xref: /openbmc/linux/mm/memory.c (revision e9e8bcb8)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (task->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, task->rss_stat.count[i]);
135 			task->rss_stat.count[i] = 0;
136 		}
137 	}
138 	task->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		__sync_task_rss_stat(task, task->mm);
161 }
162 
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 	long val = 0;
166 
167 	/*
168 	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 	 * The caller must guarantee task->mm is not invalid.
170 	 */
171 	val = atomic_long_read(&mm->rss_stat.count[member]);
172 	/*
173 	 * counter is updated in asynchronous manner and may go to minus.
174 	 * But it's never be expected number for users.
175 	 */
176 	if (val < 0)
177 		return 0;
178 	return (unsigned long)val;
179 }
180 
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 	__sync_task_rss_stat(task, mm);
184 }
185 #else /* SPLIT_RSS_COUNTING */
186 
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189 
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193 
194 #endif /* SPLIT_RSS_COUNTING */
195 
196 #ifdef HAVE_GENERIC_MMU_GATHER
197 
198 static int tlb_next_batch(struct mmu_gather *tlb)
199 {
200 	struct mmu_gather_batch *batch;
201 
202 	batch = tlb->active;
203 	if (batch->next) {
204 		tlb->active = batch->next;
205 		return 1;
206 	}
207 
208 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
209 	if (!batch)
210 		return 0;
211 
212 	batch->next = NULL;
213 	batch->nr   = 0;
214 	batch->max  = MAX_GATHER_BATCH;
215 
216 	tlb->active->next = batch;
217 	tlb->active = batch;
218 
219 	return 1;
220 }
221 
222 /* tlb_gather_mmu
223  *	Called to initialize an (on-stack) mmu_gather structure for page-table
224  *	tear-down from @mm. The @fullmm argument is used when @mm is without
225  *	users and we're going to destroy the full address space (exit/execve).
226  */
227 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
228 {
229 	tlb->mm = mm;
230 
231 	tlb->fullmm     = fullmm;
232 	tlb->need_flush = 0;
233 	tlb->fast_mode  = (num_possible_cpus() == 1);
234 	tlb->local.next = NULL;
235 	tlb->local.nr   = 0;
236 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
237 	tlb->active     = &tlb->local;
238 
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 	tlb->batch = NULL;
241 #endif
242 }
243 
244 void tlb_flush_mmu(struct mmu_gather *tlb)
245 {
246 	struct mmu_gather_batch *batch;
247 
248 	if (!tlb->need_flush)
249 		return;
250 	tlb->need_flush = 0;
251 	tlb_flush(tlb);
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 	tlb_table_flush(tlb);
254 #endif
255 
256 	if (tlb_fast_mode(tlb))
257 		return;
258 
259 	for (batch = &tlb->local; batch; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 /* tlb_finish_mmu
267  *	Called at the end of the shootdown operation to free up any resources
268  *	that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 	struct mmu_gather_batch *batch, *next;
273 
274 	tlb_flush_mmu(tlb);
275 
276 	/* keep the page table cache within bounds */
277 	check_pgt_cache();
278 
279 	for (batch = tlb->local.next; batch; batch = next) {
280 		next = batch->next;
281 		free_pages((unsigned long)batch, 0);
282 	}
283 	tlb->local.next = NULL;
284 }
285 
286 /* __tlb_remove_page
287  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *	handling the additional races in SMP caused by other CPUs caching valid
289  *	mappings in their TLBs. Returns the number of free page slots left.
290  *	When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 	struct mmu_gather_batch *batch;
295 
296 	tlb->need_flush = 1;
297 
298 	if (tlb_fast_mode(tlb)) {
299 		free_page_and_swap_cache(page);
300 		return 1; /* avoid calling tlb_flush_mmu() */
301 	}
302 
303 	batch = tlb->active;
304 	batch->pages[batch->nr++] = page;
305 	if (batch->nr == batch->max) {
306 		if (!tlb_next_batch(tlb))
307 			return 0;
308 	}
309 	VM_BUG_ON(batch->nr > batch->max);
310 
311 	return batch->max - batch->nr;
312 }
313 
314 #endif /* HAVE_GENERIC_MMU_GATHER */
315 
316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
317 
318 /*
319  * See the comment near struct mmu_table_batch.
320  */
321 
322 static void tlb_remove_table_smp_sync(void *arg)
323 {
324 	/* Simply deliver the interrupt */
325 }
326 
327 static void tlb_remove_table_one(void *table)
328 {
329 	/*
330 	 * This isn't an RCU grace period and hence the page-tables cannot be
331 	 * assumed to be actually RCU-freed.
332 	 *
333 	 * It is however sufficient for software page-table walkers that rely on
334 	 * IRQ disabling. See the comment near struct mmu_table_batch.
335 	 */
336 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
337 	__tlb_remove_table(table);
338 }
339 
340 static void tlb_remove_table_rcu(struct rcu_head *head)
341 {
342 	struct mmu_table_batch *batch;
343 	int i;
344 
345 	batch = container_of(head, struct mmu_table_batch, rcu);
346 
347 	for (i = 0; i < batch->nr; i++)
348 		__tlb_remove_table(batch->tables[i]);
349 
350 	free_page((unsigned long)batch);
351 }
352 
353 void tlb_table_flush(struct mmu_gather *tlb)
354 {
355 	struct mmu_table_batch **batch = &tlb->batch;
356 
357 	if (*batch) {
358 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
359 		*batch = NULL;
360 	}
361 }
362 
363 void tlb_remove_table(struct mmu_gather *tlb, void *table)
364 {
365 	struct mmu_table_batch **batch = &tlb->batch;
366 
367 	tlb->need_flush = 1;
368 
369 	/*
370 	 * When there's less then two users of this mm there cannot be a
371 	 * concurrent page-table walk.
372 	 */
373 	if (atomic_read(&tlb->mm->mm_users) < 2) {
374 		__tlb_remove_table(table);
375 		return;
376 	}
377 
378 	if (*batch == NULL) {
379 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
380 		if (*batch == NULL) {
381 			tlb_remove_table_one(table);
382 			return;
383 		}
384 		(*batch)->nr = 0;
385 	}
386 	(*batch)->tables[(*batch)->nr++] = table;
387 	if ((*batch)->nr == MAX_TABLE_BATCH)
388 		tlb_table_flush(tlb);
389 }
390 
391 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
392 
393 /*
394  * If a p?d_bad entry is found while walking page tables, report
395  * the error, before resetting entry to p?d_none.  Usually (but
396  * very seldom) called out from the p?d_none_or_clear_bad macros.
397  */
398 
399 void pgd_clear_bad(pgd_t *pgd)
400 {
401 	pgd_ERROR(*pgd);
402 	pgd_clear(pgd);
403 }
404 
405 void pud_clear_bad(pud_t *pud)
406 {
407 	pud_ERROR(*pud);
408 	pud_clear(pud);
409 }
410 
411 void pmd_clear_bad(pmd_t *pmd)
412 {
413 	pmd_ERROR(*pmd);
414 	pmd_clear(pmd);
415 }
416 
417 /*
418  * Note: this doesn't free the actual pages themselves. That
419  * has been handled earlier when unmapping all the memory regions.
420  */
421 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
422 			   unsigned long addr)
423 {
424 	pgtable_t token = pmd_pgtable(*pmd);
425 	pmd_clear(pmd);
426 	pte_free_tlb(tlb, token, addr);
427 	tlb->mm->nr_ptes--;
428 }
429 
430 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
431 				unsigned long addr, unsigned long end,
432 				unsigned long floor, unsigned long ceiling)
433 {
434 	pmd_t *pmd;
435 	unsigned long next;
436 	unsigned long start;
437 
438 	start = addr;
439 	pmd = pmd_offset(pud, addr);
440 	do {
441 		next = pmd_addr_end(addr, end);
442 		if (pmd_none_or_clear_bad(pmd))
443 			continue;
444 		free_pte_range(tlb, pmd, addr);
445 	} while (pmd++, addr = next, addr != end);
446 
447 	start &= PUD_MASK;
448 	if (start < floor)
449 		return;
450 	if (ceiling) {
451 		ceiling &= PUD_MASK;
452 		if (!ceiling)
453 			return;
454 	}
455 	if (end - 1 > ceiling - 1)
456 		return;
457 
458 	pmd = pmd_offset(pud, start);
459 	pud_clear(pud);
460 	pmd_free_tlb(tlb, pmd, start);
461 }
462 
463 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
464 				unsigned long addr, unsigned long end,
465 				unsigned long floor, unsigned long ceiling)
466 {
467 	pud_t *pud;
468 	unsigned long next;
469 	unsigned long start;
470 
471 	start = addr;
472 	pud = pud_offset(pgd, addr);
473 	do {
474 		next = pud_addr_end(addr, end);
475 		if (pud_none_or_clear_bad(pud))
476 			continue;
477 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
478 	} while (pud++, addr = next, addr != end);
479 
480 	start &= PGDIR_MASK;
481 	if (start < floor)
482 		return;
483 	if (ceiling) {
484 		ceiling &= PGDIR_MASK;
485 		if (!ceiling)
486 			return;
487 	}
488 	if (end - 1 > ceiling - 1)
489 		return;
490 
491 	pud = pud_offset(pgd, start);
492 	pgd_clear(pgd);
493 	pud_free_tlb(tlb, pud, start);
494 }
495 
496 /*
497  * This function frees user-level page tables of a process.
498  *
499  * Must be called with pagetable lock held.
500  */
501 void free_pgd_range(struct mmu_gather *tlb,
502 			unsigned long addr, unsigned long end,
503 			unsigned long floor, unsigned long ceiling)
504 {
505 	pgd_t *pgd;
506 	unsigned long next;
507 
508 	/*
509 	 * The next few lines have given us lots of grief...
510 	 *
511 	 * Why are we testing PMD* at this top level?  Because often
512 	 * there will be no work to do at all, and we'd prefer not to
513 	 * go all the way down to the bottom just to discover that.
514 	 *
515 	 * Why all these "- 1"s?  Because 0 represents both the bottom
516 	 * of the address space and the top of it (using -1 for the
517 	 * top wouldn't help much: the masks would do the wrong thing).
518 	 * The rule is that addr 0 and floor 0 refer to the bottom of
519 	 * the address space, but end 0 and ceiling 0 refer to the top
520 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
521 	 * that end 0 case should be mythical).
522 	 *
523 	 * Wherever addr is brought up or ceiling brought down, we must
524 	 * be careful to reject "the opposite 0" before it confuses the
525 	 * subsequent tests.  But what about where end is brought down
526 	 * by PMD_SIZE below? no, end can't go down to 0 there.
527 	 *
528 	 * Whereas we round start (addr) and ceiling down, by different
529 	 * masks at different levels, in order to test whether a table
530 	 * now has no other vmas using it, so can be freed, we don't
531 	 * bother to round floor or end up - the tests don't need that.
532 	 */
533 
534 	addr &= PMD_MASK;
535 	if (addr < floor) {
536 		addr += PMD_SIZE;
537 		if (!addr)
538 			return;
539 	}
540 	if (ceiling) {
541 		ceiling &= PMD_MASK;
542 		if (!ceiling)
543 			return;
544 	}
545 	if (end - 1 > ceiling - 1)
546 		end -= PMD_SIZE;
547 	if (addr > end - 1)
548 		return;
549 
550 	pgd = pgd_offset(tlb->mm, addr);
551 	do {
552 		next = pgd_addr_end(addr, end);
553 		if (pgd_none_or_clear_bad(pgd))
554 			continue;
555 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
556 	} while (pgd++, addr = next, addr != end);
557 }
558 
559 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
560 		unsigned long floor, unsigned long ceiling)
561 {
562 	while (vma) {
563 		struct vm_area_struct *next = vma->vm_next;
564 		unsigned long addr = vma->vm_start;
565 
566 		/*
567 		 * Hide vma from rmap and truncate_pagecache before freeing
568 		 * pgtables
569 		 */
570 		unlink_anon_vmas(vma);
571 		unlink_file_vma(vma);
572 
573 		if (is_vm_hugetlb_page(vma)) {
574 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
575 				floor, next? next->vm_start: ceiling);
576 		} else {
577 			/*
578 			 * Optimization: gather nearby vmas into one call down
579 			 */
580 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
581 			       && !is_vm_hugetlb_page(next)) {
582 				vma = next;
583 				next = vma->vm_next;
584 				unlink_anon_vmas(vma);
585 				unlink_file_vma(vma);
586 			}
587 			free_pgd_range(tlb, addr, vma->vm_end,
588 				floor, next? next->vm_start: ceiling);
589 		}
590 		vma = next;
591 	}
592 }
593 
594 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
595 		pmd_t *pmd, unsigned long address)
596 {
597 	pgtable_t new = pte_alloc_one(mm, address);
598 	int wait_split_huge_page;
599 	if (!new)
600 		return -ENOMEM;
601 
602 	/*
603 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
604 	 * visible before the pte is made visible to other CPUs by being
605 	 * put into page tables.
606 	 *
607 	 * The other side of the story is the pointer chasing in the page
608 	 * table walking code (when walking the page table without locking;
609 	 * ie. most of the time). Fortunately, these data accesses consist
610 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
611 	 * being the notable exception) will already guarantee loads are
612 	 * seen in-order. See the alpha page table accessors for the
613 	 * smp_read_barrier_depends() barriers in page table walking code.
614 	 */
615 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
616 
617 	spin_lock(&mm->page_table_lock);
618 	wait_split_huge_page = 0;
619 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
620 		mm->nr_ptes++;
621 		pmd_populate(mm, pmd, new);
622 		new = NULL;
623 	} else if (unlikely(pmd_trans_splitting(*pmd)))
624 		wait_split_huge_page = 1;
625 	spin_unlock(&mm->page_table_lock);
626 	if (new)
627 		pte_free(mm, new);
628 	if (wait_split_huge_page)
629 		wait_split_huge_page(vma->anon_vma, pmd);
630 	return 0;
631 }
632 
633 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
634 {
635 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
636 	if (!new)
637 		return -ENOMEM;
638 
639 	smp_wmb(); /* See comment in __pte_alloc */
640 
641 	spin_lock(&init_mm.page_table_lock);
642 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
643 		pmd_populate_kernel(&init_mm, pmd, new);
644 		new = NULL;
645 	} else
646 		VM_BUG_ON(pmd_trans_splitting(*pmd));
647 	spin_unlock(&init_mm.page_table_lock);
648 	if (new)
649 		pte_free_kernel(&init_mm, new);
650 	return 0;
651 }
652 
653 static inline void init_rss_vec(int *rss)
654 {
655 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
656 }
657 
658 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
659 {
660 	int i;
661 
662 	if (current->mm == mm)
663 		sync_mm_rss(current, mm);
664 	for (i = 0; i < NR_MM_COUNTERS; i++)
665 		if (rss[i])
666 			add_mm_counter(mm, i, rss[i]);
667 }
668 
669 /*
670  * This function is called to print an error when a bad pte
671  * is found. For example, we might have a PFN-mapped pte in
672  * a region that doesn't allow it.
673  *
674  * The calling function must still handle the error.
675  */
676 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
677 			  pte_t pte, struct page *page)
678 {
679 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
680 	pud_t *pud = pud_offset(pgd, addr);
681 	pmd_t *pmd = pmd_offset(pud, addr);
682 	struct address_space *mapping;
683 	pgoff_t index;
684 	static unsigned long resume;
685 	static unsigned long nr_shown;
686 	static unsigned long nr_unshown;
687 
688 	/*
689 	 * Allow a burst of 60 reports, then keep quiet for that minute;
690 	 * or allow a steady drip of one report per second.
691 	 */
692 	if (nr_shown == 60) {
693 		if (time_before(jiffies, resume)) {
694 			nr_unshown++;
695 			return;
696 		}
697 		if (nr_unshown) {
698 			printk(KERN_ALERT
699 				"BUG: Bad page map: %lu messages suppressed\n",
700 				nr_unshown);
701 			nr_unshown = 0;
702 		}
703 		nr_shown = 0;
704 	}
705 	if (nr_shown++ == 0)
706 		resume = jiffies + 60 * HZ;
707 
708 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
709 	index = linear_page_index(vma, addr);
710 
711 	printk(KERN_ALERT
712 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
713 		current->comm,
714 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
715 	if (page)
716 		dump_page(page);
717 	printk(KERN_ALERT
718 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
719 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
720 	/*
721 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
722 	 */
723 	if (vma->vm_ops)
724 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
725 				(unsigned long)vma->vm_ops->fault);
726 	if (vma->vm_file && vma->vm_file->f_op)
727 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
728 				(unsigned long)vma->vm_file->f_op->mmap);
729 	dump_stack();
730 	add_taint(TAINT_BAD_PAGE);
731 }
732 
733 static inline int is_cow_mapping(vm_flags_t flags)
734 {
735 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
736 }
737 
738 #ifndef is_zero_pfn
739 static inline int is_zero_pfn(unsigned long pfn)
740 {
741 	return pfn == zero_pfn;
742 }
743 #endif
744 
745 #ifndef my_zero_pfn
746 static inline unsigned long my_zero_pfn(unsigned long addr)
747 {
748 	return zero_pfn;
749 }
750 #endif
751 
752 /*
753  * vm_normal_page -- This function gets the "struct page" associated with a pte.
754  *
755  * "Special" mappings do not wish to be associated with a "struct page" (either
756  * it doesn't exist, or it exists but they don't want to touch it). In this
757  * case, NULL is returned here. "Normal" mappings do have a struct page.
758  *
759  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
760  * pte bit, in which case this function is trivial. Secondly, an architecture
761  * may not have a spare pte bit, which requires a more complicated scheme,
762  * described below.
763  *
764  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
765  * special mapping (even if there are underlying and valid "struct pages").
766  * COWed pages of a VM_PFNMAP are always normal.
767  *
768  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
769  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
770  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
771  * mapping will always honor the rule
772  *
773  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
774  *
775  * And for normal mappings this is false.
776  *
777  * This restricts such mappings to be a linear translation from virtual address
778  * to pfn. To get around this restriction, we allow arbitrary mappings so long
779  * as the vma is not a COW mapping; in that case, we know that all ptes are
780  * special (because none can have been COWed).
781  *
782  *
783  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
784  *
785  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
786  * page" backing, however the difference is that _all_ pages with a struct
787  * page (that is, those where pfn_valid is true) are refcounted and considered
788  * normal pages by the VM. The disadvantage is that pages are refcounted
789  * (which can be slower and simply not an option for some PFNMAP users). The
790  * advantage is that we don't have to follow the strict linearity rule of
791  * PFNMAP mappings in order to support COWable mappings.
792  *
793  */
794 #ifdef __HAVE_ARCH_PTE_SPECIAL
795 # define HAVE_PTE_SPECIAL 1
796 #else
797 # define HAVE_PTE_SPECIAL 0
798 #endif
799 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
800 				pte_t pte)
801 {
802 	unsigned long pfn = pte_pfn(pte);
803 
804 	if (HAVE_PTE_SPECIAL) {
805 		if (likely(!pte_special(pte)))
806 			goto check_pfn;
807 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
808 			return NULL;
809 		if (!is_zero_pfn(pfn))
810 			print_bad_pte(vma, addr, pte, NULL);
811 		return NULL;
812 	}
813 
814 	/* !HAVE_PTE_SPECIAL case follows: */
815 
816 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
817 		if (vma->vm_flags & VM_MIXEDMAP) {
818 			if (!pfn_valid(pfn))
819 				return NULL;
820 			goto out;
821 		} else {
822 			unsigned long off;
823 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
824 			if (pfn == vma->vm_pgoff + off)
825 				return NULL;
826 			if (!is_cow_mapping(vma->vm_flags))
827 				return NULL;
828 		}
829 	}
830 
831 	if (is_zero_pfn(pfn))
832 		return NULL;
833 check_pfn:
834 	if (unlikely(pfn > highest_memmap_pfn)) {
835 		print_bad_pte(vma, addr, pte, NULL);
836 		return NULL;
837 	}
838 
839 	/*
840 	 * NOTE! We still have PageReserved() pages in the page tables.
841 	 * eg. VDSO mappings can cause them to exist.
842 	 */
843 out:
844 	return pfn_to_page(pfn);
845 }
846 
847 /*
848  * copy one vm_area from one task to the other. Assumes the page tables
849  * already present in the new task to be cleared in the whole range
850  * covered by this vma.
851  */
852 
853 static inline unsigned long
854 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
855 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
856 		unsigned long addr, int *rss)
857 {
858 	unsigned long vm_flags = vma->vm_flags;
859 	pte_t pte = *src_pte;
860 	struct page *page;
861 
862 	/* pte contains position in swap or file, so copy. */
863 	if (unlikely(!pte_present(pte))) {
864 		if (!pte_file(pte)) {
865 			swp_entry_t entry = pte_to_swp_entry(pte);
866 
867 			if (swap_duplicate(entry) < 0)
868 				return entry.val;
869 
870 			/* make sure dst_mm is on swapoff's mmlist. */
871 			if (unlikely(list_empty(&dst_mm->mmlist))) {
872 				spin_lock(&mmlist_lock);
873 				if (list_empty(&dst_mm->mmlist))
874 					list_add(&dst_mm->mmlist,
875 						 &src_mm->mmlist);
876 				spin_unlock(&mmlist_lock);
877 			}
878 			if (likely(!non_swap_entry(entry)))
879 				rss[MM_SWAPENTS]++;
880 			else if (is_write_migration_entry(entry) &&
881 					is_cow_mapping(vm_flags)) {
882 				/*
883 				 * COW mappings require pages in both parent
884 				 * and child to be set to read.
885 				 */
886 				make_migration_entry_read(&entry);
887 				pte = swp_entry_to_pte(entry);
888 				set_pte_at(src_mm, addr, src_pte, pte);
889 			}
890 		}
891 		goto out_set_pte;
892 	}
893 
894 	/*
895 	 * If it's a COW mapping, write protect it both
896 	 * in the parent and the child
897 	 */
898 	if (is_cow_mapping(vm_flags)) {
899 		ptep_set_wrprotect(src_mm, addr, src_pte);
900 		pte = pte_wrprotect(pte);
901 	}
902 
903 	/*
904 	 * If it's a shared mapping, mark it clean in
905 	 * the child
906 	 */
907 	if (vm_flags & VM_SHARED)
908 		pte = pte_mkclean(pte);
909 	pte = pte_mkold(pte);
910 
911 	page = vm_normal_page(vma, addr, pte);
912 	if (page) {
913 		get_page(page);
914 		page_dup_rmap(page);
915 		if (PageAnon(page))
916 			rss[MM_ANONPAGES]++;
917 		else
918 			rss[MM_FILEPAGES]++;
919 	}
920 
921 out_set_pte:
922 	set_pte_at(dst_mm, addr, dst_pte, pte);
923 	return 0;
924 }
925 
926 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
927 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928 		   unsigned long addr, unsigned long end)
929 {
930 	pte_t *orig_src_pte, *orig_dst_pte;
931 	pte_t *src_pte, *dst_pte;
932 	spinlock_t *src_ptl, *dst_ptl;
933 	int progress = 0;
934 	int rss[NR_MM_COUNTERS];
935 	swp_entry_t entry = (swp_entry_t){0};
936 
937 again:
938 	init_rss_vec(rss);
939 
940 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
941 	if (!dst_pte)
942 		return -ENOMEM;
943 	src_pte = pte_offset_map(src_pmd, addr);
944 	src_ptl = pte_lockptr(src_mm, src_pmd);
945 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
946 	orig_src_pte = src_pte;
947 	orig_dst_pte = dst_pte;
948 	arch_enter_lazy_mmu_mode();
949 
950 	do {
951 		/*
952 		 * We are holding two locks at this point - either of them
953 		 * could generate latencies in another task on another CPU.
954 		 */
955 		if (progress >= 32) {
956 			progress = 0;
957 			if (need_resched() ||
958 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
959 				break;
960 		}
961 		if (pte_none(*src_pte)) {
962 			progress++;
963 			continue;
964 		}
965 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966 							vma, addr, rss);
967 		if (entry.val)
968 			break;
969 		progress += 8;
970 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
971 
972 	arch_leave_lazy_mmu_mode();
973 	spin_unlock(src_ptl);
974 	pte_unmap(orig_src_pte);
975 	add_mm_rss_vec(dst_mm, rss);
976 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
977 	cond_resched();
978 
979 	if (entry.val) {
980 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 			return -ENOMEM;
982 		progress = 0;
983 	}
984 	if (addr != end)
985 		goto again;
986 	return 0;
987 }
988 
989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991 		unsigned long addr, unsigned long end)
992 {
993 	pmd_t *src_pmd, *dst_pmd;
994 	unsigned long next;
995 
996 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997 	if (!dst_pmd)
998 		return -ENOMEM;
999 	src_pmd = pmd_offset(src_pud, addr);
1000 	do {
1001 		next = pmd_addr_end(addr, end);
1002 		if (pmd_trans_huge(*src_pmd)) {
1003 			int err;
1004 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005 			err = copy_huge_pmd(dst_mm, src_mm,
1006 					    dst_pmd, src_pmd, addr, vma);
1007 			if (err == -ENOMEM)
1008 				return -ENOMEM;
1009 			if (!err)
1010 				continue;
1011 			/* fall through */
1012 		}
1013 		if (pmd_none_or_clear_bad(src_pmd))
1014 			continue;
1015 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016 						vma, addr, next))
1017 			return -ENOMEM;
1018 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019 	return 0;
1020 }
1021 
1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024 		unsigned long addr, unsigned long end)
1025 {
1026 	pud_t *src_pud, *dst_pud;
1027 	unsigned long next;
1028 
1029 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030 	if (!dst_pud)
1031 		return -ENOMEM;
1032 	src_pud = pud_offset(src_pgd, addr);
1033 	do {
1034 		next = pud_addr_end(addr, end);
1035 		if (pud_none_or_clear_bad(src_pud))
1036 			continue;
1037 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038 						vma, addr, next))
1039 			return -ENOMEM;
1040 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1041 	return 0;
1042 }
1043 
1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 		struct vm_area_struct *vma)
1046 {
1047 	pgd_t *src_pgd, *dst_pgd;
1048 	unsigned long next;
1049 	unsigned long addr = vma->vm_start;
1050 	unsigned long end = vma->vm_end;
1051 	int ret;
1052 
1053 	/*
1054 	 * Don't copy ptes where a page fault will fill them correctly.
1055 	 * Fork becomes much lighter when there are big shared or private
1056 	 * readonly mappings. The tradeoff is that copy_page_range is more
1057 	 * efficient than faulting.
1058 	 */
1059 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1060 		if (!vma->anon_vma)
1061 			return 0;
1062 	}
1063 
1064 	if (is_vm_hugetlb_page(vma))
1065 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1066 
1067 	if (unlikely(is_pfn_mapping(vma))) {
1068 		/*
1069 		 * We do not free on error cases below as remove_vma
1070 		 * gets called on error from higher level routine
1071 		 */
1072 		ret = track_pfn_vma_copy(vma);
1073 		if (ret)
1074 			return ret;
1075 	}
1076 
1077 	/*
1078 	 * We need to invalidate the secondary MMU mappings only when
1079 	 * there could be a permission downgrade on the ptes of the
1080 	 * parent mm. And a permission downgrade will only happen if
1081 	 * is_cow_mapping() returns true.
1082 	 */
1083 	if (is_cow_mapping(vma->vm_flags))
1084 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1085 
1086 	ret = 0;
1087 	dst_pgd = pgd_offset(dst_mm, addr);
1088 	src_pgd = pgd_offset(src_mm, addr);
1089 	do {
1090 		next = pgd_addr_end(addr, end);
1091 		if (pgd_none_or_clear_bad(src_pgd))
1092 			continue;
1093 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1094 					    vma, addr, next))) {
1095 			ret = -ENOMEM;
1096 			break;
1097 		}
1098 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1099 
1100 	if (is_cow_mapping(vma->vm_flags))
1101 		mmu_notifier_invalidate_range_end(src_mm,
1102 						  vma->vm_start, end);
1103 	return ret;
1104 }
1105 
1106 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1107 				struct vm_area_struct *vma, pmd_t *pmd,
1108 				unsigned long addr, unsigned long end,
1109 				struct zap_details *details)
1110 {
1111 	struct mm_struct *mm = tlb->mm;
1112 	int force_flush = 0;
1113 	int rss[NR_MM_COUNTERS];
1114 	spinlock_t *ptl;
1115 	pte_t *start_pte;
1116 	pte_t *pte;
1117 
1118 again:
1119 	init_rss_vec(rss);
1120 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1121 	pte = start_pte;
1122 	arch_enter_lazy_mmu_mode();
1123 	do {
1124 		pte_t ptent = *pte;
1125 		if (pte_none(ptent)) {
1126 			continue;
1127 		}
1128 
1129 		if (pte_present(ptent)) {
1130 			struct page *page;
1131 
1132 			page = vm_normal_page(vma, addr, ptent);
1133 			if (unlikely(details) && page) {
1134 				/*
1135 				 * unmap_shared_mapping_pages() wants to
1136 				 * invalidate cache without truncating:
1137 				 * unmap shared but keep private pages.
1138 				 */
1139 				if (details->check_mapping &&
1140 				    details->check_mapping != page->mapping)
1141 					continue;
1142 				/*
1143 				 * Each page->index must be checked when
1144 				 * invalidating or truncating nonlinear.
1145 				 */
1146 				if (details->nonlinear_vma &&
1147 				    (page->index < details->first_index ||
1148 				     page->index > details->last_index))
1149 					continue;
1150 			}
1151 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1152 							tlb->fullmm);
1153 			tlb_remove_tlb_entry(tlb, pte, addr);
1154 			if (unlikely(!page))
1155 				continue;
1156 			if (unlikely(details) && details->nonlinear_vma
1157 			    && linear_page_index(details->nonlinear_vma,
1158 						addr) != page->index)
1159 				set_pte_at(mm, addr, pte,
1160 					   pgoff_to_pte(page->index));
1161 			if (PageAnon(page))
1162 				rss[MM_ANONPAGES]--;
1163 			else {
1164 				if (pte_dirty(ptent))
1165 					set_page_dirty(page);
1166 				if (pte_young(ptent) &&
1167 				    likely(!VM_SequentialReadHint(vma)))
1168 					mark_page_accessed(page);
1169 				rss[MM_FILEPAGES]--;
1170 			}
1171 			page_remove_rmap(page);
1172 			if (unlikely(page_mapcount(page) < 0))
1173 				print_bad_pte(vma, addr, ptent, page);
1174 			force_flush = !__tlb_remove_page(tlb, page);
1175 			if (force_flush)
1176 				break;
1177 			continue;
1178 		}
1179 		/*
1180 		 * If details->check_mapping, we leave swap entries;
1181 		 * if details->nonlinear_vma, we leave file entries.
1182 		 */
1183 		if (unlikely(details))
1184 			continue;
1185 		if (pte_file(ptent)) {
1186 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1187 				print_bad_pte(vma, addr, ptent, NULL);
1188 		} else {
1189 			swp_entry_t entry = pte_to_swp_entry(ptent);
1190 
1191 			if (!non_swap_entry(entry))
1192 				rss[MM_SWAPENTS]--;
1193 			if (unlikely(!free_swap_and_cache(entry)))
1194 				print_bad_pte(vma, addr, ptent, NULL);
1195 		}
1196 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1197 	} while (pte++, addr += PAGE_SIZE, addr != end);
1198 
1199 	add_mm_rss_vec(mm, rss);
1200 	arch_leave_lazy_mmu_mode();
1201 	pte_unmap_unlock(start_pte, ptl);
1202 
1203 	/*
1204 	 * mmu_gather ran out of room to batch pages, we break out of
1205 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1206 	 * and page-free while holding it.
1207 	 */
1208 	if (force_flush) {
1209 		force_flush = 0;
1210 		tlb_flush_mmu(tlb);
1211 		if (addr != end)
1212 			goto again;
1213 	}
1214 
1215 	return addr;
1216 }
1217 
1218 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1219 				struct vm_area_struct *vma, pud_t *pud,
1220 				unsigned long addr, unsigned long end,
1221 				struct zap_details *details)
1222 {
1223 	pmd_t *pmd;
1224 	unsigned long next;
1225 
1226 	pmd = pmd_offset(pud, addr);
1227 	do {
1228 		next = pmd_addr_end(addr, end);
1229 		if (pmd_trans_huge(*pmd)) {
1230 			if (next-addr != HPAGE_PMD_SIZE) {
1231 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1232 				split_huge_page_pmd(vma->vm_mm, pmd);
1233 			} else if (zap_huge_pmd(tlb, vma, pmd))
1234 				continue;
1235 			/* fall through */
1236 		}
1237 		if (pmd_none_or_clear_bad(pmd))
1238 			continue;
1239 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1240 		cond_resched();
1241 	} while (pmd++, addr = next, addr != end);
1242 
1243 	return addr;
1244 }
1245 
1246 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1247 				struct vm_area_struct *vma, pgd_t *pgd,
1248 				unsigned long addr, unsigned long end,
1249 				struct zap_details *details)
1250 {
1251 	pud_t *pud;
1252 	unsigned long next;
1253 
1254 	pud = pud_offset(pgd, addr);
1255 	do {
1256 		next = pud_addr_end(addr, end);
1257 		if (pud_none_or_clear_bad(pud))
1258 			continue;
1259 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1260 	} while (pud++, addr = next, addr != end);
1261 
1262 	return addr;
1263 }
1264 
1265 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1266 				struct vm_area_struct *vma,
1267 				unsigned long addr, unsigned long end,
1268 				struct zap_details *details)
1269 {
1270 	pgd_t *pgd;
1271 	unsigned long next;
1272 
1273 	if (details && !details->check_mapping && !details->nonlinear_vma)
1274 		details = NULL;
1275 
1276 	BUG_ON(addr >= end);
1277 	mem_cgroup_uncharge_start();
1278 	tlb_start_vma(tlb, vma);
1279 	pgd = pgd_offset(vma->vm_mm, addr);
1280 	do {
1281 		next = pgd_addr_end(addr, end);
1282 		if (pgd_none_or_clear_bad(pgd))
1283 			continue;
1284 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1285 	} while (pgd++, addr = next, addr != end);
1286 	tlb_end_vma(tlb, vma);
1287 	mem_cgroup_uncharge_end();
1288 
1289 	return addr;
1290 }
1291 
1292 #ifdef CONFIG_PREEMPT
1293 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1294 #else
1295 /* No preempt: go for improved straight-line efficiency */
1296 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1297 #endif
1298 
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1306  * @details: details of nonlinear truncation or shared cache invalidation
1307  *
1308  * Returns the end address of the unmapping (restart addr if interrupted).
1309  *
1310  * Unmap all pages in the vma list.
1311  *
1312  * We aim to not hold locks for too long (for scheduling latency reasons).
1313  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1314  * return the ending mmu_gather to the caller.
1315  *
1316  * Only addresses between `start' and `end' will be unmapped.
1317  *
1318  * The VMA list must be sorted in ascending virtual address order.
1319  *
1320  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1321  * range after unmap_vmas() returns.  So the only responsibility here is to
1322  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1323  * drops the lock and schedules.
1324  */
1325 unsigned long unmap_vmas(struct mmu_gather *tlb,
1326 		struct vm_area_struct *vma, unsigned long start_addr,
1327 		unsigned long end_addr, unsigned long *nr_accounted,
1328 		struct zap_details *details)
1329 {
1330 	unsigned long start = start_addr;
1331 	struct mm_struct *mm = vma->vm_mm;
1332 
1333 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1334 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1335 		unsigned long end;
1336 
1337 		start = max(vma->vm_start, start_addr);
1338 		if (start >= vma->vm_end)
1339 			continue;
1340 		end = min(vma->vm_end, end_addr);
1341 		if (end <= vma->vm_start)
1342 			continue;
1343 
1344 		if (vma->vm_flags & VM_ACCOUNT)
1345 			*nr_accounted += (end - start) >> PAGE_SHIFT;
1346 
1347 		if (unlikely(is_pfn_mapping(vma)))
1348 			untrack_pfn_vma(vma, 0, 0);
1349 
1350 		while (start != end) {
1351 			if (unlikely(is_vm_hugetlb_page(vma))) {
1352 				/*
1353 				 * It is undesirable to test vma->vm_file as it
1354 				 * should be non-null for valid hugetlb area.
1355 				 * However, vm_file will be NULL in the error
1356 				 * cleanup path of do_mmap_pgoff. When
1357 				 * hugetlbfs ->mmap method fails,
1358 				 * do_mmap_pgoff() nullifies vma->vm_file
1359 				 * before calling this function to clean up.
1360 				 * Since no pte has actually been setup, it is
1361 				 * safe to do nothing in this case.
1362 				 */
1363 				if (vma->vm_file)
1364 					unmap_hugepage_range(vma, start, end, NULL);
1365 
1366 				start = end;
1367 			} else
1368 				start = unmap_page_range(tlb, vma, start, end, details);
1369 		}
1370 	}
1371 
1372 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1373 	return start;	/* which is now the end (or restart) address */
1374 }
1375 
1376 /**
1377  * zap_page_range - remove user pages in a given range
1378  * @vma: vm_area_struct holding the applicable pages
1379  * @address: starting address of pages to zap
1380  * @size: number of bytes to zap
1381  * @details: details of nonlinear truncation or shared cache invalidation
1382  */
1383 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1384 		unsigned long size, struct zap_details *details)
1385 {
1386 	struct mm_struct *mm = vma->vm_mm;
1387 	struct mmu_gather tlb;
1388 	unsigned long end = address + size;
1389 	unsigned long nr_accounted = 0;
1390 
1391 	lru_add_drain();
1392 	tlb_gather_mmu(&tlb, mm, 0);
1393 	update_hiwater_rss(mm);
1394 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1395 	tlb_finish_mmu(&tlb, address, end);
1396 	return end;
1397 }
1398 
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  * Returns 0 if successful.
1410  */
1411 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412 		unsigned long size)
1413 {
1414 	if (address < vma->vm_start || address + size > vma->vm_end ||
1415 	    		!(vma->vm_flags & VM_PFNMAP))
1416 		return -1;
1417 	zap_page_range(vma, address, size, NULL);
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421 
1422 /**
1423  * follow_page - look up a page descriptor from a user-virtual address
1424  * @vma: vm_area_struct mapping @address
1425  * @address: virtual address to look up
1426  * @flags: flags modifying lookup behaviour
1427  *
1428  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1429  *
1430  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1431  * an error pointer if there is a mapping to something not represented
1432  * by a page descriptor (see also vm_normal_page()).
1433  */
1434 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1435 			unsigned int flags)
1436 {
1437 	pgd_t *pgd;
1438 	pud_t *pud;
1439 	pmd_t *pmd;
1440 	pte_t *ptep, pte;
1441 	spinlock_t *ptl;
1442 	struct page *page;
1443 	struct mm_struct *mm = vma->vm_mm;
1444 
1445 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1446 	if (!IS_ERR(page)) {
1447 		BUG_ON(flags & FOLL_GET);
1448 		goto out;
1449 	}
1450 
1451 	page = NULL;
1452 	pgd = pgd_offset(mm, address);
1453 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1454 		goto no_page_table;
1455 
1456 	pud = pud_offset(pgd, address);
1457 	if (pud_none(*pud))
1458 		goto no_page_table;
1459 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1460 		BUG_ON(flags & FOLL_GET);
1461 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1462 		goto out;
1463 	}
1464 	if (unlikely(pud_bad(*pud)))
1465 		goto no_page_table;
1466 
1467 	pmd = pmd_offset(pud, address);
1468 	if (pmd_none(*pmd))
1469 		goto no_page_table;
1470 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1471 		BUG_ON(flags & FOLL_GET);
1472 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1473 		goto out;
1474 	}
1475 	if (pmd_trans_huge(*pmd)) {
1476 		if (flags & FOLL_SPLIT) {
1477 			split_huge_page_pmd(mm, pmd);
1478 			goto split_fallthrough;
1479 		}
1480 		spin_lock(&mm->page_table_lock);
1481 		if (likely(pmd_trans_huge(*pmd))) {
1482 			if (unlikely(pmd_trans_splitting(*pmd))) {
1483 				spin_unlock(&mm->page_table_lock);
1484 				wait_split_huge_page(vma->anon_vma, pmd);
1485 			} else {
1486 				page = follow_trans_huge_pmd(mm, address,
1487 							     pmd, flags);
1488 				spin_unlock(&mm->page_table_lock);
1489 				goto out;
1490 			}
1491 		} else
1492 			spin_unlock(&mm->page_table_lock);
1493 		/* fall through */
1494 	}
1495 split_fallthrough:
1496 	if (unlikely(pmd_bad(*pmd)))
1497 		goto no_page_table;
1498 
1499 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1500 
1501 	pte = *ptep;
1502 	if (!pte_present(pte))
1503 		goto no_page;
1504 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1505 		goto unlock;
1506 
1507 	page = vm_normal_page(vma, address, pte);
1508 	if (unlikely(!page)) {
1509 		if ((flags & FOLL_DUMP) ||
1510 		    !is_zero_pfn(pte_pfn(pte)))
1511 			goto bad_page;
1512 		page = pte_page(pte);
1513 	}
1514 
1515 	if (flags & FOLL_GET)
1516 		get_page(page);
1517 	if (flags & FOLL_TOUCH) {
1518 		if ((flags & FOLL_WRITE) &&
1519 		    !pte_dirty(pte) && !PageDirty(page))
1520 			set_page_dirty(page);
1521 		/*
1522 		 * pte_mkyoung() would be more correct here, but atomic care
1523 		 * is needed to avoid losing the dirty bit: it is easier to use
1524 		 * mark_page_accessed().
1525 		 */
1526 		mark_page_accessed(page);
1527 	}
1528 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1529 		/*
1530 		 * The preliminary mapping check is mainly to avoid the
1531 		 * pointless overhead of lock_page on the ZERO_PAGE
1532 		 * which might bounce very badly if there is contention.
1533 		 *
1534 		 * If the page is already locked, we don't need to
1535 		 * handle it now - vmscan will handle it later if and
1536 		 * when it attempts to reclaim the page.
1537 		 */
1538 		if (page->mapping && trylock_page(page)) {
1539 			lru_add_drain();  /* push cached pages to LRU */
1540 			/*
1541 			 * Because we lock page here and migration is
1542 			 * blocked by the pte's page reference, we need
1543 			 * only check for file-cache page truncation.
1544 			 */
1545 			if (page->mapping)
1546 				mlock_vma_page(page);
1547 			unlock_page(page);
1548 		}
1549 	}
1550 unlock:
1551 	pte_unmap_unlock(ptep, ptl);
1552 out:
1553 	return page;
1554 
1555 bad_page:
1556 	pte_unmap_unlock(ptep, ptl);
1557 	return ERR_PTR(-EFAULT);
1558 
1559 no_page:
1560 	pte_unmap_unlock(ptep, ptl);
1561 	if (!pte_none(pte))
1562 		return page;
1563 
1564 no_page_table:
1565 	/*
1566 	 * When core dumping an enormous anonymous area that nobody
1567 	 * has touched so far, we don't want to allocate unnecessary pages or
1568 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1569 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1570 	 * But we can only make this optimization where a hole would surely
1571 	 * be zero-filled if handle_mm_fault() actually did handle it.
1572 	 */
1573 	if ((flags & FOLL_DUMP) &&
1574 	    (!vma->vm_ops || !vma->vm_ops->fault))
1575 		return ERR_PTR(-EFAULT);
1576 	return page;
1577 }
1578 
1579 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1580 {
1581 	return stack_guard_page_start(vma, addr) ||
1582 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1583 }
1584 
1585 /**
1586  * __get_user_pages() - pin user pages in memory
1587  * @tsk:	task_struct of target task
1588  * @mm:		mm_struct of target mm
1589  * @start:	starting user address
1590  * @nr_pages:	number of pages from start to pin
1591  * @gup_flags:	flags modifying pin behaviour
1592  * @pages:	array that receives pointers to the pages pinned.
1593  *		Should be at least nr_pages long. Or NULL, if caller
1594  *		only intends to ensure the pages are faulted in.
1595  * @vmas:	array of pointers to vmas corresponding to each page.
1596  *		Or NULL if the caller does not require them.
1597  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1598  *
1599  * Returns number of pages pinned. This may be fewer than the number
1600  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1601  * were pinned, returns -errno. Each page returned must be released
1602  * with a put_page() call when it is finished with. vmas will only
1603  * remain valid while mmap_sem is held.
1604  *
1605  * Must be called with mmap_sem held for read or write.
1606  *
1607  * __get_user_pages walks a process's page tables and takes a reference to
1608  * each struct page that each user address corresponds to at a given
1609  * instant. That is, it takes the page that would be accessed if a user
1610  * thread accesses the given user virtual address at that instant.
1611  *
1612  * This does not guarantee that the page exists in the user mappings when
1613  * __get_user_pages returns, and there may even be a completely different
1614  * page there in some cases (eg. if mmapped pagecache has been invalidated
1615  * and subsequently re faulted). However it does guarantee that the page
1616  * won't be freed completely. And mostly callers simply care that the page
1617  * contains data that was valid *at some point in time*. Typically, an IO
1618  * or similar operation cannot guarantee anything stronger anyway because
1619  * locks can't be held over the syscall boundary.
1620  *
1621  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1622  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1623  * appropriate) must be called after the page is finished with, and
1624  * before put_page is called.
1625  *
1626  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1627  * or mmap_sem contention, and if waiting is needed to pin all pages,
1628  * *@nonblocking will be set to 0.
1629  *
1630  * In most cases, get_user_pages or get_user_pages_fast should be used
1631  * instead of __get_user_pages. __get_user_pages should be used only if
1632  * you need some special @gup_flags.
1633  */
1634 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1635 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1636 		     struct page **pages, struct vm_area_struct **vmas,
1637 		     int *nonblocking)
1638 {
1639 	int i;
1640 	unsigned long vm_flags;
1641 
1642 	if (nr_pages <= 0)
1643 		return 0;
1644 
1645 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1646 
1647 	/*
1648 	 * Require read or write permissions.
1649 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1650 	 */
1651 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1652 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1653 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1654 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1655 	i = 0;
1656 
1657 	do {
1658 		struct vm_area_struct *vma;
1659 
1660 		vma = find_extend_vma(mm, start);
1661 		if (!vma && in_gate_area(mm, start)) {
1662 			unsigned long pg = start & PAGE_MASK;
1663 			pgd_t *pgd;
1664 			pud_t *pud;
1665 			pmd_t *pmd;
1666 			pte_t *pte;
1667 
1668 			/* user gate pages are read-only */
1669 			if (gup_flags & FOLL_WRITE)
1670 				return i ? : -EFAULT;
1671 			if (pg > TASK_SIZE)
1672 				pgd = pgd_offset_k(pg);
1673 			else
1674 				pgd = pgd_offset_gate(mm, pg);
1675 			BUG_ON(pgd_none(*pgd));
1676 			pud = pud_offset(pgd, pg);
1677 			BUG_ON(pud_none(*pud));
1678 			pmd = pmd_offset(pud, pg);
1679 			if (pmd_none(*pmd))
1680 				return i ? : -EFAULT;
1681 			VM_BUG_ON(pmd_trans_huge(*pmd));
1682 			pte = pte_offset_map(pmd, pg);
1683 			if (pte_none(*pte)) {
1684 				pte_unmap(pte);
1685 				return i ? : -EFAULT;
1686 			}
1687 			vma = get_gate_vma(mm);
1688 			if (pages) {
1689 				struct page *page;
1690 
1691 				page = vm_normal_page(vma, start, *pte);
1692 				if (!page) {
1693 					if (!(gup_flags & FOLL_DUMP) &&
1694 					     is_zero_pfn(pte_pfn(*pte)))
1695 						page = pte_page(*pte);
1696 					else {
1697 						pte_unmap(pte);
1698 						return i ? : -EFAULT;
1699 					}
1700 				}
1701 				pages[i] = page;
1702 				get_page(page);
1703 			}
1704 			pte_unmap(pte);
1705 			goto next_page;
1706 		}
1707 
1708 		if (!vma ||
1709 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1710 		    !(vm_flags & vma->vm_flags))
1711 			return i ? : -EFAULT;
1712 
1713 		if (is_vm_hugetlb_page(vma)) {
1714 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1715 					&start, &nr_pages, i, gup_flags);
1716 			continue;
1717 		}
1718 
1719 		do {
1720 			struct page *page;
1721 			unsigned int foll_flags = gup_flags;
1722 
1723 			/*
1724 			 * If we have a pending SIGKILL, don't keep faulting
1725 			 * pages and potentially allocating memory.
1726 			 */
1727 			if (unlikely(fatal_signal_pending(current)))
1728 				return i ? i : -ERESTARTSYS;
1729 
1730 			cond_resched();
1731 			while (!(page = follow_page(vma, start, foll_flags))) {
1732 				int ret;
1733 				unsigned int fault_flags = 0;
1734 
1735 				/* For mlock, just skip the stack guard page. */
1736 				if (foll_flags & FOLL_MLOCK) {
1737 					if (stack_guard_page(vma, start))
1738 						goto next_page;
1739 				}
1740 				if (foll_flags & FOLL_WRITE)
1741 					fault_flags |= FAULT_FLAG_WRITE;
1742 				if (nonblocking)
1743 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1744 				if (foll_flags & FOLL_NOWAIT)
1745 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1746 
1747 				ret = handle_mm_fault(mm, vma, start,
1748 							fault_flags);
1749 
1750 				if (ret & VM_FAULT_ERROR) {
1751 					if (ret & VM_FAULT_OOM)
1752 						return i ? i : -ENOMEM;
1753 					if (ret & (VM_FAULT_HWPOISON |
1754 						   VM_FAULT_HWPOISON_LARGE)) {
1755 						if (i)
1756 							return i;
1757 						else if (gup_flags & FOLL_HWPOISON)
1758 							return -EHWPOISON;
1759 						else
1760 							return -EFAULT;
1761 					}
1762 					if (ret & VM_FAULT_SIGBUS)
1763 						return i ? i : -EFAULT;
1764 					BUG();
1765 				}
1766 
1767 				if (tsk) {
1768 					if (ret & VM_FAULT_MAJOR)
1769 						tsk->maj_flt++;
1770 					else
1771 						tsk->min_flt++;
1772 				}
1773 
1774 				if (ret & VM_FAULT_RETRY) {
1775 					if (nonblocking)
1776 						*nonblocking = 0;
1777 					return i;
1778 				}
1779 
1780 				/*
1781 				 * The VM_FAULT_WRITE bit tells us that
1782 				 * do_wp_page has broken COW when necessary,
1783 				 * even if maybe_mkwrite decided not to set
1784 				 * pte_write. We can thus safely do subsequent
1785 				 * page lookups as if they were reads. But only
1786 				 * do so when looping for pte_write is futile:
1787 				 * in some cases userspace may also be wanting
1788 				 * to write to the gotten user page, which a
1789 				 * read fault here might prevent (a readonly
1790 				 * page might get reCOWed by userspace write).
1791 				 */
1792 				if ((ret & VM_FAULT_WRITE) &&
1793 				    !(vma->vm_flags & VM_WRITE))
1794 					foll_flags &= ~FOLL_WRITE;
1795 
1796 				cond_resched();
1797 			}
1798 			if (IS_ERR(page))
1799 				return i ? i : PTR_ERR(page);
1800 			if (pages) {
1801 				pages[i] = page;
1802 
1803 				flush_anon_page(vma, page, start);
1804 				flush_dcache_page(page);
1805 			}
1806 next_page:
1807 			if (vmas)
1808 				vmas[i] = vma;
1809 			i++;
1810 			start += PAGE_SIZE;
1811 			nr_pages--;
1812 		} while (nr_pages && start < vma->vm_end);
1813 	} while (nr_pages);
1814 	return i;
1815 }
1816 EXPORT_SYMBOL(__get_user_pages);
1817 
1818 /**
1819  * get_user_pages() - pin user pages in memory
1820  * @tsk:	the task_struct to use for page fault accounting, or
1821  *		NULL if faults are not to be recorded.
1822  * @mm:		mm_struct of target mm
1823  * @start:	starting user address
1824  * @nr_pages:	number of pages from start to pin
1825  * @write:	whether pages will be written to by the caller
1826  * @force:	whether to force write access even if user mapping is
1827  *		readonly. This will result in the page being COWed even
1828  *		in MAP_SHARED mappings. You do not want this.
1829  * @pages:	array that receives pointers to the pages pinned.
1830  *		Should be at least nr_pages long. Or NULL, if caller
1831  *		only intends to ensure the pages are faulted in.
1832  * @vmas:	array of pointers to vmas corresponding to each page.
1833  *		Or NULL if the caller does not require them.
1834  *
1835  * Returns number of pages pinned. This may be fewer than the number
1836  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1837  * were pinned, returns -errno. Each page returned must be released
1838  * with a put_page() call when it is finished with. vmas will only
1839  * remain valid while mmap_sem is held.
1840  *
1841  * Must be called with mmap_sem held for read or write.
1842  *
1843  * get_user_pages walks a process's page tables and takes a reference to
1844  * each struct page that each user address corresponds to at a given
1845  * instant. That is, it takes the page that would be accessed if a user
1846  * thread accesses the given user virtual address at that instant.
1847  *
1848  * This does not guarantee that the page exists in the user mappings when
1849  * get_user_pages returns, and there may even be a completely different
1850  * page there in some cases (eg. if mmapped pagecache has been invalidated
1851  * and subsequently re faulted). However it does guarantee that the page
1852  * won't be freed completely. And mostly callers simply care that the page
1853  * contains data that was valid *at some point in time*. Typically, an IO
1854  * or similar operation cannot guarantee anything stronger anyway because
1855  * locks can't be held over the syscall boundary.
1856  *
1857  * If write=0, the page must not be written to. If the page is written to,
1858  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1859  * after the page is finished with, and before put_page is called.
1860  *
1861  * get_user_pages is typically used for fewer-copy IO operations, to get a
1862  * handle on the memory by some means other than accesses via the user virtual
1863  * addresses. The pages may be submitted for DMA to devices or accessed via
1864  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1865  * use the correct cache flushing APIs.
1866  *
1867  * See also get_user_pages_fast, for performance critical applications.
1868  */
1869 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1870 		unsigned long start, int nr_pages, int write, int force,
1871 		struct page **pages, struct vm_area_struct **vmas)
1872 {
1873 	int flags = FOLL_TOUCH;
1874 
1875 	if (pages)
1876 		flags |= FOLL_GET;
1877 	if (write)
1878 		flags |= FOLL_WRITE;
1879 	if (force)
1880 		flags |= FOLL_FORCE;
1881 
1882 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1883 				NULL);
1884 }
1885 EXPORT_SYMBOL(get_user_pages);
1886 
1887 /**
1888  * get_dump_page() - pin user page in memory while writing it to core dump
1889  * @addr: user address
1890  *
1891  * Returns struct page pointer of user page pinned for dump,
1892  * to be freed afterwards by page_cache_release() or put_page().
1893  *
1894  * Returns NULL on any kind of failure - a hole must then be inserted into
1895  * the corefile, to preserve alignment with its headers; and also returns
1896  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1897  * allowing a hole to be left in the corefile to save diskspace.
1898  *
1899  * Called without mmap_sem, but after all other threads have been killed.
1900  */
1901 #ifdef CONFIG_ELF_CORE
1902 struct page *get_dump_page(unsigned long addr)
1903 {
1904 	struct vm_area_struct *vma;
1905 	struct page *page;
1906 
1907 	if (__get_user_pages(current, current->mm, addr, 1,
1908 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1909 			     NULL) < 1)
1910 		return NULL;
1911 	flush_cache_page(vma, addr, page_to_pfn(page));
1912 	return page;
1913 }
1914 #endif /* CONFIG_ELF_CORE */
1915 
1916 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1917 			spinlock_t **ptl)
1918 {
1919 	pgd_t * pgd = pgd_offset(mm, addr);
1920 	pud_t * pud = pud_alloc(mm, pgd, addr);
1921 	if (pud) {
1922 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1923 		if (pmd) {
1924 			VM_BUG_ON(pmd_trans_huge(*pmd));
1925 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1926 		}
1927 	}
1928 	return NULL;
1929 }
1930 
1931 /*
1932  * This is the old fallback for page remapping.
1933  *
1934  * For historical reasons, it only allows reserved pages. Only
1935  * old drivers should use this, and they needed to mark their
1936  * pages reserved for the old functions anyway.
1937  */
1938 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1939 			struct page *page, pgprot_t prot)
1940 {
1941 	struct mm_struct *mm = vma->vm_mm;
1942 	int retval;
1943 	pte_t *pte;
1944 	spinlock_t *ptl;
1945 
1946 	retval = -EINVAL;
1947 	if (PageAnon(page))
1948 		goto out;
1949 	retval = -ENOMEM;
1950 	flush_dcache_page(page);
1951 	pte = get_locked_pte(mm, addr, &ptl);
1952 	if (!pte)
1953 		goto out;
1954 	retval = -EBUSY;
1955 	if (!pte_none(*pte))
1956 		goto out_unlock;
1957 
1958 	/* Ok, finally just insert the thing.. */
1959 	get_page(page);
1960 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1961 	page_add_file_rmap(page);
1962 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1963 
1964 	retval = 0;
1965 	pte_unmap_unlock(pte, ptl);
1966 	return retval;
1967 out_unlock:
1968 	pte_unmap_unlock(pte, ptl);
1969 out:
1970 	return retval;
1971 }
1972 
1973 /**
1974  * vm_insert_page - insert single page into user vma
1975  * @vma: user vma to map to
1976  * @addr: target user address of this page
1977  * @page: source kernel page
1978  *
1979  * This allows drivers to insert individual pages they've allocated
1980  * into a user vma.
1981  *
1982  * The page has to be a nice clean _individual_ kernel allocation.
1983  * If you allocate a compound page, you need to have marked it as
1984  * such (__GFP_COMP), or manually just split the page up yourself
1985  * (see split_page()).
1986  *
1987  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1988  * took an arbitrary page protection parameter. This doesn't allow
1989  * that. Your vma protection will have to be set up correctly, which
1990  * means that if you want a shared writable mapping, you'd better
1991  * ask for a shared writable mapping!
1992  *
1993  * The page does not need to be reserved.
1994  */
1995 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1996 			struct page *page)
1997 {
1998 	if (addr < vma->vm_start || addr >= vma->vm_end)
1999 		return -EFAULT;
2000 	if (!page_count(page))
2001 		return -EINVAL;
2002 	vma->vm_flags |= VM_INSERTPAGE;
2003 	return insert_page(vma, addr, page, vma->vm_page_prot);
2004 }
2005 EXPORT_SYMBOL(vm_insert_page);
2006 
2007 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2008 			unsigned long pfn, pgprot_t prot)
2009 {
2010 	struct mm_struct *mm = vma->vm_mm;
2011 	int retval;
2012 	pte_t *pte, entry;
2013 	spinlock_t *ptl;
2014 
2015 	retval = -ENOMEM;
2016 	pte = get_locked_pte(mm, addr, &ptl);
2017 	if (!pte)
2018 		goto out;
2019 	retval = -EBUSY;
2020 	if (!pte_none(*pte))
2021 		goto out_unlock;
2022 
2023 	/* Ok, finally just insert the thing.. */
2024 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2025 	set_pte_at(mm, addr, pte, entry);
2026 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2027 
2028 	retval = 0;
2029 out_unlock:
2030 	pte_unmap_unlock(pte, ptl);
2031 out:
2032 	return retval;
2033 }
2034 
2035 /**
2036  * vm_insert_pfn - insert single pfn into user vma
2037  * @vma: user vma to map to
2038  * @addr: target user address of this page
2039  * @pfn: source kernel pfn
2040  *
2041  * Similar to vm_inert_page, this allows drivers to insert individual pages
2042  * they've allocated into a user vma. Same comments apply.
2043  *
2044  * This function should only be called from a vm_ops->fault handler, and
2045  * in that case the handler should return NULL.
2046  *
2047  * vma cannot be a COW mapping.
2048  *
2049  * As this is called only for pages that do not currently exist, we
2050  * do not need to flush old virtual caches or the TLB.
2051  */
2052 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2053 			unsigned long pfn)
2054 {
2055 	int ret;
2056 	pgprot_t pgprot = vma->vm_page_prot;
2057 	/*
2058 	 * Technically, architectures with pte_special can avoid all these
2059 	 * restrictions (same for remap_pfn_range).  However we would like
2060 	 * consistency in testing and feature parity among all, so we should
2061 	 * try to keep these invariants in place for everybody.
2062 	 */
2063 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2064 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2065 						(VM_PFNMAP|VM_MIXEDMAP));
2066 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2067 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2068 
2069 	if (addr < vma->vm_start || addr >= vma->vm_end)
2070 		return -EFAULT;
2071 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2072 		return -EINVAL;
2073 
2074 	ret = insert_pfn(vma, addr, pfn, pgprot);
2075 
2076 	if (ret)
2077 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2078 
2079 	return ret;
2080 }
2081 EXPORT_SYMBOL(vm_insert_pfn);
2082 
2083 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2084 			unsigned long pfn)
2085 {
2086 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2087 
2088 	if (addr < vma->vm_start || addr >= vma->vm_end)
2089 		return -EFAULT;
2090 
2091 	/*
2092 	 * If we don't have pte special, then we have to use the pfn_valid()
2093 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2094 	 * refcount the page if pfn_valid is true (hence insert_page rather
2095 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2096 	 * without pte special, it would there be refcounted as a normal page.
2097 	 */
2098 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2099 		struct page *page;
2100 
2101 		page = pfn_to_page(pfn);
2102 		return insert_page(vma, addr, page, vma->vm_page_prot);
2103 	}
2104 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2105 }
2106 EXPORT_SYMBOL(vm_insert_mixed);
2107 
2108 /*
2109  * maps a range of physical memory into the requested pages. the old
2110  * mappings are removed. any references to nonexistent pages results
2111  * in null mappings (currently treated as "copy-on-access")
2112  */
2113 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2114 			unsigned long addr, unsigned long end,
2115 			unsigned long pfn, pgprot_t prot)
2116 {
2117 	pte_t *pte;
2118 	spinlock_t *ptl;
2119 
2120 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2121 	if (!pte)
2122 		return -ENOMEM;
2123 	arch_enter_lazy_mmu_mode();
2124 	do {
2125 		BUG_ON(!pte_none(*pte));
2126 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2127 		pfn++;
2128 	} while (pte++, addr += PAGE_SIZE, addr != end);
2129 	arch_leave_lazy_mmu_mode();
2130 	pte_unmap_unlock(pte - 1, ptl);
2131 	return 0;
2132 }
2133 
2134 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2135 			unsigned long addr, unsigned long end,
2136 			unsigned long pfn, pgprot_t prot)
2137 {
2138 	pmd_t *pmd;
2139 	unsigned long next;
2140 
2141 	pfn -= addr >> PAGE_SHIFT;
2142 	pmd = pmd_alloc(mm, pud, addr);
2143 	if (!pmd)
2144 		return -ENOMEM;
2145 	VM_BUG_ON(pmd_trans_huge(*pmd));
2146 	do {
2147 		next = pmd_addr_end(addr, end);
2148 		if (remap_pte_range(mm, pmd, addr, next,
2149 				pfn + (addr >> PAGE_SHIFT), prot))
2150 			return -ENOMEM;
2151 	} while (pmd++, addr = next, addr != end);
2152 	return 0;
2153 }
2154 
2155 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2156 			unsigned long addr, unsigned long end,
2157 			unsigned long pfn, pgprot_t prot)
2158 {
2159 	pud_t *pud;
2160 	unsigned long next;
2161 
2162 	pfn -= addr >> PAGE_SHIFT;
2163 	pud = pud_alloc(mm, pgd, addr);
2164 	if (!pud)
2165 		return -ENOMEM;
2166 	do {
2167 		next = pud_addr_end(addr, end);
2168 		if (remap_pmd_range(mm, pud, addr, next,
2169 				pfn + (addr >> PAGE_SHIFT), prot))
2170 			return -ENOMEM;
2171 	} while (pud++, addr = next, addr != end);
2172 	return 0;
2173 }
2174 
2175 /**
2176  * remap_pfn_range - remap kernel memory to userspace
2177  * @vma: user vma to map to
2178  * @addr: target user address to start at
2179  * @pfn: physical address of kernel memory
2180  * @size: size of map area
2181  * @prot: page protection flags for this mapping
2182  *
2183  *  Note: this is only safe if the mm semaphore is held when called.
2184  */
2185 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2186 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2187 {
2188 	pgd_t *pgd;
2189 	unsigned long next;
2190 	unsigned long end = addr + PAGE_ALIGN(size);
2191 	struct mm_struct *mm = vma->vm_mm;
2192 	int err;
2193 
2194 	/*
2195 	 * Physically remapped pages are special. Tell the
2196 	 * rest of the world about it:
2197 	 *   VM_IO tells people not to look at these pages
2198 	 *	(accesses can have side effects).
2199 	 *   VM_RESERVED is specified all over the place, because
2200 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2201 	 *	in 2.6 the LRU scan won't even find its pages, so this
2202 	 *	flag means no more than count its pages in reserved_vm,
2203 	 * 	and omit it from core dump, even when VM_IO turned off.
2204 	 *   VM_PFNMAP tells the core MM that the base pages are just
2205 	 *	raw PFN mappings, and do not have a "struct page" associated
2206 	 *	with them.
2207 	 *
2208 	 * There's a horrible special case to handle copy-on-write
2209 	 * behaviour that some programs depend on. We mark the "original"
2210 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2211 	 */
2212 	if (addr == vma->vm_start && end == vma->vm_end) {
2213 		vma->vm_pgoff = pfn;
2214 		vma->vm_flags |= VM_PFN_AT_MMAP;
2215 	} else if (is_cow_mapping(vma->vm_flags))
2216 		return -EINVAL;
2217 
2218 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2219 
2220 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2221 	if (err) {
2222 		/*
2223 		 * To indicate that track_pfn related cleanup is not
2224 		 * needed from higher level routine calling unmap_vmas
2225 		 */
2226 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2227 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2228 		return -EINVAL;
2229 	}
2230 
2231 	BUG_ON(addr >= end);
2232 	pfn -= addr >> PAGE_SHIFT;
2233 	pgd = pgd_offset(mm, addr);
2234 	flush_cache_range(vma, addr, end);
2235 	do {
2236 		next = pgd_addr_end(addr, end);
2237 		err = remap_pud_range(mm, pgd, addr, next,
2238 				pfn + (addr >> PAGE_SHIFT), prot);
2239 		if (err)
2240 			break;
2241 	} while (pgd++, addr = next, addr != end);
2242 
2243 	if (err)
2244 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2245 
2246 	return err;
2247 }
2248 EXPORT_SYMBOL(remap_pfn_range);
2249 
2250 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2251 				     unsigned long addr, unsigned long end,
2252 				     pte_fn_t fn, void *data)
2253 {
2254 	pte_t *pte;
2255 	int err;
2256 	pgtable_t token;
2257 	spinlock_t *uninitialized_var(ptl);
2258 
2259 	pte = (mm == &init_mm) ?
2260 		pte_alloc_kernel(pmd, addr) :
2261 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2262 	if (!pte)
2263 		return -ENOMEM;
2264 
2265 	BUG_ON(pmd_huge(*pmd));
2266 
2267 	arch_enter_lazy_mmu_mode();
2268 
2269 	token = pmd_pgtable(*pmd);
2270 
2271 	do {
2272 		err = fn(pte++, token, addr, data);
2273 		if (err)
2274 			break;
2275 	} while (addr += PAGE_SIZE, addr != end);
2276 
2277 	arch_leave_lazy_mmu_mode();
2278 
2279 	if (mm != &init_mm)
2280 		pte_unmap_unlock(pte-1, ptl);
2281 	return err;
2282 }
2283 
2284 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2285 				     unsigned long addr, unsigned long end,
2286 				     pte_fn_t fn, void *data)
2287 {
2288 	pmd_t *pmd;
2289 	unsigned long next;
2290 	int err;
2291 
2292 	BUG_ON(pud_huge(*pud));
2293 
2294 	pmd = pmd_alloc(mm, pud, addr);
2295 	if (!pmd)
2296 		return -ENOMEM;
2297 	do {
2298 		next = pmd_addr_end(addr, end);
2299 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2300 		if (err)
2301 			break;
2302 	} while (pmd++, addr = next, addr != end);
2303 	return err;
2304 }
2305 
2306 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2307 				     unsigned long addr, unsigned long end,
2308 				     pte_fn_t fn, void *data)
2309 {
2310 	pud_t *pud;
2311 	unsigned long next;
2312 	int err;
2313 
2314 	pud = pud_alloc(mm, pgd, addr);
2315 	if (!pud)
2316 		return -ENOMEM;
2317 	do {
2318 		next = pud_addr_end(addr, end);
2319 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2320 		if (err)
2321 			break;
2322 	} while (pud++, addr = next, addr != end);
2323 	return err;
2324 }
2325 
2326 /*
2327  * Scan a region of virtual memory, filling in page tables as necessary
2328  * and calling a provided function on each leaf page table.
2329  */
2330 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2331 			unsigned long size, pte_fn_t fn, void *data)
2332 {
2333 	pgd_t *pgd;
2334 	unsigned long next;
2335 	unsigned long end = addr + size;
2336 	int err;
2337 
2338 	BUG_ON(addr >= end);
2339 	pgd = pgd_offset(mm, addr);
2340 	do {
2341 		next = pgd_addr_end(addr, end);
2342 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2343 		if (err)
2344 			break;
2345 	} while (pgd++, addr = next, addr != end);
2346 
2347 	return err;
2348 }
2349 EXPORT_SYMBOL_GPL(apply_to_page_range);
2350 
2351 /*
2352  * handle_pte_fault chooses page fault handler according to an entry
2353  * which was read non-atomically.  Before making any commitment, on
2354  * those architectures or configurations (e.g. i386 with PAE) which
2355  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2356  * must check under lock before unmapping the pte and proceeding
2357  * (but do_wp_page is only called after already making such a check;
2358  * and do_anonymous_page can safely check later on).
2359  */
2360 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2361 				pte_t *page_table, pte_t orig_pte)
2362 {
2363 	int same = 1;
2364 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2365 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2366 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2367 		spin_lock(ptl);
2368 		same = pte_same(*page_table, orig_pte);
2369 		spin_unlock(ptl);
2370 	}
2371 #endif
2372 	pte_unmap(page_table);
2373 	return same;
2374 }
2375 
2376 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2377 {
2378 	/*
2379 	 * If the source page was a PFN mapping, we don't have
2380 	 * a "struct page" for it. We do a best-effort copy by
2381 	 * just copying from the original user address. If that
2382 	 * fails, we just zero-fill it. Live with it.
2383 	 */
2384 	if (unlikely(!src)) {
2385 		void *kaddr = kmap_atomic(dst, KM_USER0);
2386 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2387 
2388 		/*
2389 		 * This really shouldn't fail, because the page is there
2390 		 * in the page tables. But it might just be unreadable,
2391 		 * in which case we just give up and fill the result with
2392 		 * zeroes.
2393 		 */
2394 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2395 			clear_page(kaddr);
2396 		kunmap_atomic(kaddr, KM_USER0);
2397 		flush_dcache_page(dst);
2398 	} else
2399 		copy_user_highpage(dst, src, va, vma);
2400 }
2401 
2402 /*
2403  * This routine handles present pages, when users try to write
2404  * to a shared page. It is done by copying the page to a new address
2405  * and decrementing the shared-page counter for the old page.
2406  *
2407  * Note that this routine assumes that the protection checks have been
2408  * done by the caller (the low-level page fault routine in most cases).
2409  * Thus we can safely just mark it writable once we've done any necessary
2410  * COW.
2411  *
2412  * We also mark the page dirty at this point even though the page will
2413  * change only once the write actually happens. This avoids a few races,
2414  * and potentially makes it more efficient.
2415  *
2416  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2417  * but allow concurrent faults), with pte both mapped and locked.
2418  * We return with mmap_sem still held, but pte unmapped and unlocked.
2419  */
2420 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2421 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2422 		spinlock_t *ptl, pte_t orig_pte)
2423 	__releases(ptl)
2424 {
2425 	struct page *old_page, *new_page;
2426 	pte_t entry;
2427 	int ret = 0;
2428 	int page_mkwrite = 0;
2429 	struct page *dirty_page = NULL;
2430 
2431 	old_page = vm_normal_page(vma, address, orig_pte);
2432 	if (!old_page) {
2433 		/*
2434 		 * VM_MIXEDMAP !pfn_valid() case
2435 		 *
2436 		 * We should not cow pages in a shared writeable mapping.
2437 		 * Just mark the pages writable as we can't do any dirty
2438 		 * accounting on raw pfn maps.
2439 		 */
2440 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2441 				     (VM_WRITE|VM_SHARED))
2442 			goto reuse;
2443 		goto gotten;
2444 	}
2445 
2446 	/*
2447 	 * Take out anonymous pages first, anonymous shared vmas are
2448 	 * not dirty accountable.
2449 	 */
2450 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2451 		if (!trylock_page(old_page)) {
2452 			page_cache_get(old_page);
2453 			pte_unmap_unlock(page_table, ptl);
2454 			lock_page(old_page);
2455 			page_table = pte_offset_map_lock(mm, pmd, address,
2456 							 &ptl);
2457 			if (!pte_same(*page_table, orig_pte)) {
2458 				unlock_page(old_page);
2459 				goto unlock;
2460 			}
2461 			page_cache_release(old_page);
2462 		}
2463 		if (reuse_swap_page(old_page)) {
2464 			/*
2465 			 * The page is all ours.  Move it to our anon_vma so
2466 			 * the rmap code will not search our parent or siblings.
2467 			 * Protected against the rmap code by the page lock.
2468 			 */
2469 			page_move_anon_rmap(old_page, vma, address);
2470 			unlock_page(old_page);
2471 			goto reuse;
2472 		}
2473 		unlock_page(old_page);
2474 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2475 					(VM_WRITE|VM_SHARED))) {
2476 		/*
2477 		 * Only catch write-faults on shared writable pages,
2478 		 * read-only shared pages can get COWed by
2479 		 * get_user_pages(.write=1, .force=1).
2480 		 */
2481 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2482 			struct vm_fault vmf;
2483 			int tmp;
2484 
2485 			vmf.virtual_address = (void __user *)(address &
2486 								PAGE_MASK);
2487 			vmf.pgoff = old_page->index;
2488 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2489 			vmf.page = old_page;
2490 
2491 			/*
2492 			 * Notify the address space that the page is about to
2493 			 * become writable so that it can prohibit this or wait
2494 			 * for the page to get into an appropriate state.
2495 			 *
2496 			 * We do this without the lock held, so that it can
2497 			 * sleep if it needs to.
2498 			 */
2499 			page_cache_get(old_page);
2500 			pte_unmap_unlock(page_table, ptl);
2501 
2502 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2503 			if (unlikely(tmp &
2504 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2505 				ret = tmp;
2506 				goto unwritable_page;
2507 			}
2508 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2509 				lock_page(old_page);
2510 				if (!old_page->mapping) {
2511 					ret = 0; /* retry the fault */
2512 					unlock_page(old_page);
2513 					goto unwritable_page;
2514 				}
2515 			} else
2516 				VM_BUG_ON(!PageLocked(old_page));
2517 
2518 			/*
2519 			 * Since we dropped the lock we need to revalidate
2520 			 * the PTE as someone else may have changed it.  If
2521 			 * they did, we just return, as we can count on the
2522 			 * MMU to tell us if they didn't also make it writable.
2523 			 */
2524 			page_table = pte_offset_map_lock(mm, pmd, address,
2525 							 &ptl);
2526 			if (!pte_same(*page_table, orig_pte)) {
2527 				unlock_page(old_page);
2528 				goto unlock;
2529 			}
2530 
2531 			page_mkwrite = 1;
2532 		}
2533 		dirty_page = old_page;
2534 		get_page(dirty_page);
2535 
2536 reuse:
2537 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2538 		entry = pte_mkyoung(orig_pte);
2539 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2540 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2541 			update_mmu_cache(vma, address, page_table);
2542 		pte_unmap_unlock(page_table, ptl);
2543 		ret |= VM_FAULT_WRITE;
2544 
2545 		if (!dirty_page)
2546 			return ret;
2547 
2548 		/*
2549 		 * Yes, Virginia, this is actually required to prevent a race
2550 		 * with clear_page_dirty_for_io() from clearing the page dirty
2551 		 * bit after it clear all dirty ptes, but before a racing
2552 		 * do_wp_page installs a dirty pte.
2553 		 *
2554 		 * __do_fault is protected similarly.
2555 		 */
2556 		if (!page_mkwrite) {
2557 			wait_on_page_locked(dirty_page);
2558 			set_page_dirty_balance(dirty_page, page_mkwrite);
2559 		}
2560 		put_page(dirty_page);
2561 		if (page_mkwrite) {
2562 			struct address_space *mapping = dirty_page->mapping;
2563 
2564 			set_page_dirty(dirty_page);
2565 			unlock_page(dirty_page);
2566 			page_cache_release(dirty_page);
2567 			if (mapping)	{
2568 				/*
2569 				 * Some device drivers do not set page.mapping
2570 				 * but still dirty their pages
2571 				 */
2572 				balance_dirty_pages_ratelimited(mapping);
2573 			}
2574 		}
2575 
2576 		/* file_update_time outside page_lock */
2577 		if (vma->vm_file)
2578 			file_update_time(vma->vm_file);
2579 
2580 		return ret;
2581 	}
2582 
2583 	/*
2584 	 * Ok, we need to copy. Oh, well..
2585 	 */
2586 	page_cache_get(old_page);
2587 gotten:
2588 	pte_unmap_unlock(page_table, ptl);
2589 
2590 	if (unlikely(anon_vma_prepare(vma)))
2591 		goto oom;
2592 
2593 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2594 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2595 		if (!new_page)
2596 			goto oom;
2597 	} else {
2598 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2599 		if (!new_page)
2600 			goto oom;
2601 		cow_user_page(new_page, old_page, address, vma);
2602 	}
2603 	__SetPageUptodate(new_page);
2604 
2605 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2606 		goto oom_free_new;
2607 
2608 	/*
2609 	 * Re-check the pte - we dropped the lock
2610 	 */
2611 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2612 	if (likely(pte_same(*page_table, orig_pte))) {
2613 		if (old_page) {
2614 			if (!PageAnon(old_page)) {
2615 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2616 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2617 			}
2618 		} else
2619 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2620 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2621 		entry = mk_pte(new_page, vma->vm_page_prot);
2622 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2623 		/*
2624 		 * Clear the pte entry and flush it first, before updating the
2625 		 * pte with the new entry. This will avoid a race condition
2626 		 * seen in the presence of one thread doing SMC and another
2627 		 * thread doing COW.
2628 		 */
2629 		ptep_clear_flush(vma, address, page_table);
2630 		page_add_new_anon_rmap(new_page, vma, address);
2631 		/*
2632 		 * We call the notify macro here because, when using secondary
2633 		 * mmu page tables (such as kvm shadow page tables), we want the
2634 		 * new page to be mapped directly into the secondary page table.
2635 		 */
2636 		set_pte_at_notify(mm, address, page_table, entry);
2637 		update_mmu_cache(vma, address, page_table);
2638 		if (old_page) {
2639 			/*
2640 			 * Only after switching the pte to the new page may
2641 			 * we remove the mapcount here. Otherwise another
2642 			 * process may come and find the rmap count decremented
2643 			 * before the pte is switched to the new page, and
2644 			 * "reuse" the old page writing into it while our pte
2645 			 * here still points into it and can be read by other
2646 			 * threads.
2647 			 *
2648 			 * The critical issue is to order this
2649 			 * page_remove_rmap with the ptp_clear_flush above.
2650 			 * Those stores are ordered by (if nothing else,)
2651 			 * the barrier present in the atomic_add_negative
2652 			 * in page_remove_rmap.
2653 			 *
2654 			 * Then the TLB flush in ptep_clear_flush ensures that
2655 			 * no process can access the old page before the
2656 			 * decremented mapcount is visible. And the old page
2657 			 * cannot be reused until after the decremented
2658 			 * mapcount is visible. So transitively, TLBs to
2659 			 * old page will be flushed before it can be reused.
2660 			 */
2661 			page_remove_rmap(old_page);
2662 		}
2663 
2664 		/* Free the old page.. */
2665 		new_page = old_page;
2666 		ret |= VM_FAULT_WRITE;
2667 	} else
2668 		mem_cgroup_uncharge_page(new_page);
2669 
2670 	if (new_page)
2671 		page_cache_release(new_page);
2672 unlock:
2673 	pte_unmap_unlock(page_table, ptl);
2674 	if (old_page) {
2675 		/*
2676 		 * Don't let another task, with possibly unlocked vma,
2677 		 * keep the mlocked page.
2678 		 */
2679 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2680 			lock_page(old_page);	/* LRU manipulation */
2681 			munlock_vma_page(old_page);
2682 			unlock_page(old_page);
2683 		}
2684 		page_cache_release(old_page);
2685 	}
2686 	return ret;
2687 oom_free_new:
2688 	page_cache_release(new_page);
2689 oom:
2690 	if (old_page) {
2691 		if (page_mkwrite) {
2692 			unlock_page(old_page);
2693 			page_cache_release(old_page);
2694 		}
2695 		page_cache_release(old_page);
2696 	}
2697 	return VM_FAULT_OOM;
2698 
2699 unwritable_page:
2700 	page_cache_release(old_page);
2701 	return ret;
2702 }
2703 
2704 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2705 		unsigned long start_addr, unsigned long end_addr,
2706 		struct zap_details *details)
2707 {
2708 	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2709 }
2710 
2711 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2712 					    struct zap_details *details)
2713 {
2714 	struct vm_area_struct *vma;
2715 	struct prio_tree_iter iter;
2716 	pgoff_t vba, vea, zba, zea;
2717 
2718 	vma_prio_tree_foreach(vma, &iter, root,
2719 			details->first_index, details->last_index) {
2720 
2721 		vba = vma->vm_pgoff;
2722 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2723 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2724 		zba = details->first_index;
2725 		if (zba < vba)
2726 			zba = vba;
2727 		zea = details->last_index;
2728 		if (zea > vea)
2729 			zea = vea;
2730 
2731 		unmap_mapping_range_vma(vma,
2732 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2733 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2734 				details);
2735 	}
2736 }
2737 
2738 static inline void unmap_mapping_range_list(struct list_head *head,
2739 					    struct zap_details *details)
2740 {
2741 	struct vm_area_struct *vma;
2742 
2743 	/*
2744 	 * In nonlinear VMAs there is no correspondence between virtual address
2745 	 * offset and file offset.  So we must perform an exhaustive search
2746 	 * across *all* the pages in each nonlinear VMA, not just the pages
2747 	 * whose virtual address lies outside the file truncation point.
2748 	 */
2749 	list_for_each_entry(vma, head, shared.vm_set.list) {
2750 		details->nonlinear_vma = vma;
2751 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2752 	}
2753 }
2754 
2755 /**
2756  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2757  * @mapping: the address space containing mmaps to be unmapped.
2758  * @holebegin: byte in first page to unmap, relative to the start of
2759  * the underlying file.  This will be rounded down to a PAGE_SIZE
2760  * boundary.  Note that this is different from truncate_pagecache(), which
2761  * must keep the partial page.  In contrast, we must get rid of
2762  * partial pages.
2763  * @holelen: size of prospective hole in bytes.  This will be rounded
2764  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2765  * end of the file.
2766  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2767  * but 0 when invalidating pagecache, don't throw away private data.
2768  */
2769 void unmap_mapping_range(struct address_space *mapping,
2770 		loff_t const holebegin, loff_t const holelen, int even_cows)
2771 {
2772 	struct zap_details details;
2773 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2774 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2775 
2776 	/* Check for overflow. */
2777 	if (sizeof(holelen) > sizeof(hlen)) {
2778 		long long holeend =
2779 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2780 		if (holeend & ~(long long)ULONG_MAX)
2781 			hlen = ULONG_MAX - hba + 1;
2782 	}
2783 
2784 	details.check_mapping = even_cows? NULL: mapping;
2785 	details.nonlinear_vma = NULL;
2786 	details.first_index = hba;
2787 	details.last_index = hba + hlen - 1;
2788 	if (details.last_index < details.first_index)
2789 		details.last_index = ULONG_MAX;
2790 
2791 
2792 	mutex_lock(&mapping->i_mmap_mutex);
2793 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2794 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2795 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2796 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2797 	mutex_unlock(&mapping->i_mmap_mutex);
2798 }
2799 EXPORT_SYMBOL(unmap_mapping_range);
2800 
2801 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2802 {
2803 	struct address_space *mapping = inode->i_mapping;
2804 
2805 	/*
2806 	 * If the underlying filesystem is not going to provide
2807 	 * a way to truncate a range of blocks (punch a hole) -
2808 	 * we should return failure right now.
2809 	 */
2810 	if (!inode->i_op->truncate_range)
2811 		return -ENOSYS;
2812 
2813 	mutex_lock(&inode->i_mutex);
2814 	down_write(&inode->i_alloc_sem);
2815 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2816 	truncate_inode_pages_range(mapping, offset, end);
2817 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2818 	inode->i_op->truncate_range(inode, offset, end);
2819 	up_write(&inode->i_alloc_sem);
2820 	mutex_unlock(&inode->i_mutex);
2821 
2822 	return 0;
2823 }
2824 
2825 /*
2826  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2827  * but allow concurrent faults), and pte mapped but not yet locked.
2828  * We return with mmap_sem still held, but pte unmapped and unlocked.
2829  */
2830 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2831 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2832 		unsigned int flags, pte_t orig_pte)
2833 {
2834 	spinlock_t *ptl;
2835 	struct page *page, *swapcache = NULL;
2836 	swp_entry_t entry;
2837 	pte_t pte;
2838 	int locked;
2839 	struct mem_cgroup *ptr;
2840 	int exclusive = 0;
2841 	int ret = 0;
2842 
2843 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2844 		goto out;
2845 
2846 	entry = pte_to_swp_entry(orig_pte);
2847 	if (unlikely(non_swap_entry(entry))) {
2848 		if (is_migration_entry(entry)) {
2849 			migration_entry_wait(mm, pmd, address);
2850 		} else if (is_hwpoison_entry(entry)) {
2851 			ret = VM_FAULT_HWPOISON;
2852 		} else {
2853 			print_bad_pte(vma, address, orig_pte, NULL);
2854 			ret = VM_FAULT_SIGBUS;
2855 		}
2856 		goto out;
2857 	}
2858 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2859 	page = lookup_swap_cache(entry);
2860 	if (!page) {
2861 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2862 		page = swapin_readahead(entry,
2863 					GFP_HIGHUSER_MOVABLE, vma, address);
2864 		if (!page) {
2865 			/*
2866 			 * Back out if somebody else faulted in this pte
2867 			 * while we released the pte lock.
2868 			 */
2869 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2870 			if (likely(pte_same(*page_table, orig_pte)))
2871 				ret = VM_FAULT_OOM;
2872 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2873 			goto unlock;
2874 		}
2875 
2876 		/* Had to read the page from swap area: Major fault */
2877 		ret = VM_FAULT_MAJOR;
2878 		count_vm_event(PGMAJFAULT);
2879 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2880 	} else if (PageHWPoison(page)) {
2881 		/*
2882 		 * hwpoisoned dirty swapcache pages are kept for killing
2883 		 * owner processes (which may be unknown at hwpoison time)
2884 		 */
2885 		ret = VM_FAULT_HWPOISON;
2886 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2887 		goto out_release;
2888 	}
2889 
2890 	locked = lock_page_or_retry(page, mm, flags);
2891 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2892 	if (!locked) {
2893 		ret |= VM_FAULT_RETRY;
2894 		goto out_release;
2895 	}
2896 
2897 	/*
2898 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2899 	 * release the swapcache from under us.  The page pin, and pte_same
2900 	 * test below, are not enough to exclude that.  Even if it is still
2901 	 * swapcache, we need to check that the page's swap has not changed.
2902 	 */
2903 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2904 		goto out_page;
2905 
2906 	if (ksm_might_need_to_copy(page, vma, address)) {
2907 		swapcache = page;
2908 		page = ksm_does_need_to_copy(page, vma, address);
2909 
2910 		if (unlikely(!page)) {
2911 			ret = VM_FAULT_OOM;
2912 			page = swapcache;
2913 			swapcache = NULL;
2914 			goto out_page;
2915 		}
2916 	}
2917 
2918 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2919 		ret = VM_FAULT_OOM;
2920 		goto out_page;
2921 	}
2922 
2923 	/*
2924 	 * Back out if somebody else already faulted in this pte.
2925 	 */
2926 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2927 	if (unlikely(!pte_same(*page_table, orig_pte)))
2928 		goto out_nomap;
2929 
2930 	if (unlikely(!PageUptodate(page))) {
2931 		ret = VM_FAULT_SIGBUS;
2932 		goto out_nomap;
2933 	}
2934 
2935 	/*
2936 	 * The page isn't present yet, go ahead with the fault.
2937 	 *
2938 	 * Be careful about the sequence of operations here.
2939 	 * To get its accounting right, reuse_swap_page() must be called
2940 	 * while the page is counted on swap but not yet in mapcount i.e.
2941 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2942 	 * must be called after the swap_free(), or it will never succeed.
2943 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2944 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2945 	 * in page->private. In this case, a record in swap_cgroup  is silently
2946 	 * discarded at swap_free().
2947 	 */
2948 
2949 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2950 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2951 	pte = mk_pte(page, vma->vm_page_prot);
2952 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2953 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2954 		flags &= ~FAULT_FLAG_WRITE;
2955 		ret |= VM_FAULT_WRITE;
2956 		exclusive = 1;
2957 	}
2958 	flush_icache_page(vma, page);
2959 	set_pte_at(mm, address, page_table, pte);
2960 	do_page_add_anon_rmap(page, vma, address, exclusive);
2961 	/* It's better to call commit-charge after rmap is established */
2962 	mem_cgroup_commit_charge_swapin(page, ptr);
2963 
2964 	swap_free(entry);
2965 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2966 		try_to_free_swap(page);
2967 	unlock_page(page);
2968 	if (swapcache) {
2969 		/*
2970 		 * Hold the lock to avoid the swap entry to be reused
2971 		 * until we take the PT lock for the pte_same() check
2972 		 * (to avoid false positives from pte_same). For
2973 		 * further safety release the lock after the swap_free
2974 		 * so that the swap count won't change under a
2975 		 * parallel locked swapcache.
2976 		 */
2977 		unlock_page(swapcache);
2978 		page_cache_release(swapcache);
2979 	}
2980 
2981 	if (flags & FAULT_FLAG_WRITE) {
2982 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2983 		if (ret & VM_FAULT_ERROR)
2984 			ret &= VM_FAULT_ERROR;
2985 		goto out;
2986 	}
2987 
2988 	/* No need to invalidate - it was non-present before */
2989 	update_mmu_cache(vma, address, page_table);
2990 unlock:
2991 	pte_unmap_unlock(page_table, ptl);
2992 out:
2993 	return ret;
2994 out_nomap:
2995 	mem_cgroup_cancel_charge_swapin(ptr);
2996 	pte_unmap_unlock(page_table, ptl);
2997 out_page:
2998 	unlock_page(page);
2999 out_release:
3000 	page_cache_release(page);
3001 	if (swapcache) {
3002 		unlock_page(swapcache);
3003 		page_cache_release(swapcache);
3004 	}
3005 	return ret;
3006 }
3007 
3008 /*
3009  * This is like a special single-page "expand_{down|up}wards()",
3010  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3011  * doesn't hit another vma.
3012  */
3013 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3014 {
3015 	address &= PAGE_MASK;
3016 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3017 		struct vm_area_struct *prev = vma->vm_prev;
3018 
3019 		/*
3020 		 * Is there a mapping abutting this one below?
3021 		 *
3022 		 * That's only ok if it's the same stack mapping
3023 		 * that has gotten split..
3024 		 */
3025 		if (prev && prev->vm_end == address)
3026 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3027 
3028 		expand_downwards(vma, address - PAGE_SIZE);
3029 	}
3030 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3031 		struct vm_area_struct *next = vma->vm_next;
3032 
3033 		/* As VM_GROWSDOWN but s/below/above/ */
3034 		if (next && next->vm_start == address + PAGE_SIZE)
3035 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3036 
3037 		expand_upwards(vma, address + PAGE_SIZE);
3038 	}
3039 	return 0;
3040 }
3041 
3042 /*
3043  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3044  * but allow concurrent faults), and pte mapped but not yet locked.
3045  * We return with mmap_sem still held, but pte unmapped and unlocked.
3046  */
3047 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3048 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3049 		unsigned int flags)
3050 {
3051 	struct page *page;
3052 	spinlock_t *ptl;
3053 	pte_t entry;
3054 
3055 	pte_unmap(page_table);
3056 
3057 	/* Check if we need to add a guard page to the stack */
3058 	if (check_stack_guard_page(vma, address) < 0)
3059 		return VM_FAULT_SIGBUS;
3060 
3061 	/* Use the zero-page for reads */
3062 	if (!(flags & FAULT_FLAG_WRITE)) {
3063 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3064 						vma->vm_page_prot));
3065 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3066 		if (!pte_none(*page_table))
3067 			goto unlock;
3068 		goto setpte;
3069 	}
3070 
3071 	/* Allocate our own private page. */
3072 	if (unlikely(anon_vma_prepare(vma)))
3073 		goto oom;
3074 	page = alloc_zeroed_user_highpage_movable(vma, address);
3075 	if (!page)
3076 		goto oom;
3077 	__SetPageUptodate(page);
3078 
3079 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3080 		goto oom_free_page;
3081 
3082 	entry = mk_pte(page, vma->vm_page_prot);
3083 	if (vma->vm_flags & VM_WRITE)
3084 		entry = pte_mkwrite(pte_mkdirty(entry));
3085 
3086 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3087 	if (!pte_none(*page_table))
3088 		goto release;
3089 
3090 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3091 	page_add_new_anon_rmap(page, vma, address);
3092 setpte:
3093 	set_pte_at(mm, address, page_table, entry);
3094 
3095 	/* No need to invalidate - it was non-present before */
3096 	update_mmu_cache(vma, address, page_table);
3097 unlock:
3098 	pte_unmap_unlock(page_table, ptl);
3099 	return 0;
3100 release:
3101 	mem_cgroup_uncharge_page(page);
3102 	page_cache_release(page);
3103 	goto unlock;
3104 oom_free_page:
3105 	page_cache_release(page);
3106 oom:
3107 	return VM_FAULT_OOM;
3108 }
3109 
3110 /*
3111  * __do_fault() tries to create a new page mapping. It aggressively
3112  * tries to share with existing pages, but makes a separate copy if
3113  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3114  * the next page fault.
3115  *
3116  * As this is called only for pages that do not currently exist, we
3117  * do not need to flush old virtual caches or the TLB.
3118  *
3119  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3120  * but allow concurrent faults), and pte neither mapped nor locked.
3121  * We return with mmap_sem still held, but pte unmapped and unlocked.
3122  */
3123 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3124 		unsigned long address, pmd_t *pmd,
3125 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3126 {
3127 	pte_t *page_table;
3128 	spinlock_t *ptl;
3129 	struct page *page;
3130 	pte_t entry;
3131 	int anon = 0;
3132 	int charged = 0;
3133 	struct page *dirty_page = NULL;
3134 	struct vm_fault vmf;
3135 	int ret;
3136 	int page_mkwrite = 0;
3137 
3138 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3139 	vmf.pgoff = pgoff;
3140 	vmf.flags = flags;
3141 	vmf.page = NULL;
3142 
3143 	ret = vma->vm_ops->fault(vma, &vmf);
3144 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3145 			    VM_FAULT_RETRY)))
3146 		return ret;
3147 
3148 	if (unlikely(PageHWPoison(vmf.page))) {
3149 		if (ret & VM_FAULT_LOCKED)
3150 			unlock_page(vmf.page);
3151 		return VM_FAULT_HWPOISON;
3152 	}
3153 
3154 	/*
3155 	 * For consistency in subsequent calls, make the faulted page always
3156 	 * locked.
3157 	 */
3158 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3159 		lock_page(vmf.page);
3160 	else
3161 		VM_BUG_ON(!PageLocked(vmf.page));
3162 
3163 	/*
3164 	 * Should we do an early C-O-W break?
3165 	 */
3166 	page = vmf.page;
3167 	if (flags & FAULT_FLAG_WRITE) {
3168 		if (!(vma->vm_flags & VM_SHARED)) {
3169 			anon = 1;
3170 			if (unlikely(anon_vma_prepare(vma))) {
3171 				ret = VM_FAULT_OOM;
3172 				goto out;
3173 			}
3174 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3175 						vma, address);
3176 			if (!page) {
3177 				ret = VM_FAULT_OOM;
3178 				goto out;
3179 			}
3180 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3181 				ret = VM_FAULT_OOM;
3182 				page_cache_release(page);
3183 				goto out;
3184 			}
3185 			charged = 1;
3186 			copy_user_highpage(page, vmf.page, address, vma);
3187 			__SetPageUptodate(page);
3188 		} else {
3189 			/*
3190 			 * If the page will be shareable, see if the backing
3191 			 * address space wants to know that the page is about
3192 			 * to become writable
3193 			 */
3194 			if (vma->vm_ops->page_mkwrite) {
3195 				int tmp;
3196 
3197 				unlock_page(page);
3198 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3199 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3200 				if (unlikely(tmp &
3201 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3202 					ret = tmp;
3203 					goto unwritable_page;
3204 				}
3205 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3206 					lock_page(page);
3207 					if (!page->mapping) {
3208 						ret = 0; /* retry the fault */
3209 						unlock_page(page);
3210 						goto unwritable_page;
3211 					}
3212 				} else
3213 					VM_BUG_ON(!PageLocked(page));
3214 				page_mkwrite = 1;
3215 			}
3216 		}
3217 
3218 	}
3219 
3220 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3221 
3222 	/*
3223 	 * This silly early PAGE_DIRTY setting removes a race
3224 	 * due to the bad i386 page protection. But it's valid
3225 	 * for other architectures too.
3226 	 *
3227 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3228 	 * an exclusive copy of the page, or this is a shared mapping,
3229 	 * so we can make it writable and dirty to avoid having to
3230 	 * handle that later.
3231 	 */
3232 	/* Only go through if we didn't race with anybody else... */
3233 	if (likely(pte_same(*page_table, orig_pte))) {
3234 		flush_icache_page(vma, page);
3235 		entry = mk_pte(page, vma->vm_page_prot);
3236 		if (flags & FAULT_FLAG_WRITE)
3237 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3238 		if (anon) {
3239 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3240 			page_add_new_anon_rmap(page, vma, address);
3241 		} else {
3242 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3243 			page_add_file_rmap(page);
3244 			if (flags & FAULT_FLAG_WRITE) {
3245 				dirty_page = page;
3246 				get_page(dirty_page);
3247 			}
3248 		}
3249 		set_pte_at(mm, address, page_table, entry);
3250 
3251 		/* no need to invalidate: a not-present page won't be cached */
3252 		update_mmu_cache(vma, address, page_table);
3253 	} else {
3254 		if (charged)
3255 			mem_cgroup_uncharge_page(page);
3256 		if (anon)
3257 			page_cache_release(page);
3258 		else
3259 			anon = 1; /* no anon but release faulted_page */
3260 	}
3261 
3262 	pte_unmap_unlock(page_table, ptl);
3263 
3264 out:
3265 	if (dirty_page) {
3266 		struct address_space *mapping = page->mapping;
3267 
3268 		if (set_page_dirty(dirty_page))
3269 			page_mkwrite = 1;
3270 		unlock_page(dirty_page);
3271 		put_page(dirty_page);
3272 		if (page_mkwrite && mapping) {
3273 			/*
3274 			 * Some device drivers do not set page.mapping but still
3275 			 * dirty their pages
3276 			 */
3277 			balance_dirty_pages_ratelimited(mapping);
3278 		}
3279 
3280 		/* file_update_time outside page_lock */
3281 		if (vma->vm_file)
3282 			file_update_time(vma->vm_file);
3283 	} else {
3284 		unlock_page(vmf.page);
3285 		if (anon)
3286 			page_cache_release(vmf.page);
3287 	}
3288 
3289 	return ret;
3290 
3291 unwritable_page:
3292 	page_cache_release(page);
3293 	return ret;
3294 }
3295 
3296 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3297 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3298 		unsigned int flags, pte_t orig_pte)
3299 {
3300 	pgoff_t pgoff = (((address & PAGE_MASK)
3301 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3302 
3303 	pte_unmap(page_table);
3304 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3305 }
3306 
3307 /*
3308  * Fault of a previously existing named mapping. Repopulate the pte
3309  * from the encoded file_pte if possible. This enables swappable
3310  * nonlinear vmas.
3311  *
3312  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3313  * but allow concurrent faults), and pte mapped but not yet locked.
3314  * We return with mmap_sem still held, but pte unmapped and unlocked.
3315  */
3316 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3317 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3318 		unsigned int flags, pte_t orig_pte)
3319 {
3320 	pgoff_t pgoff;
3321 
3322 	flags |= FAULT_FLAG_NONLINEAR;
3323 
3324 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3325 		return 0;
3326 
3327 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3328 		/*
3329 		 * Page table corrupted: show pte and kill process.
3330 		 */
3331 		print_bad_pte(vma, address, orig_pte, NULL);
3332 		return VM_FAULT_SIGBUS;
3333 	}
3334 
3335 	pgoff = pte_to_pgoff(orig_pte);
3336 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3337 }
3338 
3339 /*
3340  * These routines also need to handle stuff like marking pages dirty
3341  * and/or accessed for architectures that don't do it in hardware (most
3342  * RISC architectures).  The early dirtying is also good on the i386.
3343  *
3344  * There is also a hook called "update_mmu_cache()" that architectures
3345  * with external mmu caches can use to update those (ie the Sparc or
3346  * PowerPC hashed page tables that act as extended TLBs).
3347  *
3348  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3349  * but allow concurrent faults), and pte mapped but not yet locked.
3350  * We return with mmap_sem still held, but pte unmapped and unlocked.
3351  */
3352 int handle_pte_fault(struct mm_struct *mm,
3353 		     struct vm_area_struct *vma, unsigned long address,
3354 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3355 {
3356 	pte_t entry;
3357 	spinlock_t *ptl;
3358 
3359 	entry = *pte;
3360 	if (!pte_present(entry)) {
3361 		if (pte_none(entry)) {
3362 			if (vma->vm_ops) {
3363 				if (likely(vma->vm_ops->fault))
3364 					return do_linear_fault(mm, vma, address,
3365 						pte, pmd, flags, entry);
3366 			}
3367 			return do_anonymous_page(mm, vma, address,
3368 						 pte, pmd, flags);
3369 		}
3370 		if (pte_file(entry))
3371 			return do_nonlinear_fault(mm, vma, address,
3372 					pte, pmd, flags, entry);
3373 		return do_swap_page(mm, vma, address,
3374 					pte, pmd, flags, entry);
3375 	}
3376 
3377 	ptl = pte_lockptr(mm, pmd);
3378 	spin_lock(ptl);
3379 	if (unlikely(!pte_same(*pte, entry)))
3380 		goto unlock;
3381 	if (flags & FAULT_FLAG_WRITE) {
3382 		if (!pte_write(entry))
3383 			return do_wp_page(mm, vma, address,
3384 					pte, pmd, ptl, entry);
3385 		entry = pte_mkdirty(entry);
3386 	}
3387 	entry = pte_mkyoung(entry);
3388 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3389 		update_mmu_cache(vma, address, pte);
3390 	} else {
3391 		/*
3392 		 * This is needed only for protection faults but the arch code
3393 		 * is not yet telling us if this is a protection fault or not.
3394 		 * This still avoids useless tlb flushes for .text page faults
3395 		 * with threads.
3396 		 */
3397 		if (flags & FAULT_FLAG_WRITE)
3398 			flush_tlb_fix_spurious_fault(vma, address);
3399 	}
3400 unlock:
3401 	pte_unmap_unlock(pte, ptl);
3402 	return 0;
3403 }
3404 
3405 /*
3406  * By the time we get here, we already hold the mm semaphore
3407  */
3408 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3409 		unsigned long address, unsigned int flags)
3410 {
3411 	pgd_t *pgd;
3412 	pud_t *pud;
3413 	pmd_t *pmd;
3414 	pte_t *pte;
3415 
3416 	__set_current_state(TASK_RUNNING);
3417 
3418 	count_vm_event(PGFAULT);
3419 	mem_cgroup_count_vm_event(mm, PGFAULT);
3420 
3421 	/* do counter updates before entering really critical section. */
3422 	check_sync_rss_stat(current);
3423 
3424 	if (unlikely(is_vm_hugetlb_page(vma)))
3425 		return hugetlb_fault(mm, vma, address, flags);
3426 
3427 	pgd = pgd_offset(mm, address);
3428 	pud = pud_alloc(mm, pgd, address);
3429 	if (!pud)
3430 		return VM_FAULT_OOM;
3431 	pmd = pmd_alloc(mm, pud, address);
3432 	if (!pmd)
3433 		return VM_FAULT_OOM;
3434 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3435 		if (!vma->vm_ops)
3436 			return do_huge_pmd_anonymous_page(mm, vma, address,
3437 							  pmd, flags);
3438 	} else {
3439 		pmd_t orig_pmd = *pmd;
3440 		barrier();
3441 		if (pmd_trans_huge(orig_pmd)) {
3442 			if (flags & FAULT_FLAG_WRITE &&
3443 			    !pmd_write(orig_pmd) &&
3444 			    !pmd_trans_splitting(orig_pmd))
3445 				return do_huge_pmd_wp_page(mm, vma, address,
3446 							   pmd, orig_pmd);
3447 			return 0;
3448 		}
3449 	}
3450 
3451 	/*
3452 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3453 	 * run pte_offset_map on the pmd, if an huge pmd could
3454 	 * materialize from under us from a different thread.
3455 	 */
3456 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3457 		return VM_FAULT_OOM;
3458 	/* if an huge pmd materialized from under us just retry later */
3459 	if (unlikely(pmd_trans_huge(*pmd)))
3460 		return 0;
3461 	/*
3462 	 * A regular pmd is established and it can't morph into a huge pmd
3463 	 * from under us anymore at this point because we hold the mmap_sem
3464 	 * read mode and khugepaged takes it in write mode. So now it's
3465 	 * safe to run pte_offset_map().
3466 	 */
3467 	pte = pte_offset_map(pmd, address);
3468 
3469 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3470 }
3471 
3472 #ifndef __PAGETABLE_PUD_FOLDED
3473 /*
3474  * Allocate page upper directory.
3475  * We've already handled the fast-path in-line.
3476  */
3477 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3478 {
3479 	pud_t *new = pud_alloc_one(mm, address);
3480 	if (!new)
3481 		return -ENOMEM;
3482 
3483 	smp_wmb(); /* See comment in __pte_alloc */
3484 
3485 	spin_lock(&mm->page_table_lock);
3486 	if (pgd_present(*pgd))		/* Another has populated it */
3487 		pud_free(mm, new);
3488 	else
3489 		pgd_populate(mm, pgd, new);
3490 	spin_unlock(&mm->page_table_lock);
3491 	return 0;
3492 }
3493 #endif /* __PAGETABLE_PUD_FOLDED */
3494 
3495 #ifndef __PAGETABLE_PMD_FOLDED
3496 /*
3497  * Allocate page middle directory.
3498  * We've already handled the fast-path in-line.
3499  */
3500 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3501 {
3502 	pmd_t *new = pmd_alloc_one(mm, address);
3503 	if (!new)
3504 		return -ENOMEM;
3505 
3506 	smp_wmb(); /* See comment in __pte_alloc */
3507 
3508 	spin_lock(&mm->page_table_lock);
3509 #ifndef __ARCH_HAS_4LEVEL_HACK
3510 	if (pud_present(*pud))		/* Another has populated it */
3511 		pmd_free(mm, new);
3512 	else
3513 		pud_populate(mm, pud, new);
3514 #else
3515 	if (pgd_present(*pud))		/* Another has populated it */
3516 		pmd_free(mm, new);
3517 	else
3518 		pgd_populate(mm, pud, new);
3519 #endif /* __ARCH_HAS_4LEVEL_HACK */
3520 	spin_unlock(&mm->page_table_lock);
3521 	return 0;
3522 }
3523 #endif /* __PAGETABLE_PMD_FOLDED */
3524 
3525 int make_pages_present(unsigned long addr, unsigned long end)
3526 {
3527 	int ret, len, write;
3528 	struct vm_area_struct * vma;
3529 
3530 	vma = find_vma(current->mm, addr);
3531 	if (!vma)
3532 		return -ENOMEM;
3533 	/*
3534 	 * We want to touch writable mappings with a write fault in order
3535 	 * to break COW, except for shared mappings because these don't COW
3536 	 * and we would not want to dirty them for nothing.
3537 	 */
3538 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3539 	BUG_ON(addr >= end);
3540 	BUG_ON(end > vma->vm_end);
3541 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3542 	ret = get_user_pages(current, current->mm, addr,
3543 			len, write, 0, NULL, NULL);
3544 	if (ret < 0)
3545 		return ret;
3546 	return ret == len ? 0 : -EFAULT;
3547 }
3548 
3549 #if !defined(__HAVE_ARCH_GATE_AREA)
3550 
3551 #if defined(AT_SYSINFO_EHDR)
3552 static struct vm_area_struct gate_vma;
3553 
3554 static int __init gate_vma_init(void)
3555 {
3556 	gate_vma.vm_mm = NULL;
3557 	gate_vma.vm_start = FIXADDR_USER_START;
3558 	gate_vma.vm_end = FIXADDR_USER_END;
3559 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3560 	gate_vma.vm_page_prot = __P101;
3561 	/*
3562 	 * Make sure the vDSO gets into every core dump.
3563 	 * Dumping its contents makes post-mortem fully interpretable later
3564 	 * without matching up the same kernel and hardware config to see
3565 	 * what PC values meant.
3566 	 */
3567 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3568 	return 0;
3569 }
3570 __initcall(gate_vma_init);
3571 #endif
3572 
3573 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3574 {
3575 #ifdef AT_SYSINFO_EHDR
3576 	return &gate_vma;
3577 #else
3578 	return NULL;
3579 #endif
3580 }
3581 
3582 int in_gate_area_no_mm(unsigned long addr)
3583 {
3584 #ifdef AT_SYSINFO_EHDR
3585 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3586 		return 1;
3587 #endif
3588 	return 0;
3589 }
3590 
3591 #endif	/* __HAVE_ARCH_GATE_AREA */
3592 
3593 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3594 		pte_t **ptepp, spinlock_t **ptlp)
3595 {
3596 	pgd_t *pgd;
3597 	pud_t *pud;
3598 	pmd_t *pmd;
3599 	pte_t *ptep;
3600 
3601 	pgd = pgd_offset(mm, address);
3602 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3603 		goto out;
3604 
3605 	pud = pud_offset(pgd, address);
3606 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3607 		goto out;
3608 
3609 	pmd = pmd_offset(pud, address);
3610 	VM_BUG_ON(pmd_trans_huge(*pmd));
3611 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3612 		goto out;
3613 
3614 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3615 	if (pmd_huge(*pmd))
3616 		goto out;
3617 
3618 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3619 	if (!ptep)
3620 		goto out;
3621 	if (!pte_present(*ptep))
3622 		goto unlock;
3623 	*ptepp = ptep;
3624 	return 0;
3625 unlock:
3626 	pte_unmap_unlock(ptep, *ptlp);
3627 out:
3628 	return -EINVAL;
3629 }
3630 
3631 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3632 			     pte_t **ptepp, spinlock_t **ptlp)
3633 {
3634 	int res;
3635 
3636 	/* (void) is needed to make gcc happy */
3637 	(void) __cond_lock(*ptlp,
3638 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3639 	return res;
3640 }
3641 
3642 /**
3643  * follow_pfn - look up PFN at a user virtual address
3644  * @vma: memory mapping
3645  * @address: user virtual address
3646  * @pfn: location to store found PFN
3647  *
3648  * Only IO mappings and raw PFN mappings are allowed.
3649  *
3650  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3651  */
3652 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3653 	unsigned long *pfn)
3654 {
3655 	int ret = -EINVAL;
3656 	spinlock_t *ptl;
3657 	pte_t *ptep;
3658 
3659 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3660 		return ret;
3661 
3662 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3663 	if (ret)
3664 		return ret;
3665 	*pfn = pte_pfn(*ptep);
3666 	pte_unmap_unlock(ptep, ptl);
3667 	return 0;
3668 }
3669 EXPORT_SYMBOL(follow_pfn);
3670 
3671 #ifdef CONFIG_HAVE_IOREMAP_PROT
3672 int follow_phys(struct vm_area_struct *vma,
3673 		unsigned long address, unsigned int flags,
3674 		unsigned long *prot, resource_size_t *phys)
3675 {
3676 	int ret = -EINVAL;
3677 	pte_t *ptep, pte;
3678 	spinlock_t *ptl;
3679 
3680 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3681 		goto out;
3682 
3683 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3684 		goto out;
3685 	pte = *ptep;
3686 
3687 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3688 		goto unlock;
3689 
3690 	*prot = pgprot_val(pte_pgprot(pte));
3691 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3692 
3693 	ret = 0;
3694 unlock:
3695 	pte_unmap_unlock(ptep, ptl);
3696 out:
3697 	return ret;
3698 }
3699 
3700 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3701 			void *buf, int len, int write)
3702 {
3703 	resource_size_t phys_addr;
3704 	unsigned long prot = 0;
3705 	void __iomem *maddr;
3706 	int offset = addr & (PAGE_SIZE-1);
3707 
3708 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3709 		return -EINVAL;
3710 
3711 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3712 	if (write)
3713 		memcpy_toio(maddr + offset, buf, len);
3714 	else
3715 		memcpy_fromio(buf, maddr + offset, len);
3716 	iounmap(maddr);
3717 
3718 	return len;
3719 }
3720 #endif
3721 
3722 /*
3723  * Access another process' address space as given in mm.  If non-NULL, use the
3724  * given task for page fault accounting.
3725  */
3726 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3727 		unsigned long addr, void *buf, int len, int write)
3728 {
3729 	struct vm_area_struct *vma;
3730 	void *old_buf = buf;
3731 
3732 	down_read(&mm->mmap_sem);
3733 	/* ignore errors, just check how much was successfully transferred */
3734 	while (len) {
3735 		int bytes, ret, offset;
3736 		void *maddr;
3737 		struct page *page = NULL;
3738 
3739 		ret = get_user_pages(tsk, mm, addr, 1,
3740 				write, 1, &page, &vma);
3741 		if (ret <= 0) {
3742 			/*
3743 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3744 			 * we can access using slightly different code.
3745 			 */
3746 #ifdef CONFIG_HAVE_IOREMAP_PROT
3747 			vma = find_vma(mm, addr);
3748 			if (!vma || vma->vm_start > addr)
3749 				break;
3750 			if (vma->vm_ops && vma->vm_ops->access)
3751 				ret = vma->vm_ops->access(vma, addr, buf,
3752 							  len, write);
3753 			if (ret <= 0)
3754 #endif
3755 				break;
3756 			bytes = ret;
3757 		} else {
3758 			bytes = len;
3759 			offset = addr & (PAGE_SIZE-1);
3760 			if (bytes > PAGE_SIZE-offset)
3761 				bytes = PAGE_SIZE-offset;
3762 
3763 			maddr = kmap(page);
3764 			if (write) {
3765 				copy_to_user_page(vma, page, addr,
3766 						  maddr + offset, buf, bytes);
3767 				set_page_dirty_lock(page);
3768 			} else {
3769 				copy_from_user_page(vma, page, addr,
3770 						    buf, maddr + offset, bytes);
3771 			}
3772 			kunmap(page);
3773 			page_cache_release(page);
3774 		}
3775 		len -= bytes;
3776 		buf += bytes;
3777 		addr += bytes;
3778 	}
3779 	up_read(&mm->mmap_sem);
3780 
3781 	return buf - old_buf;
3782 }
3783 
3784 /**
3785  * access_remote_vm - access another process' address space
3786  * @mm:		the mm_struct of the target address space
3787  * @addr:	start address to access
3788  * @buf:	source or destination buffer
3789  * @len:	number of bytes to transfer
3790  * @write:	whether the access is a write
3791  *
3792  * The caller must hold a reference on @mm.
3793  */
3794 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3795 		void *buf, int len, int write)
3796 {
3797 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3798 }
3799 
3800 /*
3801  * Access another process' address space.
3802  * Source/target buffer must be kernel space,
3803  * Do not walk the page table directly, use get_user_pages
3804  */
3805 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3806 		void *buf, int len, int write)
3807 {
3808 	struct mm_struct *mm;
3809 	int ret;
3810 
3811 	mm = get_task_mm(tsk);
3812 	if (!mm)
3813 		return 0;
3814 
3815 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3816 	mmput(mm);
3817 
3818 	return ret;
3819 }
3820 
3821 /*
3822  * Print the name of a VMA.
3823  */
3824 void print_vma_addr(char *prefix, unsigned long ip)
3825 {
3826 	struct mm_struct *mm = current->mm;
3827 	struct vm_area_struct *vma;
3828 
3829 	/*
3830 	 * Do not print if we are in atomic
3831 	 * contexts (in exception stacks, etc.):
3832 	 */
3833 	if (preempt_count())
3834 		return;
3835 
3836 	down_read(&mm->mmap_sem);
3837 	vma = find_vma(mm, ip);
3838 	if (vma && vma->vm_file) {
3839 		struct file *f = vma->vm_file;
3840 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3841 		if (buf) {
3842 			char *p, *s;
3843 
3844 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3845 			if (IS_ERR(p))
3846 				p = "?";
3847 			s = strrchr(p, '/');
3848 			if (s)
3849 				p = s+1;
3850 			printk("%s%s[%lx+%lx]", prefix, p,
3851 					vma->vm_start,
3852 					vma->vm_end - vma->vm_start);
3853 			free_page((unsigned long)buf);
3854 		}
3855 	}
3856 	up_read(&current->mm->mmap_sem);
3857 }
3858 
3859 #ifdef CONFIG_PROVE_LOCKING
3860 void might_fault(void)
3861 {
3862 	/*
3863 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3864 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3865 	 * get paged out, therefore we'll never actually fault, and the
3866 	 * below annotations will generate false positives.
3867 	 */
3868 	if (segment_eq(get_fs(), KERNEL_DS))
3869 		return;
3870 
3871 	might_sleep();
3872 	/*
3873 	 * it would be nicer only to annotate paths which are not under
3874 	 * pagefault_disable, however that requires a larger audit and
3875 	 * providing helpers like get_user_atomic.
3876 	 */
3877 	if (!in_atomic() && current->mm)
3878 		might_lock_read(&current->mm->mmap_sem);
3879 }
3880 EXPORT_SYMBOL(might_fault);
3881 #endif
3882 
3883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3884 static void clear_gigantic_page(struct page *page,
3885 				unsigned long addr,
3886 				unsigned int pages_per_huge_page)
3887 {
3888 	int i;
3889 	struct page *p = page;
3890 
3891 	might_sleep();
3892 	for (i = 0; i < pages_per_huge_page;
3893 	     i++, p = mem_map_next(p, page, i)) {
3894 		cond_resched();
3895 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3896 	}
3897 }
3898 void clear_huge_page(struct page *page,
3899 		     unsigned long addr, unsigned int pages_per_huge_page)
3900 {
3901 	int i;
3902 
3903 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3904 		clear_gigantic_page(page, addr, pages_per_huge_page);
3905 		return;
3906 	}
3907 
3908 	might_sleep();
3909 	for (i = 0; i < pages_per_huge_page; i++) {
3910 		cond_resched();
3911 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3912 	}
3913 }
3914 
3915 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3916 				    unsigned long addr,
3917 				    struct vm_area_struct *vma,
3918 				    unsigned int pages_per_huge_page)
3919 {
3920 	int i;
3921 	struct page *dst_base = dst;
3922 	struct page *src_base = src;
3923 
3924 	for (i = 0; i < pages_per_huge_page; ) {
3925 		cond_resched();
3926 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3927 
3928 		i++;
3929 		dst = mem_map_next(dst, dst_base, i);
3930 		src = mem_map_next(src, src_base, i);
3931 	}
3932 }
3933 
3934 void copy_user_huge_page(struct page *dst, struct page *src,
3935 			 unsigned long addr, struct vm_area_struct *vma,
3936 			 unsigned int pages_per_huge_page)
3937 {
3938 	int i;
3939 
3940 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3941 		copy_user_gigantic_page(dst, src, addr, vma,
3942 					pages_per_huge_page);
3943 		return;
3944 	}
3945 
3946 	might_sleep();
3947 	for (i = 0; i < pages_per_huge_page; i++) {
3948 		cond_resched();
3949 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3950 	}
3951 }
3952 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3953