xref: /openbmc/linux/mm/memory.c (revision f3a8b664)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67 
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75 
76 #include "internal.h"
77 
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81 
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86 
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90 
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99 
100 EXPORT_SYMBOL(high_memory);
101 
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110 					1;
111 #else
112 					2;
113 #endif
114 
115 static int __init disable_randmaps(char *s)
116 {
117 	randomize_va_space = 0;
118 	return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121 
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124 
125 EXPORT_SYMBOL(zero_pfn);
126 
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 	return 0;
134 }
135 core_initcall(init_zero_pfn);
136 
137 
138 #if defined(SPLIT_RSS_COUNTING)
139 
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142 	int i;
143 
144 	for (i = 0; i < NR_MM_COUNTERS; i++) {
145 		if (current->rss_stat.count[i]) {
146 			add_mm_counter(mm, i, current->rss_stat.count[i]);
147 			current->rss_stat.count[i] = 0;
148 		}
149 	}
150 	current->rss_stat.events = 0;
151 }
152 
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155 	struct task_struct *task = current;
156 
157 	if (likely(task->mm == mm))
158 		task->rss_stat.count[member] += val;
159 	else
160 		add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH	(64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 	if (unlikely(task != current))
170 		return;
171 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172 		sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175 
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182 
183 #endif /* SPLIT_RSS_COUNTING */
184 
185 #ifdef HAVE_GENERIC_MMU_GATHER
186 
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189 	struct mmu_gather_batch *batch;
190 
191 	batch = tlb->active;
192 	if (batch->next) {
193 		tlb->active = batch->next;
194 		return true;
195 	}
196 
197 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198 		return false;
199 
200 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 	if (!batch)
202 		return false;
203 
204 	tlb->batch_count++;
205 	batch->next = NULL;
206 	batch->nr   = 0;
207 	batch->max  = MAX_GATHER_BATCH;
208 
209 	tlb->active->next = batch;
210 	tlb->active = batch;
211 
212 	return true;
213 }
214 
215 /* tlb_gather_mmu
216  *	Called to initialize an (on-stack) mmu_gather structure for page-table
217  *	tear-down from @mm. The @fullmm argument is used when @mm is without
218  *	users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277 	struct mmu_gather_batch *batch, *next;
278 
279 	tlb_flush_mmu(tlb);
280 
281 	/* keep the page table cache within bounds */
282 	check_pgt_cache();
283 
284 	for (batch = tlb->local.next; batch; batch = next) {
285 		next = batch->next;
286 		free_pages((unsigned long)batch, 0);
287 	}
288 	tlb->local.next = NULL;
289 }
290 
291 /* __tlb_remove_page
292  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *	handling the additional races in SMP caused by other CPUs caching valid
294  *	mappings in their TLBs. Returns the number of free page slots left.
295  *	When out of page slots we must call tlb_flush_mmu().
296  *returns true if the caller should flush.
297  */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300 	struct mmu_gather_batch *batch;
301 
302 	VM_BUG_ON(!tlb->end);
303 
304 	if (!tlb->page_size)
305 		tlb->page_size = page_size;
306 	else {
307 		if (page_size != tlb->page_size)
308 			return true;
309 	}
310 
311 	batch = tlb->active;
312 	if (batch->nr == batch->max) {
313 		if (!tlb_next_batch(tlb))
314 			return true;
315 		batch = tlb->active;
316 	}
317 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
318 
319 	batch->pages[batch->nr++] = page;
320 	return false;
321 }
322 
323 #endif /* HAVE_GENERIC_MMU_GATHER */
324 
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
326 
327 /*
328  * See the comment near struct mmu_table_batch.
329  */
330 
331 static void tlb_remove_table_smp_sync(void *arg)
332 {
333 	/* Simply deliver the interrupt */
334 }
335 
336 static void tlb_remove_table_one(void *table)
337 {
338 	/*
339 	 * This isn't an RCU grace period and hence the page-tables cannot be
340 	 * assumed to be actually RCU-freed.
341 	 *
342 	 * It is however sufficient for software page-table walkers that rely on
343 	 * IRQ disabling. See the comment near struct mmu_table_batch.
344 	 */
345 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346 	__tlb_remove_table(table);
347 }
348 
349 static void tlb_remove_table_rcu(struct rcu_head *head)
350 {
351 	struct mmu_table_batch *batch;
352 	int i;
353 
354 	batch = container_of(head, struct mmu_table_batch, rcu);
355 
356 	for (i = 0; i < batch->nr; i++)
357 		__tlb_remove_table(batch->tables[i]);
358 
359 	free_page((unsigned long)batch);
360 }
361 
362 void tlb_table_flush(struct mmu_gather *tlb)
363 {
364 	struct mmu_table_batch **batch = &tlb->batch;
365 
366 	if (*batch) {
367 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368 		*batch = NULL;
369 	}
370 }
371 
372 void tlb_remove_table(struct mmu_gather *tlb, void *table)
373 {
374 	struct mmu_table_batch **batch = &tlb->batch;
375 
376 	/*
377 	 * When there's less then two users of this mm there cannot be a
378 	 * concurrent page-table walk.
379 	 */
380 	if (atomic_read(&tlb->mm->mm_users) < 2) {
381 		__tlb_remove_table(table);
382 		return;
383 	}
384 
385 	if (*batch == NULL) {
386 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387 		if (*batch == NULL) {
388 			tlb_remove_table_one(table);
389 			return;
390 		}
391 		(*batch)->nr = 0;
392 	}
393 	(*batch)->tables[(*batch)->nr++] = table;
394 	if ((*batch)->nr == MAX_TABLE_BATCH)
395 		tlb_table_flush(tlb);
396 }
397 
398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
399 
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 			   unsigned long addr)
406 {
407 	pgtable_t token = pmd_pgtable(*pmd);
408 	pmd_clear(pmd);
409 	pte_free_tlb(tlb, token, addr);
410 	atomic_long_dec(&tlb->mm->nr_ptes);
411 }
412 
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 				unsigned long addr, unsigned long end,
415 				unsigned long floor, unsigned long ceiling)
416 {
417 	pmd_t *pmd;
418 	unsigned long next;
419 	unsigned long start;
420 
421 	start = addr;
422 	pmd = pmd_offset(pud, addr);
423 	do {
424 		next = pmd_addr_end(addr, end);
425 		if (pmd_none_or_clear_bad(pmd))
426 			continue;
427 		free_pte_range(tlb, pmd, addr);
428 	} while (pmd++, addr = next, addr != end);
429 
430 	start &= PUD_MASK;
431 	if (start < floor)
432 		return;
433 	if (ceiling) {
434 		ceiling &= PUD_MASK;
435 		if (!ceiling)
436 			return;
437 	}
438 	if (end - 1 > ceiling - 1)
439 		return;
440 
441 	pmd = pmd_offset(pud, start);
442 	pud_clear(pud);
443 	pmd_free_tlb(tlb, pmd, start);
444 	mm_dec_nr_pmds(tlb->mm);
445 }
446 
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 				unsigned long addr, unsigned long end,
449 				unsigned long floor, unsigned long ceiling)
450 {
451 	pud_t *pud;
452 	unsigned long next;
453 	unsigned long start;
454 
455 	start = addr;
456 	pud = pud_offset(pgd, addr);
457 	do {
458 		next = pud_addr_end(addr, end);
459 		if (pud_none_or_clear_bad(pud))
460 			continue;
461 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 	} while (pud++, addr = next, addr != end);
463 
464 	start &= PGDIR_MASK;
465 	if (start < floor)
466 		return;
467 	if (ceiling) {
468 		ceiling &= PGDIR_MASK;
469 		if (!ceiling)
470 			return;
471 	}
472 	if (end - 1 > ceiling - 1)
473 		return;
474 
475 	pud = pud_offset(pgd, start);
476 	pgd_clear(pgd);
477 	pud_free_tlb(tlb, pud, start);
478 }
479 
480 /*
481  * This function frees user-level page tables of a process.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484 			unsigned long addr, unsigned long end,
485 			unsigned long floor, unsigned long ceiling)
486 {
487 	pgd_t *pgd;
488 	unsigned long next;
489 
490 	/*
491 	 * The next few lines have given us lots of grief...
492 	 *
493 	 * Why are we testing PMD* at this top level?  Because often
494 	 * there will be no work to do at all, and we'd prefer not to
495 	 * go all the way down to the bottom just to discover that.
496 	 *
497 	 * Why all these "- 1"s?  Because 0 represents both the bottom
498 	 * of the address space and the top of it (using -1 for the
499 	 * top wouldn't help much: the masks would do the wrong thing).
500 	 * The rule is that addr 0 and floor 0 refer to the bottom of
501 	 * the address space, but end 0 and ceiling 0 refer to the top
502 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 	 * that end 0 case should be mythical).
504 	 *
505 	 * Wherever addr is brought up or ceiling brought down, we must
506 	 * be careful to reject "the opposite 0" before it confuses the
507 	 * subsequent tests.  But what about where end is brought down
508 	 * by PMD_SIZE below? no, end can't go down to 0 there.
509 	 *
510 	 * Whereas we round start (addr) and ceiling down, by different
511 	 * masks at different levels, in order to test whether a table
512 	 * now has no other vmas using it, so can be freed, we don't
513 	 * bother to round floor or end up - the tests don't need that.
514 	 */
515 
516 	addr &= PMD_MASK;
517 	if (addr < floor) {
518 		addr += PMD_SIZE;
519 		if (!addr)
520 			return;
521 	}
522 	if (ceiling) {
523 		ceiling &= PMD_MASK;
524 		if (!ceiling)
525 			return;
526 	}
527 	if (end - 1 > ceiling - 1)
528 		end -= PMD_SIZE;
529 	if (addr > end - 1)
530 		return;
531 
532 	pgd = pgd_offset(tlb->mm, addr);
533 	do {
534 		next = pgd_addr_end(addr, end);
535 		if (pgd_none_or_clear_bad(pgd))
536 			continue;
537 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 	} while (pgd++, addr = next, addr != end);
539 }
540 
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 		unsigned long floor, unsigned long ceiling)
543 {
544 	while (vma) {
545 		struct vm_area_struct *next = vma->vm_next;
546 		unsigned long addr = vma->vm_start;
547 
548 		/*
549 		 * Hide vma from rmap and truncate_pagecache before freeing
550 		 * pgtables
551 		 */
552 		unlink_anon_vmas(vma);
553 		unlink_file_vma(vma);
554 
555 		if (is_vm_hugetlb_page(vma)) {
556 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		} else {
559 			/*
560 			 * Optimization: gather nearby vmas into one call down
561 			 */
562 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 			       && !is_vm_hugetlb_page(next)) {
564 				vma = next;
565 				next = vma->vm_next;
566 				unlink_anon_vmas(vma);
567 				unlink_file_vma(vma);
568 			}
569 			free_pgd_range(tlb, addr, vma->vm_end,
570 				floor, next? next->vm_start: ceiling);
571 		}
572 		vma = next;
573 	}
574 }
575 
576 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
577 {
578 	spinlock_t *ptl;
579 	pgtable_t new = pte_alloc_one(mm, address);
580 	if (!new)
581 		return -ENOMEM;
582 
583 	/*
584 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
585 	 * visible before the pte is made visible to other CPUs by being
586 	 * put into page tables.
587 	 *
588 	 * The other side of the story is the pointer chasing in the page
589 	 * table walking code (when walking the page table without locking;
590 	 * ie. most of the time). Fortunately, these data accesses consist
591 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
592 	 * being the notable exception) will already guarantee loads are
593 	 * seen in-order. See the alpha page table accessors for the
594 	 * smp_read_barrier_depends() barriers in page table walking code.
595 	 */
596 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
597 
598 	ptl = pmd_lock(mm, pmd);
599 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
600 		atomic_long_inc(&mm->nr_ptes);
601 		pmd_populate(mm, pmd, new);
602 		new = NULL;
603 	}
604 	spin_unlock(ptl);
605 	if (new)
606 		pte_free(mm, new);
607 	return 0;
608 }
609 
610 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
611 {
612 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
613 	if (!new)
614 		return -ENOMEM;
615 
616 	smp_wmb(); /* See comment in __pte_alloc */
617 
618 	spin_lock(&init_mm.page_table_lock);
619 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
620 		pmd_populate_kernel(&init_mm, pmd, new);
621 		new = NULL;
622 	}
623 	spin_unlock(&init_mm.page_table_lock);
624 	if (new)
625 		pte_free_kernel(&init_mm, new);
626 	return 0;
627 }
628 
629 static inline void init_rss_vec(int *rss)
630 {
631 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
632 }
633 
634 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
635 {
636 	int i;
637 
638 	if (current->mm == mm)
639 		sync_mm_rss(mm);
640 	for (i = 0; i < NR_MM_COUNTERS; i++)
641 		if (rss[i])
642 			add_mm_counter(mm, i, rss[i]);
643 }
644 
645 /*
646  * This function is called to print an error when a bad pte
647  * is found. For example, we might have a PFN-mapped pte in
648  * a region that doesn't allow it.
649  *
650  * The calling function must still handle the error.
651  */
652 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
653 			  pte_t pte, struct page *page)
654 {
655 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
656 	pud_t *pud = pud_offset(pgd, addr);
657 	pmd_t *pmd = pmd_offset(pud, addr);
658 	struct address_space *mapping;
659 	pgoff_t index;
660 	static unsigned long resume;
661 	static unsigned long nr_shown;
662 	static unsigned long nr_unshown;
663 
664 	/*
665 	 * Allow a burst of 60 reports, then keep quiet for that minute;
666 	 * or allow a steady drip of one report per second.
667 	 */
668 	if (nr_shown == 60) {
669 		if (time_before(jiffies, resume)) {
670 			nr_unshown++;
671 			return;
672 		}
673 		if (nr_unshown) {
674 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
675 				 nr_unshown);
676 			nr_unshown = 0;
677 		}
678 		nr_shown = 0;
679 	}
680 	if (nr_shown++ == 0)
681 		resume = jiffies + 60 * HZ;
682 
683 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
684 	index = linear_page_index(vma, addr);
685 
686 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
687 		 current->comm,
688 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
689 	if (page)
690 		dump_page(page, "bad pte");
691 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
692 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
693 	/*
694 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
695 	 */
696 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
697 		 vma->vm_file,
698 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
699 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
700 		 mapping ? mapping->a_ops->readpage : NULL);
701 	dump_stack();
702 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
703 }
704 
705 /*
706  * vm_normal_page -- This function gets the "struct page" associated with a pte.
707  *
708  * "Special" mappings do not wish to be associated with a "struct page" (either
709  * it doesn't exist, or it exists but they don't want to touch it). In this
710  * case, NULL is returned here. "Normal" mappings do have a struct page.
711  *
712  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
713  * pte bit, in which case this function is trivial. Secondly, an architecture
714  * may not have a spare pte bit, which requires a more complicated scheme,
715  * described below.
716  *
717  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
718  * special mapping (even if there are underlying and valid "struct pages").
719  * COWed pages of a VM_PFNMAP are always normal.
720  *
721  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
722  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
723  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
724  * mapping will always honor the rule
725  *
726  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
727  *
728  * And for normal mappings this is false.
729  *
730  * This restricts such mappings to be a linear translation from virtual address
731  * to pfn. To get around this restriction, we allow arbitrary mappings so long
732  * as the vma is not a COW mapping; in that case, we know that all ptes are
733  * special (because none can have been COWed).
734  *
735  *
736  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
737  *
738  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
739  * page" backing, however the difference is that _all_ pages with a struct
740  * page (that is, those where pfn_valid is true) are refcounted and considered
741  * normal pages by the VM. The disadvantage is that pages are refcounted
742  * (which can be slower and simply not an option for some PFNMAP users). The
743  * advantage is that we don't have to follow the strict linearity rule of
744  * PFNMAP mappings in order to support COWable mappings.
745  *
746  */
747 #ifdef __HAVE_ARCH_PTE_SPECIAL
748 # define HAVE_PTE_SPECIAL 1
749 #else
750 # define HAVE_PTE_SPECIAL 0
751 #endif
752 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
753 				pte_t pte)
754 {
755 	unsigned long pfn = pte_pfn(pte);
756 
757 	if (HAVE_PTE_SPECIAL) {
758 		if (likely(!pte_special(pte)))
759 			goto check_pfn;
760 		if (vma->vm_ops && vma->vm_ops->find_special_page)
761 			return vma->vm_ops->find_special_page(vma, addr);
762 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
763 			return NULL;
764 		if (!is_zero_pfn(pfn))
765 			print_bad_pte(vma, addr, pte, NULL);
766 		return NULL;
767 	}
768 
769 	/* !HAVE_PTE_SPECIAL case follows: */
770 
771 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
772 		if (vma->vm_flags & VM_MIXEDMAP) {
773 			if (!pfn_valid(pfn))
774 				return NULL;
775 			goto out;
776 		} else {
777 			unsigned long off;
778 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
779 			if (pfn == vma->vm_pgoff + off)
780 				return NULL;
781 			if (!is_cow_mapping(vma->vm_flags))
782 				return NULL;
783 		}
784 	}
785 
786 	if (is_zero_pfn(pfn))
787 		return NULL;
788 check_pfn:
789 	if (unlikely(pfn > highest_memmap_pfn)) {
790 		print_bad_pte(vma, addr, pte, NULL);
791 		return NULL;
792 	}
793 
794 	/*
795 	 * NOTE! We still have PageReserved() pages in the page tables.
796 	 * eg. VDSO mappings can cause them to exist.
797 	 */
798 out:
799 	return pfn_to_page(pfn);
800 }
801 
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
804 				pmd_t pmd)
805 {
806 	unsigned long pfn = pmd_pfn(pmd);
807 
808 	/*
809 	 * There is no pmd_special() but there may be special pmds, e.g.
810 	 * in a direct-access (dax) mapping, so let's just replicate the
811 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
812 	 */
813 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
814 		if (vma->vm_flags & VM_MIXEDMAP) {
815 			if (!pfn_valid(pfn))
816 				return NULL;
817 			goto out;
818 		} else {
819 			unsigned long off;
820 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
821 			if (pfn == vma->vm_pgoff + off)
822 				return NULL;
823 			if (!is_cow_mapping(vma->vm_flags))
824 				return NULL;
825 		}
826 	}
827 
828 	if (is_zero_pfn(pfn))
829 		return NULL;
830 	if (unlikely(pfn > highest_memmap_pfn))
831 		return NULL;
832 
833 	/*
834 	 * NOTE! We still have PageReserved() pages in the page tables.
835 	 * eg. VDSO mappings can cause them to exist.
836 	 */
837 out:
838 	return pfn_to_page(pfn);
839 }
840 #endif
841 
842 /*
843  * copy one vm_area from one task to the other. Assumes the page tables
844  * already present in the new task to be cleared in the whole range
845  * covered by this vma.
846  */
847 
848 static inline unsigned long
849 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
850 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
851 		unsigned long addr, int *rss)
852 {
853 	unsigned long vm_flags = vma->vm_flags;
854 	pte_t pte = *src_pte;
855 	struct page *page;
856 
857 	/* pte contains position in swap or file, so copy. */
858 	if (unlikely(!pte_present(pte))) {
859 		swp_entry_t entry = pte_to_swp_entry(pte);
860 
861 		if (likely(!non_swap_entry(entry))) {
862 			if (swap_duplicate(entry) < 0)
863 				return entry.val;
864 
865 			/* make sure dst_mm is on swapoff's mmlist. */
866 			if (unlikely(list_empty(&dst_mm->mmlist))) {
867 				spin_lock(&mmlist_lock);
868 				if (list_empty(&dst_mm->mmlist))
869 					list_add(&dst_mm->mmlist,
870 							&src_mm->mmlist);
871 				spin_unlock(&mmlist_lock);
872 			}
873 			rss[MM_SWAPENTS]++;
874 		} else if (is_migration_entry(entry)) {
875 			page = migration_entry_to_page(entry);
876 
877 			rss[mm_counter(page)]++;
878 
879 			if (is_write_migration_entry(entry) &&
880 					is_cow_mapping(vm_flags)) {
881 				/*
882 				 * COW mappings require pages in both
883 				 * parent and child to be set to read.
884 				 */
885 				make_migration_entry_read(&entry);
886 				pte = swp_entry_to_pte(entry);
887 				if (pte_swp_soft_dirty(*src_pte))
888 					pte = pte_swp_mksoft_dirty(pte);
889 				set_pte_at(src_mm, addr, src_pte, pte);
890 			}
891 		}
892 		goto out_set_pte;
893 	}
894 
895 	/*
896 	 * If it's a COW mapping, write protect it both
897 	 * in the parent and the child
898 	 */
899 	if (is_cow_mapping(vm_flags)) {
900 		ptep_set_wrprotect(src_mm, addr, src_pte);
901 		pte = pte_wrprotect(pte);
902 	}
903 
904 	/*
905 	 * If it's a shared mapping, mark it clean in
906 	 * the child
907 	 */
908 	if (vm_flags & VM_SHARED)
909 		pte = pte_mkclean(pte);
910 	pte = pte_mkold(pte);
911 
912 	page = vm_normal_page(vma, addr, pte);
913 	if (page) {
914 		get_page(page);
915 		page_dup_rmap(page, false);
916 		rss[mm_counter(page)]++;
917 	}
918 
919 out_set_pte:
920 	set_pte_at(dst_mm, addr, dst_pte, pte);
921 	return 0;
922 }
923 
924 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
926 		   unsigned long addr, unsigned long end)
927 {
928 	pte_t *orig_src_pte, *orig_dst_pte;
929 	pte_t *src_pte, *dst_pte;
930 	spinlock_t *src_ptl, *dst_ptl;
931 	int progress = 0;
932 	int rss[NR_MM_COUNTERS];
933 	swp_entry_t entry = (swp_entry_t){0};
934 
935 again:
936 	init_rss_vec(rss);
937 
938 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
939 	if (!dst_pte)
940 		return -ENOMEM;
941 	src_pte = pte_offset_map(src_pmd, addr);
942 	src_ptl = pte_lockptr(src_mm, src_pmd);
943 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
944 	orig_src_pte = src_pte;
945 	orig_dst_pte = dst_pte;
946 	arch_enter_lazy_mmu_mode();
947 
948 	do {
949 		/*
950 		 * We are holding two locks at this point - either of them
951 		 * could generate latencies in another task on another CPU.
952 		 */
953 		if (progress >= 32) {
954 			progress = 0;
955 			if (need_resched() ||
956 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
957 				break;
958 		}
959 		if (pte_none(*src_pte)) {
960 			progress++;
961 			continue;
962 		}
963 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
964 							vma, addr, rss);
965 		if (entry.val)
966 			break;
967 		progress += 8;
968 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
969 
970 	arch_leave_lazy_mmu_mode();
971 	spin_unlock(src_ptl);
972 	pte_unmap(orig_src_pte);
973 	add_mm_rss_vec(dst_mm, rss);
974 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
975 	cond_resched();
976 
977 	if (entry.val) {
978 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
979 			return -ENOMEM;
980 		progress = 0;
981 	}
982 	if (addr != end)
983 		goto again;
984 	return 0;
985 }
986 
987 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
988 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
989 		unsigned long addr, unsigned long end)
990 {
991 	pmd_t *src_pmd, *dst_pmd;
992 	unsigned long next;
993 
994 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
995 	if (!dst_pmd)
996 		return -ENOMEM;
997 	src_pmd = pmd_offset(src_pud, addr);
998 	do {
999 		next = pmd_addr_end(addr, end);
1000 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1001 			int err;
1002 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1003 			err = copy_huge_pmd(dst_mm, src_mm,
1004 					    dst_pmd, src_pmd, addr, vma);
1005 			if (err == -ENOMEM)
1006 				return -ENOMEM;
1007 			if (!err)
1008 				continue;
1009 			/* fall through */
1010 		}
1011 		if (pmd_none_or_clear_bad(src_pmd))
1012 			continue;
1013 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1014 						vma, addr, next))
1015 			return -ENOMEM;
1016 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1017 	return 0;
1018 }
1019 
1020 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1021 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1022 		unsigned long addr, unsigned long end)
1023 {
1024 	pud_t *src_pud, *dst_pud;
1025 	unsigned long next;
1026 
1027 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1028 	if (!dst_pud)
1029 		return -ENOMEM;
1030 	src_pud = pud_offset(src_pgd, addr);
1031 	do {
1032 		next = pud_addr_end(addr, end);
1033 		if (pud_none_or_clear_bad(src_pud))
1034 			continue;
1035 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1036 						vma, addr, next))
1037 			return -ENOMEM;
1038 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1039 	return 0;
1040 }
1041 
1042 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1043 		struct vm_area_struct *vma)
1044 {
1045 	pgd_t *src_pgd, *dst_pgd;
1046 	unsigned long next;
1047 	unsigned long addr = vma->vm_start;
1048 	unsigned long end = vma->vm_end;
1049 	unsigned long mmun_start;	/* For mmu_notifiers */
1050 	unsigned long mmun_end;		/* For mmu_notifiers */
1051 	bool is_cow;
1052 	int ret;
1053 
1054 	/*
1055 	 * Don't copy ptes where a page fault will fill them correctly.
1056 	 * Fork becomes much lighter when there are big shared or private
1057 	 * readonly mappings. The tradeoff is that copy_page_range is more
1058 	 * efficient than faulting.
1059 	 */
1060 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1061 			!vma->anon_vma)
1062 		return 0;
1063 
1064 	if (is_vm_hugetlb_page(vma))
1065 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1066 
1067 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1068 		/*
1069 		 * We do not free on error cases below as remove_vma
1070 		 * gets called on error from higher level routine
1071 		 */
1072 		ret = track_pfn_copy(vma);
1073 		if (ret)
1074 			return ret;
1075 	}
1076 
1077 	/*
1078 	 * We need to invalidate the secondary MMU mappings only when
1079 	 * there could be a permission downgrade on the ptes of the
1080 	 * parent mm. And a permission downgrade will only happen if
1081 	 * is_cow_mapping() returns true.
1082 	 */
1083 	is_cow = is_cow_mapping(vma->vm_flags);
1084 	mmun_start = addr;
1085 	mmun_end   = end;
1086 	if (is_cow)
1087 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1088 						    mmun_end);
1089 
1090 	ret = 0;
1091 	dst_pgd = pgd_offset(dst_mm, addr);
1092 	src_pgd = pgd_offset(src_mm, addr);
1093 	do {
1094 		next = pgd_addr_end(addr, end);
1095 		if (pgd_none_or_clear_bad(src_pgd))
1096 			continue;
1097 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1098 					    vma, addr, next))) {
1099 			ret = -ENOMEM;
1100 			break;
1101 		}
1102 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1103 
1104 	if (is_cow)
1105 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1106 	return ret;
1107 }
1108 
1109 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1110 				struct vm_area_struct *vma, pmd_t *pmd,
1111 				unsigned long addr, unsigned long end,
1112 				struct zap_details *details)
1113 {
1114 	struct mm_struct *mm = tlb->mm;
1115 	int force_flush = 0;
1116 	int rss[NR_MM_COUNTERS];
1117 	spinlock_t *ptl;
1118 	pte_t *start_pte;
1119 	pte_t *pte;
1120 	swp_entry_t entry;
1121 	struct page *pending_page = NULL;
1122 
1123 again:
1124 	init_rss_vec(rss);
1125 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1126 	pte = start_pte;
1127 	arch_enter_lazy_mmu_mode();
1128 	do {
1129 		pte_t ptent = *pte;
1130 		if (pte_none(ptent)) {
1131 			continue;
1132 		}
1133 
1134 		if (pte_present(ptent)) {
1135 			struct page *page;
1136 
1137 			page = vm_normal_page(vma, addr, ptent);
1138 			if (unlikely(details) && page) {
1139 				/*
1140 				 * unmap_shared_mapping_pages() wants to
1141 				 * invalidate cache without truncating:
1142 				 * unmap shared but keep private pages.
1143 				 */
1144 				if (details->check_mapping &&
1145 				    details->check_mapping != page_rmapping(page))
1146 					continue;
1147 			}
1148 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1149 							tlb->fullmm);
1150 			tlb_remove_tlb_entry(tlb, pte, addr);
1151 			if (unlikely(!page))
1152 				continue;
1153 
1154 			if (!PageAnon(page)) {
1155 				if (pte_dirty(ptent)) {
1156 					/*
1157 					 * oom_reaper cannot tear down dirty
1158 					 * pages
1159 					 */
1160 					if (unlikely(details && details->ignore_dirty))
1161 						continue;
1162 					force_flush = 1;
1163 					set_page_dirty(page);
1164 				}
1165 				if (pte_young(ptent) &&
1166 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1167 					mark_page_accessed(page);
1168 			}
1169 			rss[mm_counter(page)]--;
1170 			page_remove_rmap(page, false);
1171 			if (unlikely(page_mapcount(page) < 0))
1172 				print_bad_pte(vma, addr, ptent, page);
1173 			if (unlikely(__tlb_remove_page(tlb, page))) {
1174 				force_flush = 1;
1175 				pending_page = page;
1176 				addr += PAGE_SIZE;
1177 				break;
1178 			}
1179 			continue;
1180 		}
1181 		/* only check swap_entries if explicitly asked for in details */
1182 		if (unlikely(details && !details->check_swap_entries))
1183 			continue;
1184 
1185 		entry = pte_to_swp_entry(ptent);
1186 		if (!non_swap_entry(entry))
1187 			rss[MM_SWAPENTS]--;
1188 		else if (is_migration_entry(entry)) {
1189 			struct page *page;
1190 
1191 			page = migration_entry_to_page(entry);
1192 			rss[mm_counter(page)]--;
1193 		}
1194 		if (unlikely(!free_swap_and_cache(entry)))
1195 			print_bad_pte(vma, addr, ptent, NULL);
1196 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1197 	} while (pte++, addr += PAGE_SIZE, addr != end);
1198 
1199 	add_mm_rss_vec(mm, rss);
1200 	arch_leave_lazy_mmu_mode();
1201 
1202 	/* Do the actual TLB flush before dropping ptl */
1203 	if (force_flush)
1204 		tlb_flush_mmu_tlbonly(tlb);
1205 	pte_unmap_unlock(start_pte, ptl);
1206 
1207 	/*
1208 	 * If we forced a TLB flush (either due to running out of
1209 	 * batch buffers or because we needed to flush dirty TLB
1210 	 * entries before releasing the ptl), free the batched
1211 	 * memory too. Restart if we didn't do everything.
1212 	 */
1213 	if (force_flush) {
1214 		force_flush = 0;
1215 		tlb_flush_mmu_free(tlb);
1216 		if (pending_page) {
1217 			/* remove the page with new size */
1218 			__tlb_remove_pte_page(tlb, pending_page);
1219 			pending_page = NULL;
1220 		}
1221 		if (addr != end)
1222 			goto again;
1223 	}
1224 
1225 	return addr;
1226 }
1227 
1228 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1229 				struct vm_area_struct *vma, pud_t *pud,
1230 				unsigned long addr, unsigned long end,
1231 				struct zap_details *details)
1232 {
1233 	pmd_t *pmd;
1234 	unsigned long next;
1235 
1236 	pmd = pmd_offset(pud, addr);
1237 	do {
1238 		next = pmd_addr_end(addr, end);
1239 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1240 			if (next - addr != HPAGE_PMD_SIZE) {
1241 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1242 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1243 				split_huge_pmd(vma, pmd, addr);
1244 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245 				goto next;
1246 			/* fall through */
1247 		}
1248 		/*
1249 		 * Here there can be other concurrent MADV_DONTNEED or
1250 		 * trans huge page faults running, and if the pmd is
1251 		 * none or trans huge it can change under us. This is
1252 		 * because MADV_DONTNEED holds the mmap_sem in read
1253 		 * mode.
1254 		 */
1255 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 			goto next;
1257 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259 		cond_resched();
1260 	} while (pmd++, addr = next, addr != end);
1261 
1262 	return addr;
1263 }
1264 
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266 				struct vm_area_struct *vma, pgd_t *pgd,
1267 				unsigned long addr, unsigned long end,
1268 				struct zap_details *details)
1269 {
1270 	pud_t *pud;
1271 	unsigned long next;
1272 
1273 	pud = pud_offset(pgd, addr);
1274 	do {
1275 		next = pud_addr_end(addr, end);
1276 		if (pud_none_or_clear_bad(pud))
1277 			continue;
1278 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 	} while (pud++, addr = next, addr != end);
1280 
1281 	return addr;
1282 }
1283 
1284 void unmap_page_range(struct mmu_gather *tlb,
1285 			     struct vm_area_struct *vma,
1286 			     unsigned long addr, unsigned long end,
1287 			     struct zap_details *details)
1288 {
1289 	pgd_t *pgd;
1290 	unsigned long next;
1291 
1292 	BUG_ON(addr >= end);
1293 	tlb_start_vma(tlb, vma);
1294 	pgd = pgd_offset(vma->vm_mm, addr);
1295 	do {
1296 		next = pgd_addr_end(addr, end);
1297 		if (pgd_none_or_clear_bad(pgd))
1298 			continue;
1299 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1300 	} while (pgd++, addr = next, addr != end);
1301 	tlb_end_vma(tlb, vma);
1302 }
1303 
1304 
1305 static void unmap_single_vma(struct mmu_gather *tlb,
1306 		struct vm_area_struct *vma, unsigned long start_addr,
1307 		unsigned long end_addr,
1308 		struct zap_details *details)
1309 {
1310 	unsigned long start = max(vma->vm_start, start_addr);
1311 	unsigned long end;
1312 
1313 	if (start >= vma->vm_end)
1314 		return;
1315 	end = min(vma->vm_end, end_addr);
1316 	if (end <= vma->vm_start)
1317 		return;
1318 
1319 	if (vma->vm_file)
1320 		uprobe_munmap(vma, start, end);
1321 
1322 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1323 		untrack_pfn(vma, 0, 0);
1324 
1325 	if (start != end) {
1326 		if (unlikely(is_vm_hugetlb_page(vma))) {
1327 			/*
1328 			 * It is undesirable to test vma->vm_file as it
1329 			 * should be non-null for valid hugetlb area.
1330 			 * However, vm_file will be NULL in the error
1331 			 * cleanup path of mmap_region. When
1332 			 * hugetlbfs ->mmap method fails,
1333 			 * mmap_region() nullifies vma->vm_file
1334 			 * before calling this function to clean up.
1335 			 * Since no pte has actually been setup, it is
1336 			 * safe to do nothing in this case.
1337 			 */
1338 			if (vma->vm_file) {
1339 				i_mmap_lock_write(vma->vm_file->f_mapping);
1340 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1341 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1342 			}
1343 		} else
1344 			unmap_page_range(tlb, vma, start, end, details);
1345 	}
1346 }
1347 
1348 /**
1349  * unmap_vmas - unmap a range of memory covered by a list of vma's
1350  * @tlb: address of the caller's struct mmu_gather
1351  * @vma: the starting vma
1352  * @start_addr: virtual address at which to start unmapping
1353  * @end_addr: virtual address at which to end unmapping
1354  *
1355  * Unmap all pages in the vma list.
1356  *
1357  * Only addresses between `start' and `end' will be unmapped.
1358  *
1359  * The VMA list must be sorted in ascending virtual address order.
1360  *
1361  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1362  * range after unmap_vmas() returns.  So the only responsibility here is to
1363  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1364  * drops the lock and schedules.
1365  */
1366 void unmap_vmas(struct mmu_gather *tlb,
1367 		struct vm_area_struct *vma, unsigned long start_addr,
1368 		unsigned long end_addr)
1369 {
1370 	struct mm_struct *mm = vma->vm_mm;
1371 
1372 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1373 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1374 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1375 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1376 }
1377 
1378 /**
1379  * zap_page_range - remove user pages in a given range
1380  * @vma: vm_area_struct holding the applicable pages
1381  * @start: starting address of pages to zap
1382  * @size: number of bytes to zap
1383  * @details: details of shared cache invalidation
1384  *
1385  * Caller must protect the VMA list
1386  */
1387 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1388 		unsigned long size, struct zap_details *details)
1389 {
1390 	struct mm_struct *mm = vma->vm_mm;
1391 	struct mmu_gather tlb;
1392 	unsigned long end = start + size;
1393 
1394 	lru_add_drain();
1395 	tlb_gather_mmu(&tlb, mm, start, end);
1396 	update_hiwater_rss(mm);
1397 	mmu_notifier_invalidate_range_start(mm, start, end);
1398 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1399 		unmap_single_vma(&tlb, vma, start, end, details);
1400 	mmu_notifier_invalidate_range_end(mm, start, end);
1401 	tlb_finish_mmu(&tlb, start, end);
1402 }
1403 
1404 /**
1405  * zap_page_range_single - remove user pages in a given range
1406  * @vma: vm_area_struct holding the applicable pages
1407  * @address: starting address of pages to zap
1408  * @size: number of bytes to zap
1409  * @details: details of shared cache invalidation
1410  *
1411  * The range must fit into one VMA.
1412  */
1413 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1414 		unsigned long size, struct zap_details *details)
1415 {
1416 	struct mm_struct *mm = vma->vm_mm;
1417 	struct mmu_gather tlb;
1418 	unsigned long end = address + size;
1419 
1420 	lru_add_drain();
1421 	tlb_gather_mmu(&tlb, mm, address, end);
1422 	update_hiwater_rss(mm);
1423 	mmu_notifier_invalidate_range_start(mm, address, end);
1424 	unmap_single_vma(&tlb, vma, address, end, details);
1425 	mmu_notifier_invalidate_range_end(mm, address, end);
1426 	tlb_finish_mmu(&tlb, address, end);
1427 }
1428 
1429 /**
1430  * zap_vma_ptes - remove ptes mapping the vma
1431  * @vma: vm_area_struct holding ptes to be zapped
1432  * @address: starting address of pages to zap
1433  * @size: number of bytes to zap
1434  *
1435  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1436  *
1437  * The entire address range must be fully contained within the vma.
1438  *
1439  * Returns 0 if successful.
1440  */
1441 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442 		unsigned long size)
1443 {
1444 	if (address < vma->vm_start || address + size > vma->vm_end ||
1445 	    		!(vma->vm_flags & VM_PFNMAP))
1446 		return -1;
1447 	zap_page_range_single(vma, address, size, NULL);
1448 	return 0;
1449 }
1450 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1451 
1452 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1453 			spinlock_t **ptl)
1454 {
1455 	pgd_t * pgd = pgd_offset(mm, addr);
1456 	pud_t * pud = pud_alloc(mm, pgd, addr);
1457 	if (pud) {
1458 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1459 		if (pmd) {
1460 			VM_BUG_ON(pmd_trans_huge(*pmd));
1461 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1462 		}
1463 	}
1464 	return NULL;
1465 }
1466 
1467 /*
1468  * This is the old fallback for page remapping.
1469  *
1470  * For historical reasons, it only allows reserved pages. Only
1471  * old drivers should use this, and they needed to mark their
1472  * pages reserved for the old functions anyway.
1473  */
1474 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1475 			struct page *page, pgprot_t prot)
1476 {
1477 	struct mm_struct *mm = vma->vm_mm;
1478 	int retval;
1479 	pte_t *pte;
1480 	spinlock_t *ptl;
1481 
1482 	retval = -EINVAL;
1483 	if (PageAnon(page))
1484 		goto out;
1485 	retval = -ENOMEM;
1486 	flush_dcache_page(page);
1487 	pte = get_locked_pte(mm, addr, &ptl);
1488 	if (!pte)
1489 		goto out;
1490 	retval = -EBUSY;
1491 	if (!pte_none(*pte))
1492 		goto out_unlock;
1493 
1494 	/* Ok, finally just insert the thing.. */
1495 	get_page(page);
1496 	inc_mm_counter_fast(mm, mm_counter_file(page));
1497 	page_add_file_rmap(page, false);
1498 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1499 
1500 	retval = 0;
1501 	pte_unmap_unlock(pte, ptl);
1502 	return retval;
1503 out_unlock:
1504 	pte_unmap_unlock(pte, ptl);
1505 out:
1506 	return retval;
1507 }
1508 
1509 /**
1510  * vm_insert_page - insert single page into user vma
1511  * @vma: user vma to map to
1512  * @addr: target user address of this page
1513  * @page: source kernel page
1514  *
1515  * This allows drivers to insert individual pages they've allocated
1516  * into a user vma.
1517  *
1518  * The page has to be a nice clean _individual_ kernel allocation.
1519  * If you allocate a compound page, you need to have marked it as
1520  * such (__GFP_COMP), or manually just split the page up yourself
1521  * (see split_page()).
1522  *
1523  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1524  * took an arbitrary page protection parameter. This doesn't allow
1525  * that. Your vma protection will have to be set up correctly, which
1526  * means that if you want a shared writable mapping, you'd better
1527  * ask for a shared writable mapping!
1528  *
1529  * The page does not need to be reserved.
1530  *
1531  * Usually this function is called from f_op->mmap() handler
1532  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1533  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1534  * function from other places, for example from page-fault handler.
1535  */
1536 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1537 			struct page *page)
1538 {
1539 	if (addr < vma->vm_start || addr >= vma->vm_end)
1540 		return -EFAULT;
1541 	if (!page_count(page))
1542 		return -EINVAL;
1543 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1544 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1545 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1546 		vma->vm_flags |= VM_MIXEDMAP;
1547 	}
1548 	return insert_page(vma, addr, page, vma->vm_page_prot);
1549 }
1550 EXPORT_SYMBOL(vm_insert_page);
1551 
1552 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1553 			pfn_t pfn, pgprot_t prot)
1554 {
1555 	struct mm_struct *mm = vma->vm_mm;
1556 	int retval;
1557 	pte_t *pte, entry;
1558 	spinlock_t *ptl;
1559 
1560 	retval = -ENOMEM;
1561 	pte = get_locked_pte(mm, addr, &ptl);
1562 	if (!pte)
1563 		goto out;
1564 	retval = -EBUSY;
1565 	if (!pte_none(*pte))
1566 		goto out_unlock;
1567 
1568 	/* Ok, finally just insert the thing.. */
1569 	if (pfn_t_devmap(pfn))
1570 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1571 	else
1572 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1573 	set_pte_at(mm, addr, pte, entry);
1574 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575 
1576 	retval = 0;
1577 out_unlock:
1578 	pte_unmap_unlock(pte, ptl);
1579 out:
1580 	return retval;
1581 }
1582 
1583 /**
1584  * vm_insert_pfn - insert single pfn into user vma
1585  * @vma: user vma to map to
1586  * @addr: target user address of this page
1587  * @pfn: source kernel pfn
1588  *
1589  * Similar to vm_insert_page, this allows drivers to insert individual pages
1590  * they've allocated into a user vma. Same comments apply.
1591  *
1592  * This function should only be called from a vm_ops->fault handler, and
1593  * in that case the handler should return NULL.
1594  *
1595  * vma cannot be a COW mapping.
1596  *
1597  * As this is called only for pages that do not currently exist, we
1598  * do not need to flush old virtual caches or the TLB.
1599  */
1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601 			unsigned long pfn)
1602 {
1603 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1604 }
1605 EXPORT_SYMBOL(vm_insert_pfn);
1606 
1607 /**
1608  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1609  * @vma: user vma to map to
1610  * @addr: target user address of this page
1611  * @pfn: source kernel pfn
1612  * @pgprot: pgprot flags for the inserted page
1613  *
1614  * This is exactly like vm_insert_pfn, except that it allows drivers to
1615  * to override pgprot on a per-page basis.
1616  *
1617  * This only makes sense for IO mappings, and it makes no sense for
1618  * cow mappings.  In general, using multiple vmas is preferable;
1619  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1620  * impractical.
1621  */
1622 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1623 			unsigned long pfn, pgprot_t pgprot)
1624 {
1625 	int ret;
1626 	/*
1627 	 * Technically, architectures with pte_special can avoid all these
1628 	 * restrictions (same for remap_pfn_range).  However we would like
1629 	 * consistency in testing and feature parity among all, so we should
1630 	 * try to keep these invariants in place for everybody.
1631 	 */
1632 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1633 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1634 						(VM_PFNMAP|VM_MIXEDMAP));
1635 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1636 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1637 
1638 	if (addr < vma->vm_start || addr >= vma->vm_end)
1639 		return -EFAULT;
1640 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1641 		return -EINVAL;
1642 
1643 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1644 
1645 	return ret;
1646 }
1647 EXPORT_SYMBOL(vm_insert_pfn_prot);
1648 
1649 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1650 			pfn_t pfn)
1651 {
1652 	pgprot_t pgprot = vma->vm_page_prot;
1653 
1654 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1655 
1656 	if (addr < vma->vm_start || addr >= vma->vm_end)
1657 		return -EFAULT;
1658 	if (track_pfn_insert(vma, &pgprot, pfn))
1659 		return -EINVAL;
1660 
1661 	/*
1662 	 * If we don't have pte special, then we have to use the pfn_valid()
1663 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1664 	 * refcount the page if pfn_valid is true (hence insert_page rather
1665 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1666 	 * without pte special, it would there be refcounted as a normal page.
1667 	 */
1668 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1669 		struct page *page;
1670 
1671 		/*
1672 		 * At this point we are committed to insert_page()
1673 		 * regardless of whether the caller specified flags that
1674 		 * result in pfn_t_has_page() == false.
1675 		 */
1676 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1677 		return insert_page(vma, addr, page, pgprot);
1678 	}
1679 	return insert_pfn(vma, addr, pfn, pgprot);
1680 }
1681 EXPORT_SYMBOL(vm_insert_mixed);
1682 
1683 /*
1684  * maps a range of physical memory into the requested pages. the old
1685  * mappings are removed. any references to nonexistent pages results
1686  * in null mappings (currently treated as "copy-on-access")
1687  */
1688 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1689 			unsigned long addr, unsigned long end,
1690 			unsigned long pfn, pgprot_t prot)
1691 {
1692 	pte_t *pte;
1693 	spinlock_t *ptl;
1694 
1695 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1696 	if (!pte)
1697 		return -ENOMEM;
1698 	arch_enter_lazy_mmu_mode();
1699 	do {
1700 		BUG_ON(!pte_none(*pte));
1701 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1702 		pfn++;
1703 	} while (pte++, addr += PAGE_SIZE, addr != end);
1704 	arch_leave_lazy_mmu_mode();
1705 	pte_unmap_unlock(pte - 1, ptl);
1706 	return 0;
1707 }
1708 
1709 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1710 			unsigned long addr, unsigned long end,
1711 			unsigned long pfn, pgprot_t prot)
1712 {
1713 	pmd_t *pmd;
1714 	unsigned long next;
1715 
1716 	pfn -= addr >> PAGE_SHIFT;
1717 	pmd = pmd_alloc(mm, pud, addr);
1718 	if (!pmd)
1719 		return -ENOMEM;
1720 	VM_BUG_ON(pmd_trans_huge(*pmd));
1721 	do {
1722 		next = pmd_addr_end(addr, end);
1723 		if (remap_pte_range(mm, pmd, addr, next,
1724 				pfn + (addr >> PAGE_SHIFT), prot))
1725 			return -ENOMEM;
1726 	} while (pmd++, addr = next, addr != end);
1727 	return 0;
1728 }
1729 
1730 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1731 			unsigned long addr, unsigned long end,
1732 			unsigned long pfn, pgprot_t prot)
1733 {
1734 	pud_t *pud;
1735 	unsigned long next;
1736 
1737 	pfn -= addr >> PAGE_SHIFT;
1738 	pud = pud_alloc(mm, pgd, addr);
1739 	if (!pud)
1740 		return -ENOMEM;
1741 	do {
1742 		next = pud_addr_end(addr, end);
1743 		if (remap_pmd_range(mm, pud, addr, next,
1744 				pfn + (addr >> PAGE_SHIFT), prot))
1745 			return -ENOMEM;
1746 	} while (pud++, addr = next, addr != end);
1747 	return 0;
1748 }
1749 
1750 /**
1751  * remap_pfn_range - remap kernel memory to userspace
1752  * @vma: user vma to map to
1753  * @addr: target user address to start at
1754  * @pfn: physical address of kernel memory
1755  * @size: size of map area
1756  * @prot: page protection flags for this mapping
1757  *
1758  *  Note: this is only safe if the mm semaphore is held when called.
1759  */
1760 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1761 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1762 {
1763 	pgd_t *pgd;
1764 	unsigned long next;
1765 	unsigned long end = addr + PAGE_ALIGN(size);
1766 	struct mm_struct *mm = vma->vm_mm;
1767 	unsigned long remap_pfn = pfn;
1768 	int err;
1769 
1770 	/*
1771 	 * Physically remapped pages are special. Tell the
1772 	 * rest of the world about it:
1773 	 *   VM_IO tells people not to look at these pages
1774 	 *	(accesses can have side effects).
1775 	 *   VM_PFNMAP tells the core MM that the base pages are just
1776 	 *	raw PFN mappings, and do not have a "struct page" associated
1777 	 *	with them.
1778 	 *   VM_DONTEXPAND
1779 	 *      Disable vma merging and expanding with mremap().
1780 	 *   VM_DONTDUMP
1781 	 *      Omit vma from core dump, even when VM_IO turned off.
1782 	 *
1783 	 * There's a horrible special case to handle copy-on-write
1784 	 * behaviour that some programs depend on. We mark the "original"
1785 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1786 	 * See vm_normal_page() for details.
1787 	 */
1788 	if (is_cow_mapping(vma->vm_flags)) {
1789 		if (addr != vma->vm_start || end != vma->vm_end)
1790 			return -EINVAL;
1791 		vma->vm_pgoff = pfn;
1792 	}
1793 
1794 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1795 	if (err)
1796 		return -EINVAL;
1797 
1798 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1799 
1800 	BUG_ON(addr >= end);
1801 	pfn -= addr >> PAGE_SHIFT;
1802 	pgd = pgd_offset(mm, addr);
1803 	flush_cache_range(vma, addr, end);
1804 	do {
1805 		next = pgd_addr_end(addr, end);
1806 		err = remap_pud_range(mm, pgd, addr, next,
1807 				pfn + (addr >> PAGE_SHIFT), prot);
1808 		if (err)
1809 			break;
1810 	} while (pgd++, addr = next, addr != end);
1811 
1812 	if (err)
1813 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1814 
1815 	return err;
1816 }
1817 EXPORT_SYMBOL(remap_pfn_range);
1818 
1819 /**
1820  * vm_iomap_memory - remap memory to userspace
1821  * @vma: user vma to map to
1822  * @start: start of area
1823  * @len: size of area
1824  *
1825  * This is a simplified io_remap_pfn_range() for common driver use. The
1826  * driver just needs to give us the physical memory range to be mapped,
1827  * we'll figure out the rest from the vma information.
1828  *
1829  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1830  * whatever write-combining details or similar.
1831  */
1832 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1833 {
1834 	unsigned long vm_len, pfn, pages;
1835 
1836 	/* Check that the physical memory area passed in looks valid */
1837 	if (start + len < start)
1838 		return -EINVAL;
1839 	/*
1840 	 * You *really* shouldn't map things that aren't page-aligned,
1841 	 * but we've historically allowed it because IO memory might
1842 	 * just have smaller alignment.
1843 	 */
1844 	len += start & ~PAGE_MASK;
1845 	pfn = start >> PAGE_SHIFT;
1846 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1847 	if (pfn + pages < pfn)
1848 		return -EINVAL;
1849 
1850 	/* We start the mapping 'vm_pgoff' pages into the area */
1851 	if (vma->vm_pgoff > pages)
1852 		return -EINVAL;
1853 	pfn += vma->vm_pgoff;
1854 	pages -= vma->vm_pgoff;
1855 
1856 	/* Can we fit all of the mapping? */
1857 	vm_len = vma->vm_end - vma->vm_start;
1858 	if (vm_len >> PAGE_SHIFT > pages)
1859 		return -EINVAL;
1860 
1861 	/* Ok, let it rip */
1862 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1863 }
1864 EXPORT_SYMBOL(vm_iomap_memory);
1865 
1866 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1867 				     unsigned long addr, unsigned long end,
1868 				     pte_fn_t fn, void *data)
1869 {
1870 	pte_t *pte;
1871 	int err;
1872 	pgtable_t token;
1873 	spinlock_t *uninitialized_var(ptl);
1874 
1875 	pte = (mm == &init_mm) ?
1876 		pte_alloc_kernel(pmd, addr) :
1877 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1878 	if (!pte)
1879 		return -ENOMEM;
1880 
1881 	BUG_ON(pmd_huge(*pmd));
1882 
1883 	arch_enter_lazy_mmu_mode();
1884 
1885 	token = pmd_pgtable(*pmd);
1886 
1887 	do {
1888 		err = fn(pte++, token, addr, data);
1889 		if (err)
1890 			break;
1891 	} while (addr += PAGE_SIZE, addr != end);
1892 
1893 	arch_leave_lazy_mmu_mode();
1894 
1895 	if (mm != &init_mm)
1896 		pte_unmap_unlock(pte-1, ptl);
1897 	return err;
1898 }
1899 
1900 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1901 				     unsigned long addr, unsigned long end,
1902 				     pte_fn_t fn, void *data)
1903 {
1904 	pmd_t *pmd;
1905 	unsigned long next;
1906 	int err;
1907 
1908 	BUG_ON(pud_huge(*pud));
1909 
1910 	pmd = pmd_alloc(mm, pud, addr);
1911 	if (!pmd)
1912 		return -ENOMEM;
1913 	do {
1914 		next = pmd_addr_end(addr, end);
1915 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1916 		if (err)
1917 			break;
1918 	} while (pmd++, addr = next, addr != end);
1919 	return err;
1920 }
1921 
1922 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1923 				     unsigned long addr, unsigned long end,
1924 				     pte_fn_t fn, void *data)
1925 {
1926 	pud_t *pud;
1927 	unsigned long next;
1928 	int err;
1929 
1930 	pud = pud_alloc(mm, pgd, addr);
1931 	if (!pud)
1932 		return -ENOMEM;
1933 	do {
1934 		next = pud_addr_end(addr, end);
1935 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1936 		if (err)
1937 			break;
1938 	} while (pud++, addr = next, addr != end);
1939 	return err;
1940 }
1941 
1942 /*
1943  * Scan a region of virtual memory, filling in page tables as necessary
1944  * and calling a provided function on each leaf page table.
1945  */
1946 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1947 			unsigned long size, pte_fn_t fn, void *data)
1948 {
1949 	pgd_t *pgd;
1950 	unsigned long next;
1951 	unsigned long end = addr + size;
1952 	int err;
1953 
1954 	if (WARN_ON(addr >= end))
1955 		return -EINVAL;
1956 
1957 	pgd = pgd_offset(mm, addr);
1958 	do {
1959 		next = pgd_addr_end(addr, end);
1960 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1961 		if (err)
1962 			break;
1963 	} while (pgd++, addr = next, addr != end);
1964 
1965 	return err;
1966 }
1967 EXPORT_SYMBOL_GPL(apply_to_page_range);
1968 
1969 /*
1970  * handle_pte_fault chooses page fault handler according to an entry which was
1971  * read non-atomically.  Before making any commitment, on those architectures
1972  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1973  * parts, do_swap_page must check under lock before unmapping the pte and
1974  * proceeding (but do_wp_page is only called after already making such a check;
1975  * and do_anonymous_page can safely check later on).
1976  */
1977 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1978 				pte_t *page_table, pte_t orig_pte)
1979 {
1980 	int same = 1;
1981 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1982 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1983 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1984 		spin_lock(ptl);
1985 		same = pte_same(*page_table, orig_pte);
1986 		spin_unlock(ptl);
1987 	}
1988 #endif
1989 	pte_unmap(page_table);
1990 	return same;
1991 }
1992 
1993 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1994 {
1995 	debug_dma_assert_idle(src);
1996 
1997 	/*
1998 	 * If the source page was a PFN mapping, we don't have
1999 	 * a "struct page" for it. We do a best-effort copy by
2000 	 * just copying from the original user address. If that
2001 	 * fails, we just zero-fill it. Live with it.
2002 	 */
2003 	if (unlikely(!src)) {
2004 		void *kaddr = kmap_atomic(dst);
2005 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2006 
2007 		/*
2008 		 * This really shouldn't fail, because the page is there
2009 		 * in the page tables. But it might just be unreadable,
2010 		 * in which case we just give up and fill the result with
2011 		 * zeroes.
2012 		 */
2013 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2014 			clear_page(kaddr);
2015 		kunmap_atomic(kaddr);
2016 		flush_dcache_page(dst);
2017 	} else
2018 		copy_user_highpage(dst, src, va, vma);
2019 }
2020 
2021 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2022 {
2023 	struct file *vm_file = vma->vm_file;
2024 
2025 	if (vm_file)
2026 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2027 
2028 	/*
2029 	 * Special mappings (e.g. VDSO) do not have any file so fake
2030 	 * a default GFP_KERNEL for them.
2031 	 */
2032 	return GFP_KERNEL;
2033 }
2034 
2035 /*
2036  * Notify the address space that the page is about to become writable so that
2037  * it can prohibit this or wait for the page to get into an appropriate state.
2038  *
2039  * We do this without the lock held, so that it can sleep if it needs to.
2040  */
2041 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2042 	       unsigned long address)
2043 {
2044 	struct vm_fault vmf;
2045 	int ret;
2046 
2047 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2048 	vmf.pgoff = page->index;
2049 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2050 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2051 	vmf.page = page;
2052 	vmf.cow_page = NULL;
2053 
2054 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2055 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2056 		return ret;
2057 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2058 		lock_page(page);
2059 		if (!page->mapping) {
2060 			unlock_page(page);
2061 			return 0; /* retry */
2062 		}
2063 		ret |= VM_FAULT_LOCKED;
2064 	} else
2065 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Handle write page faults for pages that can be reused in the current vma
2071  *
2072  * This can happen either due to the mapping being with the VM_SHARED flag,
2073  * or due to us being the last reference standing to the page. In either
2074  * case, all we need to do here is to mark the page as writable and update
2075  * any related book-keeping.
2076  */
2077 static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2078 			struct page *page, int page_mkwrite, int dirty_shared)
2079 	__releases(fe->ptl)
2080 {
2081 	struct vm_area_struct *vma = fe->vma;
2082 	pte_t entry;
2083 	/*
2084 	 * Clear the pages cpupid information as the existing
2085 	 * information potentially belongs to a now completely
2086 	 * unrelated process.
2087 	 */
2088 	if (page)
2089 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2090 
2091 	flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2092 	entry = pte_mkyoung(orig_pte);
2093 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2094 	if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2095 		update_mmu_cache(vma, fe->address, fe->pte);
2096 	pte_unmap_unlock(fe->pte, fe->ptl);
2097 
2098 	if (dirty_shared) {
2099 		struct address_space *mapping;
2100 		int dirtied;
2101 
2102 		if (!page_mkwrite)
2103 			lock_page(page);
2104 
2105 		dirtied = set_page_dirty(page);
2106 		VM_BUG_ON_PAGE(PageAnon(page), page);
2107 		mapping = page->mapping;
2108 		unlock_page(page);
2109 		put_page(page);
2110 
2111 		if ((dirtied || page_mkwrite) && mapping) {
2112 			/*
2113 			 * Some device drivers do not set page.mapping
2114 			 * but still dirty their pages
2115 			 */
2116 			balance_dirty_pages_ratelimited(mapping);
2117 		}
2118 
2119 		if (!page_mkwrite)
2120 			file_update_time(vma->vm_file);
2121 	}
2122 
2123 	return VM_FAULT_WRITE;
2124 }
2125 
2126 /*
2127  * Handle the case of a page which we actually need to copy to a new page.
2128  *
2129  * Called with mmap_sem locked and the old page referenced, but
2130  * without the ptl held.
2131  *
2132  * High level logic flow:
2133  *
2134  * - Allocate a page, copy the content of the old page to the new one.
2135  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2136  * - Take the PTL. If the pte changed, bail out and release the allocated page
2137  * - If the pte is still the way we remember it, update the page table and all
2138  *   relevant references. This includes dropping the reference the page-table
2139  *   held to the old page, as well as updating the rmap.
2140  * - In any case, unlock the PTL and drop the reference we took to the old page.
2141  */
2142 static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2143 		struct page *old_page)
2144 {
2145 	struct vm_area_struct *vma = fe->vma;
2146 	struct mm_struct *mm = vma->vm_mm;
2147 	struct page *new_page = NULL;
2148 	pte_t entry;
2149 	int page_copied = 0;
2150 	const unsigned long mmun_start = fe->address & PAGE_MASK;
2151 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2152 	struct mem_cgroup *memcg;
2153 
2154 	if (unlikely(anon_vma_prepare(vma)))
2155 		goto oom;
2156 
2157 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2158 		new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2159 		if (!new_page)
2160 			goto oom;
2161 	} else {
2162 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2163 				fe->address);
2164 		if (!new_page)
2165 			goto oom;
2166 		cow_user_page(new_page, old_page, fe->address, vma);
2167 	}
2168 
2169 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2170 		goto oom_free_new;
2171 
2172 	__SetPageUptodate(new_page);
2173 
2174 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2175 
2176 	/*
2177 	 * Re-check the pte - we dropped the lock
2178 	 */
2179 	fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2180 	if (likely(pte_same(*fe->pte, orig_pte))) {
2181 		if (old_page) {
2182 			if (!PageAnon(old_page)) {
2183 				dec_mm_counter_fast(mm,
2184 						mm_counter_file(old_page));
2185 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2186 			}
2187 		} else {
2188 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2189 		}
2190 		flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2191 		entry = mk_pte(new_page, vma->vm_page_prot);
2192 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2193 		/*
2194 		 * Clear the pte entry and flush it first, before updating the
2195 		 * pte with the new entry. This will avoid a race condition
2196 		 * seen in the presence of one thread doing SMC and another
2197 		 * thread doing COW.
2198 		 */
2199 		ptep_clear_flush_notify(vma, fe->address, fe->pte);
2200 		page_add_new_anon_rmap(new_page, vma, fe->address, false);
2201 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2202 		lru_cache_add_active_or_unevictable(new_page, vma);
2203 		/*
2204 		 * We call the notify macro here because, when using secondary
2205 		 * mmu page tables (such as kvm shadow page tables), we want the
2206 		 * new page to be mapped directly into the secondary page table.
2207 		 */
2208 		set_pte_at_notify(mm, fe->address, fe->pte, entry);
2209 		update_mmu_cache(vma, fe->address, fe->pte);
2210 		if (old_page) {
2211 			/*
2212 			 * Only after switching the pte to the new page may
2213 			 * we remove the mapcount here. Otherwise another
2214 			 * process may come and find the rmap count decremented
2215 			 * before the pte is switched to the new page, and
2216 			 * "reuse" the old page writing into it while our pte
2217 			 * here still points into it and can be read by other
2218 			 * threads.
2219 			 *
2220 			 * The critical issue is to order this
2221 			 * page_remove_rmap with the ptp_clear_flush above.
2222 			 * Those stores are ordered by (if nothing else,)
2223 			 * the barrier present in the atomic_add_negative
2224 			 * in page_remove_rmap.
2225 			 *
2226 			 * Then the TLB flush in ptep_clear_flush ensures that
2227 			 * no process can access the old page before the
2228 			 * decremented mapcount is visible. And the old page
2229 			 * cannot be reused until after the decremented
2230 			 * mapcount is visible. So transitively, TLBs to
2231 			 * old page will be flushed before it can be reused.
2232 			 */
2233 			page_remove_rmap(old_page, false);
2234 		}
2235 
2236 		/* Free the old page.. */
2237 		new_page = old_page;
2238 		page_copied = 1;
2239 	} else {
2240 		mem_cgroup_cancel_charge(new_page, memcg, false);
2241 	}
2242 
2243 	if (new_page)
2244 		put_page(new_page);
2245 
2246 	pte_unmap_unlock(fe->pte, fe->ptl);
2247 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2248 	if (old_page) {
2249 		/*
2250 		 * Don't let another task, with possibly unlocked vma,
2251 		 * keep the mlocked page.
2252 		 */
2253 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2254 			lock_page(old_page);	/* LRU manipulation */
2255 			if (PageMlocked(old_page))
2256 				munlock_vma_page(old_page);
2257 			unlock_page(old_page);
2258 		}
2259 		put_page(old_page);
2260 	}
2261 	return page_copied ? VM_FAULT_WRITE : 0;
2262 oom_free_new:
2263 	put_page(new_page);
2264 oom:
2265 	if (old_page)
2266 		put_page(old_page);
2267 	return VM_FAULT_OOM;
2268 }
2269 
2270 /*
2271  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2272  * mapping
2273  */
2274 static int wp_pfn_shared(struct fault_env *fe,  pte_t orig_pte)
2275 {
2276 	struct vm_area_struct *vma = fe->vma;
2277 
2278 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2279 		struct vm_fault vmf = {
2280 			.page = NULL,
2281 			.pgoff = linear_page_index(vma, fe->address),
2282 			.virtual_address =
2283 				(void __user *)(fe->address & PAGE_MASK),
2284 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2285 		};
2286 		int ret;
2287 
2288 		pte_unmap_unlock(fe->pte, fe->ptl);
2289 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2290 		if (ret & VM_FAULT_ERROR)
2291 			return ret;
2292 		fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2293 				&fe->ptl);
2294 		/*
2295 		 * We might have raced with another page fault while we
2296 		 * released the pte_offset_map_lock.
2297 		 */
2298 		if (!pte_same(*fe->pte, orig_pte)) {
2299 			pte_unmap_unlock(fe->pte, fe->ptl);
2300 			return 0;
2301 		}
2302 	}
2303 	return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
2304 }
2305 
2306 static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2307 		struct page *old_page)
2308 	__releases(fe->ptl)
2309 {
2310 	struct vm_area_struct *vma = fe->vma;
2311 	int page_mkwrite = 0;
2312 
2313 	get_page(old_page);
2314 
2315 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2316 		int tmp;
2317 
2318 		pte_unmap_unlock(fe->pte, fe->ptl);
2319 		tmp = do_page_mkwrite(vma, old_page, fe->address);
2320 		if (unlikely(!tmp || (tmp &
2321 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2322 			put_page(old_page);
2323 			return tmp;
2324 		}
2325 		/*
2326 		 * Since we dropped the lock we need to revalidate
2327 		 * the PTE as someone else may have changed it.  If
2328 		 * they did, we just return, as we can count on the
2329 		 * MMU to tell us if they didn't also make it writable.
2330 		 */
2331 		fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2332 						 &fe->ptl);
2333 		if (!pte_same(*fe->pte, orig_pte)) {
2334 			unlock_page(old_page);
2335 			pte_unmap_unlock(fe->pte, fe->ptl);
2336 			put_page(old_page);
2337 			return 0;
2338 		}
2339 		page_mkwrite = 1;
2340 	}
2341 
2342 	return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
2343 }
2344 
2345 /*
2346  * This routine handles present pages, when users try to write
2347  * to a shared page. It is done by copying the page to a new address
2348  * and decrementing the shared-page counter for the old page.
2349  *
2350  * Note that this routine assumes that the protection checks have been
2351  * done by the caller (the low-level page fault routine in most cases).
2352  * Thus we can safely just mark it writable once we've done any necessary
2353  * COW.
2354  *
2355  * We also mark the page dirty at this point even though the page will
2356  * change only once the write actually happens. This avoids a few races,
2357  * and potentially makes it more efficient.
2358  *
2359  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2360  * but allow concurrent faults), with pte both mapped and locked.
2361  * We return with mmap_sem still held, but pte unmapped and unlocked.
2362  */
2363 static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2364 	__releases(fe->ptl)
2365 {
2366 	struct vm_area_struct *vma = fe->vma;
2367 	struct page *old_page;
2368 
2369 	old_page = vm_normal_page(vma, fe->address, orig_pte);
2370 	if (!old_page) {
2371 		/*
2372 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2373 		 * VM_PFNMAP VMA.
2374 		 *
2375 		 * We should not cow pages in a shared writeable mapping.
2376 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2377 		 */
2378 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2379 				     (VM_WRITE|VM_SHARED))
2380 			return wp_pfn_shared(fe, orig_pte);
2381 
2382 		pte_unmap_unlock(fe->pte, fe->ptl);
2383 		return wp_page_copy(fe, orig_pte, old_page);
2384 	}
2385 
2386 	/*
2387 	 * Take out anonymous pages first, anonymous shared vmas are
2388 	 * not dirty accountable.
2389 	 */
2390 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2391 		int total_mapcount;
2392 		if (!trylock_page(old_page)) {
2393 			get_page(old_page);
2394 			pte_unmap_unlock(fe->pte, fe->ptl);
2395 			lock_page(old_page);
2396 			fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2397 					fe->address, &fe->ptl);
2398 			if (!pte_same(*fe->pte, orig_pte)) {
2399 				unlock_page(old_page);
2400 				pte_unmap_unlock(fe->pte, fe->ptl);
2401 				put_page(old_page);
2402 				return 0;
2403 			}
2404 			put_page(old_page);
2405 		}
2406 		if (reuse_swap_page(old_page, &total_mapcount)) {
2407 			if (total_mapcount == 1) {
2408 				/*
2409 				 * The page is all ours. Move it to
2410 				 * our anon_vma so the rmap code will
2411 				 * not search our parent or siblings.
2412 				 * Protected against the rmap code by
2413 				 * the page lock.
2414 				 */
2415 				page_move_anon_rmap(old_page, vma);
2416 			}
2417 			unlock_page(old_page);
2418 			return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
2419 		}
2420 		unlock_page(old_page);
2421 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2422 					(VM_WRITE|VM_SHARED))) {
2423 		return wp_page_shared(fe, orig_pte, old_page);
2424 	}
2425 
2426 	/*
2427 	 * Ok, we need to copy. Oh, well..
2428 	 */
2429 	get_page(old_page);
2430 
2431 	pte_unmap_unlock(fe->pte, fe->ptl);
2432 	return wp_page_copy(fe, orig_pte, old_page);
2433 }
2434 
2435 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2436 		unsigned long start_addr, unsigned long end_addr,
2437 		struct zap_details *details)
2438 {
2439 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2440 }
2441 
2442 static inline void unmap_mapping_range_tree(struct rb_root *root,
2443 					    struct zap_details *details)
2444 {
2445 	struct vm_area_struct *vma;
2446 	pgoff_t vba, vea, zba, zea;
2447 
2448 	vma_interval_tree_foreach(vma, root,
2449 			details->first_index, details->last_index) {
2450 
2451 		vba = vma->vm_pgoff;
2452 		vea = vba + vma_pages(vma) - 1;
2453 		zba = details->first_index;
2454 		if (zba < vba)
2455 			zba = vba;
2456 		zea = details->last_index;
2457 		if (zea > vea)
2458 			zea = vea;
2459 
2460 		unmap_mapping_range_vma(vma,
2461 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2462 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2463 				details);
2464 	}
2465 }
2466 
2467 /**
2468  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2469  * address_space corresponding to the specified page range in the underlying
2470  * file.
2471  *
2472  * @mapping: the address space containing mmaps to be unmapped.
2473  * @holebegin: byte in first page to unmap, relative to the start of
2474  * the underlying file.  This will be rounded down to a PAGE_SIZE
2475  * boundary.  Note that this is different from truncate_pagecache(), which
2476  * must keep the partial page.  In contrast, we must get rid of
2477  * partial pages.
2478  * @holelen: size of prospective hole in bytes.  This will be rounded
2479  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2480  * end of the file.
2481  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2482  * but 0 when invalidating pagecache, don't throw away private data.
2483  */
2484 void unmap_mapping_range(struct address_space *mapping,
2485 		loff_t const holebegin, loff_t const holelen, int even_cows)
2486 {
2487 	struct zap_details details = { };
2488 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2489 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2490 
2491 	/* Check for overflow. */
2492 	if (sizeof(holelen) > sizeof(hlen)) {
2493 		long long holeend =
2494 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2495 		if (holeend & ~(long long)ULONG_MAX)
2496 			hlen = ULONG_MAX - hba + 1;
2497 	}
2498 
2499 	details.check_mapping = even_cows? NULL: mapping;
2500 	details.first_index = hba;
2501 	details.last_index = hba + hlen - 1;
2502 	if (details.last_index < details.first_index)
2503 		details.last_index = ULONG_MAX;
2504 
2505 	i_mmap_lock_write(mapping);
2506 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2507 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2508 	i_mmap_unlock_write(mapping);
2509 }
2510 EXPORT_SYMBOL(unmap_mapping_range);
2511 
2512 /*
2513  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2514  * but allow concurrent faults), and pte mapped but not yet locked.
2515  * We return with pte unmapped and unlocked.
2516  *
2517  * We return with the mmap_sem locked or unlocked in the same cases
2518  * as does filemap_fault().
2519  */
2520 int do_swap_page(struct fault_env *fe, pte_t orig_pte)
2521 {
2522 	struct vm_area_struct *vma = fe->vma;
2523 	struct page *page, *swapcache;
2524 	struct mem_cgroup *memcg;
2525 	swp_entry_t entry;
2526 	pte_t pte;
2527 	int locked;
2528 	int exclusive = 0;
2529 	int ret = 0;
2530 
2531 	if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
2532 		goto out;
2533 
2534 	entry = pte_to_swp_entry(orig_pte);
2535 	if (unlikely(non_swap_entry(entry))) {
2536 		if (is_migration_entry(entry)) {
2537 			migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
2538 		} else if (is_hwpoison_entry(entry)) {
2539 			ret = VM_FAULT_HWPOISON;
2540 		} else {
2541 			print_bad_pte(vma, fe->address, orig_pte, NULL);
2542 			ret = VM_FAULT_SIGBUS;
2543 		}
2544 		goto out;
2545 	}
2546 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2547 	page = lookup_swap_cache(entry);
2548 	if (!page) {
2549 		page = swapin_readahead(entry,
2550 					GFP_HIGHUSER_MOVABLE, vma, fe->address);
2551 		if (!page) {
2552 			/*
2553 			 * Back out if somebody else faulted in this pte
2554 			 * while we released the pte lock.
2555 			 */
2556 			fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2557 					fe->address, &fe->ptl);
2558 			if (likely(pte_same(*fe->pte, orig_pte)))
2559 				ret = VM_FAULT_OOM;
2560 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2561 			goto unlock;
2562 		}
2563 
2564 		/* Had to read the page from swap area: Major fault */
2565 		ret = VM_FAULT_MAJOR;
2566 		count_vm_event(PGMAJFAULT);
2567 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2568 	} else if (PageHWPoison(page)) {
2569 		/*
2570 		 * hwpoisoned dirty swapcache pages are kept for killing
2571 		 * owner processes (which may be unknown at hwpoison time)
2572 		 */
2573 		ret = VM_FAULT_HWPOISON;
2574 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 		swapcache = page;
2576 		goto out_release;
2577 	}
2578 
2579 	swapcache = page;
2580 	locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
2581 
2582 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2583 	if (!locked) {
2584 		ret |= VM_FAULT_RETRY;
2585 		goto out_release;
2586 	}
2587 
2588 	/*
2589 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2590 	 * release the swapcache from under us.  The page pin, and pte_same
2591 	 * test below, are not enough to exclude that.  Even if it is still
2592 	 * swapcache, we need to check that the page's swap has not changed.
2593 	 */
2594 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2595 		goto out_page;
2596 
2597 	page = ksm_might_need_to_copy(page, vma, fe->address);
2598 	if (unlikely(!page)) {
2599 		ret = VM_FAULT_OOM;
2600 		page = swapcache;
2601 		goto out_page;
2602 	}
2603 
2604 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2605 				&memcg, false)) {
2606 		ret = VM_FAULT_OOM;
2607 		goto out_page;
2608 	}
2609 
2610 	/*
2611 	 * Back out if somebody else already faulted in this pte.
2612 	 */
2613 	fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2614 			&fe->ptl);
2615 	if (unlikely(!pte_same(*fe->pte, orig_pte)))
2616 		goto out_nomap;
2617 
2618 	if (unlikely(!PageUptodate(page))) {
2619 		ret = VM_FAULT_SIGBUS;
2620 		goto out_nomap;
2621 	}
2622 
2623 	/*
2624 	 * The page isn't present yet, go ahead with the fault.
2625 	 *
2626 	 * Be careful about the sequence of operations here.
2627 	 * To get its accounting right, reuse_swap_page() must be called
2628 	 * while the page is counted on swap but not yet in mapcount i.e.
2629 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2630 	 * must be called after the swap_free(), or it will never succeed.
2631 	 */
2632 
2633 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2634 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2635 	pte = mk_pte(page, vma->vm_page_prot);
2636 	if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2637 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2638 		fe->flags &= ~FAULT_FLAG_WRITE;
2639 		ret |= VM_FAULT_WRITE;
2640 		exclusive = RMAP_EXCLUSIVE;
2641 	}
2642 	flush_icache_page(vma, page);
2643 	if (pte_swp_soft_dirty(orig_pte))
2644 		pte = pte_mksoft_dirty(pte);
2645 	set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
2646 	if (page == swapcache) {
2647 		do_page_add_anon_rmap(page, vma, fe->address, exclusive);
2648 		mem_cgroup_commit_charge(page, memcg, true, false);
2649 		activate_page(page);
2650 	} else { /* ksm created a completely new copy */
2651 		page_add_new_anon_rmap(page, vma, fe->address, false);
2652 		mem_cgroup_commit_charge(page, memcg, false, false);
2653 		lru_cache_add_active_or_unevictable(page, vma);
2654 	}
2655 
2656 	swap_free(entry);
2657 	if (mem_cgroup_swap_full(page) ||
2658 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2659 		try_to_free_swap(page);
2660 	unlock_page(page);
2661 	if (page != swapcache) {
2662 		/*
2663 		 * Hold the lock to avoid the swap entry to be reused
2664 		 * until we take the PT lock for the pte_same() check
2665 		 * (to avoid false positives from pte_same). For
2666 		 * further safety release the lock after the swap_free
2667 		 * so that the swap count won't change under a
2668 		 * parallel locked swapcache.
2669 		 */
2670 		unlock_page(swapcache);
2671 		put_page(swapcache);
2672 	}
2673 
2674 	if (fe->flags & FAULT_FLAG_WRITE) {
2675 		ret |= do_wp_page(fe, pte);
2676 		if (ret & VM_FAULT_ERROR)
2677 			ret &= VM_FAULT_ERROR;
2678 		goto out;
2679 	}
2680 
2681 	/* No need to invalidate - it was non-present before */
2682 	update_mmu_cache(vma, fe->address, fe->pte);
2683 unlock:
2684 	pte_unmap_unlock(fe->pte, fe->ptl);
2685 out:
2686 	return ret;
2687 out_nomap:
2688 	mem_cgroup_cancel_charge(page, memcg, false);
2689 	pte_unmap_unlock(fe->pte, fe->ptl);
2690 out_page:
2691 	unlock_page(page);
2692 out_release:
2693 	put_page(page);
2694 	if (page != swapcache) {
2695 		unlock_page(swapcache);
2696 		put_page(swapcache);
2697 	}
2698 	return ret;
2699 }
2700 
2701 /*
2702  * This is like a special single-page "expand_{down|up}wards()",
2703  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2704  * doesn't hit another vma.
2705  */
2706 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2707 {
2708 	address &= PAGE_MASK;
2709 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2710 		struct vm_area_struct *prev = vma->vm_prev;
2711 
2712 		/*
2713 		 * Is there a mapping abutting this one below?
2714 		 *
2715 		 * That's only ok if it's the same stack mapping
2716 		 * that has gotten split..
2717 		 */
2718 		if (prev && prev->vm_end == address)
2719 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2720 
2721 		return expand_downwards(vma, address - PAGE_SIZE);
2722 	}
2723 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2724 		struct vm_area_struct *next = vma->vm_next;
2725 
2726 		/* As VM_GROWSDOWN but s/below/above/ */
2727 		if (next && next->vm_start == address + PAGE_SIZE)
2728 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2729 
2730 		return expand_upwards(vma, address + PAGE_SIZE);
2731 	}
2732 	return 0;
2733 }
2734 
2735 /*
2736  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2737  * but allow concurrent faults), and pte mapped but not yet locked.
2738  * We return with mmap_sem still held, but pte unmapped and unlocked.
2739  */
2740 static int do_anonymous_page(struct fault_env *fe)
2741 {
2742 	struct vm_area_struct *vma = fe->vma;
2743 	struct mem_cgroup *memcg;
2744 	struct page *page;
2745 	pte_t entry;
2746 
2747 	/* File mapping without ->vm_ops ? */
2748 	if (vma->vm_flags & VM_SHARED)
2749 		return VM_FAULT_SIGBUS;
2750 
2751 	/* Check if we need to add a guard page to the stack */
2752 	if (check_stack_guard_page(vma, fe->address) < 0)
2753 		return VM_FAULT_SIGSEGV;
2754 
2755 	/*
2756 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2757 	 * pte_offset_map() on pmds where a huge pmd might be created
2758 	 * from a different thread.
2759 	 *
2760 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2761 	 * parallel threads are excluded by other means.
2762 	 *
2763 	 * Here we only have down_read(mmap_sem).
2764 	 */
2765 	if (pte_alloc(vma->vm_mm, fe->pmd, fe->address))
2766 		return VM_FAULT_OOM;
2767 
2768 	/* See the comment in pte_alloc_one_map() */
2769 	if (unlikely(pmd_trans_unstable(fe->pmd)))
2770 		return 0;
2771 
2772 	/* Use the zero-page for reads */
2773 	if (!(fe->flags & FAULT_FLAG_WRITE) &&
2774 			!mm_forbids_zeropage(vma->vm_mm)) {
2775 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
2776 						vma->vm_page_prot));
2777 		fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2778 				&fe->ptl);
2779 		if (!pte_none(*fe->pte))
2780 			goto unlock;
2781 		/* Deliver the page fault to userland, check inside PT lock */
2782 		if (userfaultfd_missing(vma)) {
2783 			pte_unmap_unlock(fe->pte, fe->ptl);
2784 			return handle_userfault(fe, VM_UFFD_MISSING);
2785 		}
2786 		goto setpte;
2787 	}
2788 
2789 	/* Allocate our own private page. */
2790 	if (unlikely(anon_vma_prepare(vma)))
2791 		goto oom;
2792 	page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2793 	if (!page)
2794 		goto oom;
2795 
2796 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2797 		goto oom_free_page;
2798 
2799 	/*
2800 	 * The memory barrier inside __SetPageUptodate makes sure that
2801 	 * preceeding stores to the page contents become visible before
2802 	 * the set_pte_at() write.
2803 	 */
2804 	__SetPageUptodate(page);
2805 
2806 	entry = mk_pte(page, vma->vm_page_prot);
2807 	if (vma->vm_flags & VM_WRITE)
2808 		entry = pte_mkwrite(pte_mkdirty(entry));
2809 
2810 	fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2811 			&fe->ptl);
2812 	if (!pte_none(*fe->pte))
2813 		goto release;
2814 
2815 	/* Deliver the page fault to userland, check inside PT lock */
2816 	if (userfaultfd_missing(vma)) {
2817 		pte_unmap_unlock(fe->pte, fe->ptl);
2818 		mem_cgroup_cancel_charge(page, memcg, false);
2819 		put_page(page);
2820 		return handle_userfault(fe, VM_UFFD_MISSING);
2821 	}
2822 
2823 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2824 	page_add_new_anon_rmap(page, vma, fe->address, false);
2825 	mem_cgroup_commit_charge(page, memcg, false, false);
2826 	lru_cache_add_active_or_unevictable(page, vma);
2827 setpte:
2828 	set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
2829 
2830 	/* No need to invalidate - it was non-present before */
2831 	update_mmu_cache(vma, fe->address, fe->pte);
2832 unlock:
2833 	pte_unmap_unlock(fe->pte, fe->ptl);
2834 	return 0;
2835 release:
2836 	mem_cgroup_cancel_charge(page, memcg, false);
2837 	put_page(page);
2838 	goto unlock;
2839 oom_free_page:
2840 	put_page(page);
2841 oom:
2842 	return VM_FAULT_OOM;
2843 }
2844 
2845 /*
2846  * The mmap_sem must have been held on entry, and may have been
2847  * released depending on flags and vma->vm_ops->fault() return value.
2848  * See filemap_fault() and __lock_page_retry().
2849  */
2850 static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2851 		struct page *cow_page, struct page **page, void **entry)
2852 {
2853 	struct vm_area_struct *vma = fe->vma;
2854 	struct vm_fault vmf;
2855 	int ret;
2856 
2857 	vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
2858 	vmf.pgoff = pgoff;
2859 	vmf.flags = fe->flags;
2860 	vmf.page = NULL;
2861 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2862 	vmf.cow_page = cow_page;
2863 
2864 	ret = vma->vm_ops->fault(vma, &vmf);
2865 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2866 		return ret;
2867 	if (ret & VM_FAULT_DAX_LOCKED) {
2868 		*entry = vmf.entry;
2869 		return ret;
2870 	}
2871 
2872 	if (unlikely(PageHWPoison(vmf.page))) {
2873 		if (ret & VM_FAULT_LOCKED)
2874 			unlock_page(vmf.page);
2875 		put_page(vmf.page);
2876 		return VM_FAULT_HWPOISON;
2877 	}
2878 
2879 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2880 		lock_page(vmf.page);
2881 	else
2882 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2883 
2884 	*page = vmf.page;
2885 	return ret;
2886 }
2887 
2888 static int pte_alloc_one_map(struct fault_env *fe)
2889 {
2890 	struct vm_area_struct *vma = fe->vma;
2891 
2892 	if (!pmd_none(*fe->pmd))
2893 		goto map_pte;
2894 	if (fe->prealloc_pte) {
2895 		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2896 		if (unlikely(!pmd_none(*fe->pmd))) {
2897 			spin_unlock(fe->ptl);
2898 			goto map_pte;
2899 		}
2900 
2901 		atomic_long_inc(&vma->vm_mm->nr_ptes);
2902 		pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte);
2903 		spin_unlock(fe->ptl);
2904 		fe->prealloc_pte = 0;
2905 	} else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) {
2906 		return VM_FAULT_OOM;
2907 	}
2908 map_pte:
2909 	/*
2910 	 * If a huge pmd materialized under us just retry later.  Use
2911 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2912 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2913 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2914 	 * in a different thread of this mm, in turn leading to a misleading
2915 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2916 	 * regular pmd that we can walk with pte_offset_map() and we can do that
2917 	 * through an atomic read in C, which is what pmd_trans_unstable()
2918 	 * provides.
2919 	 */
2920 	if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd))
2921 		return VM_FAULT_NOPAGE;
2922 
2923 	fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2924 			&fe->ptl);
2925 	return 0;
2926 }
2927 
2928 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2929 
2930 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2931 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2932 		unsigned long haddr)
2933 {
2934 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2935 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2936 		return false;
2937 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2938 		return false;
2939 	return true;
2940 }
2941 
2942 static int do_set_pmd(struct fault_env *fe, struct page *page)
2943 {
2944 	struct vm_area_struct *vma = fe->vma;
2945 	bool write = fe->flags & FAULT_FLAG_WRITE;
2946 	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2947 	pmd_t entry;
2948 	int i, ret;
2949 
2950 	if (!transhuge_vma_suitable(vma, haddr))
2951 		return VM_FAULT_FALLBACK;
2952 
2953 	ret = VM_FAULT_FALLBACK;
2954 	page = compound_head(page);
2955 
2956 	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2957 	if (unlikely(!pmd_none(*fe->pmd)))
2958 		goto out;
2959 
2960 	for (i = 0; i < HPAGE_PMD_NR; i++)
2961 		flush_icache_page(vma, page + i);
2962 
2963 	entry = mk_huge_pmd(page, vma->vm_page_prot);
2964 	if (write)
2965 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2966 
2967 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2968 	page_add_file_rmap(page, true);
2969 
2970 	set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
2971 
2972 	update_mmu_cache_pmd(vma, haddr, fe->pmd);
2973 
2974 	/* fault is handled */
2975 	ret = 0;
2976 	count_vm_event(THP_FILE_MAPPED);
2977 out:
2978 	spin_unlock(fe->ptl);
2979 	return ret;
2980 }
2981 #else
2982 static int do_set_pmd(struct fault_env *fe, struct page *page)
2983 {
2984 	BUILD_BUG();
2985 	return 0;
2986 }
2987 #endif
2988 
2989 /**
2990  * alloc_set_pte - setup new PTE entry for given page and add reverse page
2991  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
2992  *
2993  * @fe: fault environment
2994  * @memcg: memcg to charge page (only for private mappings)
2995  * @page: page to map
2996  *
2997  * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
2998  *
2999  * Target users are page handler itself and implementations of
3000  * vm_ops->map_pages.
3001  */
3002 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
3003 		struct page *page)
3004 {
3005 	struct vm_area_struct *vma = fe->vma;
3006 	bool write = fe->flags & FAULT_FLAG_WRITE;
3007 	pte_t entry;
3008 	int ret;
3009 
3010 	if (pmd_none(*fe->pmd) && PageTransCompound(page) &&
3011 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3012 		/* THP on COW? */
3013 		VM_BUG_ON_PAGE(memcg, page);
3014 
3015 		ret = do_set_pmd(fe, page);
3016 		if (ret != VM_FAULT_FALLBACK)
3017 			return ret;
3018 	}
3019 
3020 	if (!fe->pte) {
3021 		ret = pte_alloc_one_map(fe);
3022 		if (ret)
3023 			return ret;
3024 	}
3025 
3026 	/* Re-check under ptl */
3027 	if (unlikely(!pte_none(*fe->pte)))
3028 		return VM_FAULT_NOPAGE;
3029 
3030 	flush_icache_page(vma, page);
3031 	entry = mk_pte(page, vma->vm_page_prot);
3032 	if (write)
3033 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3034 	/* copy-on-write page */
3035 	if (write && !(vma->vm_flags & VM_SHARED)) {
3036 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3037 		page_add_new_anon_rmap(page, vma, fe->address, false);
3038 		mem_cgroup_commit_charge(page, memcg, false, false);
3039 		lru_cache_add_active_or_unevictable(page, vma);
3040 	} else {
3041 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3042 		page_add_file_rmap(page, false);
3043 	}
3044 	set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3045 
3046 	/* no need to invalidate: a not-present page won't be cached */
3047 	update_mmu_cache(vma, fe->address, fe->pte);
3048 
3049 	return 0;
3050 }
3051 
3052 static unsigned long fault_around_bytes __read_mostly =
3053 	rounddown_pow_of_two(65536);
3054 
3055 #ifdef CONFIG_DEBUG_FS
3056 static int fault_around_bytes_get(void *data, u64 *val)
3057 {
3058 	*val = fault_around_bytes;
3059 	return 0;
3060 }
3061 
3062 /*
3063  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3064  * rounded down to nearest page order. It's what do_fault_around() expects to
3065  * see.
3066  */
3067 static int fault_around_bytes_set(void *data, u64 val)
3068 {
3069 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3070 		return -EINVAL;
3071 	if (val > PAGE_SIZE)
3072 		fault_around_bytes = rounddown_pow_of_two(val);
3073 	else
3074 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3075 	return 0;
3076 }
3077 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3078 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3079 
3080 static int __init fault_around_debugfs(void)
3081 {
3082 	void *ret;
3083 
3084 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3085 			&fault_around_bytes_fops);
3086 	if (!ret)
3087 		pr_warn("Failed to create fault_around_bytes in debugfs");
3088 	return 0;
3089 }
3090 late_initcall(fault_around_debugfs);
3091 #endif
3092 
3093 /*
3094  * do_fault_around() tries to map few pages around the fault address. The hope
3095  * is that the pages will be needed soon and this will lower the number of
3096  * faults to handle.
3097  *
3098  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3099  * not ready to be mapped: not up-to-date, locked, etc.
3100  *
3101  * This function is called with the page table lock taken. In the split ptlock
3102  * case the page table lock only protects only those entries which belong to
3103  * the page table corresponding to the fault address.
3104  *
3105  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3106  * only once.
3107  *
3108  * fault_around_pages() defines how many pages we'll try to map.
3109  * do_fault_around() expects it to return a power of two less than or equal to
3110  * PTRS_PER_PTE.
3111  *
3112  * The virtual address of the area that we map is naturally aligned to the
3113  * fault_around_pages() value (and therefore to page order).  This way it's
3114  * easier to guarantee that we don't cross page table boundaries.
3115  */
3116 static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
3117 {
3118 	unsigned long address = fe->address, nr_pages, mask;
3119 	pgoff_t end_pgoff;
3120 	int off, ret = 0;
3121 
3122 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3123 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3124 
3125 	fe->address = max(address & mask, fe->vma->vm_start);
3126 	off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3127 	start_pgoff -= off;
3128 
3129 	/*
3130 	 *  end_pgoff is either end of page table or end of vma
3131 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3132 	 */
3133 	end_pgoff = start_pgoff -
3134 		((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3135 		PTRS_PER_PTE - 1;
3136 	end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
3137 			start_pgoff + nr_pages - 1);
3138 
3139 	if (pmd_none(*fe->pmd)) {
3140 		fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address);
3141 		if (!fe->prealloc_pte)
3142 			goto out;
3143 		smp_wmb(); /* See comment in __pte_alloc() */
3144 	}
3145 
3146 	fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3147 
3148 	/* preallocated pagetable is unused: free it */
3149 	if (fe->prealloc_pte) {
3150 		pte_free(fe->vma->vm_mm, fe->prealloc_pte);
3151 		fe->prealloc_pte = 0;
3152 	}
3153 	/* Huge page is mapped? Page fault is solved */
3154 	if (pmd_trans_huge(*fe->pmd)) {
3155 		ret = VM_FAULT_NOPAGE;
3156 		goto out;
3157 	}
3158 
3159 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3160 	if (!fe->pte)
3161 		goto out;
3162 
3163 	/* check if the page fault is solved */
3164 	fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3165 	if (!pte_none(*fe->pte))
3166 		ret = VM_FAULT_NOPAGE;
3167 	pte_unmap_unlock(fe->pte, fe->ptl);
3168 out:
3169 	fe->address = address;
3170 	fe->pte = NULL;
3171 	return ret;
3172 }
3173 
3174 static int do_read_fault(struct fault_env *fe, pgoff_t pgoff)
3175 {
3176 	struct vm_area_struct *vma = fe->vma;
3177 	struct page *fault_page;
3178 	int ret = 0;
3179 
3180 	/*
3181 	 * Let's call ->map_pages() first and use ->fault() as fallback
3182 	 * if page by the offset is not ready to be mapped (cold cache or
3183 	 * something).
3184 	 */
3185 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3186 		ret = do_fault_around(fe, pgoff);
3187 		if (ret)
3188 			return ret;
3189 	}
3190 
3191 	ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3192 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3193 		return ret;
3194 
3195 	ret |= alloc_set_pte(fe, NULL, fault_page);
3196 	if (fe->pte)
3197 		pte_unmap_unlock(fe->pte, fe->ptl);
3198 	unlock_page(fault_page);
3199 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3200 		put_page(fault_page);
3201 	return ret;
3202 }
3203 
3204 static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff)
3205 {
3206 	struct vm_area_struct *vma = fe->vma;
3207 	struct page *fault_page, *new_page;
3208 	void *fault_entry;
3209 	struct mem_cgroup *memcg;
3210 	int ret;
3211 
3212 	if (unlikely(anon_vma_prepare(vma)))
3213 		return VM_FAULT_OOM;
3214 
3215 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
3216 	if (!new_page)
3217 		return VM_FAULT_OOM;
3218 
3219 	if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3220 				&memcg, false)) {
3221 		put_page(new_page);
3222 		return VM_FAULT_OOM;
3223 	}
3224 
3225 	ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
3226 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3227 		goto uncharge_out;
3228 
3229 	if (!(ret & VM_FAULT_DAX_LOCKED))
3230 		copy_user_highpage(new_page, fault_page, fe->address, vma);
3231 	__SetPageUptodate(new_page);
3232 
3233 	ret |= alloc_set_pte(fe, memcg, new_page);
3234 	if (fe->pte)
3235 		pte_unmap_unlock(fe->pte, fe->ptl);
3236 	if (!(ret & VM_FAULT_DAX_LOCKED)) {
3237 		unlock_page(fault_page);
3238 		put_page(fault_page);
3239 	} else {
3240 		dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3241 	}
3242 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3243 		goto uncharge_out;
3244 	return ret;
3245 uncharge_out:
3246 	mem_cgroup_cancel_charge(new_page, memcg, false);
3247 	put_page(new_page);
3248 	return ret;
3249 }
3250 
3251 static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff)
3252 {
3253 	struct vm_area_struct *vma = fe->vma;
3254 	struct page *fault_page;
3255 	struct address_space *mapping;
3256 	int dirtied = 0;
3257 	int ret, tmp;
3258 
3259 	ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3260 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3261 		return ret;
3262 
3263 	/*
3264 	 * Check if the backing address space wants to know that the page is
3265 	 * about to become writable
3266 	 */
3267 	if (vma->vm_ops->page_mkwrite) {
3268 		unlock_page(fault_page);
3269 		tmp = do_page_mkwrite(vma, fault_page, fe->address);
3270 		if (unlikely(!tmp ||
3271 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3272 			put_page(fault_page);
3273 			return tmp;
3274 		}
3275 	}
3276 
3277 	ret |= alloc_set_pte(fe, NULL, fault_page);
3278 	if (fe->pte)
3279 		pte_unmap_unlock(fe->pte, fe->ptl);
3280 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3281 					VM_FAULT_RETRY))) {
3282 		unlock_page(fault_page);
3283 		put_page(fault_page);
3284 		return ret;
3285 	}
3286 
3287 	if (set_page_dirty(fault_page))
3288 		dirtied = 1;
3289 	/*
3290 	 * Take a local copy of the address_space - page.mapping may be zeroed
3291 	 * by truncate after unlock_page().   The address_space itself remains
3292 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3293 	 * release semantics to prevent the compiler from undoing this copying.
3294 	 */
3295 	mapping = page_rmapping(fault_page);
3296 	unlock_page(fault_page);
3297 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3298 		/*
3299 		 * Some device drivers do not set page.mapping but still
3300 		 * dirty their pages
3301 		 */
3302 		balance_dirty_pages_ratelimited(mapping);
3303 	}
3304 
3305 	if (!vma->vm_ops->page_mkwrite)
3306 		file_update_time(vma->vm_file);
3307 
3308 	return ret;
3309 }
3310 
3311 /*
3312  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3313  * but allow concurrent faults).
3314  * The mmap_sem may have been released depending on flags and our
3315  * return value.  See filemap_fault() and __lock_page_or_retry().
3316  */
3317 static int do_fault(struct fault_env *fe)
3318 {
3319 	struct vm_area_struct *vma = fe->vma;
3320 	pgoff_t pgoff = linear_page_index(vma, fe->address);
3321 
3322 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3323 	if (!vma->vm_ops->fault)
3324 		return VM_FAULT_SIGBUS;
3325 	if (!(fe->flags & FAULT_FLAG_WRITE))
3326 		return do_read_fault(fe, pgoff);
3327 	if (!(vma->vm_flags & VM_SHARED))
3328 		return do_cow_fault(fe, pgoff);
3329 	return do_shared_fault(fe, pgoff);
3330 }
3331 
3332 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3333 				unsigned long addr, int page_nid,
3334 				int *flags)
3335 {
3336 	get_page(page);
3337 
3338 	count_vm_numa_event(NUMA_HINT_FAULTS);
3339 	if (page_nid == numa_node_id()) {
3340 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3341 		*flags |= TNF_FAULT_LOCAL;
3342 	}
3343 
3344 	return mpol_misplaced(page, vma, addr);
3345 }
3346 
3347 static int do_numa_page(struct fault_env *fe, pte_t pte)
3348 {
3349 	struct vm_area_struct *vma = fe->vma;
3350 	struct page *page = NULL;
3351 	int page_nid = -1;
3352 	int last_cpupid;
3353 	int target_nid;
3354 	bool migrated = false;
3355 	bool was_writable = pte_write(pte);
3356 	int flags = 0;
3357 
3358 	/*
3359 	* The "pte" at this point cannot be used safely without
3360 	* validation through pte_unmap_same(). It's of NUMA type but
3361 	* the pfn may be screwed if the read is non atomic.
3362 	*
3363 	* We can safely just do a "set_pte_at()", because the old
3364 	* page table entry is not accessible, so there would be no
3365 	* concurrent hardware modifications to the PTE.
3366 	*/
3367 	fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3368 	spin_lock(fe->ptl);
3369 	if (unlikely(!pte_same(*fe->pte, pte))) {
3370 		pte_unmap_unlock(fe->pte, fe->ptl);
3371 		goto out;
3372 	}
3373 
3374 	/* Make it present again */
3375 	pte = pte_modify(pte, vma->vm_page_prot);
3376 	pte = pte_mkyoung(pte);
3377 	if (was_writable)
3378 		pte = pte_mkwrite(pte);
3379 	set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3380 	update_mmu_cache(vma, fe->address, fe->pte);
3381 
3382 	page = vm_normal_page(vma, fe->address, pte);
3383 	if (!page) {
3384 		pte_unmap_unlock(fe->pte, fe->ptl);
3385 		return 0;
3386 	}
3387 
3388 	/* TODO: handle PTE-mapped THP */
3389 	if (PageCompound(page)) {
3390 		pte_unmap_unlock(fe->pte, fe->ptl);
3391 		return 0;
3392 	}
3393 
3394 	/*
3395 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3396 	 * much anyway since they can be in shared cache state. This misses
3397 	 * the case where a mapping is writable but the process never writes
3398 	 * to it but pte_write gets cleared during protection updates and
3399 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3400 	 * background writeback, dirty balancing and application behaviour.
3401 	 */
3402 	if (!pte_write(pte))
3403 		flags |= TNF_NO_GROUP;
3404 
3405 	/*
3406 	 * Flag if the page is shared between multiple address spaces. This
3407 	 * is later used when determining whether to group tasks together
3408 	 */
3409 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3410 		flags |= TNF_SHARED;
3411 
3412 	last_cpupid = page_cpupid_last(page);
3413 	page_nid = page_to_nid(page);
3414 	target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3415 			&flags);
3416 	pte_unmap_unlock(fe->pte, fe->ptl);
3417 	if (target_nid == -1) {
3418 		put_page(page);
3419 		goto out;
3420 	}
3421 
3422 	/* Migrate to the requested node */
3423 	migrated = migrate_misplaced_page(page, vma, target_nid);
3424 	if (migrated) {
3425 		page_nid = target_nid;
3426 		flags |= TNF_MIGRATED;
3427 	} else
3428 		flags |= TNF_MIGRATE_FAIL;
3429 
3430 out:
3431 	if (page_nid != -1)
3432 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3433 	return 0;
3434 }
3435 
3436 static int create_huge_pmd(struct fault_env *fe)
3437 {
3438 	struct vm_area_struct *vma = fe->vma;
3439 	if (vma_is_anonymous(vma))
3440 		return do_huge_pmd_anonymous_page(fe);
3441 	if (vma->vm_ops->pmd_fault)
3442 		return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3443 				fe->flags);
3444 	return VM_FAULT_FALLBACK;
3445 }
3446 
3447 static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
3448 {
3449 	if (vma_is_anonymous(fe->vma))
3450 		return do_huge_pmd_wp_page(fe, orig_pmd);
3451 	if (fe->vma->vm_ops->pmd_fault)
3452 		return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3453 				fe->flags);
3454 
3455 	/* COW handled on pte level: split pmd */
3456 	VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma);
3457 	split_huge_pmd(fe->vma, fe->pmd, fe->address);
3458 
3459 	return VM_FAULT_FALLBACK;
3460 }
3461 
3462 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3463 {
3464 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3465 }
3466 
3467 /*
3468  * These routines also need to handle stuff like marking pages dirty
3469  * and/or accessed for architectures that don't do it in hardware (most
3470  * RISC architectures).  The early dirtying is also good on the i386.
3471  *
3472  * There is also a hook called "update_mmu_cache()" that architectures
3473  * with external mmu caches can use to update those (ie the Sparc or
3474  * PowerPC hashed page tables that act as extended TLBs).
3475  *
3476  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3477  * concurrent faults).
3478  *
3479  * The mmap_sem may have been released depending on flags and our return value.
3480  * See filemap_fault() and __lock_page_or_retry().
3481  */
3482 static int handle_pte_fault(struct fault_env *fe)
3483 {
3484 	pte_t entry;
3485 
3486 	if (unlikely(pmd_none(*fe->pmd))) {
3487 		/*
3488 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3489 		 * want to allocate huge page, and if we expose page table
3490 		 * for an instant, it will be difficult to retract from
3491 		 * concurrent faults and from rmap lookups.
3492 		 */
3493 		fe->pte = NULL;
3494 	} else {
3495 		/* See comment in pte_alloc_one_map() */
3496 		if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd))
3497 			return 0;
3498 		/*
3499 		 * A regular pmd is established and it can't morph into a huge
3500 		 * pmd from under us anymore at this point because we hold the
3501 		 * mmap_sem read mode and khugepaged takes it in write mode.
3502 		 * So now it's safe to run pte_offset_map().
3503 		 */
3504 		fe->pte = pte_offset_map(fe->pmd, fe->address);
3505 
3506 		entry = *fe->pte;
3507 
3508 		/*
3509 		 * some architectures can have larger ptes than wordsize,
3510 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3511 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3512 		 * atomic accesses.  The code below just needs a consistent
3513 		 * view for the ifs and we later double check anyway with the
3514 		 * ptl lock held. So here a barrier will do.
3515 		 */
3516 		barrier();
3517 		if (pte_none(entry)) {
3518 			pte_unmap(fe->pte);
3519 			fe->pte = NULL;
3520 		}
3521 	}
3522 
3523 	if (!fe->pte) {
3524 		if (vma_is_anonymous(fe->vma))
3525 			return do_anonymous_page(fe);
3526 		else
3527 			return do_fault(fe);
3528 	}
3529 
3530 	if (!pte_present(entry))
3531 		return do_swap_page(fe, entry);
3532 
3533 	if (pte_protnone(entry) && vma_is_accessible(fe->vma))
3534 		return do_numa_page(fe, entry);
3535 
3536 	fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3537 	spin_lock(fe->ptl);
3538 	if (unlikely(!pte_same(*fe->pte, entry)))
3539 		goto unlock;
3540 	if (fe->flags & FAULT_FLAG_WRITE) {
3541 		if (!pte_write(entry))
3542 			return do_wp_page(fe, entry);
3543 		entry = pte_mkdirty(entry);
3544 	}
3545 	entry = pte_mkyoung(entry);
3546 	if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3547 				fe->flags & FAULT_FLAG_WRITE)) {
3548 		update_mmu_cache(fe->vma, fe->address, fe->pte);
3549 	} else {
3550 		/*
3551 		 * This is needed only for protection faults but the arch code
3552 		 * is not yet telling us if this is a protection fault or not.
3553 		 * This still avoids useless tlb flushes for .text page faults
3554 		 * with threads.
3555 		 */
3556 		if (fe->flags & FAULT_FLAG_WRITE)
3557 			flush_tlb_fix_spurious_fault(fe->vma, fe->address);
3558 	}
3559 unlock:
3560 	pte_unmap_unlock(fe->pte, fe->ptl);
3561 	return 0;
3562 }
3563 
3564 /*
3565  * By the time we get here, we already hold the mm semaphore
3566  *
3567  * The mmap_sem may have been released depending on flags and our
3568  * return value.  See filemap_fault() and __lock_page_or_retry().
3569  */
3570 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3571 		unsigned int flags)
3572 {
3573 	struct fault_env fe = {
3574 		.vma = vma,
3575 		.address = address,
3576 		.flags = flags,
3577 	};
3578 	struct mm_struct *mm = vma->vm_mm;
3579 	pgd_t *pgd;
3580 	pud_t *pud;
3581 
3582 	pgd = pgd_offset(mm, address);
3583 	pud = pud_alloc(mm, pgd, address);
3584 	if (!pud)
3585 		return VM_FAULT_OOM;
3586 	fe.pmd = pmd_alloc(mm, pud, address);
3587 	if (!fe.pmd)
3588 		return VM_FAULT_OOM;
3589 	if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3590 		int ret = create_huge_pmd(&fe);
3591 		if (!(ret & VM_FAULT_FALLBACK))
3592 			return ret;
3593 	} else {
3594 		pmd_t orig_pmd = *fe.pmd;
3595 		int ret;
3596 
3597 		barrier();
3598 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3599 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3600 				return do_huge_pmd_numa_page(&fe, orig_pmd);
3601 
3602 			if ((fe.flags & FAULT_FLAG_WRITE) &&
3603 					!pmd_write(orig_pmd)) {
3604 				ret = wp_huge_pmd(&fe, orig_pmd);
3605 				if (!(ret & VM_FAULT_FALLBACK))
3606 					return ret;
3607 			} else {
3608 				huge_pmd_set_accessed(&fe, orig_pmd);
3609 				return 0;
3610 			}
3611 		}
3612 	}
3613 
3614 	return handle_pte_fault(&fe);
3615 }
3616 
3617 /*
3618  * By the time we get here, we already hold the mm semaphore
3619  *
3620  * The mmap_sem may have been released depending on flags and our
3621  * return value.  See filemap_fault() and __lock_page_or_retry().
3622  */
3623 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3624 		unsigned int flags)
3625 {
3626 	int ret;
3627 
3628 	__set_current_state(TASK_RUNNING);
3629 
3630 	count_vm_event(PGFAULT);
3631 	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3632 
3633 	/* do counter updates before entering really critical section. */
3634 	check_sync_rss_stat(current);
3635 
3636 	/*
3637 	 * Enable the memcg OOM handling for faults triggered in user
3638 	 * space.  Kernel faults are handled more gracefully.
3639 	 */
3640 	if (flags & FAULT_FLAG_USER)
3641 		mem_cgroup_oom_enable();
3642 
3643 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3644 					    flags & FAULT_FLAG_INSTRUCTION,
3645 					    flags & FAULT_FLAG_REMOTE))
3646 		return VM_FAULT_SIGSEGV;
3647 
3648 	if (unlikely(is_vm_hugetlb_page(vma)))
3649 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3650 	else
3651 		ret = __handle_mm_fault(vma, address, flags);
3652 
3653 	if (flags & FAULT_FLAG_USER) {
3654 		mem_cgroup_oom_disable();
3655                 /*
3656                  * The task may have entered a memcg OOM situation but
3657                  * if the allocation error was handled gracefully (no
3658                  * VM_FAULT_OOM), there is no need to kill anything.
3659                  * Just clean up the OOM state peacefully.
3660                  */
3661                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3662                         mem_cgroup_oom_synchronize(false);
3663 	}
3664 
3665 	/*
3666 	 * This mm has been already reaped by the oom reaper and so the
3667 	 * refault cannot be trusted in general. Anonymous refaults would
3668 	 * lose data and give a zero page instead e.g. This is especially
3669 	 * problem for use_mm() because regular tasks will just die and
3670 	 * the corrupted data will not be visible anywhere while kthread
3671 	 * will outlive the oom victim and potentially propagate the date
3672 	 * further.
3673 	 */
3674 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3675 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3676 		ret = VM_FAULT_SIGBUS;
3677 
3678 	return ret;
3679 }
3680 EXPORT_SYMBOL_GPL(handle_mm_fault);
3681 
3682 #ifndef __PAGETABLE_PUD_FOLDED
3683 /*
3684  * Allocate page upper directory.
3685  * We've already handled the fast-path in-line.
3686  */
3687 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3688 {
3689 	pud_t *new = pud_alloc_one(mm, address);
3690 	if (!new)
3691 		return -ENOMEM;
3692 
3693 	smp_wmb(); /* See comment in __pte_alloc */
3694 
3695 	spin_lock(&mm->page_table_lock);
3696 	if (pgd_present(*pgd))		/* Another has populated it */
3697 		pud_free(mm, new);
3698 	else
3699 		pgd_populate(mm, pgd, new);
3700 	spin_unlock(&mm->page_table_lock);
3701 	return 0;
3702 }
3703 #endif /* __PAGETABLE_PUD_FOLDED */
3704 
3705 #ifndef __PAGETABLE_PMD_FOLDED
3706 /*
3707  * Allocate page middle directory.
3708  * We've already handled the fast-path in-line.
3709  */
3710 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3711 {
3712 	pmd_t *new = pmd_alloc_one(mm, address);
3713 	if (!new)
3714 		return -ENOMEM;
3715 
3716 	smp_wmb(); /* See comment in __pte_alloc */
3717 
3718 	spin_lock(&mm->page_table_lock);
3719 #ifndef __ARCH_HAS_4LEVEL_HACK
3720 	if (!pud_present(*pud)) {
3721 		mm_inc_nr_pmds(mm);
3722 		pud_populate(mm, pud, new);
3723 	} else	/* Another has populated it */
3724 		pmd_free(mm, new);
3725 #else
3726 	if (!pgd_present(*pud)) {
3727 		mm_inc_nr_pmds(mm);
3728 		pgd_populate(mm, pud, new);
3729 	} else /* Another has populated it */
3730 		pmd_free(mm, new);
3731 #endif /* __ARCH_HAS_4LEVEL_HACK */
3732 	spin_unlock(&mm->page_table_lock);
3733 	return 0;
3734 }
3735 #endif /* __PAGETABLE_PMD_FOLDED */
3736 
3737 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3738 		pte_t **ptepp, spinlock_t **ptlp)
3739 {
3740 	pgd_t *pgd;
3741 	pud_t *pud;
3742 	pmd_t *pmd;
3743 	pte_t *ptep;
3744 
3745 	pgd = pgd_offset(mm, address);
3746 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3747 		goto out;
3748 
3749 	pud = pud_offset(pgd, address);
3750 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3751 		goto out;
3752 
3753 	pmd = pmd_offset(pud, address);
3754 	VM_BUG_ON(pmd_trans_huge(*pmd));
3755 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3756 		goto out;
3757 
3758 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3759 	if (pmd_huge(*pmd))
3760 		goto out;
3761 
3762 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3763 	if (!ptep)
3764 		goto out;
3765 	if (!pte_present(*ptep))
3766 		goto unlock;
3767 	*ptepp = ptep;
3768 	return 0;
3769 unlock:
3770 	pte_unmap_unlock(ptep, *ptlp);
3771 out:
3772 	return -EINVAL;
3773 }
3774 
3775 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3776 			     pte_t **ptepp, spinlock_t **ptlp)
3777 {
3778 	int res;
3779 
3780 	/* (void) is needed to make gcc happy */
3781 	(void) __cond_lock(*ptlp,
3782 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3783 	return res;
3784 }
3785 
3786 /**
3787  * follow_pfn - look up PFN at a user virtual address
3788  * @vma: memory mapping
3789  * @address: user virtual address
3790  * @pfn: location to store found PFN
3791  *
3792  * Only IO mappings and raw PFN mappings are allowed.
3793  *
3794  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3795  */
3796 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3797 	unsigned long *pfn)
3798 {
3799 	int ret = -EINVAL;
3800 	spinlock_t *ptl;
3801 	pte_t *ptep;
3802 
3803 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3804 		return ret;
3805 
3806 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3807 	if (ret)
3808 		return ret;
3809 	*pfn = pte_pfn(*ptep);
3810 	pte_unmap_unlock(ptep, ptl);
3811 	return 0;
3812 }
3813 EXPORT_SYMBOL(follow_pfn);
3814 
3815 #ifdef CONFIG_HAVE_IOREMAP_PROT
3816 int follow_phys(struct vm_area_struct *vma,
3817 		unsigned long address, unsigned int flags,
3818 		unsigned long *prot, resource_size_t *phys)
3819 {
3820 	int ret = -EINVAL;
3821 	pte_t *ptep, pte;
3822 	spinlock_t *ptl;
3823 
3824 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3825 		goto out;
3826 
3827 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3828 		goto out;
3829 	pte = *ptep;
3830 
3831 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3832 		goto unlock;
3833 
3834 	*prot = pgprot_val(pte_pgprot(pte));
3835 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3836 
3837 	ret = 0;
3838 unlock:
3839 	pte_unmap_unlock(ptep, ptl);
3840 out:
3841 	return ret;
3842 }
3843 
3844 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3845 			void *buf, int len, int write)
3846 {
3847 	resource_size_t phys_addr;
3848 	unsigned long prot = 0;
3849 	void __iomem *maddr;
3850 	int offset = addr & (PAGE_SIZE-1);
3851 
3852 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3853 		return -EINVAL;
3854 
3855 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3856 	if (write)
3857 		memcpy_toio(maddr + offset, buf, len);
3858 	else
3859 		memcpy_fromio(buf, maddr + offset, len);
3860 	iounmap(maddr);
3861 
3862 	return len;
3863 }
3864 EXPORT_SYMBOL_GPL(generic_access_phys);
3865 #endif
3866 
3867 /*
3868  * Access another process' address space as given in mm.  If non-NULL, use the
3869  * given task for page fault accounting.
3870  */
3871 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3872 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3873 {
3874 	struct vm_area_struct *vma;
3875 	void *old_buf = buf;
3876 	int write = gup_flags & FOLL_WRITE;
3877 
3878 	down_read(&mm->mmap_sem);
3879 	/* ignore errors, just check how much was successfully transferred */
3880 	while (len) {
3881 		int bytes, ret, offset;
3882 		void *maddr;
3883 		struct page *page = NULL;
3884 
3885 		ret = get_user_pages_remote(tsk, mm, addr, 1,
3886 				gup_flags, &page, &vma);
3887 		if (ret <= 0) {
3888 #ifndef CONFIG_HAVE_IOREMAP_PROT
3889 			break;
3890 #else
3891 			/*
3892 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3893 			 * we can access using slightly different code.
3894 			 */
3895 			vma = find_vma(mm, addr);
3896 			if (!vma || vma->vm_start > addr)
3897 				break;
3898 			if (vma->vm_ops && vma->vm_ops->access)
3899 				ret = vma->vm_ops->access(vma, addr, buf,
3900 							  len, write);
3901 			if (ret <= 0)
3902 				break;
3903 			bytes = ret;
3904 #endif
3905 		} else {
3906 			bytes = len;
3907 			offset = addr & (PAGE_SIZE-1);
3908 			if (bytes > PAGE_SIZE-offset)
3909 				bytes = PAGE_SIZE-offset;
3910 
3911 			maddr = kmap(page);
3912 			if (write) {
3913 				copy_to_user_page(vma, page, addr,
3914 						  maddr + offset, buf, bytes);
3915 				set_page_dirty_lock(page);
3916 			} else {
3917 				copy_from_user_page(vma, page, addr,
3918 						    buf, maddr + offset, bytes);
3919 			}
3920 			kunmap(page);
3921 			put_page(page);
3922 		}
3923 		len -= bytes;
3924 		buf += bytes;
3925 		addr += bytes;
3926 	}
3927 	up_read(&mm->mmap_sem);
3928 
3929 	return buf - old_buf;
3930 }
3931 
3932 /**
3933  * access_remote_vm - access another process' address space
3934  * @mm:		the mm_struct of the target address space
3935  * @addr:	start address to access
3936  * @buf:	source or destination buffer
3937  * @len:	number of bytes to transfer
3938  * @gup_flags:	flags modifying lookup behaviour
3939  *
3940  * The caller must hold a reference on @mm.
3941  */
3942 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3943 		void *buf, int len, unsigned int gup_flags)
3944 {
3945 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3946 }
3947 
3948 /*
3949  * Access another process' address space.
3950  * Source/target buffer must be kernel space,
3951  * Do not walk the page table directly, use get_user_pages
3952  */
3953 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3954 		void *buf, int len, unsigned int gup_flags)
3955 {
3956 	struct mm_struct *mm;
3957 	int ret;
3958 
3959 	mm = get_task_mm(tsk);
3960 	if (!mm)
3961 		return 0;
3962 
3963 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
3964 
3965 	mmput(mm);
3966 
3967 	return ret;
3968 }
3969 
3970 /*
3971  * Print the name of a VMA.
3972  */
3973 void print_vma_addr(char *prefix, unsigned long ip)
3974 {
3975 	struct mm_struct *mm = current->mm;
3976 	struct vm_area_struct *vma;
3977 
3978 	/*
3979 	 * Do not print if we are in atomic
3980 	 * contexts (in exception stacks, etc.):
3981 	 */
3982 	if (preempt_count())
3983 		return;
3984 
3985 	down_read(&mm->mmap_sem);
3986 	vma = find_vma(mm, ip);
3987 	if (vma && vma->vm_file) {
3988 		struct file *f = vma->vm_file;
3989 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3990 		if (buf) {
3991 			char *p;
3992 
3993 			p = file_path(f, buf, PAGE_SIZE);
3994 			if (IS_ERR(p))
3995 				p = "?";
3996 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3997 					vma->vm_start,
3998 					vma->vm_end - vma->vm_start);
3999 			free_page((unsigned long)buf);
4000 		}
4001 	}
4002 	up_read(&mm->mmap_sem);
4003 }
4004 
4005 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4006 void __might_fault(const char *file, int line)
4007 {
4008 	/*
4009 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4010 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4011 	 * get paged out, therefore we'll never actually fault, and the
4012 	 * below annotations will generate false positives.
4013 	 */
4014 	if (segment_eq(get_fs(), KERNEL_DS))
4015 		return;
4016 	if (pagefault_disabled())
4017 		return;
4018 	__might_sleep(file, line, 0);
4019 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4020 	if (current->mm)
4021 		might_lock_read(&current->mm->mmap_sem);
4022 #endif
4023 }
4024 EXPORT_SYMBOL(__might_fault);
4025 #endif
4026 
4027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4028 static void clear_gigantic_page(struct page *page,
4029 				unsigned long addr,
4030 				unsigned int pages_per_huge_page)
4031 {
4032 	int i;
4033 	struct page *p = page;
4034 
4035 	might_sleep();
4036 	for (i = 0; i < pages_per_huge_page;
4037 	     i++, p = mem_map_next(p, page, i)) {
4038 		cond_resched();
4039 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4040 	}
4041 }
4042 void clear_huge_page(struct page *page,
4043 		     unsigned long addr, unsigned int pages_per_huge_page)
4044 {
4045 	int i;
4046 
4047 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4048 		clear_gigantic_page(page, addr, pages_per_huge_page);
4049 		return;
4050 	}
4051 
4052 	might_sleep();
4053 	for (i = 0; i < pages_per_huge_page; i++) {
4054 		cond_resched();
4055 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4056 	}
4057 }
4058 
4059 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4060 				    unsigned long addr,
4061 				    struct vm_area_struct *vma,
4062 				    unsigned int pages_per_huge_page)
4063 {
4064 	int i;
4065 	struct page *dst_base = dst;
4066 	struct page *src_base = src;
4067 
4068 	for (i = 0; i < pages_per_huge_page; ) {
4069 		cond_resched();
4070 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4071 
4072 		i++;
4073 		dst = mem_map_next(dst, dst_base, i);
4074 		src = mem_map_next(src, src_base, i);
4075 	}
4076 }
4077 
4078 void copy_user_huge_page(struct page *dst, struct page *src,
4079 			 unsigned long addr, struct vm_area_struct *vma,
4080 			 unsigned int pages_per_huge_page)
4081 {
4082 	int i;
4083 
4084 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4085 		copy_user_gigantic_page(dst, src, addr, vma,
4086 					pages_per_huge_page);
4087 		return;
4088 	}
4089 
4090 	might_sleep();
4091 	for (i = 0; i < pages_per_huge_page; i++) {
4092 		cond_resched();
4093 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4094 	}
4095 }
4096 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4097 
4098 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4099 
4100 static struct kmem_cache *page_ptl_cachep;
4101 
4102 void __init ptlock_cache_init(void)
4103 {
4104 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4105 			SLAB_PANIC, NULL);
4106 }
4107 
4108 bool ptlock_alloc(struct page *page)
4109 {
4110 	spinlock_t *ptl;
4111 
4112 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4113 	if (!ptl)
4114 		return false;
4115 	page->ptl = ptl;
4116 	return true;
4117 }
4118 
4119 void ptlock_free(struct page *page)
4120 {
4121 	kmem_cache_free(page_ptl_cachep, page->ptl);
4122 }
4123 #endif
4124