xref: /openbmc/linux/mm/memory.c (revision e953aeaa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "internal.h"
87 
88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
90 #endif
91 
92 #ifndef CONFIG_NEED_MULTIPLE_NODES
93 /* use the per-pgdat data instead for discontigmem - mbligh */
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96 
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100 
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110 
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119 					1;
120 #else
121 					2;
122 #endif
123 
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127 	/*
128 	 * Those arches which don't have hw access flag feature need to
129 	 * implement their own helper. By default, "true" means pagefault
130 	 * will be hit on old pte.
131 	 */
132 	return true;
133 }
134 #endif
135 
136 static int __init disable_randmaps(char *s)
137 {
138 	randomize_va_space = 0;
139 	return 1;
140 }
141 __setup("norandmaps", disable_randmaps);
142 
143 unsigned long zero_pfn __read_mostly;
144 EXPORT_SYMBOL(zero_pfn);
145 
146 unsigned long highest_memmap_pfn __read_mostly;
147 
148 /*
149  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150  */
151 static int __init init_zero_pfn(void)
152 {
153 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
154 	return 0;
155 }
156 core_initcall(init_zero_pfn);
157 
158 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
159 {
160 	trace_rss_stat(mm, member, count);
161 }
162 
163 #if defined(SPLIT_RSS_COUNTING)
164 
165 void sync_mm_rss(struct mm_struct *mm)
166 {
167 	int i;
168 
169 	for (i = 0; i < NR_MM_COUNTERS; i++) {
170 		if (current->rss_stat.count[i]) {
171 			add_mm_counter(mm, i, current->rss_stat.count[i]);
172 			current->rss_stat.count[i] = 0;
173 		}
174 	}
175 	current->rss_stat.events = 0;
176 }
177 
178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 {
180 	struct task_struct *task = current;
181 
182 	if (likely(task->mm == mm))
183 		task->rss_stat.count[member] += val;
184 	else
185 		add_mm_counter(mm, member, val);
186 }
187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 
190 /* sync counter once per 64 page faults */
191 #define TASK_RSS_EVENTS_THRESH	(64)
192 static void check_sync_rss_stat(struct task_struct *task)
193 {
194 	if (unlikely(task != current))
195 		return;
196 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
197 		sync_mm_rss(task->mm);
198 }
199 #else /* SPLIT_RSS_COUNTING */
200 
201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 }
207 
208 #endif /* SPLIT_RSS_COUNTING */
209 
210 /*
211  * Note: this doesn't free the actual pages themselves. That
212  * has been handled earlier when unmapping all the memory regions.
213  */
214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
215 			   unsigned long addr)
216 {
217 	pgtable_t token = pmd_pgtable(*pmd);
218 	pmd_clear(pmd);
219 	pte_free_tlb(tlb, token, addr);
220 	mm_dec_nr_ptes(tlb->mm);
221 }
222 
223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224 				unsigned long addr, unsigned long end,
225 				unsigned long floor, unsigned long ceiling)
226 {
227 	pmd_t *pmd;
228 	unsigned long next;
229 	unsigned long start;
230 
231 	start = addr;
232 	pmd = pmd_offset(pud, addr);
233 	do {
234 		next = pmd_addr_end(addr, end);
235 		if (pmd_none_or_clear_bad(pmd))
236 			continue;
237 		free_pte_range(tlb, pmd, addr);
238 	} while (pmd++, addr = next, addr != end);
239 
240 	start &= PUD_MASK;
241 	if (start < floor)
242 		return;
243 	if (ceiling) {
244 		ceiling &= PUD_MASK;
245 		if (!ceiling)
246 			return;
247 	}
248 	if (end - 1 > ceiling - 1)
249 		return;
250 
251 	pmd = pmd_offset(pud, start);
252 	pud_clear(pud);
253 	pmd_free_tlb(tlb, pmd, start);
254 	mm_dec_nr_pmds(tlb->mm);
255 }
256 
257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
258 				unsigned long addr, unsigned long end,
259 				unsigned long floor, unsigned long ceiling)
260 {
261 	pud_t *pud;
262 	unsigned long next;
263 	unsigned long start;
264 
265 	start = addr;
266 	pud = pud_offset(p4d, addr);
267 	do {
268 		next = pud_addr_end(addr, end);
269 		if (pud_none_or_clear_bad(pud))
270 			continue;
271 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
272 	} while (pud++, addr = next, addr != end);
273 
274 	start &= P4D_MASK;
275 	if (start < floor)
276 		return;
277 	if (ceiling) {
278 		ceiling &= P4D_MASK;
279 		if (!ceiling)
280 			return;
281 	}
282 	if (end - 1 > ceiling - 1)
283 		return;
284 
285 	pud = pud_offset(p4d, start);
286 	p4d_clear(p4d);
287 	pud_free_tlb(tlb, pud, start);
288 	mm_dec_nr_puds(tlb->mm);
289 }
290 
291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292 				unsigned long addr, unsigned long end,
293 				unsigned long floor, unsigned long ceiling)
294 {
295 	p4d_t *p4d;
296 	unsigned long next;
297 	unsigned long start;
298 
299 	start = addr;
300 	p4d = p4d_offset(pgd, addr);
301 	do {
302 		next = p4d_addr_end(addr, end);
303 		if (p4d_none_or_clear_bad(p4d))
304 			continue;
305 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306 	} while (p4d++, addr = next, addr != end);
307 
308 	start &= PGDIR_MASK;
309 	if (start < floor)
310 		return;
311 	if (ceiling) {
312 		ceiling &= PGDIR_MASK;
313 		if (!ceiling)
314 			return;
315 	}
316 	if (end - 1 > ceiling - 1)
317 		return;
318 
319 	p4d = p4d_offset(pgd, start);
320 	pgd_clear(pgd);
321 	p4d_free_tlb(tlb, p4d, start);
322 }
323 
324 /*
325  * This function frees user-level page tables of a process.
326  */
327 void free_pgd_range(struct mmu_gather *tlb,
328 			unsigned long addr, unsigned long end,
329 			unsigned long floor, unsigned long ceiling)
330 {
331 	pgd_t *pgd;
332 	unsigned long next;
333 
334 	/*
335 	 * The next few lines have given us lots of grief...
336 	 *
337 	 * Why are we testing PMD* at this top level?  Because often
338 	 * there will be no work to do at all, and we'd prefer not to
339 	 * go all the way down to the bottom just to discover that.
340 	 *
341 	 * Why all these "- 1"s?  Because 0 represents both the bottom
342 	 * of the address space and the top of it (using -1 for the
343 	 * top wouldn't help much: the masks would do the wrong thing).
344 	 * The rule is that addr 0 and floor 0 refer to the bottom of
345 	 * the address space, but end 0 and ceiling 0 refer to the top
346 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 	 * that end 0 case should be mythical).
348 	 *
349 	 * Wherever addr is brought up or ceiling brought down, we must
350 	 * be careful to reject "the opposite 0" before it confuses the
351 	 * subsequent tests.  But what about where end is brought down
352 	 * by PMD_SIZE below? no, end can't go down to 0 there.
353 	 *
354 	 * Whereas we round start (addr) and ceiling down, by different
355 	 * masks at different levels, in order to test whether a table
356 	 * now has no other vmas using it, so can be freed, we don't
357 	 * bother to round floor or end up - the tests don't need that.
358 	 */
359 
360 	addr &= PMD_MASK;
361 	if (addr < floor) {
362 		addr += PMD_SIZE;
363 		if (!addr)
364 			return;
365 	}
366 	if (ceiling) {
367 		ceiling &= PMD_MASK;
368 		if (!ceiling)
369 			return;
370 	}
371 	if (end - 1 > ceiling - 1)
372 		end -= PMD_SIZE;
373 	if (addr > end - 1)
374 		return;
375 	/*
376 	 * We add page table cache pages with PAGE_SIZE,
377 	 * (see pte_free_tlb()), flush the tlb if we need
378 	 */
379 	tlb_change_page_size(tlb, PAGE_SIZE);
380 	pgd = pgd_offset(tlb->mm, addr);
381 	do {
382 		next = pgd_addr_end(addr, end);
383 		if (pgd_none_or_clear_bad(pgd))
384 			continue;
385 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
386 	} while (pgd++, addr = next, addr != end);
387 }
388 
389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
390 		unsigned long floor, unsigned long ceiling)
391 {
392 	while (vma) {
393 		struct vm_area_struct *next = vma->vm_next;
394 		unsigned long addr = vma->vm_start;
395 
396 		/*
397 		 * Hide vma from rmap and truncate_pagecache before freeing
398 		 * pgtables
399 		 */
400 		unlink_anon_vmas(vma);
401 		unlink_file_vma(vma);
402 
403 		if (is_vm_hugetlb_page(vma)) {
404 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
405 				floor, next ? next->vm_start : ceiling);
406 		} else {
407 			/*
408 			 * Optimization: gather nearby vmas into one call down
409 			 */
410 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
411 			       && !is_vm_hugetlb_page(next)) {
412 				vma = next;
413 				next = vma->vm_next;
414 				unlink_anon_vmas(vma);
415 				unlink_file_vma(vma);
416 			}
417 			free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		}
420 		vma = next;
421 	}
422 }
423 
424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
425 {
426 	spinlock_t *ptl;
427 	pgtable_t new = pte_alloc_one(mm);
428 	if (!new)
429 		return -ENOMEM;
430 
431 	/*
432 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 	 * visible before the pte is made visible to other CPUs by being
434 	 * put into page tables.
435 	 *
436 	 * The other side of the story is the pointer chasing in the page
437 	 * table walking code (when walking the page table without locking;
438 	 * ie. most of the time). Fortunately, these data accesses consist
439 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 	 * being the notable exception) will already guarantee loads are
441 	 * seen in-order. See the alpha page table accessors for the
442 	 * smp_rmb() barriers in page table walking code.
443 	 */
444 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 
446 	ptl = pmd_lock(mm, pmd);
447 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
448 		mm_inc_nr_ptes(mm);
449 		pmd_populate(mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(ptl);
453 	if (new)
454 		pte_free(mm, new);
455 	return 0;
456 }
457 
458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460 	pte_t *new = pte_alloc_one_kernel(&init_mm);
461 	if (!new)
462 		return -ENOMEM;
463 
464 	smp_wmb(); /* See comment in __pte_alloc */
465 
466 	spin_lock(&init_mm.page_table_lock);
467 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
468 		pmd_populate_kernel(&init_mm, pmd, new);
469 		new = NULL;
470 	}
471 	spin_unlock(&init_mm.page_table_lock);
472 	if (new)
473 		pte_free_kernel(&init_mm, new);
474 	return 0;
475 }
476 
477 static inline void init_rss_vec(int *rss)
478 {
479 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 }
481 
482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
483 {
484 	int i;
485 
486 	if (current->mm == mm)
487 		sync_mm_rss(mm);
488 	for (i = 0; i < NR_MM_COUNTERS; i++)
489 		if (rss[i])
490 			add_mm_counter(mm, i, rss[i]);
491 }
492 
493 /*
494  * This function is called to print an error when a bad pte
495  * is found. For example, we might have a PFN-mapped pte in
496  * a region that doesn't allow it.
497  *
498  * The calling function must still handle the error.
499  */
500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 			  pte_t pte, struct page *page)
502 {
503 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504 	p4d_t *p4d = p4d_offset(pgd, addr);
505 	pud_t *pud = pud_offset(p4d, addr);
506 	pmd_t *pmd = pmd_offset(pud, addr);
507 	struct address_space *mapping;
508 	pgoff_t index;
509 	static unsigned long resume;
510 	static unsigned long nr_shown;
511 	static unsigned long nr_unshown;
512 
513 	/*
514 	 * Allow a burst of 60 reports, then keep quiet for that minute;
515 	 * or allow a steady drip of one report per second.
516 	 */
517 	if (nr_shown == 60) {
518 		if (time_before(jiffies, resume)) {
519 			nr_unshown++;
520 			return;
521 		}
522 		if (nr_unshown) {
523 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524 				 nr_unshown);
525 			nr_unshown = 0;
526 		}
527 		nr_shown = 0;
528 	}
529 	if (nr_shown++ == 0)
530 		resume = jiffies + 60 * HZ;
531 
532 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 	index = linear_page_index(vma, addr);
534 
535 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
536 		 current->comm,
537 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
538 	if (page)
539 		dump_page(page, "bad pte");
540 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 		 vma->vm_file,
544 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 		 mapping ? mapping->a_ops->readpage : NULL);
547 	dump_stack();
548 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
549 }
550 
551 /*
552  * vm_normal_page -- This function gets the "struct page" associated with a pte.
553  *
554  * "Special" mappings do not wish to be associated with a "struct page" (either
555  * it doesn't exist, or it exists but they don't want to touch it). In this
556  * case, NULL is returned here. "Normal" mappings do have a struct page.
557  *
558  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559  * pte bit, in which case this function is trivial. Secondly, an architecture
560  * may not have a spare pte bit, which requires a more complicated scheme,
561  * described below.
562  *
563  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564  * special mapping (even if there are underlying and valid "struct pages").
565  * COWed pages of a VM_PFNMAP are always normal.
566  *
567  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570  * mapping will always honor the rule
571  *
572  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573  *
574  * And for normal mappings this is false.
575  *
576  * This restricts such mappings to be a linear translation from virtual address
577  * to pfn. To get around this restriction, we allow arbitrary mappings so long
578  * as the vma is not a COW mapping; in that case, we know that all ptes are
579  * special (because none can have been COWed).
580  *
581  *
582  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583  *
584  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585  * page" backing, however the difference is that _all_ pages with a struct
586  * page (that is, those where pfn_valid is true) are refcounted and considered
587  * normal pages by the VM. The disadvantage is that pages are refcounted
588  * (which can be slower and simply not an option for some PFNMAP users). The
589  * advantage is that we don't have to follow the strict linearity rule of
590  * PFNMAP mappings in order to support COWable mappings.
591  *
592  */
593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 			    pte_t pte)
595 {
596 	unsigned long pfn = pte_pfn(pte);
597 
598 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 		if (likely(!pte_special(pte)))
600 			goto check_pfn;
601 		if (vma->vm_ops && vma->vm_ops->find_special_page)
602 			return vma->vm_ops->find_special_page(vma, addr);
603 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 			return NULL;
605 		if (is_zero_pfn(pfn))
606 			return NULL;
607 		if (pte_devmap(pte))
608 			return NULL;
609 
610 		print_bad_pte(vma, addr, pte, NULL);
611 		return NULL;
612 	}
613 
614 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 
616 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617 		if (vma->vm_flags & VM_MIXEDMAP) {
618 			if (!pfn_valid(pfn))
619 				return NULL;
620 			goto out;
621 		} else {
622 			unsigned long off;
623 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
624 			if (pfn == vma->vm_pgoff + off)
625 				return NULL;
626 			if (!is_cow_mapping(vma->vm_flags))
627 				return NULL;
628 		}
629 	}
630 
631 	if (is_zero_pfn(pfn))
632 		return NULL;
633 
634 check_pfn:
635 	if (unlikely(pfn > highest_memmap_pfn)) {
636 		print_bad_pte(vma, addr, pte, NULL);
637 		return NULL;
638 	}
639 
640 	/*
641 	 * NOTE! We still have PageReserved() pages in the page tables.
642 	 * eg. VDSO mappings can cause them to exist.
643 	 */
644 out:
645 	return pfn_to_page(pfn);
646 }
647 
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
650 				pmd_t pmd)
651 {
652 	unsigned long pfn = pmd_pfn(pmd);
653 
654 	/*
655 	 * There is no pmd_special() but there may be special pmds, e.g.
656 	 * in a direct-access (dax) mapping, so let's just replicate the
657 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 	 */
659 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660 		if (vma->vm_flags & VM_MIXEDMAP) {
661 			if (!pfn_valid(pfn))
662 				return NULL;
663 			goto out;
664 		} else {
665 			unsigned long off;
666 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
667 			if (pfn == vma->vm_pgoff + off)
668 				return NULL;
669 			if (!is_cow_mapping(vma->vm_flags))
670 				return NULL;
671 		}
672 	}
673 
674 	if (pmd_devmap(pmd))
675 		return NULL;
676 	if (is_huge_zero_pmd(pmd))
677 		return NULL;
678 	if (unlikely(pfn > highest_memmap_pfn))
679 		return NULL;
680 
681 	/*
682 	 * NOTE! We still have PageReserved() pages in the page tables.
683 	 * eg. VDSO mappings can cause them to exist.
684 	 */
685 out:
686 	return pfn_to_page(pfn);
687 }
688 #endif
689 
690 /*
691  * copy one vm_area from one task to the other. Assumes the page tables
692  * already present in the new task to be cleared in the whole range
693  * covered by this vma.
694  */
695 
696 static inline unsigned long
697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
698 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
699 		unsigned long addr, int *rss)
700 {
701 	unsigned long vm_flags = vma->vm_flags;
702 	pte_t pte = *src_pte;
703 	struct page *page;
704 
705 	/* pte contains position in swap or file, so copy. */
706 	if (unlikely(!pte_present(pte))) {
707 		swp_entry_t entry = pte_to_swp_entry(pte);
708 
709 		if (likely(!non_swap_entry(entry))) {
710 			if (swap_duplicate(entry) < 0)
711 				return entry.val;
712 
713 			/* make sure dst_mm is on swapoff's mmlist. */
714 			if (unlikely(list_empty(&dst_mm->mmlist))) {
715 				spin_lock(&mmlist_lock);
716 				if (list_empty(&dst_mm->mmlist))
717 					list_add(&dst_mm->mmlist,
718 							&src_mm->mmlist);
719 				spin_unlock(&mmlist_lock);
720 			}
721 			rss[MM_SWAPENTS]++;
722 		} else if (is_migration_entry(entry)) {
723 			page = migration_entry_to_page(entry);
724 
725 			rss[mm_counter(page)]++;
726 
727 			if (is_write_migration_entry(entry) &&
728 					is_cow_mapping(vm_flags)) {
729 				/*
730 				 * COW mappings require pages in both
731 				 * parent and child to be set to read.
732 				 */
733 				make_migration_entry_read(&entry);
734 				pte = swp_entry_to_pte(entry);
735 				if (pte_swp_soft_dirty(*src_pte))
736 					pte = pte_swp_mksoft_dirty(pte);
737 				if (pte_swp_uffd_wp(*src_pte))
738 					pte = pte_swp_mkuffd_wp(pte);
739 				set_pte_at(src_mm, addr, src_pte, pte);
740 			}
741 		} else if (is_device_private_entry(entry)) {
742 			page = device_private_entry_to_page(entry);
743 
744 			/*
745 			 * Update rss count even for unaddressable pages, as
746 			 * they should treated just like normal pages in this
747 			 * respect.
748 			 *
749 			 * We will likely want to have some new rss counters
750 			 * for unaddressable pages, at some point. But for now
751 			 * keep things as they are.
752 			 */
753 			get_page(page);
754 			rss[mm_counter(page)]++;
755 			page_dup_rmap(page, false);
756 
757 			/*
758 			 * We do not preserve soft-dirty information, because so
759 			 * far, checkpoint/restore is the only feature that
760 			 * requires that. And checkpoint/restore does not work
761 			 * when a device driver is involved (you cannot easily
762 			 * save and restore device driver state).
763 			 */
764 			if (is_write_device_private_entry(entry) &&
765 			    is_cow_mapping(vm_flags)) {
766 				make_device_private_entry_read(&entry);
767 				pte = swp_entry_to_pte(entry);
768 				if (pte_swp_uffd_wp(*src_pte))
769 					pte = pte_swp_mkuffd_wp(pte);
770 				set_pte_at(src_mm, addr, src_pte, pte);
771 			}
772 		}
773 		goto out_set_pte;
774 	}
775 
776 	/*
777 	 * If it's a COW mapping, write protect it both
778 	 * in the parent and the child
779 	 */
780 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 		ptep_set_wrprotect(src_mm, addr, src_pte);
782 		pte = pte_wrprotect(pte);
783 	}
784 
785 	/*
786 	 * If it's a shared mapping, mark it clean in
787 	 * the child
788 	 */
789 	if (vm_flags & VM_SHARED)
790 		pte = pte_mkclean(pte);
791 	pte = pte_mkold(pte);
792 
793 	/*
794 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795 	 * does not have the VM_UFFD_WP, which means that the uffd
796 	 * fork event is not enabled.
797 	 */
798 	if (!(vm_flags & VM_UFFD_WP))
799 		pte = pte_clear_uffd_wp(pte);
800 
801 	page = vm_normal_page(vma, addr, pte);
802 	if (page) {
803 		get_page(page);
804 		page_dup_rmap(page, false);
805 		rss[mm_counter(page)]++;
806 	}
807 
808 out_set_pte:
809 	set_pte_at(dst_mm, addr, dst_pte, pte);
810 	return 0;
811 }
812 
813 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
814 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
815 		   unsigned long addr, unsigned long end)
816 {
817 	pte_t *orig_src_pte, *orig_dst_pte;
818 	pte_t *src_pte, *dst_pte;
819 	spinlock_t *src_ptl, *dst_ptl;
820 	int progress = 0;
821 	int rss[NR_MM_COUNTERS];
822 	swp_entry_t entry = (swp_entry_t){0};
823 
824 again:
825 	init_rss_vec(rss);
826 
827 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
828 	if (!dst_pte)
829 		return -ENOMEM;
830 	src_pte = pte_offset_map(src_pmd, addr);
831 	src_ptl = pte_lockptr(src_mm, src_pmd);
832 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
833 	orig_src_pte = src_pte;
834 	orig_dst_pte = dst_pte;
835 	arch_enter_lazy_mmu_mode();
836 
837 	do {
838 		/*
839 		 * We are holding two locks at this point - either of them
840 		 * could generate latencies in another task on another CPU.
841 		 */
842 		if (progress >= 32) {
843 			progress = 0;
844 			if (need_resched() ||
845 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
846 				break;
847 		}
848 		if (pte_none(*src_pte)) {
849 			progress++;
850 			continue;
851 		}
852 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
853 							vma, addr, rss);
854 		if (entry.val)
855 			break;
856 		progress += 8;
857 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
858 
859 	arch_leave_lazy_mmu_mode();
860 	spin_unlock(src_ptl);
861 	pte_unmap(orig_src_pte);
862 	add_mm_rss_vec(dst_mm, rss);
863 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
864 	cond_resched();
865 
866 	if (entry.val) {
867 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
868 			return -ENOMEM;
869 		progress = 0;
870 	}
871 	if (addr != end)
872 		goto again;
873 	return 0;
874 }
875 
876 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
878 		unsigned long addr, unsigned long end)
879 {
880 	pmd_t *src_pmd, *dst_pmd;
881 	unsigned long next;
882 
883 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
884 	if (!dst_pmd)
885 		return -ENOMEM;
886 	src_pmd = pmd_offset(src_pud, addr);
887 	do {
888 		next = pmd_addr_end(addr, end);
889 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
890 			|| pmd_devmap(*src_pmd)) {
891 			int err;
892 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
893 			err = copy_huge_pmd(dst_mm, src_mm,
894 					    dst_pmd, src_pmd, addr, vma);
895 			if (err == -ENOMEM)
896 				return -ENOMEM;
897 			if (!err)
898 				continue;
899 			/* fall through */
900 		}
901 		if (pmd_none_or_clear_bad(src_pmd))
902 			continue;
903 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
904 						vma, addr, next))
905 			return -ENOMEM;
906 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
907 	return 0;
908 }
909 
910 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
912 		unsigned long addr, unsigned long end)
913 {
914 	pud_t *src_pud, *dst_pud;
915 	unsigned long next;
916 
917 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
918 	if (!dst_pud)
919 		return -ENOMEM;
920 	src_pud = pud_offset(src_p4d, addr);
921 	do {
922 		next = pud_addr_end(addr, end);
923 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
924 			int err;
925 
926 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
927 			err = copy_huge_pud(dst_mm, src_mm,
928 					    dst_pud, src_pud, addr, vma);
929 			if (err == -ENOMEM)
930 				return -ENOMEM;
931 			if (!err)
932 				continue;
933 			/* fall through */
934 		}
935 		if (pud_none_or_clear_bad(src_pud))
936 			continue;
937 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
938 						vma, addr, next))
939 			return -ENOMEM;
940 	} while (dst_pud++, src_pud++, addr = next, addr != end);
941 	return 0;
942 }
943 
944 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
946 		unsigned long addr, unsigned long end)
947 {
948 	p4d_t *src_p4d, *dst_p4d;
949 	unsigned long next;
950 
951 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
952 	if (!dst_p4d)
953 		return -ENOMEM;
954 	src_p4d = p4d_offset(src_pgd, addr);
955 	do {
956 		next = p4d_addr_end(addr, end);
957 		if (p4d_none_or_clear_bad(src_p4d))
958 			continue;
959 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
960 						vma, addr, next))
961 			return -ENOMEM;
962 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
963 	return 0;
964 }
965 
966 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 		struct vm_area_struct *vma)
968 {
969 	pgd_t *src_pgd, *dst_pgd;
970 	unsigned long next;
971 	unsigned long addr = vma->vm_start;
972 	unsigned long end = vma->vm_end;
973 	struct mmu_notifier_range range;
974 	bool is_cow;
975 	int ret;
976 
977 	/*
978 	 * Don't copy ptes where a page fault will fill them correctly.
979 	 * Fork becomes much lighter when there are big shared or private
980 	 * readonly mappings. The tradeoff is that copy_page_range is more
981 	 * efficient than faulting.
982 	 */
983 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
984 			!vma->anon_vma)
985 		return 0;
986 
987 	if (is_vm_hugetlb_page(vma))
988 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
989 
990 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
991 		/*
992 		 * We do not free on error cases below as remove_vma
993 		 * gets called on error from higher level routine
994 		 */
995 		ret = track_pfn_copy(vma);
996 		if (ret)
997 			return ret;
998 	}
999 
1000 	/*
1001 	 * We need to invalidate the secondary MMU mappings only when
1002 	 * there could be a permission downgrade on the ptes of the
1003 	 * parent mm. And a permission downgrade will only happen if
1004 	 * is_cow_mapping() returns true.
1005 	 */
1006 	is_cow = is_cow_mapping(vma->vm_flags);
1007 
1008 	if (is_cow) {
1009 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1010 					0, vma, src_mm, addr, end);
1011 		mmu_notifier_invalidate_range_start(&range);
1012 	}
1013 
1014 	ret = 0;
1015 	dst_pgd = pgd_offset(dst_mm, addr);
1016 	src_pgd = pgd_offset(src_mm, addr);
1017 	do {
1018 		next = pgd_addr_end(addr, end);
1019 		if (pgd_none_or_clear_bad(src_pgd))
1020 			continue;
1021 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1022 					    vma, addr, next))) {
1023 			ret = -ENOMEM;
1024 			break;
1025 		}
1026 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1027 
1028 	if (is_cow)
1029 		mmu_notifier_invalidate_range_end(&range);
1030 	return ret;
1031 }
1032 
1033 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1034 				struct vm_area_struct *vma, pmd_t *pmd,
1035 				unsigned long addr, unsigned long end,
1036 				struct zap_details *details)
1037 {
1038 	struct mm_struct *mm = tlb->mm;
1039 	int force_flush = 0;
1040 	int rss[NR_MM_COUNTERS];
1041 	spinlock_t *ptl;
1042 	pte_t *start_pte;
1043 	pte_t *pte;
1044 	swp_entry_t entry;
1045 
1046 	tlb_change_page_size(tlb, PAGE_SIZE);
1047 again:
1048 	init_rss_vec(rss);
1049 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1050 	pte = start_pte;
1051 	flush_tlb_batched_pending(mm);
1052 	arch_enter_lazy_mmu_mode();
1053 	do {
1054 		pte_t ptent = *pte;
1055 		if (pte_none(ptent))
1056 			continue;
1057 
1058 		if (need_resched())
1059 			break;
1060 
1061 		if (pte_present(ptent)) {
1062 			struct page *page;
1063 
1064 			page = vm_normal_page(vma, addr, ptent);
1065 			if (unlikely(details) && page) {
1066 				/*
1067 				 * unmap_shared_mapping_pages() wants to
1068 				 * invalidate cache without truncating:
1069 				 * unmap shared but keep private pages.
1070 				 */
1071 				if (details->check_mapping &&
1072 				    details->check_mapping != page_rmapping(page))
1073 					continue;
1074 			}
1075 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1076 							tlb->fullmm);
1077 			tlb_remove_tlb_entry(tlb, pte, addr);
1078 			if (unlikely(!page))
1079 				continue;
1080 
1081 			if (!PageAnon(page)) {
1082 				if (pte_dirty(ptent)) {
1083 					force_flush = 1;
1084 					set_page_dirty(page);
1085 				}
1086 				if (pte_young(ptent) &&
1087 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1088 					mark_page_accessed(page);
1089 			}
1090 			rss[mm_counter(page)]--;
1091 			page_remove_rmap(page, false);
1092 			if (unlikely(page_mapcount(page) < 0))
1093 				print_bad_pte(vma, addr, ptent, page);
1094 			if (unlikely(__tlb_remove_page(tlb, page))) {
1095 				force_flush = 1;
1096 				addr += PAGE_SIZE;
1097 				break;
1098 			}
1099 			continue;
1100 		}
1101 
1102 		entry = pte_to_swp_entry(ptent);
1103 		if (is_device_private_entry(entry)) {
1104 			struct page *page = device_private_entry_to_page(entry);
1105 
1106 			if (unlikely(details && details->check_mapping)) {
1107 				/*
1108 				 * unmap_shared_mapping_pages() wants to
1109 				 * invalidate cache without truncating:
1110 				 * unmap shared but keep private pages.
1111 				 */
1112 				if (details->check_mapping !=
1113 				    page_rmapping(page))
1114 					continue;
1115 			}
1116 
1117 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 			rss[mm_counter(page)]--;
1119 			page_remove_rmap(page, false);
1120 			put_page(page);
1121 			continue;
1122 		}
1123 
1124 		/* If details->check_mapping, we leave swap entries. */
1125 		if (unlikely(details))
1126 			continue;
1127 
1128 		if (!non_swap_entry(entry))
1129 			rss[MM_SWAPENTS]--;
1130 		else if (is_migration_entry(entry)) {
1131 			struct page *page;
1132 
1133 			page = migration_entry_to_page(entry);
1134 			rss[mm_counter(page)]--;
1135 		}
1136 		if (unlikely(!free_swap_and_cache(entry)))
1137 			print_bad_pte(vma, addr, ptent, NULL);
1138 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139 	} while (pte++, addr += PAGE_SIZE, addr != end);
1140 
1141 	add_mm_rss_vec(mm, rss);
1142 	arch_leave_lazy_mmu_mode();
1143 
1144 	/* Do the actual TLB flush before dropping ptl */
1145 	if (force_flush)
1146 		tlb_flush_mmu_tlbonly(tlb);
1147 	pte_unmap_unlock(start_pte, ptl);
1148 
1149 	/*
1150 	 * If we forced a TLB flush (either due to running out of
1151 	 * batch buffers or because we needed to flush dirty TLB
1152 	 * entries before releasing the ptl), free the batched
1153 	 * memory too. Restart if we didn't do everything.
1154 	 */
1155 	if (force_flush) {
1156 		force_flush = 0;
1157 		tlb_flush_mmu(tlb);
1158 	}
1159 
1160 	if (addr != end) {
1161 		cond_resched();
1162 		goto again;
1163 	}
1164 
1165 	return addr;
1166 }
1167 
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 				struct vm_area_struct *vma, pud_t *pud,
1170 				unsigned long addr, unsigned long end,
1171 				struct zap_details *details)
1172 {
1173 	pmd_t *pmd;
1174 	unsigned long next;
1175 
1176 	pmd = pmd_offset(pud, addr);
1177 	do {
1178 		next = pmd_addr_end(addr, end);
1179 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 			if (next - addr != HPAGE_PMD_SIZE)
1181 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1182 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 				goto next;
1184 			/* fall through */
1185 		}
1186 		/*
1187 		 * Here there can be other concurrent MADV_DONTNEED or
1188 		 * trans huge page faults running, and if the pmd is
1189 		 * none or trans huge it can change under us. This is
1190 		 * because MADV_DONTNEED holds the mmap_lock in read
1191 		 * mode.
1192 		 */
1193 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 			goto next;
1195 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 		cond_resched();
1198 	} while (pmd++, addr = next, addr != end);
1199 
1200 	return addr;
1201 }
1202 
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 				struct vm_area_struct *vma, p4d_t *p4d,
1205 				unsigned long addr, unsigned long end,
1206 				struct zap_details *details)
1207 {
1208 	pud_t *pud;
1209 	unsigned long next;
1210 
1211 	pud = pud_offset(p4d, addr);
1212 	do {
1213 		next = pud_addr_end(addr, end);
1214 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 			if (next - addr != HPAGE_PUD_SIZE) {
1216 				mmap_assert_locked(tlb->mm);
1217 				split_huge_pud(vma, pud, addr);
1218 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1219 				goto next;
1220 			/* fall through */
1221 		}
1222 		if (pud_none_or_clear_bad(pud))
1223 			continue;
1224 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 		cond_resched();
1227 	} while (pud++, addr = next, addr != end);
1228 
1229 	return addr;
1230 }
1231 
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 				struct vm_area_struct *vma, pgd_t *pgd,
1234 				unsigned long addr, unsigned long end,
1235 				struct zap_details *details)
1236 {
1237 	p4d_t *p4d;
1238 	unsigned long next;
1239 
1240 	p4d = p4d_offset(pgd, addr);
1241 	do {
1242 		next = p4d_addr_end(addr, end);
1243 		if (p4d_none_or_clear_bad(p4d))
1244 			continue;
1245 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 	} while (p4d++, addr = next, addr != end);
1247 
1248 	return addr;
1249 }
1250 
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 			     struct vm_area_struct *vma,
1253 			     unsigned long addr, unsigned long end,
1254 			     struct zap_details *details)
1255 {
1256 	pgd_t *pgd;
1257 	unsigned long next;
1258 
1259 	BUG_ON(addr >= end);
1260 	tlb_start_vma(tlb, vma);
1261 	pgd = pgd_offset(vma->vm_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(pgd))
1265 			continue;
1266 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 	} while (pgd++, addr = next, addr != end);
1268 	tlb_end_vma(tlb, vma);
1269 }
1270 
1271 
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 		struct vm_area_struct *vma, unsigned long start_addr,
1274 		unsigned long end_addr,
1275 		struct zap_details *details)
1276 {
1277 	unsigned long start = max(vma->vm_start, start_addr);
1278 	unsigned long end;
1279 
1280 	if (start >= vma->vm_end)
1281 		return;
1282 	end = min(vma->vm_end, end_addr);
1283 	if (end <= vma->vm_start)
1284 		return;
1285 
1286 	if (vma->vm_file)
1287 		uprobe_munmap(vma, start, end);
1288 
1289 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 		untrack_pfn(vma, 0, 0);
1291 
1292 	if (start != end) {
1293 		if (unlikely(is_vm_hugetlb_page(vma))) {
1294 			/*
1295 			 * It is undesirable to test vma->vm_file as it
1296 			 * should be non-null for valid hugetlb area.
1297 			 * However, vm_file will be NULL in the error
1298 			 * cleanup path of mmap_region. When
1299 			 * hugetlbfs ->mmap method fails,
1300 			 * mmap_region() nullifies vma->vm_file
1301 			 * before calling this function to clean up.
1302 			 * Since no pte has actually been setup, it is
1303 			 * safe to do nothing in this case.
1304 			 */
1305 			if (vma->vm_file) {
1306 				i_mmap_lock_write(vma->vm_file->f_mapping);
1307 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 			}
1310 		} else
1311 			unmap_page_range(tlb, vma, start, end, details);
1312 	}
1313 }
1314 
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 		struct vm_area_struct *vma, unsigned long start_addr,
1335 		unsigned long end_addr)
1336 {
1337 	struct mmu_notifier_range range;
1338 
1339 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 				start_addr, end_addr);
1341 	mmu_notifier_invalidate_range_start(&range);
1342 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 	mmu_notifier_invalidate_range_end(&range);
1345 }
1346 
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 		unsigned long size)
1357 {
1358 	struct mmu_notifier_range range;
1359 	struct mmu_gather tlb;
1360 
1361 	lru_add_drain();
1362 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 				start, start + size);
1364 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 	update_hiwater_rss(vma->vm_mm);
1366 	mmu_notifier_invalidate_range_start(&range);
1367 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 	mmu_notifier_invalidate_range_end(&range);
1370 	tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372 
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 		unsigned long size, struct zap_details *details)
1384 {
1385 	struct mmu_notifier_range range;
1386 	struct mmu_gather tlb;
1387 
1388 	lru_add_drain();
1389 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 				address, address + size);
1391 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 	update_hiwater_rss(vma->vm_mm);
1393 	mmu_notifier_invalidate_range_start(&range);
1394 	unmap_single_vma(&tlb, vma, address, range.end, details);
1395 	mmu_notifier_invalidate_range_end(&range);
1396 	tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398 
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 		unsigned long size)
1412 {
1413 	if (address < vma->vm_start || address + size > vma->vm_end ||
1414 	    		!(vma->vm_flags & VM_PFNMAP))
1415 		return;
1416 
1417 	zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420 
1421 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1422 {
1423 	pgd_t *pgd;
1424 	p4d_t *p4d;
1425 	pud_t *pud;
1426 	pmd_t *pmd;
1427 
1428 	pgd = pgd_offset(mm, addr);
1429 	p4d = p4d_alloc(mm, pgd, addr);
1430 	if (!p4d)
1431 		return NULL;
1432 	pud = pud_alloc(mm, p4d, addr);
1433 	if (!pud)
1434 		return NULL;
1435 	pmd = pmd_alloc(mm, pud, addr);
1436 	if (!pmd)
1437 		return NULL;
1438 
1439 	VM_BUG_ON(pmd_trans_huge(*pmd));
1440 	return pmd;
1441 }
1442 
1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 			spinlock_t **ptl)
1445 {
1446 	pmd_t *pmd = walk_to_pmd(mm, addr);
1447 
1448 	if (!pmd)
1449 		return NULL;
1450 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1451 }
1452 
1453 static int validate_page_before_insert(struct page *page)
1454 {
1455 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 		return -EINVAL;
1457 	flush_dcache_page(page);
1458 	return 0;
1459 }
1460 
1461 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1462 			unsigned long addr, struct page *page, pgprot_t prot)
1463 {
1464 	if (!pte_none(*pte))
1465 		return -EBUSY;
1466 	/* Ok, finally just insert the thing.. */
1467 	get_page(page);
1468 	inc_mm_counter_fast(mm, mm_counter_file(page));
1469 	page_add_file_rmap(page, false);
1470 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 	return 0;
1472 }
1473 
1474 /*
1475  * This is the old fallback for page remapping.
1476  *
1477  * For historical reasons, it only allows reserved pages. Only
1478  * old drivers should use this, and they needed to mark their
1479  * pages reserved for the old functions anyway.
1480  */
1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 			struct page *page, pgprot_t prot)
1483 {
1484 	struct mm_struct *mm = vma->vm_mm;
1485 	int retval;
1486 	pte_t *pte;
1487 	spinlock_t *ptl;
1488 
1489 	retval = validate_page_before_insert(page);
1490 	if (retval)
1491 		goto out;
1492 	retval = -ENOMEM;
1493 	pte = get_locked_pte(mm, addr, &ptl);
1494 	if (!pte)
1495 		goto out;
1496 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1497 	pte_unmap_unlock(pte, ptl);
1498 out:
1499 	return retval;
1500 }
1501 
1502 #ifdef pte_index
1503 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1504 			unsigned long addr, struct page *page, pgprot_t prot)
1505 {
1506 	int err;
1507 
1508 	if (!page_count(page))
1509 		return -EINVAL;
1510 	err = validate_page_before_insert(page);
1511 	if (err)
1512 		return err;
1513 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1514 }
1515 
1516 /* insert_pages() amortizes the cost of spinlock operations
1517  * when inserting pages in a loop. Arch *must* define pte_index.
1518  */
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520 			struct page **pages, unsigned long *num, pgprot_t prot)
1521 {
1522 	pmd_t *pmd = NULL;
1523 	pte_t *start_pte, *pte;
1524 	spinlock_t *pte_lock;
1525 	struct mm_struct *const mm = vma->vm_mm;
1526 	unsigned long curr_page_idx = 0;
1527 	unsigned long remaining_pages_total = *num;
1528 	unsigned long pages_to_write_in_pmd;
1529 	int ret;
1530 more:
1531 	ret = -EFAULT;
1532 	pmd = walk_to_pmd(mm, addr);
1533 	if (!pmd)
1534 		goto out;
1535 
1536 	pages_to_write_in_pmd = min_t(unsigned long,
1537 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1538 
1539 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1540 	ret = -ENOMEM;
1541 	if (pte_alloc(mm, pmd))
1542 		goto out;
1543 
1544 	while (pages_to_write_in_pmd) {
1545 		int pte_idx = 0;
1546 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547 
1548 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1549 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1550 			int err = insert_page_in_batch_locked(mm, pte,
1551 				addr, pages[curr_page_idx], prot);
1552 			if (unlikely(err)) {
1553 				pte_unmap_unlock(start_pte, pte_lock);
1554 				ret = err;
1555 				remaining_pages_total -= pte_idx;
1556 				goto out;
1557 			}
1558 			addr += PAGE_SIZE;
1559 			++curr_page_idx;
1560 		}
1561 		pte_unmap_unlock(start_pte, pte_lock);
1562 		pages_to_write_in_pmd -= batch_size;
1563 		remaining_pages_total -= batch_size;
1564 	}
1565 	if (remaining_pages_total)
1566 		goto more;
1567 	ret = 0;
1568 out:
1569 	*num = remaining_pages_total;
1570 	return ret;
1571 }
1572 #endif  /* ifdef pte_index */
1573 
1574 /**
1575  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576  * @vma: user vma to map to
1577  * @addr: target start user address of these pages
1578  * @pages: source kernel pages
1579  * @num: in: number of pages to map. out: number of pages that were *not*
1580  * mapped. (0 means all pages were successfully mapped).
1581  *
1582  * Preferred over vm_insert_page() when inserting multiple pages.
1583  *
1584  * In case of error, we may have mapped a subset of the provided
1585  * pages. It is the caller's responsibility to account for this case.
1586  *
1587  * The same restrictions apply as in vm_insert_page().
1588  */
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590 			struct page **pages, unsigned long *num)
1591 {
1592 #ifdef pte_index
1593 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594 
1595 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596 		return -EFAULT;
1597 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1599 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1600 		vma->vm_flags |= VM_MIXEDMAP;
1601 	}
1602 	/* Defer page refcount checking till we're about to map that page. */
1603 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604 #else
1605 	unsigned long idx = 0, pgcount = *num;
1606 	int err = -EINVAL;
1607 
1608 	for (; idx < pgcount; ++idx) {
1609 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610 		if (err)
1611 			break;
1612 	}
1613 	*num = pgcount - idx;
1614 	return err;
1615 #endif  /* ifdef pte_index */
1616 }
1617 EXPORT_SYMBOL(vm_insert_pages);
1618 
1619 /**
1620  * vm_insert_page - insert single page into user vma
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @page: source kernel page
1624  *
1625  * This allows drivers to insert individual pages they've allocated
1626  * into a user vma.
1627  *
1628  * The page has to be a nice clean _individual_ kernel allocation.
1629  * If you allocate a compound page, you need to have marked it as
1630  * such (__GFP_COMP), or manually just split the page up yourself
1631  * (see split_page()).
1632  *
1633  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634  * took an arbitrary page protection parameter. This doesn't allow
1635  * that. Your vma protection will have to be set up correctly, which
1636  * means that if you want a shared writable mapping, you'd better
1637  * ask for a shared writable mapping!
1638  *
1639  * The page does not need to be reserved.
1640  *
1641  * Usually this function is called from f_op->mmap() handler
1642  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1643  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644  * function from other places, for example from page-fault handler.
1645  *
1646  * Return: %0 on success, negative error code otherwise.
1647  */
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649 			struct page *page)
1650 {
1651 	if (addr < vma->vm_start || addr >= vma->vm_end)
1652 		return -EFAULT;
1653 	if (!page_count(page))
1654 		return -EINVAL;
1655 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1657 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1658 		vma->vm_flags |= VM_MIXEDMAP;
1659 	}
1660 	return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663 
1664 /*
1665  * __vm_map_pages - maps range of kernel pages into user vma
1666  * @vma: user vma to map to
1667  * @pages: pointer to array of source kernel pages
1668  * @num: number of pages in page array
1669  * @offset: user's requested vm_pgoff
1670  *
1671  * This allows drivers to map range of kernel pages into a user vma.
1672  *
1673  * Return: 0 on success and error code otherwise.
1674  */
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676 				unsigned long num, unsigned long offset)
1677 {
1678 	unsigned long count = vma_pages(vma);
1679 	unsigned long uaddr = vma->vm_start;
1680 	int ret, i;
1681 
1682 	/* Fail if the user requested offset is beyond the end of the object */
1683 	if (offset >= num)
1684 		return -ENXIO;
1685 
1686 	/* Fail if the user requested size exceeds available object size */
1687 	if (count > num - offset)
1688 		return -ENXIO;
1689 
1690 	for (i = 0; i < count; i++) {
1691 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692 		if (ret < 0)
1693 			return ret;
1694 		uaddr += PAGE_SIZE;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 /**
1701  * vm_map_pages - maps range of kernel pages starts with non zero offset
1702  * @vma: user vma to map to
1703  * @pages: pointer to array of source kernel pages
1704  * @num: number of pages in page array
1705  *
1706  * Maps an object consisting of @num pages, catering for the user's
1707  * requested vm_pgoff
1708  *
1709  * If we fail to insert any page into the vma, the function will return
1710  * immediately leaving any previously inserted pages present.  Callers
1711  * from the mmap handler may immediately return the error as their caller
1712  * will destroy the vma, removing any successfully inserted pages. Other
1713  * callers should make their own arrangements for calling unmap_region().
1714  *
1715  * Context: Process context. Called by mmap handlers.
1716  * Return: 0 on success and error code otherwise.
1717  */
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719 				unsigned long num)
1720 {
1721 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722 }
1723 EXPORT_SYMBOL(vm_map_pages);
1724 
1725 /**
1726  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727  * @vma: user vma to map to
1728  * @pages: pointer to array of source kernel pages
1729  * @num: number of pages in page array
1730  *
1731  * Similar to vm_map_pages(), except that it explicitly sets the offset
1732  * to 0. This function is intended for the drivers that did not consider
1733  * vm_pgoff.
1734  *
1735  * Context: Process context. Called by mmap handlers.
1736  * Return: 0 on success and error code otherwise.
1737  */
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739 				unsigned long num)
1740 {
1741 	return __vm_map_pages(vma, pages, num, 0);
1742 }
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1744 
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1747 {
1748 	struct mm_struct *mm = vma->vm_mm;
1749 	pte_t *pte, entry;
1750 	spinlock_t *ptl;
1751 
1752 	pte = get_locked_pte(mm, addr, &ptl);
1753 	if (!pte)
1754 		return VM_FAULT_OOM;
1755 	if (!pte_none(*pte)) {
1756 		if (mkwrite) {
1757 			/*
1758 			 * For read faults on private mappings the PFN passed
1759 			 * in may not match the PFN we have mapped if the
1760 			 * mapped PFN is a writeable COW page.  In the mkwrite
1761 			 * case we are creating a writable PTE for a shared
1762 			 * mapping and we expect the PFNs to match. If they
1763 			 * don't match, we are likely racing with block
1764 			 * allocation and mapping invalidation so just skip the
1765 			 * update.
1766 			 */
1767 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1769 				goto out_unlock;
1770 			}
1771 			entry = pte_mkyoung(*pte);
1772 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774 				update_mmu_cache(vma, addr, pte);
1775 		}
1776 		goto out_unlock;
1777 	}
1778 
1779 	/* Ok, finally just insert the thing.. */
1780 	if (pfn_t_devmap(pfn))
1781 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782 	else
1783 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1784 
1785 	if (mkwrite) {
1786 		entry = pte_mkyoung(entry);
1787 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 	}
1789 
1790 	set_pte_at(mm, addr, pte, entry);
1791 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1792 
1793 out_unlock:
1794 	pte_unmap_unlock(pte, ptl);
1795 	return VM_FAULT_NOPAGE;
1796 }
1797 
1798 /**
1799  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800  * @vma: user vma to map to
1801  * @addr: target user address of this page
1802  * @pfn: source kernel pfn
1803  * @pgprot: pgprot flags for the inserted page
1804  *
1805  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1806  * to override pgprot on a per-page basis.
1807  *
1808  * This only makes sense for IO mappings, and it makes no sense for
1809  * COW mappings.  In general, using multiple vmas is preferable;
1810  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811  * impractical.
1812  *
1813  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814  * a value of @pgprot different from that of @vma->vm_page_prot.
1815  *
1816  * Context: Process context.  May allocate using %GFP_KERNEL.
1817  * Return: vm_fault_t value.
1818  */
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820 			unsigned long pfn, pgprot_t pgprot)
1821 {
1822 	/*
1823 	 * Technically, architectures with pte_special can avoid all these
1824 	 * restrictions (same for remap_pfn_range).  However we would like
1825 	 * consistency in testing and feature parity among all, so we should
1826 	 * try to keep these invariants in place for everybody.
1827 	 */
1828 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830 						(VM_PFNMAP|VM_MIXEDMAP));
1831 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833 
1834 	if (addr < vma->vm_start || addr >= vma->vm_end)
1835 		return VM_FAULT_SIGBUS;
1836 
1837 	if (!pfn_modify_allowed(pfn, pgprot))
1838 		return VM_FAULT_SIGBUS;
1839 
1840 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841 
1842 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1843 			false);
1844 }
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846 
1847 /**
1848  * vmf_insert_pfn - insert single pfn into user vma
1849  * @vma: user vma to map to
1850  * @addr: target user address of this page
1851  * @pfn: source kernel pfn
1852  *
1853  * Similar to vm_insert_page, this allows drivers to insert individual pages
1854  * they've allocated into a user vma. Same comments apply.
1855  *
1856  * This function should only be called from a vm_ops->fault handler, and
1857  * in that case the handler should return the result of this function.
1858  *
1859  * vma cannot be a COW mapping.
1860  *
1861  * As this is called only for pages that do not currently exist, we
1862  * do not need to flush old virtual caches or the TLB.
1863  *
1864  * Context: Process context.  May allocate using %GFP_KERNEL.
1865  * Return: vm_fault_t value.
1866  */
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868 			unsigned long pfn)
1869 {
1870 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871 }
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1873 
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875 {
1876 	/* these checks mirror the abort conditions in vm_normal_page */
1877 	if (vma->vm_flags & VM_MIXEDMAP)
1878 		return true;
1879 	if (pfn_t_devmap(pfn))
1880 		return true;
1881 	if (pfn_t_special(pfn))
1882 		return true;
1883 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884 		return true;
1885 	return false;
1886 }
1887 
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890 		bool mkwrite)
1891 {
1892 	int err;
1893 
1894 	BUG_ON(!vm_mixed_ok(vma, pfn));
1895 
1896 	if (addr < vma->vm_start || addr >= vma->vm_end)
1897 		return VM_FAULT_SIGBUS;
1898 
1899 	track_pfn_insert(vma, &pgprot, pfn);
1900 
1901 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902 		return VM_FAULT_SIGBUS;
1903 
1904 	/*
1905 	 * If we don't have pte special, then we have to use the pfn_valid()
1906 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 	 * refcount the page if pfn_valid is true (hence insert_page rather
1908 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1909 	 * without pte special, it would there be refcounted as a normal page.
1910 	 */
1911 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1913 		struct page *page;
1914 
1915 		/*
1916 		 * At this point we are committed to insert_page()
1917 		 * regardless of whether the caller specified flags that
1918 		 * result in pfn_t_has_page() == false.
1919 		 */
1920 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1921 		err = insert_page(vma, addr, page, pgprot);
1922 	} else {
1923 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924 	}
1925 
1926 	if (err == -ENOMEM)
1927 		return VM_FAULT_OOM;
1928 	if (err < 0 && err != -EBUSY)
1929 		return VM_FAULT_SIGBUS;
1930 
1931 	return VM_FAULT_NOPAGE;
1932 }
1933 
1934 /**
1935  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936  * @vma: user vma to map to
1937  * @addr: target user address of this page
1938  * @pfn: source kernel pfn
1939  * @pgprot: pgprot flags for the inserted page
1940  *
1941  * This is exactly like vmf_insert_mixed(), except that it allows drivers
1942  * to override pgprot on a per-page basis.
1943  *
1944  * Typically this function should be used by drivers to set caching- and
1945  * encryption bits different than those of @vma->vm_page_prot, because
1946  * the caching- or encryption mode may not be known at mmap() time.
1947  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948  * to set caching and encryption bits for those vmas (except for COW pages).
1949  * This is ensured by core vm only modifying these page table entries using
1950  * functions that don't touch caching- or encryption bits, using pte_modify()
1951  * if needed. (See for example mprotect()).
1952  * Also when new page-table entries are created, this is only done using the
1953  * fault() callback, and never using the value of vma->vm_page_prot,
1954  * except for page-table entries that point to anonymous pages as the result
1955  * of COW.
1956  *
1957  * Context: Process context.  May allocate using %GFP_KERNEL.
1958  * Return: vm_fault_t value.
1959  */
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961 				 pfn_t pfn, pgprot_t pgprot)
1962 {
1963 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964 }
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1966 
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968 		pfn_t pfn)
1969 {
1970 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1973 
1974 /*
1975  *  If the insertion of PTE failed because someone else already added a
1976  *  different entry in the mean time, we treat that as success as we assume
1977  *  the same entry was actually inserted.
1978  */
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980 		unsigned long addr, pfn_t pfn)
1981 {
1982 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1983 }
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985 
1986 /*
1987  * maps a range of physical memory into the requested pages. the old
1988  * mappings are removed. any references to nonexistent pages results
1989  * in null mappings (currently treated as "copy-on-access")
1990  */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 			unsigned long addr, unsigned long end,
1993 			unsigned long pfn, pgprot_t prot)
1994 {
1995 	pte_t *pte;
1996 	spinlock_t *ptl;
1997 	int err = 0;
1998 
1999 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2000 	if (!pte)
2001 		return -ENOMEM;
2002 	arch_enter_lazy_mmu_mode();
2003 	do {
2004 		BUG_ON(!pte_none(*pte));
2005 		if (!pfn_modify_allowed(pfn, prot)) {
2006 			err = -EACCES;
2007 			break;
2008 		}
2009 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2010 		pfn++;
2011 	} while (pte++, addr += PAGE_SIZE, addr != end);
2012 	arch_leave_lazy_mmu_mode();
2013 	pte_unmap_unlock(pte - 1, ptl);
2014 	return err;
2015 }
2016 
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 			unsigned long addr, unsigned long end,
2019 			unsigned long pfn, pgprot_t prot)
2020 {
2021 	pmd_t *pmd;
2022 	unsigned long next;
2023 	int err;
2024 
2025 	pfn -= addr >> PAGE_SHIFT;
2026 	pmd = pmd_alloc(mm, pud, addr);
2027 	if (!pmd)
2028 		return -ENOMEM;
2029 	VM_BUG_ON(pmd_trans_huge(*pmd));
2030 	do {
2031 		next = pmd_addr_end(addr, end);
2032 		err = remap_pte_range(mm, pmd, addr, next,
2033 				pfn + (addr >> PAGE_SHIFT), prot);
2034 		if (err)
2035 			return err;
2036 	} while (pmd++, addr = next, addr != end);
2037 	return 0;
2038 }
2039 
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041 			unsigned long addr, unsigned long end,
2042 			unsigned long pfn, pgprot_t prot)
2043 {
2044 	pud_t *pud;
2045 	unsigned long next;
2046 	int err;
2047 
2048 	pfn -= addr >> PAGE_SHIFT;
2049 	pud = pud_alloc(mm, p4d, addr);
2050 	if (!pud)
2051 		return -ENOMEM;
2052 	do {
2053 		next = pud_addr_end(addr, end);
2054 		err = remap_pmd_range(mm, pud, addr, next,
2055 				pfn + (addr >> PAGE_SHIFT), prot);
2056 		if (err)
2057 			return err;
2058 	} while (pud++, addr = next, addr != end);
2059 	return 0;
2060 }
2061 
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063 			unsigned long addr, unsigned long end,
2064 			unsigned long pfn, pgprot_t prot)
2065 {
2066 	p4d_t *p4d;
2067 	unsigned long next;
2068 	int err;
2069 
2070 	pfn -= addr >> PAGE_SHIFT;
2071 	p4d = p4d_alloc(mm, pgd, addr);
2072 	if (!p4d)
2073 		return -ENOMEM;
2074 	do {
2075 		next = p4d_addr_end(addr, end);
2076 		err = remap_pud_range(mm, p4d, addr, next,
2077 				pfn + (addr >> PAGE_SHIFT), prot);
2078 		if (err)
2079 			return err;
2080 	} while (p4d++, addr = next, addr != end);
2081 	return 0;
2082 }
2083 
2084 /**
2085  * remap_pfn_range - remap kernel memory to userspace
2086  * @vma: user vma to map to
2087  * @addr: target page aligned user address to start at
2088  * @pfn: page frame number of kernel physical memory address
2089  * @size: size of mapping area
2090  * @prot: page protection flags for this mapping
2091  *
2092  * Note: this is only safe if the mm semaphore is held when called.
2093  *
2094  * Return: %0 on success, negative error code otherwise.
2095  */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099 	pgd_t *pgd;
2100 	unsigned long next;
2101 	unsigned long end = addr + PAGE_ALIGN(size);
2102 	struct mm_struct *mm = vma->vm_mm;
2103 	unsigned long remap_pfn = pfn;
2104 	int err;
2105 
2106 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2107 		return -EINVAL;
2108 
2109 	/*
2110 	 * Physically remapped pages are special. Tell the
2111 	 * rest of the world about it:
2112 	 *   VM_IO tells people not to look at these pages
2113 	 *	(accesses can have side effects).
2114 	 *   VM_PFNMAP tells the core MM that the base pages are just
2115 	 *	raw PFN mappings, and do not have a "struct page" associated
2116 	 *	with them.
2117 	 *   VM_DONTEXPAND
2118 	 *      Disable vma merging and expanding with mremap().
2119 	 *   VM_DONTDUMP
2120 	 *      Omit vma from core dump, even when VM_IO turned off.
2121 	 *
2122 	 * There's a horrible special case to handle copy-on-write
2123 	 * behaviour that some programs depend on. We mark the "original"
2124 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2125 	 * See vm_normal_page() for details.
2126 	 */
2127 	if (is_cow_mapping(vma->vm_flags)) {
2128 		if (addr != vma->vm_start || end != vma->vm_end)
2129 			return -EINVAL;
2130 		vma->vm_pgoff = pfn;
2131 	}
2132 
2133 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2134 	if (err)
2135 		return -EINVAL;
2136 
2137 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2138 
2139 	BUG_ON(addr >= end);
2140 	pfn -= addr >> PAGE_SHIFT;
2141 	pgd = pgd_offset(mm, addr);
2142 	flush_cache_range(vma, addr, end);
2143 	do {
2144 		next = pgd_addr_end(addr, end);
2145 		err = remap_p4d_range(mm, pgd, addr, next,
2146 				pfn + (addr >> PAGE_SHIFT), prot);
2147 		if (err)
2148 			break;
2149 	} while (pgd++, addr = next, addr != end);
2150 
2151 	if (err)
2152 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2153 
2154 	return err;
2155 }
2156 EXPORT_SYMBOL(remap_pfn_range);
2157 
2158 /**
2159  * vm_iomap_memory - remap memory to userspace
2160  * @vma: user vma to map to
2161  * @start: start of the physical memory to be mapped
2162  * @len: size of area
2163  *
2164  * This is a simplified io_remap_pfn_range() for common driver use. The
2165  * driver just needs to give us the physical memory range to be mapped,
2166  * we'll figure out the rest from the vma information.
2167  *
2168  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169  * whatever write-combining details or similar.
2170  *
2171  * Return: %0 on success, negative error code otherwise.
2172  */
2173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2174 {
2175 	unsigned long vm_len, pfn, pages;
2176 
2177 	/* Check that the physical memory area passed in looks valid */
2178 	if (start + len < start)
2179 		return -EINVAL;
2180 	/*
2181 	 * You *really* shouldn't map things that aren't page-aligned,
2182 	 * but we've historically allowed it because IO memory might
2183 	 * just have smaller alignment.
2184 	 */
2185 	len += start & ~PAGE_MASK;
2186 	pfn = start >> PAGE_SHIFT;
2187 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2188 	if (pfn + pages < pfn)
2189 		return -EINVAL;
2190 
2191 	/* We start the mapping 'vm_pgoff' pages into the area */
2192 	if (vma->vm_pgoff > pages)
2193 		return -EINVAL;
2194 	pfn += vma->vm_pgoff;
2195 	pages -= vma->vm_pgoff;
2196 
2197 	/* Can we fit all of the mapping? */
2198 	vm_len = vma->vm_end - vma->vm_start;
2199 	if (vm_len >> PAGE_SHIFT > pages)
2200 		return -EINVAL;
2201 
2202 	/* Ok, let it rip */
2203 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2204 }
2205 EXPORT_SYMBOL(vm_iomap_memory);
2206 
2207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 				     unsigned long addr, unsigned long end,
2209 				     pte_fn_t fn, void *data, bool create)
2210 {
2211 	pte_t *pte;
2212 	int err = 0;
2213 	spinlock_t *ptl;
2214 
2215 	if (create) {
2216 		pte = (mm == &init_mm) ?
2217 			pte_alloc_kernel(pmd, addr) :
2218 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2219 		if (!pte)
2220 			return -ENOMEM;
2221 	} else {
2222 		pte = (mm == &init_mm) ?
2223 			pte_offset_kernel(pmd, addr) :
2224 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2225 	}
2226 
2227 	BUG_ON(pmd_huge(*pmd));
2228 
2229 	arch_enter_lazy_mmu_mode();
2230 
2231 	do {
2232 		if (create || !pte_none(*pte)) {
2233 			err = fn(pte++, addr, data);
2234 			if (err)
2235 				break;
2236 		}
2237 	} while (addr += PAGE_SIZE, addr != end);
2238 
2239 	arch_leave_lazy_mmu_mode();
2240 
2241 	if (mm != &init_mm)
2242 		pte_unmap_unlock(pte-1, ptl);
2243 	return err;
2244 }
2245 
2246 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 				     unsigned long addr, unsigned long end,
2248 				     pte_fn_t fn, void *data, bool create)
2249 {
2250 	pmd_t *pmd;
2251 	unsigned long next;
2252 	int err = 0;
2253 
2254 	BUG_ON(pud_huge(*pud));
2255 
2256 	if (create) {
2257 		pmd = pmd_alloc(mm, pud, addr);
2258 		if (!pmd)
2259 			return -ENOMEM;
2260 	} else {
2261 		pmd = pmd_offset(pud, addr);
2262 	}
2263 	do {
2264 		next = pmd_addr_end(addr, end);
2265 		if (create || !pmd_none_or_clear_bad(pmd)) {
2266 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2267 						 create);
2268 			if (err)
2269 				break;
2270 		}
2271 	} while (pmd++, addr = next, addr != end);
2272 	return err;
2273 }
2274 
2275 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2276 				     unsigned long addr, unsigned long end,
2277 				     pte_fn_t fn, void *data, bool create)
2278 {
2279 	pud_t *pud;
2280 	unsigned long next;
2281 	int err = 0;
2282 
2283 	if (create) {
2284 		pud = pud_alloc(mm, p4d, addr);
2285 		if (!pud)
2286 			return -ENOMEM;
2287 	} else {
2288 		pud = pud_offset(p4d, addr);
2289 	}
2290 	do {
2291 		next = pud_addr_end(addr, end);
2292 		if (create || !pud_none_or_clear_bad(pud)) {
2293 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2294 						 create);
2295 			if (err)
2296 				break;
2297 		}
2298 	} while (pud++, addr = next, addr != end);
2299 	return err;
2300 }
2301 
2302 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2303 				     unsigned long addr, unsigned long end,
2304 				     pte_fn_t fn, void *data, bool create)
2305 {
2306 	p4d_t *p4d;
2307 	unsigned long next;
2308 	int err = 0;
2309 
2310 	if (create) {
2311 		p4d = p4d_alloc(mm, pgd, addr);
2312 		if (!p4d)
2313 			return -ENOMEM;
2314 	} else {
2315 		p4d = p4d_offset(pgd, addr);
2316 	}
2317 	do {
2318 		next = p4d_addr_end(addr, end);
2319 		if (create || !p4d_none_or_clear_bad(p4d)) {
2320 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2321 						 create);
2322 			if (err)
2323 				break;
2324 		}
2325 	} while (p4d++, addr = next, addr != end);
2326 	return err;
2327 }
2328 
2329 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2330 				 unsigned long size, pte_fn_t fn,
2331 				 void *data, bool create)
2332 {
2333 	pgd_t *pgd;
2334 	unsigned long next;
2335 	unsigned long end = addr + size;
2336 	int err = 0;
2337 
2338 	if (WARN_ON(addr >= end))
2339 		return -EINVAL;
2340 
2341 	pgd = pgd_offset(mm, addr);
2342 	do {
2343 		next = pgd_addr_end(addr, end);
2344 		if (!create && pgd_none_or_clear_bad(pgd))
2345 			continue;
2346 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2347 		if (err)
2348 			break;
2349 	} while (pgd++, addr = next, addr != end);
2350 
2351 	return err;
2352 }
2353 
2354 /*
2355  * Scan a region of virtual memory, filling in page tables as necessary
2356  * and calling a provided function on each leaf page table.
2357  */
2358 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2359 			unsigned long size, pte_fn_t fn, void *data)
2360 {
2361 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2362 }
2363 EXPORT_SYMBOL_GPL(apply_to_page_range);
2364 
2365 /*
2366  * Scan a region of virtual memory, calling a provided function on
2367  * each leaf page table where it exists.
2368  *
2369  * Unlike apply_to_page_range, this does _not_ fill in page tables
2370  * where they are absent.
2371  */
2372 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2373 				 unsigned long size, pte_fn_t fn, void *data)
2374 {
2375 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2376 }
2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2378 
2379 /*
2380  * handle_pte_fault chooses page fault handler according to an entry which was
2381  * read non-atomically.  Before making any commitment, on those architectures
2382  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383  * parts, do_swap_page must check under lock before unmapping the pte and
2384  * proceeding (but do_wp_page is only called after already making such a check;
2385  * and do_anonymous_page can safely check later on).
2386  */
2387 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2388 				pte_t *page_table, pte_t orig_pte)
2389 {
2390 	int same = 1;
2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2392 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2393 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2394 		spin_lock(ptl);
2395 		same = pte_same(*page_table, orig_pte);
2396 		spin_unlock(ptl);
2397 	}
2398 #endif
2399 	pte_unmap(page_table);
2400 	return same;
2401 }
2402 
2403 static inline bool cow_user_page(struct page *dst, struct page *src,
2404 				 struct vm_fault *vmf)
2405 {
2406 	bool ret;
2407 	void *kaddr;
2408 	void __user *uaddr;
2409 	bool locked = false;
2410 	struct vm_area_struct *vma = vmf->vma;
2411 	struct mm_struct *mm = vma->vm_mm;
2412 	unsigned long addr = vmf->address;
2413 
2414 	if (likely(src)) {
2415 		copy_user_highpage(dst, src, addr, vma);
2416 		return true;
2417 	}
2418 
2419 	/*
2420 	 * If the source page was a PFN mapping, we don't have
2421 	 * a "struct page" for it. We do a best-effort copy by
2422 	 * just copying from the original user address. If that
2423 	 * fails, we just zero-fill it. Live with it.
2424 	 */
2425 	kaddr = kmap_atomic(dst);
2426 	uaddr = (void __user *)(addr & PAGE_MASK);
2427 
2428 	/*
2429 	 * On architectures with software "accessed" bits, we would
2430 	 * take a double page fault, so mark it accessed here.
2431 	 */
2432 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2433 		pte_t entry;
2434 
2435 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2436 		locked = true;
2437 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2438 			/*
2439 			 * Other thread has already handled the fault
2440 			 * and update local tlb only
2441 			 */
2442 			update_mmu_tlb(vma, addr, vmf->pte);
2443 			ret = false;
2444 			goto pte_unlock;
2445 		}
2446 
2447 		entry = pte_mkyoung(vmf->orig_pte);
2448 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449 			update_mmu_cache(vma, addr, vmf->pte);
2450 	}
2451 
2452 	/*
2453 	 * This really shouldn't fail, because the page is there
2454 	 * in the page tables. But it might just be unreadable,
2455 	 * in which case we just give up and fill the result with
2456 	 * zeroes.
2457 	 */
2458 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2459 		if (locked)
2460 			goto warn;
2461 
2462 		/* Re-validate under PTL if the page is still mapped */
2463 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464 		locked = true;
2465 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466 			/* The PTE changed under us, update local tlb */
2467 			update_mmu_tlb(vma, addr, vmf->pte);
2468 			ret = false;
2469 			goto pte_unlock;
2470 		}
2471 
2472 		/*
2473 		 * The same page can be mapped back since last copy attempt.
2474 		 * Try to copy again under PTL.
2475 		 */
2476 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2477 			/*
2478 			 * Give a warn in case there can be some obscure
2479 			 * use-case
2480 			 */
2481 warn:
2482 			WARN_ON_ONCE(1);
2483 			clear_page(kaddr);
2484 		}
2485 	}
2486 
2487 	ret = true;
2488 
2489 pte_unlock:
2490 	if (locked)
2491 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2492 	kunmap_atomic(kaddr);
2493 	flush_dcache_page(dst);
2494 
2495 	return ret;
2496 }
2497 
2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2499 {
2500 	struct file *vm_file = vma->vm_file;
2501 
2502 	if (vm_file)
2503 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2504 
2505 	/*
2506 	 * Special mappings (e.g. VDSO) do not have any file so fake
2507 	 * a default GFP_KERNEL for them.
2508 	 */
2509 	return GFP_KERNEL;
2510 }
2511 
2512 /*
2513  * Notify the address space that the page is about to become writable so that
2514  * it can prohibit this or wait for the page to get into an appropriate state.
2515  *
2516  * We do this without the lock held, so that it can sleep if it needs to.
2517  */
2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2519 {
2520 	vm_fault_t ret;
2521 	struct page *page = vmf->page;
2522 	unsigned int old_flags = vmf->flags;
2523 
2524 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2525 
2526 	if (vmf->vma->vm_file &&
2527 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2528 		return VM_FAULT_SIGBUS;
2529 
2530 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2531 	/* Restore original flags so that caller is not surprised */
2532 	vmf->flags = old_flags;
2533 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2534 		return ret;
2535 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2536 		lock_page(page);
2537 		if (!page->mapping) {
2538 			unlock_page(page);
2539 			return 0; /* retry */
2540 		}
2541 		ret |= VM_FAULT_LOCKED;
2542 	} else
2543 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2544 	return ret;
2545 }
2546 
2547 /*
2548  * Handle dirtying of a page in shared file mapping on a write fault.
2549  *
2550  * The function expects the page to be locked and unlocks it.
2551  */
2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2553 {
2554 	struct vm_area_struct *vma = vmf->vma;
2555 	struct address_space *mapping;
2556 	struct page *page = vmf->page;
2557 	bool dirtied;
2558 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2559 
2560 	dirtied = set_page_dirty(page);
2561 	VM_BUG_ON_PAGE(PageAnon(page), page);
2562 	/*
2563 	 * Take a local copy of the address_space - page.mapping may be zeroed
2564 	 * by truncate after unlock_page().   The address_space itself remains
2565 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2566 	 * release semantics to prevent the compiler from undoing this copying.
2567 	 */
2568 	mapping = page_rmapping(page);
2569 	unlock_page(page);
2570 
2571 	if (!page_mkwrite)
2572 		file_update_time(vma->vm_file);
2573 
2574 	/*
2575 	 * Throttle page dirtying rate down to writeback speed.
2576 	 *
2577 	 * mapping may be NULL here because some device drivers do not
2578 	 * set page.mapping but still dirty their pages
2579 	 *
2580 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2581 	 * is pinning the mapping, as per above.
2582 	 */
2583 	if ((dirtied || page_mkwrite) && mapping) {
2584 		struct file *fpin;
2585 
2586 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2587 		balance_dirty_pages_ratelimited(mapping);
2588 		if (fpin) {
2589 			fput(fpin);
2590 			return VM_FAULT_RETRY;
2591 		}
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 /*
2598  * Handle write page faults for pages that can be reused in the current vma
2599  *
2600  * This can happen either due to the mapping being with the VM_SHARED flag,
2601  * or due to us being the last reference standing to the page. In either
2602  * case, all we need to do here is to mark the page as writable and update
2603  * any related book-keeping.
2604  */
2605 static inline void wp_page_reuse(struct vm_fault *vmf)
2606 	__releases(vmf->ptl)
2607 {
2608 	struct vm_area_struct *vma = vmf->vma;
2609 	struct page *page = vmf->page;
2610 	pte_t entry;
2611 	/*
2612 	 * Clear the pages cpupid information as the existing
2613 	 * information potentially belongs to a now completely
2614 	 * unrelated process.
2615 	 */
2616 	if (page)
2617 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2618 
2619 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2620 	entry = pte_mkyoung(vmf->orig_pte);
2621 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2623 		update_mmu_cache(vma, vmf->address, vmf->pte);
2624 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2625 }
2626 
2627 /*
2628  * Handle the case of a page which we actually need to copy to a new page.
2629  *
2630  * Called with mmap_lock locked and the old page referenced, but
2631  * without the ptl held.
2632  *
2633  * High level logic flow:
2634  *
2635  * - Allocate a page, copy the content of the old page to the new one.
2636  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2637  * - Take the PTL. If the pte changed, bail out and release the allocated page
2638  * - If the pte is still the way we remember it, update the page table and all
2639  *   relevant references. This includes dropping the reference the page-table
2640  *   held to the old page, as well as updating the rmap.
2641  * - In any case, unlock the PTL and drop the reference we took to the old page.
2642  */
2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2644 {
2645 	struct vm_area_struct *vma = vmf->vma;
2646 	struct mm_struct *mm = vma->vm_mm;
2647 	struct page *old_page = vmf->page;
2648 	struct page *new_page = NULL;
2649 	pte_t entry;
2650 	int page_copied = 0;
2651 	struct mmu_notifier_range range;
2652 
2653 	if (unlikely(anon_vma_prepare(vma)))
2654 		goto oom;
2655 
2656 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657 		new_page = alloc_zeroed_user_highpage_movable(vma,
2658 							      vmf->address);
2659 		if (!new_page)
2660 			goto oom;
2661 	} else {
2662 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2663 				vmf->address);
2664 		if (!new_page)
2665 			goto oom;
2666 
2667 		if (!cow_user_page(new_page, old_page, vmf)) {
2668 			/*
2669 			 * COW failed, if the fault was solved by other,
2670 			 * it's fine. If not, userspace would re-fault on
2671 			 * the same address and we will handle the fault
2672 			 * from the second attempt.
2673 			 */
2674 			put_page(new_page);
2675 			if (old_page)
2676 				put_page(old_page);
2677 			return 0;
2678 		}
2679 	}
2680 
2681 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2682 		goto oom_free_new;
2683 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2684 
2685 	__SetPageUptodate(new_page);
2686 
2687 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2688 				vmf->address & PAGE_MASK,
2689 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2690 	mmu_notifier_invalidate_range_start(&range);
2691 
2692 	/*
2693 	 * Re-check the pte - we dropped the lock
2694 	 */
2695 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2696 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2697 		if (old_page) {
2698 			if (!PageAnon(old_page)) {
2699 				dec_mm_counter_fast(mm,
2700 						mm_counter_file(old_page));
2701 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 			}
2703 		} else {
2704 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2705 		}
2706 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2707 		entry = mk_pte(new_page, vma->vm_page_prot);
2708 		entry = pte_sw_mkyoung(entry);
2709 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2710 		/*
2711 		 * Clear the pte entry and flush it first, before updating the
2712 		 * pte with the new entry. This will avoid a race condition
2713 		 * seen in the presence of one thread doing SMC and another
2714 		 * thread doing COW.
2715 		 */
2716 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2717 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2718 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2719 		/*
2720 		 * We call the notify macro here because, when using secondary
2721 		 * mmu page tables (such as kvm shadow page tables), we want the
2722 		 * new page to be mapped directly into the secondary page table.
2723 		 */
2724 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2725 		update_mmu_cache(vma, vmf->address, vmf->pte);
2726 		if (old_page) {
2727 			/*
2728 			 * Only after switching the pte to the new page may
2729 			 * we remove the mapcount here. Otherwise another
2730 			 * process may come and find the rmap count decremented
2731 			 * before the pte is switched to the new page, and
2732 			 * "reuse" the old page writing into it while our pte
2733 			 * here still points into it and can be read by other
2734 			 * threads.
2735 			 *
2736 			 * The critical issue is to order this
2737 			 * page_remove_rmap with the ptp_clear_flush above.
2738 			 * Those stores are ordered by (if nothing else,)
2739 			 * the barrier present in the atomic_add_negative
2740 			 * in page_remove_rmap.
2741 			 *
2742 			 * Then the TLB flush in ptep_clear_flush ensures that
2743 			 * no process can access the old page before the
2744 			 * decremented mapcount is visible. And the old page
2745 			 * cannot be reused until after the decremented
2746 			 * mapcount is visible. So transitively, TLBs to
2747 			 * old page will be flushed before it can be reused.
2748 			 */
2749 			page_remove_rmap(old_page, false);
2750 		}
2751 
2752 		/* Free the old page.. */
2753 		new_page = old_page;
2754 		page_copied = 1;
2755 	} else {
2756 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2757 	}
2758 
2759 	if (new_page)
2760 		put_page(new_page);
2761 
2762 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2763 	/*
2764 	 * No need to double call mmu_notifier->invalidate_range() callback as
2765 	 * the above ptep_clear_flush_notify() did already call it.
2766 	 */
2767 	mmu_notifier_invalidate_range_only_end(&range);
2768 	if (old_page) {
2769 		/*
2770 		 * Don't let another task, with possibly unlocked vma,
2771 		 * keep the mlocked page.
2772 		 */
2773 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2774 			lock_page(old_page);	/* LRU manipulation */
2775 			if (PageMlocked(old_page))
2776 				munlock_vma_page(old_page);
2777 			unlock_page(old_page);
2778 		}
2779 		put_page(old_page);
2780 	}
2781 	return page_copied ? VM_FAULT_WRITE : 0;
2782 oom_free_new:
2783 	put_page(new_page);
2784 oom:
2785 	if (old_page)
2786 		put_page(old_page);
2787 	return VM_FAULT_OOM;
2788 }
2789 
2790 /**
2791  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2792  *			  writeable once the page is prepared
2793  *
2794  * @vmf: structure describing the fault
2795  *
2796  * This function handles all that is needed to finish a write page fault in a
2797  * shared mapping due to PTE being read-only once the mapped page is prepared.
2798  * It handles locking of PTE and modifying it.
2799  *
2800  * The function expects the page to be locked or other protection against
2801  * concurrent faults / writeback (such as DAX radix tree locks).
2802  *
2803  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2804  * we acquired PTE lock.
2805  */
2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2807 {
2808 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2809 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2810 				       &vmf->ptl);
2811 	/*
2812 	 * We might have raced with another page fault while we released the
2813 	 * pte_offset_map_lock.
2814 	 */
2815 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2816 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2817 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 		return VM_FAULT_NOPAGE;
2819 	}
2820 	wp_page_reuse(vmf);
2821 	return 0;
2822 }
2823 
2824 /*
2825  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826  * mapping
2827  */
2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2829 {
2830 	struct vm_area_struct *vma = vmf->vma;
2831 
2832 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2833 		vm_fault_t ret;
2834 
2835 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2836 		vmf->flags |= FAULT_FLAG_MKWRITE;
2837 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2838 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2839 			return ret;
2840 		return finish_mkwrite_fault(vmf);
2841 	}
2842 	wp_page_reuse(vmf);
2843 	return VM_FAULT_WRITE;
2844 }
2845 
2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2847 	__releases(vmf->ptl)
2848 {
2849 	struct vm_area_struct *vma = vmf->vma;
2850 	vm_fault_t ret = VM_FAULT_WRITE;
2851 
2852 	get_page(vmf->page);
2853 
2854 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2855 		vm_fault_t tmp;
2856 
2857 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2858 		tmp = do_page_mkwrite(vmf);
2859 		if (unlikely(!tmp || (tmp &
2860 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2861 			put_page(vmf->page);
2862 			return tmp;
2863 		}
2864 		tmp = finish_mkwrite_fault(vmf);
2865 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2866 			unlock_page(vmf->page);
2867 			put_page(vmf->page);
2868 			return tmp;
2869 		}
2870 	} else {
2871 		wp_page_reuse(vmf);
2872 		lock_page(vmf->page);
2873 	}
2874 	ret |= fault_dirty_shared_page(vmf);
2875 	put_page(vmf->page);
2876 
2877 	return ret;
2878 }
2879 
2880 /*
2881  * This routine handles present pages, when users try to write
2882  * to a shared page. It is done by copying the page to a new address
2883  * and decrementing the shared-page counter for the old page.
2884  *
2885  * Note that this routine assumes that the protection checks have been
2886  * done by the caller (the low-level page fault routine in most cases).
2887  * Thus we can safely just mark it writable once we've done any necessary
2888  * COW.
2889  *
2890  * We also mark the page dirty at this point even though the page will
2891  * change only once the write actually happens. This avoids a few races,
2892  * and potentially makes it more efficient.
2893  *
2894  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2895  * but allow concurrent faults), with pte both mapped and locked.
2896  * We return with mmap_lock still held, but pte unmapped and unlocked.
2897  */
2898 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2899 	__releases(vmf->ptl)
2900 {
2901 	struct vm_area_struct *vma = vmf->vma;
2902 
2903 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2904 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2905 		return handle_userfault(vmf, VM_UFFD_WP);
2906 	}
2907 
2908 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2909 	if (!vmf->page) {
2910 		/*
2911 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912 		 * VM_PFNMAP VMA.
2913 		 *
2914 		 * We should not cow pages in a shared writeable mapping.
2915 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2916 		 */
2917 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2918 				     (VM_WRITE|VM_SHARED))
2919 			return wp_pfn_shared(vmf);
2920 
2921 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2922 		return wp_page_copy(vmf);
2923 	}
2924 
2925 	/*
2926 	 * Take out anonymous pages first, anonymous shared vmas are
2927 	 * not dirty accountable.
2928 	 */
2929 	if (PageAnon(vmf->page)) {
2930 		int total_map_swapcount;
2931 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2932 					   page_count(vmf->page) != 1))
2933 			goto copy;
2934 		if (!trylock_page(vmf->page)) {
2935 			get_page(vmf->page);
2936 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 			lock_page(vmf->page);
2938 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2939 					vmf->address, &vmf->ptl);
2940 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2941 				update_mmu_tlb(vma, vmf->address, vmf->pte);
2942 				unlock_page(vmf->page);
2943 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2944 				put_page(vmf->page);
2945 				return 0;
2946 			}
2947 			put_page(vmf->page);
2948 		}
2949 		if (PageKsm(vmf->page)) {
2950 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2951 						     vmf->address);
2952 			unlock_page(vmf->page);
2953 			if (!reused)
2954 				goto copy;
2955 			wp_page_reuse(vmf);
2956 			return VM_FAULT_WRITE;
2957 		}
2958 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2959 			if (total_map_swapcount == 1) {
2960 				/*
2961 				 * The page is all ours. Move it to
2962 				 * our anon_vma so the rmap code will
2963 				 * not search our parent or siblings.
2964 				 * Protected against the rmap code by
2965 				 * the page lock.
2966 				 */
2967 				page_move_anon_rmap(vmf->page, vma);
2968 			}
2969 			unlock_page(vmf->page);
2970 			wp_page_reuse(vmf);
2971 			return VM_FAULT_WRITE;
2972 		}
2973 		unlock_page(vmf->page);
2974 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2975 					(VM_WRITE|VM_SHARED))) {
2976 		return wp_page_shared(vmf);
2977 	}
2978 copy:
2979 	/*
2980 	 * Ok, we need to copy. Oh, well..
2981 	 */
2982 	get_page(vmf->page);
2983 
2984 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2985 	return wp_page_copy(vmf);
2986 }
2987 
2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2989 		unsigned long start_addr, unsigned long end_addr,
2990 		struct zap_details *details)
2991 {
2992 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2993 }
2994 
2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2996 					    struct zap_details *details)
2997 {
2998 	struct vm_area_struct *vma;
2999 	pgoff_t vba, vea, zba, zea;
3000 
3001 	vma_interval_tree_foreach(vma, root,
3002 			details->first_index, details->last_index) {
3003 
3004 		vba = vma->vm_pgoff;
3005 		vea = vba + vma_pages(vma) - 1;
3006 		zba = details->first_index;
3007 		if (zba < vba)
3008 			zba = vba;
3009 		zea = details->last_index;
3010 		if (zea > vea)
3011 			zea = vea;
3012 
3013 		unmap_mapping_range_vma(vma,
3014 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3015 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3016 				details);
3017 	}
3018 }
3019 
3020 /**
3021  * unmap_mapping_pages() - Unmap pages from processes.
3022  * @mapping: The address space containing pages to be unmapped.
3023  * @start: Index of first page to be unmapped.
3024  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3025  * @even_cows: Whether to unmap even private COWed pages.
3026  *
3027  * Unmap the pages in this address space from any userspace process which
3028  * has them mmaped.  Generally, you want to remove COWed pages as well when
3029  * a file is being truncated, but not when invalidating pages from the page
3030  * cache.
3031  */
3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3033 		pgoff_t nr, bool even_cows)
3034 {
3035 	struct zap_details details = { };
3036 
3037 	details.check_mapping = even_cows ? NULL : mapping;
3038 	details.first_index = start;
3039 	details.last_index = start + nr - 1;
3040 	if (details.last_index < details.first_index)
3041 		details.last_index = ULONG_MAX;
3042 
3043 	i_mmap_lock_write(mapping);
3044 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3045 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3046 	i_mmap_unlock_write(mapping);
3047 }
3048 
3049 /**
3050  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3051  * address_space corresponding to the specified byte range in the underlying
3052  * file.
3053  *
3054  * @mapping: the address space containing mmaps to be unmapped.
3055  * @holebegin: byte in first page to unmap, relative to the start of
3056  * the underlying file.  This will be rounded down to a PAGE_SIZE
3057  * boundary.  Note that this is different from truncate_pagecache(), which
3058  * must keep the partial page.  In contrast, we must get rid of
3059  * partial pages.
3060  * @holelen: size of prospective hole in bytes.  This will be rounded
3061  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3062  * end of the file.
3063  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3064  * but 0 when invalidating pagecache, don't throw away private data.
3065  */
3066 void unmap_mapping_range(struct address_space *mapping,
3067 		loff_t const holebegin, loff_t const holelen, int even_cows)
3068 {
3069 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3070 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071 
3072 	/* Check for overflow. */
3073 	if (sizeof(holelen) > sizeof(hlen)) {
3074 		long long holeend =
3075 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3076 		if (holeend & ~(long long)ULONG_MAX)
3077 			hlen = ULONG_MAX - hba + 1;
3078 	}
3079 
3080 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3081 }
3082 EXPORT_SYMBOL(unmap_mapping_range);
3083 
3084 /*
3085  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3086  * but allow concurrent faults), and pte mapped but not yet locked.
3087  * We return with pte unmapped and unlocked.
3088  *
3089  * We return with the mmap_lock locked or unlocked in the same cases
3090  * as does filemap_fault().
3091  */
3092 vm_fault_t do_swap_page(struct vm_fault *vmf)
3093 {
3094 	struct vm_area_struct *vma = vmf->vma;
3095 	struct page *page = NULL, *swapcache;
3096 	swp_entry_t entry;
3097 	pte_t pte;
3098 	int locked;
3099 	int exclusive = 0;
3100 	vm_fault_t ret = 0;
3101 	void *shadow = NULL;
3102 
3103 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3104 		goto out;
3105 
3106 	entry = pte_to_swp_entry(vmf->orig_pte);
3107 	if (unlikely(non_swap_entry(entry))) {
3108 		if (is_migration_entry(entry)) {
3109 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3110 					     vmf->address);
3111 		} else if (is_device_private_entry(entry)) {
3112 			vmf->page = device_private_entry_to_page(entry);
3113 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3114 		} else if (is_hwpoison_entry(entry)) {
3115 			ret = VM_FAULT_HWPOISON;
3116 		} else {
3117 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3118 			ret = VM_FAULT_SIGBUS;
3119 		}
3120 		goto out;
3121 	}
3122 
3123 
3124 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3125 	page = lookup_swap_cache(entry, vma, vmf->address);
3126 	swapcache = page;
3127 
3128 	if (!page) {
3129 		struct swap_info_struct *si = swp_swap_info(entry);
3130 
3131 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3132 		    __swap_count(entry) == 1) {
3133 			/* skip swapcache */
3134 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3135 							vmf->address);
3136 			if (page) {
3137 				int err;
3138 
3139 				__SetPageLocked(page);
3140 				__SetPageSwapBacked(page);
3141 				set_page_private(page, entry.val);
3142 
3143 				/* Tell memcg to use swap ownership records */
3144 				SetPageSwapCache(page);
3145 				err = mem_cgroup_charge(page, vma->vm_mm,
3146 							GFP_KERNEL);
3147 				ClearPageSwapCache(page);
3148 				if (err) {
3149 					ret = VM_FAULT_OOM;
3150 					goto out_page;
3151 				}
3152 
3153 				shadow = get_shadow_from_swap_cache(entry);
3154 				if (shadow)
3155 					workingset_refault(page, shadow);
3156 
3157 				lru_cache_add(page);
3158 				swap_readpage(page, true);
3159 			}
3160 		} else {
3161 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3162 						vmf);
3163 			swapcache = page;
3164 		}
3165 
3166 		if (!page) {
3167 			/*
3168 			 * Back out if somebody else faulted in this pte
3169 			 * while we released the pte lock.
3170 			 */
3171 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172 					vmf->address, &vmf->ptl);
3173 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3174 				ret = VM_FAULT_OOM;
3175 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176 			goto unlock;
3177 		}
3178 
3179 		/* Had to read the page from swap area: Major fault */
3180 		ret = VM_FAULT_MAJOR;
3181 		count_vm_event(PGMAJFAULT);
3182 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3183 	} else if (PageHWPoison(page)) {
3184 		/*
3185 		 * hwpoisoned dirty swapcache pages are kept for killing
3186 		 * owner processes (which may be unknown at hwpoison time)
3187 		 */
3188 		ret = VM_FAULT_HWPOISON;
3189 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3190 		goto out_release;
3191 	}
3192 
3193 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3194 
3195 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3196 	if (!locked) {
3197 		ret |= VM_FAULT_RETRY;
3198 		goto out_release;
3199 	}
3200 
3201 	/*
3202 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203 	 * release the swapcache from under us.  The page pin, and pte_same
3204 	 * test below, are not enough to exclude that.  Even if it is still
3205 	 * swapcache, we need to check that the page's swap has not changed.
3206 	 */
3207 	if (unlikely((!PageSwapCache(page) ||
3208 			page_private(page) != entry.val)) && swapcache)
3209 		goto out_page;
3210 
3211 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3212 	if (unlikely(!page)) {
3213 		ret = VM_FAULT_OOM;
3214 		page = swapcache;
3215 		goto out_page;
3216 	}
3217 
3218 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3219 
3220 	/*
3221 	 * Back out if somebody else already faulted in this pte.
3222 	 */
3223 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3224 			&vmf->ptl);
3225 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3226 		goto out_nomap;
3227 
3228 	if (unlikely(!PageUptodate(page))) {
3229 		ret = VM_FAULT_SIGBUS;
3230 		goto out_nomap;
3231 	}
3232 
3233 	/*
3234 	 * The page isn't present yet, go ahead with the fault.
3235 	 *
3236 	 * Be careful about the sequence of operations here.
3237 	 * To get its accounting right, reuse_swap_page() must be called
3238 	 * while the page is counted on swap but not yet in mapcount i.e.
3239 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240 	 * must be called after the swap_free(), or it will never succeed.
3241 	 */
3242 
3243 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3245 	pte = mk_pte(page, vma->vm_page_prot);
3246 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3247 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3248 		vmf->flags &= ~FAULT_FLAG_WRITE;
3249 		ret |= VM_FAULT_WRITE;
3250 		exclusive = RMAP_EXCLUSIVE;
3251 	}
3252 	flush_icache_page(vma, page);
3253 	if (pte_swp_soft_dirty(vmf->orig_pte))
3254 		pte = pte_mksoft_dirty(pte);
3255 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256 		pte = pte_mkuffd_wp(pte);
3257 		pte = pte_wrprotect(pte);
3258 	}
3259 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3260 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3261 	vmf->orig_pte = pte;
3262 
3263 	/* ksm created a completely new copy */
3264 	if (unlikely(page != swapcache && swapcache)) {
3265 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3266 		lru_cache_add_inactive_or_unevictable(page, vma);
3267 	} else {
3268 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3269 	}
3270 
3271 	swap_free(entry);
3272 	if (mem_cgroup_swap_full(page) ||
3273 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3274 		try_to_free_swap(page);
3275 	unlock_page(page);
3276 	if (page != swapcache && swapcache) {
3277 		/*
3278 		 * Hold the lock to avoid the swap entry to be reused
3279 		 * until we take the PT lock for the pte_same() check
3280 		 * (to avoid false positives from pte_same). For
3281 		 * further safety release the lock after the swap_free
3282 		 * so that the swap count won't change under a
3283 		 * parallel locked swapcache.
3284 		 */
3285 		unlock_page(swapcache);
3286 		put_page(swapcache);
3287 	}
3288 
3289 	if (vmf->flags & FAULT_FLAG_WRITE) {
3290 		ret |= do_wp_page(vmf);
3291 		if (ret & VM_FAULT_ERROR)
3292 			ret &= VM_FAULT_ERROR;
3293 		goto out;
3294 	}
3295 
3296 	/* No need to invalidate - it was non-present before */
3297 	update_mmu_cache(vma, vmf->address, vmf->pte);
3298 unlock:
3299 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3300 out:
3301 	return ret;
3302 out_nomap:
3303 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3304 out_page:
3305 	unlock_page(page);
3306 out_release:
3307 	put_page(page);
3308 	if (page != swapcache && swapcache) {
3309 		unlock_page(swapcache);
3310 		put_page(swapcache);
3311 	}
3312 	return ret;
3313 }
3314 
3315 /*
3316  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3317  * but allow concurrent faults), and pte mapped but not yet locked.
3318  * We return with mmap_lock still held, but pte unmapped and unlocked.
3319  */
3320 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3321 {
3322 	struct vm_area_struct *vma = vmf->vma;
3323 	struct page *page;
3324 	vm_fault_t ret = 0;
3325 	pte_t entry;
3326 
3327 	/* File mapping without ->vm_ops ? */
3328 	if (vma->vm_flags & VM_SHARED)
3329 		return VM_FAULT_SIGBUS;
3330 
3331 	/*
3332 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3333 	 * pte_offset_map() on pmds where a huge pmd might be created
3334 	 * from a different thread.
3335 	 *
3336 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3337 	 * parallel threads are excluded by other means.
3338 	 *
3339 	 * Here we only have mmap_read_lock(mm).
3340 	 */
3341 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3342 		return VM_FAULT_OOM;
3343 
3344 	/* See the comment in pte_alloc_one_map() */
3345 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3346 		return 0;
3347 
3348 	/* Use the zero-page for reads */
3349 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3350 			!mm_forbids_zeropage(vma->vm_mm)) {
3351 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3352 						vma->vm_page_prot));
3353 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3354 				vmf->address, &vmf->ptl);
3355 		if (!pte_none(*vmf->pte)) {
3356 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3357 			goto unlock;
3358 		}
3359 		ret = check_stable_address_space(vma->vm_mm);
3360 		if (ret)
3361 			goto unlock;
3362 		/* Deliver the page fault to userland, check inside PT lock */
3363 		if (userfaultfd_missing(vma)) {
3364 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 			return handle_userfault(vmf, VM_UFFD_MISSING);
3366 		}
3367 		goto setpte;
3368 	}
3369 
3370 	/* Allocate our own private page. */
3371 	if (unlikely(anon_vma_prepare(vma)))
3372 		goto oom;
3373 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3374 	if (!page)
3375 		goto oom;
3376 
3377 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3378 		goto oom_free_page;
3379 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3380 
3381 	/*
3382 	 * The memory barrier inside __SetPageUptodate makes sure that
3383 	 * preceding stores to the page contents become visible before
3384 	 * the set_pte_at() write.
3385 	 */
3386 	__SetPageUptodate(page);
3387 
3388 	entry = mk_pte(page, vma->vm_page_prot);
3389 	entry = pte_sw_mkyoung(entry);
3390 	if (vma->vm_flags & VM_WRITE)
3391 		entry = pte_mkwrite(pte_mkdirty(entry));
3392 
3393 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3394 			&vmf->ptl);
3395 	if (!pte_none(*vmf->pte)) {
3396 		update_mmu_cache(vma, vmf->address, vmf->pte);
3397 		goto release;
3398 	}
3399 
3400 	ret = check_stable_address_space(vma->vm_mm);
3401 	if (ret)
3402 		goto release;
3403 
3404 	/* Deliver the page fault to userland, check inside PT lock */
3405 	if (userfaultfd_missing(vma)) {
3406 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3407 		put_page(page);
3408 		return handle_userfault(vmf, VM_UFFD_MISSING);
3409 	}
3410 
3411 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3412 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3413 	lru_cache_add_inactive_or_unevictable(page, vma);
3414 setpte:
3415 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3416 
3417 	/* No need to invalidate - it was non-present before */
3418 	update_mmu_cache(vma, vmf->address, vmf->pte);
3419 unlock:
3420 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3421 	return ret;
3422 release:
3423 	put_page(page);
3424 	goto unlock;
3425 oom_free_page:
3426 	put_page(page);
3427 oom:
3428 	return VM_FAULT_OOM;
3429 }
3430 
3431 /*
3432  * The mmap_lock must have been held on entry, and may have been
3433  * released depending on flags and vma->vm_ops->fault() return value.
3434  * See filemap_fault() and __lock_page_retry().
3435  */
3436 static vm_fault_t __do_fault(struct vm_fault *vmf)
3437 {
3438 	struct vm_area_struct *vma = vmf->vma;
3439 	vm_fault_t ret;
3440 
3441 	/*
3442 	 * Preallocate pte before we take page_lock because this might lead to
3443 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3444 	 *				lock_page(A)
3445 	 *				SetPageWriteback(A)
3446 	 *				unlock_page(A)
3447 	 * lock_page(B)
3448 	 *				lock_page(B)
3449 	 * pte_alloc_pne
3450 	 *   shrink_page_list
3451 	 *     wait_on_page_writeback(A)
3452 	 *				SetPageWriteback(B)
3453 	 *				unlock_page(B)
3454 	 *				# flush A, B to clear the writeback
3455 	 */
3456 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3457 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3458 		if (!vmf->prealloc_pte)
3459 			return VM_FAULT_OOM;
3460 		smp_wmb(); /* See comment in __pte_alloc() */
3461 	}
3462 
3463 	ret = vma->vm_ops->fault(vmf);
3464 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3465 			    VM_FAULT_DONE_COW)))
3466 		return ret;
3467 
3468 	if (unlikely(PageHWPoison(vmf->page))) {
3469 		if (ret & VM_FAULT_LOCKED)
3470 			unlock_page(vmf->page);
3471 		put_page(vmf->page);
3472 		vmf->page = NULL;
3473 		return VM_FAULT_HWPOISON;
3474 	}
3475 
3476 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3477 		lock_page(vmf->page);
3478 	else
3479 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3480 
3481 	return ret;
3482 }
3483 
3484 /*
3485  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3486  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3487  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3488  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3489  */
3490 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3491 {
3492 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3493 }
3494 
3495 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3496 {
3497 	struct vm_area_struct *vma = vmf->vma;
3498 
3499 	if (!pmd_none(*vmf->pmd))
3500 		goto map_pte;
3501 	if (vmf->prealloc_pte) {
3502 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3503 		if (unlikely(!pmd_none(*vmf->pmd))) {
3504 			spin_unlock(vmf->ptl);
3505 			goto map_pte;
3506 		}
3507 
3508 		mm_inc_nr_ptes(vma->vm_mm);
3509 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3510 		spin_unlock(vmf->ptl);
3511 		vmf->prealloc_pte = NULL;
3512 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3513 		return VM_FAULT_OOM;
3514 	}
3515 map_pte:
3516 	/*
3517 	 * If a huge pmd materialized under us just retry later.  Use
3518 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3519 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3520 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3521 	 * running immediately after a huge pmd fault in a different thread of
3522 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3523 	 * All we have to ensure is that it is a regular pmd that we can walk
3524 	 * with pte_offset_map() and we can do that through an atomic read in
3525 	 * C, which is what pmd_trans_unstable() provides.
3526 	 */
3527 	if (pmd_devmap_trans_unstable(vmf->pmd))
3528 		return VM_FAULT_NOPAGE;
3529 
3530 	/*
3531 	 * At this point we know that our vmf->pmd points to a page of ptes
3532 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3533 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3534 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3535 	 * be valid and we will re-check to make sure the vmf->pte isn't
3536 	 * pte_none() under vmf->ptl protection when we return to
3537 	 * alloc_set_pte().
3538 	 */
3539 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3540 			&vmf->ptl);
3541 	return 0;
3542 }
3543 
3544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3545 static void deposit_prealloc_pte(struct vm_fault *vmf)
3546 {
3547 	struct vm_area_struct *vma = vmf->vma;
3548 
3549 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3550 	/*
3551 	 * We are going to consume the prealloc table,
3552 	 * count that as nr_ptes.
3553 	 */
3554 	mm_inc_nr_ptes(vma->vm_mm);
3555 	vmf->prealloc_pte = NULL;
3556 }
3557 
3558 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3559 {
3560 	struct vm_area_struct *vma = vmf->vma;
3561 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3562 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3563 	pmd_t entry;
3564 	int i;
3565 	vm_fault_t ret;
3566 
3567 	if (!transhuge_vma_suitable(vma, haddr))
3568 		return VM_FAULT_FALLBACK;
3569 
3570 	ret = VM_FAULT_FALLBACK;
3571 	page = compound_head(page);
3572 
3573 	/*
3574 	 * Archs like ppc64 need additonal space to store information
3575 	 * related to pte entry. Use the preallocated table for that.
3576 	 */
3577 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3578 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3579 		if (!vmf->prealloc_pte)
3580 			return VM_FAULT_OOM;
3581 		smp_wmb(); /* See comment in __pte_alloc() */
3582 	}
3583 
3584 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3585 	if (unlikely(!pmd_none(*vmf->pmd)))
3586 		goto out;
3587 
3588 	for (i = 0; i < HPAGE_PMD_NR; i++)
3589 		flush_icache_page(vma, page + i);
3590 
3591 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3592 	if (write)
3593 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3594 
3595 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3596 	page_add_file_rmap(page, true);
3597 	/*
3598 	 * deposit and withdraw with pmd lock held
3599 	 */
3600 	if (arch_needs_pgtable_deposit())
3601 		deposit_prealloc_pte(vmf);
3602 
3603 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3604 
3605 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3606 
3607 	/* fault is handled */
3608 	ret = 0;
3609 	count_vm_event(THP_FILE_MAPPED);
3610 out:
3611 	spin_unlock(vmf->ptl);
3612 	return ret;
3613 }
3614 #else
3615 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3616 {
3617 	BUILD_BUG();
3618 	return 0;
3619 }
3620 #endif
3621 
3622 /**
3623  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3624  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3625  *
3626  * @vmf: fault environment
3627  * @page: page to map
3628  *
3629  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3630  * return.
3631  *
3632  * Target users are page handler itself and implementations of
3633  * vm_ops->map_pages.
3634  *
3635  * Return: %0 on success, %VM_FAULT_ code in case of error.
3636  */
3637 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3638 {
3639 	struct vm_area_struct *vma = vmf->vma;
3640 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3641 	pte_t entry;
3642 	vm_fault_t ret;
3643 
3644 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3645 		ret = do_set_pmd(vmf, page);
3646 		if (ret != VM_FAULT_FALLBACK)
3647 			return ret;
3648 	}
3649 
3650 	if (!vmf->pte) {
3651 		ret = pte_alloc_one_map(vmf);
3652 		if (ret)
3653 			return ret;
3654 	}
3655 
3656 	/* Re-check under ptl */
3657 	if (unlikely(!pte_none(*vmf->pte))) {
3658 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3659 		return VM_FAULT_NOPAGE;
3660 	}
3661 
3662 	flush_icache_page(vma, page);
3663 	entry = mk_pte(page, vma->vm_page_prot);
3664 	entry = pte_sw_mkyoung(entry);
3665 	if (write)
3666 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3667 	/* copy-on-write page */
3668 	if (write && !(vma->vm_flags & VM_SHARED)) {
3669 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3670 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3671 		lru_cache_add_inactive_or_unevictable(page, vma);
3672 	} else {
3673 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3674 		page_add_file_rmap(page, false);
3675 	}
3676 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3677 
3678 	/* no need to invalidate: a not-present page won't be cached */
3679 	update_mmu_cache(vma, vmf->address, vmf->pte);
3680 
3681 	return 0;
3682 }
3683 
3684 
3685 /**
3686  * finish_fault - finish page fault once we have prepared the page to fault
3687  *
3688  * @vmf: structure describing the fault
3689  *
3690  * This function handles all that is needed to finish a page fault once the
3691  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3692  * given page, adds reverse page mapping, handles memcg charges and LRU
3693  * addition.
3694  *
3695  * The function expects the page to be locked and on success it consumes a
3696  * reference of a page being mapped (for the PTE which maps it).
3697  *
3698  * Return: %0 on success, %VM_FAULT_ code in case of error.
3699  */
3700 vm_fault_t finish_fault(struct vm_fault *vmf)
3701 {
3702 	struct page *page;
3703 	vm_fault_t ret = 0;
3704 
3705 	/* Did we COW the page? */
3706 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3707 	    !(vmf->vma->vm_flags & VM_SHARED))
3708 		page = vmf->cow_page;
3709 	else
3710 		page = vmf->page;
3711 
3712 	/*
3713 	 * check even for read faults because we might have lost our CoWed
3714 	 * page
3715 	 */
3716 	if (!(vmf->vma->vm_flags & VM_SHARED))
3717 		ret = check_stable_address_space(vmf->vma->vm_mm);
3718 	if (!ret)
3719 		ret = alloc_set_pte(vmf, page);
3720 	if (vmf->pte)
3721 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3722 	return ret;
3723 }
3724 
3725 static unsigned long fault_around_bytes __read_mostly =
3726 	rounddown_pow_of_two(65536);
3727 
3728 #ifdef CONFIG_DEBUG_FS
3729 static int fault_around_bytes_get(void *data, u64 *val)
3730 {
3731 	*val = fault_around_bytes;
3732 	return 0;
3733 }
3734 
3735 /*
3736  * fault_around_bytes must be rounded down to the nearest page order as it's
3737  * what do_fault_around() expects to see.
3738  */
3739 static int fault_around_bytes_set(void *data, u64 val)
3740 {
3741 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3742 		return -EINVAL;
3743 	if (val > PAGE_SIZE)
3744 		fault_around_bytes = rounddown_pow_of_two(val);
3745 	else
3746 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3747 	return 0;
3748 }
3749 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3750 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3751 
3752 static int __init fault_around_debugfs(void)
3753 {
3754 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3755 				   &fault_around_bytes_fops);
3756 	return 0;
3757 }
3758 late_initcall(fault_around_debugfs);
3759 #endif
3760 
3761 /*
3762  * do_fault_around() tries to map few pages around the fault address. The hope
3763  * is that the pages will be needed soon and this will lower the number of
3764  * faults to handle.
3765  *
3766  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3767  * not ready to be mapped: not up-to-date, locked, etc.
3768  *
3769  * This function is called with the page table lock taken. In the split ptlock
3770  * case the page table lock only protects only those entries which belong to
3771  * the page table corresponding to the fault address.
3772  *
3773  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3774  * only once.
3775  *
3776  * fault_around_bytes defines how many bytes we'll try to map.
3777  * do_fault_around() expects it to be set to a power of two less than or equal
3778  * to PTRS_PER_PTE.
3779  *
3780  * The virtual address of the area that we map is naturally aligned to
3781  * fault_around_bytes rounded down to the machine page size
3782  * (and therefore to page order).  This way it's easier to guarantee
3783  * that we don't cross page table boundaries.
3784  */
3785 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3786 {
3787 	unsigned long address = vmf->address, nr_pages, mask;
3788 	pgoff_t start_pgoff = vmf->pgoff;
3789 	pgoff_t end_pgoff;
3790 	int off;
3791 	vm_fault_t ret = 0;
3792 
3793 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3794 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3795 
3796 	vmf->address = max(address & mask, vmf->vma->vm_start);
3797 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3798 	start_pgoff -= off;
3799 
3800 	/*
3801 	 *  end_pgoff is either the end of the page table, the end of
3802 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3803 	 */
3804 	end_pgoff = start_pgoff -
3805 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3806 		PTRS_PER_PTE - 1;
3807 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3808 			start_pgoff + nr_pages - 1);
3809 
3810 	if (pmd_none(*vmf->pmd)) {
3811 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3812 		if (!vmf->prealloc_pte)
3813 			goto out;
3814 		smp_wmb(); /* See comment in __pte_alloc() */
3815 	}
3816 
3817 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3818 
3819 	/* Huge page is mapped? Page fault is solved */
3820 	if (pmd_trans_huge(*vmf->pmd)) {
3821 		ret = VM_FAULT_NOPAGE;
3822 		goto out;
3823 	}
3824 
3825 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3826 	if (!vmf->pte)
3827 		goto out;
3828 
3829 	/* check if the page fault is solved */
3830 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3831 	if (!pte_none(*vmf->pte))
3832 		ret = VM_FAULT_NOPAGE;
3833 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3834 out:
3835 	vmf->address = address;
3836 	vmf->pte = NULL;
3837 	return ret;
3838 }
3839 
3840 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3841 {
3842 	struct vm_area_struct *vma = vmf->vma;
3843 	vm_fault_t ret = 0;
3844 
3845 	/*
3846 	 * Let's call ->map_pages() first and use ->fault() as fallback
3847 	 * if page by the offset is not ready to be mapped (cold cache or
3848 	 * something).
3849 	 */
3850 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3851 		ret = do_fault_around(vmf);
3852 		if (ret)
3853 			return ret;
3854 	}
3855 
3856 	ret = __do_fault(vmf);
3857 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3858 		return ret;
3859 
3860 	ret |= finish_fault(vmf);
3861 	unlock_page(vmf->page);
3862 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3863 		put_page(vmf->page);
3864 	return ret;
3865 }
3866 
3867 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3868 {
3869 	struct vm_area_struct *vma = vmf->vma;
3870 	vm_fault_t ret;
3871 
3872 	if (unlikely(anon_vma_prepare(vma)))
3873 		return VM_FAULT_OOM;
3874 
3875 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3876 	if (!vmf->cow_page)
3877 		return VM_FAULT_OOM;
3878 
3879 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3880 		put_page(vmf->cow_page);
3881 		return VM_FAULT_OOM;
3882 	}
3883 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3884 
3885 	ret = __do_fault(vmf);
3886 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3887 		goto uncharge_out;
3888 	if (ret & VM_FAULT_DONE_COW)
3889 		return ret;
3890 
3891 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3892 	__SetPageUptodate(vmf->cow_page);
3893 
3894 	ret |= finish_fault(vmf);
3895 	unlock_page(vmf->page);
3896 	put_page(vmf->page);
3897 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3898 		goto uncharge_out;
3899 	return ret;
3900 uncharge_out:
3901 	put_page(vmf->cow_page);
3902 	return ret;
3903 }
3904 
3905 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3906 {
3907 	struct vm_area_struct *vma = vmf->vma;
3908 	vm_fault_t ret, tmp;
3909 
3910 	ret = __do_fault(vmf);
3911 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3912 		return ret;
3913 
3914 	/*
3915 	 * Check if the backing address space wants to know that the page is
3916 	 * about to become writable
3917 	 */
3918 	if (vma->vm_ops->page_mkwrite) {
3919 		unlock_page(vmf->page);
3920 		tmp = do_page_mkwrite(vmf);
3921 		if (unlikely(!tmp ||
3922 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3923 			put_page(vmf->page);
3924 			return tmp;
3925 		}
3926 	}
3927 
3928 	ret |= finish_fault(vmf);
3929 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3930 					VM_FAULT_RETRY))) {
3931 		unlock_page(vmf->page);
3932 		put_page(vmf->page);
3933 		return ret;
3934 	}
3935 
3936 	ret |= fault_dirty_shared_page(vmf);
3937 	return ret;
3938 }
3939 
3940 /*
3941  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3942  * but allow concurrent faults).
3943  * The mmap_lock may have been released depending on flags and our
3944  * return value.  See filemap_fault() and __lock_page_or_retry().
3945  * If mmap_lock is released, vma may become invalid (for example
3946  * by other thread calling munmap()).
3947  */
3948 static vm_fault_t do_fault(struct vm_fault *vmf)
3949 {
3950 	struct vm_area_struct *vma = vmf->vma;
3951 	struct mm_struct *vm_mm = vma->vm_mm;
3952 	vm_fault_t ret;
3953 
3954 	/*
3955 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3956 	 */
3957 	if (!vma->vm_ops->fault) {
3958 		/*
3959 		 * If we find a migration pmd entry or a none pmd entry, which
3960 		 * should never happen, return SIGBUS
3961 		 */
3962 		if (unlikely(!pmd_present(*vmf->pmd)))
3963 			ret = VM_FAULT_SIGBUS;
3964 		else {
3965 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3966 						       vmf->pmd,
3967 						       vmf->address,
3968 						       &vmf->ptl);
3969 			/*
3970 			 * Make sure this is not a temporary clearing of pte
3971 			 * by holding ptl and checking again. A R/M/W update
3972 			 * of pte involves: take ptl, clearing the pte so that
3973 			 * we don't have concurrent modification by hardware
3974 			 * followed by an update.
3975 			 */
3976 			if (unlikely(pte_none(*vmf->pte)))
3977 				ret = VM_FAULT_SIGBUS;
3978 			else
3979 				ret = VM_FAULT_NOPAGE;
3980 
3981 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 		}
3983 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3984 		ret = do_read_fault(vmf);
3985 	else if (!(vma->vm_flags & VM_SHARED))
3986 		ret = do_cow_fault(vmf);
3987 	else
3988 		ret = do_shared_fault(vmf);
3989 
3990 	/* preallocated pagetable is unused: free it */
3991 	if (vmf->prealloc_pte) {
3992 		pte_free(vm_mm, vmf->prealloc_pte);
3993 		vmf->prealloc_pte = NULL;
3994 	}
3995 	return ret;
3996 }
3997 
3998 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3999 				unsigned long addr, int page_nid,
4000 				int *flags)
4001 {
4002 	get_page(page);
4003 
4004 	count_vm_numa_event(NUMA_HINT_FAULTS);
4005 	if (page_nid == numa_node_id()) {
4006 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4007 		*flags |= TNF_FAULT_LOCAL;
4008 	}
4009 
4010 	return mpol_misplaced(page, vma, addr);
4011 }
4012 
4013 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4014 {
4015 	struct vm_area_struct *vma = vmf->vma;
4016 	struct page *page = NULL;
4017 	int page_nid = NUMA_NO_NODE;
4018 	int last_cpupid;
4019 	int target_nid;
4020 	bool migrated = false;
4021 	pte_t pte, old_pte;
4022 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4023 	int flags = 0;
4024 
4025 	/*
4026 	 * The "pte" at this point cannot be used safely without
4027 	 * validation through pte_unmap_same(). It's of NUMA type but
4028 	 * the pfn may be screwed if the read is non atomic.
4029 	 */
4030 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4031 	spin_lock(vmf->ptl);
4032 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4033 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4034 		goto out;
4035 	}
4036 
4037 	/*
4038 	 * Make it present again, Depending on how arch implementes non
4039 	 * accessible ptes, some can allow access by kernel mode.
4040 	 */
4041 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4042 	pte = pte_modify(old_pte, vma->vm_page_prot);
4043 	pte = pte_mkyoung(pte);
4044 	if (was_writable)
4045 		pte = pte_mkwrite(pte);
4046 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4047 	update_mmu_cache(vma, vmf->address, vmf->pte);
4048 
4049 	page = vm_normal_page(vma, vmf->address, pte);
4050 	if (!page) {
4051 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4052 		return 0;
4053 	}
4054 
4055 	/* TODO: handle PTE-mapped THP */
4056 	if (PageCompound(page)) {
4057 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4058 		return 0;
4059 	}
4060 
4061 	/*
4062 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4063 	 * much anyway since they can be in shared cache state. This misses
4064 	 * the case where a mapping is writable but the process never writes
4065 	 * to it but pte_write gets cleared during protection updates and
4066 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4067 	 * background writeback, dirty balancing and application behaviour.
4068 	 */
4069 	if (!pte_write(pte))
4070 		flags |= TNF_NO_GROUP;
4071 
4072 	/*
4073 	 * Flag if the page is shared between multiple address spaces. This
4074 	 * is later used when determining whether to group tasks together
4075 	 */
4076 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4077 		flags |= TNF_SHARED;
4078 
4079 	last_cpupid = page_cpupid_last(page);
4080 	page_nid = page_to_nid(page);
4081 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4082 			&flags);
4083 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4084 	if (target_nid == NUMA_NO_NODE) {
4085 		put_page(page);
4086 		goto out;
4087 	}
4088 
4089 	/* Migrate to the requested node */
4090 	migrated = migrate_misplaced_page(page, vma, target_nid);
4091 	if (migrated) {
4092 		page_nid = target_nid;
4093 		flags |= TNF_MIGRATED;
4094 	} else
4095 		flags |= TNF_MIGRATE_FAIL;
4096 
4097 out:
4098 	if (page_nid != NUMA_NO_NODE)
4099 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4100 	return 0;
4101 }
4102 
4103 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4104 {
4105 	if (vma_is_anonymous(vmf->vma))
4106 		return do_huge_pmd_anonymous_page(vmf);
4107 	if (vmf->vma->vm_ops->huge_fault)
4108 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4109 	return VM_FAULT_FALLBACK;
4110 }
4111 
4112 /* `inline' is required to avoid gcc 4.1.2 build error */
4113 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4114 {
4115 	if (vma_is_anonymous(vmf->vma)) {
4116 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4117 			return handle_userfault(vmf, VM_UFFD_WP);
4118 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4119 	}
4120 	if (vmf->vma->vm_ops->huge_fault) {
4121 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4122 
4123 		if (!(ret & VM_FAULT_FALLBACK))
4124 			return ret;
4125 	}
4126 
4127 	/* COW or write-notify handled on pte level: split pmd. */
4128 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4129 
4130 	return VM_FAULT_FALLBACK;
4131 }
4132 
4133 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4134 {
4135 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4136 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4137 	/* No support for anonymous transparent PUD pages yet */
4138 	if (vma_is_anonymous(vmf->vma))
4139 		goto split;
4140 	if (vmf->vma->vm_ops->huge_fault) {
4141 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4142 
4143 		if (!(ret & VM_FAULT_FALLBACK))
4144 			return ret;
4145 	}
4146 split:
4147 	/* COW or write-notify not handled on PUD level: split pud.*/
4148 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4150 	return VM_FAULT_FALLBACK;
4151 }
4152 
4153 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4154 {
4155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4156 	/* No support for anonymous transparent PUD pages yet */
4157 	if (vma_is_anonymous(vmf->vma))
4158 		return VM_FAULT_FALLBACK;
4159 	if (vmf->vma->vm_ops->huge_fault)
4160 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4161 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4162 	return VM_FAULT_FALLBACK;
4163 }
4164 
4165 /*
4166  * These routines also need to handle stuff like marking pages dirty
4167  * and/or accessed for architectures that don't do it in hardware (most
4168  * RISC architectures).  The early dirtying is also good on the i386.
4169  *
4170  * There is also a hook called "update_mmu_cache()" that architectures
4171  * with external mmu caches can use to update those (ie the Sparc or
4172  * PowerPC hashed page tables that act as extended TLBs).
4173  *
4174  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4175  * concurrent faults).
4176  *
4177  * The mmap_lock may have been released depending on flags and our return value.
4178  * See filemap_fault() and __lock_page_or_retry().
4179  */
4180 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4181 {
4182 	pte_t entry;
4183 
4184 	if (unlikely(pmd_none(*vmf->pmd))) {
4185 		/*
4186 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4187 		 * want to allocate huge page, and if we expose page table
4188 		 * for an instant, it will be difficult to retract from
4189 		 * concurrent faults and from rmap lookups.
4190 		 */
4191 		vmf->pte = NULL;
4192 	} else {
4193 		/* See comment in pte_alloc_one_map() */
4194 		if (pmd_devmap_trans_unstable(vmf->pmd))
4195 			return 0;
4196 		/*
4197 		 * A regular pmd is established and it can't morph into a huge
4198 		 * pmd from under us anymore at this point because we hold the
4199 		 * mmap_lock read mode and khugepaged takes it in write mode.
4200 		 * So now it's safe to run pte_offset_map().
4201 		 */
4202 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4203 		vmf->orig_pte = *vmf->pte;
4204 
4205 		/*
4206 		 * some architectures can have larger ptes than wordsize,
4207 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4208 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4209 		 * accesses.  The code below just needs a consistent view
4210 		 * for the ifs and we later double check anyway with the
4211 		 * ptl lock held. So here a barrier will do.
4212 		 */
4213 		barrier();
4214 		if (pte_none(vmf->orig_pte)) {
4215 			pte_unmap(vmf->pte);
4216 			vmf->pte = NULL;
4217 		}
4218 	}
4219 
4220 	if (!vmf->pte) {
4221 		if (vma_is_anonymous(vmf->vma))
4222 			return do_anonymous_page(vmf);
4223 		else
4224 			return do_fault(vmf);
4225 	}
4226 
4227 	if (!pte_present(vmf->orig_pte))
4228 		return do_swap_page(vmf);
4229 
4230 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4231 		return do_numa_page(vmf);
4232 
4233 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4234 	spin_lock(vmf->ptl);
4235 	entry = vmf->orig_pte;
4236 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4237 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4238 		goto unlock;
4239 	}
4240 	if (vmf->flags & FAULT_FLAG_WRITE) {
4241 		if (!pte_write(entry))
4242 			return do_wp_page(vmf);
4243 		entry = pte_mkdirty(entry);
4244 	}
4245 	entry = pte_mkyoung(entry);
4246 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4247 				vmf->flags & FAULT_FLAG_WRITE)) {
4248 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4249 	} else {
4250 		/* Skip spurious TLB flush for retried page fault */
4251 		if (vmf->flags & FAULT_FLAG_TRIED)
4252 			goto unlock;
4253 		/*
4254 		 * This is needed only for protection faults but the arch code
4255 		 * is not yet telling us if this is a protection fault or not.
4256 		 * This still avoids useless tlb flushes for .text page faults
4257 		 * with threads.
4258 		 */
4259 		if (vmf->flags & FAULT_FLAG_WRITE)
4260 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4261 	}
4262 unlock:
4263 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4264 	return 0;
4265 }
4266 
4267 /*
4268  * By the time we get here, we already hold the mm semaphore
4269  *
4270  * The mmap_lock may have been released depending on flags and our
4271  * return value.  See filemap_fault() and __lock_page_or_retry().
4272  */
4273 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4274 		unsigned long address, unsigned int flags)
4275 {
4276 	struct vm_fault vmf = {
4277 		.vma = vma,
4278 		.address = address & PAGE_MASK,
4279 		.flags = flags,
4280 		.pgoff = linear_page_index(vma, address),
4281 		.gfp_mask = __get_fault_gfp_mask(vma),
4282 	};
4283 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4284 	struct mm_struct *mm = vma->vm_mm;
4285 	pgd_t *pgd;
4286 	p4d_t *p4d;
4287 	vm_fault_t ret;
4288 
4289 	pgd = pgd_offset(mm, address);
4290 	p4d = p4d_alloc(mm, pgd, address);
4291 	if (!p4d)
4292 		return VM_FAULT_OOM;
4293 
4294 	vmf.pud = pud_alloc(mm, p4d, address);
4295 	if (!vmf.pud)
4296 		return VM_FAULT_OOM;
4297 retry_pud:
4298 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4299 		ret = create_huge_pud(&vmf);
4300 		if (!(ret & VM_FAULT_FALLBACK))
4301 			return ret;
4302 	} else {
4303 		pud_t orig_pud = *vmf.pud;
4304 
4305 		barrier();
4306 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4307 
4308 			/* NUMA case for anonymous PUDs would go here */
4309 
4310 			if (dirty && !pud_write(orig_pud)) {
4311 				ret = wp_huge_pud(&vmf, orig_pud);
4312 				if (!(ret & VM_FAULT_FALLBACK))
4313 					return ret;
4314 			} else {
4315 				huge_pud_set_accessed(&vmf, orig_pud);
4316 				return 0;
4317 			}
4318 		}
4319 	}
4320 
4321 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4322 	if (!vmf.pmd)
4323 		return VM_FAULT_OOM;
4324 
4325 	/* Huge pud page fault raced with pmd_alloc? */
4326 	if (pud_trans_unstable(vmf.pud))
4327 		goto retry_pud;
4328 
4329 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4330 		ret = create_huge_pmd(&vmf);
4331 		if (!(ret & VM_FAULT_FALLBACK))
4332 			return ret;
4333 	} else {
4334 		pmd_t orig_pmd = *vmf.pmd;
4335 
4336 		barrier();
4337 		if (unlikely(is_swap_pmd(orig_pmd))) {
4338 			VM_BUG_ON(thp_migration_supported() &&
4339 					  !is_pmd_migration_entry(orig_pmd));
4340 			if (is_pmd_migration_entry(orig_pmd))
4341 				pmd_migration_entry_wait(mm, vmf.pmd);
4342 			return 0;
4343 		}
4344 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4345 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4346 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4347 
4348 			if (dirty && !pmd_write(orig_pmd)) {
4349 				ret = wp_huge_pmd(&vmf, orig_pmd);
4350 				if (!(ret & VM_FAULT_FALLBACK))
4351 					return ret;
4352 			} else {
4353 				huge_pmd_set_accessed(&vmf, orig_pmd);
4354 				return 0;
4355 			}
4356 		}
4357 	}
4358 
4359 	return handle_pte_fault(&vmf);
4360 }
4361 
4362 /**
4363  * mm_account_fault - Do page fault accountings
4364  *
4365  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4366  *        of perf event counters, but we'll still do the per-task accounting to
4367  *        the task who triggered this page fault.
4368  * @address: the faulted address.
4369  * @flags: the fault flags.
4370  * @ret: the fault retcode.
4371  *
4372  * This will take care of most of the page fault accountings.  Meanwhile, it
4373  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4374  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4375  * still be in per-arch page fault handlers at the entry of page fault.
4376  */
4377 static inline void mm_account_fault(struct pt_regs *regs,
4378 				    unsigned long address, unsigned int flags,
4379 				    vm_fault_t ret)
4380 {
4381 	bool major;
4382 
4383 	/*
4384 	 * We don't do accounting for some specific faults:
4385 	 *
4386 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4387 	 *   includes arch_vma_access_permitted() failing before reaching here.
4388 	 *   So this is not a "this many hardware page faults" counter.  We
4389 	 *   should use the hw profiling for that.
4390 	 *
4391 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4392 	 *   once they're completed.
4393 	 */
4394 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4395 		return;
4396 
4397 	/*
4398 	 * We define the fault as a major fault when the final successful fault
4399 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4400 	 * handle it immediately previously).
4401 	 */
4402 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4403 
4404 	if (major)
4405 		current->maj_flt++;
4406 	else
4407 		current->min_flt++;
4408 
4409 	/*
4410 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4411 	 * accounting for the per thread fault counters who triggered the
4412 	 * fault, and we skip the perf event updates.
4413 	 */
4414 	if (!regs)
4415 		return;
4416 
4417 	if (major)
4418 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4419 	else
4420 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4421 }
4422 
4423 /*
4424  * By the time we get here, we already hold the mm semaphore
4425  *
4426  * The mmap_lock may have been released depending on flags and our
4427  * return value.  See filemap_fault() and __lock_page_or_retry().
4428  */
4429 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4430 			   unsigned int flags, struct pt_regs *regs)
4431 {
4432 	vm_fault_t ret;
4433 
4434 	__set_current_state(TASK_RUNNING);
4435 
4436 	count_vm_event(PGFAULT);
4437 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4438 
4439 	/* do counter updates before entering really critical section. */
4440 	check_sync_rss_stat(current);
4441 
4442 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4443 					    flags & FAULT_FLAG_INSTRUCTION,
4444 					    flags & FAULT_FLAG_REMOTE))
4445 		return VM_FAULT_SIGSEGV;
4446 
4447 	/*
4448 	 * Enable the memcg OOM handling for faults triggered in user
4449 	 * space.  Kernel faults are handled more gracefully.
4450 	 */
4451 	if (flags & FAULT_FLAG_USER)
4452 		mem_cgroup_enter_user_fault();
4453 
4454 	if (unlikely(is_vm_hugetlb_page(vma)))
4455 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4456 	else
4457 		ret = __handle_mm_fault(vma, address, flags);
4458 
4459 	if (flags & FAULT_FLAG_USER) {
4460 		mem_cgroup_exit_user_fault();
4461 		/*
4462 		 * The task may have entered a memcg OOM situation but
4463 		 * if the allocation error was handled gracefully (no
4464 		 * VM_FAULT_OOM), there is no need to kill anything.
4465 		 * Just clean up the OOM state peacefully.
4466 		 */
4467 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4468 			mem_cgroup_oom_synchronize(false);
4469 	}
4470 
4471 	mm_account_fault(regs, address, flags, ret);
4472 
4473 	return ret;
4474 }
4475 EXPORT_SYMBOL_GPL(handle_mm_fault);
4476 
4477 #ifndef __PAGETABLE_P4D_FOLDED
4478 /*
4479  * Allocate p4d page table.
4480  * We've already handled the fast-path in-line.
4481  */
4482 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4483 {
4484 	p4d_t *new = p4d_alloc_one(mm, address);
4485 	if (!new)
4486 		return -ENOMEM;
4487 
4488 	smp_wmb(); /* See comment in __pte_alloc */
4489 
4490 	spin_lock(&mm->page_table_lock);
4491 	if (pgd_present(*pgd))		/* Another has populated it */
4492 		p4d_free(mm, new);
4493 	else
4494 		pgd_populate(mm, pgd, new);
4495 	spin_unlock(&mm->page_table_lock);
4496 	return 0;
4497 }
4498 #endif /* __PAGETABLE_P4D_FOLDED */
4499 
4500 #ifndef __PAGETABLE_PUD_FOLDED
4501 /*
4502  * Allocate page upper directory.
4503  * We've already handled the fast-path in-line.
4504  */
4505 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4506 {
4507 	pud_t *new = pud_alloc_one(mm, address);
4508 	if (!new)
4509 		return -ENOMEM;
4510 
4511 	smp_wmb(); /* See comment in __pte_alloc */
4512 
4513 	spin_lock(&mm->page_table_lock);
4514 	if (!p4d_present(*p4d)) {
4515 		mm_inc_nr_puds(mm);
4516 		p4d_populate(mm, p4d, new);
4517 	} else	/* Another has populated it */
4518 		pud_free(mm, new);
4519 	spin_unlock(&mm->page_table_lock);
4520 	return 0;
4521 }
4522 #endif /* __PAGETABLE_PUD_FOLDED */
4523 
4524 #ifndef __PAGETABLE_PMD_FOLDED
4525 /*
4526  * Allocate page middle directory.
4527  * We've already handled the fast-path in-line.
4528  */
4529 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4530 {
4531 	spinlock_t *ptl;
4532 	pmd_t *new = pmd_alloc_one(mm, address);
4533 	if (!new)
4534 		return -ENOMEM;
4535 
4536 	smp_wmb(); /* See comment in __pte_alloc */
4537 
4538 	ptl = pud_lock(mm, pud);
4539 	if (!pud_present(*pud)) {
4540 		mm_inc_nr_pmds(mm);
4541 		pud_populate(mm, pud, new);
4542 	} else	/* Another has populated it */
4543 		pmd_free(mm, new);
4544 	spin_unlock(ptl);
4545 	return 0;
4546 }
4547 #endif /* __PAGETABLE_PMD_FOLDED */
4548 
4549 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4550 			    struct mmu_notifier_range *range,
4551 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4552 {
4553 	pgd_t *pgd;
4554 	p4d_t *p4d;
4555 	pud_t *pud;
4556 	pmd_t *pmd;
4557 	pte_t *ptep;
4558 
4559 	pgd = pgd_offset(mm, address);
4560 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4561 		goto out;
4562 
4563 	p4d = p4d_offset(pgd, address);
4564 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4565 		goto out;
4566 
4567 	pud = pud_offset(p4d, address);
4568 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4569 		goto out;
4570 
4571 	pmd = pmd_offset(pud, address);
4572 	VM_BUG_ON(pmd_trans_huge(*pmd));
4573 
4574 	if (pmd_huge(*pmd)) {
4575 		if (!pmdpp)
4576 			goto out;
4577 
4578 		if (range) {
4579 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4580 						NULL, mm, address & PMD_MASK,
4581 						(address & PMD_MASK) + PMD_SIZE);
4582 			mmu_notifier_invalidate_range_start(range);
4583 		}
4584 		*ptlp = pmd_lock(mm, pmd);
4585 		if (pmd_huge(*pmd)) {
4586 			*pmdpp = pmd;
4587 			return 0;
4588 		}
4589 		spin_unlock(*ptlp);
4590 		if (range)
4591 			mmu_notifier_invalidate_range_end(range);
4592 	}
4593 
4594 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4595 		goto out;
4596 
4597 	if (range) {
4598 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4599 					address & PAGE_MASK,
4600 					(address & PAGE_MASK) + PAGE_SIZE);
4601 		mmu_notifier_invalidate_range_start(range);
4602 	}
4603 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4604 	if (!pte_present(*ptep))
4605 		goto unlock;
4606 	*ptepp = ptep;
4607 	return 0;
4608 unlock:
4609 	pte_unmap_unlock(ptep, *ptlp);
4610 	if (range)
4611 		mmu_notifier_invalidate_range_end(range);
4612 out:
4613 	return -EINVAL;
4614 }
4615 
4616 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4617 			     pte_t **ptepp, spinlock_t **ptlp)
4618 {
4619 	int res;
4620 
4621 	/* (void) is needed to make gcc happy */
4622 	(void) __cond_lock(*ptlp,
4623 			   !(res = __follow_pte_pmd(mm, address, NULL,
4624 						    ptepp, NULL, ptlp)));
4625 	return res;
4626 }
4627 
4628 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4629 		   struct mmu_notifier_range *range,
4630 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4631 {
4632 	int res;
4633 
4634 	/* (void) is needed to make gcc happy */
4635 	(void) __cond_lock(*ptlp,
4636 			   !(res = __follow_pte_pmd(mm, address, range,
4637 						    ptepp, pmdpp, ptlp)));
4638 	return res;
4639 }
4640 EXPORT_SYMBOL(follow_pte_pmd);
4641 
4642 /**
4643  * follow_pfn - look up PFN at a user virtual address
4644  * @vma: memory mapping
4645  * @address: user virtual address
4646  * @pfn: location to store found PFN
4647  *
4648  * Only IO mappings and raw PFN mappings are allowed.
4649  *
4650  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4651  */
4652 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4653 	unsigned long *pfn)
4654 {
4655 	int ret = -EINVAL;
4656 	spinlock_t *ptl;
4657 	pte_t *ptep;
4658 
4659 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4660 		return ret;
4661 
4662 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4663 	if (ret)
4664 		return ret;
4665 	*pfn = pte_pfn(*ptep);
4666 	pte_unmap_unlock(ptep, ptl);
4667 	return 0;
4668 }
4669 EXPORT_SYMBOL(follow_pfn);
4670 
4671 #ifdef CONFIG_HAVE_IOREMAP_PROT
4672 int follow_phys(struct vm_area_struct *vma,
4673 		unsigned long address, unsigned int flags,
4674 		unsigned long *prot, resource_size_t *phys)
4675 {
4676 	int ret = -EINVAL;
4677 	pte_t *ptep, pte;
4678 	spinlock_t *ptl;
4679 
4680 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4681 		goto out;
4682 
4683 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4684 		goto out;
4685 	pte = *ptep;
4686 
4687 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4688 		goto unlock;
4689 
4690 	*prot = pgprot_val(pte_pgprot(pte));
4691 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4692 
4693 	ret = 0;
4694 unlock:
4695 	pte_unmap_unlock(ptep, ptl);
4696 out:
4697 	return ret;
4698 }
4699 
4700 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4701 			void *buf, int len, int write)
4702 {
4703 	resource_size_t phys_addr;
4704 	unsigned long prot = 0;
4705 	void __iomem *maddr;
4706 	int offset = addr & (PAGE_SIZE-1);
4707 
4708 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4709 		return -EINVAL;
4710 
4711 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4712 	if (!maddr)
4713 		return -ENOMEM;
4714 
4715 	if (write)
4716 		memcpy_toio(maddr + offset, buf, len);
4717 	else
4718 		memcpy_fromio(buf, maddr + offset, len);
4719 	iounmap(maddr);
4720 
4721 	return len;
4722 }
4723 EXPORT_SYMBOL_GPL(generic_access_phys);
4724 #endif
4725 
4726 /*
4727  * Access another process' address space as given in mm.  If non-NULL, use the
4728  * given task for page fault accounting.
4729  */
4730 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4731 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4732 {
4733 	struct vm_area_struct *vma;
4734 	void *old_buf = buf;
4735 	int write = gup_flags & FOLL_WRITE;
4736 
4737 	if (mmap_read_lock_killable(mm))
4738 		return 0;
4739 
4740 	/* ignore errors, just check how much was successfully transferred */
4741 	while (len) {
4742 		int bytes, ret, offset;
4743 		void *maddr;
4744 		struct page *page = NULL;
4745 
4746 		ret = get_user_pages_remote(mm, addr, 1,
4747 				gup_flags, &page, &vma, NULL);
4748 		if (ret <= 0) {
4749 #ifndef CONFIG_HAVE_IOREMAP_PROT
4750 			break;
4751 #else
4752 			/*
4753 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4754 			 * we can access using slightly different code.
4755 			 */
4756 			vma = find_vma(mm, addr);
4757 			if (!vma || vma->vm_start > addr)
4758 				break;
4759 			if (vma->vm_ops && vma->vm_ops->access)
4760 				ret = vma->vm_ops->access(vma, addr, buf,
4761 							  len, write);
4762 			if (ret <= 0)
4763 				break;
4764 			bytes = ret;
4765 #endif
4766 		} else {
4767 			bytes = len;
4768 			offset = addr & (PAGE_SIZE-1);
4769 			if (bytes > PAGE_SIZE-offset)
4770 				bytes = PAGE_SIZE-offset;
4771 
4772 			maddr = kmap(page);
4773 			if (write) {
4774 				copy_to_user_page(vma, page, addr,
4775 						  maddr + offset, buf, bytes);
4776 				set_page_dirty_lock(page);
4777 			} else {
4778 				copy_from_user_page(vma, page, addr,
4779 						    buf, maddr + offset, bytes);
4780 			}
4781 			kunmap(page);
4782 			put_page(page);
4783 		}
4784 		len -= bytes;
4785 		buf += bytes;
4786 		addr += bytes;
4787 	}
4788 	mmap_read_unlock(mm);
4789 
4790 	return buf - old_buf;
4791 }
4792 
4793 /**
4794  * access_remote_vm - access another process' address space
4795  * @mm:		the mm_struct of the target address space
4796  * @addr:	start address to access
4797  * @buf:	source or destination buffer
4798  * @len:	number of bytes to transfer
4799  * @gup_flags:	flags modifying lookup behaviour
4800  *
4801  * The caller must hold a reference on @mm.
4802  *
4803  * Return: number of bytes copied from source to destination.
4804  */
4805 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4806 		void *buf, int len, unsigned int gup_flags)
4807 {
4808 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4809 }
4810 
4811 /*
4812  * Access another process' address space.
4813  * Source/target buffer must be kernel space,
4814  * Do not walk the page table directly, use get_user_pages
4815  */
4816 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4817 		void *buf, int len, unsigned int gup_flags)
4818 {
4819 	struct mm_struct *mm;
4820 	int ret;
4821 
4822 	mm = get_task_mm(tsk);
4823 	if (!mm)
4824 		return 0;
4825 
4826 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4827 
4828 	mmput(mm);
4829 
4830 	return ret;
4831 }
4832 EXPORT_SYMBOL_GPL(access_process_vm);
4833 
4834 /*
4835  * Print the name of a VMA.
4836  */
4837 void print_vma_addr(char *prefix, unsigned long ip)
4838 {
4839 	struct mm_struct *mm = current->mm;
4840 	struct vm_area_struct *vma;
4841 
4842 	/*
4843 	 * we might be running from an atomic context so we cannot sleep
4844 	 */
4845 	if (!mmap_read_trylock(mm))
4846 		return;
4847 
4848 	vma = find_vma(mm, ip);
4849 	if (vma && vma->vm_file) {
4850 		struct file *f = vma->vm_file;
4851 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4852 		if (buf) {
4853 			char *p;
4854 
4855 			p = file_path(f, buf, PAGE_SIZE);
4856 			if (IS_ERR(p))
4857 				p = "?";
4858 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4859 					vma->vm_start,
4860 					vma->vm_end - vma->vm_start);
4861 			free_page((unsigned long)buf);
4862 		}
4863 	}
4864 	mmap_read_unlock(mm);
4865 }
4866 
4867 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4868 void __might_fault(const char *file, int line)
4869 {
4870 	/*
4871 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4872 	 * holding the mmap_lock, this is safe because kernel memory doesn't
4873 	 * get paged out, therefore we'll never actually fault, and the
4874 	 * below annotations will generate false positives.
4875 	 */
4876 	if (uaccess_kernel())
4877 		return;
4878 	if (pagefault_disabled())
4879 		return;
4880 	__might_sleep(file, line, 0);
4881 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4882 	if (current->mm)
4883 		might_lock_read(&current->mm->mmap_lock);
4884 #endif
4885 }
4886 EXPORT_SYMBOL(__might_fault);
4887 #endif
4888 
4889 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4890 /*
4891  * Process all subpages of the specified huge page with the specified
4892  * operation.  The target subpage will be processed last to keep its
4893  * cache lines hot.
4894  */
4895 static inline void process_huge_page(
4896 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4897 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4898 	void *arg)
4899 {
4900 	int i, n, base, l;
4901 	unsigned long addr = addr_hint &
4902 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4903 
4904 	/* Process target subpage last to keep its cache lines hot */
4905 	might_sleep();
4906 	n = (addr_hint - addr) / PAGE_SIZE;
4907 	if (2 * n <= pages_per_huge_page) {
4908 		/* If target subpage in first half of huge page */
4909 		base = 0;
4910 		l = n;
4911 		/* Process subpages at the end of huge page */
4912 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4913 			cond_resched();
4914 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4915 		}
4916 	} else {
4917 		/* If target subpage in second half of huge page */
4918 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4919 		l = pages_per_huge_page - n;
4920 		/* Process subpages at the begin of huge page */
4921 		for (i = 0; i < base; i++) {
4922 			cond_resched();
4923 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4924 		}
4925 	}
4926 	/*
4927 	 * Process remaining subpages in left-right-left-right pattern
4928 	 * towards the target subpage
4929 	 */
4930 	for (i = 0; i < l; i++) {
4931 		int left_idx = base + i;
4932 		int right_idx = base + 2 * l - 1 - i;
4933 
4934 		cond_resched();
4935 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4936 		cond_resched();
4937 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4938 	}
4939 }
4940 
4941 static void clear_gigantic_page(struct page *page,
4942 				unsigned long addr,
4943 				unsigned int pages_per_huge_page)
4944 {
4945 	int i;
4946 	struct page *p = page;
4947 
4948 	might_sleep();
4949 	for (i = 0; i < pages_per_huge_page;
4950 	     i++, p = mem_map_next(p, page, i)) {
4951 		cond_resched();
4952 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4953 	}
4954 }
4955 
4956 static void clear_subpage(unsigned long addr, int idx, void *arg)
4957 {
4958 	struct page *page = arg;
4959 
4960 	clear_user_highpage(page + idx, addr);
4961 }
4962 
4963 void clear_huge_page(struct page *page,
4964 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4965 {
4966 	unsigned long addr = addr_hint &
4967 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4968 
4969 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4970 		clear_gigantic_page(page, addr, pages_per_huge_page);
4971 		return;
4972 	}
4973 
4974 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4975 }
4976 
4977 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4978 				    unsigned long addr,
4979 				    struct vm_area_struct *vma,
4980 				    unsigned int pages_per_huge_page)
4981 {
4982 	int i;
4983 	struct page *dst_base = dst;
4984 	struct page *src_base = src;
4985 
4986 	for (i = 0; i < pages_per_huge_page; ) {
4987 		cond_resched();
4988 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4989 
4990 		i++;
4991 		dst = mem_map_next(dst, dst_base, i);
4992 		src = mem_map_next(src, src_base, i);
4993 	}
4994 }
4995 
4996 struct copy_subpage_arg {
4997 	struct page *dst;
4998 	struct page *src;
4999 	struct vm_area_struct *vma;
5000 };
5001 
5002 static void copy_subpage(unsigned long addr, int idx, void *arg)
5003 {
5004 	struct copy_subpage_arg *copy_arg = arg;
5005 
5006 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5007 			   addr, copy_arg->vma);
5008 }
5009 
5010 void copy_user_huge_page(struct page *dst, struct page *src,
5011 			 unsigned long addr_hint, struct vm_area_struct *vma,
5012 			 unsigned int pages_per_huge_page)
5013 {
5014 	unsigned long addr = addr_hint &
5015 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5016 	struct copy_subpage_arg arg = {
5017 		.dst = dst,
5018 		.src = src,
5019 		.vma = vma,
5020 	};
5021 
5022 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5023 		copy_user_gigantic_page(dst, src, addr, vma,
5024 					pages_per_huge_page);
5025 		return;
5026 	}
5027 
5028 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5029 }
5030 
5031 long copy_huge_page_from_user(struct page *dst_page,
5032 				const void __user *usr_src,
5033 				unsigned int pages_per_huge_page,
5034 				bool allow_pagefault)
5035 {
5036 	void *src = (void *)usr_src;
5037 	void *page_kaddr;
5038 	unsigned long i, rc = 0;
5039 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5040 
5041 	for (i = 0; i < pages_per_huge_page; i++) {
5042 		if (allow_pagefault)
5043 			page_kaddr = kmap(dst_page + i);
5044 		else
5045 			page_kaddr = kmap_atomic(dst_page + i);
5046 		rc = copy_from_user(page_kaddr,
5047 				(const void __user *)(src + i * PAGE_SIZE),
5048 				PAGE_SIZE);
5049 		if (allow_pagefault)
5050 			kunmap(dst_page + i);
5051 		else
5052 			kunmap_atomic(page_kaddr);
5053 
5054 		ret_val -= (PAGE_SIZE - rc);
5055 		if (rc)
5056 			break;
5057 
5058 		cond_resched();
5059 	}
5060 	return ret_val;
5061 }
5062 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5063 
5064 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5065 
5066 static struct kmem_cache *page_ptl_cachep;
5067 
5068 void __init ptlock_cache_init(void)
5069 {
5070 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5071 			SLAB_PANIC, NULL);
5072 }
5073 
5074 bool ptlock_alloc(struct page *page)
5075 {
5076 	spinlock_t *ptl;
5077 
5078 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5079 	if (!ptl)
5080 		return false;
5081 	page->ptl = ptl;
5082 	return true;
5083 }
5084 
5085 void ptlock_free(struct page *page)
5086 {
5087 	kmem_cache_free(page_ptl_cachep, page->ptl);
5088 }
5089 #endif
5090