xref: /openbmc/linux/mm/memory.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 
84 #include "internal.h"
85 
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89 
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94 
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98 
99 /*
100  * A number of key systems in x86 including ioremap() rely on the assumption
101  * that high_memory defines the upper bound on direct map memory, then end
102  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
103  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104  * and ZONE_HIGHMEM.
105  */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108 
109 /*
110  * Randomize the address space (stacks, mmaps, brk, etc.).
111  *
112  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113  *   as ancient (libc5 based) binaries can segfault. )
114  */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117 					1;
118 #else
119 					2;
120 #endif
121 
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
124 {
125 	/*
126 	 * Those arches which don't have hw access flag feature need to
127 	 * implement their own helper. By default, "true" means pagefault
128 	 * will be hit on old pte.
129 	 */
130 	return true;
131 }
132 #endif
133 
134 static int __init disable_randmaps(char *s)
135 {
136 	randomize_va_space = 0;
137 	return 1;
138 }
139 __setup("norandmaps", disable_randmaps);
140 
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
143 
144 unsigned long highest_memmap_pfn __read_mostly;
145 
146 /*
147  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148  */
149 static int __init init_zero_pfn(void)
150 {
151 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
152 	return 0;
153 }
154 core_initcall(init_zero_pfn);
155 
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157 {
158 	trace_rss_stat(mm, member, count);
159 }
160 
161 #if defined(SPLIT_RSS_COUNTING)
162 
163 void sync_mm_rss(struct mm_struct *mm)
164 {
165 	int i;
166 
167 	for (i = 0; i < NR_MM_COUNTERS; i++) {
168 		if (current->rss_stat.count[i]) {
169 			add_mm_counter(mm, i, current->rss_stat.count[i]);
170 			current->rss_stat.count[i] = 0;
171 		}
172 	}
173 	current->rss_stat.events = 0;
174 }
175 
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177 {
178 	struct task_struct *task = current;
179 
180 	if (likely(task->mm == mm))
181 		task->rss_stat.count[member] += val;
182 	else
183 		add_mm_counter(mm, member, val);
184 }
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187 
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH	(64)
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 	if (unlikely(task != current))
193 		return;
194 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195 		sync_mm_rss(task->mm);
196 }
197 #else /* SPLIT_RSS_COUNTING */
198 
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201 
202 static void check_sync_rss_stat(struct task_struct *task)
203 {
204 }
205 
206 #endif /* SPLIT_RSS_COUNTING */
207 
208 /*
209  * Note: this doesn't free the actual pages themselves. That
210  * has been handled earlier when unmapping all the memory regions.
211  */
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213 			   unsigned long addr)
214 {
215 	pgtable_t token = pmd_pgtable(*pmd);
216 	pmd_clear(pmd);
217 	pte_free_tlb(tlb, token, addr);
218 	mm_dec_nr_ptes(tlb->mm);
219 }
220 
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222 				unsigned long addr, unsigned long end,
223 				unsigned long floor, unsigned long ceiling)
224 {
225 	pmd_t *pmd;
226 	unsigned long next;
227 	unsigned long start;
228 
229 	start = addr;
230 	pmd = pmd_offset(pud, addr);
231 	do {
232 		next = pmd_addr_end(addr, end);
233 		if (pmd_none_or_clear_bad(pmd))
234 			continue;
235 		free_pte_range(tlb, pmd, addr);
236 	} while (pmd++, addr = next, addr != end);
237 
238 	start &= PUD_MASK;
239 	if (start < floor)
240 		return;
241 	if (ceiling) {
242 		ceiling &= PUD_MASK;
243 		if (!ceiling)
244 			return;
245 	}
246 	if (end - 1 > ceiling - 1)
247 		return;
248 
249 	pmd = pmd_offset(pud, start);
250 	pud_clear(pud);
251 	pmd_free_tlb(tlb, pmd, start);
252 	mm_dec_nr_pmds(tlb->mm);
253 }
254 
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256 				unsigned long addr, unsigned long end,
257 				unsigned long floor, unsigned long ceiling)
258 {
259 	pud_t *pud;
260 	unsigned long next;
261 	unsigned long start;
262 
263 	start = addr;
264 	pud = pud_offset(p4d, addr);
265 	do {
266 		next = pud_addr_end(addr, end);
267 		if (pud_none_or_clear_bad(pud))
268 			continue;
269 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270 	} while (pud++, addr = next, addr != end);
271 
272 	start &= P4D_MASK;
273 	if (start < floor)
274 		return;
275 	if (ceiling) {
276 		ceiling &= P4D_MASK;
277 		if (!ceiling)
278 			return;
279 	}
280 	if (end - 1 > ceiling - 1)
281 		return;
282 
283 	pud = pud_offset(p4d, start);
284 	p4d_clear(p4d);
285 	pud_free_tlb(tlb, pud, start);
286 	mm_dec_nr_puds(tlb->mm);
287 }
288 
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290 				unsigned long addr, unsigned long end,
291 				unsigned long floor, unsigned long ceiling)
292 {
293 	p4d_t *p4d;
294 	unsigned long next;
295 	unsigned long start;
296 
297 	start = addr;
298 	p4d = p4d_offset(pgd, addr);
299 	do {
300 		next = p4d_addr_end(addr, end);
301 		if (p4d_none_or_clear_bad(p4d))
302 			continue;
303 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304 	} while (p4d++, addr = next, addr != end);
305 
306 	start &= PGDIR_MASK;
307 	if (start < floor)
308 		return;
309 	if (ceiling) {
310 		ceiling &= PGDIR_MASK;
311 		if (!ceiling)
312 			return;
313 	}
314 	if (end - 1 > ceiling - 1)
315 		return;
316 
317 	p4d = p4d_offset(pgd, start);
318 	pgd_clear(pgd);
319 	p4d_free_tlb(tlb, p4d, start);
320 }
321 
322 /*
323  * This function frees user-level page tables of a process.
324  */
325 void free_pgd_range(struct mmu_gather *tlb,
326 			unsigned long addr, unsigned long end,
327 			unsigned long floor, unsigned long ceiling)
328 {
329 	pgd_t *pgd;
330 	unsigned long next;
331 
332 	/*
333 	 * The next few lines have given us lots of grief...
334 	 *
335 	 * Why are we testing PMD* at this top level?  Because often
336 	 * there will be no work to do at all, and we'd prefer not to
337 	 * go all the way down to the bottom just to discover that.
338 	 *
339 	 * Why all these "- 1"s?  Because 0 represents both the bottom
340 	 * of the address space and the top of it (using -1 for the
341 	 * top wouldn't help much: the masks would do the wrong thing).
342 	 * The rule is that addr 0 and floor 0 refer to the bottom of
343 	 * the address space, but end 0 and ceiling 0 refer to the top
344 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 	 * that end 0 case should be mythical).
346 	 *
347 	 * Wherever addr is brought up or ceiling brought down, we must
348 	 * be careful to reject "the opposite 0" before it confuses the
349 	 * subsequent tests.  But what about where end is brought down
350 	 * by PMD_SIZE below? no, end can't go down to 0 there.
351 	 *
352 	 * Whereas we round start (addr) and ceiling down, by different
353 	 * masks at different levels, in order to test whether a table
354 	 * now has no other vmas using it, so can be freed, we don't
355 	 * bother to round floor or end up - the tests don't need that.
356 	 */
357 
358 	addr &= PMD_MASK;
359 	if (addr < floor) {
360 		addr += PMD_SIZE;
361 		if (!addr)
362 			return;
363 	}
364 	if (ceiling) {
365 		ceiling &= PMD_MASK;
366 		if (!ceiling)
367 			return;
368 	}
369 	if (end - 1 > ceiling - 1)
370 		end -= PMD_SIZE;
371 	if (addr > end - 1)
372 		return;
373 	/*
374 	 * We add page table cache pages with PAGE_SIZE,
375 	 * (see pte_free_tlb()), flush the tlb if we need
376 	 */
377 	tlb_change_page_size(tlb, PAGE_SIZE);
378 	pgd = pgd_offset(tlb->mm, addr);
379 	do {
380 		next = pgd_addr_end(addr, end);
381 		if (pgd_none_or_clear_bad(pgd))
382 			continue;
383 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384 	} while (pgd++, addr = next, addr != end);
385 }
386 
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388 		unsigned long floor, unsigned long ceiling)
389 {
390 	while (vma) {
391 		struct vm_area_struct *next = vma->vm_next;
392 		unsigned long addr = vma->vm_start;
393 
394 		/*
395 		 * Hide vma from rmap and truncate_pagecache before freeing
396 		 * pgtables
397 		 */
398 		unlink_anon_vmas(vma);
399 		unlink_file_vma(vma);
400 
401 		if (is_vm_hugetlb_page(vma)) {
402 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403 				floor, next ? next->vm_start : ceiling);
404 		} else {
405 			/*
406 			 * Optimization: gather nearby vmas into one call down
407 			 */
408 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409 			       && !is_vm_hugetlb_page(next)) {
410 				vma = next;
411 				next = vma->vm_next;
412 				unlink_anon_vmas(vma);
413 				unlink_file_vma(vma);
414 			}
415 			free_pgd_range(tlb, addr, vma->vm_end,
416 				floor, next ? next->vm_start : ceiling);
417 		}
418 		vma = next;
419 	}
420 }
421 
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423 {
424 	spinlock_t *ptl;
425 	pgtable_t new = pte_alloc_one(mm);
426 	if (!new)
427 		return -ENOMEM;
428 
429 	/*
430 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 	 * visible before the pte is made visible to other CPUs by being
432 	 * put into page tables.
433 	 *
434 	 * The other side of the story is the pointer chasing in the page
435 	 * table walking code (when walking the page table without locking;
436 	 * ie. most of the time). Fortunately, these data accesses consist
437 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 	 * being the notable exception) will already guarantee loads are
439 	 * seen in-order. See the alpha page table accessors for the
440 	 * smp_read_barrier_depends() barriers in page table walking code.
441 	 */
442 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443 
444 	ptl = pmd_lock(mm, pmd);
445 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
446 		mm_inc_nr_ptes(mm);
447 		pmd_populate(mm, pmd, new);
448 		new = NULL;
449 	}
450 	spin_unlock(ptl);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	smp_wmb(); /* See comment in __pte_alloc */
463 
464 	spin_lock(&init_mm.page_table_lock);
465 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
466 		pmd_populate_kernel(&init_mm, pmd, new);
467 		new = NULL;
468 	}
469 	spin_unlock(&init_mm.page_table_lock);
470 	if (new)
471 		pte_free_kernel(&init_mm, new);
472 	return 0;
473 }
474 
475 static inline void init_rss_vec(int *rss)
476 {
477 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479 
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482 	int i;
483 
484 	if (current->mm == mm)
485 		sync_mm_rss(mm);
486 	for (i = 0; i < NR_MM_COUNTERS; i++)
487 		if (rss[i])
488 			add_mm_counter(mm, i, rss[i]);
489 }
490 
491 /*
492  * This function is called to print an error when a bad pte
493  * is found. For example, we might have a PFN-mapped pte in
494  * a region that doesn't allow it.
495  *
496  * The calling function must still handle the error.
497  */
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499 			  pte_t pte, struct page *page)
500 {
501 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502 	p4d_t *p4d = p4d_offset(pgd, addr);
503 	pud_t *pud = pud_offset(p4d, addr);
504 	pmd_t *pmd = pmd_offset(pud, addr);
505 	struct address_space *mapping;
506 	pgoff_t index;
507 	static unsigned long resume;
508 	static unsigned long nr_shown;
509 	static unsigned long nr_unshown;
510 
511 	/*
512 	 * Allow a burst of 60 reports, then keep quiet for that minute;
513 	 * or allow a steady drip of one report per second.
514 	 */
515 	if (nr_shown == 60) {
516 		if (time_before(jiffies, resume)) {
517 			nr_unshown++;
518 			return;
519 		}
520 		if (nr_unshown) {
521 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522 				 nr_unshown);
523 			nr_unshown = 0;
524 		}
525 		nr_shown = 0;
526 	}
527 	if (nr_shown++ == 0)
528 		resume = jiffies + 60 * HZ;
529 
530 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531 	index = linear_page_index(vma, addr);
532 
533 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
534 		 current->comm,
535 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
536 	if (page)
537 		dump_page(page, "bad pte");
538 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541 		 vma->vm_file,
542 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
543 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544 		 mapping ? mapping->a_ops->readpage : NULL);
545 	dump_stack();
546 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548 
549 /*
550  * vm_normal_page -- This function gets the "struct page" associated with a pte.
551  *
552  * "Special" mappings do not wish to be associated with a "struct page" (either
553  * it doesn't exist, or it exists but they don't want to touch it). In this
554  * case, NULL is returned here. "Normal" mappings do have a struct page.
555  *
556  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557  * pte bit, in which case this function is trivial. Secondly, an architecture
558  * may not have a spare pte bit, which requires a more complicated scheme,
559  * described below.
560  *
561  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562  * special mapping (even if there are underlying and valid "struct pages").
563  * COWed pages of a VM_PFNMAP are always normal.
564  *
565  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568  * mapping will always honor the rule
569  *
570  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571  *
572  * And for normal mappings this is false.
573  *
574  * This restricts such mappings to be a linear translation from virtual address
575  * to pfn. To get around this restriction, we allow arbitrary mappings so long
576  * as the vma is not a COW mapping; in that case, we know that all ptes are
577  * special (because none can have been COWed).
578  *
579  *
580  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581  *
582  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583  * page" backing, however the difference is that _all_ pages with a struct
584  * page (that is, those where pfn_valid is true) are refcounted and considered
585  * normal pages by the VM. The disadvantage is that pages are refcounted
586  * (which can be slower and simply not an option for some PFNMAP users). The
587  * advantage is that we don't have to follow the strict linearity rule of
588  * PFNMAP mappings in order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648 				pmd_t pmd)
649 {
650 	unsigned long pfn = pmd_pfn(pmd);
651 
652 	/*
653 	 * There is no pmd_special() but there may be special pmds, e.g.
654 	 * in a direct-access (dax) mapping, so let's just replicate the
655 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656 	 */
657 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658 		if (vma->vm_flags & VM_MIXEDMAP) {
659 			if (!pfn_valid(pfn))
660 				return NULL;
661 			goto out;
662 		} else {
663 			unsigned long off;
664 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
665 			if (pfn == vma->vm_pgoff + off)
666 				return NULL;
667 			if (!is_cow_mapping(vma->vm_flags))
668 				return NULL;
669 		}
670 	}
671 
672 	if (pmd_devmap(pmd))
673 		return NULL;
674 	if (is_huge_zero_pmd(pmd))
675 		return NULL;
676 	if (unlikely(pfn > highest_memmap_pfn))
677 		return NULL;
678 
679 	/*
680 	 * NOTE! We still have PageReserved() pages in the page tables.
681 	 * eg. VDSO mappings can cause them to exist.
682 	 */
683 out:
684 	return pfn_to_page(pfn);
685 }
686 #endif
687 
688 /*
689  * copy one vm_area from one task to the other. Assumes the page tables
690  * already present in the new task to be cleared in the whole range
691  * covered by this vma.
692  */
693 
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697 		unsigned long addr, int *rss)
698 {
699 	unsigned long vm_flags = vma->vm_flags;
700 	pte_t pte = *src_pte;
701 	struct page *page;
702 
703 	/* pte contains position in swap or file, so copy. */
704 	if (unlikely(!pte_present(pte))) {
705 		swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 		if (likely(!non_swap_entry(entry))) {
708 			if (swap_duplicate(entry) < 0)
709 				return entry.val;
710 
711 			/* make sure dst_mm is on swapoff's mmlist. */
712 			if (unlikely(list_empty(&dst_mm->mmlist))) {
713 				spin_lock(&mmlist_lock);
714 				if (list_empty(&dst_mm->mmlist))
715 					list_add(&dst_mm->mmlist,
716 							&src_mm->mmlist);
717 				spin_unlock(&mmlist_lock);
718 			}
719 			rss[MM_SWAPENTS]++;
720 		} else if (is_migration_entry(entry)) {
721 			page = migration_entry_to_page(entry);
722 
723 			rss[mm_counter(page)]++;
724 
725 			if (is_write_migration_entry(entry) &&
726 					is_cow_mapping(vm_flags)) {
727 				/*
728 				 * COW mappings require pages in both
729 				 * parent and child to be set to read.
730 				 */
731 				make_migration_entry_read(&entry);
732 				pte = swp_entry_to_pte(entry);
733 				if (pte_swp_soft_dirty(*src_pte))
734 					pte = pte_swp_mksoft_dirty(pte);
735 				if (pte_swp_uffd_wp(*src_pte))
736 					pte = pte_swp_mkuffd_wp(pte);
737 				set_pte_at(src_mm, addr, src_pte, pte);
738 			}
739 		} else if (is_device_private_entry(entry)) {
740 			page = device_private_entry_to_page(entry);
741 
742 			/*
743 			 * Update rss count even for unaddressable pages, as
744 			 * they should treated just like normal pages in this
745 			 * respect.
746 			 *
747 			 * We will likely want to have some new rss counters
748 			 * for unaddressable pages, at some point. But for now
749 			 * keep things as they are.
750 			 */
751 			get_page(page);
752 			rss[mm_counter(page)]++;
753 			page_dup_rmap(page, false);
754 
755 			/*
756 			 * We do not preserve soft-dirty information, because so
757 			 * far, checkpoint/restore is the only feature that
758 			 * requires that. And checkpoint/restore does not work
759 			 * when a device driver is involved (you cannot easily
760 			 * save and restore device driver state).
761 			 */
762 			if (is_write_device_private_entry(entry) &&
763 			    is_cow_mapping(vm_flags)) {
764 				make_device_private_entry_read(&entry);
765 				pte = swp_entry_to_pte(entry);
766 				if (pte_swp_uffd_wp(*src_pte))
767 					pte = pte_swp_mkuffd_wp(pte);
768 				set_pte_at(src_mm, addr, src_pte, pte);
769 			}
770 		}
771 		goto out_set_pte;
772 	}
773 
774 	/*
775 	 * If it's a COW mapping, write protect it both
776 	 * in the parent and the child
777 	 */
778 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 		ptep_set_wrprotect(src_mm, addr, src_pte);
780 		pte = pte_wrprotect(pte);
781 	}
782 
783 	/*
784 	 * If it's a shared mapping, mark it clean in
785 	 * the child
786 	 */
787 	if (vm_flags & VM_SHARED)
788 		pte = pte_mkclean(pte);
789 	pte = pte_mkold(pte);
790 
791 	/*
792 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 	 * does not have the VM_UFFD_WP, which means that the uffd
794 	 * fork event is not enabled.
795 	 */
796 	if (!(vm_flags & VM_UFFD_WP))
797 		pte = pte_clear_uffd_wp(pte);
798 
799 	page = vm_normal_page(vma, addr, pte);
800 	if (page) {
801 		get_page(page);
802 		page_dup_rmap(page, false);
803 		rss[mm_counter(page)]++;
804 	}
805 
806 out_set_pte:
807 	set_pte_at(dst_mm, addr, dst_pte, pte);
808 	return 0;
809 }
810 
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813 		   unsigned long addr, unsigned long end)
814 {
815 	pte_t *orig_src_pte, *orig_dst_pte;
816 	pte_t *src_pte, *dst_pte;
817 	spinlock_t *src_ptl, *dst_ptl;
818 	int progress = 0;
819 	int rss[NR_MM_COUNTERS];
820 	swp_entry_t entry = (swp_entry_t){0};
821 
822 again:
823 	init_rss_vec(rss);
824 
825 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826 	if (!dst_pte)
827 		return -ENOMEM;
828 	src_pte = pte_offset_map(src_pmd, addr);
829 	src_ptl = pte_lockptr(src_mm, src_pmd);
830 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831 	orig_src_pte = src_pte;
832 	orig_dst_pte = dst_pte;
833 	arch_enter_lazy_mmu_mode();
834 
835 	do {
836 		/*
837 		 * We are holding two locks at this point - either of them
838 		 * could generate latencies in another task on another CPU.
839 		 */
840 		if (progress >= 32) {
841 			progress = 0;
842 			if (need_resched() ||
843 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844 				break;
845 		}
846 		if (pte_none(*src_pte)) {
847 			progress++;
848 			continue;
849 		}
850 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851 							vma, addr, rss);
852 		if (entry.val)
853 			break;
854 		progress += 8;
855 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856 
857 	arch_leave_lazy_mmu_mode();
858 	spin_unlock(src_ptl);
859 	pte_unmap(orig_src_pte);
860 	add_mm_rss_vec(dst_mm, rss);
861 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
862 	cond_resched();
863 
864 	if (entry.val) {
865 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866 			return -ENOMEM;
867 		progress = 0;
868 	}
869 	if (addr != end)
870 		goto again;
871 	return 0;
872 }
873 
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876 		unsigned long addr, unsigned long end)
877 {
878 	pmd_t *src_pmd, *dst_pmd;
879 	unsigned long next;
880 
881 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882 	if (!dst_pmd)
883 		return -ENOMEM;
884 	src_pmd = pmd_offset(src_pud, addr);
885 	do {
886 		next = pmd_addr_end(addr, end);
887 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888 			|| pmd_devmap(*src_pmd)) {
889 			int err;
890 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891 			err = copy_huge_pmd(dst_mm, src_mm,
892 					    dst_pmd, src_pmd, addr, vma);
893 			if (err == -ENOMEM)
894 				return -ENOMEM;
895 			if (!err)
896 				continue;
897 			/* fall through */
898 		}
899 		if (pmd_none_or_clear_bad(src_pmd))
900 			continue;
901 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902 						vma, addr, next))
903 			return -ENOMEM;
904 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
905 	return 0;
906 }
907 
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910 		unsigned long addr, unsigned long end)
911 {
912 	pud_t *src_pud, *dst_pud;
913 	unsigned long next;
914 
915 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916 	if (!dst_pud)
917 		return -ENOMEM;
918 	src_pud = pud_offset(src_p4d, addr);
919 	do {
920 		next = pud_addr_end(addr, end);
921 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922 			int err;
923 
924 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925 			err = copy_huge_pud(dst_mm, src_mm,
926 					    dst_pud, src_pud, addr, vma);
927 			if (err == -ENOMEM)
928 				return -ENOMEM;
929 			if (!err)
930 				continue;
931 			/* fall through */
932 		}
933 		if (pud_none_or_clear_bad(src_pud))
934 			continue;
935 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936 						vma, addr, next))
937 			return -ENOMEM;
938 	} while (dst_pud++, src_pud++, addr = next, addr != end);
939 	return 0;
940 }
941 
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944 		unsigned long addr, unsigned long end)
945 {
946 	p4d_t *src_p4d, *dst_p4d;
947 	unsigned long next;
948 
949 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950 	if (!dst_p4d)
951 		return -ENOMEM;
952 	src_p4d = p4d_offset(src_pgd, addr);
953 	do {
954 		next = p4d_addr_end(addr, end);
955 		if (p4d_none_or_clear_bad(src_p4d))
956 			continue;
957 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958 						vma, addr, next))
959 			return -ENOMEM;
960 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
961 	return 0;
962 }
963 
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965 		struct vm_area_struct *vma)
966 {
967 	pgd_t *src_pgd, *dst_pgd;
968 	unsigned long next;
969 	unsigned long addr = vma->vm_start;
970 	unsigned long end = vma->vm_end;
971 	struct mmu_notifier_range range;
972 	bool is_cow;
973 	int ret;
974 
975 	/*
976 	 * Don't copy ptes where a page fault will fill them correctly.
977 	 * Fork becomes much lighter when there are big shared or private
978 	 * readonly mappings. The tradeoff is that copy_page_range is more
979 	 * efficient than faulting.
980 	 */
981 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982 			!vma->anon_vma)
983 		return 0;
984 
985 	if (is_vm_hugetlb_page(vma))
986 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987 
988 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989 		/*
990 		 * We do not free on error cases below as remove_vma
991 		 * gets called on error from higher level routine
992 		 */
993 		ret = track_pfn_copy(vma);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	/*
999 	 * We need to invalidate the secondary MMU mappings only when
1000 	 * there could be a permission downgrade on the ptes of the
1001 	 * parent mm. And a permission downgrade will only happen if
1002 	 * is_cow_mapping() returns true.
1003 	 */
1004 	is_cow = is_cow_mapping(vma->vm_flags);
1005 
1006 	if (is_cow) {
1007 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008 					0, vma, src_mm, addr, end);
1009 		mmu_notifier_invalidate_range_start(&range);
1010 	}
1011 
1012 	ret = 0;
1013 	dst_pgd = pgd_offset(dst_mm, addr);
1014 	src_pgd = pgd_offset(src_mm, addr);
1015 	do {
1016 		next = pgd_addr_end(addr, end);
1017 		if (pgd_none_or_clear_bad(src_pgd))
1018 			continue;
1019 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020 					    vma, addr, next))) {
1021 			ret = -ENOMEM;
1022 			break;
1023 		}
1024 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025 
1026 	if (is_cow)
1027 		mmu_notifier_invalidate_range_end(&range);
1028 	return ret;
1029 }
1030 
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032 				struct vm_area_struct *vma, pmd_t *pmd,
1033 				unsigned long addr, unsigned long end,
1034 				struct zap_details *details)
1035 {
1036 	struct mm_struct *mm = tlb->mm;
1037 	int force_flush = 0;
1038 	int rss[NR_MM_COUNTERS];
1039 	spinlock_t *ptl;
1040 	pte_t *start_pte;
1041 	pte_t *pte;
1042 	swp_entry_t entry;
1043 
1044 	tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046 	init_rss_vec(rss);
1047 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048 	pte = start_pte;
1049 	flush_tlb_batched_pending(mm);
1050 	arch_enter_lazy_mmu_mode();
1051 	do {
1052 		pte_t ptent = *pte;
1053 		if (pte_none(ptent))
1054 			continue;
1055 
1056 		if (need_resched())
1057 			break;
1058 
1059 		if (pte_present(ptent)) {
1060 			struct page *page;
1061 
1062 			page = vm_normal_page(vma, addr, ptent);
1063 			if (unlikely(details) && page) {
1064 				/*
1065 				 * unmap_shared_mapping_pages() wants to
1066 				 * invalidate cache without truncating:
1067 				 * unmap shared but keep private pages.
1068 				 */
1069 				if (details->check_mapping &&
1070 				    details->check_mapping != page_rmapping(page))
1071 					continue;
1072 			}
1073 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1074 							tlb->fullmm);
1075 			tlb_remove_tlb_entry(tlb, pte, addr);
1076 			if (unlikely(!page))
1077 				continue;
1078 
1079 			if (!PageAnon(page)) {
1080 				if (pte_dirty(ptent)) {
1081 					force_flush = 1;
1082 					set_page_dirty(page);
1083 				}
1084 				if (pte_young(ptent) &&
1085 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1086 					mark_page_accessed(page);
1087 			}
1088 			rss[mm_counter(page)]--;
1089 			page_remove_rmap(page, false);
1090 			if (unlikely(page_mapcount(page) < 0))
1091 				print_bad_pte(vma, addr, ptent, page);
1092 			if (unlikely(__tlb_remove_page(tlb, page))) {
1093 				force_flush = 1;
1094 				addr += PAGE_SIZE;
1095 				break;
1096 			}
1097 			continue;
1098 		}
1099 
1100 		entry = pte_to_swp_entry(ptent);
1101 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102 			struct page *page = device_private_entry_to_page(entry);
1103 
1104 			if (unlikely(details && details->check_mapping)) {
1105 				/*
1106 				 * unmap_shared_mapping_pages() wants to
1107 				 * invalidate cache without truncating:
1108 				 * unmap shared but keep private pages.
1109 				 */
1110 				if (details->check_mapping !=
1111 				    page_rmapping(page))
1112 					continue;
1113 			}
1114 
1115 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116 			rss[mm_counter(page)]--;
1117 			page_remove_rmap(page, false);
1118 			put_page(page);
1119 			continue;
1120 		}
1121 
1122 		/* If details->check_mapping, we leave swap entries. */
1123 		if (unlikely(details))
1124 			continue;
1125 
1126 		if (!non_swap_entry(entry))
1127 			rss[MM_SWAPENTS]--;
1128 		else if (is_migration_entry(entry)) {
1129 			struct page *page;
1130 
1131 			page = migration_entry_to_page(entry);
1132 			rss[mm_counter(page)]--;
1133 		}
1134 		if (unlikely(!free_swap_and_cache(entry)))
1135 			print_bad_pte(vma, addr, ptent, NULL);
1136 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137 	} while (pte++, addr += PAGE_SIZE, addr != end);
1138 
1139 	add_mm_rss_vec(mm, rss);
1140 	arch_leave_lazy_mmu_mode();
1141 
1142 	/* Do the actual TLB flush before dropping ptl */
1143 	if (force_flush)
1144 		tlb_flush_mmu_tlbonly(tlb);
1145 	pte_unmap_unlock(start_pte, ptl);
1146 
1147 	/*
1148 	 * If we forced a TLB flush (either due to running out of
1149 	 * batch buffers or because we needed to flush dirty TLB
1150 	 * entries before releasing the ptl), free the batched
1151 	 * memory too. Restart if we didn't do everything.
1152 	 */
1153 	if (force_flush) {
1154 		force_flush = 0;
1155 		tlb_flush_mmu(tlb);
1156 	}
1157 
1158 	if (addr != end) {
1159 		cond_resched();
1160 		goto again;
1161 	}
1162 
1163 	return addr;
1164 }
1165 
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 				struct vm_area_struct *vma, pud_t *pud,
1168 				unsigned long addr, unsigned long end,
1169 				struct zap_details *details)
1170 {
1171 	pmd_t *pmd;
1172 	unsigned long next;
1173 
1174 	pmd = pmd_offset(pud, addr);
1175 	do {
1176 		next = pmd_addr_end(addr, end);
1177 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 			if (next - addr != HPAGE_PMD_SIZE)
1179 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1180 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 				goto next;
1182 			/* fall through */
1183 		}
1184 		/*
1185 		 * Here there can be other concurrent MADV_DONTNEED or
1186 		 * trans huge page faults running, and if the pmd is
1187 		 * none or trans huge it can change under us. This is
1188 		 * because MADV_DONTNEED holds the mmap_lock in read
1189 		 * mode.
1190 		 */
1191 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 			goto next;
1193 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 		cond_resched();
1196 	} while (pmd++, addr = next, addr != end);
1197 
1198 	return addr;
1199 }
1200 
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 				struct vm_area_struct *vma, p4d_t *p4d,
1203 				unsigned long addr, unsigned long end,
1204 				struct zap_details *details)
1205 {
1206 	pud_t *pud;
1207 	unsigned long next;
1208 
1209 	pud = pud_offset(p4d, addr);
1210 	do {
1211 		next = pud_addr_end(addr, end);
1212 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 			if (next - addr != HPAGE_PUD_SIZE) {
1214 				mmap_assert_locked(tlb->mm);
1215 				split_huge_pud(vma, pud, addr);
1216 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1217 				goto next;
1218 			/* fall through */
1219 		}
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 		cond_resched();
1225 	} while (pud++, addr = next, addr != end);
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pgd_t *pgd,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	p4d_t *p4d;
1236 	unsigned long next;
1237 
1238 	p4d = p4d_offset(pgd, addr);
1239 	do {
1240 		next = p4d_addr_end(addr, end);
1241 		if (p4d_none_or_clear_bad(p4d))
1242 			continue;
1243 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 	} while (p4d++, addr = next, addr != end);
1245 
1246 	return addr;
1247 }
1248 
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 			     struct vm_area_struct *vma,
1251 			     unsigned long addr, unsigned long end,
1252 			     struct zap_details *details)
1253 {
1254 	pgd_t *pgd;
1255 	unsigned long next;
1256 
1257 	BUG_ON(addr >= end);
1258 	tlb_start_vma(tlb, vma);
1259 	pgd = pgd_offset(vma->vm_mm, addr);
1260 	do {
1261 		next = pgd_addr_end(addr, end);
1262 		if (pgd_none_or_clear_bad(pgd))
1263 			continue;
1264 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 	} while (pgd++, addr = next, addr != end);
1266 	tlb_end_vma(tlb, vma);
1267 }
1268 
1269 
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 		struct vm_area_struct *vma, unsigned long start_addr,
1272 		unsigned long end_addr,
1273 		struct zap_details *details)
1274 {
1275 	unsigned long start = max(vma->vm_start, start_addr);
1276 	unsigned long end;
1277 
1278 	if (start >= vma->vm_end)
1279 		return;
1280 	end = min(vma->vm_end, end_addr);
1281 	if (end <= vma->vm_start)
1282 		return;
1283 
1284 	if (vma->vm_file)
1285 		uprobe_munmap(vma, start, end);
1286 
1287 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 		untrack_pfn(vma, 0, 0);
1289 
1290 	if (start != end) {
1291 		if (unlikely(is_vm_hugetlb_page(vma))) {
1292 			/*
1293 			 * It is undesirable to test vma->vm_file as it
1294 			 * should be non-null for valid hugetlb area.
1295 			 * However, vm_file will be NULL in the error
1296 			 * cleanup path of mmap_region. When
1297 			 * hugetlbfs ->mmap method fails,
1298 			 * mmap_region() nullifies vma->vm_file
1299 			 * before calling this function to clean up.
1300 			 * Since no pte has actually been setup, it is
1301 			 * safe to do nothing in this case.
1302 			 */
1303 			if (vma->vm_file) {
1304 				i_mmap_lock_write(vma->vm_file->f_mapping);
1305 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 			}
1308 		} else
1309 			unmap_page_range(tlb, vma, start, end, details);
1310 	}
1311 }
1312 
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 		struct vm_area_struct *vma, unsigned long start_addr,
1333 		unsigned long end_addr)
1334 {
1335 	struct mmu_notifier_range range;
1336 
1337 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338 				start_addr, end_addr);
1339 	mmu_notifier_invalidate_range_start(&range);
1340 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 	mmu_notifier_invalidate_range_end(&range);
1343 }
1344 
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 		unsigned long size)
1355 {
1356 	struct mmu_notifier_range range;
1357 	struct mmu_gather tlb;
1358 
1359 	lru_add_drain();
1360 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 				start, start + size);
1362 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363 	update_hiwater_rss(vma->vm_mm);
1364 	mmu_notifier_invalidate_range_start(&range);
1365 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367 	mmu_notifier_invalidate_range_end(&range);
1368 	tlb_finish_mmu(&tlb, start, range.end);
1369 }
1370 
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 		unsigned long size, struct zap_details *details)
1382 {
1383 	struct mmu_notifier_range range;
1384 	struct mmu_gather tlb;
1385 
1386 	lru_add_drain();
1387 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388 				address, address + size);
1389 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390 	update_hiwater_rss(vma->vm_mm);
1391 	mmu_notifier_invalidate_range_start(&range);
1392 	unmap_single_vma(&tlb, vma, address, range.end, details);
1393 	mmu_notifier_invalidate_range_end(&range);
1394 	tlb_finish_mmu(&tlb, address, range.end);
1395 }
1396 
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  */
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 		unsigned long size)
1410 {
1411 	if (address < vma->vm_start || address + size > vma->vm_end ||
1412 	    		!(vma->vm_flags & VM_PFNMAP))
1413 		return;
1414 
1415 	zap_page_range_single(vma, address, size, NULL);
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418 
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420 {
1421 	pgd_t *pgd;
1422 	p4d_t *p4d;
1423 	pud_t *pud;
1424 	pmd_t *pmd;
1425 
1426 	pgd = pgd_offset(mm, addr);
1427 	p4d = p4d_alloc(mm, pgd, addr);
1428 	if (!p4d)
1429 		return NULL;
1430 	pud = pud_alloc(mm, p4d, addr);
1431 	if (!pud)
1432 		return NULL;
1433 	pmd = pmd_alloc(mm, pud, addr);
1434 	if (!pmd)
1435 		return NULL;
1436 
1437 	VM_BUG_ON(pmd_trans_huge(*pmd));
1438 	return pmd;
1439 }
1440 
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 			spinlock_t **ptl)
1443 {
1444 	pmd_t *pmd = walk_to_pmd(mm, addr);
1445 
1446 	if (!pmd)
1447 		return NULL;
1448 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450 
1451 static int validate_page_before_insert(struct page *page)
1452 {
1453 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454 		return -EINVAL;
1455 	flush_dcache_page(page);
1456 	return 0;
1457 }
1458 
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460 			unsigned long addr, struct page *page, pgprot_t prot)
1461 {
1462 	if (!pte_none(*pte))
1463 		return -EBUSY;
1464 	/* Ok, finally just insert the thing.. */
1465 	get_page(page);
1466 	inc_mm_counter_fast(mm, mm_counter_file(page));
1467 	page_add_file_rmap(page, false);
1468 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469 	return 0;
1470 }
1471 
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 			struct page *page, pgprot_t prot)
1481 {
1482 	struct mm_struct *mm = vma->vm_mm;
1483 	int retval;
1484 	pte_t *pte;
1485 	spinlock_t *ptl;
1486 
1487 	retval = validate_page_before_insert(page);
1488 	if (retval)
1489 		goto out;
1490 	retval = -ENOMEM;
1491 	pte = get_locked_pte(mm, addr, &ptl);
1492 	if (!pte)
1493 		goto out;
1494 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495 	pte_unmap_unlock(pte, ptl);
1496 out:
1497 	return retval;
1498 }
1499 
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1502 			unsigned long addr, struct page *page, pgprot_t prot)
1503 {
1504 	int err;
1505 
1506 	if (!page_count(page))
1507 		return -EINVAL;
1508 	err = validate_page_before_insert(page);
1509 	return err ? err : insert_page_into_pte_locked(
1510 		mm, pte_offset_map(pmd, addr), addr, page, prot);
1511 }
1512 
1513 /* insert_pages() amortizes the cost of spinlock operations
1514  * when inserting pages in a loop. Arch *must* define pte_index.
1515  */
1516 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1517 			struct page **pages, unsigned long *num, pgprot_t prot)
1518 {
1519 	pmd_t *pmd = NULL;
1520 	spinlock_t *pte_lock = NULL;
1521 	struct mm_struct *const mm = vma->vm_mm;
1522 	unsigned long curr_page_idx = 0;
1523 	unsigned long remaining_pages_total = *num;
1524 	unsigned long pages_to_write_in_pmd;
1525 	int ret;
1526 more:
1527 	ret = -EFAULT;
1528 	pmd = walk_to_pmd(mm, addr);
1529 	if (!pmd)
1530 		goto out;
1531 
1532 	pages_to_write_in_pmd = min_t(unsigned long,
1533 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1534 
1535 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1536 	ret = -ENOMEM;
1537 	if (pte_alloc(mm, pmd))
1538 		goto out;
1539 	pte_lock = pte_lockptr(mm, pmd);
1540 
1541 	while (pages_to_write_in_pmd) {
1542 		int pte_idx = 0;
1543 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1544 
1545 		spin_lock(pte_lock);
1546 		for (; pte_idx < batch_size; ++pte_idx) {
1547 			int err = insert_page_in_batch_locked(mm, pmd,
1548 				addr, pages[curr_page_idx], prot);
1549 			if (unlikely(err)) {
1550 				spin_unlock(pte_lock);
1551 				ret = err;
1552 				remaining_pages_total -= pte_idx;
1553 				goto out;
1554 			}
1555 			addr += PAGE_SIZE;
1556 			++curr_page_idx;
1557 		}
1558 		spin_unlock(pte_lock);
1559 		pages_to_write_in_pmd -= batch_size;
1560 		remaining_pages_total -= batch_size;
1561 	}
1562 	if (remaining_pages_total)
1563 		goto more;
1564 	ret = 0;
1565 out:
1566 	*num = remaining_pages_total;
1567 	return ret;
1568 }
1569 #endif  /* ifdef pte_index */
1570 
1571 /**
1572  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1573  * @vma: user vma to map to
1574  * @addr: target start user address of these pages
1575  * @pages: source kernel pages
1576  * @num: in: number of pages to map. out: number of pages that were *not*
1577  * mapped. (0 means all pages were successfully mapped).
1578  *
1579  * Preferred over vm_insert_page() when inserting multiple pages.
1580  *
1581  * In case of error, we may have mapped a subset of the provided
1582  * pages. It is the caller's responsibility to account for this case.
1583  *
1584  * The same restrictions apply as in vm_insert_page().
1585  */
1586 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1587 			struct page **pages, unsigned long *num)
1588 {
1589 #ifdef pte_index
1590 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1591 
1592 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1593 		return -EFAULT;
1594 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1595 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1596 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1597 		vma->vm_flags |= VM_MIXEDMAP;
1598 	}
1599 	/* Defer page refcount checking till we're about to map that page. */
1600 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1601 #else
1602 	unsigned long idx = 0, pgcount = *num;
1603 	int err;
1604 
1605 	for (; idx < pgcount; ++idx) {
1606 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1607 		if (err)
1608 			break;
1609 	}
1610 	*num = pgcount - idx;
1611 	return err;
1612 #endif  /* ifdef pte_index */
1613 }
1614 EXPORT_SYMBOL(vm_insert_pages);
1615 
1616 /**
1617  * vm_insert_page - insert single page into user vma
1618  * @vma: user vma to map to
1619  * @addr: target user address of this page
1620  * @page: source kernel page
1621  *
1622  * This allows drivers to insert individual pages they've allocated
1623  * into a user vma.
1624  *
1625  * The page has to be a nice clean _individual_ kernel allocation.
1626  * If you allocate a compound page, you need to have marked it as
1627  * such (__GFP_COMP), or manually just split the page up yourself
1628  * (see split_page()).
1629  *
1630  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1631  * took an arbitrary page protection parameter. This doesn't allow
1632  * that. Your vma protection will have to be set up correctly, which
1633  * means that if you want a shared writable mapping, you'd better
1634  * ask for a shared writable mapping!
1635  *
1636  * The page does not need to be reserved.
1637  *
1638  * Usually this function is called from f_op->mmap() handler
1639  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1640  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1641  * function from other places, for example from page-fault handler.
1642  *
1643  * Return: %0 on success, negative error code otherwise.
1644  */
1645 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1646 			struct page *page)
1647 {
1648 	if (addr < vma->vm_start || addr >= vma->vm_end)
1649 		return -EFAULT;
1650 	if (!page_count(page))
1651 		return -EINVAL;
1652 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1653 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1654 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1655 		vma->vm_flags |= VM_MIXEDMAP;
1656 	}
1657 	return insert_page(vma, addr, page, vma->vm_page_prot);
1658 }
1659 EXPORT_SYMBOL(vm_insert_page);
1660 
1661 /*
1662  * __vm_map_pages - maps range of kernel pages into user vma
1663  * @vma: user vma to map to
1664  * @pages: pointer to array of source kernel pages
1665  * @num: number of pages in page array
1666  * @offset: user's requested vm_pgoff
1667  *
1668  * This allows drivers to map range of kernel pages into a user vma.
1669  *
1670  * Return: 0 on success and error code otherwise.
1671  */
1672 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1673 				unsigned long num, unsigned long offset)
1674 {
1675 	unsigned long count = vma_pages(vma);
1676 	unsigned long uaddr = vma->vm_start;
1677 	int ret, i;
1678 
1679 	/* Fail if the user requested offset is beyond the end of the object */
1680 	if (offset >= num)
1681 		return -ENXIO;
1682 
1683 	/* Fail if the user requested size exceeds available object size */
1684 	if (count > num - offset)
1685 		return -ENXIO;
1686 
1687 	for (i = 0; i < count; i++) {
1688 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1689 		if (ret < 0)
1690 			return ret;
1691 		uaddr += PAGE_SIZE;
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 /**
1698  * vm_map_pages - maps range of kernel pages starts with non zero offset
1699  * @vma: user vma to map to
1700  * @pages: pointer to array of source kernel pages
1701  * @num: number of pages in page array
1702  *
1703  * Maps an object consisting of @num pages, catering for the user's
1704  * requested vm_pgoff
1705  *
1706  * If we fail to insert any page into the vma, the function will return
1707  * immediately leaving any previously inserted pages present.  Callers
1708  * from the mmap handler may immediately return the error as their caller
1709  * will destroy the vma, removing any successfully inserted pages. Other
1710  * callers should make their own arrangements for calling unmap_region().
1711  *
1712  * Context: Process context. Called by mmap handlers.
1713  * Return: 0 on success and error code otherwise.
1714  */
1715 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1716 				unsigned long num)
1717 {
1718 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1719 }
1720 EXPORT_SYMBOL(vm_map_pages);
1721 
1722 /**
1723  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1724  * @vma: user vma to map to
1725  * @pages: pointer to array of source kernel pages
1726  * @num: number of pages in page array
1727  *
1728  * Similar to vm_map_pages(), except that it explicitly sets the offset
1729  * to 0. This function is intended for the drivers that did not consider
1730  * vm_pgoff.
1731  *
1732  * Context: Process context. Called by mmap handlers.
1733  * Return: 0 on success and error code otherwise.
1734  */
1735 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1736 				unsigned long num)
1737 {
1738 	return __vm_map_pages(vma, pages, num, 0);
1739 }
1740 EXPORT_SYMBOL(vm_map_pages_zero);
1741 
1742 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1743 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1744 {
1745 	struct mm_struct *mm = vma->vm_mm;
1746 	pte_t *pte, entry;
1747 	spinlock_t *ptl;
1748 
1749 	pte = get_locked_pte(mm, addr, &ptl);
1750 	if (!pte)
1751 		return VM_FAULT_OOM;
1752 	if (!pte_none(*pte)) {
1753 		if (mkwrite) {
1754 			/*
1755 			 * For read faults on private mappings the PFN passed
1756 			 * in may not match the PFN we have mapped if the
1757 			 * mapped PFN is a writeable COW page.  In the mkwrite
1758 			 * case we are creating a writable PTE for a shared
1759 			 * mapping and we expect the PFNs to match. If they
1760 			 * don't match, we are likely racing with block
1761 			 * allocation and mapping invalidation so just skip the
1762 			 * update.
1763 			 */
1764 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1765 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1766 				goto out_unlock;
1767 			}
1768 			entry = pte_mkyoung(*pte);
1769 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1771 				update_mmu_cache(vma, addr, pte);
1772 		}
1773 		goto out_unlock;
1774 	}
1775 
1776 	/* Ok, finally just insert the thing.. */
1777 	if (pfn_t_devmap(pfn))
1778 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1779 	else
1780 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1781 
1782 	if (mkwrite) {
1783 		entry = pte_mkyoung(entry);
1784 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1785 	}
1786 
1787 	set_pte_at(mm, addr, pte, entry);
1788 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1789 
1790 out_unlock:
1791 	pte_unmap_unlock(pte, ptl);
1792 	return VM_FAULT_NOPAGE;
1793 }
1794 
1795 /**
1796  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1797  * @vma: user vma to map to
1798  * @addr: target user address of this page
1799  * @pfn: source kernel pfn
1800  * @pgprot: pgprot flags for the inserted page
1801  *
1802  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1803  * to override pgprot on a per-page basis.
1804  *
1805  * This only makes sense for IO mappings, and it makes no sense for
1806  * COW mappings.  In general, using multiple vmas is preferable;
1807  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1808  * impractical.
1809  *
1810  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1811  * a value of @pgprot different from that of @vma->vm_page_prot.
1812  *
1813  * Context: Process context.  May allocate using %GFP_KERNEL.
1814  * Return: vm_fault_t value.
1815  */
1816 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1817 			unsigned long pfn, pgprot_t pgprot)
1818 {
1819 	/*
1820 	 * Technically, architectures with pte_special can avoid all these
1821 	 * restrictions (same for remap_pfn_range).  However we would like
1822 	 * consistency in testing and feature parity among all, so we should
1823 	 * try to keep these invariants in place for everybody.
1824 	 */
1825 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1826 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1827 						(VM_PFNMAP|VM_MIXEDMAP));
1828 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1829 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1830 
1831 	if (addr < vma->vm_start || addr >= vma->vm_end)
1832 		return VM_FAULT_SIGBUS;
1833 
1834 	if (!pfn_modify_allowed(pfn, pgprot))
1835 		return VM_FAULT_SIGBUS;
1836 
1837 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1838 
1839 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1840 			false);
1841 }
1842 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1843 
1844 /**
1845  * vmf_insert_pfn - insert single pfn into user vma
1846  * @vma: user vma to map to
1847  * @addr: target user address of this page
1848  * @pfn: source kernel pfn
1849  *
1850  * Similar to vm_insert_page, this allows drivers to insert individual pages
1851  * they've allocated into a user vma. Same comments apply.
1852  *
1853  * This function should only be called from a vm_ops->fault handler, and
1854  * in that case the handler should return the result of this function.
1855  *
1856  * vma cannot be a COW mapping.
1857  *
1858  * As this is called only for pages that do not currently exist, we
1859  * do not need to flush old virtual caches or the TLB.
1860  *
1861  * Context: Process context.  May allocate using %GFP_KERNEL.
1862  * Return: vm_fault_t value.
1863  */
1864 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1865 			unsigned long pfn)
1866 {
1867 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1868 }
1869 EXPORT_SYMBOL(vmf_insert_pfn);
1870 
1871 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1872 {
1873 	/* these checks mirror the abort conditions in vm_normal_page */
1874 	if (vma->vm_flags & VM_MIXEDMAP)
1875 		return true;
1876 	if (pfn_t_devmap(pfn))
1877 		return true;
1878 	if (pfn_t_special(pfn))
1879 		return true;
1880 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1881 		return true;
1882 	return false;
1883 }
1884 
1885 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1886 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1887 		bool mkwrite)
1888 {
1889 	int err;
1890 
1891 	BUG_ON(!vm_mixed_ok(vma, pfn));
1892 
1893 	if (addr < vma->vm_start || addr >= vma->vm_end)
1894 		return VM_FAULT_SIGBUS;
1895 
1896 	track_pfn_insert(vma, &pgprot, pfn);
1897 
1898 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1899 		return VM_FAULT_SIGBUS;
1900 
1901 	/*
1902 	 * If we don't have pte special, then we have to use the pfn_valid()
1903 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1904 	 * refcount the page if pfn_valid is true (hence insert_page rather
1905 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1906 	 * without pte special, it would there be refcounted as a normal page.
1907 	 */
1908 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1909 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1910 		struct page *page;
1911 
1912 		/*
1913 		 * At this point we are committed to insert_page()
1914 		 * regardless of whether the caller specified flags that
1915 		 * result in pfn_t_has_page() == false.
1916 		 */
1917 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1918 		err = insert_page(vma, addr, page, pgprot);
1919 	} else {
1920 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1921 	}
1922 
1923 	if (err == -ENOMEM)
1924 		return VM_FAULT_OOM;
1925 	if (err < 0 && err != -EBUSY)
1926 		return VM_FAULT_SIGBUS;
1927 
1928 	return VM_FAULT_NOPAGE;
1929 }
1930 
1931 /**
1932  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1933  * @vma: user vma to map to
1934  * @addr: target user address of this page
1935  * @pfn: source kernel pfn
1936  * @pgprot: pgprot flags for the inserted page
1937  *
1938  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1939  * to override pgprot on a per-page basis.
1940  *
1941  * Typically this function should be used by drivers to set caching- and
1942  * encryption bits different than those of @vma->vm_page_prot, because
1943  * the caching- or encryption mode may not be known at mmap() time.
1944  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1945  * to set caching and encryption bits for those vmas (except for COW pages).
1946  * This is ensured by core vm only modifying these page table entries using
1947  * functions that don't touch caching- or encryption bits, using pte_modify()
1948  * if needed. (See for example mprotect()).
1949  * Also when new page-table entries are created, this is only done using the
1950  * fault() callback, and never using the value of vma->vm_page_prot,
1951  * except for page-table entries that point to anonymous pages as the result
1952  * of COW.
1953  *
1954  * Context: Process context.  May allocate using %GFP_KERNEL.
1955  * Return: vm_fault_t value.
1956  */
1957 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1958 				 pfn_t pfn, pgprot_t pgprot)
1959 {
1960 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1961 }
1962 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1963 
1964 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1965 		pfn_t pfn)
1966 {
1967 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1968 }
1969 EXPORT_SYMBOL(vmf_insert_mixed);
1970 
1971 /*
1972  *  If the insertion of PTE failed because someone else already added a
1973  *  different entry in the mean time, we treat that as success as we assume
1974  *  the same entry was actually inserted.
1975  */
1976 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977 		unsigned long addr, pfn_t pfn)
1978 {
1979 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1980 }
1981 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1982 
1983 /*
1984  * maps a range of physical memory into the requested pages. the old
1985  * mappings are removed. any references to nonexistent pages results
1986  * in null mappings (currently treated as "copy-on-access")
1987  */
1988 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1989 			unsigned long addr, unsigned long end,
1990 			unsigned long pfn, pgprot_t prot)
1991 {
1992 	pte_t *pte;
1993 	spinlock_t *ptl;
1994 	int err = 0;
1995 
1996 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1997 	if (!pte)
1998 		return -ENOMEM;
1999 	arch_enter_lazy_mmu_mode();
2000 	do {
2001 		BUG_ON(!pte_none(*pte));
2002 		if (!pfn_modify_allowed(pfn, prot)) {
2003 			err = -EACCES;
2004 			break;
2005 		}
2006 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2007 		pfn++;
2008 	} while (pte++, addr += PAGE_SIZE, addr != end);
2009 	arch_leave_lazy_mmu_mode();
2010 	pte_unmap_unlock(pte - 1, ptl);
2011 	return err;
2012 }
2013 
2014 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2015 			unsigned long addr, unsigned long end,
2016 			unsigned long pfn, pgprot_t prot)
2017 {
2018 	pmd_t *pmd;
2019 	unsigned long next;
2020 	int err;
2021 
2022 	pfn -= addr >> PAGE_SHIFT;
2023 	pmd = pmd_alloc(mm, pud, addr);
2024 	if (!pmd)
2025 		return -ENOMEM;
2026 	VM_BUG_ON(pmd_trans_huge(*pmd));
2027 	do {
2028 		next = pmd_addr_end(addr, end);
2029 		err = remap_pte_range(mm, pmd, addr, next,
2030 				pfn + (addr >> PAGE_SHIFT), prot);
2031 		if (err)
2032 			return err;
2033 	} while (pmd++, addr = next, addr != end);
2034 	return 0;
2035 }
2036 
2037 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2038 			unsigned long addr, unsigned long end,
2039 			unsigned long pfn, pgprot_t prot)
2040 {
2041 	pud_t *pud;
2042 	unsigned long next;
2043 	int err;
2044 
2045 	pfn -= addr >> PAGE_SHIFT;
2046 	pud = pud_alloc(mm, p4d, addr);
2047 	if (!pud)
2048 		return -ENOMEM;
2049 	do {
2050 		next = pud_addr_end(addr, end);
2051 		err = remap_pmd_range(mm, pud, addr, next,
2052 				pfn + (addr >> PAGE_SHIFT), prot);
2053 		if (err)
2054 			return err;
2055 	} while (pud++, addr = next, addr != end);
2056 	return 0;
2057 }
2058 
2059 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060 			unsigned long addr, unsigned long end,
2061 			unsigned long pfn, pgprot_t prot)
2062 {
2063 	p4d_t *p4d;
2064 	unsigned long next;
2065 	int err;
2066 
2067 	pfn -= addr >> PAGE_SHIFT;
2068 	p4d = p4d_alloc(mm, pgd, addr);
2069 	if (!p4d)
2070 		return -ENOMEM;
2071 	do {
2072 		next = p4d_addr_end(addr, end);
2073 		err = remap_pud_range(mm, p4d, addr, next,
2074 				pfn + (addr >> PAGE_SHIFT), prot);
2075 		if (err)
2076 			return err;
2077 	} while (p4d++, addr = next, addr != end);
2078 	return 0;
2079 }
2080 
2081 /**
2082  * remap_pfn_range - remap kernel memory to userspace
2083  * @vma: user vma to map to
2084  * @addr: target user address to start at
2085  * @pfn: page frame number of kernel physical memory address
2086  * @size: size of mapping area
2087  * @prot: page protection flags for this mapping
2088  *
2089  * Note: this is only safe if the mm semaphore is held when called.
2090  *
2091  * Return: %0 on success, negative error code otherwise.
2092  */
2093 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2094 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2095 {
2096 	pgd_t *pgd;
2097 	unsigned long next;
2098 	unsigned long end = addr + PAGE_ALIGN(size);
2099 	struct mm_struct *mm = vma->vm_mm;
2100 	unsigned long remap_pfn = pfn;
2101 	int err;
2102 
2103 	/*
2104 	 * Physically remapped pages are special. Tell the
2105 	 * rest of the world about it:
2106 	 *   VM_IO tells people not to look at these pages
2107 	 *	(accesses can have side effects).
2108 	 *   VM_PFNMAP tells the core MM that the base pages are just
2109 	 *	raw PFN mappings, and do not have a "struct page" associated
2110 	 *	with them.
2111 	 *   VM_DONTEXPAND
2112 	 *      Disable vma merging and expanding with mremap().
2113 	 *   VM_DONTDUMP
2114 	 *      Omit vma from core dump, even when VM_IO turned off.
2115 	 *
2116 	 * There's a horrible special case to handle copy-on-write
2117 	 * behaviour that some programs depend on. We mark the "original"
2118 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2119 	 * See vm_normal_page() for details.
2120 	 */
2121 	if (is_cow_mapping(vma->vm_flags)) {
2122 		if (addr != vma->vm_start || end != vma->vm_end)
2123 			return -EINVAL;
2124 		vma->vm_pgoff = pfn;
2125 	}
2126 
2127 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2128 	if (err)
2129 		return -EINVAL;
2130 
2131 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2132 
2133 	BUG_ON(addr >= end);
2134 	pfn -= addr >> PAGE_SHIFT;
2135 	pgd = pgd_offset(mm, addr);
2136 	flush_cache_range(vma, addr, end);
2137 	do {
2138 		next = pgd_addr_end(addr, end);
2139 		err = remap_p4d_range(mm, pgd, addr, next,
2140 				pfn + (addr >> PAGE_SHIFT), prot);
2141 		if (err)
2142 			break;
2143 	} while (pgd++, addr = next, addr != end);
2144 
2145 	if (err)
2146 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2147 
2148 	return err;
2149 }
2150 EXPORT_SYMBOL(remap_pfn_range);
2151 
2152 /**
2153  * vm_iomap_memory - remap memory to userspace
2154  * @vma: user vma to map to
2155  * @start: start of the physical memory to be mapped
2156  * @len: size of area
2157  *
2158  * This is a simplified io_remap_pfn_range() for common driver use. The
2159  * driver just needs to give us the physical memory range to be mapped,
2160  * we'll figure out the rest from the vma information.
2161  *
2162  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2163  * whatever write-combining details or similar.
2164  *
2165  * Return: %0 on success, negative error code otherwise.
2166  */
2167 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2168 {
2169 	unsigned long vm_len, pfn, pages;
2170 
2171 	/* Check that the physical memory area passed in looks valid */
2172 	if (start + len < start)
2173 		return -EINVAL;
2174 	/*
2175 	 * You *really* shouldn't map things that aren't page-aligned,
2176 	 * but we've historically allowed it because IO memory might
2177 	 * just have smaller alignment.
2178 	 */
2179 	len += start & ~PAGE_MASK;
2180 	pfn = start >> PAGE_SHIFT;
2181 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2182 	if (pfn + pages < pfn)
2183 		return -EINVAL;
2184 
2185 	/* We start the mapping 'vm_pgoff' pages into the area */
2186 	if (vma->vm_pgoff > pages)
2187 		return -EINVAL;
2188 	pfn += vma->vm_pgoff;
2189 	pages -= vma->vm_pgoff;
2190 
2191 	/* Can we fit all of the mapping? */
2192 	vm_len = vma->vm_end - vma->vm_start;
2193 	if (vm_len >> PAGE_SHIFT > pages)
2194 		return -EINVAL;
2195 
2196 	/* Ok, let it rip */
2197 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2198 }
2199 EXPORT_SYMBOL(vm_iomap_memory);
2200 
2201 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2202 				     unsigned long addr, unsigned long end,
2203 				     pte_fn_t fn, void *data, bool create)
2204 {
2205 	pte_t *pte;
2206 	int err = 0;
2207 	spinlock_t *uninitialized_var(ptl);
2208 
2209 	if (create) {
2210 		pte = (mm == &init_mm) ?
2211 			pte_alloc_kernel(pmd, addr) :
2212 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2213 		if (!pte)
2214 			return -ENOMEM;
2215 	} else {
2216 		pte = (mm == &init_mm) ?
2217 			pte_offset_kernel(pmd, addr) :
2218 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2219 	}
2220 
2221 	BUG_ON(pmd_huge(*pmd));
2222 
2223 	arch_enter_lazy_mmu_mode();
2224 
2225 	do {
2226 		if (create || !pte_none(*pte)) {
2227 			err = fn(pte++, addr, data);
2228 			if (err)
2229 				break;
2230 		}
2231 	} while (addr += PAGE_SIZE, addr != end);
2232 
2233 	arch_leave_lazy_mmu_mode();
2234 
2235 	if (mm != &init_mm)
2236 		pte_unmap_unlock(pte-1, ptl);
2237 	return err;
2238 }
2239 
2240 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2241 				     unsigned long addr, unsigned long end,
2242 				     pte_fn_t fn, void *data, bool create)
2243 {
2244 	pmd_t *pmd;
2245 	unsigned long next;
2246 	int err = 0;
2247 
2248 	BUG_ON(pud_huge(*pud));
2249 
2250 	if (create) {
2251 		pmd = pmd_alloc(mm, pud, addr);
2252 		if (!pmd)
2253 			return -ENOMEM;
2254 	} else {
2255 		pmd = pmd_offset(pud, addr);
2256 	}
2257 	do {
2258 		next = pmd_addr_end(addr, end);
2259 		if (create || !pmd_none_or_clear_bad(pmd)) {
2260 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2261 						 create);
2262 			if (err)
2263 				break;
2264 		}
2265 	} while (pmd++, addr = next, addr != end);
2266 	return err;
2267 }
2268 
2269 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2270 				     unsigned long addr, unsigned long end,
2271 				     pte_fn_t fn, void *data, bool create)
2272 {
2273 	pud_t *pud;
2274 	unsigned long next;
2275 	int err = 0;
2276 
2277 	if (create) {
2278 		pud = pud_alloc(mm, p4d, addr);
2279 		if (!pud)
2280 			return -ENOMEM;
2281 	} else {
2282 		pud = pud_offset(p4d, addr);
2283 	}
2284 	do {
2285 		next = pud_addr_end(addr, end);
2286 		if (create || !pud_none_or_clear_bad(pud)) {
2287 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2288 						 create);
2289 			if (err)
2290 				break;
2291 		}
2292 	} while (pud++, addr = next, addr != end);
2293 	return err;
2294 }
2295 
2296 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2297 				     unsigned long addr, unsigned long end,
2298 				     pte_fn_t fn, void *data, bool create)
2299 {
2300 	p4d_t *p4d;
2301 	unsigned long next;
2302 	int err = 0;
2303 
2304 	if (create) {
2305 		p4d = p4d_alloc(mm, pgd, addr);
2306 		if (!p4d)
2307 			return -ENOMEM;
2308 	} else {
2309 		p4d = p4d_offset(pgd, addr);
2310 	}
2311 	do {
2312 		next = p4d_addr_end(addr, end);
2313 		if (create || !p4d_none_or_clear_bad(p4d)) {
2314 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2315 						 create);
2316 			if (err)
2317 				break;
2318 		}
2319 	} while (p4d++, addr = next, addr != end);
2320 	return err;
2321 }
2322 
2323 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2324 				 unsigned long size, pte_fn_t fn,
2325 				 void *data, bool create)
2326 {
2327 	pgd_t *pgd;
2328 	unsigned long next;
2329 	unsigned long end = addr + size;
2330 	int err = 0;
2331 
2332 	if (WARN_ON(addr >= end))
2333 		return -EINVAL;
2334 
2335 	pgd = pgd_offset(mm, addr);
2336 	do {
2337 		next = pgd_addr_end(addr, end);
2338 		if (!create && pgd_none_or_clear_bad(pgd))
2339 			continue;
2340 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2341 		if (err)
2342 			break;
2343 	} while (pgd++, addr = next, addr != end);
2344 
2345 	return err;
2346 }
2347 
2348 /*
2349  * Scan a region of virtual memory, filling in page tables as necessary
2350  * and calling a provided function on each leaf page table.
2351  */
2352 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2353 			unsigned long size, pte_fn_t fn, void *data)
2354 {
2355 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2356 }
2357 EXPORT_SYMBOL_GPL(apply_to_page_range);
2358 
2359 /*
2360  * Scan a region of virtual memory, calling a provided function on
2361  * each leaf page table where it exists.
2362  *
2363  * Unlike apply_to_page_range, this does _not_ fill in page tables
2364  * where they are absent.
2365  */
2366 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2367 				 unsigned long size, pte_fn_t fn, void *data)
2368 {
2369 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2370 }
2371 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2372 
2373 /*
2374  * handle_pte_fault chooses page fault handler according to an entry which was
2375  * read non-atomically.  Before making any commitment, on those architectures
2376  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2377  * parts, do_swap_page must check under lock before unmapping the pte and
2378  * proceeding (but do_wp_page is only called after already making such a check;
2379  * and do_anonymous_page can safely check later on).
2380  */
2381 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2382 				pte_t *page_table, pte_t orig_pte)
2383 {
2384 	int same = 1;
2385 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2386 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2387 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2388 		spin_lock(ptl);
2389 		same = pte_same(*page_table, orig_pte);
2390 		spin_unlock(ptl);
2391 	}
2392 #endif
2393 	pte_unmap(page_table);
2394 	return same;
2395 }
2396 
2397 static inline bool cow_user_page(struct page *dst, struct page *src,
2398 				 struct vm_fault *vmf)
2399 {
2400 	bool ret;
2401 	void *kaddr;
2402 	void __user *uaddr;
2403 	bool locked = false;
2404 	struct vm_area_struct *vma = vmf->vma;
2405 	struct mm_struct *mm = vma->vm_mm;
2406 	unsigned long addr = vmf->address;
2407 
2408 	debug_dma_assert_idle(src);
2409 
2410 	if (likely(src)) {
2411 		copy_user_highpage(dst, src, addr, vma);
2412 		return true;
2413 	}
2414 
2415 	/*
2416 	 * If the source page was a PFN mapping, we don't have
2417 	 * a "struct page" for it. We do a best-effort copy by
2418 	 * just copying from the original user address. If that
2419 	 * fails, we just zero-fill it. Live with it.
2420 	 */
2421 	kaddr = kmap_atomic(dst);
2422 	uaddr = (void __user *)(addr & PAGE_MASK);
2423 
2424 	/*
2425 	 * On architectures with software "accessed" bits, we would
2426 	 * take a double page fault, so mark it accessed here.
2427 	 */
2428 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2429 		pte_t entry;
2430 
2431 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2432 		locked = true;
2433 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2434 			/*
2435 			 * Other thread has already handled the fault
2436 			 * and update local tlb only
2437 			 */
2438 			update_mmu_tlb(vma, addr, vmf->pte);
2439 			ret = false;
2440 			goto pte_unlock;
2441 		}
2442 
2443 		entry = pte_mkyoung(vmf->orig_pte);
2444 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2445 			update_mmu_cache(vma, addr, vmf->pte);
2446 	}
2447 
2448 	/*
2449 	 * This really shouldn't fail, because the page is there
2450 	 * in the page tables. But it might just be unreadable,
2451 	 * in which case we just give up and fill the result with
2452 	 * zeroes.
2453 	 */
2454 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2455 		if (locked)
2456 			goto warn;
2457 
2458 		/* Re-validate under PTL if the page is still mapped */
2459 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2460 		locked = true;
2461 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2462 			/* The PTE changed under us, update local tlb */
2463 			update_mmu_tlb(vma, addr, vmf->pte);
2464 			ret = false;
2465 			goto pte_unlock;
2466 		}
2467 
2468 		/*
2469 		 * The same page can be mapped back since last copy attempt.
2470 		 * Try to copy again under PTL.
2471 		 */
2472 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2473 			/*
2474 			 * Give a warn in case there can be some obscure
2475 			 * use-case
2476 			 */
2477 warn:
2478 			WARN_ON_ONCE(1);
2479 			clear_page(kaddr);
2480 		}
2481 	}
2482 
2483 	ret = true;
2484 
2485 pte_unlock:
2486 	if (locked)
2487 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2488 	kunmap_atomic(kaddr);
2489 	flush_dcache_page(dst);
2490 
2491 	return ret;
2492 }
2493 
2494 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2495 {
2496 	struct file *vm_file = vma->vm_file;
2497 
2498 	if (vm_file)
2499 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2500 
2501 	/*
2502 	 * Special mappings (e.g. VDSO) do not have any file so fake
2503 	 * a default GFP_KERNEL for them.
2504 	 */
2505 	return GFP_KERNEL;
2506 }
2507 
2508 /*
2509  * Notify the address space that the page is about to become writable so that
2510  * it can prohibit this or wait for the page to get into an appropriate state.
2511  *
2512  * We do this without the lock held, so that it can sleep if it needs to.
2513  */
2514 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2515 {
2516 	vm_fault_t ret;
2517 	struct page *page = vmf->page;
2518 	unsigned int old_flags = vmf->flags;
2519 
2520 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2521 
2522 	if (vmf->vma->vm_file &&
2523 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2524 		return VM_FAULT_SIGBUS;
2525 
2526 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2527 	/* Restore original flags so that caller is not surprised */
2528 	vmf->flags = old_flags;
2529 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2530 		return ret;
2531 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2532 		lock_page(page);
2533 		if (!page->mapping) {
2534 			unlock_page(page);
2535 			return 0; /* retry */
2536 		}
2537 		ret |= VM_FAULT_LOCKED;
2538 	} else
2539 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Handle dirtying of a page in shared file mapping on a write fault.
2545  *
2546  * The function expects the page to be locked and unlocks it.
2547  */
2548 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2549 {
2550 	struct vm_area_struct *vma = vmf->vma;
2551 	struct address_space *mapping;
2552 	struct page *page = vmf->page;
2553 	bool dirtied;
2554 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2555 
2556 	dirtied = set_page_dirty(page);
2557 	VM_BUG_ON_PAGE(PageAnon(page), page);
2558 	/*
2559 	 * Take a local copy of the address_space - page.mapping may be zeroed
2560 	 * by truncate after unlock_page().   The address_space itself remains
2561 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2562 	 * release semantics to prevent the compiler from undoing this copying.
2563 	 */
2564 	mapping = page_rmapping(page);
2565 	unlock_page(page);
2566 
2567 	if (!page_mkwrite)
2568 		file_update_time(vma->vm_file);
2569 
2570 	/*
2571 	 * Throttle page dirtying rate down to writeback speed.
2572 	 *
2573 	 * mapping may be NULL here because some device drivers do not
2574 	 * set page.mapping but still dirty their pages
2575 	 *
2576 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2577 	 * is pinning the mapping, as per above.
2578 	 */
2579 	if ((dirtied || page_mkwrite) && mapping) {
2580 		struct file *fpin;
2581 
2582 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2583 		balance_dirty_pages_ratelimited(mapping);
2584 		if (fpin) {
2585 			fput(fpin);
2586 			return VM_FAULT_RETRY;
2587 		}
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 /*
2594  * Handle write page faults for pages that can be reused in the current vma
2595  *
2596  * This can happen either due to the mapping being with the VM_SHARED flag,
2597  * or due to us being the last reference standing to the page. In either
2598  * case, all we need to do here is to mark the page as writable and update
2599  * any related book-keeping.
2600  */
2601 static inline void wp_page_reuse(struct vm_fault *vmf)
2602 	__releases(vmf->ptl)
2603 {
2604 	struct vm_area_struct *vma = vmf->vma;
2605 	struct page *page = vmf->page;
2606 	pte_t entry;
2607 	/*
2608 	 * Clear the pages cpupid information as the existing
2609 	 * information potentially belongs to a now completely
2610 	 * unrelated process.
2611 	 */
2612 	if (page)
2613 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2614 
2615 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2616 	entry = pte_mkyoung(vmf->orig_pte);
2617 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2618 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2619 		update_mmu_cache(vma, vmf->address, vmf->pte);
2620 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2621 }
2622 
2623 /*
2624  * Handle the case of a page which we actually need to copy to a new page.
2625  *
2626  * Called with mmap_lock locked and the old page referenced, but
2627  * without the ptl held.
2628  *
2629  * High level logic flow:
2630  *
2631  * - Allocate a page, copy the content of the old page to the new one.
2632  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2633  * - Take the PTL. If the pte changed, bail out and release the allocated page
2634  * - If the pte is still the way we remember it, update the page table and all
2635  *   relevant references. This includes dropping the reference the page-table
2636  *   held to the old page, as well as updating the rmap.
2637  * - In any case, unlock the PTL and drop the reference we took to the old page.
2638  */
2639 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2640 {
2641 	struct vm_area_struct *vma = vmf->vma;
2642 	struct mm_struct *mm = vma->vm_mm;
2643 	struct page *old_page = vmf->page;
2644 	struct page *new_page = NULL;
2645 	pte_t entry;
2646 	int page_copied = 0;
2647 	struct mmu_notifier_range range;
2648 
2649 	if (unlikely(anon_vma_prepare(vma)))
2650 		goto oom;
2651 
2652 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2653 		new_page = alloc_zeroed_user_highpage_movable(vma,
2654 							      vmf->address);
2655 		if (!new_page)
2656 			goto oom;
2657 	} else {
2658 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2659 				vmf->address);
2660 		if (!new_page)
2661 			goto oom;
2662 
2663 		if (!cow_user_page(new_page, old_page, vmf)) {
2664 			/*
2665 			 * COW failed, if the fault was solved by other,
2666 			 * it's fine. If not, userspace would re-fault on
2667 			 * the same address and we will handle the fault
2668 			 * from the second attempt.
2669 			 */
2670 			put_page(new_page);
2671 			if (old_page)
2672 				put_page(old_page);
2673 			return 0;
2674 		}
2675 	}
2676 
2677 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2678 		goto oom_free_new;
2679 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2680 
2681 	__SetPageUptodate(new_page);
2682 
2683 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2684 				vmf->address & PAGE_MASK,
2685 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2686 	mmu_notifier_invalidate_range_start(&range);
2687 
2688 	/*
2689 	 * Re-check the pte - we dropped the lock
2690 	 */
2691 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2692 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2693 		if (old_page) {
2694 			if (!PageAnon(old_page)) {
2695 				dec_mm_counter_fast(mm,
2696 						mm_counter_file(old_page));
2697 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2698 			}
2699 		} else {
2700 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2701 		}
2702 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2703 		entry = mk_pte(new_page, vma->vm_page_prot);
2704 		entry = pte_sw_mkyoung(entry);
2705 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706 		/*
2707 		 * Clear the pte entry and flush it first, before updating the
2708 		 * pte with the new entry. This will avoid a race condition
2709 		 * seen in the presence of one thread doing SMC and another
2710 		 * thread doing COW.
2711 		 */
2712 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714 		lru_cache_add_active_or_unevictable(new_page, vma);
2715 		/*
2716 		 * We call the notify macro here because, when using secondary
2717 		 * mmu page tables (such as kvm shadow page tables), we want the
2718 		 * new page to be mapped directly into the secondary page table.
2719 		 */
2720 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2721 		update_mmu_cache(vma, vmf->address, vmf->pte);
2722 		if (old_page) {
2723 			/*
2724 			 * Only after switching the pte to the new page may
2725 			 * we remove the mapcount here. Otherwise another
2726 			 * process may come and find the rmap count decremented
2727 			 * before the pte is switched to the new page, and
2728 			 * "reuse" the old page writing into it while our pte
2729 			 * here still points into it and can be read by other
2730 			 * threads.
2731 			 *
2732 			 * The critical issue is to order this
2733 			 * page_remove_rmap with the ptp_clear_flush above.
2734 			 * Those stores are ordered by (if nothing else,)
2735 			 * the barrier present in the atomic_add_negative
2736 			 * in page_remove_rmap.
2737 			 *
2738 			 * Then the TLB flush in ptep_clear_flush ensures that
2739 			 * no process can access the old page before the
2740 			 * decremented mapcount is visible. And the old page
2741 			 * cannot be reused until after the decremented
2742 			 * mapcount is visible. So transitively, TLBs to
2743 			 * old page will be flushed before it can be reused.
2744 			 */
2745 			page_remove_rmap(old_page, false);
2746 		}
2747 
2748 		/* Free the old page.. */
2749 		new_page = old_page;
2750 		page_copied = 1;
2751 	} else {
2752 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2753 	}
2754 
2755 	if (new_page)
2756 		put_page(new_page);
2757 
2758 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 	/*
2760 	 * No need to double call mmu_notifier->invalidate_range() callback as
2761 	 * the above ptep_clear_flush_notify() did already call it.
2762 	 */
2763 	mmu_notifier_invalidate_range_only_end(&range);
2764 	if (old_page) {
2765 		/*
2766 		 * Don't let another task, with possibly unlocked vma,
2767 		 * keep the mlocked page.
2768 		 */
2769 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2770 			lock_page(old_page);	/* LRU manipulation */
2771 			if (PageMlocked(old_page))
2772 				munlock_vma_page(old_page);
2773 			unlock_page(old_page);
2774 		}
2775 		put_page(old_page);
2776 	}
2777 	return page_copied ? VM_FAULT_WRITE : 0;
2778 oom_free_new:
2779 	put_page(new_page);
2780 oom:
2781 	if (old_page)
2782 		put_page(old_page);
2783 	return VM_FAULT_OOM;
2784 }
2785 
2786 /**
2787  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2788  *			  writeable once the page is prepared
2789  *
2790  * @vmf: structure describing the fault
2791  *
2792  * This function handles all that is needed to finish a write page fault in a
2793  * shared mapping due to PTE being read-only once the mapped page is prepared.
2794  * It handles locking of PTE and modifying it.
2795  *
2796  * The function expects the page to be locked or other protection against
2797  * concurrent faults / writeback (such as DAX radix tree locks).
2798  *
2799  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2800  * we acquired PTE lock.
2801  */
2802 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2803 {
2804 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2805 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2806 				       &vmf->ptl);
2807 	/*
2808 	 * We might have raced with another page fault while we released the
2809 	 * pte_offset_map_lock.
2810 	 */
2811 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2812 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2813 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2814 		return VM_FAULT_NOPAGE;
2815 	}
2816 	wp_page_reuse(vmf);
2817 	return 0;
2818 }
2819 
2820 /*
2821  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822  * mapping
2823  */
2824 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2825 {
2826 	struct vm_area_struct *vma = vmf->vma;
2827 
2828 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2829 		vm_fault_t ret;
2830 
2831 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832 		vmf->flags |= FAULT_FLAG_MKWRITE;
2833 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2834 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2835 			return ret;
2836 		return finish_mkwrite_fault(vmf);
2837 	}
2838 	wp_page_reuse(vmf);
2839 	return VM_FAULT_WRITE;
2840 }
2841 
2842 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2843 	__releases(vmf->ptl)
2844 {
2845 	struct vm_area_struct *vma = vmf->vma;
2846 	vm_fault_t ret = VM_FAULT_WRITE;
2847 
2848 	get_page(vmf->page);
2849 
2850 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2851 		vm_fault_t tmp;
2852 
2853 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2854 		tmp = do_page_mkwrite(vmf);
2855 		if (unlikely(!tmp || (tmp &
2856 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2857 			put_page(vmf->page);
2858 			return tmp;
2859 		}
2860 		tmp = finish_mkwrite_fault(vmf);
2861 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2862 			unlock_page(vmf->page);
2863 			put_page(vmf->page);
2864 			return tmp;
2865 		}
2866 	} else {
2867 		wp_page_reuse(vmf);
2868 		lock_page(vmf->page);
2869 	}
2870 	ret |= fault_dirty_shared_page(vmf);
2871 	put_page(vmf->page);
2872 
2873 	return ret;
2874 }
2875 
2876 /*
2877  * This routine handles present pages, when users try to write
2878  * to a shared page. It is done by copying the page to a new address
2879  * and decrementing the shared-page counter for the old page.
2880  *
2881  * Note that this routine assumes that the protection checks have been
2882  * done by the caller (the low-level page fault routine in most cases).
2883  * Thus we can safely just mark it writable once we've done any necessary
2884  * COW.
2885  *
2886  * We also mark the page dirty at this point even though the page will
2887  * change only once the write actually happens. This avoids a few races,
2888  * and potentially makes it more efficient.
2889  *
2890  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2891  * but allow concurrent faults), with pte both mapped and locked.
2892  * We return with mmap_lock still held, but pte unmapped and unlocked.
2893  */
2894 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2895 	__releases(vmf->ptl)
2896 {
2897 	struct vm_area_struct *vma = vmf->vma;
2898 
2899 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2900 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2901 		return handle_userfault(vmf, VM_UFFD_WP);
2902 	}
2903 
2904 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905 	if (!vmf->page) {
2906 		/*
2907 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908 		 * VM_PFNMAP VMA.
2909 		 *
2910 		 * We should not cow pages in a shared writeable mapping.
2911 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2912 		 */
2913 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914 				     (VM_WRITE|VM_SHARED))
2915 			return wp_pfn_shared(vmf);
2916 
2917 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2918 		return wp_page_copy(vmf);
2919 	}
2920 
2921 	/*
2922 	 * Take out anonymous pages first, anonymous shared vmas are
2923 	 * not dirty accountable.
2924 	 */
2925 	if (PageAnon(vmf->page)) {
2926 		int total_map_swapcount;
2927 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928 					   page_count(vmf->page) != 1))
2929 			goto copy;
2930 		if (!trylock_page(vmf->page)) {
2931 			get_page(vmf->page);
2932 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 			lock_page(vmf->page);
2934 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935 					vmf->address, &vmf->ptl);
2936 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2937 				update_mmu_tlb(vma, vmf->address, vmf->pte);
2938 				unlock_page(vmf->page);
2939 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2940 				put_page(vmf->page);
2941 				return 0;
2942 			}
2943 			put_page(vmf->page);
2944 		}
2945 		if (PageKsm(vmf->page)) {
2946 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2947 						     vmf->address);
2948 			unlock_page(vmf->page);
2949 			if (!reused)
2950 				goto copy;
2951 			wp_page_reuse(vmf);
2952 			return VM_FAULT_WRITE;
2953 		}
2954 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2955 			if (total_map_swapcount == 1) {
2956 				/*
2957 				 * The page is all ours. Move it to
2958 				 * our anon_vma so the rmap code will
2959 				 * not search our parent or siblings.
2960 				 * Protected against the rmap code by
2961 				 * the page lock.
2962 				 */
2963 				page_move_anon_rmap(vmf->page, vma);
2964 			}
2965 			unlock_page(vmf->page);
2966 			wp_page_reuse(vmf);
2967 			return VM_FAULT_WRITE;
2968 		}
2969 		unlock_page(vmf->page);
2970 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2971 					(VM_WRITE|VM_SHARED))) {
2972 		return wp_page_shared(vmf);
2973 	}
2974 copy:
2975 	/*
2976 	 * Ok, we need to copy. Oh, well..
2977 	 */
2978 	get_page(vmf->page);
2979 
2980 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2981 	return wp_page_copy(vmf);
2982 }
2983 
2984 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2985 		unsigned long start_addr, unsigned long end_addr,
2986 		struct zap_details *details)
2987 {
2988 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2989 }
2990 
2991 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2992 					    struct zap_details *details)
2993 {
2994 	struct vm_area_struct *vma;
2995 	pgoff_t vba, vea, zba, zea;
2996 
2997 	vma_interval_tree_foreach(vma, root,
2998 			details->first_index, details->last_index) {
2999 
3000 		vba = vma->vm_pgoff;
3001 		vea = vba + vma_pages(vma) - 1;
3002 		zba = details->first_index;
3003 		if (zba < vba)
3004 			zba = vba;
3005 		zea = details->last_index;
3006 		if (zea > vea)
3007 			zea = vea;
3008 
3009 		unmap_mapping_range_vma(vma,
3010 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3011 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3012 				details);
3013 	}
3014 }
3015 
3016 /**
3017  * unmap_mapping_pages() - Unmap pages from processes.
3018  * @mapping: The address space containing pages to be unmapped.
3019  * @start: Index of first page to be unmapped.
3020  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3021  * @even_cows: Whether to unmap even private COWed pages.
3022  *
3023  * Unmap the pages in this address space from any userspace process which
3024  * has them mmaped.  Generally, you want to remove COWed pages as well when
3025  * a file is being truncated, but not when invalidating pages from the page
3026  * cache.
3027  */
3028 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3029 		pgoff_t nr, bool even_cows)
3030 {
3031 	struct zap_details details = { };
3032 
3033 	details.check_mapping = even_cows ? NULL : mapping;
3034 	details.first_index = start;
3035 	details.last_index = start + nr - 1;
3036 	if (details.last_index < details.first_index)
3037 		details.last_index = ULONG_MAX;
3038 
3039 	i_mmap_lock_write(mapping);
3040 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3041 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3042 	i_mmap_unlock_write(mapping);
3043 }
3044 
3045 /**
3046  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3047  * address_space corresponding to the specified byte range in the underlying
3048  * file.
3049  *
3050  * @mapping: the address space containing mmaps to be unmapped.
3051  * @holebegin: byte in first page to unmap, relative to the start of
3052  * the underlying file.  This will be rounded down to a PAGE_SIZE
3053  * boundary.  Note that this is different from truncate_pagecache(), which
3054  * must keep the partial page.  In contrast, we must get rid of
3055  * partial pages.
3056  * @holelen: size of prospective hole in bytes.  This will be rounded
3057  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3058  * end of the file.
3059  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3060  * but 0 when invalidating pagecache, don't throw away private data.
3061  */
3062 void unmap_mapping_range(struct address_space *mapping,
3063 		loff_t const holebegin, loff_t const holelen, int even_cows)
3064 {
3065 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3066 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3067 
3068 	/* Check for overflow. */
3069 	if (sizeof(holelen) > sizeof(hlen)) {
3070 		long long holeend =
3071 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3072 		if (holeend & ~(long long)ULONG_MAX)
3073 			hlen = ULONG_MAX - hba + 1;
3074 	}
3075 
3076 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3077 }
3078 EXPORT_SYMBOL(unmap_mapping_range);
3079 
3080 /*
3081  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3082  * but allow concurrent faults), and pte mapped but not yet locked.
3083  * We return with pte unmapped and unlocked.
3084  *
3085  * We return with the mmap_lock locked or unlocked in the same cases
3086  * as does filemap_fault().
3087  */
3088 vm_fault_t do_swap_page(struct vm_fault *vmf)
3089 {
3090 	struct vm_area_struct *vma = vmf->vma;
3091 	struct page *page = NULL, *swapcache;
3092 	swp_entry_t entry;
3093 	pte_t pte;
3094 	int locked;
3095 	int exclusive = 0;
3096 	vm_fault_t ret = 0;
3097 
3098 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3099 		goto out;
3100 
3101 	entry = pte_to_swp_entry(vmf->orig_pte);
3102 	if (unlikely(non_swap_entry(entry))) {
3103 		if (is_migration_entry(entry)) {
3104 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3105 					     vmf->address);
3106 		} else if (is_device_private_entry(entry)) {
3107 			vmf->page = device_private_entry_to_page(entry);
3108 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3109 		} else if (is_hwpoison_entry(entry)) {
3110 			ret = VM_FAULT_HWPOISON;
3111 		} else {
3112 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3113 			ret = VM_FAULT_SIGBUS;
3114 		}
3115 		goto out;
3116 	}
3117 
3118 
3119 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3120 	page = lookup_swap_cache(entry, vma, vmf->address);
3121 	swapcache = page;
3122 
3123 	if (!page) {
3124 		struct swap_info_struct *si = swp_swap_info(entry);
3125 
3126 		if (si->flags & SWP_SYNCHRONOUS_IO &&
3127 				__swap_count(entry) == 1) {
3128 			/* skip swapcache */
3129 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130 							vmf->address);
3131 			if (page) {
3132 				int err;
3133 
3134 				__SetPageLocked(page);
3135 				__SetPageSwapBacked(page);
3136 				set_page_private(page, entry.val);
3137 
3138 				/* Tell memcg to use swap ownership records */
3139 				SetPageSwapCache(page);
3140 				err = mem_cgroup_charge(page, vma->vm_mm,
3141 							GFP_KERNEL);
3142 				ClearPageSwapCache(page);
3143 				if (err)
3144 					goto out_page;
3145 
3146 				lru_cache_add(page);
3147 				swap_readpage(page, true);
3148 			}
3149 		} else {
3150 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3151 						vmf);
3152 			swapcache = page;
3153 		}
3154 
3155 		if (!page) {
3156 			/*
3157 			 * Back out if somebody else faulted in this pte
3158 			 * while we released the pte lock.
3159 			 */
3160 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3161 					vmf->address, &vmf->ptl);
3162 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3163 				ret = VM_FAULT_OOM;
3164 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3165 			goto unlock;
3166 		}
3167 
3168 		/* Had to read the page from swap area: Major fault */
3169 		ret = VM_FAULT_MAJOR;
3170 		count_vm_event(PGMAJFAULT);
3171 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3172 	} else if (PageHWPoison(page)) {
3173 		/*
3174 		 * hwpoisoned dirty swapcache pages are kept for killing
3175 		 * owner processes (which may be unknown at hwpoison time)
3176 		 */
3177 		ret = VM_FAULT_HWPOISON;
3178 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179 		goto out_release;
3180 	}
3181 
3182 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3183 
3184 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3185 	if (!locked) {
3186 		ret |= VM_FAULT_RETRY;
3187 		goto out_release;
3188 	}
3189 
3190 	/*
3191 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3192 	 * release the swapcache from under us.  The page pin, and pte_same
3193 	 * test below, are not enough to exclude that.  Even if it is still
3194 	 * swapcache, we need to check that the page's swap has not changed.
3195 	 */
3196 	if (unlikely((!PageSwapCache(page) ||
3197 			page_private(page) != entry.val)) && swapcache)
3198 		goto out_page;
3199 
3200 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3201 	if (unlikely(!page)) {
3202 		ret = VM_FAULT_OOM;
3203 		page = swapcache;
3204 		goto out_page;
3205 	}
3206 
3207 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3208 
3209 	/*
3210 	 * Back out if somebody else already faulted in this pte.
3211 	 */
3212 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3213 			&vmf->ptl);
3214 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3215 		goto out_nomap;
3216 
3217 	if (unlikely(!PageUptodate(page))) {
3218 		ret = VM_FAULT_SIGBUS;
3219 		goto out_nomap;
3220 	}
3221 
3222 	/*
3223 	 * The page isn't present yet, go ahead with the fault.
3224 	 *
3225 	 * Be careful about the sequence of operations here.
3226 	 * To get its accounting right, reuse_swap_page() must be called
3227 	 * while the page is counted on swap but not yet in mapcount i.e.
3228 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3229 	 * must be called after the swap_free(), or it will never succeed.
3230 	 */
3231 
3232 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3233 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3234 	pte = mk_pte(page, vma->vm_page_prot);
3235 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3236 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3237 		vmf->flags &= ~FAULT_FLAG_WRITE;
3238 		ret |= VM_FAULT_WRITE;
3239 		exclusive = RMAP_EXCLUSIVE;
3240 	}
3241 	flush_icache_page(vma, page);
3242 	if (pte_swp_soft_dirty(vmf->orig_pte))
3243 		pte = pte_mksoft_dirty(pte);
3244 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3245 		pte = pte_mkuffd_wp(pte);
3246 		pte = pte_wrprotect(pte);
3247 	}
3248 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3249 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3250 	vmf->orig_pte = pte;
3251 
3252 	/* ksm created a completely new copy */
3253 	if (unlikely(page != swapcache && swapcache)) {
3254 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3255 		lru_cache_add_active_or_unevictable(page, vma);
3256 	} else {
3257 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3258 		activate_page(page);
3259 	}
3260 
3261 	swap_free(entry);
3262 	if (mem_cgroup_swap_full(page) ||
3263 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3264 		try_to_free_swap(page);
3265 	unlock_page(page);
3266 	if (page != swapcache && swapcache) {
3267 		/*
3268 		 * Hold the lock to avoid the swap entry to be reused
3269 		 * until we take the PT lock for the pte_same() check
3270 		 * (to avoid false positives from pte_same). For
3271 		 * further safety release the lock after the swap_free
3272 		 * so that the swap count won't change under a
3273 		 * parallel locked swapcache.
3274 		 */
3275 		unlock_page(swapcache);
3276 		put_page(swapcache);
3277 	}
3278 
3279 	if (vmf->flags & FAULT_FLAG_WRITE) {
3280 		ret |= do_wp_page(vmf);
3281 		if (ret & VM_FAULT_ERROR)
3282 			ret &= VM_FAULT_ERROR;
3283 		goto out;
3284 	}
3285 
3286 	/* No need to invalidate - it was non-present before */
3287 	update_mmu_cache(vma, vmf->address, vmf->pte);
3288 unlock:
3289 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3290 out:
3291 	return ret;
3292 out_nomap:
3293 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 out_page:
3295 	unlock_page(page);
3296 out_release:
3297 	put_page(page);
3298 	if (page != swapcache && swapcache) {
3299 		unlock_page(swapcache);
3300 		put_page(swapcache);
3301 	}
3302 	return ret;
3303 }
3304 
3305 /*
3306  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3307  * but allow concurrent faults), and pte mapped but not yet locked.
3308  * We return with mmap_lock still held, but pte unmapped and unlocked.
3309  */
3310 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3311 {
3312 	struct vm_area_struct *vma = vmf->vma;
3313 	struct page *page;
3314 	vm_fault_t ret = 0;
3315 	pte_t entry;
3316 
3317 	/* File mapping without ->vm_ops ? */
3318 	if (vma->vm_flags & VM_SHARED)
3319 		return VM_FAULT_SIGBUS;
3320 
3321 	/*
3322 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3323 	 * pte_offset_map() on pmds where a huge pmd might be created
3324 	 * from a different thread.
3325 	 *
3326 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3327 	 * parallel threads are excluded by other means.
3328 	 *
3329 	 * Here we only have mmap_read_lock(mm).
3330 	 */
3331 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3332 		return VM_FAULT_OOM;
3333 
3334 	/* See the comment in pte_alloc_one_map() */
3335 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3336 		return 0;
3337 
3338 	/* Use the zero-page for reads */
3339 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3340 			!mm_forbids_zeropage(vma->vm_mm)) {
3341 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3342 						vma->vm_page_prot));
3343 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3344 				vmf->address, &vmf->ptl);
3345 		if (!pte_none(*vmf->pte)) {
3346 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3347 			goto unlock;
3348 		}
3349 		ret = check_stable_address_space(vma->vm_mm);
3350 		if (ret)
3351 			goto unlock;
3352 		/* Deliver the page fault to userland, check inside PT lock */
3353 		if (userfaultfd_missing(vma)) {
3354 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 			return handle_userfault(vmf, VM_UFFD_MISSING);
3356 		}
3357 		goto setpte;
3358 	}
3359 
3360 	/* Allocate our own private page. */
3361 	if (unlikely(anon_vma_prepare(vma)))
3362 		goto oom;
3363 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3364 	if (!page)
3365 		goto oom;
3366 
3367 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3368 		goto oom_free_page;
3369 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3370 
3371 	/*
3372 	 * The memory barrier inside __SetPageUptodate makes sure that
3373 	 * preceding stores to the page contents become visible before
3374 	 * the set_pte_at() write.
3375 	 */
3376 	__SetPageUptodate(page);
3377 
3378 	entry = mk_pte(page, vma->vm_page_prot);
3379 	entry = pte_sw_mkyoung(entry);
3380 	if (vma->vm_flags & VM_WRITE)
3381 		entry = pte_mkwrite(pte_mkdirty(entry));
3382 
3383 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384 			&vmf->ptl);
3385 	if (!pte_none(*vmf->pte)) {
3386 		update_mmu_cache(vma, vmf->address, vmf->pte);
3387 		goto release;
3388 	}
3389 
3390 	ret = check_stable_address_space(vma->vm_mm);
3391 	if (ret)
3392 		goto release;
3393 
3394 	/* Deliver the page fault to userland, check inside PT lock */
3395 	if (userfaultfd_missing(vma)) {
3396 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3397 		put_page(page);
3398 		return handle_userfault(vmf, VM_UFFD_MISSING);
3399 	}
3400 
3401 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3402 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3403 	lru_cache_add_active_or_unevictable(page, vma);
3404 setpte:
3405 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3406 
3407 	/* No need to invalidate - it was non-present before */
3408 	update_mmu_cache(vma, vmf->address, vmf->pte);
3409 unlock:
3410 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 	return ret;
3412 release:
3413 	put_page(page);
3414 	goto unlock;
3415 oom_free_page:
3416 	put_page(page);
3417 oom:
3418 	return VM_FAULT_OOM;
3419 }
3420 
3421 /*
3422  * The mmap_lock must have been held on entry, and may have been
3423  * released depending on flags and vma->vm_ops->fault() return value.
3424  * See filemap_fault() and __lock_page_retry().
3425  */
3426 static vm_fault_t __do_fault(struct vm_fault *vmf)
3427 {
3428 	struct vm_area_struct *vma = vmf->vma;
3429 	vm_fault_t ret;
3430 
3431 	/*
3432 	 * Preallocate pte before we take page_lock because this might lead to
3433 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3434 	 *				lock_page(A)
3435 	 *				SetPageWriteback(A)
3436 	 *				unlock_page(A)
3437 	 * lock_page(B)
3438 	 *				lock_page(B)
3439 	 * pte_alloc_pne
3440 	 *   shrink_page_list
3441 	 *     wait_on_page_writeback(A)
3442 	 *				SetPageWriteback(B)
3443 	 *				unlock_page(B)
3444 	 *				# flush A, B to clear the writeback
3445 	 */
3446 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3447 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3448 		if (!vmf->prealloc_pte)
3449 			return VM_FAULT_OOM;
3450 		smp_wmb(); /* See comment in __pte_alloc() */
3451 	}
3452 
3453 	ret = vma->vm_ops->fault(vmf);
3454 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3455 			    VM_FAULT_DONE_COW)))
3456 		return ret;
3457 
3458 	if (unlikely(PageHWPoison(vmf->page))) {
3459 		if (ret & VM_FAULT_LOCKED)
3460 			unlock_page(vmf->page);
3461 		put_page(vmf->page);
3462 		vmf->page = NULL;
3463 		return VM_FAULT_HWPOISON;
3464 	}
3465 
3466 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3467 		lock_page(vmf->page);
3468 	else
3469 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3470 
3471 	return ret;
3472 }
3473 
3474 /*
3475  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3476  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3477  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3478  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3479  */
3480 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3481 {
3482 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3483 }
3484 
3485 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3486 {
3487 	struct vm_area_struct *vma = vmf->vma;
3488 
3489 	if (!pmd_none(*vmf->pmd))
3490 		goto map_pte;
3491 	if (vmf->prealloc_pte) {
3492 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3493 		if (unlikely(!pmd_none(*vmf->pmd))) {
3494 			spin_unlock(vmf->ptl);
3495 			goto map_pte;
3496 		}
3497 
3498 		mm_inc_nr_ptes(vma->vm_mm);
3499 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3500 		spin_unlock(vmf->ptl);
3501 		vmf->prealloc_pte = NULL;
3502 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3503 		return VM_FAULT_OOM;
3504 	}
3505 map_pte:
3506 	/*
3507 	 * If a huge pmd materialized under us just retry later.  Use
3508 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3509 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3510 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3511 	 * running immediately after a huge pmd fault in a different thread of
3512 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3513 	 * All we have to ensure is that it is a regular pmd that we can walk
3514 	 * with pte_offset_map() and we can do that through an atomic read in
3515 	 * C, which is what pmd_trans_unstable() provides.
3516 	 */
3517 	if (pmd_devmap_trans_unstable(vmf->pmd))
3518 		return VM_FAULT_NOPAGE;
3519 
3520 	/*
3521 	 * At this point we know that our vmf->pmd points to a page of ptes
3522 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3523 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3524 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3525 	 * be valid and we will re-check to make sure the vmf->pte isn't
3526 	 * pte_none() under vmf->ptl protection when we return to
3527 	 * alloc_set_pte().
3528 	 */
3529 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3530 			&vmf->ptl);
3531 	return 0;
3532 }
3533 
3534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3535 static void deposit_prealloc_pte(struct vm_fault *vmf)
3536 {
3537 	struct vm_area_struct *vma = vmf->vma;
3538 
3539 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3540 	/*
3541 	 * We are going to consume the prealloc table,
3542 	 * count that as nr_ptes.
3543 	 */
3544 	mm_inc_nr_ptes(vma->vm_mm);
3545 	vmf->prealloc_pte = NULL;
3546 }
3547 
3548 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3549 {
3550 	struct vm_area_struct *vma = vmf->vma;
3551 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3552 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3553 	pmd_t entry;
3554 	int i;
3555 	vm_fault_t ret;
3556 
3557 	if (!transhuge_vma_suitable(vma, haddr))
3558 		return VM_FAULT_FALLBACK;
3559 
3560 	ret = VM_FAULT_FALLBACK;
3561 	page = compound_head(page);
3562 
3563 	/*
3564 	 * Archs like ppc64 need additonal space to store information
3565 	 * related to pte entry. Use the preallocated table for that.
3566 	 */
3567 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3568 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3569 		if (!vmf->prealloc_pte)
3570 			return VM_FAULT_OOM;
3571 		smp_wmb(); /* See comment in __pte_alloc() */
3572 	}
3573 
3574 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3575 	if (unlikely(!pmd_none(*vmf->pmd)))
3576 		goto out;
3577 
3578 	for (i = 0; i < HPAGE_PMD_NR; i++)
3579 		flush_icache_page(vma, page + i);
3580 
3581 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3582 	if (write)
3583 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3584 
3585 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3586 	page_add_file_rmap(page, true);
3587 	/*
3588 	 * deposit and withdraw with pmd lock held
3589 	 */
3590 	if (arch_needs_pgtable_deposit())
3591 		deposit_prealloc_pte(vmf);
3592 
3593 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3594 
3595 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3596 
3597 	/* fault is handled */
3598 	ret = 0;
3599 	count_vm_event(THP_FILE_MAPPED);
3600 out:
3601 	spin_unlock(vmf->ptl);
3602 	return ret;
3603 }
3604 #else
3605 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3606 {
3607 	BUILD_BUG();
3608 	return 0;
3609 }
3610 #endif
3611 
3612 /**
3613  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3614  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3615  *
3616  * @vmf: fault environment
3617  * @page: page to map
3618  *
3619  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3620  * return.
3621  *
3622  * Target users are page handler itself and implementations of
3623  * vm_ops->map_pages.
3624  *
3625  * Return: %0 on success, %VM_FAULT_ code in case of error.
3626  */
3627 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3628 {
3629 	struct vm_area_struct *vma = vmf->vma;
3630 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3631 	pte_t entry;
3632 	vm_fault_t ret;
3633 
3634 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3635 		ret = do_set_pmd(vmf, page);
3636 		if (ret != VM_FAULT_FALLBACK)
3637 			return ret;
3638 	}
3639 
3640 	if (!vmf->pte) {
3641 		ret = pte_alloc_one_map(vmf);
3642 		if (ret)
3643 			return ret;
3644 	}
3645 
3646 	/* Re-check under ptl */
3647 	if (unlikely(!pte_none(*vmf->pte))) {
3648 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3649 		return VM_FAULT_NOPAGE;
3650 	}
3651 
3652 	flush_icache_page(vma, page);
3653 	entry = mk_pte(page, vma->vm_page_prot);
3654 	entry = pte_sw_mkyoung(entry);
3655 	if (write)
3656 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3657 	/* copy-on-write page */
3658 	if (write && !(vma->vm_flags & VM_SHARED)) {
3659 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3660 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3661 		lru_cache_add_active_or_unevictable(page, vma);
3662 	} else {
3663 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3664 		page_add_file_rmap(page, false);
3665 	}
3666 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3667 
3668 	/* no need to invalidate: a not-present page won't be cached */
3669 	update_mmu_cache(vma, vmf->address, vmf->pte);
3670 
3671 	return 0;
3672 }
3673 
3674 
3675 /**
3676  * finish_fault - finish page fault once we have prepared the page to fault
3677  *
3678  * @vmf: structure describing the fault
3679  *
3680  * This function handles all that is needed to finish a page fault once the
3681  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682  * given page, adds reverse page mapping, handles memcg charges and LRU
3683  * addition.
3684  *
3685  * The function expects the page to be locked and on success it consumes a
3686  * reference of a page being mapped (for the PTE which maps it).
3687  *
3688  * Return: %0 on success, %VM_FAULT_ code in case of error.
3689  */
3690 vm_fault_t finish_fault(struct vm_fault *vmf)
3691 {
3692 	struct page *page;
3693 	vm_fault_t ret = 0;
3694 
3695 	/* Did we COW the page? */
3696 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697 	    !(vmf->vma->vm_flags & VM_SHARED))
3698 		page = vmf->cow_page;
3699 	else
3700 		page = vmf->page;
3701 
3702 	/*
3703 	 * check even for read faults because we might have lost our CoWed
3704 	 * page
3705 	 */
3706 	if (!(vmf->vma->vm_flags & VM_SHARED))
3707 		ret = check_stable_address_space(vmf->vma->vm_mm);
3708 	if (!ret)
3709 		ret = alloc_set_pte(vmf, page);
3710 	if (vmf->pte)
3711 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 	return ret;
3713 }
3714 
3715 static unsigned long fault_around_bytes __read_mostly =
3716 	rounddown_pow_of_two(65536);
3717 
3718 #ifdef CONFIG_DEBUG_FS
3719 static int fault_around_bytes_get(void *data, u64 *val)
3720 {
3721 	*val = fault_around_bytes;
3722 	return 0;
3723 }
3724 
3725 /*
3726  * fault_around_bytes must be rounded down to the nearest page order as it's
3727  * what do_fault_around() expects to see.
3728  */
3729 static int fault_around_bytes_set(void *data, u64 val)
3730 {
3731 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3732 		return -EINVAL;
3733 	if (val > PAGE_SIZE)
3734 		fault_around_bytes = rounddown_pow_of_two(val);
3735 	else
3736 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3737 	return 0;
3738 }
3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3740 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3741 
3742 static int __init fault_around_debugfs(void)
3743 {
3744 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745 				   &fault_around_bytes_fops);
3746 	return 0;
3747 }
3748 late_initcall(fault_around_debugfs);
3749 #endif
3750 
3751 /*
3752  * do_fault_around() tries to map few pages around the fault address. The hope
3753  * is that the pages will be needed soon and this will lower the number of
3754  * faults to handle.
3755  *
3756  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757  * not ready to be mapped: not up-to-date, locked, etc.
3758  *
3759  * This function is called with the page table lock taken. In the split ptlock
3760  * case the page table lock only protects only those entries which belong to
3761  * the page table corresponding to the fault address.
3762  *
3763  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764  * only once.
3765  *
3766  * fault_around_bytes defines how many bytes we'll try to map.
3767  * do_fault_around() expects it to be set to a power of two less than or equal
3768  * to PTRS_PER_PTE.
3769  *
3770  * The virtual address of the area that we map is naturally aligned to
3771  * fault_around_bytes rounded down to the machine page size
3772  * (and therefore to page order).  This way it's easier to guarantee
3773  * that we don't cross page table boundaries.
3774  */
3775 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776 {
3777 	unsigned long address = vmf->address, nr_pages, mask;
3778 	pgoff_t start_pgoff = vmf->pgoff;
3779 	pgoff_t end_pgoff;
3780 	int off;
3781 	vm_fault_t ret = 0;
3782 
3783 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785 
3786 	vmf->address = max(address & mask, vmf->vma->vm_start);
3787 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788 	start_pgoff -= off;
3789 
3790 	/*
3791 	 *  end_pgoff is either the end of the page table, the end of
3792 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3793 	 */
3794 	end_pgoff = start_pgoff -
3795 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796 		PTRS_PER_PTE - 1;
3797 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798 			start_pgoff + nr_pages - 1);
3799 
3800 	if (pmd_none(*vmf->pmd)) {
3801 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3802 		if (!vmf->prealloc_pte)
3803 			goto out;
3804 		smp_wmb(); /* See comment in __pte_alloc() */
3805 	}
3806 
3807 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3808 
3809 	/* Huge page is mapped? Page fault is solved */
3810 	if (pmd_trans_huge(*vmf->pmd)) {
3811 		ret = VM_FAULT_NOPAGE;
3812 		goto out;
3813 	}
3814 
3815 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3816 	if (!vmf->pte)
3817 		goto out;
3818 
3819 	/* check if the page fault is solved */
3820 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821 	if (!pte_none(*vmf->pte))
3822 		ret = VM_FAULT_NOPAGE;
3823 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 out:
3825 	vmf->address = address;
3826 	vmf->pte = NULL;
3827 	return ret;
3828 }
3829 
3830 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3831 {
3832 	struct vm_area_struct *vma = vmf->vma;
3833 	vm_fault_t ret = 0;
3834 
3835 	/*
3836 	 * Let's call ->map_pages() first and use ->fault() as fallback
3837 	 * if page by the offset is not ready to be mapped (cold cache or
3838 	 * something).
3839 	 */
3840 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3841 		ret = do_fault_around(vmf);
3842 		if (ret)
3843 			return ret;
3844 	}
3845 
3846 	ret = __do_fault(vmf);
3847 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848 		return ret;
3849 
3850 	ret |= finish_fault(vmf);
3851 	unlock_page(vmf->page);
3852 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3853 		put_page(vmf->page);
3854 	return ret;
3855 }
3856 
3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3858 {
3859 	struct vm_area_struct *vma = vmf->vma;
3860 	vm_fault_t ret;
3861 
3862 	if (unlikely(anon_vma_prepare(vma)))
3863 		return VM_FAULT_OOM;
3864 
3865 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866 	if (!vmf->cow_page)
3867 		return VM_FAULT_OOM;
3868 
3869 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3870 		put_page(vmf->cow_page);
3871 		return VM_FAULT_OOM;
3872 	}
3873 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3874 
3875 	ret = __do_fault(vmf);
3876 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877 		goto uncharge_out;
3878 	if (ret & VM_FAULT_DONE_COW)
3879 		return ret;
3880 
3881 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3882 	__SetPageUptodate(vmf->cow_page);
3883 
3884 	ret |= finish_fault(vmf);
3885 	unlock_page(vmf->page);
3886 	put_page(vmf->page);
3887 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 		goto uncharge_out;
3889 	return ret;
3890 uncharge_out:
3891 	put_page(vmf->cow_page);
3892 	return ret;
3893 }
3894 
3895 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3896 {
3897 	struct vm_area_struct *vma = vmf->vma;
3898 	vm_fault_t ret, tmp;
3899 
3900 	ret = __do_fault(vmf);
3901 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3902 		return ret;
3903 
3904 	/*
3905 	 * Check if the backing address space wants to know that the page is
3906 	 * about to become writable
3907 	 */
3908 	if (vma->vm_ops->page_mkwrite) {
3909 		unlock_page(vmf->page);
3910 		tmp = do_page_mkwrite(vmf);
3911 		if (unlikely(!tmp ||
3912 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3913 			put_page(vmf->page);
3914 			return tmp;
3915 		}
3916 	}
3917 
3918 	ret |= finish_fault(vmf);
3919 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3920 					VM_FAULT_RETRY))) {
3921 		unlock_page(vmf->page);
3922 		put_page(vmf->page);
3923 		return ret;
3924 	}
3925 
3926 	ret |= fault_dirty_shared_page(vmf);
3927 	return ret;
3928 }
3929 
3930 /*
3931  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3932  * but allow concurrent faults).
3933  * The mmap_lock may have been released depending on flags and our
3934  * return value.  See filemap_fault() and __lock_page_or_retry().
3935  * If mmap_lock is released, vma may become invalid (for example
3936  * by other thread calling munmap()).
3937  */
3938 static vm_fault_t do_fault(struct vm_fault *vmf)
3939 {
3940 	struct vm_area_struct *vma = vmf->vma;
3941 	struct mm_struct *vm_mm = vma->vm_mm;
3942 	vm_fault_t ret;
3943 
3944 	/*
3945 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3946 	 */
3947 	if (!vma->vm_ops->fault) {
3948 		/*
3949 		 * If we find a migration pmd entry or a none pmd entry, which
3950 		 * should never happen, return SIGBUS
3951 		 */
3952 		if (unlikely(!pmd_present(*vmf->pmd)))
3953 			ret = VM_FAULT_SIGBUS;
3954 		else {
3955 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3956 						       vmf->pmd,
3957 						       vmf->address,
3958 						       &vmf->ptl);
3959 			/*
3960 			 * Make sure this is not a temporary clearing of pte
3961 			 * by holding ptl and checking again. A R/M/W update
3962 			 * of pte involves: take ptl, clearing the pte so that
3963 			 * we don't have concurrent modification by hardware
3964 			 * followed by an update.
3965 			 */
3966 			if (unlikely(pte_none(*vmf->pte)))
3967 				ret = VM_FAULT_SIGBUS;
3968 			else
3969 				ret = VM_FAULT_NOPAGE;
3970 
3971 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 		}
3973 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3974 		ret = do_read_fault(vmf);
3975 	else if (!(vma->vm_flags & VM_SHARED))
3976 		ret = do_cow_fault(vmf);
3977 	else
3978 		ret = do_shared_fault(vmf);
3979 
3980 	/* preallocated pagetable is unused: free it */
3981 	if (vmf->prealloc_pte) {
3982 		pte_free(vm_mm, vmf->prealloc_pte);
3983 		vmf->prealloc_pte = NULL;
3984 	}
3985 	return ret;
3986 }
3987 
3988 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3989 				unsigned long addr, int page_nid,
3990 				int *flags)
3991 {
3992 	get_page(page);
3993 
3994 	count_vm_numa_event(NUMA_HINT_FAULTS);
3995 	if (page_nid == numa_node_id()) {
3996 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3997 		*flags |= TNF_FAULT_LOCAL;
3998 	}
3999 
4000 	return mpol_misplaced(page, vma, addr);
4001 }
4002 
4003 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4004 {
4005 	struct vm_area_struct *vma = vmf->vma;
4006 	struct page *page = NULL;
4007 	int page_nid = NUMA_NO_NODE;
4008 	int last_cpupid;
4009 	int target_nid;
4010 	bool migrated = false;
4011 	pte_t pte, old_pte;
4012 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4013 	int flags = 0;
4014 
4015 	/*
4016 	 * The "pte" at this point cannot be used safely without
4017 	 * validation through pte_unmap_same(). It's of NUMA type but
4018 	 * the pfn may be screwed if the read is non atomic.
4019 	 */
4020 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4021 	spin_lock(vmf->ptl);
4022 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4023 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4024 		goto out;
4025 	}
4026 
4027 	/*
4028 	 * Make it present again, Depending on how arch implementes non
4029 	 * accessible ptes, some can allow access by kernel mode.
4030 	 */
4031 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4032 	pte = pte_modify(old_pte, vma->vm_page_prot);
4033 	pte = pte_mkyoung(pte);
4034 	if (was_writable)
4035 		pte = pte_mkwrite(pte);
4036 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4037 	update_mmu_cache(vma, vmf->address, vmf->pte);
4038 
4039 	page = vm_normal_page(vma, vmf->address, pte);
4040 	if (!page) {
4041 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 		return 0;
4043 	}
4044 
4045 	/* TODO: handle PTE-mapped THP */
4046 	if (PageCompound(page)) {
4047 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4048 		return 0;
4049 	}
4050 
4051 	/*
4052 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4053 	 * much anyway since they can be in shared cache state. This misses
4054 	 * the case where a mapping is writable but the process never writes
4055 	 * to it but pte_write gets cleared during protection updates and
4056 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4057 	 * background writeback, dirty balancing and application behaviour.
4058 	 */
4059 	if (!pte_write(pte))
4060 		flags |= TNF_NO_GROUP;
4061 
4062 	/*
4063 	 * Flag if the page is shared between multiple address spaces. This
4064 	 * is later used when determining whether to group tasks together
4065 	 */
4066 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4067 		flags |= TNF_SHARED;
4068 
4069 	last_cpupid = page_cpupid_last(page);
4070 	page_nid = page_to_nid(page);
4071 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4072 			&flags);
4073 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4074 	if (target_nid == NUMA_NO_NODE) {
4075 		put_page(page);
4076 		goto out;
4077 	}
4078 
4079 	/* Migrate to the requested node */
4080 	migrated = migrate_misplaced_page(page, vma, target_nid);
4081 	if (migrated) {
4082 		page_nid = target_nid;
4083 		flags |= TNF_MIGRATED;
4084 	} else
4085 		flags |= TNF_MIGRATE_FAIL;
4086 
4087 out:
4088 	if (page_nid != NUMA_NO_NODE)
4089 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4090 	return 0;
4091 }
4092 
4093 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4094 {
4095 	if (vma_is_anonymous(vmf->vma))
4096 		return do_huge_pmd_anonymous_page(vmf);
4097 	if (vmf->vma->vm_ops->huge_fault)
4098 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4099 	return VM_FAULT_FALLBACK;
4100 }
4101 
4102 /* `inline' is required to avoid gcc 4.1.2 build error */
4103 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4104 {
4105 	if (vma_is_anonymous(vmf->vma)) {
4106 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4107 			return handle_userfault(vmf, VM_UFFD_WP);
4108 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4109 	}
4110 	if (vmf->vma->vm_ops->huge_fault) {
4111 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4112 
4113 		if (!(ret & VM_FAULT_FALLBACK))
4114 			return ret;
4115 	}
4116 
4117 	/* COW or write-notify handled on pte level: split pmd. */
4118 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4119 
4120 	return VM_FAULT_FALLBACK;
4121 }
4122 
4123 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4124 {
4125 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4126 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4127 	/* No support for anonymous transparent PUD pages yet */
4128 	if (vma_is_anonymous(vmf->vma))
4129 		goto split;
4130 	if (vmf->vma->vm_ops->huge_fault) {
4131 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132 
4133 		if (!(ret & VM_FAULT_FALLBACK))
4134 			return ret;
4135 	}
4136 split:
4137 	/* COW or write-notify not handled on PUD level: split pud.*/
4138 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4140 	return VM_FAULT_FALLBACK;
4141 }
4142 
4143 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4144 {
4145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4146 	/* No support for anonymous transparent PUD pages yet */
4147 	if (vma_is_anonymous(vmf->vma))
4148 		return VM_FAULT_FALLBACK;
4149 	if (vmf->vma->vm_ops->huge_fault)
4150 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4151 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4152 	return VM_FAULT_FALLBACK;
4153 }
4154 
4155 /*
4156  * These routines also need to handle stuff like marking pages dirty
4157  * and/or accessed for architectures that don't do it in hardware (most
4158  * RISC architectures).  The early dirtying is also good on the i386.
4159  *
4160  * There is also a hook called "update_mmu_cache()" that architectures
4161  * with external mmu caches can use to update those (ie the Sparc or
4162  * PowerPC hashed page tables that act as extended TLBs).
4163  *
4164  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4165  * concurrent faults).
4166  *
4167  * The mmap_lock may have been released depending on flags and our return value.
4168  * See filemap_fault() and __lock_page_or_retry().
4169  */
4170 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4171 {
4172 	pte_t entry;
4173 
4174 	if (unlikely(pmd_none(*vmf->pmd))) {
4175 		/*
4176 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4177 		 * want to allocate huge page, and if we expose page table
4178 		 * for an instant, it will be difficult to retract from
4179 		 * concurrent faults and from rmap lookups.
4180 		 */
4181 		vmf->pte = NULL;
4182 	} else {
4183 		/* See comment in pte_alloc_one_map() */
4184 		if (pmd_devmap_trans_unstable(vmf->pmd))
4185 			return 0;
4186 		/*
4187 		 * A regular pmd is established and it can't morph into a huge
4188 		 * pmd from under us anymore at this point because we hold the
4189 		 * mmap_lock read mode and khugepaged takes it in write mode.
4190 		 * So now it's safe to run pte_offset_map().
4191 		 */
4192 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4193 		vmf->orig_pte = *vmf->pte;
4194 
4195 		/*
4196 		 * some architectures can have larger ptes than wordsize,
4197 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4198 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4199 		 * accesses.  The code below just needs a consistent view
4200 		 * for the ifs and we later double check anyway with the
4201 		 * ptl lock held. So here a barrier will do.
4202 		 */
4203 		barrier();
4204 		if (pte_none(vmf->orig_pte)) {
4205 			pte_unmap(vmf->pte);
4206 			vmf->pte = NULL;
4207 		}
4208 	}
4209 
4210 	if (!vmf->pte) {
4211 		if (vma_is_anonymous(vmf->vma))
4212 			return do_anonymous_page(vmf);
4213 		else
4214 			return do_fault(vmf);
4215 	}
4216 
4217 	if (!pte_present(vmf->orig_pte))
4218 		return do_swap_page(vmf);
4219 
4220 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4221 		return do_numa_page(vmf);
4222 
4223 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4224 	spin_lock(vmf->ptl);
4225 	entry = vmf->orig_pte;
4226 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4227 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4228 		goto unlock;
4229 	}
4230 	if (vmf->flags & FAULT_FLAG_WRITE) {
4231 		if (!pte_write(entry))
4232 			return do_wp_page(vmf);
4233 		entry = pte_mkdirty(entry);
4234 	}
4235 	entry = pte_mkyoung(entry);
4236 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4237 				vmf->flags & FAULT_FLAG_WRITE)) {
4238 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4239 	} else {
4240 		/*
4241 		 * This is needed only for protection faults but the arch code
4242 		 * is not yet telling us if this is a protection fault or not.
4243 		 * This still avoids useless tlb flushes for .text page faults
4244 		 * with threads.
4245 		 */
4246 		if (vmf->flags & FAULT_FLAG_WRITE)
4247 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4248 	}
4249 unlock:
4250 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4251 	return 0;
4252 }
4253 
4254 /*
4255  * By the time we get here, we already hold the mm semaphore
4256  *
4257  * The mmap_lock may have been released depending on flags and our
4258  * return value.  See filemap_fault() and __lock_page_or_retry().
4259  */
4260 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261 		unsigned long address, unsigned int flags)
4262 {
4263 	struct vm_fault vmf = {
4264 		.vma = vma,
4265 		.address = address & PAGE_MASK,
4266 		.flags = flags,
4267 		.pgoff = linear_page_index(vma, address),
4268 		.gfp_mask = __get_fault_gfp_mask(vma),
4269 	};
4270 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4271 	struct mm_struct *mm = vma->vm_mm;
4272 	pgd_t *pgd;
4273 	p4d_t *p4d;
4274 	vm_fault_t ret;
4275 
4276 	pgd = pgd_offset(mm, address);
4277 	p4d = p4d_alloc(mm, pgd, address);
4278 	if (!p4d)
4279 		return VM_FAULT_OOM;
4280 
4281 	vmf.pud = pud_alloc(mm, p4d, address);
4282 	if (!vmf.pud)
4283 		return VM_FAULT_OOM;
4284 retry_pud:
4285 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4286 		ret = create_huge_pud(&vmf);
4287 		if (!(ret & VM_FAULT_FALLBACK))
4288 			return ret;
4289 	} else {
4290 		pud_t orig_pud = *vmf.pud;
4291 
4292 		barrier();
4293 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4294 
4295 			/* NUMA case for anonymous PUDs would go here */
4296 
4297 			if (dirty && !pud_write(orig_pud)) {
4298 				ret = wp_huge_pud(&vmf, orig_pud);
4299 				if (!(ret & VM_FAULT_FALLBACK))
4300 					return ret;
4301 			} else {
4302 				huge_pud_set_accessed(&vmf, orig_pud);
4303 				return 0;
4304 			}
4305 		}
4306 	}
4307 
4308 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4309 	if (!vmf.pmd)
4310 		return VM_FAULT_OOM;
4311 
4312 	/* Huge pud page fault raced with pmd_alloc? */
4313 	if (pud_trans_unstable(vmf.pud))
4314 		goto retry_pud;
4315 
4316 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4317 		ret = create_huge_pmd(&vmf);
4318 		if (!(ret & VM_FAULT_FALLBACK))
4319 			return ret;
4320 	} else {
4321 		pmd_t orig_pmd = *vmf.pmd;
4322 
4323 		barrier();
4324 		if (unlikely(is_swap_pmd(orig_pmd))) {
4325 			VM_BUG_ON(thp_migration_supported() &&
4326 					  !is_pmd_migration_entry(orig_pmd));
4327 			if (is_pmd_migration_entry(orig_pmd))
4328 				pmd_migration_entry_wait(mm, vmf.pmd);
4329 			return 0;
4330 		}
4331 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4332 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4333 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4334 
4335 			if (dirty && !pmd_write(orig_pmd)) {
4336 				ret = wp_huge_pmd(&vmf, orig_pmd);
4337 				if (!(ret & VM_FAULT_FALLBACK))
4338 					return ret;
4339 			} else {
4340 				huge_pmd_set_accessed(&vmf, orig_pmd);
4341 				return 0;
4342 			}
4343 		}
4344 	}
4345 
4346 	return handle_pte_fault(&vmf);
4347 }
4348 
4349 /*
4350  * By the time we get here, we already hold the mm semaphore
4351  *
4352  * The mmap_lock may have been released depending on flags and our
4353  * return value.  See filemap_fault() and __lock_page_or_retry().
4354  */
4355 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4356 		unsigned int flags)
4357 {
4358 	vm_fault_t ret;
4359 
4360 	__set_current_state(TASK_RUNNING);
4361 
4362 	count_vm_event(PGFAULT);
4363 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4364 
4365 	/* do counter updates before entering really critical section. */
4366 	check_sync_rss_stat(current);
4367 
4368 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4369 					    flags & FAULT_FLAG_INSTRUCTION,
4370 					    flags & FAULT_FLAG_REMOTE))
4371 		return VM_FAULT_SIGSEGV;
4372 
4373 	/*
4374 	 * Enable the memcg OOM handling for faults triggered in user
4375 	 * space.  Kernel faults are handled more gracefully.
4376 	 */
4377 	if (flags & FAULT_FLAG_USER)
4378 		mem_cgroup_enter_user_fault();
4379 
4380 	if (unlikely(is_vm_hugetlb_page(vma)))
4381 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4382 	else
4383 		ret = __handle_mm_fault(vma, address, flags);
4384 
4385 	if (flags & FAULT_FLAG_USER) {
4386 		mem_cgroup_exit_user_fault();
4387 		/*
4388 		 * The task may have entered a memcg OOM situation but
4389 		 * if the allocation error was handled gracefully (no
4390 		 * VM_FAULT_OOM), there is no need to kill anything.
4391 		 * Just clean up the OOM state peacefully.
4392 		 */
4393 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4394 			mem_cgroup_oom_synchronize(false);
4395 	}
4396 
4397 	return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(handle_mm_fault);
4400 
4401 #ifndef __PAGETABLE_P4D_FOLDED
4402 /*
4403  * Allocate p4d page table.
4404  * We've already handled the fast-path in-line.
4405  */
4406 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4407 {
4408 	p4d_t *new = p4d_alloc_one(mm, address);
4409 	if (!new)
4410 		return -ENOMEM;
4411 
4412 	smp_wmb(); /* See comment in __pte_alloc */
4413 
4414 	spin_lock(&mm->page_table_lock);
4415 	if (pgd_present(*pgd))		/* Another has populated it */
4416 		p4d_free(mm, new);
4417 	else
4418 		pgd_populate(mm, pgd, new);
4419 	spin_unlock(&mm->page_table_lock);
4420 	return 0;
4421 }
4422 #endif /* __PAGETABLE_P4D_FOLDED */
4423 
4424 #ifndef __PAGETABLE_PUD_FOLDED
4425 /*
4426  * Allocate page upper directory.
4427  * We've already handled the fast-path in-line.
4428  */
4429 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4430 {
4431 	pud_t *new = pud_alloc_one(mm, address);
4432 	if (!new)
4433 		return -ENOMEM;
4434 
4435 	smp_wmb(); /* See comment in __pte_alloc */
4436 
4437 	spin_lock(&mm->page_table_lock);
4438 	if (!p4d_present(*p4d)) {
4439 		mm_inc_nr_puds(mm);
4440 		p4d_populate(mm, p4d, new);
4441 	} else	/* Another has populated it */
4442 		pud_free(mm, new);
4443 	spin_unlock(&mm->page_table_lock);
4444 	return 0;
4445 }
4446 #endif /* __PAGETABLE_PUD_FOLDED */
4447 
4448 #ifndef __PAGETABLE_PMD_FOLDED
4449 /*
4450  * Allocate page middle directory.
4451  * We've already handled the fast-path in-line.
4452  */
4453 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4454 {
4455 	spinlock_t *ptl;
4456 	pmd_t *new = pmd_alloc_one(mm, address);
4457 	if (!new)
4458 		return -ENOMEM;
4459 
4460 	smp_wmb(); /* See comment in __pte_alloc */
4461 
4462 	ptl = pud_lock(mm, pud);
4463 	if (!pud_present(*pud)) {
4464 		mm_inc_nr_pmds(mm);
4465 		pud_populate(mm, pud, new);
4466 	} else	/* Another has populated it */
4467 		pmd_free(mm, new);
4468 	spin_unlock(ptl);
4469 	return 0;
4470 }
4471 #endif /* __PAGETABLE_PMD_FOLDED */
4472 
4473 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4474 			    struct mmu_notifier_range *range,
4475 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4476 {
4477 	pgd_t *pgd;
4478 	p4d_t *p4d;
4479 	pud_t *pud;
4480 	pmd_t *pmd;
4481 	pte_t *ptep;
4482 
4483 	pgd = pgd_offset(mm, address);
4484 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4485 		goto out;
4486 
4487 	p4d = p4d_offset(pgd, address);
4488 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4489 		goto out;
4490 
4491 	pud = pud_offset(p4d, address);
4492 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4493 		goto out;
4494 
4495 	pmd = pmd_offset(pud, address);
4496 	VM_BUG_ON(pmd_trans_huge(*pmd));
4497 
4498 	if (pmd_huge(*pmd)) {
4499 		if (!pmdpp)
4500 			goto out;
4501 
4502 		if (range) {
4503 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4504 						NULL, mm, address & PMD_MASK,
4505 						(address & PMD_MASK) + PMD_SIZE);
4506 			mmu_notifier_invalidate_range_start(range);
4507 		}
4508 		*ptlp = pmd_lock(mm, pmd);
4509 		if (pmd_huge(*pmd)) {
4510 			*pmdpp = pmd;
4511 			return 0;
4512 		}
4513 		spin_unlock(*ptlp);
4514 		if (range)
4515 			mmu_notifier_invalidate_range_end(range);
4516 	}
4517 
4518 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4519 		goto out;
4520 
4521 	if (range) {
4522 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4523 					address & PAGE_MASK,
4524 					(address & PAGE_MASK) + PAGE_SIZE);
4525 		mmu_notifier_invalidate_range_start(range);
4526 	}
4527 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4528 	if (!pte_present(*ptep))
4529 		goto unlock;
4530 	*ptepp = ptep;
4531 	return 0;
4532 unlock:
4533 	pte_unmap_unlock(ptep, *ptlp);
4534 	if (range)
4535 		mmu_notifier_invalidate_range_end(range);
4536 out:
4537 	return -EINVAL;
4538 }
4539 
4540 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4541 			     pte_t **ptepp, spinlock_t **ptlp)
4542 {
4543 	int res;
4544 
4545 	/* (void) is needed to make gcc happy */
4546 	(void) __cond_lock(*ptlp,
4547 			   !(res = __follow_pte_pmd(mm, address, NULL,
4548 						    ptepp, NULL, ptlp)));
4549 	return res;
4550 }
4551 
4552 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4553 		   struct mmu_notifier_range *range,
4554 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4555 {
4556 	int res;
4557 
4558 	/* (void) is needed to make gcc happy */
4559 	(void) __cond_lock(*ptlp,
4560 			   !(res = __follow_pte_pmd(mm, address, range,
4561 						    ptepp, pmdpp, ptlp)));
4562 	return res;
4563 }
4564 EXPORT_SYMBOL(follow_pte_pmd);
4565 
4566 /**
4567  * follow_pfn - look up PFN at a user virtual address
4568  * @vma: memory mapping
4569  * @address: user virtual address
4570  * @pfn: location to store found PFN
4571  *
4572  * Only IO mappings and raw PFN mappings are allowed.
4573  *
4574  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4575  */
4576 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4577 	unsigned long *pfn)
4578 {
4579 	int ret = -EINVAL;
4580 	spinlock_t *ptl;
4581 	pte_t *ptep;
4582 
4583 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4584 		return ret;
4585 
4586 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4587 	if (ret)
4588 		return ret;
4589 	*pfn = pte_pfn(*ptep);
4590 	pte_unmap_unlock(ptep, ptl);
4591 	return 0;
4592 }
4593 EXPORT_SYMBOL(follow_pfn);
4594 
4595 #ifdef CONFIG_HAVE_IOREMAP_PROT
4596 int follow_phys(struct vm_area_struct *vma,
4597 		unsigned long address, unsigned int flags,
4598 		unsigned long *prot, resource_size_t *phys)
4599 {
4600 	int ret = -EINVAL;
4601 	pte_t *ptep, pte;
4602 	spinlock_t *ptl;
4603 
4604 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4605 		goto out;
4606 
4607 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4608 		goto out;
4609 	pte = *ptep;
4610 
4611 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4612 		goto unlock;
4613 
4614 	*prot = pgprot_val(pte_pgprot(pte));
4615 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4616 
4617 	ret = 0;
4618 unlock:
4619 	pte_unmap_unlock(ptep, ptl);
4620 out:
4621 	return ret;
4622 }
4623 
4624 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4625 			void *buf, int len, int write)
4626 {
4627 	resource_size_t phys_addr;
4628 	unsigned long prot = 0;
4629 	void __iomem *maddr;
4630 	int offset = addr & (PAGE_SIZE-1);
4631 
4632 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4633 		return -EINVAL;
4634 
4635 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4636 	if (!maddr)
4637 		return -ENOMEM;
4638 
4639 	if (write)
4640 		memcpy_toio(maddr + offset, buf, len);
4641 	else
4642 		memcpy_fromio(buf, maddr + offset, len);
4643 	iounmap(maddr);
4644 
4645 	return len;
4646 }
4647 EXPORT_SYMBOL_GPL(generic_access_phys);
4648 #endif
4649 
4650 /*
4651  * Access another process' address space as given in mm.  If non-NULL, use the
4652  * given task for page fault accounting.
4653  */
4654 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4655 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4656 {
4657 	struct vm_area_struct *vma;
4658 	void *old_buf = buf;
4659 	int write = gup_flags & FOLL_WRITE;
4660 
4661 	if (mmap_read_lock_killable(mm))
4662 		return 0;
4663 
4664 	/* ignore errors, just check how much was successfully transferred */
4665 	while (len) {
4666 		int bytes, ret, offset;
4667 		void *maddr;
4668 		struct page *page = NULL;
4669 
4670 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4671 				gup_flags, &page, &vma, NULL);
4672 		if (ret <= 0) {
4673 #ifndef CONFIG_HAVE_IOREMAP_PROT
4674 			break;
4675 #else
4676 			/*
4677 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4678 			 * we can access using slightly different code.
4679 			 */
4680 			vma = find_vma(mm, addr);
4681 			if (!vma || vma->vm_start > addr)
4682 				break;
4683 			if (vma->vm_ops && vma->vm_ops->access)
4684 				ret = vma->vm_ops->access(vma, addr, buf,
4685 							  len, write);
4686 			if (ret <= 0)
4687 				break;
4688 			bytes = ret;
4689 #endif
4690 		} else {
4691 			bytes = len;
4692 			offset = addr & (PAGE_SIZE-1);
4693 			if (bytes > PAGE_SIZE-offset)
4694 				bytes = PAGE_SIZE-offset;
4695 
4696 			maddr = kmap(page);
4697 			if (write) {
4698 				copy_to_user_page(vma, page, addr,
4699 						  maddr + offset, buf, bytes);
4700 				set_page_dirty_lock(page);
4701 			} else {
4702 				copy_from_user_page(vma, page, addr,
4703 						    buf, maddr + offset, bytes);
4704 			}
4705 			kunmap(page);
4706 			put_page(page);
4707 		}
4708 		len -= bytes;
4709 		buf += bytes;
4710 		addr += bytes;
4711 	}
4712 	mmap_read_unlock(mm);
4713 
4714 	return buf - old_buf;
4715 }
4716 
4717 /**
4718  * access_remote_vm - access another process' address space
4719  * @mm:		the mm_struct of the target address space
4720  * @addr:	start address to access
4721  * @buf:	source or destination buffer
4722  * @len:	number of bytes to transfer
4723  * @gup_flags:	flags modifying lookup behaviour
4724  *
4725  * The caller must hold a reference on @mm.
4726  *
4727  * Return: number of bytes copied from source to destination.
4728  */
4729 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4730 		void *buf, int len, unsigned int gup_flags)
4731 {
4732 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4733 }
4734 
4735 /*
4736  * Access another process' address space.
4737  * Source/target buffer must be kernel space,
4738  * Do not walk the page table directly, use get_user_pages
4739  */
4740 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4741 		void *buf, int len, unsigned int gup_flags)
4742 {
4743 	struct mm_struct *mm;
4744 	int ret;
4745 
4746 	mm = get_task_mm(tsk);
4747 	if (!mm)
4748 		return 0;
4749 
4750 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4751 
4752 	mmput(mm);
4753 
4754 	return ret;
4755 }
4756 EXPORT_SYMBOL_GPL(access_process_vm);
4757 
4758 /*
4759  * Print the name of a VMA.
4760  */
4761 void print_vma_addr(char *prefix, unsigned long ip)
4762 {
4763 	struct mm_struct *mm = current->mm;
4764 	struct vm_area_struct *vma;
4765 
4766 	/*
4767 	 * we might be running from an atomic context so we cannot sleep
4768 	 */
4769 	if (!mmap_read_trylock(mm))
4770 		return;
4771 
4772 	vma = find_vma(mm, ip);
4773 	if (vma && vma->vm_file) {
4774 		struct file *f = vma->vm_file;
4775 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4776 		if (buf) {
4777 			char *p;
4778 
4779 			p = file_path(f, buf, PAGE_SIZE);
4780 			if (IS_ERR(p))
4781 				p = "?";
4782 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4783 					vma->vm_start,
4784 					vma->vm_end - vma->vm_start);
4785 			free_page((unsigned long)buf);
4786 		}
4787 	}
4788 	mmap_read_unlock(mm);
4789 }
4790 
4791 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4792 void __might_fault(const char *file, int line)
4793 {
4794 	/*
4795 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4796 	 * holding the mmap_lock, this is safe because kernel memory doesn't
4797 	 * get paged out, therefore we'll never actually fault, and the
4798 	 * below annotations will generate false positives.
4799 	 */
4800 	if (uaccess_kernel())
4801 		return;
4802 	if (pagefault_disabled())
4803 		return;
4804 	__might_sleep(file, line, 0);
4805 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4806 	if (current->mm)
4807 		might_lock_read(&current->mm->mmap_lock);
4808 #endif
4809 }
4810 EXPORT_SYMBOL(__might_fault);
4811 #endif
4812 
4813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4814 /*
4815  * Process all subpages of the specified huge page with the specified
4816  * operation.  The target subpage will be processed last to keep its
4817  * cache lines hot.
4818  */
4819 static inline void process_huge_page(
4820 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4821 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4822 	void *arg)
4823 {
4824 	int i, n, base, l;
4825 	unsigned long addr = addr_hint &
4826 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4827 
4828 	/* Process target subpage last to keep its cache lines hot */
4829 	might_sleep();
4830 	n = (addr_hint - addr) / PAGE_SIZE;
4831 	if (2 * n <= pages_per_huge_page) {
4832 		/* If target subpage in first half of huge page */
4833 		base = 0;
4834 		l = n;
4835 		/* Process subpages at the end of huge page */
4836 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4837 			cond_resched();
4838 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4839 		}
4840 	} else {
4841 		/* If target subpage in second half of huge page */
4842 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4843 		l = pages_per_huge_page - n;
4844 		/* Process subpages at the begin of huge page */
4845 		for (i = 0; i < base; i++) {
4846 			cond_resched();
4847 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4848 		}
4849 	}
4850 	/*
4851 	 * Process remaining subpages in left-right-left-right pattern
4852 	 * towards the target subpage
4853 	 */
4854 	for (i = 0; i < l; i++) {
4855 		int left_idx = base + i;
4856 		int right_idx = base + 2 * l - 1 - i;
4857 
4858 		cond_resched();
4859 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4860 		cond_resched();
4861 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4862 	}
4863 }
4864 
4865 static void clear_gigantic_page(struct page *page,
4866 				unsigned long addr,
4867 				unsigned int pages_per_huge_page)
4868 {
4869 	int i;
4870 	struct page *p = page;
4871 
4872 	might_sleep();
4873 	for (i = 0; i < pages_per_huge_page;
4874 	     i++, p = mem_map_next(p, page, i)) {
4875 		cond_resched();
4876 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4877 	}
4878 }
4879 
4880 static void clear_subpage(unsigned long addr, int idx, void *arg)
4881 {
4882 	struct page *page = arg;
4883 
4884 	clear_user_highpage(page + idx, addr);
4885 }
4886 
4887 void clear_huge_page(struct page *page,
4888 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4889 {
4890 	unsigned long addr = addr_hint &
4891 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4892 
4893 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4894 		clear_gigantic_page(page, addr, pages_per_huge_page);
4895 		return;
4896 	}
4897 
4898 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4899 }
4900 
4901 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4902 				    unsigned long addr,
4903 				    struct vm_area_struct *vma,
4904 				    unsigned int pages_per_huge_page)
4905 {
4906 	int i;
4907 	struct page *dst_base = dst;
4908 	struct page *src_base = src;
4909 
4910 	for (i = 0; i < pages_per_huge_page; ) {
4911 		cond_resched();
4912 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4913 
4914 		i++;
4915 		dst = mem_map_next(dst, dst_base, i);
4916 		src = mem_map_next(src, src_base, i);
4917 	}
4918 }
4919 
4920 struct copy_subpage_arg {
4921 	struct page *dst;
4922 	struct page *src;
4923 	struct vm_area_struct *vma;
4924 };
4925 
4926 static void copy_subpage(unsigned long addr, int idx, void *arg)
4927 {
4928 	struct copy_subpage_arg *copy_arg = arg;
4929 
4930 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4931 			   addr, copy_arg->vma);
4932 }
4933 
4934 void copy_user_huge_page(struct page *dst, struct page *src,
4935 			 unsigned long addr_hint, struct vm_area_struct *vma,
4936 			 unsigned int pages_per_huge_page)
4937 {
4938 	unsigned long addr = addr_hint &
4939 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4940 	struct copy_subpage_arg arg = {
4941 		.dst = dst,
4942 		.src = src,
4943 		.vma = vma,
4944 	};
4945 
4946 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4947 		copy_user_gigantic_page(dst, src, addr, vma,
4948 					pages_per_huge_page);
4949 		return;
4950 	}
4951 
4952 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4953 }
4954 
4955 long copy_huge_page_from_user(struct page *dst_page,
4956 				const void __user *usr_src,
4957 				unsigned int pages_per_huge_page,
4958 				bool allow_pagefault)
4959 {
4960 	void *src = (void *)usr_src;
4961 	void *page_kaddr;
4962 	unsigned long i, rc = 0;
4963 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4964 
4965 	for (i = 0; i < pages_per_huge_page; i++) {
4966 		if (allow_pagefault)
4967 			page_kaddr = kmap(dst_page + i);
4968 		else
4969 			page_kaddr = kmap_atomic(dst_page + i);
4970 		rc = copy_from_user(page_kaddr,
4971 				(const void __user *)(src + i * PAGE_SIZE),
4972 				PAGE_SIZE);
4973 		if (allow_pagefault)
4974 			kunmap(dst_page + i);
4975 		else
4976 			kunmap_atomic(page_kaddr);
4977 
4978 		ret_val -= (PAGE_SIZE - rc);
4979 		if (rc)
4980 			break;
4981 
4982 		cond_resched();
4983 	}
4984 	return ret_val;
4985 }
4986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4987 
4988 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4989 
4990 static struct kmem_cache *page_ptl_cachep;
4991 
4992 void __init ptlock_cache_init(void)
4993 {
4994 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4995 			SLAB_PANIC, NULL);
4996 }
4997 
4998 bool ptlock_alloc(struct page *page)
4999 {
5000 	spinlock_t *ptl;
5001 
5002 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5003 	if (!ptl)
5004 		return false;
5005 	page->ptl = ptl;
5006 	return true;
5007 }
5008 
5009 void ptlock_free(struct page *page)
5010 {
5011 	kmem_cache_free(page_ptl_cachep, page->ptl);
5012 }
5013 #endif
5014