xref: /openbmc/linux/mm/memory.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60 
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 
64 #include "internal.h"
65 
66 #ifndef CONFIG_NEED_MULTIPLE_NODES
67 /* use the per-pgdat data instead for discontigmem - mbligh */
68 unsigned long max_mapnr;
69 struct page *mem_map;
70 
71 EXPORT_SYMBOL(max_mapnr);
72 EXPORT_SYMBOL(mem_map);
73 #endif
74 
75 unsigned long num_physpages;
76 /*
77  * A number of key systems in x86 including ioremap() rely on the assumption
78  * that high_memory defines the upper bound on direct map memory, then end
79  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
80  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81  * and ZONE_HIGHMEM.
82  */
83 void * high_memory;
84 
85 EXPORT_SYMBOL(num_physpages);
86 EXPORT_SYMBOL(high_memory);
87 
88 /*
89  * Randomize the address space (stacks, mmaps, brk, etc.).
90  *
91  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92  *   as ancient (libc5 based) binaries can segfault. )
93  */
94 int randomize_va_space __read_mostly =
95 #ifdef CONFIG_COMPAT_BRK
96 					1;
97 #else
98 					2;
99 #endif
100 
101 static int __init disable_randmaps(char *s)
102 {
103 	randomize_va_space = 0;
104 	return 1;
105 }
106 __setup("norandmaps", disable_randmaps);
107 
108 
109 /*
110  * If a p?d_bad entry is found while walking page tables, report
111  * the error, before resetting entry to p?d_none.  Usually (but
112  * very seldom) called out from the p?d_none_or_clear_bad macros.
113  */
114 
115 void pgd_clear_bad(pgd_t *pgd)
116 {
117 	pgd_ERROR(*pgd);
118 	pgd_clear(pgd);
119 }
120 
121 void pud_clear_bad(pud_t *pud)
122 {
123 	pud_ERROR(*pud);
124 	pud_clear(pud);
125 }
126 
127 void pmd_clear_bad(pmd_t *pmd)
128 {
129 	pmd_ERROR(*pmd);
130 	pmd_clear(pmd);
131 }
132 
133 /*
134  * Note: this doesn't free the actual pages themselves. That
135  * has been handled earlier when unmapping all the memory regions.
136  */
137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
138 {
139 	pgtable_t token = pmd_pgtable(*pmd);
140 	pmd_clear(pmd);
141 	pte_free_tlb(tlb, token);
142 	tlb->mm->nr_ptes--;
143 }
144 
145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 				unsigned long addr, unsigned long end,
147 				unsigned long floor, unsigned long ceiling)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 	unsigned long start;
152 
153 	start = addr;
154 	pmd = pmd_offset(pud, addr);
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (pmd_none_or_clear_bad(pmd))
158 			continue;
159 		free_pte_range(tlb, pmd);
160 	} while (pmd++, addr = next, addr != end);
161 
162 	start &= PUD_MASK;
163 	if (start < floor)
164 		return;
165 	if (ceiling) {
166 		ceiling &= PUD_MASK;
167 		if (!ceiling)
168 			return;
169 	}
170 	if (end - 1 > ceiling - 1)
171 		return;
172 
173 	pmd = pmd_offset(pud, start);
174 	pud_clear(pud);
175 	pmd_free_tlb(tlb, pmd);
176 }
177 
178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 				unsigned long addr, unsigned long end,
180 				unsigned long floor, unsigned long ceiling)
181 {
182 	pud_t *pud;
183 	unsigned long next;
184 	unsigned long start;
185 
186 	start = addr;
187 	pud = pud_offset(pgd, addr);
188 	do {
189 		next = pud_addr_end(addr, end);
190 		if (pud_none_or_clear_bad(pud))
191 			continue;
192 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193 	} while (pud++, addr = next, addr != end);
194 
195 	start &= PGDIR_MASK;
196 	if (start < floor)
197 		return;
198 	if (ceiling) {
199 		ceiling &= PGDIR_MASK;
200 		if (!ceiling)
201 			return;
202 	}
203 	if (end - 1 > ceiling - 1)
204 		return;
205 
206 	pud = pud_offset(pgd, start);
207 	pgd_clear(pgd);
208 	pud_free_tlb(tlb, pud);
209 }
210 
211 /*
212  * This function frees user-level page tables of a process.
213  *
214  * Must be called with pagetable lock held.
215  */
216 void free_pgd_range(struct mmu_gather *tlb,
217 			unsigned long addr, unsigned long end,
218 			unsigned long floor, unsigned long ceiling)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long start;
223 
224 	/*
225 	 * The next few lines have given us lots of grief...
226 	 *
227 	 * Why are we testing PMD* at this top level?  Because often
228 	 * there will be no work to do at all, and we'd prefer not to
229 	 * go all the way down to the bottom just to discover that.
230 	 *
231 	 * Why all these "- 1"s?  Because 0 represents both the bottom
232 	 * of the address space and the top of it (using -1 for the
233 	 * top wouldn't help much: the masks would do the wrong thing).
234 	 * The rule is that addr 0 and floor 0 refer to the bottom of
235 	 * the address space, but end 0 and ceiling 0 refer to the top
236 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 	 * that end 0 case should be mythical).
238 	 *
239 	 * Wherever addr is brought up or ceiling brought down, we must
240 	 * be careful to reject "the opposite 0" before it confuses the
241 	 * subsequent tests.  But what about where end is brought down
242 	 * by PMD_SIZE below? no, end can't go down to 0 there.
243 	 *
244 	 * Whereas we round start (addr) and ceiling down, by different
245 	 * masks at different levels, in order to test whether a table
246 	 * now has no other vmas using it, so can be freed, we don't
247 	 * bother to round floor or end up - the tests don't need that.
248 	 */
249 
250 	addr &= PMD_MASK;
251 	if (addr < floor) {
252 		addr += PMD_SIZE;
253 		if (!addr)
254 			return;
255 	}
256 	if (ceiling) {
257 		ceiling &= PMD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		end -= PMD_SIZE;
263 	if (addr > end - 1)
264 		return;
265 
266 	start = addr;
267 	pgd = pgd_offset(tlb->mm, addr);
268 	do {
269 		next = pgd_addr_end(addr, end);
270 		if (pgd_none_or_clear_bad(pgd))
271 			continue;
272 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273 	} while (pgd++, addr = next, addr != end);
274 }
275 
276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277 		unsigned long floor, unsigned long ceiling)
278 {
279 	while (vma) {
280 		struct vm_area_struct *next = vma->vm_next;
281 		unsigned long addr = vma->vm_start;
282 
283 		/*
284 		 * Hide vma from rmap and vmtruncate before freeing pgtables
285 		 */
286 		anon_vma_unlink(vma);
287 		unlink_file_vma(vma);
288 
289 		if (is_vm_hugetlb_page(vma)) {
290 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291 				floor, next? next->vm_start: ceiling);
292 		} else {
293 			/*
294 			 * Optimization: gather nearby vmas into one call down
295 			 */
296 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297 			       && !is_vm_hugetlb_page(next)) {
298 				vma = next;
299 				next = vma->vm_next;
300 				anon_vma_unlink(vma);
301 				unlink_file_vma(vma);
302 			}
303 			free_pgd_range(tlb, addr, vma->vm_end,
304 				floor, next? next->vm_start: ceiling);
305 		}
306 		vma = next;
307 	}
308 }
309 
310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312 	pgtable_t new = pte_alloc_one(mm, address);
313 	if (!new)
314 		return -ENOMEM;
315 
316 	/*
317 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 	 * visible before the pte is made visible to other CPUs by being
319 	 * put into page tables.
320 	 *
321 	 * The other side of the story is the pointer chasing in the page
322 	 * table walking code (when walking the page table without locking;
323 	 * ie. most of the time). Fortunately, these data accesses consist
324 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 	 * being the notable exception) will already guarantee loads are
326 	 * seen in-order. See the alpha page table accessors for the
327 	 * smp_read_barrier_depends() barriers in page table walking code.
328 	 */
329 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
330 
331 	spin_lock(&mm->page_table_lock);
332 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
333 		mm->nr_ptes++;
334 		pmd_populate(mm, pmd, new);
335 		new = NULL;
336 	}
337 	spin_unlock(&mm->page_table_lock);
338 	if (new)
339 		pte_free(mm, new);
340 	return 0;
341 }
342 
343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
344 {
345 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 	if (!new)
347 		return -ENOMEM;
348 
349 	smp_wmb(); /* See comment in __pte_alloc */
350 
351 	spin_lock(&init_mm.page_table_lock);
352 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
353 		pmd_populate_kernel(&init_mm, pmd, new);
354 		new = NULL;
355 	}
356 	spin_unlock(&init_mm.page_table_lock);
357 	if (new)
358 		pte_free_kernel(&init_mm, new);
359 	return 0;
360 }
361 
362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363 {
364 	if (file_rss)
365 		add_mm_counter(mm, file_rss, file_rss);
366 	if (anon_rss)
367 		add_mm_counter(mm, anon_rss, anon_rss);
368 }
369 
370 /*
371  * This function is called to print an error when a bad pte
372  * is found. For example, we might have a PFN-mapped pte in
373  * a region that doesn't allow it.
374  *
375  * The calling function must still handle the error.
376  */
377 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
378 			  unsigned long vaddr)
379 {
380 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
381 			"vm_flags = %lx, vaddr = %lx\n",
382 		(long long)pte_val(pte),
383 		(vma->vm_mm == current->mm ? current->comm : "???"),
384 		vma->vm_flags, vaddr);
385 	dump_stack();
386 }
387 
388 static inline int is_cow_mapping(unsigned int flags)
389 {
390 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
391 }
392 
393 /*
394  * vm_normal_page -- This function gets the "struct page" associated with a pte.
395  *
396  * "Special" mappings do not wish to be associated with a "struct page" (either
397  * it doesn't exist, or it exists but they don't want to touch it). In this
398  * case, NULL is returned here. "Normal" mappings do have a struct page.
399  *
400  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
401  * pte bit, in which case this function is trivial. Secondly, an architecture
402  * may not have a spare pte bit, which requires a more complicated scheme,
403  * described below.
404  *
405  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
406  * special mapping (even if there are underlying and valid "struct pages").
407  * COWed pages of a VM_PFNMAP are always normal.
408  *
409  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
410  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
411  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
412  * mapping will always honor the rule
413  *
414  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
415  *
416  * And for normal mappings this is false.
417  *
418  * This restricts such mappings to be a linear translation from virtual address
419  * to pfn. To get around this restriction, we allow arbitrary mappings so long
420  * as the vma is not a COW mapping; in that case, we know that all ptes are
421  * special (because none can have been COWed).
422  *
423  *
424  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
425  *
426  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
427  * page" backing, however the difference is that _all_ pages with a struct
428  * page (that is, those where pfn_valid is true) are refcounted and considered
429  * normal pages by the VM. The disadvantage is that pages are refcounted
430  * (which can be slower and simply not an option for some PFNMAP users). The
431  * advantage is that we don't have to follow the strict linearity rule of
432  * PFNMAP mappings in order to support COWable mappings.
433  *
434  */
435 #ifdef __HAVE_ARCH_PTE_SPECIAL
436 # define HAVE_PTE_SPECIAL 1
437 #else
438 # define HAVE_PTE_SPECIAL 0
439 #endif
440 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
441 				pte_t pte)
442 {
443 	unsigned long pfn;
444 
445 	if (HAVE_PTE_SPECIAL) {
446 		if (likely(!pte_special(pte))) {
447 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
448 			return pte_page(pte);
449 		}
450 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
451 		return NULL;
452 	}
453 
454 	/* !HAVE_PTE_SPECIAL case follows: */
455 
456 	pfn = pte_pfn(pte);
457 
458 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
459 		if (vma->vm_flags & VM_MIXEDMAP) {
460 			if (!pfn_valid(pfn))
461 				return NULL;
462 			goto out;
463 		} else {
464 			unsigned long off;
465 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
466 			if (pfn == vma->vm_pgoff + off)
467 				return NULL;
468 			if (!is_cow_mapping(vma->vm_flags))
469 				return NULL;
470 		}
471 	}
472 
473 	VM_BUG_ON(!pfn_valid(pfn));
474 
475 	/*
476 	 * NOTE! We still have PageReserved() pages in the page tables.
477 	 *
478 	 * eg. VDSO mappings can cause them to exist.
479 	 */
480 out:
481 	return pfn_to_page(pfn);
482 }
483 
484 /*
485  * copy one vm_area from one task to the other. Assumes the page tables
486  * already present in the new task to be cleared in the whole range
487  * covered by this vma.
488  */
489 
490 static inline void
491 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
492 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
493 		unsigned long addr, int *rss)
494 {
495 	unsigned long vm_flags = vma->vm_flags;
496 	pte_t pte = *src_pte;
497 	struct page *page;
498 
499 	/* pte contains position in swap or file, so copy. */
500 	if (unlikely(!pte_present(pte))) {
501 		if (!pte_file(pte)) {
502 			swp_entry_t entry = pte_to_swp_entry(pte);
503 
504 			swap_duplicate(entry);
505 			/* make sure dst_mm is on swapoff's mmlist. */
506 			if (unlikely(list_empty(&dst_mm->mmlist))) {
507 				spin_lock(&mmlist_lock);
508 				if (list_empty(&dst_mm->mmlist))
509 					list_add(&dst_mm->mmlist,
510 						 &src_mm->mmlist);
511 				spin_unlock(&mmlist_lock);
512 			}
513 			if (is_write_migration_entry(entry) &&
514 					is_cow_mapping(vm_flags)) {
515 				/*
516 				 * COW mappings require pages in both parent
517 				 * and child to be set to read.
518 				 */
519 				make_migration_entry_read(&entry);
520 				pte = swp_entry_to_pte(entry);
521 				set_pte_at(src_mm, addr, src_pte, pte);
522 			}
523 		}
524 		goto out_set_pte;
525 	}
526 
527 	/*
528 	 * If it's a COW mapping, write protect it both
529 	 * in the parent and the child
530 	 */
531 	if (is_cow_mapping(vm_flags)) {
532 		ptep_set_wrprotect(src_mm, addr, src_pte);
533 		pte = pte_wrprotect(pte);
534 	}
535 
536 	/*
537 	 * If it's a shared mapping, mark it clean in
538 	 * the child
539 	 */
540 	if (vm_flags & VM_SHARED)
541 		pte = pte_mkclean(pte);
542 	pte = pte_mkold(pte);
543 
544 	page = vm_normal_page(vma, addr, pte);
545 	if (page) {
546 		get_page(page);
547 		page_dup_rmap(page, vma, addr);
548 		rss[!!PageAnon(page)]++;
549 	}
550 
551 out_set_pte:
552 	set_pte_at(dst_mm, addr, dst_pte, pte);
553 }
554 
555 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
556 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
557 		unsigned long addr, unsigned long end)
558 {
559 	pte_t *src_pte, *dst_pte;
560 	spinlock_t *src_ptl, *dst_ptl;
561 	int progress = 0;
562 	int rss[2];
563 
564 again:
565 	rss[1] = rss[0] = 0;
566 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
567 	if (!dst_pte)
568 		return -ENOMEM;
569 	src_pte = pte_offset_map_nested(src_pmd, addr);
570 	src_ptl = pte_lockptr(src_mm, src_pmd);
571 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
572 	arch_enter_lazy_mmu_mode();
573 
574 	do {
575 		/*
576 		 * We are holding two locks at this point - either of them
577 		 * could generate latencies in another task on another CPU.
578 		 */
579 		if (progress >= 32) {
580 			progress = 0;
581 			if (need_resched() ||
582 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
583 				break;
584 		}
585 		if (pte_none(*src_pte)) {
586 			progress++;
587 			continue;
588 		}
589 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
590 		progress += 8;
591 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
592 
593 	arch_leave_lazy_mmu_mode();
594 	spin_unlock(src_ptl);
595 	pte_unmap_nested(src_pte - 1);
596 	add_mm_rss(dst_mm, rss[0], rss[1]);
597 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
598 	cond_resched();
599 	if (addr != end)
600 		goto again;
601 	return 0;
602 }
603 
604 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
605 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
606 		unsigned long addr, unsigned long end)
607 {
608 	pmd_t *src_pmd, *dst_pmd;
609 	unsigned long next;
610 
611 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
612 	if (!dst_pmd)
613 		return -ENOMEM;
614 	src_pmd = pmd_offset(src_pud, addr);
615 	do {
616 		next = pmd_addr_end(addr, end);
617 		if (pmd_none_or_clear_bad(src_pmd))
618 			continue;
619 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
620 						vma, addr, next))
621 			return -ENOMEM;
622 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
623 	return 0;
624 }
625 
626 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
627 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
628 		unsigned long addr, unsigned long end)
629 {
630 	pud_t *src_pud, *dst_pud;
631 	unsigned long next;
632 
633 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
634 	if (!dst_pud)
635 		return -ENOMEM;
636 	src_pud = pud_offset(src_pgd, addr);
637 	do {
638 		next = pud_addr_end(addr, end);
639 		if (pud_none_or_clear_bad(src_pud))
640 			continue;
641 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
642 						vma, addr, next))
643 			return -ENOMEM;
644 	} while (dst_pud++, src_pud++, addr = next, addr != end);
645 	return 0;
646 }
647 
648 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
649 		struct vm_area_struct *vma)
650 {
651 	pgd_t *src_pgd, *dst_pgd;
652 	unsigned long next;
653 	unsigned long addr = vma->vm_start;
654 	unsigned long end = vma->vm_end;
655 
656 	/*
657 	 * Don't copy ptes where a page fault will fill them correctly.
658 	 * Fork becomes much lighter when there are big shared or private
659 	 * readonly mappings. The tradeoff is that copy_page_range is more
660 	 * efficient than faulting.
661 	 */
662 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
663 		if (!vma->anon_vma)
664 			return 0;
665 	}
666 
667 	if (is_vm_hugetlb_page(vma))
668 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
669 
670 	dst_pgd = pgd_offset(dst_mm, addr);
671 	src_pgd = pgd_offset(src_mm, addr);
672 	do {
673 		next = pgd_addr_end(addr, end);
674 		if (pgd_none_or_clear_bad(src_pgd))
675 			continue;
676 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
677 						vma, addr, next))
678 			return -ENOMEM;
679 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
680 	return 0;
681 }
682 
683 static unsigned long zap_pte_range(struct mmu_gather *tlb,
684 				struct vm_area_struct *vma, pmd_t *pmd,
685 				unsigned long addr, unsigned long end,
686 				long *zap_work, struct zap_details *details)
687 {
688 	struct mm_struct *mm = tlb->mm;
689 	pte_t *pte;
690 	spinlock_t *ptl;
691 	int file_rss = 0;
692 	int anon_rss = 0;
693 
694 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
695 	arch_enter_lazy_mmu_mode();
696 	do {
697 		pte_t ptent = *pte;
698 		if (pte_none(ptent)) {
699 			(*zap_work)--;
700 			continue;
701 		}
702 
703 		(*zap_work) -= PAGE_SIZE;
704 
705 		if (pte_present(ptent)) {
706 			struct page *page;
707 
708 			page = vm_normal_page(vma, addr, ptent);
709 			if (unlikely(details) && page) {
710 				/*
711 				 * unmap_shared_mapping_pages() wants to
712 				 * invalidate cache without truncating:
713 				 * unmap shared but keep private pages.
714 				 */
715 				if (details->check_mapping &&
716 				    details->check_mapping != page->mapping)
717 					continue;
718 				/*
719 				 * Each page->index must be checked when
720 				 * invalidating or truncating nonlinear.
721 				 */
722 				if (details->nonlinear_vma &&
723 				    (page->index < details->first_index ||
724 				     page->index > details->last_index))
725 					continue;
726 			}
727 			ptent = ptep_get_and_clear_full(mm, addr, pte,
728 							tlb->fullmm);
729 			tlb_remove_tlb_entry(tlb, pte, addr);
730 			if (unlikely(!page))
731 				continue;
732 			if (unlikely(details) && details->nonlinear_vma
733 			    && linear_page_index(details->nonlinear_vma,
734 						addr) != page->index)
735 				set_pte_at(mm, addr, pte,
736 					   pgoff_to_pte(page->index));
737 			if (PageAnon(page))
738 				anon_rss--;
739 			else {
740 				if (pte_dirty(ptent))
741 					set_page_dirty(page);
742 				if (pte_young(ptent))
743 					SetPageReferenced(page);
744 				file_rss--;
745 			}
746 			page_remove_rmap(page, vma);
747 			tlb_remove_page(tlb, page);
748 			continue;
749 		}
750 		/*
751 		 * If details->check_mapping, we leave swap entries;
752 		 * if details->nonlinear_vma, we leave file entries.
753 		 */
754 		if (unlikely(details))
755 			continue;
756 		if (!pte_file(ptent))
757 			free_swap_and_cache(pte_to_swp_entry(ptent));
758 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
759 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
760 
761 	add_mm_rss(mm, file_rss, anon_rss);
762 	arch_leave_lazy_mmu_mode();
763 	pte_unmap_unlock(pte - 1, ptl);
764 
765 	return addr;
766 }
767 
768 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
769 				struct vm_area_struct *vma, pud_t *pud,
770 				unsigned long addr, unsigned long end,
771 				long *zap_work, struct zap_details *details)
772 {
773 	pmd_t *pmd;
774 	unsigned long next;
775 
776 	pmd = pmd_offset(pud, addr);
777 	do {
778 		next = pmd_addr_end(addr, end);
779 		if (pmd_none_or_clear_bad(pmd)) {
780 			(*zap_work)--;
781 			continue;
782 		}
783 		next = zap_pte_range(tlb, vma, pmd, addr, next,
784 						zap_work, details);
785 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
786 
787 	return addr;
788 }
789 
790 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
791 				struct vm_area_struct *vma, pgd_t *pgd,
792 				unsigned long addr, unsigned long end,
793 				long *zap_work, struct zap_details *details)
794 {
795 	pud_t *pud;
796 	unsigned long next;
797 
798 	pud = pud_offset(pgd, addr);
799 	do {
800 		next = pud_addr_end(addr, end);
801 		if (pud_none_or_clear_bad(pud)) {
802 			(*zap_work)--;
803 			continue;
804 		}
805 		next = zap_pmd_range(tlb, vma, pud, addr, next,
806 						zap_work, details);
807 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
808 
809 	return addr;
810 }
811 
812 static unsigned long unmap_page_range(struct mmu_gather *tlb,
813 				struct vm_area_struct *vma,
814 				unsigned long addr, unsigned long end,
815 				long *zap_work, struct zap_details *details)
816 {
817 	pgd_t *pgd;
818 	unsigned long next;
819 
820 	if (details && !details->check_mapping && !details->nonlinear_vma)
821 		details = NULL;
822 
823 	BUG_ON(addr >= end);
824 	tlb_start_vma(tlb, vma);
825 	pgd = pgd_offset(vma->vm_mm, addr);
826 	do {
827 		next = pgd_addr_end(addr, end);
828 		if (pgd_none_or_clear_bad(pgd)) {
829 			(*zap_work)--;
830 			continue;
831 		}
832 		next = zap_pud_range(tlb, vma, pgd, addr, next,
833 						zap_work, details);
834 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
835 	tlb_end_vma(tlb, vma);
836 
837 	return addr;
838 }
839 
840 #ifdef CONFIG_PREEMPT
841 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
842 #else
843 /* No preempt: go for improved straight-line efficiency */
844 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
845 #endif
846 
847 /**
848  * unmap_vmas - unmap a range of memory covered by a list of vma's
849  * @tlbp: address of the caller's struct mmu_gather
850  * @vma: the starting vma
851  * @start_addr: virtual address at which to start unmapping
852  * @end_addr: virtual address at which to end unmapping
853  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
854  * @details: details of nonlinear truncation or shared cache invalidation
855  *
856  * Returns the end address of the unmapping (restart addr if interrupted).
857  *
858  * Unmap all pages in the vma list.
859  *
860  * We aim to not hold locks for too long (for scheduling latency reasons).
861  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
862  * return the ending mmu_gather to the caller.
863  *
864  * Only addresses between `start' and `end' will be unmapped.
865  *
866  * The VMA list must be sorted in ascending virtual address order.
867  *
868  * unmap_vmas() assumes that the caller will flush the whole unmapped address
869  * range after unmap_vmas() returns.  So the only responsibility here is to
870  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
871  * drops the lock and schedules.
872  */
873 unsigned long unmap_vmas(struct mmu_gather **tlbp,
874 		struct vm_area_struct *vma, unsigned long start_addr,
875 		unsigned long end_addr, unsigned long *nr_accounted,
876 		struct zap_details *details)
877 {
878 	long zap_work = ZAP_BLOCK_SIZE;
879 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
880 	int tlb_start_valid = 0;
881 	unsigned long start = start_addr;
882 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
883 	int fullmm = (*tlbp)->fullmm;
884 
885 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
886 		unsigned long end;
887 
888 		start = max(vma->vm_start, start_addr);
889 		if (start >= vma->vm_end)
890 			continue;
891 		end = min(vma->vm_end, end_addr);
892 		if (end <= vma->vm_start)
893 			continue;
894 
895 		if (vma->vm_flags & VM_ACCOUNT)
896 			*nr_accounted += (end - start) >> PAGE_SHIFT;
897 
898 		while (start != end) {
899 			if (!tlb_start_valid) {
900 				tlb_start = start;
901 				tlb_start_valid = 1;
902 			}
903 
904 			if (unlikely(is_vm_hugetlb_page(vma))) {
905 				/*
906 				 * It is undesirable to test vma->vm_file as it
907 				 * should be non-null for valid hugetlb area.
908 				 * However, vm_file will be NULL in the error
909 				 * cleanup path of do_mmap_pgoff. When
910 				 * hugetlbfs ->mmap method fails,
911 				 * do_mmap_pgoff() nullifies vma->vm_file
912 				 * before calling this function to clean up.
913 				 * Since no pte has actually been setup, it is
914 				 * safe to do nothing in this case.
915 				 */
916 				if (vma->vm_file) {
917 					unmap_hugepage_range(vma, start, end, NULL);
918 					zap_work -= (end - start) /
919 					pages_per_huge_page(hstate_vma(vma));
920 				}
921 
922 				start = end;
923 			} else
924 				start = unmap_page_range(*tlbp, vma,
925 						start, end, &zap_work, details);
926 
927 			if (zap_work > 0) {
928 				BUG_ON(start != end);
929 				break;
930 			}
931 
932 			tlb_finish_mmu(*tlbp, tlb_start, start);
933 
934 			if (need_resched() ||
935 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
936 				if (i_mmap_lock) {
937 					*tlbp = NULL;
938 					goto out;
939 				}
940 				cond_resched();
941 			}
942 
943 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
944 			tlb_start_valid = 0;
945 			zap_work = ZAP_BLOCK_SIZE;
946 		}
947 	}
948 out:
949 	return start;	/* which is now the end (or restart) address */
950 }
951 
952 /**
953  * zap_page_range - remove user pages in a given range
954  * @vma: vm_area_struct holding the applicable pages
955  * @address: starting address of pages to zap
956  * @size: number of bytes to zap
957  * @details: details of nonlinear truncation or shared cache invalidation
958  */
959 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
960 		unsigned long size, struct zap_details *details)
961 {
962 	struct mm_struct *mm = vma->vm_mm;
963 	struct mmu_gather *tlb;
964 	unsigned long end = address + size;
965 	unsigned long nr_accounted = 0;
966 
967 	lru_add_drain();
968 	tlb = tlb_gather_mmu(mm, 0);
969 	update_hiwater_rss(mm);
970 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
971 	if (tlb)
972 		tlb_finish_mmu(tlb, address, end);
973 	return end;
974 }
975 
976 /*
977  * Do a quick page-table lookup for a single page.
978  */
979 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
980 			unsigned int flags)
981 {
982 	pgd_t *pgd;
983 	pud_t *pud;
984 	pmd_t *pmd;
985 	pte_t *ptep, pte;
986 	spinlock_t *ptl;
987 	struct page *page;
988 	struct mm_struct *mm = vma->vm_mm;
989 
990 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
991 	if (!IS_ERR(page)) {
992 		BUG_ON(flags & FOLL_GET);
993 		goto out;
994 	}
995 
996 	page = NULL;
997 	pgd = pgd_offset(mm, address);
998 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
999 		goto no_page_table;
1000 
1001 	pud = pud_offset(pgd, address);
1002 	if (pud_none(*pud))
1003 		goto no_page_table;
1004 	if (pud_huge(*pud)) {
1005 		BUG_ON(flags & FOLL_GET);
1006 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1007 		goto out;
1008 	}
1009 	if (unlikely(pud_bad(*pud)))
1010 		goto no_page_table;
1011 
1012 	pmd = pmd_offset(pud, address);
1013 	if (pmd_none(*pmd))
1014 		goto no_page_table;
1015 	if (pmd_huge(*pmd)) {
1016 		BUG_ON(flags & FOLL_GET);
1017 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1018 		goto out;
1019 	}
1020 	if (unlikely(pmd_bad(*pmd)))
1021 		goto no_page_table;
1022 
1023 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1024 
1025 	pte = *ptep;
1026 	if (!pte_present(pte))
1027 		goto no_page;
1028 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1029 		goto unlock;
1030 	page = vm_normal_page(vma, address, pte);
1031 	if (unlikely(!page))
1032 		goto bad_page;
1033 
1034 	if (flags & FOLL_GET)
1035 		get_page(page);
1036 	if (flags & FOLL_TOUCH) {
1037 		if ((flags & FOLL_WRITE) &&
1038 		    !pte_dirty(pte) && !PageDirty(page))
1039 			set_page_dirty(page);
1040 		mark_page_accessed(page);
1041 	}
1042 unlock:
1043 	pte_unmap_unlock(ptep, ptl);
1044 out:
1045 	return page;
1046 
1047 bad_page:
1048 	pte_unmap_unlock(ptep, ptl);
1049 	return ERR_PTR(-EFAULT);
1050 
1051 no_page:
1052 	pte_unmap_unlock(ptep, ptl);
1053 	if (!pte_none(pte))
1054 		return page;
1055 	/* Fall through to ZERO_PAGE handling */
1056 no_page_table:
1057 	/*
1058 	 * When core dumping an enormous anonymous area that nobody
1059 	 * has touched so far, we don't want to allocate page tables.
1060 	 */
1061 	if (flags & FOLL_ANON) {
1062 		page = ZERO_PAGE(0);
1063 		if (flags & FOLL_GET)
1064 			get_page(page);
1065 		BUG_ON(flags & FOLL_WRITE);
1066 	}
1067 	return page;
1068 }
1069 
1070 /* Can we do the FOLL_ANON optimization? */
1071 static inline int use_zero_page(struct vm_area_struct *vma)
1072 {
1073 	/*
1074 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1075 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1076 	 * we want to get the page from the page tables to make sure
1077 	 * that we serialize and update with any other user of that
1078 	 * mapping.
1079 	 */
1080 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1081 		return 0;
1082 	/*
1083 	 * And if we have a fault routine, it's not an anonymous region.
1084 	 */
1085 	return !vma->vm_ops || !vma->vm_ops->fault;
1086 }
1087 
1088 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1089 		unsigned long start, int len, int write, int force,
1090 		struct page **pages, struct vm_area_struct **vmas)
1091 {
1092 	int i;
1093 	unsigned int vm_flags;
1094 
1095 	if (len <= 0)
1096 		return 0;
1097 	/*
1098 	 * Require read or write permissions.
1099 	 * If 'force' is set, we only require the "MAY" flags.
1100 	 */
1101 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1102 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1103 	i = 0;
1104 
1105 	do {
1106 		struct vm_area_struct *vma;
1107 		unsigned int foll_flags;
1108 
1109 		vma = find_extend_vma(mm, start);
1110 		if (!vma && in_gate_area(tsk, start)) {
1111 			unsigned long pg = start & PAGE_MASK;
1112 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1113 			pgd_t *pgd;
1114 			pud_t *pud;
1115 			pmd_t *pmd;
1116 			pte_t *pte;
1117 			if (write) /* user gate pages are read-only */
1118 				return i ? : -EFAULT;
1119 			if (pg > TASK_SIZE)
1120 				pgd = pgd_offset_k(pg);
1121 			else
1122 				pgd = pgd_offset_gate(mm, pg);
1123 			BUG_ON(pgd_none(*pgd));
1124 			pud = pud_offset(pgd, pg);
1125 			BUG_ON(pud_none(*pud));
1126 			pmd = pmd_offset(pud, pg);
1127 			if (pmd_none(*pmd))
1128 				return i ? : -EFAULT;
1129 			pte = pte_offset_map(pmd, pg);
1130 			if (pte_none(*pte)) {
1131 				pte_unmap(pte);
1132 				return i ? : -EFAULT;
1133 			}
1134 			if (pages) {
1135 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1136 				pages[i] = page;
1137 				if (page)
1138 					get_page(page);
1139 			}
1140 			pte_unmap(pte);
1141 			if (vmas)
1142 				vmas[i] = gate_vma;
1143 			i++;
1144 			start += PAGE_SIZE;
1145 			len--;
1146 			continue;
1147 		}
1148 
1149 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1150 				|| !(vm_flags & vma->vm_flags))
1151 			return i ? : -EFAULT;
1152 
1153 		if (is_vm_hugetlb_page(vma)) {
1154 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1155 						&start, &len, i, write);
1156 			continue;
1157 		}
1158 
1159 		foll_flags = FOLL_TOUCH;
1160 		if (pages)
1161 			foll_flags |= FOLL_GET;
1162 		if (!write && use_zero_page(vma))
1163 			foll_flags |= FOLL_ANON;
1164 
1165 		do {
1166 			struct page *page;
1167 
1168 			/*
1169 			 * If tsk is ooming, cut off its access to large memory
1170 			 * allocations. It has a pending SIGKILL, but it can't
1171 			 * be processed until returning to user space.
1172 			 */
1173 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1174 				return i ? i : -ENOMEM;
1175 
1176 			if (write)
1177 				foll_flags |= FOLL_WRITE;
1178 
1179 			cond_resched();
1180 			while (!(page = follow_page(vma, start, foll_flags))) {
1181 				int ret;
1182 				ret = handle_mm_fault(mm, vma, start,
1183 						foll_flags & FOLL_WRITE);
1184 				if (ret & VM_FAULT_ERROR) {
1185 					if (ret & VM_FAULT_OOM)
1186 						return i ? i : -ENOMEM;
1187 					else if (ret & VM_FAULT_SIGBUS)
1188 						return i ? i : -EFAULT;
1189 					BUG();
1190 				}
1191 				if (ret & VM_FAULT_MAJOR)
1192 					tsk->maj_flt++;
1193 				else
1194 					tsk->min_flt++;
1195 
1196 				/*
1197 				 * The VM_FAULT_WRITE bit tells us that
1198 				 * do_wp_page has broken COW when necessary,
1199 				 * even if maybe_mkwrite decided not to set
1200 				 * pte_write. We can thus safely do subsequent
1201 				 * page lookups as if they were reads.
1202 				 */
1203 				if (ret & VM_FAULT_WRITE)
1204 					foll_flags &= ~FOLL_WRITE;
1205 
1206 				cond_resched();
1207 			}
1208 			if (IS_ERR(page))
1209 				return i ? i : PTR_ERR(page);
1210 			if (pages) {
1211 				pages[i] = page;
1212 
1213 				flush_anon_page(vma, page, start);
1214 				flush_dcache_page(page);
1215 			}
1216 			if (vmas)
1217 				vmas[i] = vma;
1218 			i++;
1219 			start += PAGE_SIZE;
1220 			len--;
1221 		} while (len && start < vma->vm_end);
1222 	} while (len);
1223 	return i;
1224 }
1225 EXPORT_SYMBOL(get_user_pages);
1226 
1227 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1228 			spinlock_t **ptl)
1229 {
1230 	pgd_t * pgd = pgd_offset(mm, addr);
1231 	pud_t * pud = pud_alloc(mm, pgd, addr);
1232 	if (pud) {
1233 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1234 		if (pmd)
1235 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1236 	}
1237 	return NULL;
1238 }
1239 
1240 /*
1241  * This is the old fallback for page remapping.
1242  *
1243  * For historical reasons, it only allows reserved pages. Only
1244  * old drivers should use this, and they needed to mark their
1245  * pages reserved for the old functions anyway.
1246  */
1247 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1248 			struct page *page, pgprot_t prot)
1249 {
1250 	struct mm_struct *mm = vma->vm_mm;
1251 	int retval;
1252 	pte_t *pte;
1253 	spinlock_t *ptl;
1254 
1255 	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1256 	if (retval)
1257 		goto out;
1258 
1259 	retval = -EINVAL;
1260 	if (PageAnon(page))
1261 		goto out_uncharge;
1262 	retval = -ENOMEM;
1263 	flush_dcache_page(page);
1264 	pte = get_locked_pte(mm, addr, &ptl);
1265 	if (!pte)
1266 		goto out_uncharge;
1267 	retval = -EBUSY;
1268 	if (!pte_none(*pte))
1269 		goto out_unlock;
1270 
1271 	/* Ok, finally just insert the thing.. */
1272 	get_page(page);
1273 	inc_mm_counter(mm, file_rss);
1274 	page_add_file_rmap(page);
1275 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1276 
1277 	retval = 0;
1278 	pte_unmap_unlock(pte, ptl);
1279 	return retval;
1280 out_unlock:
1281 	pte_unmap_unlock(pte, ptl);
1282 out_uncharge:
1283 	mem_cgroup_uncharge_page(page);
1284 out:
1285 	return retval;
1286 }
1287 
1288 /**
1289  * vm_insert_page - insert single page into user vma
1290  * @vma: user vma to map to
1291  * @addr: target user address of this page
1292  * @page: source kernel page
1293  *
1294  * This allows drivers to insert individual pages they've allocated
1295  * into a user vma.
1296  *
1297  * The page has to be a nice clean _individual_ kernel allocation.
1298  * If you allocate a compound page, you need to have marked it as
1299  * such (__GFP_COMP), or manually just split the page up yourself
1300  * (see split_page()).
1301  *
1302  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1303  * took an arbitrary page protection parameter. This doesn't allow
1304  * that. Your vma protection will have to be set up correctly, which
1305  * means that if you want a shared writable mapping, you'd better
1306  * ask for a shared writable mapping!
1307  *
1308  * The page does not need to be reserved.
1309  */
1310 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1311 			struct page *page)
1312 {
1313 	if (addr < vma->vm_start || addr >= vma->vm_end)
1314 		return -EFAULT;
1315 	if (!page_count(page))
1316 		return -EINVAL;
1317 	vma->vm_flags |= VM_INSERTPAGE;
1318 	return insert_page(vma, addr, page, vma->vm_page_prot);
1319 }
1320 EXPORT_SYMBOL(vm_insert_page);
1321 
1322 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1323 			unsigned long pfn, pgprot_t prot)
1324 {
1325 	struct mm_struct *mm = vma->vm_mm;
1326 	int retval;
1327 	pte_t *pte, entry;
1328 	spinlock_t *ptl;
1329 
1330 	retval = -ENOMEM;
1331 	pte = get_locked_pte(mm, addr, &ptl);
1332 	if (!pte)
1333 		goto out;
1334 	retval = -EBUSY;
1335 	if (!pte_none(*pte))
1336 		goto out_unlock;
1337 
1338 	/* Ok, finally just insert the thing.. */
1339 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1340 	set_pte_at(mm, addr, pte, entry);
1341 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1342 
1343 	retval = 0;
1344 out_unlock:
1345 	pte_unmap_unlock(pte, ptl);
1346 out:
1347 	return retval;
1348 }
1349 
1350 /**
1351  * vm_insert_pfn - insert single pfn into user vma
1352  * @vma: user vma to map to
1353  * @addr: target user address of this page
1354  * @pfn: source kernel pfn
1355  *
1356  * Similar to vm_inert_page, this allows drivers to insert individual pages
1357  * they've allocated into a user vma. Same comments apply.
1358  *
1359  * This function should only be called from a vm_ops->fault handler, and
1360  * in that case the handler should return NULL.
1361  *
1362  * vma cannot be a COW mapping.
1363  *
1364  * As this is called only for pages that do not currently exist, we
1365  * do not need to flush old virtual caches or the TLB.
1366  */
1367 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1368 			unsigned long pfn)
1369 {
1370 	/*
1371 	 * Technically, architectures with pte_special can avoid all these
1372 	 * restrictions (same for remap_pfn_range).  However we would like
1373 	 * consistency in testing and feature parity among all, so we should
1374 	 * try to keep these invariants in place for everybody.
1375 	 */
1376 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1377 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1378 						(VM_PFNMAP|VM_MIXEDMAP));
1379 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1380 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1381 
1382 	if (addr < vma->vm_start || addr >= vma->vm_end)
1383 		return -EFAULT;
1384 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1385 }
1386 EXPORT_SYMBOL(vm_insert_pfn);
1387 
1388 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1389 			unsigned long pfn)
1390 {
1391 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1392 
1393 	if (addr < vma->vm_start || addr >= vma->vm_end)
1394 		return -EFAULT;
1395 
1396 	/*
1397 	 * If we don't have pte special, then we have to use the pfn_valid()
1398 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1399 	 * refcount the page if pfn_valid is true (hence insert_page rather
1400 	 * than insert_pfn).
1401 	 */
1402 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1403 		struct page *page;
1404 
1405 		page = pfn_to_page(pfn);
1406 		return insert_page(vma, addr, page, vma->vm_page_prot);
1407 	}
1408 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1409 }
1410 EXPORT_SYMBOL(vm_insert_mixed);
1411 
1412 /*
1413  * maps a range of physical memory into the requested pages. the old
1414  * mappings are removed. any references to nonexistent pages results
1415  * in null mappings (currently treated as "copy-on-access")
1416  */
1417 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1418 			unsigned long addr, unsigned long end,
1419 			unsigned long pfn, pgprot_t prot)
1420 {
1421 	pte_t *pte;
1422 	spinlock_t *ptl;
1423 
1424 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1425 	if (!pte)
1426 		return -ENOMEM;
1427 	arch_enter_lazy_mmu_mode();
1428 	do {
1429 		BUG_ON(!pte_none(*pte));
1430 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1431 		pfn++;
1432 	} while (pte++, addr += PAGE_SIZE, addr != end);
1433 	arch_leave_lazy_mmu_mode();
1434 	pte_unmap_unlock(pte - 1, ptl);
1435 	return 0;
1436 }
1437 
1438 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1439 			unsigned long addr, unsigned long end,
1440 			unsigned long pfn, pgprot_t prot)
1441 {
1442 	pmd_t *pmd;
1443 	unsigned long next;
1444 
1445 	pfn -= addr >> PAGE_SHIFT;
1446 	pmd = pmd_alloc(mm, pud, addr);
1447 	if (!pmd)
1448 		return -ENOMEM;
1449 	do {
1450 		next = pmd_addr_end(addr, end);
1451 		if (remap_pte_range(mm, pmd, addr, next,
1452 				pfn + (addr >> PAGE_SHIFT), prot))
1453 			return -ENOMEM;
1454 	} while (pmd++, addr = next, addr != end);
1455 	return 0;
1456 }
1457 
1458 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1459 			unsigned long addr, unsigned long end,
1460 			unsigned long pfn, pgprot_t prot)
1461 {
1462 	pud_t *pud;
1463 	unsigned long next;
1464 
1465 	pfn -= addr >> PAGE_SHIFT;
1466 	pud = pud_alloc(mm, pgd, addr);
1467 	if (!pud)
1468 		return -ENOMEM;
1469 	do {
1470 		next = pud_addr_end(addr, end);
1471 		if (remap_pmd_range(mm, pud, addr, next,
1472 				pfn + (addr >> PAGE_SHIFT), prot))
1473 			return -ENOMEM;
1474 	} while (pud++, addr = next, addr != end);
1475 	return 0;
1476 }
1477 
1478 /**
1479  * remap_pfn_range - remap kernel memory to userspace
1480  * @vma: user vma to map to
1481  * @addr: target user address to start at
1482  * @pfn: physical address of kernel memory
1483  * @size: size of map area
1484  * @prot: page protection flags for this mapping
1485  *
1486  *  Note: this is only safe if the mm semaphore is held when called.
1487  */
1488 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1489 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1490 {
1491 	pgd_t *pgd;
1492 	unsigned long next;
1493 	unsigned long end = addr + PAGE_ALIGN(size);
1494 	struct mm_struct *mm = vma->vm_mm;
1495 	int err;
1496 
1497 	/*
1498 	 * Physically remapped pages are special. Tell the
1499 	 * rest of the world about it:
1500 	 *   VM_IO tells people not to look at these pages
1501 	 *	(accesses can have side effects).
1502 	 *   VM_RESERVED is specified all over the place, because
1503 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1504 	 *	in 2.6 the LRU scan won't even find its pages, so this
1505 	 *	flag means no more than count its pages in reserved_vm,
1506 	 * 	and omit it from core dump, even when VM_IO turned off.
1507 	 *   VM_PFNMAP tells the core MM that the base pages are just
1508 	 *	raw PFN mappings, and do not have a "struct page" associated
1509 	 *	with them.
1510 	 *
1511 	 * There's a horrible special case to handle copy-on-write
1512 	 * behaviour that some programs depend on. We mark the "original"
1513 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1514 	 */
1515 	if (is_cow_mapping(vma->vm_flags)) {
1516 		if (addr != vma->vm_start || end != vma->vm_end)
1517 			return -EINVAL;
1518 		vma->vm_pgoff = pfn;
1519 	}
1520 
1521 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1522 
1523 	BUG_ON(addr >= end);
1524 	pfn -= addr >> PAGE_SHIFT;
1525 	pgd = pgd_offset(mm, addr);
1526 	flush_cache_range(vma, addr, end);
1527 	do {
1528 		next = pgd_addr_end(addr, end);
1529 		err = remap_pud_range(mm, pgd, addr, next,
1530 				pfn + (addr >> PAGE_SHIFT), prot);
1531 		if (err)
1532 			break;
1533 	} while (pgd++, addr = next, addr != end);
1534 	return err;
1535 }
1536 EXPORT_SYMBOL(remap_pfn_range);
1537 
1538 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1539 				     unsigned long addr, unsigned long end,
1540 				     pte_fn_t fn, void *data)
1541 {
1542 	pte_t *pte;
1543 	int err;
1544 	pgtable_t token;
1545 	spinlock_t *uninitialized_var(ptl);
1546 
1547 	pte = (mm == &init_mm) ?
1548 		pte_alloc_kernel(pmd, addr) :
1549 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1550 	if (!pte)
1551 		return -ENOMEM;
1552 
1553 	BUG_ON(pmd_huge(*pmd));
1554 
1555 	token = pmd_pgtable(*pmd);
1556 
1557 	do {
1558 		err = fn(pte, token, addr, data);
1559 		if (err)
1560 			break;
1561 	} while (pte++, addr += PAGE_SIZE, addr != end);
1562 
1563 	if (mm != &init_mm)
1564 		pte_unmap_unlock(pte-1, ptl);
1565 	return err;
1566 }
1567 
1568 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1569 				     unsigned long addr, unsigned long end,
1570 				     pte_fn_t fn, void *data)
1571 {
1572 	pmd_t *pmd;
1573 	unsigned long next;
1574 	int err;
1575 
1576 	BUG_ON(pud_huge(*pud));
1577 
1578 	pmd = pmd_alloc(mm, pud, addr);
1579 	if (!pmd)
1580 		return -ENOMEM;
1581 	do {
1582 		next = pmd_addr_end(addr, end);
1583 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1584 		if (err)
1585 			break;
1586 	} while (pmd++, addr = next, addr != end);
1587 	return err;
1588 }
1589 
1590 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1591 				     unsigned long addr, unsigned long end,
1592 				     pte_fn_t fn, void *data)
1593 {
1594 	pud_t *pud;
1595 	unsigned long next;
1596 	int err;
1597 
1598 	pud = pud_alloc(mm, pgd, addr);
1599 	if (!pud)
1600 		return -ENOMEM;
1601 	do {
1602 		next = pud_addr_end(addr, end);
1603 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1604 		if (err)
1605 			break;
1606 	} while (pud++, addr = next, addr != end);
1607 	return err;
1608 }
1609 
1610 /*
1611  * Scan a region of virtual memory, filling in page tables as necessary
1612  * and calling a provided function on each leaf page table.
1613  */
1614 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1615 			unsigned long size, pte_fn_t fn, void *data)
1616 {
1617 	pgd_t *pgd;
1618 	unsigned long next;
1619 	unsigned long end = addr + size;
1620 	int err;
1621 
1622 	BUG_ON(addr >= end);
1623 	pgd = pgd_offset(mm, addr);
1624 	do {
1625 		next = pgd_addr_end(addr, end);
1626 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1627 		if (err)
1628 			break;
1629 	} while (pgd++, addr = next, addr != end);
1630 	return err;
1631 }
1632 EXPORT_SYMBOL_GPL(apply_to_page_range);
1633 
1634 /*
1635  * handle_pte_fault chooses page fault handler according to an entry
1636  * which was read non-atomically.  Before making any commitment, on
1637  * those architectures or configurations (e.g. i386 with PAE) which
1638  * might give a mix of unmatched parts, do_swap_page and do_file_page
1639  * must check under lock before unmapping the pte and proceeding
1640  * (but do_wp_page is only called after already making such a check;
1641  * and do_anonymous_page and do_no_page can safely check later on).
1642  */
1643 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1644 				pte_t *page_table, pte_t orig_pte)
1645 {
1646 	int same = 1;
1647 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1648 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1649 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1650 		spin_lock(ptl);
1651 		same = pte_same(*page_table, orig_pte);
1652 		spin_unlock(ptl);
1653 	}
1654 #endif
1655 	pte_unmap(page_table);
1656 	return same;
1657 }
1658 
1659 /*
1660  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1661  * servicing faults for write access.  In the normal case, do always want
1662  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1663  * that do not have writing enabled, when used by access_process_vm.
1664  */
1665 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1666 {
1667 	if (likely(vma->vm_flags & VM_WRITE))
1668 		pte = pte_mkwrite(pte);
1669 	return pte;
1670 }
1671 
1672 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1673 {
1674 	/*
1675 	 * If the source page was a PFN mapping, we don't have
1676 	 * a "struct page" for it. We do a best-effort copy by
1677 	 * just copying from the original user address. If that
1678 	 * fails, we just zero-fill it. Live with it.
1679 	 */
1680 	if (unlikely(!src)) {
1681 		void *kaddr = kmap_atomic(dst, KM_USER0);
1682 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1683 
1684 		/*
1685 		 * This really shouldn't fail, because the page is there
1686 		 * in the page tables. But it might just be unreadable,
1687 		 * in which case we just give up and fill the result with
1688 		 * zeroes.
1689 		 */
1690 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1691 			memset(kaddr, 0, PAGE_SIZE);
1692 		kunmap_atomic(kaddr, KM_USER0);
1693 		flush_dcache_page(dst);
1694 	} else
1695 		copy_user_highpage(dst, src, va, vma);
1696 }
1697 
1698 /*
1699  * This routine handles present pages, when users try to write
1700  * to a shared page. It is done by copying the page to a new address
1701  * and decrementing the shared-page counter for the old page.
1702  *
1703  * Note that this routine assumes that the protection checks have been
1704  * done by the caller (the low-level page fault routine in most cases).
1705  * Thus we can safely just mark it writable once we've done any necessary
1706  * COW.
1707  *
1708  * We also mark the page dirty at this point even though the page will
1709  * change only once the write actually happens. This avoids a few races,
1710  * and potentially makes it more efficient.
1711  *
1712  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1713  * but allow concurrent faults), with pte both mapped and locked.
1714  * We return with mmap_sem still held, but pte unmapped and unlocked.
1715  */
1716 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1717 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1718 		spinlock_t *ptl, pte_t orig_pte)
1719 {
1720 	struct page *old_page, *new_page;
1721 	pte_t entry;
1722 	int reuse = 0, ret = 0;
1723 	int page_mkwrite = 0;
1724 	struct page *dirty_page = NULL;
1725 
1726 	old_page = vm_normal_page(vma, address, orig_pte);
1727 	if (!old_page) {
1728 		/*
1729 		 * VM_MIXEDMAP !pfn_valid() case
1730 		 *
1731 		 * We should not cow pages in a shared writeable mapping.
1732 		 * Just mark the pages writable as we can't do any dirty
1733 		 * accounting on raw pfn maps.
1734 		 */
1735 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1736 				     (VM_WRITE|VM_SHARED))
1737 			goto reuse;
1738 		goto gotten;
1739 	}
1740 
1741 	/*
1742 	 * Take out anonymous pages first, anonymous shared vmas are
1743 	 * not dirty accountable.
1744 	 */
1745 	if (PageAnon(old_page)) {
1746 		if (!TestSetPageLocked(old_page)) {
1747 			reuse = can_share_swap_page(old_page);
1748 			unlock_page(old_page);
1749 		}
1750 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1751 					(VM_WRITE|VM_SHARED))) {
1752 		/*
1753 		 * Only catch write-faults on shared writable pages,
1754 		 * read-only shared pages can get COWed by
1755 		 * get_user_pages(.write=1, .force=1).
1756 		 */
1757 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1758 			/*
1759 			 * Notify the address space that the page is about to
1760 			 * become writable so that it can prohibit this or wait
1761 			 * for the page to get into an appropriate state.
1762 			 *
1763 			 * We do this without the lock held, so that it can
1764 			 * sleep if it needs to.
1765 			 */
1766 			page_cache_get(old_page);
1767 			pte_unmap_unlock(page_table, ptl);
1768 
1769 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1770 				goto unwritable_page;
1771 
1772 			/*
1773 			 * Since we dropped the lock we need to revalidate
1774 			 * the PTE as someone else may have changed it.  If
1775 			 * they did, we just return, as we can count on the
1776 			 * MMU to tell us if they didn't also make it writable.
1777 			 */
1778 			page_table = pte_offset_map_lock(mm, pmd, address,
1779 							 &ptl);
1780 			page_cache_release(old_page);
1781 			if (!pte_same(*page_table, orig_pte))
1782 				goto unlock;
1783 
1784 			page_mkwrite = 1;
1785 		}
1786 		dirty_page = old_page;
1787 		get_page(dirty_page);
1788 		reuse = 1;
1789 	}
1790 
1791 	if (reuse) {
1792 reuse:
1793 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1794 		entry = pte_mkyoung(orig_pte);
1795 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1796 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1797 			update_mmu_cache(vma, address, entry);
1798 		ret |= VM_FAULT_WRITE;
1799 		goto unlock;
1800 	}
1801 
1802 	/*
1803 	 * Ok, we need to copy. Oh, well..
1804 	 */
1805 	page_cache_get(old_page);
1806 gotten:
1807 	pte_unmap_unlock(page_table, ptl);
1808 
1809 	if (unlikely(anon_vma_prepare(vma)))
1810 		goto oom;
1811 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1812 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1813 	if (!new_page)
1814 		goto oom;
1815 	cow_user_page(new_page, old_page, address, vma);
1816 	__SetPageUptodate(new_page);
1817 
1818 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1819 		goto oom_free_new;
1820 
1821 	/*
1822 	 * Re-check the pte - we dropped the lock
1823 	 */
1824 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1825 	if (likely(pte_same(*page_table, orig_pte))) {
1826 		if (old_page) {
1827 			if (!PageAnon(old_page)) {
1828 				dec_mm_counter(mm, file_rss);
1829 				inc_mm_counter(mm, anon_rss);
1830 			}
1831 		} else
1832 			inc_mm_counter(mm, anon_rss);
1833 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1834 		entry = mk_pte(new_page, vma->vm_page_prot);
1835 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1836 		/*
1837 		 * Clear the pte entry and flush it first, before updating the
1838 		 * pte with the new entry. This will avoid a race condition
1839 		 * seen in the presence of one thread doing SMC and another
1840 		 * thread doing COW.
1841 		 */
1842 		ptep_clear_flush(vma, address, page_table);
1843 		set_pte_at(mm, address, page_table, entry);
1844 		update_mmu_cache(vma, address, entry);
1845 		lru_cache_add_active(new_page);
1846 		page_add_new_anon_rmap(new_page, vma, address);
1847 
1848 		if (old_page) {
1849 			/*
1850 			 * Only after switching the pte to the new page may
1851 			 * we remove the mapcount here. Otherwise another
1852 			 * process may come and find the rmap count decremented
1853 			 * before the pte is switched to the new page, and
1854 			 * "reuse" the old page writing into it while our pte
1855 			 * here still points into it and can be read by other
1856 			 * threads.
1857 			 *
1858 			 * The critical issue is to order this
1859 			 * page_remove_rmap with the ptp_clear_flush above.
1860 			 * Those stores are ordered by (if nothing else,)
1861 			 * the barrier present in the atomic_add_negative
1862 			 * in page_remove_rmap.
1863 			 *
1864 			 * Then the TLB flush in ptep_clear_flush ensures that
1865 			 * no process can access the old page before the
1866 			 * decremented mapcount is visible. And the old page
1867 			 * cannot be reused until after the decremented
1868 			 * mapcount is visible. So transitively, TLBs to
1869 			 * old page will be flushed before it can be reused.
1870 			 */
1871 			page_remove_rmap(old_page, vma);
1872 		}
1873 
1874 		/* Free the old page.. */
1875 		new_page = old_page;
1876 		ret |= VM_FAULT_WRITE;
1877 	} else
1878 		mem_cgroup_uncharge_page(new_page);
1879 
1880 	if (new_page)
1881 		page_cache_release(new_page);
1882 	if (old_page)
1883 		page_cache_release(old_page);
1884 unlock:
1885 	pte_unmap_unlock(page_table, ptl);
1886 	if (dirty_page) {
1887 		if (vma->vm_file)
1888 			file_update_time(vma->vm_file);
1889 
1890 		/*
1891 		 * Yes, Virginia, this is actually required to prevent a race
1892 		 * with clear_page_dirty_for_io() from clearing the page dirty
1893 		 * bit after it clear all dirty ptes, but before a racing
1894 		 * do_wp_page installs a dirty pte.
1895 		 *
1896 		 * do_no_page is protected similarly.
1897 		 */
1898 		wait_on_page_locked(dirty_page);
1899 		set_page_dirty_balance(dirty_page, page_mkwrite);
1900 		put_page(dirty_page);
1901 	}
1902 	return ret;
1903 oom_free_new:
1904 	page_cache_release(new_page);
1905 oom:
1906 	if (old_page)
1907 		page_cache_release(old_page);
1908 	return VM_FAULT_OOM;
1909 
1910 unwritable_page:
1911 	page_cache_release(old_page);
1912 	return VM_FAULT_SIGBUS;
1913 }
1914 
1915 /*
1916  * Helper functions for unmap_mapping_range().
1917  *
1918  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1919  *
1920  * We have to restart searching the prio_tree whenever we drop the lock,
1921  * since the iterator is only valid while the lock is held, and anyway
1922  * a later vma might be split and reinserted earlier while lock dropped.
1923  *
1924  * The list of nonlinear vmas could be handled more efficiently, using
1925  * a placeholder, but handle it in the same way until a need is shown.
1926  * It is important to search the prio_tree before nonlinear list: a vma
1927  * may become nonlinear and be shifted from prio_tree to nonlinear list
1928  * while the lock is dropped; but never shifted from list to prio_tree.
1929  *
1930  * In order to make forward progress despite restarting the search,
1931  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1932  * quickly skip it next time around.  Since the prio_tree search only
1933  * shows us those vmas affected by unmapping the range in question, we
1934  * can't efficiently keep all vmas in step with mapping->truncate_count:
1935  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1936  * mapping->truncate_count and vma->vm_truncate_count are protected by
1937  * i_mmap_lock.
1938  *
1939  * In order to make forward progress despite repeatedly restarting some
1940  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1941  * and restart from that address when we reach that vma again.  It might
1942  * have been split or merged, shrunk or extended, but never shifted: so
1943  * restart_addr remains valid so long as it remains in the vma's range.
1944  * unmap_mapping_range forces truncate_count to leap over page-aligned
1945  * values so we can save vma's restart_addr in its truncate_count field.
1946  */
1947 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1948 
1949 static void reset_vma_truncate_counts(struct address_space *mapping)
1950 {
1951 	struct vm_area_struct *vma;
1952 	struct prio_tree_iter iter;
1953 
1954 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1955 		vma->vm_truncate_count = 0;
1956 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1957 		vma->vm_truncate_count = 0;
1958 }
1959 
1960 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1961 		unsigned long start_addr, unsigned long end_addr,
1962 		struct zap_details *details)
1963 {
1964 	unsigned long restart_addr;
1965 	int need_break;
1966 
1967 	/*
1968 	 * files that support invalidating or truncating portions of the
1969 	 * file from under mmaped areas must have their ->fault function
1970 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1971 	 * This provides synchronisation against concurrent unmapping here.
1972 	 */
1973 
1974 again:
1975 	restart_addr = vma->vm_truncate_count;
1976 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1977 		start_addr = restart_addr;
1978 		if (start_addr >= end_addr) {
1979 			/* Top of vma has been split off since last time */
1980 			vma->vm_truncate_count = details->truncate_count;
1981 			return 0;
1982 		}
1983 	}
1984 
1985 	restart_addr = zap_page_range(vma, start_addr,
1986 					end_addr - start_addr, details);
1987 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1988 
1989 	if (restart_addr >= end_addr) {
1990 		/* We have now completed this vma: mark it so */
1991 		vma->vm_truncate_count = details->truncate_count;
1992 		if (!need_break)
1993 			return 0;
1994 	} else {
1995 		/* Note restart_addr in vma's truncate_count field */
1996 		vma->vm_truncate_count = restart_addr;
1997 		if (!need_break)
1998 			goto again;
1999 	}
2000 
2001 	spin_unlock(details->i_mmap_lock);
2002 	cond_resched();
2003 	spin_lock(details->i_mmap_lock);
2004 	return -EINTR;
2005 }
2006 
2007 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2008 					    struct zap_details *details)
2009 {
2010 	struct vm_area_struct *vma;
2011 	struct prio_tree_iter iter;
2012 	pgoff_t vba, vea, zba, zea;
2013 
2014 restart:
2015 	vma_prio_tree_foreach(vma, &iter, root,
2016 			details->first_index, details->last_index) {
2017 		/* Skip quickly over those we have already dealt with */
2018 		if (vma->vm_truncate_count == details->truncate_count)
2019 			continue;
2020 
2021 		vba = vma->vm_pgoff;
2022 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2023 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2024 		zba = details->first_index;
2025 		if (zba < vba)
2026 			zba = vba;
2027 		zea = details->last_index;
2028 		if (zea > vea)
2029 			zea = vea;
2030 
2031 		if (unmap_mapping_range_vma(vma,
2032 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2033 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2034 				details) < 0)
2035 			goto restart;
2036 	}
2037 }
2038 
2039 static inline void unmap_mapping_range_list(struct list_head *head,
2040 					    struct zap_details *details)
2041 {
2042 	struct vm_area_struct *vma;
2043 
2044 	/*
2045 	 * In nonlinear VMAs there is no correspondence between virtual address
2046 	 * offset and file offset.  So we must perform an exhaustive search
2047 	 * across *all* the pages in each nonlinear VMA, not just the pages
2048 	 * whose virtual address lies outside the file truncation point.
2049 	 */
2050 restart:
2051 	list_for_each_entry(vma, head, shared.vm_set.list) {
2052 		/* Skip quickly over those we have already dealt with */
2053 		if (vma->vm_truncate_count == details->truncate_count)
2054 			continue;
2055 		details->nonlinear_vma = vma;
2056 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2057 					vma->vm_end, details) < 0)
2058 			goto restart;
2059 	}
2060 }
2061 
2062 /**
2063  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2064  * @mapping: the address space containing mmaps to be unmapped.
2065  * @holebegin: byte in first page to unmap, relative to the start of
2066  * the underlying file.  This will be rounded down to a PAGE_SIZE
2067  * boundary.  Note that this is different from vmtruncate(), which
2068  * must keep the partial page.  In contrast, we must get rid of
2069  * partial pages.
2070  * @holelen: size of prospective hole in bytes.  This will be rounded
2071  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2072  * end of the file.
2073  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2074  * but 0 when invalidating pagecache, don't throw away private data.
2075  */
2076 void unmap_mapping_range(struct address_space *mapping,
2077 		loff_t const holebegin, loff_t const holelen, int even_cows)
2078 {
2079 	struct zap_details details;
2080 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2081 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2082 
2083 	/* Check for overflow. */
2084 	if (sizeof(holelen) > sizeof(hlen)) {
2085 		long long holeend =
2086 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2087 		if (holeend & ~(long long)ULONG_MAX)
2088 			hlen = ULONG_MAX - hba + 1;
2089 	}
2090 
2091 	details.check_mapping = even_cows? NULL: mapping;
2092 	details.nonlinear_vma = NULL;
2093 	details.first_index = hba;
2094 	details.last_index = hba + hlen - 1;
2095 	if (details.last_index < details.first_index)
2096 		details.last_index = ULONG_MAX;
2097 	details.i_mmap_lock = &mapping->i_mmap_lock;
2098 
2099 	spin_lock(&mapping->i_mmap_lock);
2100 
2101 	/* Protect against endless unmapping loops */
2102 	mapping->truncate_count++;
2103 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2104 		if (mapping->truncate_count == 0)
2105 			reset_vma_truncate_counts(mapping);
2106 		mapping->truncate_count++;
2107 	}
2108 	details.truncate_count = mapping->truncate_count;
2109 
2110 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2111 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2112 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2113 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2114 	spin_unlock(&mapping->i_mmap_lock);
2115 }
2116 EXPORT_SYMBOL(unmap_mapping_range);
2117 
2118 /**
2119  * vmtruncate - unmap mappings "freed" by truncate() syscall
2120  * @inode: inode of the file used
2121  * @offset: file offset to start truncating
2122  *
2123  * NOTE! We have to be ready to update the memory sharing
2124  * between the file and the memory map for a potential last
2125  * incomplete page.  Ugly, but necessary.
2126  */
2127 int vmtruncate(struct inode * inode, loff_t offset)
2128 {
2129 	if (inode->i_size < offset) {
2130 		unsigned long limit;
2131 
2132 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2133 		if (limit != RLIM_INFINITY && offset > limit)
2134 			goto out_sig;
2135 		if (offset > inode->i_sb->s_maxbytes)
2136 			goto out_big;
2137 		i_size_write(inode, offset);
2138 	} else {
2139 		struct address_space *mapping = inode->i_mapping;
2140 
2141 		/*
2142 		 * truncation of in-use swapfiles is disallowed - it would
2143 		 * cause subsequent swapout to scribble on the now-freed
2144 		 * blocks.
2145 		 */
2146 		if (IS_SWAPFILE(inode))
2147 			return -ETXTBSY;
2148 		i_size_write(inode, offset);
2149 
2150 		/*
2151 		 * unmap_mapping_range is called twice, first simply for
2152 		 * efficiency so that truncate_inode_pages does fewer
2153 		 * single-page unmaps.  However after this first call, and
2154 		 * before truncate_inode_pages finishes, it is possible for
2155 		 * private pages to be COWed, which remain after
2156 		 * truncate_inode_pages finishes, hence the second
2157 		 * unmap_mapping_range call must be made for correctness.
2158 		 */
2159 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2160 		truncate_inode_pages(mapping, offset);
2161 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2162 	}
2163 
2164 	if (inode->i_op && inode->i_op->truncate)
2165 		inode->i_op->truncate(inode);
2166 	return 0;
2167 
2168 out_sig:
2169 	send_sig(SIGXFSZ, current, 0);
2170 out_big:
2171 	return -EFBIG;
2172 }
2173 EXPORT_SYMBOL(vmtruncate);
2174 
2175 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2176 {
2177 	struct address_space *mapping = inode->i_mapping;
2178 
2179 	/*
2180 	 * If the underlying filesystem is not going to provide
2181 	 * a way to truncate a range of blocks (punch a hole) -
2182 	 * we should return failure right now.
2183 	 */
2184 	if (!inode->i_op || !inode->i_op->truncate_range)
2185 		return -ENOSYS;
2186 
2187 	mutex_lock(&inode->i_mutex);
2188 	down_write(&inode->i_alloc_sem);
2189 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2190 	truncate_inode_pages_range(mapping, offset, end);
2191 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2192 	inode->i_op->truncate_range(inode, offset, end);
2193 	up_write(&inode->i_alloc_sem);
2194 	mutex_unlock(&inode->i_mutex);
2195 
2196 	return 0;
2197 }
2198 
2199 /*
2200  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2201  * but allow concurrent faults), and pte mapped but not yet locked.
2202  * We return with mmap_sem still held, but pte unmapped and unlocked.
2203  */
2204 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2205 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2206 		int write_access, pte_t orig_pte)
2207 {
2208 	spinlock_t *ptl;
2209 	struct page *page;
2210 	swp_entry_t entry;
2211 	pte_t pte;
2212 	int ret = 0;
2213 
2214 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2215 		goto out;
2216 
2217 	entry = pte_to_swp_entry(orig_pte);
2218 	if (is_migration_entry(entry)) {
2219 		migration_entry_wait(mm, pmd, address);
2220 		goto out;
2221 	}
2222 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2223 	page = lookup_swap_cache(entry);
2224 	if (!page) {
2225 		grab_swap_token(); /* Contend for token _before_ read-in */
2226 		page = swapin_readahead(entry,
2227 					GFP_HIGHUSER_MOVABLE, vma, address);
2228 		if (!page) {
2229 			/*
2230 			 * Back out if somebody else faulted in this pte
2231 			 * while we released the pte lock.
2232 			 */
2233 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2234 			if (likely(pte_same(*page_table, orig_pte)))
2235 				ret = VM_FAULT_OOM;
2236 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2237 			goto unlock;
2238 		}
2239 
2240 		/* Had to read the page from swap area: Major fault */
2241 		ret = VM_FAULT_MAJOR;
2242 		count_vm_event(PGMAJFAULT);
2243 	}
2244 
2245 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2246 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2247 		ret = VM_FAULT_OOM;
2248 		goto out;
2249 	}
2250 
2251 	mark_page_accessed(page);
2252 	lock_page(page);
2253 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2254 
2255 	/*
2256 	 * Back out if somebody else already faulted in this pte.
2257 	 */
2258 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2259 	if (unlikely(!pte_same(*page_table, orig_pte)))
2260 		goto out_nomap;
2261 
2262 	if (unlikely(!PageUptodate(page))) {
2263 		ret = VM_FAULT_SIGBUS;
2264 		goto out_nomap;
2265 	}
2266 
2267 	/* The page isn't present yet, go ahead with the fault. */
2268 
2269 	inc_mm_counter(mm, anon_rss);
2270 	pte = mk_pte(page, vma->vm_page_prot);
2271 	if (write_access && can_share_swap_page(page)) {
2272 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2273 		write_access = 0;
2274 	}
2275 
2276 	flush_icache_page(vma, page);
2277 	set_pte_at(mm, address, page_table, pte);
2278 	page_add_anon_rmap(page, vma, address);
2279 
2280 	swap_free(entry);
2281 	if (vm_swap_full())
2282 		remove_exclusive_swap_page(page);
2283 	unlock_page(page);
2284 
2285 	if (write_access) {
2286 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2287 		if (ret & VM_FAULT_ERROR)
2288 			ret &= VM_FAULT_ERROR;
2289 		goto out;
2290 	}
2291 
2292 	/* No need to invalidate - it was non-present before */
2293 	update_mmu_cache(vma, address, pte);
2294 unlock:
2295 	pte_unmap_unlock(page_table, ptl);
2296 out:
2297 	return ret;
2298 out_nomap:
2299 	mem_cgroup_uncharge_page(page);
2300 	pte_unmap_unlock(page_table, ptl);
2301 	unlock_page(page);
2302 	page_cache_release(page);
2303 	return ret;
2304 }
2305 
2306 /*
2307  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2308  * but allow concurrent faults), and pte mapped but not yet locked.
2309  * We return with mmap_sem still held, but pte unmapped and unlocked.
2310  */
2311 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2312 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2313 		int write_access)
2314 {
2315 	struct page *page;
2316 	spinlock_t *ptl;
2317 	pte_t entry;
2318 
2319 	/* Allocate our own private page. */
2320 	pte_unmap(page_table);
2321 
2322 	if (unlikely(anon_vma_prepare(vma)))
2323 		goto oom;
2324 	page = alloc_zeroed_user_highpage_movable(vma, address);
2325 	if (!page)
2326 		goto oom;
2327 	__SetPageUptodate(page);
2328 
2329 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2330 		goto oom_free_page;
2331 
2332 	entry = mk_pte(page, vma->vm_page_prot);
2333 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2334 
2335 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2336 	if (!pte_none(*page_table))
2337 		goto release;
2338 	inc_mm_counter(mm, anon_rss);
2339 	lru_cache_add_active(page);
2340 	page_add_new_anon_rmap(page, vma, address);
2341 	set_pte_at(mm, address, page_table, entry);
2342 
2343 	/* No need to invalidate - it was non-present before */
2344 	update_mmu_cache(vma, address, entry);
2345 unlock:
2346 	pte_unmap_unlock(page_table, ptl);
2347 	return 0;
2348 release:
2349 	mem_cgroup_uncharge_page(page);
2350 	page_cache_release(page);
2351 	goto unlock;
2352 oom_free_page:
2353 	page_cache_release(page);
2354 oom:
2355 	return VM_FAULT_OOM;
2356 }
2357 
2358 /*
2359  * __do_fault() tries to create a new page mapping. It aggressively
2360  * tries to share with existing pages, but makes a separate copy if
2361  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2362  * the next page fault.
2363  *
2364  * As this is called only for pages that do not currently exist, we
2365  * do not need to flush old virtual caches or the TLB.
2366  *
2367  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2368  * but allow concurrent faults), and pte neither mapped nor locked.
2369  * We return with mmap_sem still held, but pte unmapped and unlocked.
2370  */
2371 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2372 		unsigned long address, pmd_t *pmd,
2373 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2374 {
2375 	pte_t *page_table;
2376 	spinlock_t *ptl;
2377 	struct page *page;
2378 	pte_t entry;
2379 	int anon = 0;
2380 	struct page *dirty_page = NULL;
2381 	struct vm_fault vmf;
2382 	int ret;
2383 	int page_mkwrite = 0;
2384 
2385 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2386 	vmf.pgoff = pgoff;
2387 	vmf.flags = flags;
2388 	vmf.page = NULL;
2389 
2390 	ret = vma->vm_ops->fault(vma, &vmf);
2391 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392 		return ret;
2393 
2394 	/*
2395 	 * For consistency in subsequent calls, make the faulted page always
2396 	 * locked.
2397 	 */
2398 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2399 		lock_page(vmf.page);
2400 	else
2401 		VM_BUG_ON(!PageLocked(vmf.page));
2402 
2403 	/*
2404 	 * Should we do an early C-O-W break?
2405 	 */
2406 	page = vmf.page;
2407 	if (flags & FAULT_FLAG_WRITE) {
2408 		if (!(vma->vm_flags & VM_SHARED)) {
2409 			anon = 1;
2410 			if (unlikely(anon_vma_prepare(vma))) {
2411 				ret = VM_FAULT_OOM;
2412 				goto out;
2413 			}
2414 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2415 						vma, address);
2416 			if (!page) {
2417 				ret = VM_FAULT_OOM;
2418 				goto out;
2419 			}
2420 			copy_user_highpage(page, vmf.page, address, vma);
2421 			__SetPageUptodate(page);
2422 		} else {
2423 			/*
2424 			 * If the page will be shareable, see if the backing
2425 			 * address space wants to know that the page is about
2426 			 * to become writable
2427 			 */
2428 			if (vma->vm_ops->page_mkwrite) {
2429 				unlock_page(page);
2430 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2431 					ret = VM_FAULT_SIGBUS;
2432 					anon = 1; /* no anon but release vmf.page */
2433 					goto out_unlocked;
2434 				}
2435 				lock_page(page);
2436 				/*
2437 				 * XXX: this is not quite right (racy vs
2438 				 * invalidate) to unlock and relock the page
2439 				 * like this, however a better fix requires
2440 				 * reworking page_mkwrite locking API, which
2441 				 * is better done later.
2442 				 */
2443 				if (!page->mapping) {
2444 					ret = 0;
2445 					anon = 1; /* no anon but release vmf.page */
2446 					goto out;
2447 				}
2448 				page_mkwrite = 1;
2449 			}
2450 		}
2451 
2452 	}
2453 
2454 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2455 		ret = VM_FAULT_OOM;
2456 		goto out;
2457 	}
2458 
2459 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2460 
2461 	/*
2462 	 * This silly early PAGE_DIRTY setting removes a race
2463 	 * due to the bad i386 page protection. But it's valid
2464 	 * for other architectures too.
2465 	 *
2466 	 * Note that if write_access is true, we either now have
2467 	 * an exclusive copy of the page, or this is a shared mapping,
2468 	 * so we can make it writable and dirty to avoid having to
2469 	 * handle that later.
2470 	 */
2471 	/* Only go through if we didn't race with anybody else... */
2472 	if (likely(pte_same(*page_table, orig_pte))) {
2473 		flush_icache_page(vma, page);
2474 		entry = mk_pte(page, vma->vm_page_prot);
2475 		if (flags & FAULT_FLAG_WRITE)
2476 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2477 		set_pte_at(mm, address, page_table, entry);
2478 		if (anon) {
2479                         inc_mm_counter(mm, anon_rss);
2480                         lru_cache_add_active(page);
2481                         page_add_new_anon_rmap(page, vma, address);
2482 		} else {
2483 			inc_mm_counter(mm, file_rss);
2484 			page_add_file_rmap(page);
2485 			if (flags & FAULT_FLAG_WRITE) {
2486 				dirty_page = page;
2487 				get_page(dirty_page);
2488 			}
2489 		}
2490 
2491 		/* no need to invalidate: a not-present page won't be cached */
2492 		update_mmu_cache(vma, address, entry);
2493 	} else {
2494 		mem_cgroup_uncharge_page(page);
2495 		if (anon)
2496 			page_cache_release(page);
2497 		else
2498 			anon = 1; /* no anon but release faulted_page */
2499 	}
2500 
2501 	pte_unmap_unlock(page_table, ptl);
2502 
2503 out:
2504 	unlock_page(vmf.page);
2505 out_unlocked:
2506 	if (anon)
2507 		page_cache_release(vmf.page);
2508 	else if (dirty_page) {
2509 		if (vma->vm_file)
2510 			file_update_time(vma->vm_file);
2511 
2512 		set_page_dirty_balance(dirty_page, page_mkwrite);
2513 		put_page(dirty_page);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2520 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2521 		int write_access, pte_t orig_pte)
2522 {
2523 	pgoff_t pgoff = (((address & PAGE_MASK)
2524 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2525 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2526 
2527 	pte_unmap(page_table);
2528 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2529 }
2530 
2531 /*
2532  * Fault of a previously existing named mapping. Repopulate the pte
2533  * from the encoded file_pte if possible. This enables swappable
2534  * nonlinear vmas.
2535  *
2536  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2537  * but allow concurrent faults), and pte mapped but not yet locked.
2538  * We return with mmap_sem still held, but pte unmapped and unlocked.
2539  */
2540 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2541 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2542 		int write_access, pte_t orig_pte)
2543 {
2544 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2545 				(write_access ? FAULT_FLAG_WRITE : 0);
2546 	pgoff_t pgoff;
2547 
2548 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2549 		return 0;
2550 
2551 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2552 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2553 		/*
2554 		 * Page table corrupted: show pte and kill process.
2555 		 */
2556 		print_bad_pte(vma, orig_pte, address);
2557 		return VM_FAULT_OOM;
2558 	}
2559 
2560 	pgoff = pte_to_pgoff(orig_pte);
2561 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2562 }
2563 
2564 /*
2565  * These routines also need to handle stuff like marking pages dirty
2566  * and/or accessed for architectures that don't do it in hardware (most
2567  * RISC architectures).  The early dirtying is also good on the i386.
2568  *
2569  * There is also a hook called "update_mmu_cache()" that architectures
2570  * with external mmu caches can use to update those (ie the Sparc or
2571  * PowerPC hashed page tables that act as extended TLBs).
2572  *
2573  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2574  * but allow concurrent faults), and pte mapped but not yet locked.
2575  * We return with mmap_sem still held, but pte unmapped and unlocked.
2576  */
2577 static inline int handle_pte_fault(struct mm_struct *mm,
2578 		struct vm_area_struct *vma, unsigned long address,
2579 		pte_t *pte, pmd_t *pmd, int write_access)
2580 {
2581 	pte_t entry;
2582 	spinlock_t *ptl;
2583 
2584 	entry = *pte;
2585 	if (!pte_present(entry)) {
2586 		if (pte_none(entry)) {
2587 			if (vma->vm_ops) {
2588 				if (likely(vma->vm_ops->fault))
2589 					return do_linear_fault(mm, vma, address,
2590 						pte, pmd, write_access, entry);
2591 			}
2592 			return do_anonymous_page(mm, vma, address,
2593 						 pte, pmd, write_access);
2594 		}
2595 		if (pte_file(entry))
2596 			return do_nonlinear_fault(mm, vma, address,
2597 					pte, pmd, write_access, entry);
2598 		return do_swap_page(mm, vma, address,
2599 					pte, pmd, write_access, entry);
2600 	}
2601 
2602 	ptl = pte_lockptr(mm, pmd);
2603 	spin_lock(ptl);
2604 	if (unlikely(!pte_same(*pte, entry)))
2605 		goto unlock;
2606 	if (write_access) {
2607 		if (!pte_write(entry))
2608 			return do_wp_page(mm, vma, address,
2609 					pte, pmd, ptl, entry);
2610 		entry = pte_mkdirty(entry);
2611 	}
2612 	entry = pte_mkyoung(entry);
2613 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2614 		update_mmu_cache(vma, address, entry);
2615 	} else {
2616 		/*
2617 		 * This is needed only for protection faults but the arch code
2618 		 * is not yet telling us if this is a protection fault or not.
2619 		 * This still avoids useless tlb flushes for .text page faults
2620 		 * with threads.
2621 		 */
2622 		if (write_access)
2623 			flush_tlb_page(vma, address);
2624 	}
2625 unlock:
2626 	pte_unmap_unlock(pte, ptl);
2627 	return 0;
2628 }
2629 
2630 /*
2631  * By the time we get here, we already hold the mm semaphore
2632  */
2633 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2634 		unsigned long address, int write_access)
2635 {
2636 	pgd_t *pgd;
2637 	pud_t *pud;
2638 	pmd_t *pmd;
2639 	pte_t *pte;
2640 
2641 	__set_current_state(TASK_RUNNING);
2642 
2643 	count_vm_event(PGFAULT);
2644 
2645 	if (unlikely(is_vm_hugetlb_page(vma)))
2646 		return hugetlb_fault(mm, vma, address, write_access);
2647 
2648 	pgd = pgd_offset(mm, address);
2649 	pud = pud_alloc(mm, pgd, address);
2650 	if (!pud)
2651 		return VM_FAULT_OOM;
2652 	pmd = pmd_alloc(mm, pud, address);
2653 	if (!pmd)
2654 		return VM_FAULT_OOM;
2655 	pte = pte_alloc_map(mm, pmd, address);
2656 	if (!pte)
2657 		return VM_FAULT_OOM;
2658 
2659 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2660 }
2661 
2662 #ifndef __PAGETABLE_PUD_FOLDED
2663 /*
2664  * Allocate page upper directory.
2665  * We've already handled the fast-path in-line.
2666  */
2667 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2668 {
2669 	pud_t *new = pud_alloc_one(mm, address);
2670 	if (!new)
2671 		return -ENOMEM;
2672 
2673 	smp_wmb(); /* See comment in __pte_alloc */
2674 
2675 	spin_lock(&mm->page_table_lock);
2676 	if (pgd_present(*pgd))		/* Another has populated it */
2677 		pud_free(mm, new);
2678 	else
2679 		pgd_populate(mm, pgd, new);
2680 	spin_unlock(&mm->page_table_lock);
2681 	return 0;
2682 }
2683 #endif /* __PAGETABLE_PUD_FOLDED */
2684 
2685 #ifndef __PAGETABLE_PMD_FOLDED
2686 /*
2687  * Allocate page middle directory.
2688  * We've already handled the fast-path in-line.
2689  */
2690 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2691 {
2692 	pmd_t *new = pmd_alloc_one(mm, address);
2693 	if (!new)
2694 		return -ENOMEM;
2695 
2696 	smp_wmb(); /* See comment in __pte_alloc */
2697 
2698 	spin_lock(&mm->page_table_lock);
2699 #ifndef __ARCH_HAS_4LEVEL_HACK
2700 	if (pud_present(*pud))		/* Another has populated it */
2701 		pmd_free(mm, new);
2702 	else
2703 		pud_populate(mm, pud, new);
2704 #else
2705 	if (pgd_present(*pud))		/* Another has populated it */
2706 		pmd_free(mm, new);
2707 	else
2708 		pgd_populate(mm, pud, new);
2709 #endif /* __ARCH_HAS_4LEVEL_HACK */
2710 	spin_unlock(&mm->page_table_lock);
2711 	return 0;
2712 }
2713 #endif /* __PAGETABLE_PMD_FOLDED */
2714 
2715 int make_pages_present(unsigned long addr, unsigned long end)
2716 {
2717 	int ret, len, write;
2718 	struct vm_area_struct * vma;
2719 
2720 	vma = find_vma(current->mm, addr);
2721 	if (!vma)
2722 		return -1;
2723 	write = (vma->vm_flags & VM_WRITE) != 0;
2724 	BUG_ON(addr >= end);
2725 	BUG_ON(end > vma->vm_end);
2726 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2727 	ret = get_user_pages(current, current->mm, addr,
2728 			len, write, 0, NULL, NULL);
2729 	if (ret < 0)
2730 		return ret;
2731 	return ret == len ? 0 : -1;
2732 }
2733 
2734 #if !defined(__HAVE_ARCH_GATE_AREA)
2735 
2736 #if defined(AT_SYSINFO_EHDR)
2737 static struct vm_area_struct gate_vma;
2738 
2739 static int __init gate_vma_init(void)
2740 {
2741 	gate_vma.vm_mm = NULL;
2742 	gate_vma.vm_start = FIXADDR_USER_START;
2743 	gate_vma.vm_end = FIXADDR_USER_END;
2744 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2745 	gate_vma.vm_page_prot = __P101;
2746 	/*
2747 	 * Make sure the vDSO gets into every core dump.
2748 	 * Dumping its contents makes post-mortem fully interpretable later
2749 	 * without matching up the same kernel and hardware config to see
2750 	 * what PC values meant.
2751 	 */
2752 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2753 	return 0;
2754 }
2755 __initcall(gate_vma_init);
2756 #endif
2757 
2758 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2759 {
2760 #ifdef AT_SYSINFO_EHDR
2761 	return &gate_vma;
2762 #else
2763 	return NULL;
2764 #endif
2765 }
2766 
2767 int in_gate_area_no_task(unsigned long addr)
2768 {
2769 #ifdef AT_SYSINFO_EHDR
2770 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2771 		return 1;
2772 #endif
2773 	return 0;
2774 }
2775 
2776 #endif	/* __HAVE_ARCH_GATE_AREA */
2777 
2778 #ifdef CONFIG_HAVE_IOREMAP_PROT
2779 static resource_size_t follow_phys(struct vm_area_struct *vma,
2780 			unsigned long address, unsigned int flags,
2781 			unsigned long *prot)
2782 {
2783 	pgd_t *pgd;
2784 	pud_t *pud;
2785 	pmd_t *pmd;
2786 	pte_t *ptep, pte;
2787 	spinlock_t *ptl;
2788 	resource_size_t phys_addr = 0;
2789 	struct mm_struct *mm = vma->vm_mm;
2790 
2791 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2792 
2793 	pgd = pgd_offset(mm, address);
2794 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2795 		goto no_page_table;
2796 
2797 	pud = pud_offset(pgd, address);
2798 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2799 		goto no_page_table;
2800 
2801 	pmd = pmd_offset(pud, address);
2802 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2803 		goto no_page_table;
2804 
2805 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2806 	if (pmd_huge(*pmd))
2807 		goto no_page_table;
2808 
2809 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2810 	if (!ptep)
2811 		goto out;
2812 
2813 	pte = *ptep;
2814 	if (!pte_present(pte))
2815 		goto unlock;
2816 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2817 		goto unlock;
2818 	phys_addr = pte_pfn(pte);
2819 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2820 
2821 	*prot = pgprot_val(pte_pgprot(pte));
2822 
2823 unlock:
2824 	pte_unmap_unlock(ptep, ptl);
2825 out:
2826 	return phys_addr;
2827 no_page_table:
2828 	return 0;
2829 }
2830 
2831 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2832 			void *buf, int len, int write)
2833 {
2834 	resource_size_t phys_addr;
2835 	unsigned long prot = 0;
2836 	void *maddr;
2837 	int offset = addr & (PAGE_SIZE-1);
2838 
2839 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2840 		return -EINVAL;
2841 
2842 	phys_addr = follow_phys(vma, addr, write, &prot);
2843 
2844 	if (!phys_addr)
2845 		return -EINVAL;
2846 
2847 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2848 	if (write)
2849 		memcpy_toio(maddr + offset, buf, len);
2850 	else
2851 		memcpy_fromio(buf, maddr + offset, len);
2852 	iounmap(maddr);
2853 
2854 	return len;
2855 }
2856 #endif
2857 
2858 /*
2859  * Access another process' address space.
2860  * Source/target buffer must be kernel space,
2861  * Do not walk the page table directly, use get_user_pages
2862  */
2863 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2864 {
2865 	struct mm_struct *mm;
2866 	struct vm_area_struct *vma;
2867 	void *old_buf = buf;
2868 
2869 	mm = get_task_mm(tsk);
2870 	if (!mm)
2871 		return 0;
2872 
2873 	down_read(&mm->mmap_sem);
2874 	/* ignore errors, just check how much was successfully transferred */
2875 	while (len) {
2876 		int bytes, ret, offset;
2877 		void *maddr;
2878 		struct page *page = NULL;
2879 
2880 		ret = get_user_pages(tsk, mm, addr, 1,
2881 				write, 1, &page, &vma);
2882 		if (ret <= 0) {
2883 			/*
2884 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2885 			 * we can access using slightly different code.
2886 			 */
2887 #ifdef CONFIG_HAVE_IOREMAP_PROT
2888 			vma = find_vma(mm, addr);
2889 			if (!vma)
2890 				break;
2891 			if (vma->vm_ops && vma->vm_ops->access)
2892 				ret = vma->vm_ops->access(vma, addr, buf,
2893 							  len, write);
2894 			if (ret <= 0)
2895 #endif
2896 				break;
2897 			bytes = ret;
2898 		} else {
2899 			bytes = len;
2900 			offset = addr & (PAGE_SIZE-1);
2901 			if (bytes > PAGE_SIZE-offset)
2902 				bytes = PAGE_SIZE-offset;
2903 
2904 			maddr = kmap(page);
2905 			if (write) {
2906 				copy_to_user_page(vma, page, addr,
2907 						  maddr + offset, buf, bytes);
2908 				set_page_dirty_lock(page);
2909 			} else {
2910 				copy_from_user_page(vma, page, addr,
2911 						    buf, maddr + offset, bytes);
2912 			}
2913 			kunmap(page);
2914 			page_cache_release(page);
2915 		}
2916 		len -= bytes;
2917 		buf += bytes;
2918 		addr += bytes;
2919 	}
2920 	up_read(&mm->mmap_sem);
2921 	mmput(mm);
2922 
2923 	return buf - old_buf;
2924 }
2925 
2926 /*
2927  * Print the name of a VMA.
2928  */
2929 void print_vma_addr(char *prefix, unsigned long ip)
2930 {
2931 	struct mm_struct *mm = current->mm;
2932 	struct vm_area_struct *vma;
2933 
2934 	/*
2935 	 * Do not print if we are in atomic
2936 	 * contexts (in exception stacks, etc.):
2937 	 */
2938 	if (preempt_count())
2939 		return;
2940 
2941 	down_read(&mm->mmap_sem);
2942 	vma = find_vma(mm, ip);
2943 	if (vma && vma->vm_file) {
2944 		struct file *f = vma->vm_file;
2945 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2946 		if (buf) {
2947 			char *p, *s;
2948 
2949 			p = d_path(&f->f_path, buf, PAGE_SIZE);
2950 			if (IS_ERR(p))
2951 				p = "?";
2952 			s = strrchr(p, '/');
2953 			if (s)
2954 				p = s+1;
2955 			printk("%s%s[%lx+%lx]", prefix, p,
2956 					vma->vm_start,
2957 					vma->vm_end - vma->vm_start);
2958 			free_page((unsigned long)buf);
2959 		}
2960 	}
2961 	up_read(&current->mm->mmap_sem);
2962 }
2963