (old_page) {
2250 		if (page_mkwrite) {
2251 			unlock_page(old_page);
2252 			page_cache_release(old_page);
2253 		}
2254 		page_cache_release(old_page);
2255 	}
2256 	return VM_FAULT_OOM;
2257 
2258 unwritable_page:
2259 	page_cache_release(old_page);
2260 	return ret;
2261 }
2262 
2263 /*
2264  * Helper functions for unmap_mapping_range().
2265  *
2266  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2267  *
2268  * We have to restart searching the prio_tree whenever we drop the lock,
2269  * since the iterator is only valid while the lock is held, and anyway
2270  * a later vma might be split and reinserted earlier while lock dropped.
2271  *
2272  * The list of nonlinear vmas could be handled more efficiently, using
2273  * a placeholder, but handle it in the same way until a need is shown.
2274  * It is important to search the prio_tree before nonlinear list: a vma
2275  * may become nonlinear and be shifted from prio_tree to nonlinear list
2276  * while the lock is dropped; but never shifted from list to prio_tree.
2277  *
2278  * In order to make forward progress despite restarting the search,
2279  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2280  * quickly skip it next time around.  Since the prio_tree search only
2281  * shows us those vmas affected by unmapping the range in question, we
2282  * can't efficiently keep all vmas in step with mapping->truncate_count:
2283  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2284  * mapping->truncate_count and vma->vm_truncate_count are protected by
2285  * i_mmap_lock.
2286  *
2287  * In order to make forward progress despite repeatedly restarting some
2288  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2289  * and restart from that address when we reach that vma again.  It might
2290  * have been split or merged, shrunk or extended, but never shifted: so
2291  * restart_addr remains valid so long as it remains in the vma's range.
2292  * unmap_mapping_range forces truncate_count to leap over page-aligned
2293  * values so we can save vma's restart_addr in its truncate_count field.
2294  */
2295 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2296 
2297 static void reset_vma_truncate_counts(struct address_space *mapping)
2298 {
2299 	struct vm_area_struct *vma;
2300 	struct prio_tree_iter iter;
2301 
2302 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2303 		vma->vm_truncate_count = 0;
2304 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2305 		vma->vm_truncate_count = 0;
2306 }
2307 
2308 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2309 		unsigned long start_addr, unsigned long end_addr,
2310 		struct zap_details *details)
2311 {
2312 	unsigned long restart_addr;
2313 	int need_break;
2314 
2315 	/*
2316 	 * files that support invalidating or truncating portions of the
2317 	 * file from under mmaped areas must have their ->fault function
2318 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2319 	 * This provides synchronisation against concurrent unmapping here.
2320 	 */
2321 
2322 again:
2323 	restart_addr = vma->vm_truncate_count;
2324 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2325 		start_addr = restart_addr;
2326 		if (start_addr >= end_addr) {
2327 			/* Top of vma has been split off since last time */
2328 			vma->vm_truncate_count = details->truncate_count;
2329 			return 0;
2330 		}
2331 	}
2332 
2333 	restart_addr = zap_page_range(vma, start_addr,
2334 					end_addr - start_addr, details);
2335 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2336 
2337 	if (restart_addr >= end_addr) {
2338 		/* We have now completed this vma: mark it so */
2339 		vma->vm_truncate_count = details->truncate_count;
2340 		if (!need_break)
2341 			return 0;
2342 	} else {
2343 		/* Note restart_addr in vma's truncate_count field */
2344 		vma->vm_truncate_count = restart_addr;
2345 		if (!need_break)
2346 			goto again;
2347 	}
2348 
2349 	spin_unlock(details->i_mmap_lock);
2350 	cond_resched();
2351 	spin_lock(details->i_mmap_lock);
2352 	return -EINTR;
2353 }
2354 
2355 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2356 					    struct zap_details *details)
2357 {
2358 	struct vm_area_struct *vma;
2359 	struct prio_tree_iter iter;
2360 	pgoff_t vba, vea, zba, zea;
2361 
2362 restart:
2363 	vma_prio_tree_foreach(vma, &iter, root,
2364 			details->first_index, details->last_index) {
2365 		/* Skip quickly over those we have already dealt with */
2366 		if (vma->vm_truncate_count == details->truncate_count)
2367 			continue;
2368 
2369 		vba = vma->vm_pgoff;
2370 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2371 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2372 		zba = details->first_index;
2373 		if (zba < vba)
2374 			zba = vba;
2375 		zea = details->last_index;
2376 		if (zea > vea)
2377 			zea = vea;
2378 
2379 		if (unmap_mapping_range_vma(vma,
2380 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2381 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2382 				details) < 0)
2383 			goto restart;
2384 	}
2385 }
2386 
2387 static inline void unmap_mapping_range_list(struct list_head *head,
2388 					    struct zap_details *details)
2389 {
2390 	struct vm_area_struct *vma;
2391 
2392 	/*
2393 	 * In nonlinear VMAs there is no correspondence between virtual address
2394 	 * offset and file offset.  So we must perform an exhaustive search
2395 	 * across *all* the pages in each nonlinear VMA, not just the pages
2396 	 * whose virtual address lies outside the file truncation point.
2397 	 */
2398 restart:
2399 	list_for_each_entry(vma, head, shared.vm_set.list) {
2400 		/* Skip quickly over those we have already dealt with */
2401 		if (vma->vm_truncate_count == details->truncate_count)
2402 			continue;
2403 		details->nonlinear_vma = vma;
2404 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2405 					vma->vm_end, details) < 0)
2406 			goto restart;
2407 	}
2408 }
2409 
2410 /**
2411  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2412  * @mapping: the address space containing mmaps to be unmapped.
2413  * @holebegin: byte in first page to unmap, relative to the start of
2414  * the underlying file.  This will be rounded down to a PAGE_SIZE
2415  * boundary.  Note that this is different from truncate_pagecache(), which
2416  * must keep the partial page.  In contrast, we must get rid of
2417  * partial pages.
2418  * @holelen: size of prospective hole in bytes.  This will be rounded
2419  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2420  * end of the file.
2421  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2422  * but 0 when invalidating pagecache, don't throw away private data.
2423  */
2424 void unmap_mapping_range(struct address_space *mapping,
2425 		loff_t const holebegin, loff_t const holelen, int even_cows)
2426 {
2427 	struct zap_details details;
2428 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2429 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430 
2431 	/* Check for overflow. */
2432 	if (sizeof(holelen) > sizeof(hlen)) {
2433 		long long holeend =
2434 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2435 		if (holeend & ~(long long)ULONG_MAX)
2436 			hlen = ULONG_MAX - hba + 1;
2437 	}
2438 
2439 	details.check_mapping = even_cows? NULL: mapping;
2440 	details.nonlinear_vma = NULL;
2441 	details.first_index = hba;
2442 	details.last_index = hba + hlen - 1;
2443 	if (details.last_index < details.first_index)
2444 		details.last_index = ULONG_MAX;
2445 	details.i_mmap_lock = &mapping->i_mmap_lock;
2446 
2447 	spin_lock(&mapping->i_mmap_lock);
2448 
2449 	/* Protect against endless unmapping loops */
2450 	mapping->truncate_count++;
2451 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2452 		if (mapping->truncate_count == 0)
2453 			reset_vma_truncate_counts(mapping);
2454 		mapping->truncate_count++;
2455 	}
2456 	details.truncate_count = mapping->truncate_count;
2457 
2458 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2459 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2461 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2462 	spin_unlock(&mapping->i_mmap_lock);
2463 }
2464 EXPORT_SYMBOL(unmap_mapping_range);
2465 
2466 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2467 {
2468 	struct address_space *mapping = inode->i_mapping;
2469 
2470 	/*
2471 	 * If the underlying filesystem is not going to provide
2472 	 * a way to truncate a range of blocks (punch a hole) -
2473 	 * we should return failure right now.
2474 	 */
2475 	if (!inode->i_op->truncate_range)
2476 		return -ENOSYS;
2477 
2478 	mutex_lock(&inode->i_mutex);
2479 	down_write(&inode->i_alloc_sem);
2480 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2481 	truncate_inode_pages_range(mapping, offset, end);
2482 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2483 	inode->i_op->truncate_range(inode, offset, end);
2484 	up_write(&inode->i_alloc_sem);
2485 	mutex_unlock(&inode->i_mutex);
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2492  * but allow concurrent faults), and pte mapped but not yet locked.
2493  * We return with mmap_sem still held, but pte unmapped and unlocked.
2494  */
2495 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2496 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2497 		unsigned int flags, pte_t orig_pte)
2498 {
2499 	spinlock_t *ptl;
2500 	struct page *page;
2501 	swp_entry_t entry;
2502 	pte_t pte;
2503 	struct mem_cgroup *ptr = NULL;
2504 	int ret = 0;
2505 
2506 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2507 		goto out;
2508 
2509 	entry = pte_to_swp_entry(orig_pte);
2510 	if (unlikely(non_swap_entry(entry))) {
2511 		if (is_migration_entry(entry)) {
2512 			migration_entry_wait(mm, pmd, address);
2513 		} else if (is_hwpoison_entry(entry)) {
2514 			ret = VM_FAULT_HWPOISON;
2515 		} else {
2516 			print_bad_pte(vma, address, orig_pte, NULL);
2517 			ret = VM_FAULT_OOM;
2518 		}
2519 		goto out;
2520 	}
2521 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2522 	page = lookup_swap_cache(entry);
2523 	if (!page) {
2524 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2525 		page = swapin_readahead(entry,
2526 					GFP_HIGHUSER_MOVABLE, vma, address);
2527 		if (!page) {
2528 			/*
2529 			 * Back out if somebody else faulted in this pte
2530 			 * while we released the pte lock.
2531 			 */
2532 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2533 			if (likely(pte_same(*page_table, orig_pte)))
2534 				ret = VM_FAULT_OOM;
2535 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536 			goto unlock;
2537 		}
2538 
2539 		/* Had to read the page from swap area: Major fault */
2540 		ret = VM_FAULT_MAJOR;
2541 		count_vm_event(PGMAJFAULT);
2542 	} else if (PageHWPoison(page)) {
2543 		ret = VM_FAULT_HWPOISON;
2544 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2545 		goto out_release;
2546 	}
2547 
2548 	lock_page(page);
2549 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2550 
2551 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2552 		ret = VM_FAULT_OOM;
2553 		goto out_page;
2554 	}
2555 
2556 	/*
2557 	 * Back out if somebody else already faulted in this pte.
2558 	 */
2559 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2560 	if (unlikely(!pte_same(*page_table, orig_pte)))
2561 		goto out_nomap;
2562 
2563 	if (unlikely(!PageUptodate(page))) {
2564 		ret = VM_FAULT_SIGBUS;
2565 		goto out_nomap;
2566 	}
2567 
2568 	/*
2569 	 * The page isn't present yet, go ahead with the fault.
2570 	 *
2571 	 * Be careful about the sequence of operations here.
2572 	 * To get its accounting right, reuse_swap_page() must be called
2573 	 * while the page is counted on swap but not yet in mapcount i.e.
2574 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2575 	 * must be called after the swap_free(), or it will never succeed.
2576 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2577 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2578 	 * in page->private. In this case, a record in swap_cgroup  is silently
2579 	 * discarded at swap_free().
2580 	 */
2581 
2582 	inc_mm_counter(mm, anon_rss);
2583 	pte = mk_pte(page, vma->vm_page_prot);
2584 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2585 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2586 		flags &= ~FAULT_FLAG_WRITE;
2587 	}
2588 	flush_icache_page(vma, page);
2589 	set_pte_at(mm, address, page_table, pte);
2590 	page_add_anon_rmap(page, vma, address);
2591 	/* It's better to call commit-charge after rmap is established */
2592 	mem_cgroup_commit_charge_swapin(page, ptr);
2593 
2594 	swap_free(entry);
2595 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2596 		try_to_free_swap(page);
2597 	unlock_page(page);
2598 
2599 	if (flags & FAULT_FLAG_WRITE) {
2600 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2601 		if (ret & VM_FAULT_ERROR)
2602 			ret &= VM_FAULT_ERROR;
2603 		goto out;
2604 	}
2605 
2606 	/* No need to invalidate - it was non-present before */
2607 	update_mmu_cache(vma, address, pte);
2608 unlock:
2609 	pte_unmap_unlock(page_table, ptl);
2610 out:
2611 	return ret;
2612 out_nomap:
2613 	mem_cgroup_cancel_charge_swapin(ptr);
2614 	pte_unmap_unlock(page_table, ptl);
2615 out_page:
2616 	unlock_page(page);
2617 out_release:
2618 	page_cache_release(page);
2619 	return ret;
2620 }
2621 
2622 /*
2623  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2624  * but allow concurrent faults), and pte mapped but not yet locked.
2625  * We return with mmap_sem still held, but pte unmapped and unlocked.
2626  */
2627 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2628 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2629 		unsigned int flags)
2630 {
2631 	struct page *page;
2632 	spinlock_t *ptl;
2633 	pte_t entry;
2634 
2635 	if (!(flags & FAULT_FLAG_WRITE)) {
2636 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2637 						vma->vm_page_prot));
2638 		ptl = pte_lockptr(mm, pmd);
2639 		spin_lock(ptl);
2640 		if (!pte_none(*page_table))
2641 			goto unlock;
2642 		goto setpte;
2643 	}
2644 
2645 	/* Allocate our own private page. */
2646 	pte_unmap(page_table);
2647 
2648 	if (unlikely(anon_vma_prepare(vma)))
2649 		goto oom;
2650 	page = alloc_zeroed_user_highpage_movable(vma, address);
2651 	if (!page)
2652 		goto oom;
2653 	__SetPageUptodate(page);
2654 
2655 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2656 		goto oom_free_page;
2657 
2658 	entry = mk_pte(page, vma->vm_page_prot);
2659 	if (vma->vm_flags & VM_WRITE)
2660 		entry = pte_mkwrite(pte_mkdirty(entry));
2661 
2662 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2663 	if (!pte_none(*page_table))
2664 		goto release;
2665 
2666 	inc_mm_counter(mm, anon_rss);
2667 	page_add_new_anon_rmap(page, vma, address);
2668 setpte:
2669 	set_pte_at(mm, address, page_table, entry);
2670 
2671 	/* No need to invalidate - it was non-present before */
2672 	update_mmu_cache(vma, address, entry);
2673 unlock:
2674 	pte_unmap_unlock(page_table, ptl);
2675 	return 0;
2676 release:
2677 	mem_cgroup_uncharge_page(page);
2678 	page_cache_release(page);
2679 	goto unlock;
2680 oom_free_page:
2681 	page_cache_release(page);
2682 oom:
2683 	return VM_FAULT_OOM;
2684 }
2685 
2686 /*
2687  * __do_fault() tries to create a new page mapping. It aggressively
2688  * tries to share with existing pages, but makes a separate copy if
2689  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2690  * the next page fault.
2691  *
2692  * As this is called only for pages that do not currently exist, we
2693  * do not need to flush old virtual caches or the TLB.
2694  *
2695  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696  * but allow concurrent faults), and pte neither mapped nor locked.
2697  * We return with mmap_sem still held, but pte unmapped and unlocked.
2698  */
2699 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2700 		unsigned long address, pmd_t *pmd,
2701 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2702 {
2703 	pte_t *page_table;
2704 	spinlock_t *ptl;
2705 	struct page *page;
2706 	pte_t entry;
2707 	int anon = 0;
2708 	int charged = 0;
2709 	struct page *dirty_page = NULL;
2710 	struct vm_fault vmf;
2711 	int ret;
2712 	int page_mkwrite = 0;
2713 
2714 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2715 	vmf.pgoff = pgoff;
2716 	vmf.flags = flags;
2717 	vmf.page = NULL;
2718 
2719 	ret = vma->vm_ops->fault(vma, &vmf);
2720 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2721 		return ret;
2722 
2723 	if (unlikely(PageHWPoison(vmf.page))) {
2724 		if (ret & VM_FAULT_LOCKED)
2725 			unlock_page(vmf.page);
2726 		return VM_FAULT_HWPOISON;
2727 	}
2728 
2729 	/*
2730 	 * For consistency in subsequent calls, make the faulted page always
2731 	 * locked.
2732 	 */
2733 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2734 		lock_page(vmf.page);
2735 	else
2736 		VM_BUG_ON(!PageLocked(vmf.page));
2737 
2738 	/*
2739 	 * Should we do an early C-O-W break?
2740 	 */
2741 	page = vmf.page;
2742 	if (flags & FAULT_FLAG_WRITE) {
2743 		if (!(vma->vm_flags & VM_SHARED)) {
2744 			anon = 1;
2745 			if (unlikely(anon_vma_prepare(vma))) {
2746 				ret = VM_FAULT_OOM;
2747 				goto out;
2748 			}
2749 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2750 						vma, address);
2751 			if (!page) {
2752 				ret = VM_FAULT_OOM;
2753 				goto out;
2754 			}
2755 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2756 				ret = VM_FAULT_OOM;
2757 				page_cache_release(page);
2758 				goto out;
2759 			}
2760 			charged = 1;
2761 			/*
2762 			 * Don't let another task, with possibly unlocked vma,
2763 			 * keep the mlocked page.
2764 			 */
2765 			if (vma->vm_flags & VM_LOCKED)
2766 				clear_page_mlock(vmf.page);
2767 			copy_user_highpage(page, vmf.page, address, vma);
2768 			__SetPageUptodate(page);
2769 		} else {
2770 			/*
2771 			 * If the page will be shareable, see if the backing
2772 			 * address space wants to know that the page is about
2773 			 * to become writable
2774 			 */
2775 			if (vma->vm_ops->page_mkwrite) {
2776 				int tmp;
2777 
2778 				unlock_page(page);
2779 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2780 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2781 				if (unlikely(tmp &
2782 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2783 					ret = tmp;
2784 					goto unwritable_page;
2785 				}
2786 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2787 					lock_page(page);
2788 					if (!page->mapping) {
2789 						ret = 0; /* retry the fault */
2790 						unlock_page(page);
2791 						goto unwritable_page;
2792 					}
2793 				} else
2794 					VM_BUG_ON(!PageLocked(page));
2795 				page_mkwrite = 1;
2796 			}
2797 		}
2798 
2799 	}
2800 
2801 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2802 
2803 	/*
2804 	 * This silly early PAGE_DIRTY setting removes a race
2805 	 * due to the bad i386 page protection. But it's valid
2806 	 * for other architectures too.
2807 	 *
2808 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2809 	 * an exclusive copy of the page, or this is a shared mapping,
2810 	 * so we can make it writable and dirty to avoid having to
2811 	 * handle that later.
2812 	 */
2813 	/* Only go through if we didn't race with anybody else... */
2814 	if (likely(pte_same(*page_table, orig_pte))) {
2815 		flush_icache_page(vma, page);
2816 		entry = mk_pte(page, vma->vm_page_prot);
2817 		if (flags & FAULT_FLAG_WRITE)
2818 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2819 		if (anon) {
2820 			inc_mm_counter(mm, anon_rss);
2821 			page_add_new_anon_rmap(page, vma, address);
2822 		} else {
2823 			inc_mm_counter(mm, file_rss);
2824 			page_add_file_rmap(page);
2825 			if (flags & FAULT_FLAG_WRITE) {
2826 				dirty_page = page;
2827 				get_page(dirty_page);
2828 			}
2829 		}
2830 		set_pte_at(mm, address, page_table, entry);
2831 
2832 		/* no need to invalidate: a not-present page won't be cached */
2833 		update_mmu_cache(vma, address, entry);
2834 	} else {
2835 		if (charged)
2836 			mem_cgroup_uncharge_page(page);
2837 		if (anon)
2838 			page_cache_release(page);
2839 		else
2840 			anon = 1; /* no anon but release faulted_page */
2841 	}
2842 
2843 	pte_unmap_unlock(page_table, ptl);
2844 
2845 out:
2846 	if (dirty_page) {
2847 		struct address_space *mapping = page->mapping;
2848 
2849 		if (set_page_dirty(dirty_page))
2850 			page_mkwrite = 1;
2851 		unlock_page(dirty_page);
2852 		put_page(dirty_page);
2853 		if (page_mkwrite && mapping) {
2854 			/*
2855 			 * Some device drivers do not set page.mapping but still
2856 			 * dirty their pages
2857 			 */
2858 			balance_dirty_pages_ratelimited(mapping);
2859 		}
2860 
2861 		/* file_update_time outside page_lock */
2862 		if (vma->vm_file)
2863 			file_update_time(vma->vm_file);
2864 	} else {
2865 		unlock_page(vmf.page);
2866 		if (anon)
2867 			page_cache_release(vmf.page);
2868 	}
2869 
2870 	return ret;
2871 
2872 unwritable_page:
2873 	page_cache_release(page);
2874 	return ret;
2875 }
2876 
2877 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2878 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2879 		unsigned int flags, pte_t orig_pte)
2880 {
2881 	pgoff_t pgoff = (((address & PAGE_MASK)
2882 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2883 
2884 	pte_unmap(page_table);
2885 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2886 }
2887 
2888 /*
2889  * Fault of a previously existing named mapping. Repopulate the pte
2890  * from the encoded file_pte if possible. This enables swappable
2891  * nonlinear vmas.
2892  *
2893  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894  * but allow concurrent faults), and pte mapped but not yet locked.
2895  * We return with mmap_sem still held, but pte unmapped and unlocked.
2896  */
2897 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2899 		unsigned int flags, pte_t orig_pte)
2900 {
2901 	pgoff_t pgoff;
2902 
2903 	flags |= FAULT_FLAG_NONLINEAR;
2904 
2905 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2906 		return 0;
2907 
2908 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2909 		/*
2910 		 * Page table corrupted: show pte and kill process.
2911 		 */
2912 		print_bad_pte(vma, address, orig_pte, NULL);
2913 		return VM_FAULT_OOM;
2914 	}
2915 
2916 	pgoff = pte_to_pgoff(orig_pte);
2917 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2918 }
2919 
2920 /*
2921  * These routines also need to handle stuff like marking pages dirty
2922  * and/or accessed for architectures that don't do it in hardware (most
2923  * RISC architectures).  The early dirtying is also good on the i386.
2924  *
2925  * There is also a hook called "update_mmu_cache()" that architectures
2926  * with external mmu caches can use to update those (ie the Sparc or
2927  * PowerPC hashed page tables that act as extended TLBs).
2928  *
2929  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2930  * but allow concurrent faults), and pte mapped but not yet locked.
2931  * We return with mmap_sem still held, but pte unmapped and unlocked.
2932  */
2933 static inline int handle_pte_fault(struct mm_struct *mm,
2934 		struct vm_area_struct *vma, unsigned long address,
2935 		pte_t *pte, pmd_t *pmd, unsigned int flags)
2936 {
2937 	pte_t entry;
2938 	spinlock_t *ptl;
2939 
2940 	entry = *pte;
2941 	if (!pte_present(entry)) {
2942 		if (pte_none(entry)) {
2943 			if (vma->vm_ops) {
2944 				if (likely(vma->vm_ops->fault))
2945 					return do_linear_fault(mm, vma, address,
2946 						pte, pmd, flags, entry);
2947 			}
2948 			return do_anonymous_page(mm, vma, address,
2949 						 pte, pmd, flags);
2950 		}
2951 		if (pte_file(entry))
2952 			return do_nonlinear_fault(mm, vma, address,
2953 					pte, pmd, flags, entry);
2954 		return do_swap_page(mm, vma, address,
2955 					pte, pmd, flags, entry);
2956 	}
2957 
2958 	ptl = pte_lockptr(mm, pmd);
2959 	spin_lock(ptl);
2960 	if (unlikely(!pte_same(*pte, entry)))
2961 		goto unlock;
2962 	if (flags & FAULT_FLAG_WRITE) {
2963 		if (!pte_write(entry))
2964 			return do_wp_page(mm, vma, address,
2965 					pte, pmd, ptl, entry);
2966 		entry = pte_mkdirty(entry);
2967 	}
2968 	entry = pte_mkyoung(entry);
2969 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2970 		update_mmu_cache(vma, address, entry);
2971 	} else {
2972 		/*
2973 		 * This is needed only for protection faults but the arch code
2974 		 * is not yet telling us if this is a protection fault or not.
2975 		 * This still avoids useless tlb flushes for .text page faults
2976 		 * with threads.
2977 		 */
2978 		if (flags & FAULT_FLAG_WRITE)
2979 			flush_tlb_page(vma, address);
2980 	}
2981 unlock:
2982 	pte_unmap_unlock(pte, ptl);
2983 	return 0;
2984 }
2985 
2986 /*
2987  * By the time we get here, we already hold the mm semaphore
2988  */
2989 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2990 		unsigned long address, unsigned int flags)
2991 {
2992 	pgd_t *pgd;
2993 	pud_t *pud;
2994 	pmd_t *pmd;
2995 	pte_t *pte;
2996 
2997 	__set_current_state(TASK_RUNNING);
2998 
2999 	count_vm_event(PGFAULT);
3000 
3001 	if (unlikely(is_vm_hugetlb_page(vma)))
3002 		return hugetlb_fault(mm, vma, address, flags);
3003 
3004 	pgd = pgd_offset(mm, address);
3005 	pud = pud_alloc(mm, pgd, address);
3006 	if (!pud)
3007 		return VM_FAULT_OOM;
3008 	pmd = pmd_alloc(mm, pud, address);
3009 	if (!pmd)
3010 		return VM_FAULT_OOM;
3011 	pte = pte_alloc_map(mm, pmd, address);
3012 	if (!pte)
3013 		return VM_FAULT_OOM;
3014 
3015 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3016 }
3017 
3018 #ifndef __PAGETABLE_PUD_FOLDED
3019 /*
3020  * Allocate page upper directory.
3021  * We've already handled the fast-path in-line.
3022  */
3023 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3024 {
3025 	pud_t *new = pud_alloc_one(mm, address);
3026 	if (!new)
3027 		return -ENOMEM;
3028 
3029 	smp_wmb(); /* See comment in __pte_alloc */
3030 
3031 	spin_lock(&mm->page_table_lock);
3032 	if (pgd_present(*pgd))		/* Another has populated it */
3033 		pud_free(mm, new);
3034 	else
3035 		pgd_populate(mm, pgd, new);
3036 	spin_unlock(&mm->page_table_lock);
3037 	return 0;
3038 }
3039 #endif /* __PAGETABLE_PUD_FOLDED */
3040 
3041 #ifndef __PAGETABLE_PMD_FOLDED
3042 /*
3043  * Allocate page middle directory.
3044  * We've already handled the fast-path in-line.
3045  */
3046 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3047 {
3048 	pmd_t *new = pmd_alloc_one(mm, address);
3049 	if (!new)
3050 		return -ENOMEM;
3051 
3052 	smp_wmb(); /* See comment in __pte_alloc */
3053 
3054 	spin_lock(&mm->page_table_lock);
3055 #ifndef __ARCH_HAS_4LEVEL_HACK
3056 	if (pud_present(*pud))		/* Another has populated it */
3057 		pmd_free(mm, new);
3058 	else
3059 		pud_populate(mm, pud, new);
3060 #else
3061 	if (pgd_present(*pud))		/* Another has populated it */
3062 		pmd_free(mm, new);
3063 	else
3064 		pgd_populate(mm, pud, new);
3065 #endif /* __ARCH_HAS_4LEVEL_HACK */
3066 	spin_unlock(&mm->page_table_lock);
3067 	return 0;
3068 }
3069 #endif /* __PAGETABLE_PMD_FOLDED */
3070 
3071 int make_pages_present(unsigned long addr, unsigned long end)
3072 {
3073 	int ret, len, write;
3074 	struct vm_area_struct * vma;
3075 
3076 	vma = find_vma(current->mm, addr);
3077 	if (!vma)
3078 		return -ENOMEM;
3079 	write = (vma->vm_flags & VM_WRITE) != 0;
3080 	BUG_ON(addr >= end);
3081 	BUG_ON(end > vma->vm_end);
3082 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3083 	ret = get_user_pages(current, current->mm, addr,
3084 			len, write, 0, NULL, NULL);
3085 	if (ret < 0)
3086 		return ret;
3087 	return ret == len ? 0 : -EFAULT;
3088 }
3089 
3090 #if !defined(__HAVE_ARCH_GATE_AREA)
3091 
3092 #if defined(AT_SYSINFO_EHDR)
3093 static struct vm_area_struct gate_vma;
3094 
3095 static int __init gate_vma_init(void)
3096 {
3097 	gate_vma.vm_mm = NULL;
3098 	gate_vma.vm_start = FIXADDR_USER_START;
3099 	gate_vma.vm_end = FIXADDR_USER_END;
3100 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3101 	gate_vma.vm_page_prot = __P101;
3102 	/*
3103 	 * Make sure the vDSO gets into every core dump.
3104 	 * Dumping its contents makes post-mortem fully interpretable later
3105 	 * without matching up the same kernel and hardware config to see
3106 	 * what PC values meant.
3107 	 */
3108 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3109 	return 0;
3110 }
3111 __initcall(gate_vma_init);
3112 #endif
3113 
3114 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3115 {
3116 #ifdef AT_SYSINFO_EHDR
3117 	return &gate_vma;
3118 #else
3119 	return NULL;
3120 #endif
3121 }
3122 
3123 int in_gate_area_no_task(unsigned long addr)
3124 {
3125 #ifdef AT_SYSINFO_EHDR
3126 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3127 		return 1;
3128 #endif
3129 	return 0;
3130 }
3131 
3132 #endif	/* __HAVE_ARCH_GATE_AREA */
3133 
3134 static int follow_pte(struct mm_struct *mm, unsigned long address,
3135 		pte_t **ptepp, spinlock_t **ptlp)
3136 {
3137 	pgd_t *pgd;
3138 	pud_t *pud;
3139 	pmd_t *pmd;
3140 	pte_t *ptep;
3141 
3142 	pgd = pgd_offset(mm, address);
3143 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3144 		goto out;
3145 
3146 	pud = pud_offset(pgd, address);
3147 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3148 		goto out;
3149 
3150 	pmd = pmd_offset(pud, address);
3151 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3152 		goto out;
3153 
3154 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3155 	if (pmd_huge(*pmd))
3156 		goto out;
3157 
3158 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3159 	if (!ptep)
3160 		goto out;
3161 	if (!pte_present(*ptep))
3162 		goto unlock;
3163 	*ptepp = ptep;
3164 	return 0;
3165 unlock:
3166 	pte_unmap_unlock(ptep, *ptlp);
3167 out:
3168 	return -EINVAL;
3169 }
3170 
3171 /**
3172  * follow_pfn - look up PFN at a user virtual address
3173  * @vma: memory mapping
3174  * @address: user virtual address
3175  * @pfn: location to store found PFN
3176  *
3177  * Only IO mappings and raw PFN mappings are allowed.
3178  *
3179  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3180  */
3181 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3182 	unsigned long *pfn)
3183 {
3184 	int ret = -EINVAL;
3185 	spinlock_t *ptl;
3186 	pte_t *ptep;
3187 
3188 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3189 		return ret;
3190 
3191 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3192 	if (ret)
3193 		return ret;
3194 	*pfn = pte_pfn(*ptep);
3195 	pte_unmap_unlock(ptep, ptl);
3196 	return 0;
3197 }
3198 EXPORT_SYMBOL(follow_pfn);
3199 
3200 #ifdef CONFIG_HAVE_IOREMAP_PROT
3201 int follow_phys(struct vm_area_struct *vma,
3202 		unsigned long address, unsigned int flags,
3203 		unsigned long *prot, resource_size_t *phys)
3204 {
3205 	int ret = -EINVAL;
3206 	pte_t *ptep, pte;
3207 	spinlock_t *ptl;
3208 
3209 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3210 		goto out;
3211 
3212 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3213 		goto out;
3214 	pte = *ptep;
3215 
3216 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3217 		goto unlock;
3218 
3219 	*prot = pgprot_val(pte_pgprot(pte));
3220 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3221 
3222 	ret = 0;
3223 unlock:
3224 	pte_unmap_unlock(ptep, ptl);
3225 out:
3226 	return ret;
3227 }
3228 
3229 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3230 			void *buf, int len, int write)
3231 {
3232 	resource_size_t phys_addr;
3233 	unsigned long prot = 0;
3234 	void __iomem *maddr;
3235 	int offset = addr & (PAGE_SIZE-1);
3236 
3237 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3238 		return -EINVAL;
3239 
3240 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3241 	if (write)
3242 		memcpy_toio(maddr + offset, buf, len);
3243 	else
3244 		memcpy_fromio(buf, maddr + offset, len);
3245 	iounmap(maddr);
3246 
3247 	return len;
3248 }
3249 #endif
3250 
3251 /*
3252  * Access another process' address space.
3253  * Source/target buffer must be kernel space,
3254  * Do not walk the page table directly, use get_user_pages
3255  */
3256 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3257 {
3258 	struct mm_struct *mm;
3259 	struct vm_area_struct *vma;
3260 	void *old_buf = buf;
3261 
3262 	mm = get_task_mm(tsk);
3263 	if (!mm)
3264 		return 0;
3265 
3266 	down_read(&mm->mmap_sem);
3267 	/* ignore errors, just check how much was successfully transferred */
3268 	while (len) {
3269 		int bytes, ret, offset;
3270 		void *maddr;
3271 		struct page *page = NULL;
3272 
3273 		ret = get_user_pages(tsk, mm, addr, 1,
3274 				write, 1, &page, &vma);
3275 		if (ret <= 0) {
3276 			/*
3277 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3278 			 * we can access using slightly different code.
3279 			 */
3280 #ifdef CONFIG_HAVE_IOREMAP_PROT
3281 			vma = find_vma(mm, addr);
3282 			if (!vma)
3283 				break;
3284 			if (vma->vm_ops && vma->vm_ops->access)
3285 				ret = vma->vm_ops->access(vma, addr, buf,
3286 							  len, write);
3287 			if (ret <= 0)
3288 #endif
3289 				break;
3290 			bytes = ret;
3291 		} else {
3292 			bytes = len;
3293 			offset = addr & (PAGE_SIZE-1);
3294 			if (bytes > PAGE_SIZE-offset)
3295 				bytes = PAGE_SIZE-offset;
3296 
3297 			maddr = kmap(page);
3298 			if (write) {
3299 				copy_to_user_page(vma, page, addr,
3300 						  maddr + offset, buf, bytes);
3301 				set_page_dirty_lock(page);
3302 			} else {
3303 				copy_from_user_page(vma, page, addr,
3304 						    buf, maddr + offset, bytes);
3305 			}
3306 			kunmap(page);
3307 			page_cache_release(page);
3308 		}
3309 		len -= bytes;
3310 		buf += bytes;
3311 		addr += bytes;
3312 	}
3313 	up_read(&mm->mmap_sem);
3314 	mmput(mm);
3315 
3316 	return buf - old_buf;
3317 }
3318 
3319 /*
3320  * Print the name of a VMA.
3321  */
3322 void print_vma_addr(char *prefix, unsigned long ip)
3323 {
3324 	struct mm_struct *mm = current->mm;
3325 	struct vm_area_struct *vma;
3326 
3327 	/*
3328 	 * Do not print if we are in atomic
3329 	 * contexts (in exception stacks, etc.):
3330 	 */
3331 	if (preempt_count())
3332 		return;
3333 
3334 	down_read(&mm->mmap_sem);
3335 	vma = find_vma(mm, ip);
3336 	if (vma && vma->vm_file) {
3337 		struct file *f = vma->vm_file;
3338 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3339 		if (buf) {
3340 			char *p, *s;
3341 
3342 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3343 			if (IS_ERR(p))
3344 				p = "?";
3345 			s = strrchr(p, '/');
3346 			if (s)
3347 				p = s+1;
3348 			printk("%s%s[%lx+%lx]", prefix, p,
3349 					vma->vm_start,
3350 					vma->vm_end - vma->vm_start);
3351 			free_page((unsigned long)buf);
3352 		}
3353 	}
3354 	up_read(&current->mm->mmap_sem);
3355 }
3356 
3357 #ifdef CONFIG_PROVE_LOCKING
3358 void might_fault(void)
3359 {
3360 	/*
3361 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3362 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3363 	 * get paged out, therefore we'll never actually fault, and the
3364 	 * below annotations will generate false positives.
3365 	 */
3366 	if (segment_eq(get_fs(), KERNEL_DS))
3367 		return;
3368 
3369 	might_sleep();
3370 	/*
3371 	 * it would be nicer only to annotate paths which are not under
3372 	 * pagefault_disable, however that requires a larger audit and
3373 	 * providing helpers like get_user_atomic.
3374 	 */
3375 	if (!in_atomic() && current->mm)
3376 		might_lock_read(&current->mm->mmap_sem);
3377 }
3378 EXPORT_SYMBOL(might_fault);
3379 #endif
3380