1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else /* SPLIT_RSS_COUNTING */ 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif /* SPLIT_RSS_COUNTING */ 195 196 #ifdef HAVE_GENERIC_MMU_GATHER 197 198 static int tlb_next_batch(struct mmu_gather *tlb) 199 { 200 struct mmu_gather_batch *batch; 201 202 batch = tlb->active; 203 if (batch->next) { 204 tlb->active = batch->next; 205 return 1; 206 } 207 208 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 209 if (!batch) 210 return 0; 211 212 batch->next = NULL; 213 batch->nr = 0; 214 batch->max = MAX_GATHER_BATCH; 215 216 tlb->active->next = batch; 217 tlb->active = batch; 218 219 return 1; 220 } 221 222 /* tlb_gather_mmu 223 * Called to initialize an (on-stack) mmu_gather structure for page-table 224 * tear-down from @mm. The @fullmm argument is used when @mm is without 225 * users and we're going to destroy the full address space (exit/execve). 226 */ 227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 228 { 229 tlb->mm = mm; 230 231 tlb->fullmm = fullmm; 232 tlb->need_flush = 0; 233 tlb->fast_mode = (num_possible_cpus() == 1); 234 tlb->local.next = NULL; 235 tlb->local.nr = 0; 236 tlb->local.max = ARRAY_SIZE(tlb->__pages); 237 tlb->active = &tlb->local; 238 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb->batch = NULL; 241 #endif 242 } 243 244 void tlb_flush_mmu(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 if (!tlb->need_flush) 249 return; 250 tlb->need_flush = 0; 251 tlb_flush(tlb); 252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 253 tlb_table_flush(tlb); 254 #endif 255 256 if (tlb_fast_mode(tlb)) 257 return; 258 259 for (batch = &tlb->local; batch; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 /* tlb_finish_mmu 267 * Called at the end of the shootdown operation to free up any resources 268 * that were required. 269 */ 270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 271 { 272 struct mmu_gather_batch *batch, *next; 273 274 tlb_flush_mmu(tlb); 275 276 /* keep the page table cache within bounds */ 277 check_pgt_cache(); 278 279 for (batch = tlb->local.next; batch; batch = next) { 280 next = batch->next; 281 free_pages((unsigned long)batch, 0); 282 } 283 tlb->local.next = NULL; 284 } 285 286 /* __tlb_remove_page 287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 288 * handling the additional races in SMP caused by other CPUs caching valid 289 * mappings in their TLBs. Returns the number of free page slots left. 290 * When out of page slots we must call tlb_flush_mmu(). 291 */ 292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 293 { 294 struct mmu_gather_batch *batch; 295 296 tlb->need_flush = 1; 297 298 if (tlb_fast_mode(tlb)) { 299 free_page_and_swap_cache(page); 300 return 1; /* avoid calling tlb_flush_mmu() */ 301 } 302 303 batch = tlb->active; 304 batch->pages[batch->nr++] = page; 305 if (batch->nr == batch->max) { 306 if (!tlb_next_batch(tlb)) 307 return 0; 308 } 309 VM_BUG_ON(batch->nr > batch->max); 310 311 return batch->max - batch->nr; 312 } 313 314 #endif /* HAVE_GENERIC_MMU_GATHER */ 315 316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 317 318 /* 319 * See the comment near struct mmu_table_batch. 320 */ 321 322 static void tlb_remove_table_smp_sync(void *arg) 323 { 324 /* Simply deliver the interrupt */ 325 } 326 327 static void tlb_remove_table_one(void *table) 328 { 329 /* 330 * This isn't an RCU grace period and hence the page-tables cannot be 331 * assumed to be actually RCU-freed. 332 * 333 * It is however sufficient for software page-table walkers that rely on 334 * IRQ disabling. See the comment near struct mmu_table_batch. 335 */ 336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 337 __tlb_remove_table(table); 338 } 339 340 static void tlb_remove_table_rcu(struct rcu_head *head) 341 { 342 struct mmu_table_batch *batch; 343 int i; 344 345 batch = container_of(head, struct mmu_table_batch, rcu); 346 347 for (i = 0; i < batch->nr; i++) 348 __tlb_remove_table(batch->tables[i]); 349 350 free_page((unsigned long)batch); 351 } 352 353 void tlb_table_flush(struct mmu_gather *tlb) 354 { 355 struct mmu_table_batch **batch = &tlb->batch; 356 357 if (*batch) { 358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 359 *batch = NULL; 360 } 361 } 362 363 void tlb_remove_table(struct mmu_gather *tlb, void *table) 364 { 365 struct mmu_table_batch **batch = &tlb->batch; 366 367 tlb->need_flush = 1; 368 369 /* 370 * When there's less then two users of this mm there cannot be a 371 * concurrent page-table walk. 372 */ 373 if (atomic_read(&tlb->mm->mm_users) < 2) { 374 __tlb_remove_table(table); 375 return; 376 } 377 378 if (*batch == NULL) { 379 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 380 if (*batch == NULL) { 381 tlb_remove_table_one(table); 382 return; 383 } 384 (*batch)->nr = 0; 385 } 386 (*batch)->tables[(*batch)->nr++] = table; 387 if ((*batch)->nr == MAX_TABLE_BATCH) 388 tlb_table_flush(tlb); 389 } 390 391 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 392 393 /* 394 * If a p?d_bad entry is found while walking page tables, report 395 * the error, before resetting entry to p?d_none. Usually (but 396 * very seldom) called out from the p?d_none_or_clear_bad macros. 397 */ 398 399 void pgd_clear_bad(pgd_t *pgd) 400 { 401 pgd_ERROR(*pgd); 402 pgd_clear(pgd); 403 } 404 405 void pud_clear_bad(pud_t *pud) 406 { 407 pud_ERROR(*pud); 408 pud_clear(pud); 409 } 410 411 void pmd_clear_bad(pmd_t *pmd) 412 { 413 pmd_ERROR(*pmd); 414 pmd_clear(pmd); 415 } 416 417 /* 418 * Note: this doesn't free the actual pages themselves. That 419 * has been handled earlier when unmapping all the memory regions. 420 */ 421 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 422 unsigned long addr) 423 { 424 pgtable_t token = pmd_pgtable(*pmd); 425 pmd_clear(pmd); 426 pte_free_tlb(tlb, token, addr); 427 tlb->mm->nr_ptes--; 428 } 429 430 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 431 unsigned long addr, unsigned long end, 432 unsigned long floor, unsigned long ceiling) 433 { 434 pmd_t *pmd; 435 unsigned long next; 436 unsigned long start; 437 438 start = addr; 439 pmd = pmd_offset(pud, addr); 440 do { 441 next = pmd_addr_end(addr, end); 442 if (pmd_none_or_clear_bad(pmd)) 443 continue; 444 free_pte_range(tlb, pmd, addr); 445 } while (pmd++, addr = next, addr != end); 446 447 start &= PUD_MASK; 448 if (start < floor) 449 return; 450 if (ceiling) { 451 ceiling &= PUD_MASK; 452 if (!ceiling) 453 return; 454 } 455 if (end - 1 > ceiling - 1) 456 return; 457 458 pmd = pmd_offset(pud, start); 459 pud_clear(pud); 460 pmd_free_tlb(tlb, pmd, start); 461 } 462 463 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 464 unsigned long addr, unsigned long end, 465 unsigned long floor, unsigned long ceiling) 466 { 467 pud_t *pud; 468 unsigned long next; 469 unsigned long start; 470 471 start = addr; 472 pud = pud_offset(pgd, addr); 473 do { 474 next = pud_addr_end(addr, end); 475 if (pud_none_or_clear_bad(pud)) 476 continue; 477 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 478 } while (pud++, addr = next, addr != end); 479 480 start &= PGDIR_MASK; 481 if (start < floor) 482 return; 483 if (ceiling) { 484 ceiling &= PGDIR_MASK; 485 if (!ceiling) 486 return; 487 } 488 if (end - 1 > ceiling - 1) 489 return; 490 491 pud = pud_offset(pgd, start); 492 pgd_clear(pgd); 493 pud_free_tlb(tlb, pud, start); 494 } 495 496 /* 497 * This function frees user-level page tables of a process. 498 * 499 * Must be called with pagetable lock held. 500 */ 501 void free_pgd_range(struct mmu_gather *tlb, 502 unsigned long addr, unsigned long end, 503 unsigned long floor, unsigned long ceiling) 504 { 505 pgd_t *pgd; 506 unsigned long next; 507 508 /* 509 * The next few lines have given us lots of grief... 510 * 511 * Why are we testing PMD* at this top level? Because often 512 * there will be no work to do at all, and we'd prefer not to 513 * go all the way down to the bottom just to discover that. 514 * 515 * Why all these "- 1"s? Because 0 represents both the bottom 516 * of the address space and the top of it (using -1 for the 517 * top wouldn't help much: the masks would do the wrong thing). 518 * The rule is that addr 0 and floor 0 refer to the bottom of 519 * the address space, but end 0 and ceiling 0 refer to the top 520 * Comparisons need to use "end - 1" and "ceiling - 1" (though 521 * that end 0 case should be mythical). 522 * 523 * Wherever addr is brought up or ceiling brought down, we must 524 * be careful to reject "the opposite 0" before it confuses the 525 * subsequent tests. But what about where end is brought down 526 * by PMD_SIZE below? no, end can't go down to 0 there. 527 * 528 * Whereas we round start (addr) and ceiling down, by different 529 * masks at different levels, in order to test whether a table 530 * now has no other vmas using it, so can be freed, we don't 531 * bother to round floor or end up - the tests don't need that. 532 */ 533 534 addr &= PMD_MASK; 535 if (addr < floor) { 536 addr += PMD_SIZE; 537 if (!addr) 538 return; 539 } 540 if (ceiling) { 541 ceiling &= PMD_MASK; 542 if (!ceiling) 543 return; 544 } 545 if (end - 1 > ceiling - 1) 546 end -= PMD_SIZE; 547 if (addr > end - 1) 548 return; 549 550 pgd = pgd_offset(tlb->mm, addr); 551 do { 552 next = pgd_addr_end(addr, end); 553 if (pgd_none_or_clear_bad(pgd)) 554 continue; 555 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 556 } while (pgd++, addr = next, addr != end); 557 } 558 559 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 560 unsigned long floor, unsigned long ceiling) 561 { 562 while (vma) { 563 struct vm_area_struct *next = vma->vm_next; 564 unsigned long addr = vma->vm_start; 565 566 /* 567 * Hide vma from rmap and truncate_pagecache before freeing 568 * pgtables 569 */ 570 unlink_anon_vmas(vma); 571 unlink_file_vma(vma); 572 573 if (is_vm_hugetlb_page(vma)) { 574 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 575 floor, next? next->vm_start: ceiling); 576 } else { 577 /* 578 * Optimization: gather nearby vmas into one call down 579 */ 580 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 581 && !is_vm_hugetlb_page(next)) { 582 vma = next; 583 next = vma->vm_next; 584 unlink_anon_vmas(vma); 585 unlink_file_vma(vma); 586 } 587 free_pgd_range(tlb, addr, vma->vm_end, 588 floor, next? next->vm_start: ceiling); 589 } 590 vma = next; 591 } 592 } 593 594 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 595 pmd_t *pmd, unsigned long address) 596 { 597 pgtable_t new = pte_alloc_one(mm, address); 598 int wait_split_huge_page; 599 if (!new) 600 return -ENOMEM; 601 602 /* 603 * Ensure all pte setup (eg. pte page lock and page clearing) are 604 * visible before the pte is made visible to other CPUs by being 605 * put into page tables. 606 * 607 * The other side of the story is the pointer chasing in the page 608 * table walking code (when walking the page table without locking; 609 * ie. most of the time). Fortunately, these data accesses consist 610 * of a chain of data-dependent loads, meaning most CPUs (alpha 611 * being the notable exception) will already guarantee loads are 612 * seen in-order. See the alpha page table accessors for the 613 * smp_read_barrier_depends() barriers in page table walking code. 614 */ 615 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 616 617 spin_lock(&mm->page_table_lock); 618 wait_split_huge_page = 0; 619 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 620 mm->nr_ptes++; 621 pmd_populate(mm, pmd, new); 622 new = NULL; 623 } else if (unlikely(pmd_trans_splitting(*pmd))) 624 wait_split_huge_page = 1; 625 spin_unlock(&mm->page_table_lock); 626 if (new) 627 pte_free(mm, new); 628 if (wait_split_huge_page) 629 wait_split_huge_page(vma->anon_vma, pmd); 630 return 0; 631 } 632 633 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 634 { 635 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 636 if (!new) 637 return -ENOMEM; 638 639 smp_wmb(); /* See comment in __pte_alloc */ 640 641 spin_lock(&init_mm.page_table_lock); 642 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 643 pmd_populate_kernel(&init_mm, pmd, new); 644 new = NULL; 645 } else 646 VM_BUG_ON(pmd_trans_splitting(*pmd)); 647 spin_unlock(&init_mm.page_table_lock); 648 if (new) 649 pte_free_kernel(&init_mm, new); 650 return 0; 651 } 652 653 static inline void init_rss_vec(int *rss) 654 { 655 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 656 } 657 658 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 659 { 660 int i; 661 662 if (current->mm == mm) 663 sync_mm_rss(current, mm); 664 for (i = 0; i < NR_MM_COUNTERS; i++) 665 if (rss[i]) 666 add_mm_counter(mm, i, rss[i]); 667 } 668 669 /* 670 * This function is called to print an error when a bad pte 671 * is found. For example, we might have a PFN-mapped pte in 672 * a region that doesn't allow it. 673 * 674 * The calling function must still handle the error. 675 */ 676 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 677 pte_t pte, struct page *page) 678 { 679 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 680 pud_t *pud = pud_offset(pgd, addr); 681 pmd_t *pmd = pmd_offset(pud, addr); 682 struct address_space *mapping; 683 pgoff_t index; 684 static unsigned long resume; 685 static unsigned long nr_shown; 686 static unsigned long nr_unshown; 687 688 /* 689 * Allow a burst of 60 reports, then keep quiet for that minute; 690 * or allow a steady drip of one report per second. 691 */ 692 if (nr_shown == 60) { 693 if (time_before(jiffies, resume)) { 694 nr_unshown++; 695 return; 696 } 697 if (nr_unshown) { 698 printk(KERN_ALERT 699 "BUG: Bad page map: %lu messages suppressed\n", 700 nr_unshown); 701 nr_unshown = 0; 702 } 703 nr_shown = 0; 704 } 705 if (nr_shown++ == 0) 706 resume = jiffies + 60 * HZ; 707 708 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 709 index = linear_page_index(vma, addr); 710 711 printk(KERN_ALERT 712 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 713 current->comm, 714 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 715 if (page) 716 dump_page(page); 717 printk(KERN_ALERT 718 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 719 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 720 /* 721 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 722 */ 723 if (vma->vm_ops) 724 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 725 (unsigned long)vma->vm_ops->fault); 726 if (vma->vm_file && vma->vm_file->f_op) 727 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 728 (unsigned long)vma->vm_file->f_op->mmap); 729 dump_stack(); 730 add_taint(TAINT_BAD_PAGE); 731 } 732 733 static inline int is_cow_mapping(vm_flags_t flags) 734 { 735 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 736 } 737 738 #ifndef is_zero_pfn 739 static inline int is_zero_pfn(unsigned long pfn) 740 { 741 return pfn == zero_pfn; 742 } 743 #endif 744 745 #ifndef my_zero_pfn 746 static inline unsigned long my_zero_pfn(unsigned long addr) 747 { 748 return zero_pfn; 749 } 750 #endif 751 752 /* 753 * vm_normal_page -- This function gets the "struct page" associated with a pte. 754 * 755 * "Special" mappings do not wish to be associated with a "struct page" (either 756 * it doesn't exist, or it exists but they don't want to touch it). In this 757 * case, NULL is returned here. "Normal" mappings do have a struct page. 758 * 759 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 760 * pte bit, in which case this function is trivial. Secondly, an architecture 761 * may not have a spare pte bit, which requires a more complicated scheme, 762 * described below. 763 * 764 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 765 * special mapping (even if there are underlying and valid "struct pages"). 766 * COWed pages of a VM_PFNMAP are always normal. 767 * 768 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 769 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 770 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 771 * mapping will always honor the rule 772 * 773 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 774 * 775 * And for normal mappings this is false. 776 * 777 * This restricts such mappings to be a linear translation from virtual address 778 * to pfn. To get around this restriction, we allow arbitrary mappings so long 779 * as the vma is not a COW mapping; in that case, we know that all ptes are 780 * special (because none can have been COWed). 781 * 782 * 783 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 784 * 785 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 786 * page" backing, however the difference is that _all_ pages with a struct 787 * page (that is, those where pfn_valid is true) are refcounted and considered 788 * normal pages by the VM. The disadvantage is that pages are refcounted 789 * (which can be slower and simply not an option for some PFNMAP users). The 790 * advantage is that we don't have to follow the strict linearity rule of 791 * PFNMAP mappings in order to support COWable mappings. 792 * 793 */ 794 #ifdef __HAVE_ARCH_PTE_SPECIAL 795 # define HAVE_PTE_SPECIAL 1 796 #else 797 # define HAVE_PTE_SPECIAL 0 798 #endif 799 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 800 pte_t pte) 801 { 802 unsigned long pfn = pte_pfn(pte); 803 804 if (HAVE_PTE_SPECIAL) { 805 if (likely(!pte_special(pte))) 806 goto check_pfn; 807 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 808 return NULL; 809 if (!is_zero_pfn(pfn)) 810 print_bad_pte(vma, addr, pte, NULL); 811 return NULL; 812 } 813 814 /* !HAVE_PTE_SPECIAL case follows: */ 815 816 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 817 if (vma->vm_flags & VM_MIXEDMAP) { 818 if (!pfn_valid(pfn)) 819 return NULL; 820 goto out; 821 } else { 822 unsigned long off; 823 off = (addr - vma->vm_start) >> PAGE_SHIFT; 824 if (pfn == vma->vm_pgoff + off) 825 return NULL; 826 if (!is_cow_mapping(vma->vm_flags)) 827 return NULL; 828 } 829 } 830 831 if (is_zero_pfn(pfn)) 832 return NULL; 833 check_pfn: 834 if (unlikely(pfn > highest_memmap_pfn)) { 835 print_bad_pte(vma, addr, pte, NULL); 836 return NULL; 837 } 838 839 /* 840 * NOTE! We still have PageReserved() pages in the page tables. 841 * eg. VDSO mappings can cause them to exist. 842 */ 843 out: 844 return pfn_to_page(pfn); 845 } 846 847 /* 848 * copy one vm_area from one task to the other. Assumes the page tables 849 * already present in the new task to be cleared in the whole range 850 * covered by this vma. 851 */ 852 853 static inline unsigned long 854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 855 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 856 unsigned long addr, int *rss) 857 { 858 unsigned long vm_flags = vma->vm_flags; 859 pte_t pte = *src_pte; 860 struct page *page; 861 862 /* pte contains position in swap or file, so copy. */ 863 if (unlikely(!pte_present(pte))) { 864 if (!pte_file(pte)) { 865 swp_entry_t entry = pte_to_swp_entry(pte); 866 867 if (swap_duplicate(entry) < 0) 868 return entry.val; 869 870 /* make sure dst_mm is on swapoff's mmlist. */ 871 if (unlikely(list_empty(&dst_mm->mmlist))) { 872 spin_lock(&mmlist_lock); 873 if (list_empty(&dst_mm->mmlist)) 874 list_add(&dst_mm->mmlist, 875 &src_mm->mmlist); 876 spin_unlock(&mmlist_lock); 877 } 878 if (likely(!non_swap_entry(entry))) 879 rss[MM_SWAPENTS]++; 880 else if (is_write_migration_entry(entry) && 881 is_cow_mapping(vm_flags)) { 882 /* 883 * COW mappings require pages in both parent 884 * and child to be set to read. 885 */ 886 make_migration_entry_read(&entry); 887 pte = swp_entry_to_pte(entry); 888 set_pte_at(src_mm, addr, src_pte, pte); 889 } 890 } 891 goto out_set_pte; 892 } 893 894 /* 895 * If it's a COW mapping, write protect it both 896 * in the parent and the child 897 */ 898 if (is_cow_mapping(vm_flags)) { 899 ptep_set_wrprotect(src_mm, addr, src_pte); 900 pte = pte_wrprotect(pte); 901 } 902 903 /* 904 * If it's a shared mapping, mark it clean in 905 * the child 906 */ 907 if (vm_flags & VM_SHARED) 908 pte = pte_mkclean(pte); 909 pte = pte_mkold(pte); 910 911 page = vm_normal_page(vma, addr, pte); 912 if (page) { 913 get_page(page); 914 page_dup_rmap(page); 915 if (PageAnon(page)) 916 rss[MM_ANONPAGES]++; 917 else 918 rss[MM_FILEPAGES]++; 919 } 920 921 out_set_pte: 922 set_pte_at(dst_mm, addr, dst_pte, pte); 923 return 0; 924 } 925 926 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 928 unsigned long addr, unsigned long end) 929 { 930 pte_t *orig_src_pte, *orig_dst_pte; 931 pte_t *src_pte, *dst_pte; 932 spinlock_t *src_ptl, *dst_ptl; 933 int progress = 0; 934 int rss[NR_MM_COUNTERS]; 935 swp_entry_t entry = (swp_entry_t){0}; 936 937 again: 938 init_rss_vec(rss); 939 940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 941 if (!dst_pte) 942 return -ENOMEM; 943 src_pte = pte_offset_map(src_pmd, addr); 944 src_ptl = pte_lockptr(src_mm, src_pmd); 945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 946 orig_src_pte = src_pte; 947 orig_dst_pte = dst_pte; 948 arch_enter_lazy_mmu_mode(); 949 950 do { 951 /* 952 * We are holding two locks at this point - either of them 953 * could generate latencies in another task on another CPU. 954 */ 955 if (progress >= 32) { 956 progress = 0; 957 if (need_resched() || 958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 959 break; 960 } 961 if (pte_none(*src_pte)) { 962 progress++; 963 continue; 964 } 965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 966 vma, addr, rss); 967 if (entry.val) 968 break; 969 progress += 8; 970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 971 972 arch_leave_lazy_mmu_mode(); 973 spin_unlock(src_ptl); 974 pte_unmap(orig_src_pte); 975 add_mm_rss_vec(dst_mm, rss); 976 pte_unmap_unlock(orig_dst_pte, dst_ptl); 977 cond_resched(); 978 979 if (entry.val) { 980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 981 return -ENOMEM; 982 progress = 0; 983 } 984 if (addr != end) 985 goto again; 986 return 0; 987 } 988 989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 991 unsigned long addr, unsigned long end) 992 { 993 pmd_t *src_pmd, *dst_pmd; 994 unsigned long next; 995 996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 997 if (!dst_pmd) 998 return -ENOMEM; 999 src_pmd = pmd_offset(src_pud, addr); 1000 do { 1001 next = pmd_addr_end(addr, end); 1002 if (pmd_trans_huge(*src_pmd)) { 1003 int err; 1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1005 err = copy_huge_pmd(dst_mm, src_mm, 1006 dst_pmd, src_pmd, addr, vma); 1007 if (err == -ENOMEM) 1008 return -ENOMEM; 1009 if (!err) 1010 continue; 1011 /* fall through */ 1012 } 1013 if (pmd_none_or_clear_bad(src_pmd)) 1014 continue; 1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1016 vma, addr, next)) 1017 return -ENOMEM; 1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1019 return 0; 1020 } 1021 1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1024 unsigned long addr, unsigned long end) 1025 { 1026 pud_t *src_pud, *dst_pud; 1027 unsigned long next; 1028 1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1030 if (!dst_pud) 1031 return -ENOMEM; 1032 src_pud = pud_offset(src_pgd, addr); 1033 do { 1034 next = pud_addr_end(addr, end); 1035 if (pud_none_or_clear_bad(src_pud)) 1036 continue; 1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1038 vma, addr, next)) 1039 return -ENOMEM; 1040 } while (dst_pud++, src_pud++, addr = next, addr != end); 1041 return 0; 1042 } 1043 1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1045 struct vm_area_struct *vma) 1046 { 1047 pgd_t *src_pgd, *dst_pgd; 1048 unsigned long next; 1049 unsigned long addr = vma->vm_start; 1050 unsigned long end = vma->vm_end; 1051 int ret; 1052 1053 /* 1054 * Don't copy ptes where a page fault will fill them correctly. 1055 * Fork becomes much lighter when there are big shared or private 1056 * readonly mappings. The tradeoff is that copy_page_range is more 1057 * efficient than faulting. 1058 */ 1059 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 1060 if (!vma->anon_vma) 1061 return 0; 1062 } 1063 1064 if (is_vm_hugetlb_page(vma)) 1065 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1066 1067 if (unlikely(is_pfn_mapping(vma))) { 1068 /* 1069 * We do not free on error cases below as remove_vma 1070 * gets called on error from higher level routine 1071 */ 1072 ret = track_pfn_vma_copy(vma); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 /* 1078 * We need to invalidate the secondary MMU mappings only when 1079 * there could be a permission downgrade on the ptes of the 1080 * parent mm. And a permission downgrade will only happen if 1081 * is_cow_mapping() returns true. 1082 */ 1083 if (is_cow_mapping(vma->vm_flags)) 1084 mmu_notifier_invalidate_range_start(src_mm, addr, end); 1085 1086 ret = 0; 1087 dst_pgd = pgd_offset(dst_mm, addr); 1088 src_pgd = pgd_offset(src_mm, addr); 1089 do { 1090 next = pgd_addr_end(addr, end); 1091 if (pgd_none_or_clear_bad(src_pgd)) 1092 continue; 1093 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1094 vma, addr, next))) { 1095 ret = -ENOMEM; 1096 break; 1097 } 1098 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1099 1100 if (is_cow_mapping(vma->vm_flags)) 1101 mmu_notifier_invalidate_range_end(src_mm, 1102 vma->vm_start, end); 1103 return ret; 1104 } 1105 1106 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1107 struct vm_area_struct *vma, pmd_t *pmd, 1108 unsigned long addr, unsigned long end, 1109 struct zap_details *details) 1110 { 1111 struct mm_struct *mm = tlb->mm; 1112 int force_flush = 0; 1113 int rss[NR_MM_COUNTERS]; 1114 spinlock_t *ptl; 1115 pte_t *start_pte; 1116 pte_t *pte; 1117 1118 again: 1119 init_rss_vec(rss); 1120 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1121 pte = start_pte; 1122 arch_enter_lazy_mmu_mode(); 1123 do { 1124 pte_t ptent = *pte; 1125 if (pte_none(ptent)) { 1126 continue; 1127 } 1128 1129 if (pte_present(ptent)) { 1130 struct page *page; 1131 1132 page = vm_normal_page(vma, addr, ptent); 1133 if (unlikely(details) && page) { 1134 /* 1135 * unmap_shared_mapping_pages() wants to 1136 * invalidate cache without truncating: 1137 * unmap shared but keep private pages. 1138 */ 1139 if (details->check_mapping && 1140 details->check_mapping != page->mapping) 1141 continue; 1142 /* 1143 * Each page->index must be checked when 1144 * invalidating or truncating nonlinear. 1145 */ 1146 if (details->nonlinear_vma && 1147 (page->index < details->first_index || 1148 page->index > details->last_index)) 1149 continue; 1150 } 1151 ptent = ptep_get_and_clear_full(mm, addr, pte, 1152 tlb->fullmm); 1153 tlb_remove_tlb_entry(tlb, pte, addr); 1154 if (unlikely(!page)) 1155 continue; 1156 if (unlikely(details) && details->nonlinear_vma 1157 && linear_page_index(details->nonlinear_vma, 1158 addr) != page->index) 1159 set_pte_at(mm, addr, pte, 1160 pgoff_to_pte(page->index)); 1161 if (PageAnon(page)) 1162 rss[MM_ANONPAGES]--; 1163 else { 1164 if (pte_dirty(ptent)) 1165 set_page_dirty(page); 1166 if (pte_young(ptent) && 1167 likely(!VM_SequentialReadHint(vma))) 1168 mark_page_accessed(page); 1169 rss[MM_FILEPAGES]--; 1170 } 1171 page_remove_rmap(page); 1172 if (unlikely(page_mapcount(page) < 0)) 1173 print_bad_pte(vma, addr, ptent, page); 1174 force_flush = !__tlb_remove_page(tlb, page); 1175 if (force_flush) 1176 break; 1177 continue; 1178 } 1179 /* 1180 * If details->check_mapping, we leave swap entries; 1181 * if details->nonlinear_vma, we leave file entries. 1182 */ 1183 if (unlikely(details)) 1184 continue; 1185 if (pte_file(ptent)) { 1186 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1187 print_bad_pte(vma, addr, ptent, NULL); 1188 } else { 1189 swp_entry_t entry = pte_to_swp_entry(ptent); 1190 1191 if (!non_swap_entry(entry)) 1192 rss[MM_SWAPENTS]--; 1193 if (unlikely(!free_swap_and_cache(entry))) 1194 print_bad_pte(vma, addr, ptent, NULL); 1195 } 1196 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1197 } while (pte++, addr += PAGE_SIZE, addr != end); 1198 1199 add_mm_rss_vec(mm, rss); 1200 arch_leave_lazy_mmu_mode(); 1201 pte_unmap_unlock(start_pte, ptl); 1202 1203 /* 1204 * mmu_gather ran out of room to batch pages, we break out of 1205 * the PTE lock to avoid doing the potential expensive TLB invalidate 1206 * and page-free while holding it. 1207 */ 1208 if (force_flush) { 1209 force_flush = 0; 1210 tlb_flush_mmu(tlb); 1211 if (addr != end) 1212 goto again; 1213 } 1214 1215 return addr; 1216 } 1217 1218 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1219 struct vm_area_struct *vma, pud_t *pud, 1220 unsigned long addr, unsigned long end, 1221 struct zap_details *details) 1222 { 1223 pmd_t *pmd; 1224 unsigned long next; 1225 1226 pmd = pmd_offset(pud, addr); 1227 do { 1228 next = pmd_addr_end(addr, end); 1229 if (pmd_trans_huge(*pmd)) { 1230 if (next-addr != HPAGE_PMD_SIZE) { 1231 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1232 split_huge_page_pmd(vma->vm_mm, pmd); 1233 } else if (zap_huge_pmd(tlb, vma, pmd)) 1234 continue; 1235 /* fall through */ 1236 } 1237 if (pmd_none_or_clear_bad(pmd)) 1238 continue; 1239 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1240 cond_resched(); 1241 } while (pmd++, addr = next, addr != end); 1242 1243 return addr; 1244 } 1245 1246 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1247 struct vm_area_struct *vma, pgd_t *pgd, 1248 unsigned long addr, unsigned long end, 1249 struct zap_details *details) 1250 { 1251 pud_t *pud; 1252 unsigned long next; 1253 1254 pud = pud_offset(pgd, addr); 1255 do { 1256 next = pud_addr_end(addr, end); 1257 if (pud_none_or_clear_bad(pud)) 1258 continue; 1259 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1260 } while (pud++, addr = next, addr != end); 1261 1262 return addr; 1263 } 1264 1265 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1266 struct vm_area_struct *vma, 1267 unsigned long addr, unsigned long end, 1268 struct zap_details *details) 1269 { 1270 pgd_t *pgd; 1271 unsigned long next; 1272 1273 if (details && !details->check_mapping && !details->nonlinear_vma) 1274 details = NULL; 1275 1276 BUG_ON(addr >= end); 1277 mem_cgroup_uncharge_start(); 1278 tlb_start_vma(tlb, vma); 1279 pgd = pgd_offset(vma->vm_mm, addr); 1280 do { 1281 next = pgd_addr_end(addr, end); 1282 if (pgd_none_or_clear_bad(pgd)) 1283 continue; 1284 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1285 } while (pgd++, addr = next, addr != end); 1286 tlb_end_vma(tlb, vma); 1287 mem_cgroup_uncharge_end(); 1288 1289 return addr; 1290 } 1291 1292 #ifdef CONFIG_PREEMPT 1293 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1294 #else 1295 /* No preempt: go for improved straight-line efficiency */ 1296 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1297 #endif 1298 1299 /** 1300 * unmap_vmas - unmap a range of memory covered by a list of vma's 1301 * @tlb: address of the caller's struct mmu_gather 1302 * @vma: the starting vma 1303 * @start_addr: virtual address at which to start unmapping 1304 * @end_addr: virtual address at which to end unmapping 1305 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1306 * @details: details of nonlinear truncation or shared cache invalidation 1307 * 1308 * Returns the end address of the unmapping (restart addr if interrupted). 1309 * 1310 * Unmap all pages in the vma list. 1311 * 1312 * We aim to not hold locks for too long (for scheduling latency reasons). 1313 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1314 * return the ending mmu_gather to the caller. 1315 * 1316 * Only addresses between `start' and `end' will be unmapped. 1317 * 1318 * The VMA list must be sorted in ascending virtual address order. 1319 * 1320 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1321 * range after unmap_vmas() returns. So the only responsibility here is to 1322 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1323 * drops the lock and schedules. 1324 */ 1325 unsigned long unmap_vmas(struct mmu_gather *tlb, 1326 struct vm_area_struct *vma, unsigned long start_addr, 1327 unsigned long end_addr, unsigned long *nr_accounted, 1328 struct zap_details *details) 1329 { 1330 unsigned long start = start_addr; 1331 struct mm_struct *mm = vma->vm_mm; 1332 1333 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1334 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1335 unsigned long end; 1336 1337 start = max(vma->vm_start, start_addr); 1338 if (start >= vma->vm_end) 1339 continue; 1340 end = min(vma->vm_end, end_addr); 1341 if (end <= vma->vm_start) 1342 continue; 1343 1344 if (vma->vm_flags & VM_ACCOUNT) 1345 *nr_accounted += (end - start) >> PAGE_SHIFT; 1346 1347 if (unlikely(is_pfn_mapping(vma))) 1348 untrack_pfn_vma(vma, 0, 0); 1349 1350 while (start != end) { 1351 if (unlikely(is_vm_hugetlb_page(vma))) { 1352 /* 1353 * It is undesirable to test vma->vm_file as it 1354 * should be non-null for valid hugetlb area. 1355 * However, vm_file will be NULL in the error 1356 * cleanup path of do_mmap_pgoff. When 1357 * hugetlbfs ->mmap method fails, 1358 * do_mmap_pgoff() nullifies vma->vm_file 1359 * before calling this function to clean up. 1360 * Since no pte has actually been setup, it is 1361 * safe to do nothing in this case. 1362 */ 1363 if (vma->vm_file) 1364 unmap_hugepage_range(vma, start, end, NULL); 1365 1366 start = end; 1367 } else 1368 start = unmap_page_range(tlb, vma, start, end, details); 1369 } 1370 } 1371 1372 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1373 return start; /* which is now the end (or restart) address */ 1374 } 1375 1376 /** 1377 * zap_page_range - remove user pages in a given range 1378 * @vma: vm_area_struct holding the applicable pages 1379 * @address: starting address of pages to zap 1380 * @size: number of bytes to zap 1381 * @details: details of nonlinear truncation or shared cache invalidation 1382 */ 1383 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1384 unsigned long size, struct zap_details *details) 1385 { 1386 struct mm_struct *mm = vma->vm_mm; 1387 struct mmu_gather tlb; 1388 unsigned long end = address + size; 1389 unsigned long nr_accounted = 0; 1390 1391 lru_add_drain(); 1392 tlb_gather_mmu(&tlb, mm, 0); 1393 update_hiwater_rss(mm); 1394 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1395 tlb_finish_mmu(&tlb, address, end); 1396 return end; 1397 } 1398 1399 /** 1400 * zap_vma_ptes - remove ptes mapping the vma 1401 * @vma: vm_area_struct holding ptes to be zapped 1402 * @address: starting address of pages to zap 1403 * @size: number of bytes to zap 1404 * 1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1406 * 1407 * The entire address range must be fully contained within the vma. 1408 * 1409 * Returns 0 if successful. 1410 */ 1411 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1412 unsigned long size) 1413 { 1414 if (address < vma->vm_start || address + size > vma->vm_end || 1415 !(vma->vm_flags & VM_PFNMAP)) 1416 return -1; 1417 zap_page_range(vma, address, size, NULL); 1418 return 0; 1419 } 1420 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1421 1422 /** 1423 * follow_page - look up a page descriptor from a user-virtual address 1424 * @vma: vm_area_struct mapping @address 1425 * @address: virtual address to look up 1426 * @flags: flags modifying lookup behaviour 1427 * 1428 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1429 * 1430 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1431 * an error pointer if there is a mapping to something not represented 1432 * by a page descriptor (see also vm_normal_page()). 1433 */ 1434 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1435 unsigned int flags) 1436 { 1437 pgd_t *pgd; 1438 pud_t *pud; 1439 pmd_t *pmd; 1440 pte_t *ptep, pte; 1441 spinlock_t *ptl; 1442 struct page *page; 1443 struct mm_struct *mm = vma->vm_mm; 1444 1445 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1446 if (!IS_ERR(page)) { 1447 BUG_ON(flags & FOLL_GET); 1448 goto out; 1449 } 1450 1451 page = NULL; 1452 pgd = pgd_offset(mm, address); 1453 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1454 goto no_page_table; 1455 1456 pud = pud_offset(pgd, address); 1457 if (pud_none(*pud)) 1458 goto no_page_table; 1459 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1460 BUG_ON(flags & FOLL_GET); 1461 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1462 goto out; 1463 } 1464 if (unlikely(pud_bad(*pud))) 1465 goto no_page_table; 1466 1467 pmd = pmd_offset(pud, address); 1468 if (pmd_none(*pmd)) 1469 goto no_page_table; 1470 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1471 BUG_ON(flags & FOLL_GET); 1472 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1473 goto out; 1474 } 1475 if (pmd_trans_huge(*pmd)) { 1476 if (flags & FOLL_SPLIT) { 1477 split_huge_page_pmd(mm, pmd); 1478 goto split_fallthrough; 1479 } 1480 spin_lock(&mm->page_table_lock); 1481 if (likely(pmd_trans_huge(*pmd))) { 1482 if (unlikely(pmd_trans_splitting(*pmd))) { 1483 spin_unlock(&mm->page_table_lock); 1484 wait_split_huge_page(vma->anon_vma, pmd); 1485 } else { 1486 page = follow_trans_huge_pmd(mm, address, 1487 pmd, flags); 1488 spin_unlock(&mm->page_table_lock); 1489 goto out; 1490 } 1491 } else 1492 spin_unlock(&mm->page_table_lock); 1493 /* fall through */ 1494 } 1495 split_fallthrough: 1496 if (unlikely(pmd_bad(*pmd))) 1497 goto no_page_table; 1498 1499 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1500 1501 pte = *ptep; 1502 if (!pte_present(pte)) 1503 goto no_page; 1504 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1505 goto unlock; 1506 1507 page = vm_normal_page(vma, address, pte); 1508 if (unlikely(!page)) { 1509 if ((flags & FOLL_DUMP) || 1510 !is_zero_pfn(pte_pfn(pte))) 1511 goto bad_page; 1512 page = pte_page(pte); 1513 } 1514 1515 if (flags & FOLL_GET) 1516 get_page(page); 1517 if (flags & FOLL_TOUCH) { 1518 if ((flags & FOLL_WRITE) && 1519 !pte_dirty(pte) && !PageDirty(page)) 1520 set_page_dirty(page); 1521 /* 1522 * pte_mkyoung() would be more correct here, but atomic care 1523 * is needed to avoid losing the dirty bit: it is easier to use 1524 * mark_page_accessed(). 1525 */ 1526 mark_page_accessed(page); 1527 } 1528 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1529 /* 1530 * The preliminary mapping check is mainly to avoid the 1531 * pointless overhead of lock_page on the ZERO_PAGE 1532 * which might bounce very badly if there is contention. 1533 * 1534 * If the page is already locked, we don't need to 1535 * handle it now - vmscan will handle it later if and 1536 * when it attempts to reclaim the page. 1537 */ 1538 if (page->mapping && trylock_page(page)) { 1539 lru_add_drain(); /* push cached pages to LRU */ 1540 /* 1541 * Because we lock page here and migration is 1542 * blocked by the pte's page reference, we need 1543 * only check for file-cache page truncation. 1544 */ 1545 if (page->mapping) 1546 mlock_vma_page(page); 1547 unlock_page(page); 1548 } 1549 } 1550 unlock: 1551 pte_unmap_unlock(ptep, ptl); 1552 out: 1553 return page; 1554 1555 bad_page: 1556 pte_unmap_unlock(ptep, ptl); 1557 return ERR_PTR(-EFAULT); 1558 1559 no_page: 1560 pte_unmap_unlock(ptep, ptl); 1561 if (!pte_none(pte)) 1562 return page; 1563 1564 no_page_table: 1565 /* 1566 * When core dumping an enormous anonymous area that nobody 1567 * has touched so far, we don't want to allocate unnecessary pages or 1568 * page tables. Return error instead of NULL to skip handle_mm_fault, 1569 * then get_dump_page() will return NULL to leave a hole in the dump. 1570 * But we can only make this optimization where a hole would surely 1571 * be zero-filled if handle_mm_fault() actually did handle it. 1572 */ 1573 if ((flags & FOLL_DUMP) && 1574 (!vma->vm_ops || !vma->vm_ops->fault)) 1575 return ERR_PTR(-EFAULT); 1576 return page; 1577 } 1578 1579 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1580 { 1581 return stack_guard_page_start(vma, addr) || 1582 stack_guard_page_end(vma, addr+PAGE_SIZE); 1583 } 1584 1585 /** 1586 * __get_user_pages() - pin user pages in memory 1587 * @tsk: task_struct of target task 1588 * @mm: mm_struct of target mm 1589 * @start: starting user address 1590 * @nr_pages: number of pages from start to pin 1591 * @gup_flags: flags modifying pin behaviour 1592 * @pages: array that receives pointers to the pages pinned. 1593 * Should be at least nr_pages long. Or NULL, if caller 1594 * only intends to ensure the pages are faulted in. 1595 * @vmas: array of pointers to vmas corresponding to each page. 1596 * Or NULL if the caller does not require them. 1597 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1598 * 1599 * Returns number of pages pinned. This may be fewer than the number 1600 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1601 * were pinned, returns -errno. Each page returned must be released 1602 * with a put_page() call when it is finished with. vmas will only 1603 * remain valid while mmap_sem is held. 1604 * 1605 * Must be called with mmap_sem held for read or write. 1606 * 1607 * __get_user_pages walks a process's page tables and takes a reference to 1608 * each struct page that each user address corresponds to at a given 1609 * instant. That is, it takes the page that would be accessed if a user 1610 * thread accesses the given user virtual address at that instant. 1611 * 1612 * This does not guarantee that the page exists in the user mappings when 1613 * __get_user_pages returns, and there may even be a completely different 1614 * page there in some cases (eg. if mmapped pagecache has been invalidated 1615 * and subsequently re faulted). However it does guarantee that the page 1616 * won't be freed completely. And mostly callers simply care that the page 1617 * contains data that was valid *at some point in time*. Typically, an IO 1618 * or similar operation cannot guarantee anything stronger anyway because 1619 * locks can't be held over the syscall boundary. 1620 * 1621 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1622 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1623 * appropriate) must be called after the page is finished with, and 1624 * before put_page is called. 1625 * 1626 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1627 * or mmap_sem contention, and if waiting is needed to pin all pages, 1628 * *@nonblocking will be set to 0. 1629 * 1630 * In most cases, get_user_pages or get_user_pages_fast should be used 1631 * instead of __get_user_pages. __get_user_pages should be used only if 1632 * you need some special @gup_flags. 1633 */ 1634 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1635 unsigned long start, int nr_pages, unsigned int gup_flags, 1636 struct page **pages, struct vm_area_struct **vmas, 1637 int *nonblocking) 1638 { 1639 int i; 1640 unsigned long vm_flags; 1641 1642 if (nr_pages <= 0) 1643 return 0; 1644 1645 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1646 1647 /* 1648 * Require read or write permissions. 1649 * If FOLL_FORCE is set, we only require the "MAY" flags. 1650 */ 1651 vm_flags = (gup_flags & FOLL_WRITE) ? 1652 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1653 vm_flags &= (gup_flags & FOLL_FORCE) ? 1654 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1655 i = 0; 1656 1657 do { 1658 struct vm_area_struct *vma; 1659 1660 vma = find_extend_vma(mm, start); 1661 if (!vma && in_gate_area(mm, start)) { 1662 unsigned long pg = start & PAGE_MASK; 1663 pgd_t *pgd; 1664 pud_t *pud; 1665 pmd_t *pmd; 1666 pte_t *pte; 1667 1668 /* user gate pages are read-only */ 1669 if (gup_flags & FOLL_WRITE) 1670 return i ? : -EFAULT; 1671 if (pg > TASK_SIZE) 1672 pgd = pgd_offset_k(pg); 1673 else 1674 pgd = pgd_offset_gate(mm, pg); 1675 BUG_ON(pgd_none(*pgd)); 1676 pud = pud_offset(pgd, pg); 1677 BUG_ON(pud_none(*pud)); 1678 pmd = pmd_offset(pud, pg); 1679 if (pmd_none(*pmd)) 1680 return i ? : -EFAULT; 1681 VM_BUG_ON(pmd_trans_huge(*pmd)); 1682 pte = pte_offset_map(pmd, pg); 1683 if (pte_none(*pte)) { 1684 pte_unmap(pte); 1685 return i ? : -EFAULT; 1686 } 1687 vma = get_gate_vma(mm); 1688 if (pages) { 1689 struct page *page; 1690 1691 page = vm_normal_page(vma, start, *pte); 1692 if (!page) { 1693 if (!(gup_flags & FOLL_DUMP) && 1694 is_zero_pfn(pte_pfn(*pte))) 1695 page = pte_page(*pte); 1696 else { 1697 pte_unmap(pte); 1698 return i ? : -EFAULT; 1699 } 1700 } 1701 pages[i] = page; 1702 get_page(page); 1703 } 1704 pte_unmap(pte); 1705 goto next_page; 1706 } 1707 1708 if (!vma || 1709 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1710 !(vm_flags & vma->vm_flags)) 1711 return i ? : -EFAULT; 1712 1713 if (is_vm_hugetlb_page(vma)) { 1714 i = follow_hugetlb_page(mm, vma, pages, vmas, 1715 &start, &nr_pages, i, gup_flags); 1716 continue; 1717 } 1718 1719 do { 1720 struct page *page; 1721 unsigned int foll_flags = gup_flags; 1722 1723 /* 1724 * If we have a pending SIGKILL, don't keep faulting 1725 * pages and potentially allocating memory. 1726 */ 1727 if (unlikely(fatal_signal_pending(current))) 1728 return i ? i : -ERESTARTSYS; 1729 1730 cond_resched(); 1731 while (!(page = follow_page(vma, start, foll_flags))) { 1732 int ret; 1733 unsigned int fault_flags = 0; 1734 1735 /* For mlock, just skip the stack guard page. */ 1736 if (foll_flags & FOLL_MLOCK) { 1737 if (stack_guard_page(vma, start)) 1738 goto next_page; 1739 } 1740 if (foll_flags & FOLL_WRITE) 1741 fault_flags |= FAULT_FLAG_WRITE; 1742 if (nonblocking) 1743 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1744 if (foll_flags & FOLL_NOWAIT) 1745 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1746 1747 ret = handle_mm_fault(mm, vma, start, 1748 fault_flags); 1749 1750 if (ret & VM_FAULT_ERROR) { 1751 if (ret & VM_FAULT_OOM) 1752 return i ? i : -ENOMEM; 1753 if (ret & (VM_FAULT_HWPOISON | 1754 VM_FAULT_HWPOISON_LARGE)) { 1755 if (i) 1756 return i; 1757 else if (gup_flags & FOLL_HWPOISON) 1758 return -EHWPOISON; 1759 else 1760 return -EFAULT; 1761 } 1762 if (ret & VM_FAULT_SIGBUS) 1763 return i ? i : -EFAULT; 1764 BUG(); 1765 } 1766 1767 if (tsk) { 1768 if (ret & VM_FAULT_MAJOR) 1769 tsk->maj_flt++; 1770 else 1771 tsk->min_flt++; 1772 } 1773 1774 if (ret & VM_FAULT_RETRY) { 1775 if (nonblocking) 1776 *nonblocking = 0; 1777 return i; 1778 } 1779 1780 /* 1781 * The VM_FAULT_WRITE bit tells us that 1782 * do_wp_page has broken COW when necessary, 1783 * even if maybe_mkwrite decided not to set 1784 * pte_write. We can thus safely do subsequent 1785 * page lookups as if they were reads. But only 1786 * do so when looping for pte_write is futile: 1787 * in some cases userspace may also be wanting 1788 * to write to the gotten user page, which a 1789 * read fault here might prevent (a readonly 1790 * page might get reCOWed by userspace write). 1791 */ 1792 if ((ret & VM_FAULT_WRITE) && 1793 !(vma->vm_flags & VM_WRITE)) 1794 foll_flags &= ~FOLL_WRITE; 1795 1796 cond_resched(); 1797 } 1798 if (IS_ERR(page)) 1799 return i ? i : PTR_ERR(page); 1800 if (pages) { 1801 pages[i] = page; 1802 1803 flush_anon_page(vma, page, start); 1804 flush_dcache_page(page); 1805 } 1806 next_page: 1807 if (vmas) 1808 vmas[i] = vma; 1809 i++; 1810 start += PAGE_SIZE; 1811 nr_pages--; 1812 } while (nr_pages && start < vma->vm_end); 1813 } while (nr_pages); 1814 return i; 1815 } 1816 EXPORT_SYMBOL(__get_user_pages); 1817 1818 /** 1819 * get_user_pages() - pin user pages in memory 1820 * @tsk: the task_struct to use for page fault accounting, or 1821 * NULL if faults are not to be recorded. 1822 * @mm: mm_struct of target mm 1823 * @start: starting user address 1824 * @nr_pages: number of pages from start to pin 1825 * @write: whether pages will be written to by the caller 1826 * @force: whether to force write access even if user mapping is 1827 * readonly. This will result in the page being COWed even 1828 * in MAP_SHARED mappings. You do not want this. 1829 * @pages: array that receives pointers to the pages pinned. 1830 * Should be at least nr_pages long. Or NULL, if caller 1831 * only intends to ensure the pages are faulted in. 1832 * @vmas: array of pointers to vmas corresponding to each page. 1833 * Or NULL if the caller does not require them. 1834 * 1835 * Returns number of pages pinned. This may be fewer than the number 1836 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1837 * were pinned, returns -errno. Each page returned must be released 1838 * with a put_page() call when it is finished with. vmas will only 1839 * remain valid while mmap_sem is held. 1840 * 1841 * Must be called with mmap_sem held for read or write. 1842 * 1843 * get_user_pages walks a process's page tables and takes a reference to 1844 * each struct page that each user address corresponds to at a given 1845 * instant. That is, it takes the page that would be accessed if a user 1846 * thread accesses the given user virtual address at that instant. 1847 * 1848 * This does not guarantee that the page exists in the user mappings when 1849 * get_user_pages returns, and there may even be a completely different 1850 * page there in some cases (eg. if mmapped pagecache has been invalidated 1851 * and subsequently re faulted). However it does guarantee that the page 1852 * won't be freed completely. And mostly callers simply care that the page 1853 * contains data that was valid *at some point in time*. Typically, an IO 1854 * or similar operation cannot guarantee anything stronger anyway because 1855 * locks can't be held over the syscall boundary. 1856 * 1857 * If write=0, the page must not be written to. If the page is written to, 1858 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1859 * after the page is finished with, and before put_page is called. 1860 * 1861 * get_user_pages is typically used for fewer-copy IO operations, to get a 1862 * handle on the memory by some means other than accesses via the user virtual 1863 * addresses. The pages may be submitted for DMA to devices or accessed via 1864 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1865 * use the correct cache flushing APIs. 1866 * 1867 * See also get_user_pages_fast, for performance critical applications. 1868 */ 1869 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1870 unsigned long start, int nr_pages, int write, int force, 1871 struct page **pages, struct vm_area_struct **vmas) 1872 { 1873 int flags = FOLL_TOUCH; 1874 1875 if (pages) 1876 flags |= FOLL_GET; 1877 if (write) 1878 flags |= FOLL_WRITE; 1879 if (force) 1880 flags |= FOLL_FORCE; 1881 1882 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1883 NULL); 1884 } 1885 EXPORT_SYMBOL(get_user_pages); 1886 1887 /** 1888 * get_dump_page() - pin user page in memory while writing it to core dump 1889 * @addr: user address 1890 * 1891 * Returns struct page pointer of user page pinned for dump, 1892 * to be freed afterwards by page_cache_release() or put_page(). 1893 * 1894 * Returns NULL on any kind of failure - a hole must then be inserted into 1895 * the corefile, to preserve alignment with its headers; and also returns 1896 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1897 * allowing a hole to be left in the corefile to save diskspace. 1898 * 1899 * Called without mmap_sem, but after all other threads have been killed. 1900 */ 1901 #ifdef CONFIG_ELF_CORE 1902 struct page *get_dump_page(unsigned long addr) 1903 { 1904 struct vm_area_struct *vma; 1905 struct page *page; 1906 1907 if (__get_user_pages(current, current->mm, addr, 1, 1908 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1909 NULL) < 1) 1910 return NULL; 1911 flush_cache_page(vma, addr, page_to_pfn(page)); 1912 return page; 1913 } 1914 #endif /* CONFIG_ELF_CORE */ 1915 1916 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1917 spinlock_t **ptl) 1918 { 1919 pgd_t * pgd = pgd_offset(mm, addr); 1920 pud_t * pud = pud_alloc(mm, pgd, addr); 1921 if (pud) { 1922 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1923 if (pmd) { 1924 VM_BUG_ON(pmd_trans_huge(*pmd)); 1925 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1926 } 1927 } 1928 return NULL; 1929 } 1930 1931 /* 1932 * This is the old fallback for page remapping. 1933 * 1934 * For historical reasons, it only allows reserved pages. Only 1935 * old drivers should use this, and they needed to mark their 1936 * pages reserved for the old functions anyway. 1937 */ 1938 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1939 struct page *page, pgprot_t prot) 1940 { 1941 struct mm_struct *mm = vma->vm_mm; 1942 int retval; 1943 pte_t *pte; 1944 spinlock_t *ptl; 1945 1946 retval = -EINVAL; 1947 if (PageAnon(page)) 1948 goto out; 1949 retval = -ENOMEM; 1950 flush_dcache_page(page); 1951 pte = get_locked_pte(mm, addr, &ptl); 1952 if (!pte) 1953 goto out; 1954 retval = -EBUSY; 1955 if (!pte_none(*pte)) 1956 goto out_unlock; 1957 1958 /* Ok, finally just insert the thing.. */ 1959 get_page(page); 1960 inc_mm_counter_fast(mm, MM_FILEPAGES); 1961 page_add_file_rmap(page); 1962 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1963 1964 retval = 0; 1965 pte_unmap_unlock(pte, ptl); 1966 return retval; 1967 out_unlock: 1968 pte_unmap_unlock(pte, ptl); 1969 out: 1970 return retval; 1971 } 1972 1973 /** 1974 * vm_insert_page - insert single page into user vma 1975 * @vma: user vma to map to 1976 * @addr: target user address of this page 1977 * @page: source kernel page 1978 * 1979 * This allows drivers to insert individual pages they've allocated 1980 * into a user vma. 1981 * 1982 * The page has to be a nice clean _individual_ kernel allocation. 1983 * If you allocate a compound page, you need to have marked it as 1984 * such (__GFP_COMP), or manually just split the page up yourself 1985 * (see split_page()). 1986 * 1987 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1988 * took an arbitrary page protection parameter. This doesn't allow 1989 * that. Your vma protection will have to be set up correctly, which 1990 * means that if you want a shared writable mapping, you'd better 1991 * ask for a shared writable mapping! 1992 * 1993 * The page does not need to be reserved. 1994 */ 1995 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1996 struct page *page) 1997 { 1998 if (addr < vma->vm_start || addr >= vma->vm_end) 1999 return -EFAULT; 2000 if (!page_count(page)) 2001 return -EINVAL; 2002 vma->vm_flags |= VM_INSERTPAGE; 2003 return insert_page(vma, addr, page, vma->vm_page_prot); 2004 } 2005 EXPORT_SYMBOL(vm_insert_page); 2006 2007 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2008 unsigned long pfn, pgprot_t prot) 2009 { 2010 struct mm_struct *mm = vma->vm_mm; 2011 int retval; 2012 pte_t *pte, entry; 2013 spinlock_t *ptl; 2014 2015 retval = -ENOMEM; 2016 pte = get_locked_pte(mm, addr, &ptl); 2017 if (!pte) 2018 goto out; 2019 retval = -EBUSY; 2020 if (!pte_none(*pte)) 2021 goto out_unlock; 2022 2023 /* Ok, finally just insert the thing.. */ 2024 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2025 set_pte_at(mm, addr, pte, entry); 2026 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2027 2028 retval = 0; 2029 out_unlock: 2030 pte_unmap_unlock(pte, ptl); 2031 out: 2032 return retval; 2033 } 2034 2035 /** 2036 * vm_insert_pfn - insert single pfn into user vma 2037 * @vma: user vma to map to 2038 * @addr: target user address of this page 2039 * @pfn: source kernel pfn 2040 * 2041 * Similar to vm_inert_page, this allows drivers to insert individual pages 2042 * they've allocated into a user vma. Same comments apply. 2043 * 2044 * This function should only be called from a vm_ops->fault handler, and 2045 * in that case the handler should return NULL. 2046 * 2047 * vma cannot be a COW mapping. 2048 * 2049 * As this is called only for pages that do not currently exist, we 2050 * do not need to flush old virtual caches or the TLB. 2051 */ 2052 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2053 unsigned long pfn) 2054 { 2055 int ret; 2056 pgprot_t pgprot = vma->vm_page_prot; 2057 /* 2058 * Technically, architectures with pte_special can avoid all these 2059 * restrictions (same for remap_pfn_range). However we would like 2060 * consistency in testing and feature parity among all, so we should 2061 * try to keep these invariants in place for everybody. 2062 */ 2063 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2064 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2065 (VM_PFNMAP|VM_MIXEDMAP)); 2066 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2067 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2068 2069 if (addr < vma->vm_start || addr >= vma->vm_end) 2070 return -EFAULT; 2071 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 2072 return -EINVAL; 2073 2074 ret = insert_pfn(vma, addr, pfn, pgprot); 2075 2076 if (ret) 2077 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 2078 2079 return ret; 2080 } 2081 EXPORT_SYMBOL(vm_insert_pfn); 2082 2083 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2084 unsigned long pfn) 2085 { 2086 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2087 2088 if (addr < vma->vm_start || addr >= vma->vm_end) 2089 return -EFAULT; 2090 2091 /* 2092 * If we don't have pte special, then we have to use the pfn_valid() 2093 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2094 * refcount the page if pfn_valid is true (hence insert_page rather 2095 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2096 * without pte special, it would there be refcounted as a normal page. 2097 */ 2098 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2099 struct page *page; 2100 2101 page = pfn_to_page(pfn); 2102 return insert_page(vma, addr, page, vma->vm_page_prot); 2103 } 2104 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2105 } 2106 EXPORT_SYMBOL(vm_insert_mixed); 2107 2108 /* 2109 * maps a range of physical memory into the requested pages. the old 2110 * mappings are removed. any references to nonexistent pages results 2111 * in null mappings (currently treated as "copy-on-access") 2112 */ 2113 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2114 unsigned long addr, unsigned long end, 2115 unsigned long pfn, pgprot_t prot) 2116 { 2117 pte_t *pte; 2118 spinlock_t *ptl; 2119 2120 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2121 if (!pte) 2122 return -ENOMEM; 2123 arch_enter_lazy_mmu_mode(); 2124 do { 2125 BUG_ON(!pte_none(*pte)); 2126 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2127 pfn++; 2128 } while (pte++, addr += PAGE_SIZE, addr != end); 2129 arch_leave_lazy_mmu_mode(); 2130 pte_unmap_unlock(pte - 1, ptl); 2131 return 0; 2132 } 2133 2134 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2135 unsigned long addr, unsigned long end, 2136 unsigned long pfn, pgprot_t prot) 2137 { 2138 pmd_t *pmd; 2139 unsigned long next; 2140 2141 pfn -= addr >> PAGE_SHIFT; 2142 pmd = pmd_alloc(mm, pud, addr); 2143 if (!pmd) 2144 return -ENOMEM; 2145 VM_BUG_ON(pmd_trans_huge(*pmd)); 2146 do { 2147 next = pmd_addr_end(addr, end); 2148 if (remap_pte_range(mm, pmd, addr, next, 2149 pfn + (addr >> PAGE_SHIFT), prot)) 2150 return -ENOMEM; 2151 } while (pmd++, addr = next, addr != end); 2152 return 0; 2153 } 2154 2155 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2156 unsigned long addr, unsigned long end, 2157 unsigned long pfn, pgprot_t prot) 2158 { 2159 pud_t *pud; 2160 unsigned long next; 2161 2162 pfn -= addr >> PAGE_SHIFT; 2163 pud = pud_alloc(mm, pgd, addr); 2164 if (!pud) 2165 return -ENOMEM; 2166 do { 2167 next = pud_addr_end(addr, end); 2168 if (remap_pmd_range(mm, pud, addr, next, 2169 pfn + (addr >> PAGE_SHIFT), prot)) 2170 return -ENOMEM; 2171 } while (pud++, addr = next, addr != end); 2172 return 0; 2173 } 2174 2175 /** 2176 * remap_pfn_range - remap kernel memory to userspace 2177 * @vma: user vma to map to 2178 * @addr: target user address to start at 2179 * @pfn: physical address of kernel memory 2180 * @size: size of map area 2181 * @prot: page protection flags for this mapping 2182 * 2183 * Note: this is only safe if the mm semaphore is held when called. 2184 */ 2185 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2186 unsigned long pfn, unsigned long size, pgprot_t prot) 2187 { 2188 pgd_t *pgd; 2189 unsigned long next; 2190 unsigned long end = addr + PAGE_ALIGN(size); 2191 struct mm_struct *mm = vma->vm_mm; 2192 int err; 2193 2194 /* 2195 * Physically remapped pages are special. Tell the 2196 * rest of the world about it: 2197 * VM_IO tells people not to look at these pages 2198 * (accesses can have side effects). 2199 * VM_RESERVED is specified all over the place, because 2200 * in 2.4 it kept swapout's vma scan off this vma; but 2201 * in 2.6 the LRU scan won't even find its pages, so this 2202 * flag means no more than count its pages in reserved_vm, 2203 * and omit it from core dump, even when VM_IO turned off. 2204 * VM_PFNMAP tells the core MM that the base pages are just 2205 * raw PFN mappings, and do not have a "struct page" associated 2206 * with them. 2207 * 2208 * There's a horrible special case to handle copy-on-write 2209 * behaviour that some programs depend on. We mark the "original" 2210 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2211 */ 2212 if (addr == vma->vm_start && end == vma->vm_end) { 2213 vma->vm_pgoff = pfn; 2214 vma->vm_flags |= VM_PFN_AT_MMAP; 2215 } else if (is_cow_mapping(vma->vm_flags)) 2216 return -EINVAL; 2217 2218 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2219 2220 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2221 if (err) { 2222 /* 2223 * To indicate that track_pfn related cleanup is not 2224 * needed from higher level routine calling unmap_vmas 2225 */ 2226 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2227 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2228 return -EINVAL; 2229 } 2230 2231 BUG_ON(addr >= end); 2232 pfn -= addr >> PAGE_SHIFT; 2233 pgd = pgd_offset(mm, addr); 2234 flush_cache_range(vma, addr, end); 2235 do { 2236 next = pgd_addr_end(addr, end); 2237 err = remap_pud_range(mm, pgd, addr, next, 2238 pfn + (addr >> PAGE_SHIFT), prot); 2239 if (err) 2240 break; 2241 } while (pgd++, addr = next, addr != end); 2242 2243 if (err) 2244 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2245 2246 return err; 2247 } 2248 EXPORT_SYMBOL(remap_pfn_range); 2249 2250 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2251 unsigned long addr, unsigned long end, 2252 pte_fn_t fn, void *data) 2253 { 2254 pte_t *pte; 2255 int err; 2256 pgtable_t token; 2257 spinlock_t *uninitialized_var(ptl); 2258 2259 pte = (mm == &init_mm) ? 2260 pte_alloc_kernel(pmd, addr) : 2261 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2262 if (!pte) 2263 return -ENOMEM; 2264 2265 BUG_ON(pmd_huge(*pmd)); 2266 2267 arch_enter_lazy_mmu_mode(); 2268 2269 token = pmd_pgtable(*pmd); 2270 2271 do { 2272 err = fn(pte++, token, addr, data); 2273 if (err) 2274 break; 2275 } while (addr += PAGE_SIZE, addr != end); 2276 2277 arch_leave_lazy_mmu_mode(); 2278 2279 if (mm != &init_mm) 2280 pte_unmap_unlock(pte-1, ptl); 2281 return err; 2282 } 2283 2284 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2285 unsigned long addr, unsigned long end, 2286 pte_fn_t fn, void *data) 2287 { 2288 pmd_t *pmd; 2289 unsigned long next; 2290 int err; 2291 2292 BUG_ON(pud_huge(*pud)); 2293 2294 pmd = pmd_alloc(mm, pud, addr); 2295 if (!pmd) 2296 return -ENOMEM; 2297 do { 2298 next = pmd_addr_end(addr, end); 2299 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2300 if (err) 2301 break; 2302 } while (pmd++, addr = next, addr != end); 2303 return err; 2304 } 2305 2306 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2307 unsigned long addr, unsigned long end, 2308 pte_fn_t fn, void *data) 2309 { 2310 pud_t *pud; 2311 unsigned long next; 2312 int err; 2313 2314 pud = pud_alloc(mm, pgd, addr); 2315 if (!pud) 2316 return -ENOMEM; 2317 do { 2318 next = pud_addr_end(addr, end); 2319 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2320 if (err) 2321 break; 2322 } while (pud++, addr = next, addr != end); 2323 return err; 2324 } 2325 2326 /* 2327 * Scan a region of virtual memory, filling in page tables as necessary 2328 * and calling a provided function on each leaf page table. 2329 */ 2330 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2331 unsigned long size, pte_fn_t fn, void *data) 2332 { 2333 pgd_t *pgd; 2334 unsigned long next; 2335 unsigned long end = addr + size; 2336 int err; 2337 2338 BUG_ON(addr >= end); 2339 pgd = pgd_offset(mm, addr); 2340 do { 2341 next = pgd_addr_end(addr, end); 2342 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2343 if (err) 2344 break; 2345 } while (pgd++, addr = next, addr != end); 2346 2347 return err; 2348 } 2349 EXPORT_SYMBOL_GPL(apply_to_page_range); 2350 2351 /* 2352 * handle_pte_fault chooses page fault handler according to an entry 2353 * which was read non-atomically. Before making any commitment, on 2354 * those architectures or configurations (e.g. i386 with PAE) which 2355 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2356 * must check under lock before unmapping the pte and proceeding 2357 * (but do_wp_page is only called after already making such a check; 2358 * and do_anonymous_page can safely check later on). 2359 */ 2360 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2361 pte_t *page_table, pte_t orig_pte) 2362 { 2363 int same = 1; 2364 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2365 if (sizeof(pte_t) > sizeof(unsigned long)) { 2366 spinlock_t *ptl = pte_lockptr(mm, pmd); 2367 spin_lock(ptl); 2368 same = pte_same(*page_table, orig_pte); 2369 spin_unlock(ptl); 2370 } 2371 #endif 2372 pte_unmap(page_table); 2373 return same; 2374 } 2375 2376 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2377 { 2378 /* 2379 * If the source page was a PFN mapping, we don't have 2380 * a "struct page" for it. We do a best-effort copy by 2381 * just copying from the original user address. If that 2382 * fails, we just zero-fill it. Live with it. 2383 */ 2384 if (unlikely(!src)) { 2385 void *kaddr = kmap_atomic(dst, KM_USER0); 2386 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2387 2388 /* 2389 * This really shouldn't fail, because the page is there 2390 * in the page tables. But it might just be unreadable, 2391 * in which case we just give up and fill the result with 2392 * zeroes. 2393 */ 2394 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2395 clear_page(kaddr); 2396 kunmap_atomic(kaddr, KM_USER0); 2397 flush_dcache_page(dst); 2398 } else 2399 copy_user_highpage(dst, src, va, vma); 2400 } 2401 2402 /* 2403 * This routine handles present pages, when users try to write 2404 * to a shared page. It is done by copying the page to a new address 2405 * and decrementing the shared-page counter for the old page. 2406 * 2407 * Note that this routine assumes that the protection checks have been 2408 * done by the caller (the low-level page fault routine in most cases). 2409 * Thus we can safely just mark it writable once we've done any necessary 2410 * COW. 2411 * 2412 * We also mark the page dirty at this point even though the page will 2413 * change only once the write actually happens. This avoids a few races, 2414 * and potentially makes it more efficient. 2415 * 2416 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2417 * but allow concurrent faults), with pte both mapped and locked. 2418 * We return with mmap_sem still held, but pte unmapped and unlocked. 2419 */ 2420 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2421 unsigned long address, pte_t *page_table, pmd_t *pmd, 2422 spinlock_t *ptl, pte_t orig_pte) 2423 __releases(ptl) 2424 { 2425 struct page *old_page, *new_page; 2426 pte_t entry; 2427 int ret = 0; 2428 int page_mkwrite = 0; 2429 struct page *dirty_page = NULL; 2430 2431 old_page = vm_normal_page(vma, address, orig_pte); 2432 if (!old_page) { 2433 /* 2434 * VM_MIXEDMAP !pfn_valid() case 2435 * 2436 * We should not cow pages in a shared writeable mapping. 2437 * Just mark the pages writable as we can't do any dirty 2438 * accounting on raw pfn maps. 2439 */ 2440 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2441 (VM_WRITE|VM_SHARED)) 2442 goto reuse; 2443 goto gotten; 2444 } 2445 2446 /* 2447 * Take out anonymous pages first, anonymous shared vmas are 2448 * not dirty accountable. 2449 */ 2450 if (PageAnon(old_page) && !PageKsm(old_page)) { 2451 if (!trylock_page(old_page)) { 2452 page_cache_get(old_page); 2453 pte_unmap_unlock(page_table, ptl); 2454 lock_page(old_page); 2455 page_table = pte_offset_map_lock(mm, pmd, address, 2456 &ptl); 2457 if (!pte_same(*page_table, orig_pte)) { 2458 unlock_page(old_page); 2459 goto unlock; 2460 } 2461 page_cache_release(old_page); 2462 } 2463 if (reuse_swap_page(old_page)) { 2464 /* 2465 * The page is all ours. Move it to our anon_vma so 2466 * the rmap code will not search our parent or siblings. 2467 * Protected against the rmap code by the page lock. 2468 */ 2469 page_move_anon_rmap(old_page, vma, address); 2470 unlock_page(old_page); 2471 goto reuse; 2472 } 2473 unlock_page(old_page); 2474 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2475 (VM_WRITE|VM_SHARED))) { 2476 /* 2477 * Only catch write-faults on shared writable pages, 2478 * read-only shared pages can get COWed by 2479 * get_user_pages(.write=1, .force=1). 2480 */ 2481 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2482 struct vm_fault vmf; 2483 int tmp; 2484 2485 vmf.virtual_address = (void __user *)(address & 2486 PAGE_MASK); 2487 vmf.pgoff = old_page->index; 2488 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2489 vmf.page = old_page; 2490 2491 /* 2492 * Notify the address space that the page is about to 2493 * become writable so that it can prohibit this or wait 2494 * for the page to get into an appropriate state. 2495 * 2496 * We do this without the lock held, so that it can 2497 * sleep if it needs to. 2498 */ 2499 page_cache_get(old_page); 2500 pte_unmap_unlock(page_table, ptl); 2501 2502 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2503 if (unlikely(tmp & 2504 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2505 ret = tmp; 2506 goto unwritable_page; 2507 } 2508 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2509 lock_page(old_page); 2510 if (!old_page->mapping) { 2511 ret = 0; /* retry the fault */ 2512 unlock_page(old_page); 2513 goto unwritable_page; 2514 } 2515 } else 2516 VM_BUG_ON(!PageLocked(old_page)); 2517 2518 /* 2519 * Since we dropped the lock we need to revalidate 2520 * the PTE as someone else may have changed it. If 2521 * they did, we just return, as we can count on the 2522 * MMU to tell us if they didn't also make it writable. 2523 */ 2524 page_table = pte_offset_map_lock(mm, pmd, address, 2525 &ptl); 2526 if (!pte_same(*page_table, orig_pte)) { 2527 unlock_page(old_page); 2528 goto unlock; 2529 } 2530 2531 page_mkwrite = 1; 2532 } 2533 dirty_page = old_page; 2534 get_page(dirty_page); 2535 2536 reuse: 2537 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2538 entry = pte_mkyoung(orig_pte); 2539 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2540 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2541 update_mmu_cache(vma, address, page_table); 2542 pte_unmap_unlock(page_table, ptl); 2543 ret |= VM_FAULT_WRITE; 2544 2545 if (!dirty_page) 2546 return ret; 2547 2548 /* 2549 * Yes, Virginia, this is actually required to prevent a race 2550 * with clear_page_dirty_for_io() from clearing the page dirty 2551 * bit after it clear all dirty ptes, but before a racing 2552 * do_wp_page installs a dirty pte. 2553 * 2554 * __do_fault is protected similarly. 2555 */ 2556 if (!page_mkwrite) { 2557 wait_on_page_locked(dirty_page); 2558 set_page_dirty_balance(dirty_page, page_mkwrite); 2559 } 2560 put_page(dirty_page); 2561 if (page_mkwrite) { 2562 struct address_space *mapping = dirty_page->mapping; 2563 2564 set_page_dirty(dirty_page); 2565 unlock_page(dirty_page); 2566 page_cache_release(dirty_page); 2567 if (mapping) { 2568 /* 2569 * Some device drivers do not set page.mapping 2570 * but still dirty their pages 2571 */ 2572 balance_dirty_pages_ratelimited(mapping); 2573 } 2574 } 2575 2576 /* file_update_time outside page_lock */ 2577 if (vma->vm_file) 2578 file_update_time(vma->vm_file); 2579 2580 return ret; 2581 } 2582 2583 /* 2584 * Ok, we need to copy. Oh, well.. 2585 */ 2586 page_cache_get(old_page); 2587 gotten: 2588 pte_unmap_unlock(page_table, ptl); 2589 2590 if (unlikely(anon_vma_prepare(vma))) 2591 goto oom; 2592 2593 if (is_zero_pfn(pte_pfn(orig_pte))) { 2594 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2595 if (!new_page) 2596 goto oom; 2597 } else { 2598 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2599 if (!new_page) 2600 goto oom; 2601 cow_user_page(new_page, old_page, address, vma); 2602 } 2603 __SetPageUptodate(new_page); 2604 2605 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2606 goto oom_free_new; 2607 2608 /* 2609 * Re-check the pte - we dropped the lock 2610 */ 2611 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2612 if (likely(pte_same(*page_table, orig_pte))) { 2613 if (old_page) { 2614 if (!PageAnon(old_page)) { 2615 dec_mm_counter_fast(mm, MM_FILEPAGES); 2616 inc_mm_counter_fast(mm, MM_ANONPAGES); 2617 } 2618 } else 2619 inc_mm_counter_fast(mm, MM_ANONPAGES); 2620 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2621 entry = mk_pte(new_page, vma->vm_page_prot); 2622 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2623 /* 2624 * Clear the pte entry and flush it first, before updating the 2625 * pte with the new entry. This will avoid a race condition 2626 * seen in the presence of one thread doing SMC and another 2627 * thread doing COW. 2628 */ 2629 ptep_clear_flush(vma, address, page_table); 2630 page_add_new_anon_rmap(new_page, vma, address); 2631 /* 2632 * We call the notify macro here because, when using secondary 2633 * mmu page tables (such as kvm shadow page tables), we want the 2634 * new page to be mapped directly into the secondary page table. 2635 */ 2636 set_pte_at_notify(mm, address, page_table, entry); 2637 update_mmu_cache(vma, address, page_table); 2638 if (old_page) { 2639 /* 2640 * Only after switching the pte to the new page may 2641 * we remove the mapcount here. Otherwise another 2642 * process may come and find the rmap count decremented 2643 * before the pte is switched to the new page, and 2644 * "reuse" the old page writing into it while our pte 2645 * here still points into it and can be read by other 2646 * threads. 2647 * 2648 * The critical issue is to order this 2649 * page_remove_rmap with the ptp_clear_flush above. 2650 * Those stores are ordered by (if nothing else,) 2651 * the barrier present in the atomic_add_negative 2652 * in page_remove_rmap. 2653 * 2654 * Then the TLB flush in ptep_clear_flush ensures that 2655 * no process can access the old page before the 2656 * decremented mapcount is visible. And the old page 2657 * cannot be reused until after the decremented 2658 * mapcount is visible. So transitively, TLBs to 2659 * old page will be flushed before it can be reused. 2660 */ 2661 page_remove_rmap(old_page); 2662 } 2663 2664 /* Free the old page.. */ 2665 new_page = old_page; 2666 ret |= VM_FAULT_WRITE; 2667 } else 2668 mem_cgroup_uncharge_page(new_page); 2669 2670 if (new_page) 2671 page_cache_release(new_page); 2672 unlock: 2673 pte_unmap_unlock(page_table, ptl); 2674 if (old_page) { 2675 /* 2676 * Don't let another task, with possibly unlocked vma, 2677 * keep the mlocked page. 2678 */ 2679 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2680 lock_page(old_page); /* LRU manipulation */ 2681 munlock_vma_page(old_page); 2682 unlock_page(old_page); 2683 } 2684 page_cache_release(old_page); 2685 } 2686 return ret; 2687 oom_free_new: 2688 page_cache_release(new_page); 2689 oom: 2690 if (old_page) { 2691 if (page_mkwrite) { 2692 unlock_page(old_page); 2693 page_cache_release(old_page); 2694 } 2695 page_cache_release(old_page); 2696 } 2697 return VM_FAULT_OOM; 2698 2699 unwritable_page: 2700 page_cache_release(old_page); 2701 return ret; 2702 } 2703 2704 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2705 unsigned long start_addr, unsigned long end_addr, 2706 struct zap_details *details) 2707 { 2708 zap_page_range(vma, start_addr, end_addr - start_addr, details); 2709 } 2710 2711 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2712 struct zap_details *details) 2713 { 2714 struct vm_area_struct *vma; 2715 struct prio_tree_iter iter; 2716 pgoff_t vba, vea, zba, zea; 2717 2718 vma_prio_tree_foreach(vma, &iter, root, 2719 details->first_index, details->last_index) { 2720 2721 vba = vma->vm_pgoff; 2722 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2723 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2724 zba = details->first_index; 2725 if (zba < vba) 2726 zba = vba; 2727 zea = details->last_index; 2728 if (zea > vea) 2729 zea = vea; 2730 2731 unmap_mapping_range_vma(vma, 2732 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2733 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2734 details); 2735 } 2736 } 2737 2738 static inline void unmap_mapping_range_list(struct list_head *head, 2739 struct zap_details *details) 2740 { 2741 struct vm_area_struct *vma; 2742 2743 /* 2744 * In nonlinear VMAs there is no correspondence between virtual address 2745 * offset and file offset. So we must perform an exhaustive search 2746 * across *all* the pages in each nonlinear VMA, not just the pages 2747 * whose virtual address lies outside the file truncation point. 2748 */ 2749 list_for_each_entry(vma, head, shared.vm_set.list) { 2750 details->nonlinear_vma = vma; 2751 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2752 } 2753 } 2754 2755 /** 2756 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2757 * @mapping: the address space containing mmaps to be unmapped. 2758 * @holebegin: byte in first page to unmap, relative to the start of 2759 * the underlying file. This will be rounded down to a PAGE_SIZE 2760 * boundary. Note that this is different from truncate_pagecache(), which 2761 * must keep the partial page. In contrast, we must get rid of 2762 * partial pages. 2763 * @holelen: size of prospective hole in bytes. This will be rounded 2764 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2765 * end of the file. 2766 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2767 * but 0 when invalidating pagecache, don't throw away private data. 2768 */ 2769 void unmap_mapping_range(struct address_space *mapping, 2770 loff_t const holebegin, loff_t const holelen, int even_cows) 2771 { 2772 struct zap_details details; 2773 pgoff_t hba = holebegin >> PAGE_SHIFT; 2774 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2775 2776 /* Check for overflow. */ 2777 if (sizeof(holelen) > sizeof(hlen)) { 2778 long long holeend = 2779 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2780 if (holeend & ~(long long)ULONG_MAX) 2781 hlen = ULONG_MAX - hba + 1; 2782 } 2783 2784 details.check_mapping = even_cows? NULL: mapping; 2785 details.nonlinear_vma = NULL; 2786 details.first_index = hba; 2787 details.last_index = hba + hlen - 1; 2788 if (details.last_index < details.first_index) 2789 details.last_index = ULONG_MAX; 2790 2791 2792 mutex_lock(&mapping->i_mmap_mutex); 2793 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2794 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2795 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2796 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2797 mutex_unlock(&mapping->i_mmap_mutex); 2798 } 2799 EXPORT_SYMBOL(unmap_mapping_range); 2800 2801 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2802 { 2803 struct address_space *mapping = inode->i_mapping; 2804 2805 /* 2806 * If the underlying filesystem is not going to provide 2807 * a way to truncate a range of blocks (punch a hole) - 2808 * we should return failure right now. 2809 */ 2810 if (!inode->i_op->truncate_range) 2811 return -ENOSYS; 2812 2813 mutex_lock(&inode->i_mutex); 2814 down_write(&inode->i_alloc_sem); 2815 unmap_mapping_range(mapping, offset, (end - offset), 1); 2816 truncate_inode_pages_range(mapping, offset, end); 2817 unmap_mapping_range(mapping, offset, (end - offset), 1); 2818 inode->i_op->truncate_range(inode, offset, end); 2819 up_write(&inode->i_alloc_sem); 2820 mutex_unlock(&inode->i_mutex); 2821 2822 return 0; 2823 } 2824 2825 /* 2826 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2827 * but allow concurrent faults), and pte mapped but not yet locked. 2828 * We return with mmap_sem still held, but pte unmapped and unlocked. 2829 */ 2830 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2831 unsigned long address, pte_t *page_table, pmd_t *pmd, 2832 unsigned int flags, pte_t orig_pte) 2833 { 2834 spinlock_t *ptl; 2835 struct page *page, *swapcache = NULL; 2836 swp_entry_t entry; 2837 pte_t pte; 2838 int locked; 2839 struct mem_cgroup *ptr; 2840 int exclusive = 0; 2841 int ret = 0; 2842 2843 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2844 goto out; 2845 2846 entry = pte_to_swp_entry(orig_pte); 2847 if (unlikely(non_swap_entry(entry))) { 2848 if (is_migration_entry(entry)) { 2849 migration_entry_wait(mm, pmd, address); 2850 } else if (is_hwpoison_entry(entry)) { 2851 ret = VM_FAULT_HWPOISON; 2852 } else { 2853 print_bad_pte(vma, address, orig_pte, NULL); 2854 ret = VM_FAULT_SIGBUS; 2855 } 2856 goto out; 2857 } 2858 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2859 page = lookup_swap_cache(entry); 2860 if (!page) { 2861 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2862 page = swapin_readahead(entry, 2863 GFP_HIGHUSER_MOVABLE, vma, address); 2864 if (!page) { 2865 /* 2866 * Back out if somebody else faulted in this pte 2867 * while we released the pte lock. 2868 */ 2869 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2870 if (likely(pte_same(*page_table, orig_pte))) 2871 ret = VM_FAULT_OOM; 2872 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2873 goto unlock; 2874 } 2875 2876 /* Had to read the page from swap area: Major fault */ 2877 ret = VM_FAULT_MAJOR; 2878 count_vm_event(PGMAJFAULT); 2879 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2880 } else if (PageHWPoison(page)) { 2881 /* 2882 * hwpoisoned dirty swapcache pages are kept for killing 2883 * owner processes (which may be unknown at hwpoison time) 2884 */ 2885 ret = VM_FAULT_HWPOISON; 2886 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2887 goto out_release; 2888 } 2889 2890 locked = lock_page_or_retry(page, mm, flags); 2891 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2892 if (!locked) { 2893 ret |= VM_FAULT_RETRY; 2894 goto out_release; 2895 } 2896 2897 /* 2898 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2899 * release the swapcache from under us. The page pin, and pte_same 2900 * test below, are not enough to exclude that. Even if it is still 2901 * swapcache, we need to check that the page's swap has not changed. 2902 */ 2903 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2904 goto out_page; 2905 2906 if (ksm_might_need_to_copy(page, vma, address)) { 2907 swapcache = page; 2908 page = ksm_does_need_to_copy(page, vma, address); 2909 2910 if (unlikely(!page)) { 2911 ret = VM_FAULT_OOM; 2912 page = swapcache; 2913 swapcache = NULL; 2914 goto out_page; 2915 } 2916 } 2917 2918 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2919 ret = VM_FAULT_OOM; 2920 goto out_page; 2921 } 2922 2923 /* 2924 * Back out if somebody else already faulted in this pte. 2925 */ 2926 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2927 if (unlikely(!pte_same(*page_table, orig_pte))) 2928 goto out_nomap; 2929 2930 if (unlikely(!PageUptodate(page))) { 2931 ret = VM_FAULT_SIGBUS; 2932 goto out_nomap; 2933 } 2934 2935 /* 2936 * The page isn't present yet, go ahead with the fault. 2937 * 2938 * Be careful about the sequence of operations here. 2939 * To get its accounting right, reuse_swap_page() must be called 2940 * while the page is counted on swap but not yet in mapcount i.e. 2941 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2942 * must be called after the swap_free(), or it will never succeed. 2943 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2944 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2945 * in page->private. In this case, a record in swap_cgroup is silently 2946 * discarded at swap_free(). 2947 */ 2948 2949 inc_mm_counter_fast(mm, MM_ANONPAGES); 2950 dec_mm_counter_fast(mm, MM_SWAPENTS); 2951 pte = mk_pte(page, vma->vm_page_prot); 2952 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2953 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2954 flags &= ~FAULT_FLAG_WRITE; 2955 ret |= VM_FAULT_WRITE; 2956 exclusive = 1; 2957 } 2958 flush_icache_page(vma, page); 2959 set_pte_at(mm, address, page_table, pte); 2960 do_page_add_anon_rmap(page, vma, address, exclusive); 2961 /* It's better to call commit-charge after rmap is established */ 2962 mem_cgroup_commit_charge_swapin(page, ptr); 2963 2964 swap_free(entry); 2965 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2966 try_to_free_swap(page); 2967 unlock_page(page); 2968 if (swapcache) { 2969 /* 2970 * Hold the lock to avoid the swap entry to be reused 2971 * until we take the PT lock for the pte_same() check 2972 * (to avoid false positives from pte_same). For 2973 * further safety release the lock after the swap_free 2974 * so that the swap count won't change under a 2975 * parallel locked swapcache. 2976 */ 2977 unlock_page(swapcache); 2978 page_cache_release(swapcache); 2979 } 2980 2981 if (flags & FAULT_FLAG_WRITE) { 2982 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2983 if (ret & VM_FAULT_ERROR) 2984 ret &= VM_FAULT_ERROR; 2985 goto out; 2986 } 2987 2988 /* No need to invalidate - it was non-present before */ 2989 update_mmu_cache(vma, address, page_table); 2990 unlock: 2991 pte_unmap_unlock(page_table, ptl); 2992 out: 2993 return ret; 2994 out_nomap: 2995 mem_cgroup_cancel_charge_swapin(ptr); 2996 pte_unmap_unlock(page_table, ptl); 2997 out_page: 2998 unlock_page(page); 2999 out_release: 3000 page_cache_release(page); 3001 if (swapcache) { 3002 unlock_page(swapcache); 3003 page_cache_release(swapcache); 3004 } 3005 return ret; 3006 } 3007 3008 /* 3009 * This is like a special single-page "expand_{down|up}wards()", 3010 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3011 * doesn't hit another vma. 3012 */ 3013 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3014 { 3015 address &= PAGE_MASK; 3016 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3017 struct vm_area_struct *prev = vma->vm_prev; 3018 3019 /* 3020 * Is there a mapping abutting this one below? 3021 * 3022 * That's only ok if it's the same stack mapping 3023 * that has gotten split.. 3024 */ 3025 if (prev && prev->vm_end == address) 3026 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3027 3028 expand_downwards(vma, address - PAGE_SIZE); 3029 } 3030 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3031 struct vm_area_struct *next = vma->vm_next; 3032 3033 /* As VM_GROWSDOWN but s/below/above/ */ 3034 if (next && next->vm_start == address + PAGE_SIZE) 3035 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3036 3037 expand_upwards(vma, address + PAGE_SIZE); 3038 } 3039 return 0; 3040 } 3041 3042 /* 3043 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3044 * but allow concurrent faults), and pte mapped but not yet locked. 3045 * We return with mmap_sem still held, but pte unmapped and unlocked. 3046 */ 3047 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3048 unsigned long address, pte_t *page_table, pmd_t *pmd, 3049 unsigned int flags) 3050 { 3051 struct page *page; 3052 spinlock_t *ptl; 3053 pte_t entry; 3054 3055 pte_unmap(page_table); 3056 3057 /* Check if we need to add a guard page to the stack */ 3058 if (check_stack_guard_page(vma, address) < 0) 3059 return VM_FAULT_SIGBUS; 3060 3061 /* Use the zero-page for reads */ 3062 if (!(flags & FAULT_FLAG_WRITE)) { 3063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3064 vma->vm_page_prot)); 3065 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3066 if (!pte_none(*page_table)) 3067 goto unlock; 3068 goto setpte; 3069 } 3070 3071 /* Allocate our own private page. */ 3072 if (unlikely(anon_vma_prepare(vma))) 3073 goto oom; 3074 page = alloc_zeroed_user_highpage_movable(vma, address); 3075 if (!page) 3076 goto oom; 3077 __SetPageUptodate(page); 3078 3079 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3080 goto oom_free_page; 3081 3082 entry = mk_pte(page, vma->vm_page_prot); 3083 if (vma->vm_flags & VM_WRITE) 3084 entry = pte_mkwrite(pte_mkdirty(entry)); 3085 3086 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3087 if (!pte_none(*page_table)) 3088 goto release; 3089 3090 inc_mm_counter_fast(mm, MM_ANONPAGES); 3091 page_add_new_anon_rmap(page, vma, address); 3092 setpte: 3093 set_pte_at(mm, address, page_table, entry); 3094 3095 /* No need to invalidate - it was non-present before */ 3096 update_mmu_cache(vma, address, page_table); 3097 unlock: 3098 pte_unmap_unlock(page_table, ptl); 3099 return 0; 3100 release: 3101 mem_cgroup_uncharge_page(page); 3102 page_cache_release(page); 3103 goto unlock; 3104 oom_free_page: 3105 page_cache_release(page); 3106 oom: 3107 return VM_FAULT_OOM; 3108 } 3109 3110 /* 3111 * __do_fault() tries to create a new page mapping. It aggressively 3112 * tries to share with existing pages, but makes a separate copy if 3113 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3114 * the next page fault. 3115 * 3116 * As this is called only for pages that do not currently exist, we 3117 * do not need to flush old virtual caches or the TLB. 3118 * 3119 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3120 * but allow concurrent faults), and pte neither mapped nor locked. 3121 * We return with mmap_sem still held, but pte unmapped and unlocked. 3122 */ 3123 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3124 unsigned long address, pmd_t *pmd, 3125 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3126 { 3127 pte_t *page_table; 3128 spinlock_t *ptl; 3129 struct page *page; 3130 pte_t entry; 3131 int anon = 0; 3132 int charged = 0; 3133 struct page *dirty_page = NULL; 3134 struct vm_fault vmf; 3135 int ret; 3136 int page_mkwrite = 0; 3137 3138 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3139 vmf.pgoff = pgoff; 3140 vmf.flags = flags; 3141 vmf.page = NULL; 3142 3143 ret = vma->vm_ops->fault(vma, &vmf); 3144 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3145 VM_FAULT_RETRY))) 3146 return ret; 3147 3148 if (unlikely(PageHWPoison(vmf.page))) { 3149 if (ret & VM_FAULT_LOCKED) 3150 unlock_page(vmf.page); 3151 return VM_FAULT_HWPOISON; 3152 } 3153 3154 /* 3155 * For consistency in subsequent calls, make the faulted page always 3156 * locked. 3157 */ 3158 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3159 lock_page(vmf.page); 3160 else 3161 VM_BUG_ON(!PageLocked(vmf.page)); 3162 3163 /* 3164 * Should we do an early C-O-W break? 3165 */ 3166 page = vmf.page; 3167 if (flags & FAULT_FLAG_WRITE) { 3168 if (!(vma->vm_flags & VM_SHARED)) { 3169 anon = 1; 3170 if (unlikely(anon_vma_prepare(vma))) { 3171 ret = VM_FAULT_OOM; 3172 goto out; 3173 } 3174 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3175 vma, address); 3176 if (!page) { 3177 ret = VM_FAULT_OOM; 3178 goto out; 3179 } 3180 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3181 ret = VM_FAULT_OOM; 3182 page_cache_release(page); 3183 goto out; 3184 } 3185 charged = 1; 3186 copy_user_highpage(page, vmf.page, address, vma); 3187 __SetPageUptodate(page); 3188 } else { 3189 /* 3190 * If the page will be shareable, see if the backing 3191 * address space wants to know that the page is about 3192 * to become writable 3193 */ 3194 if (vma->vm_ops->page_mkwrite) { 3195 int tmp; 3196 3197 unlock_page(page); 3198 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3199 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3200 if (unlikely(tmp & 3201 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3202 ret = tmp; 3203 goto unwritable_page; 3204 } 3205 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3206 lock_page(page); 3207 if (!page->mapping) { 3208 ret = 0; /* retry the fault */ 3209 unlock_page(page); 3210 goto unwritable_page; 3211 } 3212 } else 3213 VM_BUG_ON(!PageLocked(page)); 3214 page_mkwrite = 1; 3215 } 3216 } 3217 3218 } 3219 3220 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3221 3222 /* 3223 * This silly early PAGE_DIRTY setting removes a race 3224 * due to the bad i386 page protection. But it's valid 3225 * for other architectures too. 3226 * 3227 * Note that if FAULT_FLAG_WRITE is set, we either now have 3228 * an exclusive copy of the page, or this is a shared mapping, 3229 * so we can make it writable and dirty to avoid having to 3230 * handle that later. 3231 */ 3232 /* Only go through if we didn't race with anybody else... */ 3233 if (likely(pte_same(*page_table, orig_pte))) { 3234 flush_icache_page(vma, page); 3235 entry = mk_pte(page, vma->vm_page_prot); 3236 if (flags & FAULT_FLAG_WRITE) 3237 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3238 if (anon) { 3239 inc_mm_counter_fast(mm, MM_ANONPAGES); 3240 page_add_new_anon_rmap(page, vma, address); 3241 } else { 3242 inc_mm_counter_fast(mm, MM_FILEPAGES); 3243 page_add_file_rmap(page); 3244 if (flags & FAULT_FLAG_WRITE) { 3245 dirty_page = page; 3246 get_page(dirty_page); 3247 } 3248 } 3249 set_pte_at(mm, address, page_table, entry); 3250 3251 /* no need to invalidate: a not-present page won't be cached */ 3252 update_mmu_cache(vma, address, page_table); 3253 } else { 3254 if (charged) 3255 mem_cgroup_uncharge_page(page); 3256 if (anon) 3257 page_cache_release(page); 3258 else 3259 anon = 1; /* no anon but release faulted_page */ 3260 } 3261 3262 pte_unmap_unlock(page_table, ptl); 3263 3264 out: 3265 if (dirty_page) { 3266 struct address_space *mapping = page->mapping; 3267 3268 if (set_page_dirty(dirty_page)) 3269 page_mkwrite = 1; 3270 unlock_page(dirty_page); 3271 put_page(dirty_page); 3272 if (page_mkwrite && mapping) { 3273 /* 3274 * Some device drivers do not set page.mapping but still 3275 * dirty their pages 3276 */ 3277 balance_dirty_pages_ratelimited(mapping); 3278 } 3279 3280 /* file_update_time outside page_lock */ 3281 if (vma->vm_file) 3282 file_update_time(vma->vm_file); 3283 } else { 3284 unlock_page(vmf.page); 3285 if (anon) 3286 page_cache_release(vmf.page); 3287 } 3288 3289 return ret; 3290 3291 unwritable_page: 3292 page_cache_release(page); 3293 return ret; 3294 } 3295 3296 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3297 unsigned long address, pte_t *page_table, pmd_t *pmd, 3298 unsigned int flags, pte_t orig_pte) 3299 { 3300 pgoff_t pgoff = (((address & PAGE_MASK) 3301 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3302 3303 pte_unmap(page_table); 3304 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3305 } 3306 3307 /* 3308 * Fault of a previously existing named mapping. Repopulate the pte 3309 * from the encoded file_pte if possible. This enables swappable 3310 * nonlinear vmas. 3311 * 3312 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3313 * but allow concurrent faults), and pte mapped but not yet locked. 3314 * We return with mmap_sem still held, but pte unmapped and unlocked. 3315 */ 3316 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3317 unsigned long address, pte_t *page_table, pmd_t *pmd, 3318 unsigned int flags, pte_t orig_pte) 3319 { 3320 pgoff_t pgoff; 3321 3322 flags |= FAULT_FLAG_NONLINEAR; 3323 3324 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3325 return 0; 3326 3327 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3328 /* 3329 * Page table corrupted: show pte and kill process. 3330 */ 3331 print_bad_pte(vma, address, orig_pte, NULL); 3332 return VM_FAULT_SIGBUS; 3333 } 3334 3335 pgoff = pte_to_pgoff(orig_pte); 3336 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3337 } 3338 3339 /* 3340 * These routines also need to handle stuff like marking pages dirty 3341 * and/or accessed for architectures that don't do it in hardware (most 3342 * RISC architectures). The early dirtying is also good on the i386. 3343 * 3344 * There is also a hook called "update_mmu_cache()" that architectures 3345 * with external mmu caches can use to update those (ie the Sparc or 3346 * PowerPC hashed page tables that act as extended TLBs). 3347 * 3348 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3349 * but allow concurrent faults), and pte mapped but not yet locked. 3350 * We return with mmap_sem still held, but pte unmapped and unlocked. 3351 */ 3352 int handle_pte_fault(struct mm_struct *mm, 3353 struct vm_area_struct *vma, unsigned long address, 3354 pte_t *pte, pmd_t *pmd, unsigned int flags) 3355 { 3356 pte_t entry; 3357 spinlock_t *ptl; 3358 3359 entry = *pte; 3360 if (!pte_present(entry)) { 3361 if (pte_none(entry)) { 3362 if (vma->vm_ops) { 3363 if (likely(vma->vm_ops->fault)) 3364 return do_linear_fault(mm, vma, address, 3365 pte, pmd, flags, entry); 3366 } 3367 return do_anonymous_page(mm, vma, address, 3368 pte, pmd, flags); 3369 } 3370 if (pte_file(entry)) 3371 return do_nonlinear_fault(mm, vma, address, 3372 pte, pmd, flags, entry); 3373 return do_swap_page(mm, vma, address, 3374 pte, pmd, flags, entry); 3375 } 3376 3377 ptl = pte_lockptr(mm, pmd); 3378 spin_lock(ptl); 3379 if (unlikely(!pte_same(*pte, entry))) 3380 goto unlock; 3381 if (flags & FAULT_FLAG_WRITE) { 3382 if (!pte_write(entry)) 3383 return do_wp_page(mm, vma, address, 3384 pte, pmd, ptl, entry); 3385 entry = pte_mkdirty(entry); 3386 } 3387 entry = pte_mkyoung(entry); 3388 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3389 update_mmu_cache(vma, address, pte); 3390 } else { 3391 /* 3392 * This is needed only for protection faults but the arch code 3393 * is not yet telling us if this is a protection fault or not. 3394 * This still avoids useless tlb flushes for .text page faults 3395 * with threads. 3396 */ 3397 if (flags & FAULT_FLAG_WRITE) 3398 flush_tlb_fix_spurious_fault(vma, address); 3399 } 3400 unlock: 3401 pte_unmap_unlock(pte, ptl); 3402 return 0; 3403 } 3404 3405 /* 3406 * By the time we get here, we already hold the mm semaphore 3407 */ 3408 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3409 unsigned long address, unsigned int flags) 3410 { 3411 pgd_t *pgd; 3412 pud_t *pud; 3413 pmd_t *pmd; 3414 pte_t *pte; 3415 3416 __set_current_state(TASK_RUNNING); 3417 3418 count_vm_event(PGFAULT); 3419 mem_cgroup_count_vm_event(mm, PGFAULT); 3420 3421 /* do counter updates before entering really critical section. */ 3422 check_sync_rss_stat(current); 3423 3424 if (unlikely(is_vm_hugetlb_page(vma))) 3425 return hugetlb_fault(mm, vma, address, flags); 3426 3427 pgd = pgd_offset(mm, address); 3428 pud = pud_alloc(mm, pgd, address); 3429 if (!pud) 3430 return VM_FAULT_OOM; 3431 pmd = pmd_alloc(mm, pud, address); 3432 if (!pmd) 3433 return VM_FAULT_OOM; 3434 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3435 if (!vma->vm_ops) 3436 return do_huge_pmd_anonymous_page(mm, vma, address, 3437 pmd, flags); 3438 } else { 3439 pmd_t orig_pmd = *pmd; 3440 barrier(); 3441 if (pmd_trans_huge(orig_pmd)) { 3442 if (flags & FAULT_FLAG_WRITE && 3443 !pmd_write(orig_pmd) && 3444 !pmd_trans_splitting(orig_pmd)) 3445 return do_huge_pmd_wp_page(mm, vma, address, 3446 pmd, orig_pmd); 3447 return 0; 3448 } 3449 } 3450 3451 /* 3452 * Use __pte_alloc instead of pte_alloc_map, because we can't 3453 * run pte_offset_map on the pmd, if an huge pmd could 3454 * materialize from under us from a different thread. 3455 */ 3456 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address)) 3457 return VM_FAULT_OOM; 3458 /* if an huge pmd materialized from under us just retry later */ 3459 if (unlikely(pmd_trans_huge(*pmd))) 3460 return 0; 3461 /* 3462 * A regular pmd is established and it can't morph into a huge pmd 3463 * from under us anymore at this point because we hold the mmap_sem 3464 * read mode and khugepaged takes it in write mode. So now it's 3465 * safe to run pte_offset_map(). 3466 */ 3467 pte = pte_offset_map(pmd, address); 3468 3469 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3470 } 3471 3472 #ifndef __PAGETABLE_PUD_FOLDED 3473 /* 3474 * Allocate page upper directory. 3475 * We've already handled the fast-path in-line. 3476 */ 3477 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3478 { 3479 pud_t *new = pud_alloc_one(mm, address); 3480 if (!new) 3481 return -ENOMEM; 3482 3483 smp_wmb(); /* See comment in __pte_alloc */ 3484 3485 spin_lock(&mm->page_table_lock); 3486 if (pgd_present(*pgd)) /* Another has populated it */ 3487 pud_free(mm, new); 3488 else 3489 pgd_populate(mm, pgd, new); 3490 spin_unlock(&mm->page_table_lock); 3491 return 0; 3492 } 3493 #endif /* __PAGETABLE_PUD_FOLDED */ 3494 3495 #ifndef __PAGETABLE_PMD_FOLDED 3496 /* 3497 * Allocate page middle directory. 3498 * We've already handled the fast-path in-line. 3499 */ 3500 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3501 { 3502 pmd_t *new = pmd_alloc_one(mm, address); 3503 if (!new) 3504 return -ENOMEM; 3505 3506 smp_wmb(); /* See comment in __pte_alloc */ 3507 3508 spin_lock(&mm->page_table_lock); 3509 #ifndef __ARCH_HAS_4LEVEL_HACK 3510 if (pud_present(*pud)) /* Another has populated it */ 3511 pmd_free(mm, new); 3512 else 3513 pud_populate(mm, pud, new); 3514 #else 3515 if (pgd_present(*pud)) /* Another has populated it */ 3516 pmd_free(mm, new); 3517 else 3518 pgd_populate(mm, pud, new); 3519 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3520 spin_unlock(&mm->page_table_lock); 3521 return 0; 3522 } 3523 #endif /* __PAGETABLE_PMD_FOLDED */ 3524 3525 int make_pages_present(unsigned long addr, unsigned long end) 3526 { 3527 int ret, len, write; 3528 struct vm_area_struct * vma; 3529 3530 vma = find_vma(current->mm, addr); 3531 if (!vma) 3532 return -ENOMEM; 3533 /* 3534 * We want to touch writable mappings with a write fault in order 3535 * to break COW, except for shared mappings because these don't COW 3536 * and we would not want to dirty them for nothing. 3537 */ 3538 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3539 BUG_ON(addr >= end); 3540 BUG_ON(end > vma->vm_end); 3541 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3542 ret = get_user_pages(current, current->mm, addr, 3543 len, write, 0, NULL, NULL); 3544 if (ret < 0) 3545 return ret; 3546 return ret == len ? 0 : -EFAULT; 3547 } 3548 3549 #if !defined(__HAVE_ARCH_GATE_AREA) 3550 3551 #if defined(AT_SYSINFO_EHDR) 3552 static struct vm_area_struct gate_vma; 3553 3554 static int __init gate_vma_init(void) 3555 { 3556 gate_vma.vm_mm = NULL; 3557 gate_vma.vm_start = FIXADDR_USER_START; 3558 gate_vma.vm_end = FIXADDR_USER_END; 3559 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3560 gate_vma.vm_page_prot = __P101; 3561 /* 3562 * Make sure the vDSO gets into every core dump. 3563 * Dumping its contents makes post-mortem fully interpretable later 3564 * without matching up the same kernel and hardware config to see 3565 * what PC values meant. 3566 */ 3567 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3568 return 0; 3569 } 3570 __initcall(gate_vma_init); 3571 #endif 3572 3573 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3574 { 3575 #ifdef AT_SYSINFO_EHDR 3576 return &gate_vma; 3577 #else 3578 return NULL; 3579 #endif 3580 } 3581 3582 int in_gate_area_no_mm(unsigned long addr) 3583 { 3584 #ifdef AT_SYSINFO_EHDR 3585 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3586 return 1; 3587 #endif 3588 return 0; 3589 } 3590 3591 #endif /* __HAVE_ARCH_GATE_AREA */ 3592 3593 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3594 pte_t **ptepp, spinlock_t **ptlp) 3595 { 3596 pgd_t *pgd; 3597 pud_t *pud; 3598 pmd_t *pmd; 3599 pte_t *ptep; 3600 3601 pgd = pgd_offset(mm, address); 3602 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3603 goto out; 3604 3605 pud = pud_offset(pgd, address); 3606 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3607 goto out; 3608 3609 pmd = pmd_offset(pud, address); 3610 VM_BUG_ON(pmd_trans_huge(*pmd)); 3611 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3612 goto out; 3613 3614 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3615 if (pmd_huge(*pmd)) 3616 goto out; 3617 3618 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3619 if (!ptep) 3620 goto out; 3621 if (!pte_present(*ptep)) 3622 goto unlock; 3623 *ptepp = ptep; 3624 return 0; 3625 unlock: 3626 pte_unmap_unlock(ptep, *ptlp); 3627 out: 3628 return -EINVAL; 3629 } 3630 3631 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3632 pte_t **ptepp, spinlock_t **ptlp) 3633 { 3634 int res; 3635 3636 /* (void) is needed to make gcc happy */ 3637 (void) __cond_lock(*ptlp, 3638 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3639 return res; 3640 } 3641 3642 /** 3643 * follow_pfn - look up PFN at a user virtual address 3644 * @vma: memory mapping 3645 * @address: user virtual address 3646 * @pfn: location to store found PFN 3647 * 3648 * Only IO mappings and raw PFN mappings are allowed. 3649 * 3650 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3651 */ 3652 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3653 unsigned long *pfn) 3654 { 3655 int ret = -EINVAL; 3656 spinlock_t *ptl; 3657 pte_t *ptep; 3658 3659 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3660 return ret; 3661 3662 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3663 if (ret) 3664 return ret; 3665 *pfn = pte_pfn(*ptep); 3666 pte_unmap_unlock(ptep, ptl); 3667 return 0; 3668 } 3669 EXPORT_SYMBOL(follow_pfn); 3670 3671 #ifdef CONFIG_HAVE_IOREMAP_PROT 3672 int follow_phys(struct vm_area_struct *vma, 3673 unsigned long address, unsigned int flags, 3674 unsigned long *prot, resource_size_t *phys) 3675 { 3676 int ret = -EINVAL; 3677 pte_t *ptep, pte; 3678 spinlock_t *ptl; 3679 3680 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3681 goto out; 3682 3683 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3684 goto out; 3685 pte = *ptep; 3686 3687 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3688 goto unlock; 3689 3690 *prot = pgprot_val(pte_pgprot(pte)); 3691 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3692 3693 ret = 0; 3694 unlock: 3695 pte_unmap_unlock(ptep, ptl); 3696 out: 3697 return ret; 3698 } 3699 3700 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3701 void *buf, int len, int write) 3702 { 3703 resource_size_t phys_addr; 3704 unsigned long prot = 0; 3705 void __iomem *maddr; 3706 int offset = addr & (PAGE_SIZE-1); 3707 3708 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3709 return -EINVAL; 3710 3711 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3712 if (write) 3713 memcpy_toio(maddr + offset, buf, len); 3714 else 3715 memcpy_fromio(buf, maddr + offset, len); 3716 iounmap(maddr); 3717 3718 return len; 3719 } 3720 #endif 3721 3722 /* 3723 * Access another process' address space as given in mm. If non-NULL, use the 3724 * given task for page fault accounting. 3725 */ 3726 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3727 unsigned long addr, void *buf, int len, int write) 3728 { 3729 struct vm_area_struct *vma; 3730 void *old_buf = buf; 3731 3732 down_read(&mm->mmap_sem); 3733 /* ignore errors, just check how much was successfully transferred */ 3734 while (len) { 3735 int bytes, ret, offset; 3736 void *maddr; 3737 struct page *page = NULL; 3738 3739 ret = get_user_pages(tsk, mm, addr, 1, 3740 write, 1, &page, &vma); 3741 if (ret <= 0) { 3742 /* 3743 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3744 * we can access using slightly different code. 3745 */ 3746 #ifdef CONFIG_HAVE_IOREMAP_PROT 3747 vma = find_vma(mm, addr); 3748 if (!vma || vma->vm_start > addr) 3749 break; 3750 if (vma->vm_ops && vma->vm_ops->access) 3751 ret = vma->vm_ops->access(vma, addr, buf, 3752 len, write); 3753 if (ret <= 0) 3754 #endif 3755 break; 3756 bytes = ret; 3757 } else { 3758 bytes = len; 3759 offset = addr & (PAGE_SIZE-1); 3760 if (bytes > PAGE_SIZE-offset) 3761 bytes = PAGE_SIZE-offset; 3762 3763 maddr = kmap(page); 3764 if (write) { 3765 copy_to_user_page(vma, page, addr, 3766 maddr + offset, buf, bytes); 3767 set_page_dirty_lock(page); 3768 } else { 3769 copy_from_user_page(vma, page, addr, 3770 buf, maddr + offset, bytes); 3771 } 3772 kunmap(page); 3773 page_cache_release(page); 3774 } 3775 len -= bytes; 3776 buf += bytes; 3777 addr += bytes; 3778 } 3779 up_read(&mm->mmap_sem); 3780 3781 return buf - old_buf; 3782 } 3783 3784 /** 3785 * access_remote_vm - access another process' address space 3786 * @mm: the mm_struct of the target address space 3787 * @addr: start address to access 3788 * @buf: source or destination buffer 3789 * @len: number of bytes to transfer 3790 * @write: whether the access is a write 3791 * 3792 * The caller must hold a reference on @mm. 3793 */ 3794 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3795 void *buf, int len, int write) 3796 { 3797 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3798 } 3799 3800 /* 3801 * Access another process' address space. 3802 * Source/target buffer must be kernel space, 3803 * Do not walk the page table directly, use get_user_pages 3804 */ 3805 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3806 void *buf, int len, int write) 3807 { 3808 struct mm_struct *mm; 3809 int ret; 3810 3811 mm = get_task_mm(tsk); 3812 if (!mm) 3813 return 0; 3814 3815 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3816 mmput(mm); 3817 3818 return ret; 3819 } 3820 3821 /* 3822 * Print the name of a VMA. 3823 */ 3824 void print_vma_addr(char *prefix, unsigned long ip) 3825 { 3826 struct mm_struct *mm = current->mm; 3827 struct vm_area_struct *vma; 3828 3829 /* 3830 * Do not print if we are in atomic 3831 * contexts (in exception stacks, etc.): 3832 */ 3833 if (preempt_count()) 3834 return; 3835 3836 down_read(&mm->mmap_sem); 3837 vma = find_vma(mm, ip); 3838 if (vma && vma->vm_file) { 3839 struct file *f = vma->vm_file; 3840 char *buf = (char *)__get_free_page(GFP_KERNEL); 3841 if (buf) { 3842 char *p, *s; 3843 3844 p = d_path(&f->f_path, buf, PAGE_SIZE); 3845 if (IS_ERR(p)) 3846 p = "?"; 3847 s = strrchr(p, '/'); 3848 if (s) 3849 p = s+1; 3850 printk("%s%s[%lx+%lx]", prefix, p, 3851 vma->vm_start, 3852 vma->vm_end - vma->vm_start); 3853 free_page((unsigned long)buf); 3854 } 3855 } 3856 up_read(¤t->mm->mmap_sem); 3857 } 3858 3859 #ifdef CONFIG_PROVE_LOCKING 3860 void might_fault(void) 3861 { 3862 /* 3863 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3864 * holding the mmap_sem, this is safe because kernel memory doesn't 3865 * get paged out, therefore we'll never actually fault, and the 3866 * below annotations will generate false positives. 3867 */ 3868 if (segment_eq(get_fs(), KERNEL_DS)) 3869 return; 3870 3871 might_sleep(); 3872 /* 3873 * it would be nicer only to annotate paths which are not under 3874 * pagefault_disable, however that requires a larger audit and 3875 * providing helpers like get_user_atomic. 3876 */ 3877 if (!in_atomic() && current->mm) 3878 might_lock_read(¤t->mm->mmap_sem); 3879 } 3880 EXPORT_SYMBOL(might_fault); 3881 #endif 3882 3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3884 static void clear_gigantic_page(struct page *page, 3885 unsigned long addr, 3886 unsigned int pages_per_huge_page) 3887 { 3888 int i; 3889 struct page *p = page; 3890 3891 might_sleep(); 3892 for (i = 0; i < pages_per_huge_page; 3893 i++, p = mem_map_next(p, page, i)) { 3894 cond_resched(); 3895 clear_user_highpage(p, addr + i * PAGE_SIZE); 3896 } 3897 } 3898 void clear_huge_page(struct page *page, 3899 unsigned long addr, unsigned int pages_per_huge_page) 3900 { 3901 int i; 3902 3903 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3904 clear_gigantic_page(page, addr, pages_per_huge_page); 3905 return; 3906 } 3907 3908 might_sleep(); 3909 for (i = 0; i < pages_per_huge_page; i++) { 3910 cond_resched(); 3911 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3912 } 3913 } 3914 3915 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3916 unsigned long addr, 3917 struct vm_area_struct *vma, 3918 unsigned int pages_per_huge_page) 3919 { 3920 int i; 3921 struct page *dst_base = dst; 3922 struct page *src_base = src; 3923 3924 for (i = 0; i < pages_per_huge_page; ) { 3925 cond_resched(); 3926 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3927 3928 i++; 3929 dst = mem_map_next(dst, dst_base, i); 3930 src = mem_map_next(src, src_base, i); 3931 } 3932 } 3933 3934 void copy_user_huge_page(struct page *dst, struct page *src, 3935 unsigned long addr, struct vm_area_struct *vma, 3936 unsigned int pages_per_huge_page) 3937 { 3938 int i; 3939 3940 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3941 copy_user_gigantic_page(dst, src, addr, vma, 3942 pages_per_huge_page); 3943 return; 3944 } 3945 3946 might_sleep(); 3947 for (i = 0; i < pages_per_huge_page; i++) { 3948 cond_resched(); 3949 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3950 } 3951 } 3952 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3953