xref: /openbmc/linux/mm/memory.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 static int __init disable_randmaps(char *s)
122 {
123 	randomize_va_space = 0;
124 	return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127 
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130 
131 unsigned long highest_memmap_pfn __read_mostly;
132 
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 	return 0;
140 }
141 core_initcall(init_zero_pfn);
142 
143 
144 #if defined(SPLIT_RSS_COUNTING)
145 
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 	int i;
149 
150 	for (i = 0; i < NR_MM_COUNTERS; i++) {
151 		if (current->rss_stat.count[i]) {
152 			add_mm_counter(mm, i, current->rss_stat.count[i]);
153 			current->rss_stat.count[i] = 0;
154 		}
155 	}
156 	current->rss_stat.events = 0;
157 }
158 
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 	struct task_struct *task = current;
162 
163 	if (likely(task->mm == mm))
164 		task->rss_stat.count[member] += val;
165 	else
166 		add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH	(64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 	if (unlikely(task != current))
176 		return;
177 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 		sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181 
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188 
189 #endif /* SPLIT_RSS_COUNTING */
190 
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 			   unsigned long addr)
197 {
198 	pgtable_t token = pmd_pgtable(*pmd);
199 	pmd_clear(pmd);
200 	pte_free_tlb(tlb, token, addr);
201 	mm_dec_nr_ptes(tlb->mm);
202 }
203 
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 				unsigned long addr, unsigned long end,
206 				unsigned long floor, unsigned long ceiling)
207 {
208 	pmd_t *pmd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	start = addr;
213 	pmd = pmd_offset(pud, addr);
214 	do {
215 		next = pmd_addr_end(addr, end);
216 		if (pmd_none_or_clear_bad(pmd))
217 			continue;
218 		free_pte_range(tlb, pmd, addr);
219 	} while (pmd++, addr = next, addr != end);
220 
221 	start &= PUD_MASK;
222 	if (start < floor)
223 		return;
224 	if (ceiling) {
225 		ceiling &= PUD_MASK;
226 		if (!ceiling)
227 			return;
228 	}
229 	if (end - 1 > ceiling - 1)
230 		return;
231 
232 	pmd = pmd_offset(pud, start);
233 	pud_clear(pud);
234 	pmd_free_tlb(tlb, pmd, start);
235 	mm_dec_nr_pmds(tlb->mm);
236 }
237 
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 				unsigned long addr, unsigned long end,
240 				unsigned long floor, unsigned long ceiling)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 	unsigned long start;
245 
246 	start = addr;
247 	pud = pud_offset(p4d, addr);
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (pud_none_or_clear_bad(pud))
251 			continue;
252 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 	} while (pud++, addr = next, addr != end);
254 
255 	start &= P4D_MASK;
256 	if (start < floor)
257 		return;
258 	if (ceiling) {
259 		ceiling &= P4D_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		return;
265 
266 	pud = pud_offset(p4d, start);
267 	p4d_clear(p4d);
268 	pud_free_tlb(tlb, pud, start);
269 	mm_dec_nr_puds(tlb->mm);
270 }
271 
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 				unsigned long addr, unsigned long end,
274 				unsigned long floor, unsigned long ceiling)
275 {
276 	p4d_t *p4d;
277 	unsigned long next;
278 	unsigned long start;
279 
280 	start = addr;
281 	p4d = p4d_offset(pgd, addr);
282 	do {
283 		next = p4d_addr_end(addr, end);
284 		if (p4d_none_or_clear_bad(p4d))
285 			continue;
286 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 	} while (p4d++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	p4d = p4d_offset(pgd, start);
301 	pgd_clear(pgd);
302 	p4d_free_tlb(tlb, p4d, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309 			unsigned long addr, unsigned long end,
310 			unsigned long floor, unsigned long ceiling)
311 {
312 	pgd_t *pgd;
313 	unsigned long next;
314 
315 	/*
316 	 * The next few lines have given us lots of grief...
317 	 *
318 	 * Why are we testing PMD* at this top level?  Because often
319 	 * there will be no work to do at all, and we'd prefer not to
320 	 * go all the way down to the bottom just to discover that.
321 	 *
322 	 * Why all these "- 1"s?  Because 0 represents both the bottom
323 	 * of the address space and the top of it (using -1 for the
324 	 * top wouldn't help much: the masks would do the wrong thing).
325 	 * The rule is that addr 0 and floor 0 refer to the bottom of
326 	 * the address space, but end 0 and ceiling 0 refer to the top
327 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 	 * that end 0 case should be mythical).
329 	 *
330 	 * Wherever addr is brought up or ceiling brought down, we must
331 	 * be careful to reject "the opposite 0" before it confuses the
332 	 * subsequent tests.  But what about where end is brought down
333 	 * by PMD_SIZE below? no, end can't go down to 0 there.
334 	 *
335 	 * Whereas we round start (addr) and ceiling down, by different
336 	 * masks at different levels, in order to test whether a table
337 	 * now has no other vmas using it, so can be freed, we don't
338 	 * bother to round floor or end up - the tests don't need that.
339 	 */
340 
341 	addr &= PMD_MASK;
342 	if (addr < floor) {
343 		addr += PMD_SIZE;
344 		if (!addr)
345 			return;
346 	}
347 	if (ceiling) {
348 		ceiling &= PMD_MASK;
349 		if (!ceiling)
350 			return;
351 	}
352 	if (end - 1 > ceiling - 1)
353 		end -= PMD_SIZE;
354 	if (addr > end - 1)
355 		return;
356 	/*
357 	 * We add page table cache pages with PAGE_SIZE,
358 	 * (see pte_free_tlb()), flush the tlb if we need
359 	 */
360 	tlb_change_page_size(tlb, PAGE_SIZE);
361 	pgd = pgd_offset(tlb->mm, addr);
362 	do {
363 		next = pgd_addr_end(addr, end);
364 		if (pgd_none_or_clear_bad(pgd))
365 			continue;
366 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 	} while (pgd++, addr = next, addr != end);
368 }
369 
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 		unsigned long floor, unsigned long ceiling)
372 {
373 	while (vma) {
374 		struct vm_area_struct *next = vma->vm_next;
375 		unsigned long addr = vma->vm_start;
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		unlink_anon_vmas(vma);
382 		unlink_file_vma(vma);
383 
384 		if (is_vm_hugetlb_page(vma)) {
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			/*
389 			 * Optimization: gather nearby vmas into one call down
390 			 */
391 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 			       && !is_vm_hugetlb_page(next)) {
393 				vma = next;
394 				next = vma->vm_next;
395 				unlink_anon_vmas(vma);
396 				unlink_file_vma(vma);
397 			}
398 			free_pgd_range(tlb, addr, vma->vm_end,
399 				floor, next ? next->vm_start : ceiling);
400 		}
401 		vma = next;
402 	}
403 }
404 
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 	spinlock_t *ptl;
408 	pgtable_t new = pte_alloc_one(mm);
409 	if (!new)
410 		return -ENOMEM;
411 
412 	/*
413 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 	 * visible before the pte is made visible to other CPUs by being
415 	 * put into page tables.
416 	 *
417 	 * The other side of the story is the pointer chasing in the page
418 	 * table walking code (when walking the page table without locking;
419 	 * ie. most of the time). Fortunately, these data accesses consist
420 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 	 * being the notable exception) will already guarantee loads are
422 	 * seen in-order. See the alpha page table accessors for the
423 	 * smp_read_barrier_depends() barriers in page table walking code.
424 	 */
425 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426 
427 	ptl = pmd_lock(mm, pmd);
428 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
429 		mm_inc_nr_ptes(mm);
430 		pmd_populate(mm, pmd, new);
431 		new = NULL;
432 	}
433 	spin_unlock(ptl);
434 	if (new)
435 		pte_free(mm, new);
436 	return 0;
437 }
438 
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 	pte_t *new = pte_alloc_one_kernel(&init_mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	smp_wmb(); /* See comment in __pte_alloc */
446 
447 	spin_lock(&init_mm.page_table_lock);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		pmd_populate_kernel(&init_mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(&init_mm.page_table_lock);
453 	if (new)
454 		pte_free_kernel(&init_mm, new);
455 	return 0;
456 }
457 
458 static inline void init_rss_vec(int *rss)
459 {
460 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462 
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 	int i;
466 
467 	if (current->mm == mm)
468 		sync_mm_rss(mm);
469 	for (i = 0; i < NR_MM_COUNTERS; i++)
470 		if (rss[i])
471 			add_mm_counter(mm, i, rss[i]);
472 }
473 
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 			  pte_t pte, struct page *page)
483 {
484 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 	p4d_t *p4d = p4d_offset(pgd, addr);
486 	pud_t *pud = pud_offset(p4d, addr);
487 	pmd_t *pmd = pmd_offset(pud, addr);
488 	struct address_space *mapping;
489 	pgoff_t index;
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			return;
502 		}
503 		if (nr_unshown) {
504 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 				 nr_unshown);
506 			nr_unshown = 0;
507 		}
508 		nr_shown = 0;
509 	}
510 	if (nr_shown++ == 0)
511 		resume = jiffies + 60 * HZ;
512 
513 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 	index = linear_page_index(vma, addr);
515 
516 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517 		 current->comm,
518 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 	if (page)
520 		dump_page(page, "bad pte");
521 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 		 vma->vm_file,
525 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 		 mapping ? mapping->a_ops->readpage : NULL);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531 
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 			    pte_t pte)
576 {
577 	unsigned long pfn = pte_pfn(pte);
578 
579 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 		if (likely(!pte_special(pte)))
581 			goto check_pfn;
582 		if (vma->vm_ops && vma->vm_ops->find_special_page)
583 			return vma->vm_ops->find_special_page(vma, addr);
584 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 			return NULL;
586 		if (is_zero_pfn(pfn))
587 			return NULL;
588 		if (pte_devmap(pte))
589 			return NULL;
590 
591 		print_bad_pte(vma, addr, pte, NULL);
592 		return NULL;
593 	}
594 
595 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 
597 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 		if (vma->vm_flags & VM_MIXEDMAP) {
599 			if (!pfn_valid(pfn))
600 				return NULL;
601 			goto out;
602 		} else {
603 			unsigned long off;
604 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 			if (pfn == vma->vm_pgoff + off)
606 				return NULL;
607 			if (!is_cow_mapping(vma->vm_flags))
608 				return NULL;
609 		}
610 	}
611 
612 	if (is_zero_pfn(pfn))
613 		return NULL;
614 
615 check_pfn:
616 	if (unlikely(pfn > highest_memmap_pfn)) {
617 		print_bad_pte(vma, addr, pte, NULL);
618 		return NULL;
619 	}
620 
621 	/*
622 	 * NOTE! We still have PageReserved() pages in the page tables.
623 	 * eg. VDSO mappings can cause them to exist.
624 	 */
625 out:
626 	return pfn_to_page(pfn);
627 }
628 
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 				pmd_t pmd)
632 {
633 	unsigned long pfn = pmd_pfn(pmd);
634 
635 	/*
636 	 * There is no pmd_special() but there may be special pmds, e.g.
637 	 * in a direct-access (dax) mapping, so let's just replicate the
638 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 	 */
640 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 		if (vma->vm_flags & VM_MIXEDMAP) {
642 			if (!pfn_valid(pfn))
643 				return NULL;
644 			goto out;
645 		} else {
646 			unsigned long off;
647 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 			if (pfn == vma->vm_pgoff + off)
649 				return NULL;
650 			if (!is_cow_mapping(vma->vm_flags))
651 				return NULL;
652 		}
653 	}
654 
655 	if (pmd_devmap(pmd))
656 		return NULL;
657 	if (is_zero_pfn(pfn))
658 		return NULL;
659 	if (unlikely(pfn > highest_memmap_pfn))
660 		return NULL;
661 
662 	/*
663 	 * NOTE! We still have PageReserved() pages in the page tables.
664 	 * eg. VDSO mappings can cause them to exist.
665 	 */
666 out:
667 	return pfn_to_page(pfn);
668 }
669 #endif
670 
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676 
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 		unsigned long addr, int *rss)
681 {
682 	unsigned long vm_flags = vma->vm_flags;
683 	pte_t pte = *src_pte;
684 	struct page *page;
685 
686 	/* pte contains position in swap or file, so copy. */
687 	if (unlikely(!pte_present(pte))) {
688 		swp_entry_t entry = pte_to_swp_entry(pte);
689 
690 		if (likely(!non_swap_entry(entry))) {
691 			if (swap_duplicate(entry) < 0)
692 				return entry.val;
693 
694 			/* make sure dst_mm is on swapoff's mmlist. */
695 			if (unlikely(list_empty(&dst_mm->mmlist))) {
696 				spin_lock(&mmlist_lock);
697 				if (list_empty(&dst_mm->mmlist))
698 					list_add(&dst_mm->mmlist,
699 							&src_mm->mmlist);
700 				spin_unlock(&mmlist_lock);
701 			}
702 			rss[MM_SWAPENTS]++;
703 		} else if (is_migration_entry(entry)) {
704 			page = migration_entry_to_page(entry);
705 
706 			rss[mm_counter(page)]++;
707 
708 			if (is_write_migration_entry(entry) &&
709 					is_cow_mapping(vm_flags)) {
710 				/*
711 				 * COW mappings require pages in both
712 				 * parent and child to be set to read.
713 				 */
714 				make_migration_entry_read(&entry);
715 				pte = swp_entry_to_pte(entry);
716 				if (pte_swp_soft_dirty(*src_pte))
717 					pte = pte_swp_mksoft_dirty(pte);
718 				set_pte_at(src_mm, addr, src_pte, pte);
719 			}
720 		} else if (is_device_private_entry(entry)) {
721 			page = device_private_entry_to_page(entry);
722 
723 			/*
724 			 * Update rss count even for unaddressable pages, as
725 			 * they should treated just like normal pages in this
726 			 * respect.
727 			 *
728 			 * We will likely want to have some new rss counters
729 			 * for unaddressable pages, at some point. But for now
730 			 * keep things as they are.
731 			 */
732 			get_page(page);
733 			rss[mm_counter(page)]++;
734 			page_dup_rmap(page, false);
735 
736 			/*
737 			 * We do not preserve soft-dirty information, because so
738 			 * far, checkpoint/restore is the only feature that
739 			 * requires that. And checkpoint/restore does not work
740 			 * when a device driver is involved (you cannot easily
741 			 * save and restore device driver state).
742 			 */
743 			if (is_write_device_private_entry(entry) &&
744 			    is_cow_mapping(vm_flags)) {
745 				make_device_private_entry_read(&entry);
746 				pte = swp_entry_to_pte(entry);
747 				set_pte_at(src_mm, addr, src_pte, pte);
748 			}
749 		}
750 		goto out_set_pte;
751 	}
752 
753 	/*
754 	 * If it's a COW mapping, write protect it both
755 	 * in the parent and the child
756 	 */
757 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 		ptep_set_wrprotect(src_mm, addr, src_pte);
759 		pte = pte_wrprotect(pte);
760 	}
761 
762 	/*
763 	 * If it's a shared mapping, mark it clean in
764 	 * the child
765 	 */
766 	if (vm_flags & VM_SHARED)
767 		pte = pte_mkclean(pte);
768 	pte = pte_mkold(pte);
769 
770 	page = vm_normal_page(vma, addr, pte);
771 	if (page) {
772 		get_page(page);
773 		page_dup_rmap(page, false);
774 		rss[mm_counter(page)]++;
775 	} else if (pte_devmap(pte)) {
776 		page = pte_page(pte);
777 	}
778 
779 out_set_pte:
780 	set_pte_at(dst_mm, addr, dst_pte, pte);
781 	return 0;
782 }
783 
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 		   unsigned long addr, unsigned long end)
787 {
788 	pte_t *orig_src_pte, *orig_dst_pte;
789 	pte_t *src_pte, *dst_pte;
790 	spinlock_t *src_ptl, *dst_ptl;
791 	int progress = 0;
792 	int rss[NR_MM_COUNTERS];
793 	swp_entry_t entry = (swp_entry_t){0};
794 
795 again:
796 	init_rss_vec(rss);
797 
798 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 	if (!dst_pte)
800 		return -ENOMEM;
801 	src_pte = pte_offset_map(src_pmd, addr);
802 	src_ptl = pte_lockptr(src_mm, src_pmd);
803 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 	orig_src_pte = src_pte;
805 	orig_dst_pte = dst_pte;
806 	arch_enter_lazy_mmu_mode();
807 
808 	do {
809 		/*
810 		 * We are holding two locks at this point - either of them
811 		 * could generate latencies in another task on another CPU.
812 		 */
813 		if (progress >= 32) {
814 			progress = 0;
815 			if (need_resched() ||
816 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 				break;
818 		}
819 		if (pte_none(*src_pte)) {
820 			progress++;
821 			continue;
822 		}
823 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 							vma, addr, rss);
825 		if (entry.val)
826 			break;
827 		progress += 8;
828 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829 
830 	arch_leave_lazy_mmu_mode();
831 	spin_unlock(src_ptl);
832 	pte_unmap(orig_src_pte);
833 	add_mm_rss_vec(dst_mm, rss);
834 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 	cond_resched();
836 
837 	if (entry.val) {
838 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 			return -ENOMEM;
840 		progress = 0;
841 	}
842 	if (addr != end)
843 		goto again;
844 	return 0;
845 }
846 
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 		unsigned long addr, unsigned long end)
850 {
851 	pmd_t *src_pmd, *dst_pmd;
852 	unsigned long next;
853 
854 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 	if (!dst_pmd)
856 		return -ENOMEM;
857 	src_pmd = pmd_offset(src_pud, addr);
858 	do {
859 		next = pmd_addr_end(addr, end);
860 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 			|| pmd_devmap(*src_pmd)) {
862 			int err;
863 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 			err = copy_huge_pmd(dst_mm, src_mm,
865 					    dst_pmd, src_pmd, addr, vma);
866 			if (err == -ENOMEM)
867 				return -ENOMEM;
868 			if (!err)
869 				continue;
870 			/* fall through */
871 		}
872 		if (pmd_none_or_clear_bad(src_pmd))
873 			continue;
874 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 						vma, addr, next))
876 			return -ENOMEM;
877 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 	return 0;
879 }
880 
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 		unsigned long addr, unsigned long end)
884 {
885 	pud_t *src_pud, *dst_pud;
886 	unsigned long next;
887 
888 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 	if (!dst_pud)
890 		return -ENOMEM;
891 	src_pud = pud_offset(src_p4d, addr);
892 	do {
893 		next = pud_addr_end(addr, end);
894 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 			int err;
896 
897 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 			err = copy_huge_pud(dst_mm, src_mm,
899 					    dst_pud, src_pud, addr, vma);
900 			if (err == -ENOMEM)
901 				return -ENOMEM;
902 			if (!err)
903 				continue;
904 			/* fall through */
905 		}
906 		if (pud_none_or_clear_bad(src_pud))
907 			continue;
908 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 						vma, addr, next))
910 			return -ENOMEM;
911 	} while (dst_pud++, src_pud++, addr = next, addr != end);
912 	return 0;
913 }
914 
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 		unsigned long addr, unsigned long end)
918 {
919 	p4d_t *src_p4d, *dst_p4d;
920 	unsigned long next;
921 
922 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 	if (!dst_p4d)
924 		return -ENOMEM;
925 	src_p4d = p4d_offset(src_pgd, addr);
926 	do {
927 		next = p4d_addr_end(addr, end);
928 		if (p4d_none_or_clear_bad(src_p4d))
929 			continue;
930 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 						vma, addr, next))
932 			return -ENOMEM;
933 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 	return 0;
935 }
936 
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 		struct vm_area_struct *vma)
939 {
940 	pgd_t *src_pgd, *dst_pgd;
941 	unsigned long next;
942 	unsigned long addr = vma->vm_start;
943 	unsigned long end = vma->vm_end;
944 	struct mmu_notifier_range range;
945 	bool is_cow;
946 	int ret;
947 
948 	/*
949 	 * Don't copy ptes where a page fault will fill them correctly.
950 	 * Fork becomes much lighter when there are big shared or private
951 	 * readonly mappings. The tradeoff is that copy_page_range is more
952 	 * efficient than faulting.
953 	 */
954 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 			!vma->anon_vma)
956 		return 0;
957 
958 	if (is_vm_hugetlb_page(vma))
959 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960 
961 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962 		/*
963 		 * We do not free on error cases below as remove_vma
964 		 * gets called on error from higher level routine
965 		 */
966 		ret = track_pfn_copy(vma);
967 		if (ret)
968 			return ret;
969 	}
970 
971 	/*
972 	 * We need to invalidate the secondary MMU mappings only when
973 	 * there could be a permission downgrade on the ptes of the
974 	 * parent mm. And a permission downgrade will only happen if
975 	 * is_cow_mapping() returns true.
976 	 */
977 	is_cow = is_cow_mapping(vma->vm_flags);
978 
979 	if (is_cow) {
980 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 					0, vma, src_mm, addr, end);
982 		mmu_notifier_invalidate_range_start(&range);
983 	}
984 
985 	ret = 0;
986 	dst_pgd = pgd_offset(dst_mm, addr);
987 	src_pgd = pgd_offset(src_mm, addr);
988 	do {
989 		next = pgd_addr_end(addr, end);
990 		if (pgd_none_or_clear_bad(src_pgd))
991 			continue;
992 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 					    vma, addr, next))) {
994 			ret = -ENOMEM;
995 			break;
996 		}
997 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
998 
999 	if (is_cow)
1000 		mmu_notifier_invalidate_range_end(&range);
1001 	return ret;
1002 }
1003 
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 				struct vm_area_struct *vma, pmd_t *pmd,
1006 				unsigned long addr, unsigned long end,
1007 				struct zap_details *details)
1008 {
1009 	struct mm_struct *mm = tlb->mm;
1010 	int force_flush = 0;
1011 	int rss[NR_MM_COUNTERS];
1012 	spinlock_t *ptl;
1013 	pte_t *start_pte;
1014 	pte_t *pte;
1015 	swp_entry_t entry;
1016 
1017 	tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019 	init_rss_vec(rss);
1020 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 	pte = start_pte;
1022 	flush_tlb_batched_pending(mm);
1023 	arch_enter_lazy_mmu_mode();
1024 	do {
1025 		pte_t ptent = *pte;
1026 		if (pte_none(ptent))
1027 			continue;
1028 
1029 		if (pte_present(ptent)) {
1030 			struct page *page;
1031 
1032 			page = vm_normal_page(vma, addr, ptent);
1033 			if (unlikely(details) && page) {
1034 				/*
1035 				 * unmap_shared_mapping_pages() wants to
1036 				 * invalidate cache without truncating:
1037 				 * unmap shared but keep private pages.
1038 				 */
1039 				if (details->check_mapping &&
1040 				    details->check_mapping != page_rmapping(page))
1041 					continue;
1042 			}
1043 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1044 							tlb->fullmm);
1045 			tlb_remove_tlb_entry(tlb, pte, addr);
1046 			if (unlikely(!page))
1047 				continue;
1048 
1049 			if (!PageAnon(page)) {
1050 				if (pte_dirty(ptent)) {
1051 					force_flush = 1;
1052 					set_page_dirty(page);
1053 				}
1054 				if (pte_young(ptent) &&
1055 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1056 					mark_page_accessed(page);
1057 			}
1058 			rss[mm_counter(page)]--;
1059 			page_remove_rmap(page, false);
1060 			if (unlikely(page_mapcount(page) < 0))
1061 				print_bad_pte(vma, addr, ptent, page);
1062 			if (unlikely(__tlb_remove_page(tlb, page))) {
1063 				force_flush = 1;
1064 				addr += PAGE_SIZE;
1065 				break;
1066 			}
1067 			continue;
1068 		}
1069 
1070 		entry = pte_to_swp_entry(ptent);
1071 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072 			struct page *page = device_private_entry_to_page(entry);
1073 
1074 			if (unlikely(details && details->check_mapping)) {
1075 				/*
1076 				 * unmap_shared_mapping_pages() wants to
1077 				 * invalidate cache without truncating:
1078 				 * unmap shared but keep private pages.
1079 				 */
1080 				if (details->check_mapping !=
1081 				    page_rmapping(page))
1082 					continue;
1083 			}
1084 
1085 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086 			rss[mm_counter(page)]--;
1087 			page_remove_rmap(page, false);
1088 			put_page(page);
1089 			continue;
1090 		}
1091 
1092 		/* If details->check_mapping, we leave swap entries. */
1093 		if (unlikely(details))
1094 			continue;
1095 
1096 		entry = pte_to_swp_entry(ptent);
1097 		if (!non_swap_entry(entry))
1098 			rss[MM_SWAPENTS]--;
1099 		else if (is_migration_entry(entry)) {
1100 			struct page *page;
1101 
1102 			page = migration_entry_to_page(entry);
1103 			rss[mm_counter(page)]--;
1104 		}
1105 		if (unlikely(!free_swap_and_cache(entry)))
1106 			print_bad_pte(vma, addr, ptent, NULL);
1107 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108 	} while (pte++, addr += PAGE_SIZE, addr != end);
1109 
1110 	add_mm_rss_vec(mm, rss);
1111 	arch_leave_lazy_mmu_mode();
1112 
1113 	/* Do the actual TLB flush before dropping ptl */
1114 	if (force_flush)
1115 		tlb_flush_mmu_tlbonly(tlb);
1116 	pte_unmap_unlock(start_pte, ptl);
1117 
1118 	/*
1119 	 * If we forced a TLB flush (either due to running out of
1120 	 * batch buffers or because we needed to flush dirty TLB
1121 	 * entries before releasing the ptl), free the batched
1122 	 * memory too. Restart if we didn't do everything.
1123 	 */
1124 	if (force_flush) {
1125 		force_flush = 0;
1126 		tlb_flush_mmu(tlb);
1127 		if (addr != end)
1128 			goto again;
1129 	}
1130 
1131 	return addr;
1132 }
1133 
1134 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135 				struct vm_area_struct *vma, pud_t *pud,
1136 				unsigned long addr, unsigned long end,
1137 				struct zap_details *details)
1138 {
1139 	pmd_t *pmd;
1140 	unsigned long next;
1141 
1142 	pmd = pmd_offset(pud, addr);
1143 	do {
1144 		next = pmd_addr_end(addr, end);
1145 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146 			if (next - addr != HPAGE_PMD_SIZE)
1147 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1148 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149 				goto next;
1150 			/* fall through */
1151 		}
1152 		/*
1153 		 * Here there can be other concurrent MADV_DONTNEED or
1154 		 * trans huge page faults running, and if the pmd is
1155 		 * none or trans huge it can change under us. This is
1156 		 * because MADV_DONTNEED holds the mmap_sem in read
1157 		 * mode.
1158 		 */
1159 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160 			goto next;
1161 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162 next:
1163 		cond_resched();
1164 	} while (pmd++, addr = next, addr != end);
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, p4d_t *p4d,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pud_t *pud;
1175 	unsigned long next;
1176 
1177 	pud = pud_offset(p4d, addr);
1178 	do {
1179 		next = pud_addr_end(addr, end);
1180 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181 			if (next - addr != HPAGE_PUD_SIZE) {
1182 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183 				split_huge_pud(vma, pud, addr);
1184 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1185 				goto next;
1186 			/* fall through */
1187 		}
1188 		if (pud_none_or_clear_bad(pud))
1189 			continue;
1190 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191 next:
1192 		cond_resched();
1193 	} while (pud++, addr = next, addr != end);
1194 
1195 	return addr;
1196 }
1197 
1198 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199 				struct vm_area_struct *vma, pgd_t *pgd,
1200 				unsigned long addr, unsigned long end,
1201 				struct zap_details *details)
1202 {
1203 	p4d_t *p4d;
1204 	unsigned long next;
1205 
1206 	p4d = p4d_offset(pgd, addr);
1207 	do {
1208 		next = p4d_addr_end(addr, end);
1209 		if (p4d_none_or_clear_bad(p4d))
1210 			continue;
1211 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212 	} while (p4d++, addr = next, addr != end);
1213 
1214 	return addr;
1215 }
1216 
1217 void unmap_page_range(struct mmu_gather *tlb,
1218 			     struct vm_area_struct *vma,
1219 			     unsigned long addr, unsigned long end,
1220 			     struct zap_details *details)
1221 {
1222 	pgd_t *pgd;
1223 	unsigned long next;
1224 
1225 	BUG_ON(addr >= end);
1226 	tlb_start_vma(tlb, vma);
1227 	pgd = pgd_offset(vma->vm_mm, addr);
1228 	do {
1229 		next = pgd_addr_end(addr, end);
1230 		if (pgd_none_or_clear_bad(pgd))
1231 			continue;
1232 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233 	} while (pgd++, addr = next, addr != end);
1234 	tlb_end_vma(tlb, vma);
1235 }
1236 
1237 
1238 static void unmap_single_vma(struct mmu_gather *tlb,
1239 		struct vm_area_struct *vma, unsigned long start_addr,
1240 		unsigned long end_addr,
1241 		struct zap_details *details)
1242 {
1243 	unsigned long start = max(vma->vm_start, start_addr);
1244 	unsigned long end;
1245 
1246 	if (start >= vma->vm_end)
1247 		return;
1248 	end = min(vma->vm_end, end_addr);
1249 	if (end <= vma->vm_start)
1250 		return;
1251 
1252 	if (vma->vm_file)
1253 		uprobe_munmap(vma, start, end);
1254 
1255 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1256 		untrack_pfn(vma, 0, 0);
1257 
1258 	if (start != end) {
1259 		if (unlikely(is_vm_hugetlb_page(vma))) {
1260 			/*
1261 			 * It is undesirable to test vma->vm_file as it
1262 			 * should be non-null for valid hugetlb area.
1263 			 * However, vm_file will be NULL in the error
1264 			 * cleanup path of mmap_region. When
1265 			 * hugetlbfs ->mmap method fails,
1266 			 * mmap_region() nullifies vma->vm_file
1267 			 * before calling this function to clean up.
1268 			 * Since no pte has actually been setup, it is
1269 			 * safe to do nothing in this case.
1270 			 */
1271 			if (vma->vm_file) {
1272 				i_mmap_lock_write(vma->vm_file->f_mapping);
1273 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1275 			}
1276 		} else
1277 			unmap_page_range(tlb, vma, start, end, details);
1278 	}
1279 }
1280 
1281 /**
1282  * unmap_vmas - unmap a range of memory covered by a list of vma's
1283  * @tlb: address of the caller's struct mmu_gather
1284  * @vma: the starting vma
1285  * @start_addr: virtual address at which to start unmapping
1286  * @end_addr: virtual address at which to end unmapping
1287  *
1288  * Unmap all pages in the vma list.
1289  *
1290  * Only addresses between `start' and `end' will be unmapped.
1291  *
1292  * The VMA list must be sorted in ascending virtual address order.
1293  *
1294  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295  * range after unmap_vmas() returns.  So the only responsibility here is to
1296  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297  * drops the lock and schedules.
1298  */
1299 void unmap_vmas(struct mmu_gather *tlb,
1300 		struct vm_area_struct *vma, unsigned long start_addr,
1301 		unsigned long end_addr)
1302 {
1303 	struct mmu_notifier_range range;
1304 
1305 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306 				start_addr, end_addr);
1307 	mmu_notifier_invalidate_range_start(&range);
1308 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310 	mmu_notifier_invalidate_range_end(&range);
1311 }
1312 
1313 /**
1314  * zap_page_range - remove user pages in a given range
1315  * @vma: vm_area_struct holding the applicable pages
1316  * @start: starting address of pages to zap
1317  * @size: number of bytes to zap
1318  *
1319  * Caller must protect the VMA list
1320  */
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322 		unsigned long size)
1323 {
1324 	struct mmu_notifier_range range;
1325 	struct mmu_gather tlb;
1326 
1327 	lru_add_drain();
1328 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329 				start, start + size);
1330 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331 	update_hiwater_rss(vma->vm_mm);
1332 	mmu_notifier_invalidate_range_start(&range);
1333 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335 	mmu_notifier_invalidate_range_end(&range);
1336 	tlb_finish_mmu(&tlb, start, range.end);
1337 }
1338 
1339 /**
1340  * zap_page_range_single - remove user pages in a given range
1341  * @vma: vm_area_struct holding the applicable pages
1342  * @address: starting address of pages to zap
1343  * @size: number of bytes to zap
1344  * @details: details of shared cache invalidation
1345  *
1346  * The range must fit into one VMA.
1347  */
1348 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349 		unsigned long size, struct zap_details *details)
1350 {
1351 	struct mmu_notifier_range range;
1352 	struct mmu_gather tlb;
1353 
1354 	lru_add_drain();
1355 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356 				address, address + size);
1357 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358 	update_hiwater_rss(vma->vm_mm);
1359 	mmu_notifier_invalidate_range_start(&range);
1360 	unmap_single_vma(&tlb, vma, address, range.end, details);
1361 	mmu_notifier_invalidate_range_end(&range);
1362 	tlb_finish_mmu(&tlb, address, range.end);
1363 }
1364 
1365 /**
1366  * zap_vma_ptes - remove ptes mapping the vma
1367  * @vma: vm_area_struct holding ptes to be zapped
1368  * @address: starting address of pages to zap
1369  * @size: number of bytes to zap
1370  *
1371  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372  *
1373  * The entire address range must be fully contained within the vma.
1374  *
1375  */
1376 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377 		unsigned long size)
1378 {
1379 	if (address < vma->vm_start || address + size > vma->vm_end ||
1380 	    		!(vma->vm_flags & VM_PFNMAP))
1381 		return;
1382 
1383 	zap_page_range_single(vma, address, size, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386 
1387 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388 			spinlock_t **ptl)
1389 {
1390 	pgd_t *pgd;
1391 	p4d_t *p4d;
1392 	pud_t *pud;
1393 	pmd_t *pmd;
1394 
1395 	pgd = pgd_offset(mm, addr);
1396 	p4d = p4d_alloc(mm, pgd, addr);
1397 	if (!p4d)
1398 		return NULL;
1399 	pud = pud_alloc(mm, p4d, addr);
1400 	if (!pud)
1401 		return NULL;
1402 	pmd = pmd_alloc(mm, pud, addr);
1403 	if (!pmd)
1404 		return NULL;
1405 
1406 	VM_BUG_ON(pmd_trans_huge(*pmd));
1407 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1408 }
1409 
1410 /*
1411  * This is the old fallback for page remapping.
1412  *
1413  * For historical reasons, it only allows reserved pages. Only
1414  * old drivers should use this, and they needed to mark their
1415  * pages reserved for the old functions anyway.
1416  */
1417 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418 			struct page *page, pgprot_t prot)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	int retval;
1422 	pte_t *pte;
1423 	spinlock_t *ptl;
1424 
1425 	retval = -EINVAL;
1426 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427 		goto out;
1428 	retval = -ENOMEM;
1429 	flush_dcache_page(page);
1430 	pte = get_locked_pte(mm, addr, &ptl);
1431 	if (!pte)
1432 		goto out;
1433 	retval = -EBUSY;
1434 	if (!pte_none(*pte))
1435 		goto out_unlock;
1436 
1437 	/* Ok, finally just insert the thing.. */
1438 	get_page(page);
1439 	inc_mm_counter_fast(mm, mm_counter_file(page));
1440 	page_add_file_rmap(page, false);
1441 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442 
1443 	retval = 0;
1444 out_unlock:
1445 	pte_unmap_unlock(pte, ptl);
1446 out:
1447 	return retval;
1448 }
1449 
1450 /**
1451  * vm_insert_page - insert single page into user vma
1452  * @vma: user vma to map to
1453  * @addr: target user address of this page
1454  * @page: source kernel page
1455  *
1456  * This allows drivers to insert individual pages they've allocated
1457  * into a user vma.
1458  *
1459  * The page has to be a nice clean _individual_ kernel allocation.
1460  * If you allocate a compound page, you need to have marked it as
1461  * such (__GFP_COMP), or manually just split the page up yourself
1462  * (see split_page()).
1463  *
1464  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465  * took an arbitrary page protection parameter. This doesn't allow
1466  * that. Your vma protection will have to be set up correctly, which
1467  * means that if you want a shared writable mapping, you'd better
1468  * ask for a shared writable mapping!
1469  *
1470  * The page does not need to be reserved.
1471  *
1472  * Usually this function is called from f_op->mmap() handler
1473  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475  * function from other places, for example from page-fault handler.
1476  *
1477  * Return: %0 on success, negative error code otherwise.
1478  */
1479 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 			struct page *page)
1481 {
1482 	if (addr < vma->vm_start || addr >= vma->vm_end)
1483 		return -EFAULT;
1484 	if (!page_count(page))
1485 		return -EINVAL;
1486 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1489 		vma->vm_flags |= VM_MIXEDMAP;
1490 	}
1491 	return insert_page(vma, addr, page, vma->vm_page_prot);
1492 }
1493 EXPORT_SYMBOL(vm_insert_page);
1494 
1495 /*
1496  * __vm_map_pages - maps range of kernel pages into user vma
1497  * @vma: user vma to map to
1498  * @pages: pointer to array of source kernel pages
1499  * @num: number of pages in page array
1500  * @offset: user's requested vm_pgoff
1501  *
1502  * This allows drivers to map range of kernel pages into a user vma.
1503  *
1504  * Return: 0 on success and error code otherwise.
1505  */
1506 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507 				unsigned long num, unsigned long offset)
1508 {
1509 	unsigned long count = vma_pages(vma);
1510 	unsigned long uaddr = vma->vm_start;
1511 	int ret, i;
1512 
1513 	/* Fail if the user requested offset is beyond the end of the object */
1514 	if (offset >= num)
1515 		return -ENXIO;
1516 
1517 	/* Fail if the user requested size exceeds available object size */
1518 	if (count > num - offset)
1519 		return -ENXIO;
1520 
1521 	for (i = 0; i < count; i++) {
1522 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523 		if (ret < 0)
1524 			return ret;
1525 		uaddr += PAGE_SIZE;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 /**
1532  * vm_map_pages - maps range of kernel pages starts with non zero offset
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  *
1537  * Maps an object consisting of @num pages, catering for the user's
1538  * requested vm_pgoff
1539  *
1540  * If we fail to insert any page into the vma, the function will return
1541  * immediately leaving any previously inserted pages present.  Callers
1542  * from the mmap handler may immediately return the error as their caller
1543  * will destroy the vma, removing any successfully inserted pages. Other
1544  * callers should make their own arrangements for calling unmap_region().
1545  *
1546  * Context: Process context. Called by mmap handlers.
1547  * Return: 0 on success and error code otherwise.
1548  */
1549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550 				unsigned long num)
1551 {
1552 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1553 }
1554 EXPORT_SYMBOL(vm_map_pages);
1555 
1556 /**
1557  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558  * @vma: user vma to map to
1559  * @pages: pointer to array of source kernel pages
1560  * @num: number of pages in page array
1561  *
1562  * Similar to vm_map_pages(), except that it explicitly sets the offset
1563  * to 0. This function is intended for the drivers that did not consider
1564  * vm_pgoff.
1565  *
1566  * Context: Process context. Called by mmap handlers.
1567  * Return: 0 on success and error code otherwise.
1568  */
1569 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570 				unsigned long num)
1571 {
1572 	return __vm_map_pages(vma, pages, num, 0);
1573 }
1574 EXPORT_SYMBOL(vm_map_pages_zero);
1575 
1576 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1578 {
1579 	struct mm_struct *mm = vma->vm_mm;
1580 	pte_t *pte, entry;
1581 	spinlock_t *ptl;
1582 
1583 	pte = get_locked_pte(mm, addr, &ptl);
1584 	if (!pte)
1585 		return VM_FAULT_OOM;
1586 	if (!pte_none(*pte)) {
1587 		if (mkwrite) {
1588 			/*
1589 			 * For read faults on private mappings the PFN passed
1590 			 * in may not match the PFN we have mapped if the
1591 			 * mapped PFN is a writeable COW page.  In the mkwrite
1592 			 * case we are creating a writable PTE for a shared
1593 			 * mapping and we expect the PFNs to match. If they
1594 			 * don't match, we are likely racing with block
1595 			 * allocation and mapping invalidation so just skip the
1596 			 * update.
1597 			 */
1598 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600 				goto out_unlock;
1601 			}
1602 			entry = pte_mkyoung(*pte);
1603 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605 				update_mmu_cache(vma, addr, pte);
1606 		}
1607 		goto out_unlock;
1608 	}
1609 
1610 	/* Ok, finally just insert the thing.. */
1611 	if (pfn_t_devmap(pfn))
1612 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613 	else
1614 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1615 
1616 	if (mkwrite) {
1617 		entry = pte_mkyoung(entry);
1618 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1619 	}
1620 
1621 	set_pte_at(mm, addr, pte, entry);
1622 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1623 
1624 out_unlock:
1625 	pte_unmap_unlock(pte, ptl);
1626 	return VM_FAULT_NOPAGE;
1627 }
1628 
1629 /**
1630  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631  * @vma: user vma to map to
1632  * @addr: target user address of this page
1633  * @pfn: source kernel pfn
1634  * @pgprot: pgprot flags for the inserted page
1635  *
1636  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637  * to override pgprot on a per-page basis.
1638  *
1639  * This only makes sense for IO mappings, and it makes no sense for
1640  * COW mappings.  In general, using multiple vmas is preferable;
1641  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642  * impractical.
1643  *
1644  * Context: Process context.  May allocate using %GFP_KERNEL.
1645  * Return: vm_fault_t value.
1646  */
1647 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648 			unsigned long pfn, pgprot_t pgprot)
1649 {
1650 	/*
1651 	 * Technically, architectures with pte_special can avoid all these
1652 	 * restrictions (same for remap_pfn_range).  However we would like
1653 	 * consistency in testing and feature parity among all, so we should
1654 	 * try to keep these invariants in place for everybody.
1655 	 */
1656 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658 						(VM_PFNMAP|VM_MIXEDMAP));
1659 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1661 
1662 	if (addr < vma->vm_start || addr >= vma->vm_end)
1663 		return VM_FAULT_SIGBUS;
1664 
1665 	if (!pfn_modify_allowed(pfn, pgprot))
1666 		return VM_FAULT_SIGBUS;
1667 
1668 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1669 
1670 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671 			false);
1672 }
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1674 
1675 /**
1676  * vmf_insert_pfn - insert single pfn into user vma
1677  * @vma: user vma to map to
1678  * @addr: target user address of this page
1679  * @pfn: source kernel pfn
1680  *
1681  * Similar to vm_insert_page, this allows drivers to insert individual pages
1682  * they've allocated into a user vma. Same comments apply.
1683  *
1684  * This function should only be called from a vm_ops->fault handler, and
1685  * in that case the handler should return the result of this function.
1686  *
1687  * vma cannot be a COW mapping.
1688  *
1689  * As this is called only for pages that do not currently exist, we
1690  * do not need to flush old virtual caches or the TLB.
1691  *
1692  * Context: Process context.  May allocate using %GFP_KERNEL.
1693  * Return: vm_fault_t value.
1694  */
1695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696 			unsigned long pfn)
1697 {
1698 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1699 }
1700 EXPORT_SYMBOL(vmf_insert_pfn);
1701 
1702 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1703 {
1704 	/* these checks mirror the abort conditions in vm_normal_page */
1705 	if (vma->vm_flags & VM_MIXEDMAP)
1706 		return true;
1707 	if (pfn_t_devmap(pfn))
1708 		return true;
1709 	if (pfn_t_special(pfn))
1710 		return true;
1711 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712 		return true;
1713 	return false;
1714 }
1715 
1716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717 		unsigned long addr, pfn_t pfn, bool mkwrite)
1718 {
1719 	pgprot_t pgprot = vma->vm_page_prot;
1720 	int err;
1721 
1722 	BUG_ON(!vm_mixed_ok(vma, pfn));
1723 
1724 	if (addr < vma->vm_start || addr >= vma->vm_end)
1725 		return VM_FAULT_SIGBUS;
1726 
1727 	track_pfn_insert(vma, &pgprot, pfn);
1728 
1729 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730 		return VM_FAULT_SIGBUS;
1731 
1732 	/*
1733 	 * If we don't have pte special, then we have to use the pfn_valid()
1734 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735 	 * refcount the page if pfn_valid is true (hence insert_page rather
1736 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1737 	 * without pte special, it would there be refcounted as a normal page.
1738 	 */
1739 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741 		struct page *page;
1742 
1743 		/*
1744 		 * At this point we are committed to insert_page()
1745 		 * regardless of whether the caller specified flags that
1746 		 * result in pfn_t_has_page() == false.
1747 		 */
1748 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1749 		err = insert_page(vma, addr, page, pgprot);
1750 	} else {
1751 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1752 	}
1753 
1754 	if (err == -ENOMEM)
1755 		return VM_FAULT_OOM;
1756 	if (err < 0 && err != -EBUSY)
1757 		return VM_FAULT_SIGBUS;
1758 
1759 	return VM_FAULT_NOPAGE;
1760 }
1761 
1762 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763 		pfn_t pfn)
1764 {
1765 	return __vm_insert_mixed(vma, addr, pfn, false);
1766 }
1767 EXPORT_SYMBOL(vmf_insert_mixed);
1768 
1769 /*
1770  *  If the insertion of PTE failed because someone else already added a
1771  *  different entry in the mean time, we treat that as success as we assume
1772  *  the same entry was actually inserted.
1773  */
1774 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775 		unsigned long addr, pfn_t pfn)
1776 {
1777 	return __vm_insert_mixed(vma, addr, pfn, true);
1778 }
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1780 
1781 /*
1782  * maps a range of physical memory into the requested pages. the old
1783  * mappings are removed. any references to nonexistent pages results
1784  * in null mappings (currently treated as "copy-on-access")
1785  */
1786 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787 			unsigned long addr, unsigned long end,
1788 			unsigned long pfn, pgprot_t prot)
1789 {
1790 	pte_t *pte;
1791 	spinlock_t *ptl;
1792 	int err = 0;
1793 
1794 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795 	if (!pte)
1796 		return -ENOMEM;
1797 	arch_enter_lazy_mmu_mode();
1798 	do {
1799 		BUG_ON(!pte_none(*pte));
1800 		if (!pfn_modify_allowed(pfn, prot)) {
1801 			err = -EACCES;
1802 			break;
1803 		}
1804 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805 		pfn++;
1806 	} while (pte++, addr += PAGE_SIZE, addr != end);
1807 	arch_leave_lazy_mmu_mode();
1808 	pte_unmap_unlock(pte - 1, ptl);
1809 	return err;
1810 }
1811 
1812 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813 			unsigned long addr, unsigned long end,
1814 			unsigned long pfn, pgprot_t prot)
1815 {
1816 	pmd_t *pmd;
1817 	unsigned long next;
1818 	int err;
1819 
1820 	pfn -= addr >> PAGE_SHIFT;
1821 	pmd = pmd_alloc(mm, pud, addr);
1822 	if (!pmd)
1823 		return -ENOMEM;
1824 	VM_BUG_ON(pmd_trans_huge(*pmd));
1825 	do {
1826 		next = pmd_addr_end(addr, end);
1827 		err = remap_pte_range(mm, pmd, addr, next,
1828 				pfn + (addr >> PAGE_SHIFT), prot);
1829 		if (err)
1830 			return err;
1831 	} while (pmd++, addr = next, addr != end);
1832 	return 0;
1833 }
1834 
1835 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836 			unsigned long addr, unsigned long end,
1837 			unsigned long pfn, pgprot_t prot)
1838 {
1839 	pud_t *pud;
1840 	unsigned long next;
1841 	int err;
1842 
1843 	pfn -= addr >> PAGE_SHIFT;
1844 	pud = pud_alloc(mm, p4d, addr);
1845 	if (!pud)
1846 		return -ENOMEM;
1847 	do {
1848 		next = pud_addr_end(addr, end);
1849 		err = remap_pmd_range(mm, pud, addr, next,
1850 				pfn + (addr >> PAGE_SHIFT), prot);
1851 		if (err)
1852 			return err;
1853 	} while (pud++, addr = next, addr != end);
1854 	return 0;
1855 }
1856 
1857 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858 			unsigned long addr, unsigned long end,
1859 			unsigned long pfn, pgprot_t prot)
1860 {
1861 	p4d_t *p4d;
1862 	unsigned long next;
1863 	int err;
1864 
1865 	pfn -= addr >> PAGE_SHIFT;
1866 	p4d = p4d_alloc(mm, pgd, addr);
1867 	if (!p4d)
1868 		return -ENOMEM;
1869 	do {
1870 		next = p4d_addr_end(addr, end);
1871 		err = remap_pud_range(mm, p4d, addr, next,
1872 				pfn + (addr >> PAGE_SHIFT), prot);
1873 		if (err)
1874 			return err;
1875 	} while (p4d++, addr = next, addr != end);
1876 	return 0;
1877 }
1878 
1879 /**
1880  * remap_pfn_range - remap kernel memory to userspace
1881  * @vma: user vma to map to
1882  * @addr: target user address to start at
1883  * @pfn: physical address of kernel memory
1884  * @size: size of map area
1885  * @prot: page protection flags for this mapping
1886  *
1887  * Note: this is only safe if the mm semaphore is held when called.
1888  *
1889  * Return: %0 on success, negative error code otherwise.
1890  */
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1893 {
1894 	pgd_t *pgd;
1895 	unsigned long next;
1896 	unsigned long end = addr + PAGE_ALIGN(size);
1897 	struct mm_struct *mm = vma->vm_mm;
1898 	unsigned long remap_pfn = pfn;
1899 	int err;
1900 
1901 	/*
1902 	 * Physically remapped pages are special. Tell the
1903 	 * rest of the world about it:
1904 	 *   VM_IO tells people not to look at these pages
1905 	 *	(accesses can have side effects).
1906 	 *   VM_PFNMAP tells the core MM that the base pages are just
1907 	 *	raw PFN mappings, and do not have a "struct page" associated
1908 	 *	with them.
1909 	 *   VM_DONTEXPAND
1910 	 *      Disable vma merging and expanding with mremap().
1911 	 *   VM_DONTDUMP
1912 	 *      Omit vma from core dump, even when VM_IO turned off.
1913 	 *
1914 	 * There's a horrible special case to handle copy-on-write
1915 	 * behaviour that some programs depend on. We mark the "original"
1916 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917 	 * See vm_normal_page() for details.
1918 	 */
1919 	if (is_cow_mapping(vma->vm_flags)) {
1920 		if (addr != vma->vm_start || end != vma->vm_end)
1921 			return -EINVAL;
1922 		vma->vm_pgoff = pfn;
1923 	}
1924 
1925 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926 	if (err)
1927 		return -EINVAL;
1928 
1929 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930 
1931 	BUG_ON(addr >= end);
1932 	pfn -= addr >> PAGE_SHIFT;
1933 	pgd = pgd_offset(mm, addr);
1934 	flush_cache_range(vma, addr, end);
1935 	do {
1936 		next = pgd_addr_end(addr, end);
1937 		err = remap_p4d_range(mm, pgd, addr, next,
1938 				pfn + (addr >> PAGE_SHIFT), prot);
1939 		if (err)
1940 			break;
1941 	} while (pgd++, addr = next, addr != end);
1942 
1943 	if (err)
1944 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945 
1946 	return err;
1947 }
1948 EXPORT_SYMBOL(remap_pfn_range);
1949 
1950 /**
1951  * vm_iomap_memory - remap memory to userspace
1952  * @vma: user vma to map to
1953  * @start: start of area
1954  * @len: size of area
1955  *
1956  * This is a simplified io_remap_pfn_range() for common driver use. The
1957  * driver just needs to give us the physical memory range to be mapped,
1958  * we'll figure out the rest from the vma information.
1959  *
1960  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961  * whatever write-combining details or similar.
1962  *
1963  * Return: %0 on success, negative error code otherwise.
1964  */
1965 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1966 {
1967 	unsigned long vm_len, pfn, pages;
1968 
1969 	/* Check that the physical memory area passed in looks valid */
1970 	if (start + len < start)
1971 		return -EINVAL;
1972 	/*
1973 	 * You *really* shouldn't map things that aren't page-aligned,
1974 	 * but we've historically allowed it because IO memory might
1975 	 * just have smaller alignment.
1976 	 */
1977 	len += start & ~PAGE_MASK;
1978 	pfn = start >> PAGE_SHIFT;
1979 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980 	if (pfn + pages < pfn)
1981 		return -EINVAL;
1982 
1983 	/* We start the mapping 'vm_pgoff' pages into the area */
1984 	if (vma->vm_pgoff > pages)
1985 		return -EINVAL;
1986 	pfn += vma->vm_pgoff;
1987 	pages -= vma->vm_pgoff;
1988 
1989 	/* Can we fit all of the mapping? */
1990 	vm_len = vma->vm_end - vma->vm_start;
1991 	if (vm_len >> PAGE_SHIFT > pages)
1992 		return -EINVAL;
1993 
1994 	/* Ok, let it rip */
1995 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1996 }
1997 EXPORT_SYMBOL(vm_iomap_memory);
1998 
1999 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000 				     unsigned long addr, unsigned long end,
2001 				     pte_fn_t fn, void *data)
2002 {
2003 	pte_t *pte;
2004 	int err;
2005 	spinlock_t *uninitialized_var(ptl);
2006 
2007 	pte = (mm == &init_mm) ?
2008 		pte_alloc_kernel(pmd, addr) :
2009 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010 	if (!pte)
2011 		return -ENOMEM;
2012 
2013 	BUG_ON(pmd_huge(*pmd));
2014 
2015 	arch_enter_lazy_mmu_mode();
2016 
2017 	do {
2018 		err = fn(pte++, addr, data);
2019 		if (err)
2020 			break;
2021 	} while (addr += PAGE_SIZE, addr != end);
2022 
2023 	arch_leave_lazy_mmu_mode();
2024 
2025 	if (mm != &init_mm)
2026 		pte_unmap_unlock(pte-1, ptl);
2027 	return err;
2028 }
2029 
2030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031 				     unsigned long addr, unsigned long end,
2032 				     pte_fn_t fn, void *data)
2033 {
2034 	pmd_t *pmd;
2035 	unsigned long next;
2036 	int err;
2037 
2038 	BUG_ON(pud_huge(*pud));
2039 
2040 	pmd = pmd_alloc(mm, pud, addr);
2041 	if (!pmd)
2042 		return -ENOMEM;
2043 	do {
2044 		next = pmd_addr_end(addr, end);
2045 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046 		if (err)
2047 			break;
2048 	} while (pmd++, addr = next, addr != end);
2049 	return err;
2050 }
2051 
2052 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053 				     unsigned long addr, unsigned long end,
2054 				     pte_fn_t fn, void *data)
2055 {
2056 	pud_t *pud;
2057 	unsigned long next;
2058 	int err;
2059 
2060 	pud = pud_alloc(mm, p4d, addr);
2061 	if (!pud)
2062 		return -ENOMEM;
2063 	do {
2064 		next = pud_addr_end(addr, end);
2065 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066 		if (err)
2067 			break;
2068 	} while (pud++, addr = next, addr != end);
2069 	return err;
2070 }
2071 
2072 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073 				     unsigned long addr, unsigned long end,
2074 				     pte_fn_t fn, void *data)
2075 {
2076 	p4d_t *p4d;
2077 	unsigned long next;
2078 	int err;
2079 
2080 	p4d = p4d_alloc(mm, pgd, addr);
2081 	if (!p4d)
2082 		return -ENOMEM;
2083 	do {
2084 		next = p4d_addr_end(addr, end);
2085 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086 		if (err)
2087 			break;
2088 	} while (p4d++, addr = next, addr != end);
2089 	return err;
2090 }
2091 
2092 /*
2093  * Scan a region of virtual memory, filling in page tables as necessary
2094  * and calling a provided function on each leaf page table.
2095  */
2096 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097 			unsigned long size, pte_fn_t fn, void *data)
2098 {
2099 	pgd_t *pgd;
2100 	unsigned long next;
2101 	unsigned long end = addr + size;
2102 	int err;
2103 
2104 	if (WARN_ON(addr >= end))
2105 		return -EINVAL;
2106 
2107 	pgd = pgd_offset(mm, addr);
2108 	do {
2109 		next = pgd_addr_end(addr, end);
2110 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111 		if (err)
2112 			break;
2113 	} while (pgd++, addr = next, addr != end);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL_GPL(apply_to_page_range);
2118 
2119 /*
2120  * handle_pte_fault chooses page fault handler according to an entry which was
2121  * read non-atomically.  Before making any commitment, on those architectures
2122  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123  * parts, do_swap_page must check under lock before unmapping the pte and
2124  * proceeding (but do_wp_page is only called after already making such a check;
2125  * and do_anonymous_page can safely check later on).
2126  */
2127 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128 				pte_t *page_table, pte_t orig_pte)
2129 {
2130 	int same = 1;
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2133 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2134 		spin_lock(ptl);
2135 		same = pte_same(*page_table, orig_pte);
2136 		spin_unlock(ptl);
2137 	}
2138 #endif
2139 	pte_unmap(page_table);
2140 	return same;
2141 }
2142 
2143 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2144 {
2145 	debug_dma_assert_idle(src);
2146 
2147 	/*
2148 	 * If the source page was a PFN mapping, we don't have
2149 	 * a "struct page" for it. We do a best-effort copy by
2150 	 * just copying from the original user address. If that
2151 	 * fails, we just zero-fill it. Live with it.
2152 	 */
2153 	if (unlikely(!src)) {
2154 		void *kaddr = kmap_atomic(dst);
2155 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2156 
2157 		/*
2158 		 * This really shouldn't fail, because the page is there
2159 		 * in the page tables. But it might just be unreadable,
2160 		 * in which case we just give up and fill the result with
2161 		 * zeroes.
2162 		 */
2163 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164 			clear_page(kaddr);
2165 		kunmap_atomic(kaddr);
2166 		flush_dcache_page(dst);
2167 	} else
2168 		copy_user_highpage(dst, src, va, vma);
2169 }
2170 
2171 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2172 {
2173 	struct file *vm_file = vma->vm_file;
2174 
2175 	if (vm_file)
2176 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2177 
2178 	/*
2179 	 * Special mappings (e.g. VDSO) do not have any file so fake
2180 	 * a default GFP_KERNEL for them.
2181 	 */
2182 	return GFP_KERNEL;
2183 }
2184 
2185 /*
2186  * Notify the address space that the page is about to become writable so that
2187  * it can prohibit this or wait for the page to get into an appropriate state.
2188  *
2189  * We do this without the lock held, so that it can sleep if it needs to.
2190  */
2191 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2192 {
2193 	vm_fault_t ret;
2194 	struct page *page = vmf->page;
2195 	unsigned int old_flags = vmf->flags;
2196 
2197 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2198 
2199 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2200 	/* Restore original flags so that caller is not surprised */
2201 	vmf->flags = old_flags;
2202 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2203 		return ret;
2204 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2205 		lock_page(page);
2206 		if (!page->mapping) {
2207 			unlock_page(page);
2208 			return 0; /* retry */
2209 		}
2210 		ret |= VM_FAULT_LOCKED;
2211 	} else
2212 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2213 	return ret;
2214 }
2215 
2216 /*
2217  * Handle dirtying of a page in shared file mapping on a write fault.
2218  *
2219  * The function expects the page to be locked and unlocks it.
2220  */
2221 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2222 				    struct page *page)
2223 {
2224 	struct address_space *mapping;
2225 	bool dirtied;
2226 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2227 
2228 	dirtied = set_page_dirty(page);
2229 	VM_BUG_ON_PAGE(PageAnon(page), page);
2230 	/*
2231 	 * Take a local copy of the address_space - page.mapping may be zeroed
2232 	 * by truncate after unlock_page().   The address_space itself remains
2233 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2234 	 * release semantics to prevent the compiler from undoing this copying.
2235 	 */
2236 	mapping = page_rmapping(page);
2237 	unlock_page(page);
2238 
2239 	if ((dirtied || page_mkwrite) && mapping) {
2240 		/*
2241 		 * Some device drivers do not set page.mapping
2242 		 * but still dirty their pages
2243 		 */
2244 		balance_dirty_pages_ratelimited(mapping);
2245 	}
2246 
2247 	if (!page_mkwrite)
2248 		file_update_time(vma->vm_file);
2249 }
2250 
2251 /*
2252  * Handle write page faults for pages that can be reused in the current vma
2253  *
2254  * This can happen either due to the mapping being with the VM_SHARED flag,
2255  * or due to us being the last reference standing to the page. In either
2256  * case, all we need to do here is to mark the page as writable and update
2257  * any related book-keeping.
2258  */
2259 static inline void wp_page_reuse(struct vm_fault *vmf)
2260 	__releases(vmf->ptl)
2261 {
2262 	struct vm_area_struct *vma = vmf->vma;
2263 	struct page *page = vmf->page;
2264 	pte_t entry;
2265 	/*
2266 	 * Clear the pages cpupid information as the existing
2267 	 * information potentially belongs to a now completely
2268 	 * unrelated process.
2269 	 */
2270 	if (page)
2271 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2272 
2273 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2274 	entry = pte_mkyoung(vmf->orig_pte);
2275 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2276 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2277 		update_mmu_cache(vma, vmf->address, vmf->pte);
2278 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2279 }
2280 
2281 /*
2282  * Handle the case of a page which we actually need to copy to a new page.
2283  *
2284  * Called with mmap_sem locked and the old page referenced, but
2285  * without the ptl held.
2286  *
2287  * High level logic flow:
2288  *
2289  * - Allocate a page, copy the content of the old page to the new one.
2290  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2291  * - Take the PTL. If the pte changed, bail out and release the allocated page
2292  * - If the pte is still the way we remember it, update the page table and all
2293  *   relevant references. This includes dropping the reference the page-table
2294  *   held to the old page, as well as updating the rmap.
2295  * - In any case, unlock the PTL and drop the reference we took to the old page.
2296  */
2297 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2298 {
2299 	struct vm_area_struct *vma = vmf->vma;
2300 	struct mm_struct *mm = vma->vm_mm;
2301 	struct page *old_page = vmf->page;
2302 	struct page *new_page = NULL;
2303 	pte_t entry;
2304 	int page_copied = 0;
2305 	struct mem_cgroup *memcg;
2306 	struct mmu_notifier_range range;
2307 
2308 	if (unlikely(anon_vma_prepare(vma)))
2309 		goto oom;
2310 
2311 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2312 		new_page = alloc_zeroed_user_highpage_movable(vma,
2313 							      vmf->address);
2314 		if (!new_page)
2315 			goto oom;
2316 	} else {
2317 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2318 				vmf->address);
2319 		if (!new_page)
2320 			goto oom;
2321 		cow_user_page(new_page, old_page, vmf->address, vma);
2322 	}
2323 
2324 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2325 		goto oom_free_new;
2326 
2327 	__SetPageUptodate(new_page);
2328 
2329 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2330 				vmf->address & PAGE_MASK,
2331 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2332 	mmu_notifier_invalidate_range_start(&range);
2333 
2334 	/*
2335 	 * Re-check the pte - we dropped the lock
2336 	 */
2337 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2338 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2339 		if (old_page) {
2340 			if (!PageAnon(old_page)) {
2341 				dec_mm_counter_fast(mm,
2342 						mm_counter_file(old_page));
2343 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2344 			}
2345 		} else {
2346 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2347 		}
2348 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2349 		entry = mk_pte(new_page, vma->vm_page_prot);
2350 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2351 		/*
2352 		 * Clear the pte entry and flush it first, before updating the
2353 		 * pte with the new entry. This will avoid a race condition
2354 		 * seen in the presence of one thread doing SMC and another
2355 		 * thread doing COW.
2356 		 */
2357 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2358 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2359 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2360 		lru_cache_add_active_or_unevictable(new_page, vma);
2361 		/*
2362 		 * We call the notify macro here because, when using secondary
2363 		 * mmu page tables (such as kvm shadow page tables), we want the
2364 		 * new page to be mapped directly into the secondary page table.
2365 		 */
2366 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2367 		update_mmu_cache(vma, vmf->address, vmf->pte);
2368 		if (old_page) {
2369 			/*
2370 			 * Only after switching the pte to the new page may
2371 			 * we remove the mapcount here. Otherwise another
2372 			 * process may come and find the rmap count decremented
2373 			 * before the pte is switched to the new page, and
2374 			 * "reuse" the old page writing into it while our pte
2375 			 * here still points into it and can be read by other
2376 			 * threads.
2377 			 *
2378 			 * The critical issue is to order this
2379 			 * page_remove_rmap with the ptp_clear_flush above.
2380 			 * Those stores are ordered by (if nothing else,)
2381 			 * the barrier present in the atomic_add_negative
2382 			 * in page_remove_rmap.
2383 			 *
2384 			 * Then the TLB flush in ptep_clear_flush ensures that
2385 			 * no process can access the old page before the
2386 			 * decremented mapcount is visible. And the old page
2387 			 * cannot be reused until after the decremented
2388 			 * mapcount is visible. So transitively, TLBs to
2389 			 * old page will be flushed before it can be reused.
2390 			 */
2391 			page_remove_rmap(old_page, false);
2392 		}
2393 
2394 		/* Free the old page.. */
2395 		new_page = old_page;
2396 		page_copied = 1;
2397 	} else {
2398 		mem_cgroup_cancel_charge(new_page, memcg, false);
2399 	}
2400 
2401 	if (new_page)
2402 		put_page(new_page);
2403 
2404 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2405 	/*
2406 	 * No need to double call mmu_notifier->invalidate_range() callback as
2407 	 * the above ptep_clear_flush_notify() did already call it.
2408 	 */
2409 	mmu_notifier_invalidate_range_only_end(&range);
2410 	if (old_page) {
2411 		/*
2412 		 * Don't let another task, with possibly unlocked vma,
2413 		 * keep the mlocked page.
2414 		 */
2415 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2416 			lock_page(old_page);	/* LRU manipulation */
2417 			if (PageMlocked(old_page))
2418 				munlock_vma_page(old_page);
2419 			unlock_page(old_page);
2420 		}
2421 		put_page(old_page);
2422 	}
2423 	return page_copied ? VM_FAULT_WRITE : 0;
2424 oom_free_new:
2425 	put_page(new_page);
2426 oom:
2427 	if (old_page)
2428 		put_page(old_page);
2429 	return VM_FAULT_OOM;
2430 }
2431 
2432 /**
2433  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2434  *			  writeable once the page is prepared
2435  *
2436  * @vmf: structure describing the fault
2437  *
2438  * This function handles all that is needed to finish a write page fault in a
2439  * shared mapping due to PTE being read-only once the mapped page is prepared.
2440  * It handles locking of PTE and modifying it.
2441  *
2442  * The function expects the page to be locked or other protection against
2443  * concurrent faults / writeback (such as DAX radix tree locks).
2444  *
2445  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2446  * we acquired PTE lock.
2447  */
2448 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2449 {
2450 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2451 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2452 				       &vmf->ptl);
2453 	/*
2454 	 * We might have raced with another page fault while we released the
2455 	 * pte_offset_map_lock.
2456 	 */
2457 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2458 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2459 		return VM_FAULT_NOPAGE;
2460 	}
2461 	wp_page_reuse(vmf);
2462 	return 0;
2463 }
2464 
2465 /*
2466  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2467  * mapping
2468  */
2469 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2470 {
2471 	struct vm_area_struct *vma = vmf->vma;
2472 
2473 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2474 		vm_fault_t ret;
2475 
2476 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2477 		vmf->flags |= FAULT_FLAG_MKWRITE;
2478 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2479 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2480 			return ret;
2481 		return finish_mkwrite_fault(vmf);
2482 	}
2483 	wp_page_reuse(vmf);
2484 	return VM_FAULT_WRITE;
2485 }
2486 
2487 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2488 	__releases(vmf->ptl)
2489 {
2490 	struct vm_area_struct *vma = vmf->vma;
2491 
2492 	get_page(vmf->page);
2493 
2494 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2495 		vm_fault_t tmp;
2496 
2497 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2498 		tmp = do_page_mkwrite(vmf);
2499 		if (unlikely(!tmp || (tmp &
2500 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2501 			put_page(vmf->page);
2502 			return tmp;
2503 		}
2504 		tmp = finish_mkwrite_fault(vmf);
2505 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506 			unlock_page(vmf->page);
2507 			put_page(vmf->page);
2508 			return tmp;
2509 		}
2510 	} else {
2511 		wp_page_reuse(vmf);
2512 		lock_page(vmf->page);
2513 	}
2514 	fault_dirty_shared_page(vma, vmf->page);
2515 	put_page(vmf->page);
2516 
2517 	return VM_FAULT_WRITE;
2518 }
2519 
2520 /*
2521  * This routine handles present pages, when users try to write
2522  * to a shared page. It is done by copying the page to a new address
2523  * and decrementing the shared-page counter for the old page.
2524  *
2525  * Note that this routine assumes that the protection checks have been
2526  * done by the caller (the low-level page fault routine in most cases).
2527  * Thus we can safely just mark it writable once we've done any necessary
2528  * COW.
2529  *
2530  * We also mark the page dirty at this point even though the page will
2531  * change only once the write actually happens. This avoids a few races,
2532  * and potentially makes it more efficient.
2533  *
2534  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535  * but allow concurrent faults), with pte both mapped and locked.
2536  * We return with mmap_sem still held, but pte unmapped and unlocked.
2537  */
2538 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2539 	__releases(vmf->ptl)
2540 {
2541 	struct vm_area_struct *vma = vmf->vma;
2542 
2543 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2544 	if (!vmf->page) {
2545 		/*
2546 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2547 		 * VM_PFNMAP VMA.
2548 		 *
2549 		 * We should not cow pages in a shared writeable mapping.
2550 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2551 		 */
2552 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553 				     (VM_WRITE|VM_SHARED))
2554 			return wp_pfn_shared(vmf);
2555 
2556 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2557 		return wp_page_copy(vmf);
2558 	}
2559 
2560 	/*
2561 	 * Take out anonymous pages first, anonymous shared vmas are
2562 	 * not dirty accountable.
2563 	 */
2564 	if (PageAnon(vmf->page)) {
2565 		int total_map_swapcount;
2566 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2567 					   page_count(vmf->page) != 1))
2568 			goto copy;
2569 		if (!trylock_page(vmf->page)) {
2570 			get_page(vmf->page);
2571 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2572 			lock_page(vmf->page);
2573 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2574 					vmf->address, &vmf->ptl);
2575 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2576 				unlock_page(vmf->page);
2577 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2578 				put_page(vmf->page);
2579 				return 0;
2580 			}
2581 			put_page(vmf->page);
2582 		}
2583 		if (PageKsm(vmf->page)) {
2584 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2585 						     vmf->address);
2586 			unlock_page(vmf->page);
2587 			if (!reused)
2588 				goto copy;
2589 			wp_page_reuse(vmf);
2590 			return VM_FAULT_WRITE;
2591 		}
2592 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2593 			if (total_map_swapcount == 1) {
2594 				/*
2595 				 * The page is all ours. Move it to
2596 				 * our anon_vma so the rmap code will
2597 				 * not search our parent or siblings.
2598 				 * Protected against the rmap code by
2599 				 * the page lock.
2600 				 */
2601 				page_move_anon_rmap(vmf->page, vma);
2602 			}
2603 			unlock_page(vmf->page);
2604 			wp_page_reuse(vmf);
2605 			return VM_FAULT_WRITE;
2606 		}
2607 		unlock_page(vmf->page);
2608 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609 					(VM_WRITE|VM_SHARED))) {
2610 		return wp_page_shared(vmf);
2611 	}
2612 copy:
2613 	/*
2614 	 * Ok, we need to copy. Oh, well..
2615 	 */
2616 	get_page(vmf->page);
2617 
2618 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2619 	return wp_page_copy(vmf);
2620 }
2621 
2622 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2623 		unsigned long start_addr, unsigned long end_addr,
2624 		struct zap_details *details)
2625 {
2626 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2627 }
2628 
2629 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2630 					    struct zap_details *details)
2631 {
2632 	struct vm_area_struct *vma;
2633 	pgoff_t vba, vea, zba, zea;
2634 
2635 	vma_interval_tree_foreach(vma, root,
2636 			details->first_index, details->last_index) {
2637 
2638 		vba = vma->vm_pgoff;
2639 		vea = vba + vma_pages(vma) - 1;
2640 		zba = details->first_index;
2641 		if (zba < vba)
2642 			zba = vba;
2643 		zea = details->last_index;
2644 		if (zea > vea)
2645 			zea = vea;
2646 
2647 		unmap_mapping_range_vma(vma,
2648 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2649 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2650 				details);
2651 	}
2652 }
2653 
2654 /**
2655  * unmap_mapping_pages() - Unmap pages from processes.
2656  * @mapping: The address space containing pages to be unmapped.
2657  * @start: Index of first page to be unmapped.
2658  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2659  * @even_cows: Whether to unmap even private COWed pages.
2660  *
2661  * Unmap the pages in this address space from any userspace process which
2662  * has them mmaped.  Generally, you want to remove COWed pages as well when
2663  * a file is being truncated, but not when invalidating pages from the page
2664  * cache.
2665  */
2666 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2667 		pgoff_t nr, bool even_cows)
2668 {
2669 	struct zap_details details = { };
2670 
2671 	details.check_mapping = even_cows ? NULL : mapping;
2672 	details.first_index = start;
2673 	details.last_index = start + nr - 1;
2674 	if (details.last_index < details.first_index)
2675 		details.last_index = ULONG_MAX;
2676 
2677 	i_mmap_lock_write(mapping);
2678 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2679 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2680 	i_mmap_unlock_write(mapping);
2681 }
2682 
2683 /**
2684  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2685  * address_space corresponding to the specified byte range in the underlying
2686  * file.
2687  *
2688  * @mapping: the address space containing mmaps to be unmapped.
2689  * @holebegin: byte in first page to unmap, relative to the start of
2690  * the underlying file.  This will be rounded down to a PAGE_SIZE
2691  * boundary.  Note that this is different from truncate_pagecache(), which
2692  * must keep the partial page.  In contrast, we must get rid of
2693  * partial pages.
2694  * @holelen: size of prospective hole in bytes.  This will be rounded
2695  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2696  * end of the file.
2697  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2698  * but 0 when invalidating pagecache, don't throw away private data.
2699  */
2700 void unmap_mapping_range(struct address_space *mapping,
2701 		loff_t const holebegin, loff_t const holelen, int even_cows)
2702 {
2703 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2704 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705 
2706 	/* Check for overflow. */
2707 	if (sizeof(holelen) > sizeof(hlen)) {
2708 		long long holeend =
2709 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710 		if (holeend & ~(long long)ULONG_MAX)
2711 			hlen = ULONG_MAX - hba + 1;
2712 	}
2713 
2714 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2715 }
2716 EXPORT_SYMBOL(unmap_mapping_range);
2717 
2718 /*
2719  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2720  * but allow concurrent faults), and pte mapped but not yet locked.
2721  * We return with pte unmapped and unlocked.
2722  *
2723  * We return with the mmap_sem locked or unlocked in the same cases
2724  * as does filemap_fault().
2725  */
2726 vm_fault_t do_swap_page(struct vm_fault *vmf)
2727 {
2728 	struct vm_area_struct *vma = vmf->vma;
2729 	struct page *page = NULL, *swapcache;
2730 	struct mem_cgroup *memcg;
2731 	swp_entry_t entry;
2732 	pte_t pte;
2733 	int locked;
2734 	int exclusive = 0;
2735 	vm_fault_t ret = 0;
2736 
2737 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2738 		goto out;
2739 
2740 	entry = pte_to_swp_entry(vmf->orig_pte);
2741 	if (unlikely(non_swap_entry(entry))) {
2742 		if (is_migration_entry(entry)) {
2743 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2744 					     vmf->address);
2745 		} else if (is_device_private_entry(entry)) {
2746 			vmf->page = device_private_entry_to_page(entry);
2747 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2748 		} else if (is_hwpoison_entry(entry)) {
2749 			ret = VM_FAULT_HWPOISON;
2750 		} else {
2751 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2752 			ret = VM_FAULT_SIGBUS;
2753 		}
2754 		goto out;
2755 	}
2756 
2757 
2758 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2759 	page = lookup_swap_cache(entry, vma, vmf->address);
2760 	swapcache = page;
2761 
2762 	if (!page) {
2763 		struct swap_info_struct *si = swp_swap_info(entry);
2764 
2765 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2766 				__swap_count(entry) == 1) {
2767 			/* skip swapcache */
2768 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2769 							vmf->address);
2770 			if (page) {
2771 				__SetPageLocked(page);
2772 				__SetPageSwapBacked(page);
2773 				set_page_private(page, entry.val);
2774 				lru_cache_add_anon(page);
2775 				swap_readpage(page, true);
2776 			}
2777 		} else {
2778 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2779 						vmf);
2780 			swapcache = page;
2781 		}
2782 
2783 		if (!page) {
2784 			/*
2785 			 * Back out if somebody else faulted in this pte
2786 			 * while we released the pte lock.
2787 			 */
2788 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2789 					vmf->address, &vmf->ptl);
2790 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2791 				ret = VM_FAULT_OOM;
2792 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2793 			goto unlock;
2794 		}
2795 
2796 		/* Had to read the page from swap area: Major fault */
2797 		ret = VM_FAULT_MAJOR;
2798 		count_vm_event(PGMAJFAULT);
2799 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2800 	} else if (PageHWPoison(page)) {
2801 		/*
2802 		 * hwpoisoned dirty swapcache pages are kept for killing
2803 		 * owner processes (which may be unknown at hwpoison time)
2804 		 */
2805 		ret = VM_FAULT_HWPOISON;
2806 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2807 		goto out_release;
2808 	}
2809 
2810 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2811 
2812 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2813 	if (!locked) {
2814 		ret |= VM_FAULT_RETRY;
2815 		goto out_release;
2816 	}
2817 
2818 	/*
2819 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2820 	 * release the swapcache from under us.  The page pin, and pte_same
2821 	 * test below, are not enough to exclude that.  Even if it is still
2822 	 * swapcache, we need to check that the page's swap has not changed.
2823 	 */
2824 	if (unlikely((!PageSwapCache(page) ||
2825 			page_private(page) != entry.val)) && swapcache)
2826 		goto out_page;
2827 
2828 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2829 	if (unlikely(!page)) {
2830 		ret = VM_FAULT_OOM;
2831 		page = swapcache;
2832 		goto out_page;
2833 	}
2834 
2835 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2836 					&memcg, false)) {
2837 		ret = VM_FAULT_OOM;
2838 		goto out_page;
2839 	}
2840 
2841 	/*
2842 	 * Back out if somebody else already faulted in this pte.
2843 	 */
2844 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2845 			&vmf->ptl);
2846 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2847 		goto out_nomap;
2848 
2849 	if (unlikely(!PageUptodate(page))) {
2850 		ret = VM_FAULT_SIGBUS;
2851 		goto out_nomap;
2852 	}
2853 
2854 	/*
2855 	 * The page isn't present yet, go ahead with the fault.
2856 	 *
2857 	 * Be careful about the sequence of operations here.
2858 	 * To get its accounting right, reuse_swap_page() must be called
2859 	 * while the page is counted on swap but not yet in mapcount i.e.
2860 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2861 	 * must be called after the swap_free(), or it will never succeed.
2862 	 */
2863 
2864 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2865 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2866 	pte = mk_pte(page, vma->vm_page_prot);
2867 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2868 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2869 		vmf->flags &= ~FAULT_FLAG_WRITE;
2870 		ret |= VM_FAULT_WRITE;
2871 		exclusive = RMAP_EXCLUSIVE;
2872 	}
2873 	flush_icache_page(vma, page);
2874 	if (pte_swp_soft_dirty(vmf->orig_pte))
2875 		pte = pte_mksoft_dirty(pte);
2876 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2877 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2878 	vmf->orig_pte = pte;
2879 
2880 	/* ksm created a completely new copy */
2881 	if (unlikely(page != swapcache && swapcache)) {
2882 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2883 		mem_cgroup_commit_charge(page, memcg, false, false);
2884 		lru_cache_add_active_or_unevictable(page, vma);
2885 	} else {
2886 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2887 		mem_cgroup_commit_charge(page, memcg, true, false);
2888 		activate_page(page);
2889 	}
2890 
2891 	swap_free(entry);
2892 	if (mem_cgroup_swap_full(page) ||
2893 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2894 		try_to_free_swap(page);
2895 	unlock_page(page);
2896 	if (page != swapcache && swapcache) {
2897 		/*
2898 		 * Hold the lock to avoid the swap entry to be reused
2899 		 * until we take the PT lock for the pte_same() check
2900 		 * (to avoid false positives from pte_same). For
2901 		 * further safety release the lock after the swap_free
2902 		 * so that the swap count won't change under a
2903 		 * parallel locked swapcache.
2904 		 */
2905 		unlock_page(swapcache);
2906 		put_page(swapcache);
2907 	}
2908 
2909 	if (vmf->flags & FAULT_FLAG_WRITE) {
2910 		ret |= do_wp_page(vmf);
2911 		if (ret & VM_FAULT_ERROR)
2912 			ret &= VM_FAULT_ERROR;
2913 		goto out;
2914 	}
2915 
2916 	/* No need to invalidate - it was non-present before */
2917 	update_mmu_cache(vma, vmf->address, vmf->pte);
2918 unlock:
2919 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2920 out:
2921 	return ret;
2922 out_nomap:
2923 	mem_cgroup_cancel_charge(page, memcg, false);
2924 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 out_page:
2926 	unlock_page(page);
2927 out_release:
2928 	put_page(page);
2929 	if (page != swapcache && swapcache) {
2930 		unlock_page(swapcache);
2931 		put_page(swapcache);
2932 	}
2933 	return ret;
2934 }
2935 
2936 /*
2937  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2938  * but allow concurrent faults), and pte mapped but not yet locked.
2939  * We return with mmap_sem still held, but pte unmapped and unlocked.
2940  */
2941 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2942 {
2943 	struct vm_area_struct *vma = vmf->vma;
2944 	struct mem_cgroup *memcg;
2945 	struct page *page;
2946 	vm_fault_t ret = 0;
2947 	pte_t entry;
2948 
2949 	/* File mapping without ->vm_ops ? */
2950 	if (vma->vm_flags & VM_SHARED)
2951 		return VM_FAULT_SIGBUS;
2952 
2953 	/*
2954 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2955 	 * pte_offset_map() on pmds where a huge pmd might be created
2956 	 * from a different thread.
2957 	 *
2958 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2959 	 * parallel threads are excluded by other means.
2960 	 *
2961 	 * Here we only have down_read(mmap_sem).
2962 	 */
2963 	if (pte_alloc(vma->vm_mm, vmf->pmd))
2964 		return VM_FAULT_OOM;
2965 
2966 	/* See the comment in pte_alloc_one_map() */
2967 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2968 		return 0;
2969 
2970 	/* Use the zero-page for reads */
2971 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2972 			!mm_forbids_zeropage(vma->vm_mm)) {
2973 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2974 						vma->vm_page_prot));
2975 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2976 				vmf->address, &vmf->ptl);
2977 		if (!pte_none(*vmf->pte))
2978 			goto unlock;
2979 		ret = check_stable_address_space(vma->vm_mm);
2980 		if (ret)
2981 			goto unlock;
2982 		/* Deliver the page fault to userland, check inside PT lock */
2983 		if (userfaultfd_missing(vma)) {
2984 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2985 			return handle_userfault(vmf, VM_UFFD_MISSING);
2986 		}
2987 		goto setpte;
2988 	}
2989 
2990 	/* Allocate our own private page. */
2991 	if (unlikely(anon_vma_prepare(vma)))
2992 		goto oom;
2993 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2994 	if (!page)
2995 		goto oom;
2996 
2997 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2998 					false))
2999 		goto oom_free_page;
3000 
3001 	/*
3002 	 * The memory barrier inside __SetPageUptodate makes sure that
3003 	 * preceeding stores to the page contents become visible before
3004 	 * the set_pte_at() write.
3005 	 */
3006 	__SetPageUptodate(page);
3007 
3008 	entry = mk_pte(page, vma->vm_page_prot);
3009 	if (vma->vm_flags & VM_WRITE)
3010 		entry = pte_mkwrite(pte_mkdirty(entry));
3011 
3012 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3013 			&vmf->ptl);
3014 	if (!pte_none(*vmf->pte))
3015 		goto release;
3016 
3017 	ret = check_stable_address_space(vma->vm_mm);
3018 	if (ret)
3019 		goto release;
3020 
3021 	/* Deliver the page fault to userland, check inside PT lock */
3022 	if (userfaultfd_missing(vma)) {
3023 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 		mem_cgroup_cancel_charge(page, memcg, false);
3025 		put_page(page);
3026 		return handle_userfault(vmf, VM_UFFD_MISSING);
3027 	}
3028 
3029 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3030 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3031 	mem_cgroup_commit_charge(page, memcg, false, false);
3032 	lru_cache_add_active_or_unevictable(page, vma);
3033 setpte:
3034 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3035 
3036 	/* No need to invalidate - it was non-present before */
3037 	update_mmu_cache(vma, vmf->address, vmf->pte);
3038 unlock:
3039 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3040 	return ret;
3041 release:
3042 	mem_cgroup_cancel_charge(page, memcg, false);
3043 	put_page(page);
3044 	goto unlock;
3045 oom_free_page:
3046 	put_page(page);
3047 oom:
3048 	return VM_FAULT_OOM;
3049 }
3050 
3051 /*
3052  * The mmap_sem must have been held on entry, and may have been
3053  * released depending on flags and vma->vm_ops->fault() return value.
3054  * See filemap_fault() and __lock_page_retry().
3055  */
3056 static vm_fault_t __do_fault(struct vm_fault *vmf)
3057 {
3058 	struct vm_area_struct *vma = vmf->vma;
3059 	vm_fault_t ret;
3060 
3061 	/*
3062 	 * Preallocate pte before we take page_lock because this might lead to
3063 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3064 	 *				lock_page(A)
3065 	 *				SetPageWriteback(A)
3066 	 *				unlock_page(A)
3067 	 * lock_page(B)
3068 	 *				lock_page(B)
3069 	 * pte_alloc_pne
3070 	 *   shrink_page_list
3071 	 *     wait_on_page_writeback(A)
3072 	 *				SetPageWriteback(B)
3073 	 *				unlock_page(B)
3074 	 *				# flush A, B to clear the writeback
3075 	 */
3076 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3077 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3078 		if (!vmf->prealloc_pte)
3079 			return VM_FAULT_OOM;
3080 		smp_wmb(); /* See comment in __pte_alloc() */
3081 	}
3082 
3083 	ret = vma->vm_ops->fault(vmf);
3084 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3085 			    VM_FAULT_DONE_COW)))
3086 		return ret;
3087 
3088 	if (unlikely(PageHWPoison(vmf->page))) {
3089 		if (ret & VM_FAULT_LOCKED)
3090 			unlock_page(vmf->page);
3091 		put_page(vmf->page);
3092 		vmf->page = NULL;
3093 		return VM_FAULT_HWPOISON;
3094 	}
3095 
3096 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3097 		lock_page(vmf->page);
3098 	else
3099 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3100 
3101 	return ret;
3102 }
3103 
3104 /*
3105  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3106  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3107  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3108  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3109  */
3110 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3111 {
3112 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3113 }
3114 
3115 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3116 {
3117 	struct vm_area_struct *vma = vmf->vma;
3118 
3119 	if (!pmd_none(*vmf->pmd))
3120 		goto map_pte;
3121 	if (vmf->prealloc_pte) {
3122 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3123 		if (unlikely(!pmd_none(*vmf->pmd))) {
3124 			spin_unlock(vmf->ptl);
3125 			goto map_pte;
3126 		}
3127 
3128 		mm_inc_nr_ptes(vma->vm_mm);
3129 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3130 		spin_unlock(vmf->ptl);
3131 		vmf->prealloc_pte = NULL;
3132 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3133 		return VM_FAULT_OOM;
3134 	}
3135 map_pte:
3136 	/*
3137 	 * If a huge pmd materialized under us just retry later.  Use
3138 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3139 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3140 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3141 	 * running immediately after a huge pmd fault in a different thread of
3142 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3143 	 * All we have to ensure is that it is a regular pmd that we can walk
3144 	 * with pte_offset_map() and we can do that through an atomic read in
3145 	 * C, which is what pmd_trans_unstable() provides.
3146 	 */
3147 	if (pmd_devmap_trans_unstable(vmf->pmd))
3148 		return VM_FAULT_NOPAGE;
3149 
3150 	/*
3151 	 * At this point we know that our vmf->pmd points to a page of ptes
3152 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3153 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3154 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3155 	 * be valid and we will re-check to make sure the vmf->pte isn't
3156 	 * pte_none() under vmf->ptl protection when we return to
3157 	 * alloc_set_pte().
3158 	 */
3159 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3160 			&vmf->ptl);
3161 	return 0;
3162 }
3163 
3164 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3165 static void deposit_prealloc_pte(struct vm_fault *vmf)
3166 {
3167 	struct vm_area_struct *vma = vmf->vma;
3168 
3169 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3170 	/*
3171 	 * We are going to consume the prealloc table,
3172 	 * count that as nr_ptes.
3173 	 */
3174 	mm_inc_nr_ptes(vma->vm_mm);
3175 	vmf->prealloc_pte = NULL;
3176 }
3177 
3178 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3179 {
3180 	struct vm_area_struct *vma = vmf->vma;
3181 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3182 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3183 	pmd_t entry;
3184 	int i;
3185 	vm_fault_t ret;
3186 
3187 	if (!transhuge_vma_suitable(vma, haddr))
3188 		return VM_FAULT_FALLBACK;
3189 
3190 	ret = VM_FAULT_FALLBACK;
3191 	page = compound_head(page);
3192 
3193 	/*
3194 	 * Archs like ppc64 need additonal space to store information
3195 	 * related to pte entry. Use the preallocated table for that.
3196 	 */
3197 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3198 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3199 		if (!vmf->prealloc_pte)
3200 			return VM_FAULT_OOM;
3201 		smp_wmb(); /* See comment in __pte_alloc() */
3202 	}
3203 
3204 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3205 	if (unlikely(!pmd_none(*vmf->pmd)))
3206 		goto out;
3207 
3208 	for (i = 0; i < HPAGE_PMD_NR; i++)
3209 		flush_icache_page(vma, page + i);
3210 
3211 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3212 	if (write)
3213 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3214 
3215 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3216 	page_add_file_rmap(page, true);
3217 	/*
3218 	 * deposit and withdraw with pmd lock held
3219 	 */
3220 	if (arch_needs_pgtable_deposit())
3221 		deposit_prealloc_pte(vmf);
3222 
3223 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3224 
3225 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3226 
3227 	/* fault is handled */
3228 	ret = 0;
3229 	count_vm_event(THP_FILE_MAPPED);
3230 out:
3231 	spin_unlock(vmf->ptl);
3232 	return ret;
3233 }
3234 #else
3235 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3236 {
3237 	BUILD_BUG();
3238 	return 0;
3239 }
3240 #endif
3241 
3242 /**
3243  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3244  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3245  *
3246  * @vmf: fault environment
3247  * @memcg: memcg to charge page (only for private mappings)
3248  * @page: page to map
3249  *
3250  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3251  * return.
3252  *
3253  * Target users are page handler itself and implementations of
3254  * vm_ops->map_pages.
3255  *
3256  * Return: %0 on success, %VM_FAULT_ code in case of error.
3257  */
3258 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3259 		struct page *page)
3260 {
3261 	struct vm_area_struct *vma = vmf->vma;
3262 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3263 	pte_t entry;
3264 	vm_fault_t ret;
3265 
3266 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3267 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3268 		/* THP on COW? */
3269 		VM_BUG_ON_PAGE(memcg, page);
3270 
3271 		ret = do_set_pmd(vmf, page);
3272 		if (ret != VM_FAULT_FALLBACK)
3273 			return ret;
3274 	}
3275 
3276 	if (!vmf->pte) {
3277 		ret = pte_alloc_one_map(vmf);
3278 		if (ret)
3279 			return ret;
3280 	}
3281 
3282 	/* Re-check under ptl */
3283 	if (unlikely(!pte_none(*vmf->pte)))
3284 		return VM_FAULT_NOPAGE;
3285 
3286 	flush_icache_page(vma, page);
3287 	entry = mk_pte(page, vma->vm_page_prot);
3288 	if (write)
3289 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3290 	/* copy-on-write page */
3291 	if (write && !(vma->vm_flags & VM_SHARED)) {
3292 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3293 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3294 		mem_cgroup_commit_charge(page, memcg, false, false);
3295 		lru_cache_add_active_or_unevictable(page, vma);
3296 	} else {
3297 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3298 		page_add_file_rmap(page, false);
3299 	}
3300 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3301 
3302 	/* no need to invalidate: a not-present page won't be cached */
3303 	update_mmu_cache(vma, vmf->address, vmf->pte);
3304 
3305 	return 0;
3306 }
3307 
3308 
3309 /**
3310  * finish_fault - finish page fault once we have prepared the page to fault
3311  *
3312  * @vmf: structure describing the fault
3313  *
3314  * This function handles all that is needed to finish a page fault once the
3315  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3316  * given page, adds reverse page mapping, handles memcg charges and LRU
3317  * addition.
3318  *
3319  * The function expects the page to be locked and on success it consumes a
3320  * reference of a page being mapped (for the PTE which maps it).
3321  *
3322  * Return: %0 on success, %VM_FAULT_ code in case of error.
3323  */
3324 vm_fault_t finish_fault(struct vm_fault *vmf)
3325 {
3326 	struct page *page;
3327 	vm_fault_t ret = 0;
3328 
3329 	/* Did we COW the page? */
3330 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3331 	    !(vmf->vma->vm_flags & VM_SHARED))
3332 		page = vmf->cow_page;
3333 	else
3334 		page = vmf->page;
3335 
3336 	/*
3337 	 * check even for read faults because we might have lost our CoWed
3338 	 * page
3339 	 */
3340 	if (!(vmf->vma->vm_flags & VM_SHARED))
3341 		ret = check_stable_address_space(vmf->vma->vm_mm);
3342 	if (!ret)
3343 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3344 	if (vmf->pte)
3345 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3346 	return ret;
3347 }
3348 
3349 static unsigned long fault_around_bytes __read_mostly =
3350 	rounddown_pow_of_two(65536);
3351 
3352 #ifdef CONFIG_DEBUG_FS
3353 static int fault_around_bytes_get(void *data, u64 *val)
3354 {
3355 	*val = fault_around_bytes;
3356 	return 0;
3357 }
3358 
3359 /*
3360  * fault_around_bytes must be rounded down to the nearest page order as it's
3361  * what do_fault_around() expects to see.
3362  */
3363 static int fault_around_bytes_set(void *data, u64 val)
3364 {
3365 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3366 		return -EINVAL;
3367 	if (val > PAGE_SIZE)
3368 		fault_around_bytes = rounddown_pow_of_two(val);
3369 	else
3370 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3371 	return 0;
3372 }
3373 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3374 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3375 
3376 static int __init fault_around_debugfs(void)
3377 {
3378 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3379 				   &fault_around_bytes_fops);
3380 	return 0;
3381 }
3382 late_initcall(fault_around_debugfs);
3383 #endif
3384 
3385 /*
3386  * do_fault_around() tries to map few pages around the fault address. The hope
3387  * is that the pages will be needed soon and this will lower the number of
3388  * faults to handle.
3389  *
3390  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3391  * not ready to be mapped: not up-to-date, locked, etc.
3392  *
3393  * This function is called with the page table lock taken. In the split ptlock
3394  * case the page table lock only protects only those entries which belong to
3395  * the page table corresponding to the fault address.
3396  *
3397  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3398  * only once.
3399  *
3400  * fault_around_bytes defines how many bytes we'll try to map.
3401  * do_fault_around() expects it to be set to a power of two less than or equal
3402  * to PTRS_PER_PTE.
3403  *
3404  * The virtual address of the area that we map is naturally aligned to
3405  * fault_around_bytes rounded down to the machine page size
3406  * (and therefore to page order).  This way it's easier to guarantee
3407  * that we don't cross page table boundaries.
3408  */
3409 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3410 {
3411 	unsigned long address = vmf->address, nr_pages, mask;
3412 	pgoff_t start_pgoff = vmf->pgoff;
3413 	pgoff_t end_pgoff;
3414 	int off;
3415 	vm_fault_t ret = 0;
3416 
3417 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3418 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3419 
3420 	vmf->address = max(address & mask, vmf->vma->vm_start);
3421 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3422 	start_pgoff -= off;
3423 
3424 	/*
3425 	 *  end_pgoff is either the end of the page table, the end of
3426 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3427 	 */
3428 	end_pgoff = start_pgoff -
3429 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3430 		PTRS_PER_PTE - 1;
3431 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3432 			start_pgoff + nr_pages - 1);
3433 
3434 	if (pmd_none(*vmf->pmd)) {
3435 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3436 		if (!vmf->prealloc_pte)
3437 			goto out;
3438 		smp_wmb(); /* See comment in __pte_alloc() */
3439 	}
3440 
3441 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3442 
3443 	/* Huge page is mapped? Page fault is solved */
3444 	if (pmd_trans_huge(*vmf->pmd)) {
3445 		ret = VM_FAULT_NOPAGE;
3446 		goto out;
3447 	}
3448 
3449 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3450 	if (!vmf->pte)
3451 		goto out;
3452 
3453 	/* check if the page fault is solved */
3454 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3455 	if (!pte_none(*vmf->pte))
3456 		ret = VM_FAULT_NOPAGE;
3457 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 out:
3459 	vmf->address = address;
3460 	vmf->pte = NULL;
3461 	return ret;
3462 }
3463 
3464 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3465 {
3466 	struct vm_area_struct *vma = vmf->vma;
3467 	vm_fault_t ret = 0;
3468 
3469 	/*
3470 	 * Let's call ->map_pages() first and use ->fault() as fallback
3471 	 * if page by the offset is not ready to be mapped (cold cache or
3472 	 * something).
3473 	 */
3474 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3475 		ret = do_fault_around(vmf);
3476 		if (ret)
3477 			return ret;
3478 	}
3479 
3480 	ret = __do_fault(vmf);
3481 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3482 		return ret;
3483 
3484 	ret |= finish_fault(vmf);
3485 	unlock_page(vmf->page);
3486 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487 		put_page(vmf->page);
3488 	return ret;
3489 }
3490 
3491 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3492 {
3493 	struct vm_area_struct *vma = vmf->vma;
3494 	vm_fault_t ret;
3495 
3496 	if (unlikely(anon_vma_prepare(vma)))
3497 		return VM_FAULT_OOM;
3498 
3499 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3500 	if (!vmf->cow_page)
3501 		return VM_FAULT_OOM;
3502 
3503 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3504 				&vmf->memcg, false)) {
3505 		put_page(vmf->cow_page);
3506 		return VM_FAULT_OOM;
3507 	}
3508 
3509 	ret = __do_fault(vmf);
3510 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3511 		goto uncharge_out;
3512 	if (ret & VM_FAULT_DONE_COW)
3513 		return ret;
3514 
3515 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3516 	__SetPageUptodate(vmf->cow_page);
3517 
3518 	ret |= finish_fault(vmf);
3519 	unlock_page(vmf->page);
3520 	put_page(vmf->page);
3521 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3522 		goto uncharge_out;
3523 	return ret;
3524 uncharge_out:
3525 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3526 	put_page(vmf->cow_page);
3527 	return ret;
3528 }
3529 
3530 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3531 {
3532 	struct vm_area_struct *vma = vmf->vma;
3533 	vm_fault_t ret, tmp;
3534 
3535 	ret = __do_fault(vmf);
3536 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3537 		return ret;
3538 
3539 	/*
3540 	 * Check if the backing address space wants to know that the page is
3541 	 * about to become writable
3542 	 */
3543 	if (vma->vm_ops->page_mkwrite) {
3544 		unlock_page(vmf->page);
3545 		tmp = do_page_mkwrite(vmf);
3546 		if (unlikely(!tmp ||
3547 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548 			put_page(vmf->page);
3549 			return tmp;
3550 		}
3551 	}
3552 
3553 	ret |= finish_fault(vmf);
3554 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3555 					VM_FAULT_RETRY))) {
3556 		unlock_page(vmf->page);
3557 		put_page(vmf->page);
3558 		return ret;
3559 	}
3560 
3561 	fault_dirty_shared_page(vma, vmf->page);
3562 	return ret;
3563 }
3564 
3565 /*
3566  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3567  * but allow concurrent faults).
3568  * The mmap_sem may have been released depending on flags and our
3569  * return value.  See filemap_fault() and __lock_page_or_retry().
3570  * If mmap_sem is released, vma may become invalid (for example
3571  * by other thread calling munmap()).
3572  */
3573 static vm_fault_t do_fault(struct vm_fault *vmf)
3574 {
3575 	struct vm_area_struct *vma = vmf->vma;
3576 	struct mm_struct *vm_mm = vma->vm_mm;
3577 	vm_fault_t ret;
3578 
3579 	/*
3580 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3581 	 */
3582 	if (!vma->vm_ops->fault) {
3583 		/*
3584 		 * If we find a migration pmd entry or a none pmd entry, which
3585 		 * should never happen, return SIGBUS
3586 		 */
3587 		if (unlikely(!pmd_present(*vmf->pmd)))
3588 			ret = VM_FAULT_SIGBUS;
3589 		else {
3590 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3591 						       vmf->pmd,
3592 						       vmf->address,
3593 						       &vmf->ptl);
3594 			/*
3595 			 * Make sure this is not a temporary clearing of pte
3596 			 * by holding ptl and checking again. A R/M/W update
3597 			 * of pte involves: take ptl, clearing the pte so that
3598 			 * we don't have concurrent modification by hardware
3599 			 * followed by an update.
3600 			 */
3601 			if (unlikely(pte_none(*vmf->pte)))
3602 				ret = VM_FAULT_SIGBUS;
3603 			else
3604 				ret = VM_FAULT_NOPAGE;
3605 
3606 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3607 		}
3608 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3609 		ret = do_read_fault(vmf);
3610 	else if (!(vma->vm_flags & VM_SHARED))
3611 		ret = do_cow_fault(vmf);
3612 	else
3613 		ret = do_shared_fault(vmf);
3614 
3615 	/* preallocated pagetable is unused: free it */
3616 	if (vmf->prealloc_pte) {
3617 		pte_free(vm_mm, vmf->prealloc_pte);
3618 		vmf->prealloc_pte = NULL;
3619 	}
3620 	return ret;
3621 }
3622 
3623 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3624 				unsigned long addr, int page_nid,
3625 				int *flags)
3626 {
3627 	get_page(page);
3628 
3629 	count_vm_numa_event(NUMA_HINT_FAULTS);
3630 	if (page_nid == numa_node_id()) {
3631 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3632 		*flags |= TNF_FAULT_LOCAL;
3633 	}
3634 
3635 	return mpol_misplaced(page, vma, addr);
3636 }
3637 
3638 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3639 {
3640 	struct vm_area_struct *vma = vmf->vma;
3641 	struct page *page = NULL;
3642 	int page_nid = NUMA_NO_NODE;
3643 	int last_cpupid;
3644 	int target_nid;
3645 	bool migrated = false;
3646 	pte_t pte, old_pte;
3647 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3648 	int flags = 0;
3649 
3650 	/*
3651 	 * The "pte" at this point cannot be used safely without
3652 	 * validation through pte_unmap_same(). It's of NUMA type but
3653 	 * the pfn may be screwed if the read is non atomic.
3654 	 */
3655 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3656 	spin_lock(vmf->ptl);
3657 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3658 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 		goto out;
3660 	}
3661 
3662 	/*
3663 	 * Make it present again, Depending on how arch implementes non
3664 	 * accessible ptes, some can allow access by kernel mode.
3665 	 */
3666 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3667 	pte = pte_modify(old_pte, vma->vm_page_prot);
3668 	pte = pte_mkyoung(pte);
3669 	if (was_writable)
3670 		pte = pte_mkwrite(pte);
3671 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3672 	update_mmu_cache(vma, vmf->address, vmf->pte);
3673 
3674 	page = vm_normal_page(vma, vmf->address, pte);
3675 	if (!page) {
3676 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3677 		return 0;
3678 	}
3679 
3680 	/* TODO: handle PTE-mapped THP */
3681 	if (PageCompound(page)) {
3682 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3683 		return 0;
3684 	}
3685 
3686 	/*
3687 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3688 	 * much anyway since they can be in shared cache state. This misses
3689 	 * the case where a mapping is writable but the process never writes
3690 	 * to it but pte_write gets cleared during protection updates and
3691 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3692 	 * background writeback, dirty balancing and application behaviour.
3693 	 */
3694 	if (!pte_write(pte))
3695 		flags |= TNF_NO_GROUP;
3696 
3697 	/*
3698 	 * Flag if the page is shared between multiple address spaces. This
3699 	 * is later used when determining whether to group tasks together
3700 	 */
3701 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3702 		flags |= TNF_SHARED;
3703 
3704 	last_cpupid = page_cpupid_last(page);
3705 	page_nid = page_to_nid(page);
3706 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3707 			&flags);
3708 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3709 	if (target_nid == NUMA_NO_NODE) {
3710 		put_page(page);
3711 		goto out;
3712 	}
3713 
3714 	/* Migrate to the requested node */
3715 	migrated = migrate_misplaced_page(page, vma, target_nid);
3716 	if (migrated) {
3717 		page_nid = target_nid;
3718 		flags |= TNF_MIGRATED;
3719 	} else
3720 		flags |= TNF_MIGRATE_FAIL;
3721 
3722 out:
3723 	if (page_nid != NUMA_NO_NODE)
3724 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3725 	return 0;
3726 }
3727 
3728 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3729 {
3730 	if (vma_is_anonymous(vmf->vma))
3731 		return do_huge_pmd_anonymous_page(vmf);
3732 	if (vmf->vma->vm_ops->huge_fault)
3733 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3734 	return VM_FAULT_FALLBACK;
3735 }
3736 
3737 /* `inline' is required to avoid gcc 4.1.2 build error */
3738 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3739 {
3740 	if (vma_is_anonymous(vmf->vma))
3741 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3742 	if (vmf->vma->vm_ops->huge_fault)
3743 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3744 
3745 	/* COW handled on pte level: split pmd */
3746 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3747 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3748 
3749 	return VM_FAULT_FALLBACK;
3750 }
3751 
3752 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3753 {
3754 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3755 }
3756 
3757 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3758 {
3759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760 	/* No support for anonymous transparent PUD pages yet */
3761 	if (vma_is_anonymous(vmf->vma))
3762 		return VM_FAULT_FALLBACK;
3763 	if (vmf->vma->vm_ops->huge_fault)
3764 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3766 	return VM_FAULT_FALLBACK;
3767 }
3768 
3769 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3770 {
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772 	/* No support for anonymous transparent PUD pages yet */
3773 	if (vma_is_anonymous(vmf->vma))
3774 		return VM_FAULT_FALLBACK;
3775 	if (vmf->vma->vm_ops->huge_fault)
3776 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778 	return VM_FAULT_FALLBACK;
3779 }
3780 
3781 /*
3782  * These routines also need to handle stuff like marking pages dirty
3783  * and/or accessed for architectures that don't do it in hardware (most
3784  * RISC architectures).  The early dirtying is also good on the i386.
3785  *
3786  * There is also a hook called "update_mmu_cache()" that architectures
3787  * with external mmu caches can use to update those (ie the Sparc or
3788  * PowerPC hashed page tables that act as extended TLBs).
3789  *
3790  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3791  * concurrent faults).
3792  *
3793  * The mmap_sem may have been released depending on flags and our return value.
3794  * See filemap_fault() and __lock_page_or_retry().
3795  */
3796 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3797 {
3798 	pte_t entry;
3799 
3800 	if (unlikely(pmd_none(*vmf->pmd))) {
3801 		/*
3802 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3803 		 * want to allocate huge page, and if we expose page table
3804 		 * for an instant, it will be difficult to retract from
3805 		 * concurrent faults and from rmap lookups.
3806 		 */
3807 		vmf->pte = NULL;
3808 	} else {
3809 		/* See comment in pte_alloc_one_map() */
3810 		if (pmd_devmap_trans_unstable(vmf->pmd))
3811 			return 0;
3812 		/*
3813 		 * A regular pmd is established and it can't morph into a huge
3814 		 * pmd from under us anymore at this point because we hold the
3815 		 * mmap_sem read mode and khugepaged takes it in write mode.
3816 		 * So now it's safe to run pte_offset_map().
3817 		 */
3818 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3819 		vmf->orig_pte = *vmf->pte;
3820 
3821 		/*
3822 		 * some architectures can have larger ptes than wordsize,
3823 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3824 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3825 		 * accesses.  The code below just needs a consistent view
3826 		 * for the ifs and we later double check anyway with the
3827 		 * ptl lock held. So here a barrier will do.
3828 		 */
3829 		barrier();
3830 		if (pte_none(vmf->orig_pte)) {
3831 			pte_unmap(vmf->pte);
3832 			vmf->pte = NULL;
3833 		}
3834 	}
3835 
3836 	if (!vmf->pte) {
3837 		if (vma_is_anonymous(vmf->vma))
3838 			return do_anonymous_page(vmf);
3839 		else
3840 			return do_fault(vmf);
3841 	}
3842 
3843 	if (!pte_present(vmf->orig_pte))
3844 		return do_swap_page(vmf);
3845 
3846 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3847 		return do_numa_page(vmf);
3848 
3849 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3850 	spin_lock(vmf->ptl);
3851 	entry = vmf->orig_pte;
3852 	if (unlikely(!pte_same(*vmf->pte, entry)))
3853 		goto unlock;
3854 	if (vmf->flags & FAULT_FLAG_WRITE) {
3855 		if (!pte_write(entry))
3856 			return do_wp_page(vmf);
3857 		entry = pte_mkdirty(entry);
3858 	}
3859 	entry = pte_mkyoung(entry);
3860 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3861 				vmf->flags & FAULT_FLAG_WRITE)) {
3862 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3863 	} else {
3864 		/*
3865 		 * This is needed only for protection faults but the arch code
3866 		 * is not yet telling us if this is a protection fault or not.
3867 		 * This still avoids useless tlb flushes for .text page faults
3868 		 * with threads.
3869 		 */
3870 		if (vmf->flags & FAULT_FLAG_WRITE)
3871 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3872 	}
3873 unlock:
3874 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3875 	return 0;
3876 }
3877 
3878 /*
3879  * By the time we get here, we already hold the mm semaphore
3880  *
3881  * The mmap_sem may have been released depending on flags and our
3882  * return value.  See filemap_fault() and __lock_page_or_retry().
3883  */
3884 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3885 		unsigned long address, unsigned int flags)
3886 {
3887 	struct vm_fault vmf = {
3888 		.vma = vma,
3889 		.address = address & PAGE_MASK,
3890 		.flags = flags,
3891 		.pgoff = linear_page_index(vma, address),
3892 		.gfp_mask = __get_fault_gfp_mask(vma),
3893 	};
3894 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3895 	struct mm_struct *mm = vma->vm_mm;
3896 	pgd_t *pgd;
3897 	p4d_t *p4d;
3898 	vm_fault_t ret;
3899 
3900 	pgd = pgd_offset(mm, address);
3901 	p4d = p4d_alloc(mm, pgd, address);
3902 	if (!p4d)
3903 		return VM_FAULT_OOM;
3904 
3905 	vmf.pud = pud_alloc(mm, p4d, address);
3906 	if (!vmf.pud)
3907 		return VM_FAULT_OOM;
3908 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3909 		ret = create_huge_pud(&vmf);
3910 		if (!(ret & VM_FAULT_FALLBACK))
3911 			return ret;
3912 	} else {
3913 		pud_t orig_pud = *vmf.pud;
3914 
3915 		barrier();
3916 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3917 
3918 			/* NUMA case for anonymous PUDs would go here */
3919 
3920 			if (dirty && !pud_write(orig_pud)) {
3921 				ret = wp_huge_pud(&vmf, orig_pud);
3922 				if (!(ret & VM_FAULT_FALLBACK))
3923 					return ret;
3924 			} else {
3925 				huge_pud_set_accessed(&vmf, orig_pud);
3926 				return 0;
3927 			}
3928 		}
3929 	}
3930 
3931 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3932 	if (!vmf.pmd)
3933 		return VM_FAULT_OOM;
3934 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3935 		ret = create_huge_pmd(&vmf);
3936 		if (!(ret & VM_FAULT_FALLBACK))
3937 			return ret;
3938 	} else {
3939 		pmd_t orig_pmd = *vmf.pmd;
3940 
3941 		barrier();
3942 		if (unlikely(is_swap_pmd(orig_pmd))) {
3943 			VM_BUG_ON(thp_migration_supported() &&
3944 					  !is_pmd_migration_entry(orig_pmd));
3945 			if (is_pmd_migration_entry(orig_pmd))
3946 				pmd_migration_entry_wait(mm, vmf.pmd);
3947 			return 0;
3948 		}
3949 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3950 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3951 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3952 
3953 			if (dirty && !pmd_write(orig_pmd)) {
3954 				ret = wp_huge_pmd(&vmf, orig_pmd);
3955 				if (!(ret & VM_FAULT_FALLBACK))
3956 					return ret;
3957 			} else {
3958 				huge_pmd_set_accessed(&vmf, orig_pmd);
3959 				return 0;
3960 			}
3961 		}
3962 	}
3963 
3964 	return handle_pte_fault(&vmf);
3965 }
3966 
3967 /*
3968  * By the time we get here, we already hold the mm semaphore
3969  *
3970  * The mmap_sem may have been released depending on flags and our
3971  * return value.  See filemap_fault() and __lock_page_or_retry().
3972  */
3973 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3974 		unsigned int flags)
3975 {
3976 	vm_fault_t ret;
3977 
3978 	__set_current_state(TASK_RUNNING);
3979 
3980 	count_vm_event(PGFAULT);
3981 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3982 
3983 	/* do counter updates before entering really critical section. */
3984 	check_sync_rss_stat(current);
3985 
3986 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3987 					    flags & FAULT_FLAG_INSTRUCTION,
3988 					    flags & FAULT_FLAG_REMOTE))
3989 		return VM_FAULT_SIGSEGV;
3990 
3991 	/*
3992 	 * Enable the memcg OOM handling for faults triggered in user
3993 	 * space.  Kernel faults are handled more gracefully.
3994 	 */
3995 	if (flags & FAULT_FLAG_USER)
3996 		mem_cgroup_enter_user_fault();
3997 
3998 	if (unlikely(is_vm_hugetlb_page(vma)))
3999 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4000 	else
4001 		ret = __handle_mm_fault(vma, address, flags);
4002 
4003 	if (flags & FAULT_FLAG_USER) {
4004 		mem_cgroup_exit_user_fault();
4005 		/*
4006 		 * The task may have entered a memcg OOM situation but
4007 		 * if the allocation error was handled gracefully (no
4008 		 * VM_FAULT_OOM), there is no need to kill anything.
4009 		 * Just clean up the OOM state peacefully.
4010 		 */
4011 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4012 			mem_cgroup_oom_synchronize(false);
4013 	}
4014 
4015 	return ret;
4016 }
4017 EXPORT_SYMBOL_GPL(handle_mm_fault);
4018 
4019 #ifndef __PAGETABLE_P4D_FOLDED
4020 /*
4021  * Allocate p4d page table.
4022  * We've already handled the fast-path in-line.
4023  */
4024 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4025 {
4026 	p4d_t *new = p4d_alloc_one(mm, address);
4027 	if (!new)
4028 		return -ENOMEM;
4029 
4030 	smp_wmb(); /* See comment in __pte_alloc */
4031 
4032 	spin_lock(&mm->page_table_lock);
4033 	if (pgd_present(*pgd))		/* Another has populated it */
4034 		p4d_free(mm, new);
4035 	else
4036 		pgd_populate(mm, pgd, new);
4037 	spin_unlock(&mm->page_table_lock);
4038 	return 0;
4039 }
4040 #endif /* __PAGETABLE_P4D_FOLDED */
4041 
4042 #ifndef __PAGETABLE_PUD_FOLDED
4043 /*
4044  * Allocate page upper directory.
4045  * We've already handled the fast-path in-line.
4046  */
4047 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4048 {
4049 	pud_t *new = pud_alloc_one(mm, address);
4050 	if (!new)
4051 		return -ENOMEM;
4052 
4053 	smp_wmb(); /* See comment in __pte_alloc */
4054 
4055 	spin_lock(&mm->page_table_lock);
4056 #ifndef __ARCH_HAS_5LEVEL_HACK
4057 	if (!p4d_present(*p4d)) {
4058 		mm_inc_nr_puds(mm);
4059 		p4d_populate(mm, p4d, new);
4060 	} else	/* Another has populated it */
4061 		pud_free(mm, new);
4062 #else
4063 	if (!pgd_present(*p4d)) {
4064 		mm_inc_nr_puds(mm);
4065 		pgd_populate(mm, p4d, new);
4066 	} else	/* Another has populated it */
4067 		pud_free(mm, new);
4068 #endif /* __ARCH_HAS_5LEVEL_HACK */
4069 	spin_unlock(&mm->page_table_lock);
4070 	return 0;
4071 }
4072 #endif /* __PAGETABLE_PUD_FOLDED */
4073 
4074 #ifndef __PAGETABLE_PMD_FOLDED
4075 /*
4076  * Allocate page middle directory.
4077  * We've already handled the fast-path in-line.
4078  */
4079 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4080 {
4081 	spinlock_t *ptl;
4082 	pmd_t *new = pmd_alloc_one(mm, address);
4083 	if (!new)
4084 		return -ENOMEM;
4085 
4086 	smp_wmb(); /* See comment in __pte_alloc */
4087 
4088 	ptl = pud_lock(mm, pud);
4089 #ifndef __ARCH_HAS_4LEVEL_HACK
4090 	if (!pud_present(*pud)) {
4091 		mm_inc_nr_pmds(mm);
4092 		pud_populate(mm, pud, new);
4093 	} else	/* Another has populated it */
4094 		pmd_free(mm, new);
4095 #else
4096 	if (!pgd_present(*pud)) {
4097 		mm_inc_nr_pmds(mm);
4098 		pgd_populate(mm, pud, new);
4099 	} else /* Another has populated it */
4100 		pmd_free(mm, new);
4101 #endif /* __ARCH_HAS_4LEVEL_HACK */
4102 	spin_unlock(ptl);
4103 	return 0;
4104 }
4105 #endif /* __PAGETABLE_PMD_FOLDED */
4106 
4107 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4108 			    struct mmu_notifier_range *range,
4109 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4110 {
4111 	pgd_t *pgd;
4112 	p4d_t *p4d;
4113 	pud_t *pud;
4114 	pmd_t *pmd;
4115 	pte_t *ptep;
4116 
4117 	pgd = pgd_offset(mm, address);
4118 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4119 		goto out;
4120 
4121 	p4d = p4d_offset(pgd, address);
4122 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4123 		goto out;
4124 
4125 	pud = pud_offset(p4d, address);
4126 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4127 		goto out;
4128 
4129 	pmd = pmd_offset(pud, address);
4130 	VM_BUG_ON(pmd_trans_huge(*pmd));
4131 
4132 	if (pmd_huge(*pmd)) {
4133 		if (!pmdpp)
4134 			goto out;
4135 
4136 		if (range) {
4137 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4138 						NULL, mm, address & PMD_MASK,
4139 						(address & PMD_MASK) + PMD_SIZE);
4140 			mmu_notifier_invalidate_range_start(range);
4141 		}
4142 		*ptlp = pmd_lock(mm, pmd);
4143 		if (pmd_huge(*pmd)) {
4144 			*pmdpp = pmd;
4145 			return 0;
4146 		}
4147 		spin_unlock(*ptlp);
4148 		if (range)
4149 			mmu_notifier_invalidate_range_end(range);
4150 	}
4151 
4152 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4153 		goto out;
4154 
4155 	if (range) {
4156 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4157 					address & PAGE_MASK,
4158 					(address & PAGE_MASK) + PAGE_SIZE);
4159 		mmu_notifier_invalidate_range_start(range);
4160 	}
4161 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4162 	if (!pte_present(*ptep))
4163 		goto unlock;
4164 	*ptepp = ptep;
4165 	return 0;
4166 unlock:
4167 	pte_unmap_unlock(ptep, *ptlp);
4168 	if (range)
4169 		mmu_notifier_invalidate_range_end(range);
4170 out:
4171 	return -EINVAL;
4172 }
4173 
4174 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4175 			     pte_t **ptepp, spinlock_t **ptlp)
4176 {
4177 	int res;
4178 
4179 	/* (void) is needed to make gcc happy */
4180 	(void) __cond_lock(*ptlp,
4181 			   !(res = __follow_pte_pmd(mm, address, NULL,
4182 						    ptepp, NULL, ptlp)));
4183 	return res;
4184 }
4185 
4186 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4187 		   struct mmu_notifier_range *range,
4188 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4189 {
4190 	int res;
4191 
4192 	/* (void) is needed to make gcc happy */
4193 	(void) __cond_lock(*ptlp,
4194 			   !(res = __follow_pte_pmd(mm, address, range,
4195 						    ptepp, pmdpp, ptlp)));
4196 	return res;
4197 }
4198 EXPORT_SYMBOL(follow_pte_pmd);
4199 
4200 /**
4201  * follow_pfn - look up PFN at a user virtual address
4202  * @vma: memory mapping
4203  * @address: user virtual address
4204  * @pfn: location to store found PFN
4205  *
4206  * Only IO mappings and raw PFN mappings are allowed.
4207  *
4208  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4209  */
4210 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4211 	unsigned long *pfn)
4212 {
4213 	int ret = -EINVAL;
4214 	spinlock_t *ptl;
4215 	pte_t *ptep;
4216 
4217 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4218 		return ret;
4219 
4220 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4221 	if (ret)
4222 		return ret;
4223 	*pfn = pte_pfn(*ptep);
4224 	pte_unmap_unlock(ptep, ptl);
4225 	return 0;
4226 }
4227 EXPORT_SYMBOL(follow_pfn);
4228 
4229 #ifdef CONFIG_HAVE_IOREMAP_PROT
4230 int follow_phys(struct vm_area_struct *vma,
4231 		unsigned long address, unsigned int flags,
4232 		unsigned long *prot, resource_size_t *phys)
4233 {
4234 	int ret = -EINVAL;
4235 	pte_t *ptep, pte;
4236 	spinlock_t *ptl;
4237 
4238 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4239 		goto out;
4240 
4241 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4242 		goto out;
4243 	pte = *ptep;
4244 
4245 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4246 		goto unlock;
4247 
4248 	*prot = pgprot_val(pte_pgprot(pte));
4249 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4250 
4251 	ret = 0;
4252 unlock:
4253 	pte_unmap_unlock(ptep, ptl);
4254 out:
4255 	return ret;
4256 }
4257 
4258 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4259 			void *buf, int len, int write)
4260 {
4261 	resource_size_t phys_addr;
4262 	unsigned long prot = 0;
4263 	void __iomem *maddr;
4264 	int offset = addr & (PAGE_SIZE-1);
4265 
4266 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4267 		return -EINVAL;
4268 
4269 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4270 	if (!maddr)
4271 		return -ENOMEM;
4272 
4273 	if (write)
4274 		memcpy_toio(maddr + offset, buf, len);
4275 	else
4276 		memcpy_fromio(buf, maddr + offset, len);
4277 	iounmap(maddr);
4278 
4279 	return len;
4280 }
4281 EXPORT_SYMBOL_GPL(generic_access_phys);
4282 #endif
4283 
4284 /*
4285  * Access another process' address space as given in mm.  If non-NULL, use the
4286  * given task for page fault accounting.
4287  */
4288 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4289 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4290 {
4291 	struct vm_area_struct *vma;
4292 	void *old_buf = buf;
4293 	int write = gup_flags & FOLL_WRITE;
4294 
4295 	if (down_read_killable(&mm->mmap_sem))
4296 		return 0;
4297 
4298 	/* ignore errors, just check how much was successfully transferred */
4299 	while (len) {
4300 		int bytes, ret, offset;
4301 		void *maddr;
4302 		struct page *page = NULL;
4303 
4304 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4305 				gup_flags, &page, &vma, NULL);
4306 		if (ret <= 0) {
4307 #ifndef CONFIG_HAVE_IOREMAP_PROT
4308 			break;
4309 #else
4310 			/*
4311 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4312 			 * we can access using slightly different code.
4313 			 */
4314 			vma = find_vma(mm, addr);
4315 			if (!vma || vma->vm_start > addr)
4316 				break;
4317 			if (vma->vm_ops && vma->vm_ops->access)
4318 				ret = vma->vm_ops->access(vma, addr, buf,
4319 							  len, write);
4320 			if (ret <= 0)
4321 				break;
4322 			bytes = ret;
4323 #endif
4324 		} else {
4325 			bytes = len;
4326 			offset = addr & (PAGE_SIZE-1);
4327 			if (bytes > PAGE_SIZE-offset)
4328 				bytes = PAGE_SIZE-offset;
4329 
4330 			maddr = kmap(page);
4331 			if (write) {
4332 				copy_to_user_page(vma, page, addr,
4333 						  maddr + offset, buf, bytes);
4334 				set_page_dirty_lock(page);
4335 			} else {
4336 				copy_from_user_page(vma, page, addr,
4337 						    buf, maddr + offset, bytes);
4338 			}
4339 			kunmap(page);
4340 			put_page(page);
4341 		}
4342 		len -= bytes;
4343 		buf += bytes;
4344 		addr += bytes;
4345 	}
4346 	up_read(&mm->mmap_sem);
4347 
4348 	return buf - old_buf;
4349 }
4350 
4351 /**
4352  * access_remote_vm - access another process' address space
4353  * @mm:		the mm_struct of the target address space
4354  * @addr:	start address to access
4355  * @buf:	source or destination buffer
4356  * @len:	number of bytes to transfer
4357  * @gup_flags:	flags modifying lookup behaviour
4358  *
4359  * The caller must hold a reference on @mm.
4360  *
4361  * Return: number of bytes copied from source to destination.
4362  */
4363 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4364 		void *buf, int len, unsigned int gup_flags)
4365 {
4366 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4367 }
4368 
4369 /*
4370  * Access another process' address space.
4371  * Source/target buffer must be kernel space,
4372  * Do not walk the page table directly, use get_user_pages
4373  */
4374 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4375 		void *buf, int len, unsigned int gup_flags)
4376 {
4377 	struct mm_struct *mm;
4378 	int ret;
4379 
4380 	mm = get_task_mm(tsk);
4381 	if (!mm)
4382 		return 0;
4383 
4384 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4385 
4386 	mmput(mm);
4387 
4388 	return ret;
4389 }
4390 EXPORT_SYMBOL_GPL(access_process_vm);
4391 
4392 /*
4393  * Print the name of a VMA.
4394  */
4395 void print_vma_addr(char *prefix, unsigned long ip)
4396 {
4397 	struct mm_struct *mm = current->mm;
4398 	struct vm_area_struct *vma;
4399 
4400 	/*
4401 	 * we might be running from an atomic context so we cannot sleep
4402 	 */
4403 	if (!down_read_trylock(&mm->mmap_sem))
4404 		return;
4405 
4406 	vma = find_vma(mm, ip);
4407 	if (vma && vma->vm_file) {
4408 		struct file *f = vma->vm_file;
4409 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4410 		if (buf) {
4411 			char *p;
4412 
4413 			p = file_path(f, buf, PAGE_SIZE);
4414 			if (IS_ERR(p))
4415 				p = "?";
4416 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4417 					vma->vm_start,
4418 					vma->vm_end - vma->vm_start);
4419 			free_page((unsigned long)buf);
4420 		}
4421 	}
4422 	up_read(&mm->mmap_sem);
4423 }
4424 
4425 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4426 void __might_fault(const char *file, int line)
4427 {
4428 	/*
4429 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4430 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4431 	 * get paged out, therefore we'll never actually fault, and the
4432 	 * below annotations will generate false positives.
4433 	 */
4434 	if (uaccess_kernel())
4435 		return;
4436 	if (pagefault_disabled())
4437 		return;
4438 	__might_sleep(file, line, 0);
4439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4440 	if (current->mm)
4441 		might_lock_read(&current->mm->mmap_sem);
4442 #endif
4443 }
4444 EXPORT_SYMBOL(__might_fault);
4445 #endif
4446 
4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4448 /*
4449  * Process all subpages of the specified huge page with the specified
4450  * operation.  The target subpage will be processed last to keep its
4451  * cache lines hot.
4452  */
4453 static inline void process_huge_page(
4454 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4455 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4456 	void *arg)
4457 {
4458 	int i, n, base, l;
4459 	unsigned long addr = addr_hint &
4460 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4461 
4462 	/* Process target subpage last to keep its cache lines hot */
4463 	might_sleep();
4464 	n = (addr_hint - addr) / PAGE_SIZE;
4465 	if (2 * n <= pages_per_huge_page) {
4466 		/* If target subpage in first half of huge page */
4467 		base = 0;
4468 		l = n;
4469 		/* Process subpages at the end of huge page */
4470 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4471 			cond_resched();
4472 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4473 		}
4474 	} else {
4475 		/* If target subpage in second half of huge page */
4476 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4477 		l = pages_per_huge_page - n;
4478 		/* Process subpages at the begin of huge page */
4479 		for (i = 0; i < base; i++) {
4480 			cond_resched();
4481 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4482 		}
4483 	}
4484 	/*
4485 	 * Process remaining subpages in left-right-left-right pattern
4486 	 * towards the target subpage
4487 	 */
4488 	for (i = 0; i < l; i++) {
4489 		int left_idx = base + i;
4490 		int right_idx = base + 2 * l - 1 - i;
4491 
4492 		cond_resched();
4493 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4494 		cond_resched();
4495 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4496 	}
4497 }
4498 
4499 static void clear_gigantic_page(struct page *page,
4500 				unsigned long addr,
4501 				unsigned int pages_per_huge_page)
4502 {
4503 	int i;
4504 	struct page *p = page;
4505 
4506 	might_sleep();
4507 	for (i = 0; i < pages_per_huge_page;
4508 	     i++, p = mem_map_next(p, page, i)) {
4509 		cond_resched();
4510 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4511 	}
4512 }
4513 
4514 static void clear_subpage(unsigned long addr, int idx, void *arg)
4515 {
4516 	struct page *page = arg;
4517 
4518 	clear_user_highpage(page + idx, addr);
4519 }
4520 
4521 void clear_huge_page(struct page *page,
4522 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4523 {
4524 	unsigned long addr = addr_hint &
4525 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4526 
4527 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4528 		clear_gigantic_page(page, addr, pages_per_huge_page);
4529 		return;
4530 	}
4531 
4532 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4533 }
4534 
4535 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4536 				    unsigned long addr,
4537 				    struct vm_area_struct *vma,
4538 				    unsigned int pages_per_huge_page)
4539 {
4540 	int i;
4541 	struct page *dst_base = dst;
4542 	struct page *src_base = src;
4543 
4544 	for (i = 0; i < pages_per_huge_page; ) {
4545 		cond_resched();
4546 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4547 
4548 		i++;
4549 		dst = mem_map_next(dst, dst_base, i);
4550 		src = mem_map_next(src, src_base, i);
4551 	}
4552 }
4553 
4554 struct copy_subpage_arg {
4555 	struct page *dst;
4556 	struct page *src;
4557 	struct vm_area_struct *vma;
4558 };
4559 
4560 static void copy_subpage(unsigned long addr, int idx, void *arg)
4561 {
4562 	struct copy_subpage_arg *copy_arg = arg;
4563 
4564 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4565 			   addr, copy_arg->vma);
4566 }
4567 
4568 void copy_user_huge_page(struct page *dst, struct page *src,
4569 			 unsigned long addr_hint, struct vm_area_struct *vma,
4570 			 unsigned int pages_per_huge_page)
4571 {
4572 	unsigned long addr = addr_hint &
4573 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4574 	struct copy_subpage_arg arg = {
4575 		.dst = dst,
4576 		.src = src,
4577 		.vma = vma,
4578 	};
4579 
4580 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4581 		copy_user_gigantic_page(dst, src, addr, vma,
4582 					pages_per_huge_page);
4583 		return;
4584 	}
4585 
4586 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4587 }
4588 
4589 long copy_huge_page_from_user(struct page *dst_page,
4590 				const void __user *usr_src,
4591 				unsigned int pages_per_huge_page,
4592 				bool allow_pagefault)
4593 {
4594 	void *src = (void *)usr_src;
4595 	void *page_kaddr;
4596 	unsigned long i, rc = 0;
4597 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4598 
4599 	for (i = 0; i < pages_per_huge_page; i++) {
4600 		if (allow_pagefault)
4601 			page_kaddr = kmap(dst_page + i);
4602 		else
4603 			page_kaddr = kmap_atomic(dst_page + i);
4604 		rc = copy_from_user(page_kaddr,
4605 				(const void __user *)(src + i * PAGE_SIZE),
4606 				PAGE_SIZE);
4607 		if (allow_pagefault)
4608 			kunmap(dst_page + i);
4609 		else
4610 			kunmap_atomic(page_kaddr);
4611 
4612 		ret_val -= (PAGE_SIZE - rc);
4613 		if (rc)
4614 			break;
4615 
4616 		cond_resched();
4617 	}
4618 	return ret_val;
4619 }
4620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4621 
4622 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4623 
4624 static struct kmem_cache *page_ptl_cachep;
4625 
4626 void __init ptlock_cache_init(void)
4627 {
4628 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4629 			SLAB_PANIC, NULL);
4630 }
4631 
4632 bool ptlock_alloc(struct page *page)
4633 {
4634 	spinlock_t *ptl;
4635 
4636 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4637 	if (!ptl)
4638 		return false;
4639 	page->ptl = ptl;
4640 	return true;
4641 }
4642 
4643 void ptlock_free(struct page *page)
4644 {
4645 	kmem_cache_free(page_ptl_cachep, page->ptl);
4646 }
4647 #endif
4648