1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 /* use the per-pgdat data instead for discontigmem - mbligh */ 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 /* 104 * A number of key systems in x86 including ioremap() rely on the assumption 105 * that high_memory defines the upper bound on direct map memory, then end 106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 108 * and ZONE_HIGHMEM. 109 */ 110 void *high_memory; 111 EXPORT_SYMBOL(high_memory); 112 113 /* 114 * Randomize the address space (stacks, mmaps, brk, etc.). 115 * 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 117 * as ancient (libc5 based) binaries can segfault. ) 118 */ 119 int randomize_va_space __read_mostly = 120 #ifdef CONFIG_COMPAT_BRK 121 1; 122 #else 123 2; 124 #endif 125 126 #ifndef arch_faults_on_old_pte 127 static inline bool arch_faults_on_old_pte(void) 128 { 129 /* 130 * Those arches which don't have hw access flag feature need to 131 * implement their own helper. By default, "true" means pagefault 132 * will be hit on old pte. 133 */ 134 return true; 135 } 136 #endif 137 138 static int __init disable_randmaps(char *s) 139 { 140 randomize_va_space = 0; 141 return 1; 142 } 143 __setup("norandmaps", disable_randmaps); 144 145 unsigned long zero_pfn __read_mostly; 146 EXPORT_SYMBOL(zero_pfn); 147 148 unsigned long highest_memmap_pfn __read_mostly; 149 150 /* 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 152 */ 153 static int __init init_zero_pfn(void) 154 { 155 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 156 return 0; 157 } 158 core_initcall(init_zero_pfn); 159 160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 161 { 162 trace_rss_stat(mm, member, count); 163 } 164 165 #if defined(SPLIT_RSS_COUNTING) 166 167 void sync_mm_rss(struct mm_struct *mm) 168 { 169 int i; 170 171 for (i = 0; i < NR_MM_COUNTERS; i++) { 172 if (current->rss_stat.count[i]) { 173 add_mm_counter(mm, i, current->rss_stat.count[i]); 174 current->rss_stat.count[i] = 0; 175 } 176 } 177 current->rss_stat.events = 0; 178 } 179 180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 181 { 182 struct task_struct *task = current; 183 184 if (likely(task->mm == mm)) 185 task->rss_stat.count[member] += val; 186 else 187 add_mm_counter(mm, member, val); 188 } 189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 191 192 /* sync counter once per 64 page faults */ 193 #define TASK_RSS_EVENTS_THRESH (64) 194 static void check_sync_rss_stat(struct task_struct *task) 195 { 196 if (unlikely(task != current)) 197 return; 198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 199 sync_mm_rss(task->mm); 200 } 201 #else /* SPLIT_RSS_COUNTING */ 202 203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 205 206 static void check_sync_rss_stat(struct task_struct *task) 207 { 208 } 209 210 #endif /* SPLIT_RSS_COUNTING */ 211 212 /* 213 * Note: this doesn't free the actual pages themselves. That 214 * has been handled earlier when unmapping all the memory regions. 215 */ 216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 217 unsigned long addr) 218 { 219 pgtable_t token = pmd_pgtable(*pmd); 220 pmd_clear(pmd); 221 pte_free_tlb(tlb, token, addr); 222 mm_dec_nr_ptes(tlb->mm); 223 } 224 225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 226 unsigned long addr, unsigned long end, 227 unsigned long floor, unsigned long ceiling) 228 { 229 pmd_t *pmd; 230 unsigned long next; 231 unsigned long start; 232 233 start = addr; 234 pmd = pmd_offset(pud, addr); 235 do { 236 next = pmd_addr_end(addr, end); 237 if (pmd_none_or_clear_bad(pmd)) 238 continue; 239 free_pte_range(tlb, pmd, addr); 240 } while (pmd++, addr = next, addr != end); 241 242 start &= PUD_MASK; 243 if (start < floor) 244 return; 245 if (ceiling) { 246 ceiling &= PUD_MASK; 247 if (!ceiling) 248 return; 249 } 250 if (end - 1 > ceiling - 1) 251 return; 252 253 pmd = pmd_offset(pud, start); 254 pud_clear(pud); 255 pmd_free_tlb(tlb, pmd, start); 256 mm_dec_nr_pmds(tlb->mm); 257 } 258 259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 260 unsigned long addr, unsigned long end, 261 unsigned long floor, unsigned long ceiling) 262 { 263 pud_t *pud; 264 unsigned long next; 265 unsigned long start; 266 267 start = addr; 268 pud = pud_offset(p4d, addr); 269 do { 270 next = pud_addr_end(addr, end); 271 if (pud_none_or_clear_bad(pud)) 272 continue; 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 274 } while (pud++, addr = next, addr != end); 275 276 start &= P4D_MASK; 277 if (start < floor) 278 return; 279 if (ceiling) { 280 ceiling &= P4D_MASK; 281 if (!ceiling) 282 return; 283 } 284 if (end - 1 > ceiling - 1) 285 return; 286 287 pud = pud_offset(p4d, start); 288 p4d_clear(p4d); 289 pud_free_tlb(tlb, pud, start); 290 mm_dec_nr_puds(tlb->mm); 291 } 292 293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 p4d_t *p4d; 298 unsigned long next; 299 unsigned long start; 300 301 start = addr; 302 p4d = p4d_offset(pgd, addr); 303 do { 304 next = p4d_addr_end(addr, end); 305 if (p4d_none_or_clear_bad(p4d)) 306 continue; 307 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 308 } while (p4d++, addr = next, addr != end); 309 310 start &= PGDIR_MASK; 311 if (start < floor) 312 return; 313 if (ceiling) { 314 ceiling &= PGDIR_MASK; 315 if (!ceiling) 316 return; 317 } 318 if (end - 1 > ceiling - 1) 319 return; 320 321 p4d = p4d_offset(pgd, start); 322 pgd_clear(pgd); 323 p4d_free_tlb(tlb, p4d, start); 324 } 325 326 /* 327 * This function frees user-level page tables of a process. 328 */ 329 void free_pgd_range(struct mmu_gather *tlb, 330 unsigned long addr, unsigned long end, 331 unsigned long floor, unsigned long ceiling) 332 { 333 pgd_t *pgd; 334 unsigned long next; 335 336 /* 337 * The next few lines have given us lots of grief... 338 * 339 * Why are we testing PMD* at this top level? Because often 340 * there will be no work to do at all, and we'd prefer not to 341 * go all the way down to the bottom just to discover that. 342 * 343 * Why all these "- 1"s? Because 0 represents both the bottom 344 * of the address space and the top of it (using -1 for the 345 * top wouldn't help much: the masks would do the wrong thing). 346 * The rule is that addr 0 and floor 0 refer to the bottom of 347 * the address space, but end 0 and ceiling 0 refer to the top 348 * Comparisons need to use "end - 1" and "ceiling - 1" (though 349 * that end 0 case should be mythical). 350 * 351 * Wherever addr is brought up or ceiling brought down, we must 352 * be careful to reject "the opposite 0" before it confuses the 353 * subsequent tests. But what about where end is brought down 354 * by PMD_SIZE below? no, end can't go down to 0 there. 355 * 356 * Whereas we round start (addr) and ceiling down, by different 357 * masks at different levels, in order to test whether a table 358 * now has no other vmas using it, so can be freed, we don't 359 * bother to round floor or end up - the tests don't need that. 360 */ 361 362 addr &= PMD_MASK; 363 if (addr < floor) { 364 addr += PMD_SIZE; 365 if (!addr) 366 return; 367 } 368 if (ceiling) { 369 ceiling &= PMD_MASK; 370 if (!ceiling) 371 return; 372 } 373 if (end - 1 > ceiling - 1) 374 end -= PMD_SIZE; 375 if (addr > end - 1) 376 return; 377 /* 378 * We add page table cache pages with PAGE_SIZE, 379 * (see pte_free_tlb()), flush the tlb if we need 380 */ 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 pgd = pgd_offset(tlb->mm, addr); 383 do { 384 next = pgd_addr_end(addr, end); 385 if (pgd_none_or_clear_bad(pgd)) 386 continue; 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 388 } while (pgd++, addr = next, addr != end); 389 } 390 391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 392 unsigned long floor, unsigned long ceiling) 393 { 394 while (vma) { 395 struct vm_area_struct *next = vma->vm_next; 396 unsigned long addr = vma->vm_start; 397 398 /* 399 * Hide vma from rmap and truncate_pagecache before freeing 400 * pgtables 401 */ 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 405 if (is_vm_hugetlb_page(vma)) { 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } else { 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = vma->vm_next; 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 } 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 } 422 vma = next; 423 } 424 } 425 426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 427 { 428 spinlock_t *ptl; 429 pgtable_t new = pte_alloc_one(mm); 430 if (!new) 431 return -ENOMEM; 432 433 /* 434 * Ensure all pte setup (eg. pte page lock and page clearing) are 435 * visible before the pte is made visible to other CPUs by being 436 * put into page tables. 437 * 438 * The other side of the story is the pointer chasing in the page 439 * table walking code (when walking the page table without locking; 440 * ie. most of the time). Fortunately, these data accesses consist 441 * of a chain of data-dependent loads, meaning most CPUs (alpha 442 * being the notable exception) will already guarantee loads are 443 * seen in-order. See the alpha page table accessors for the 444 * smp_rmb() barriers in page table walking code. 445 */ 446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 447 448 ptl = pmd_lock(mm, pmd); 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 450 mm_inc_nr_ptes(mm); 451 pmd_populate(mm, pmd, new); 452 new = NULL; 453 } 454 spin_unlock(ptl); 455 if (new) 456 pte_free(mm, new); 457 return 0; 458 } 459 460 int __pte_alloc_kernel(pmd_t *pmd) 461 { 462 pte_t *new = pte_alloc_one_kernel(&init_mm); 463 if (!new) 464 return -ENOMEM; 465 466 smp_wmb(); /* See comment in __pte_alloc */ 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 pmd_populate_kernel(&init_mm, pmd, new); 471 new = NULL; 472 } 473 spin_unlock(&init_mm.page_table_lock); 474 if (new) 475 pte_free_kernel(&init_mm, new); 476 return 0; 477 } 478 479 static inline void init_rss_vec(int *rss) 480 { 481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 482 } 483 484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 485 { 486 int i; 487 488 if (current->mm == mm) 489 sync_mm_rss(mm); 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 /* 496 * This function is called to print an error when a bad pte 497 * is found. For example, we might have a PFN-mapped pte in 498 * a region that doesn't allow it. 499 * 500 * The calling function must still handle the error. 501 */ 502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 503 pte_t pte, struct page *page) 504 { 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 506 p4d_t *p4d = p4d_offset(pgd, addr); 507 pud_t *pud = pud_offset(p4d, addr); 508 pmd_t *pmd = pmd_offset(pud, addr); 509 struct address_space *mapping; 510 pgoff_t index; 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 return; 523 } 524 if (nr_unshown) { 525 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 526 nr_unshown); 527 nr_unshown = 0; 528 } 529 nr_shown = 0; 530 } 531 if (nr_shown++ == 0) 532 resume = jiffies + 60 * HZ; 533 534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 535 index = linear_page_index(vma, addr); 536 537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 538 current->comm, 539 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 540 if (page) 541 dump_page(page, "bad pte"); 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 545 vma->vm_file, 546 vma->vm_ops ? vma->vm_ops->fault : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 548 mapping ? mapping->a_ops->readpage : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The disadvantage is that pages are refcounted 590 * (which can be slower and simply not an option for some PFNMAP users). The 591 * advantage is that we don't have to follow the strict linearity rule of 592 * PFNMAP mappings in order to support COWable mappings. 593 * 594 */ 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_ops && vma->vm_ops->find_special_page) 604 return vma->vm_ops->find_special_page(vma, addr); 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (is_zero_pfn(pfn)) 608 return NULL; 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_huge_zero_pmd(pmd)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static unsigned long 699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 set_pte_at(dst_mm, addr, dst_pte, pte); 773 return 0; 774 } 775 776 /* 777 * Copy a present and normal page if necessary. 778 * 779 * NOTE! The usual case is that this doesn't need to do 780 * anything, and can just return a positive value. That 781 * will let the caller know that it can just increase 782 * the page refcount and re-use the pte the traditional 783 * way. 784 * 785 * But _if_ we need to copy it because it needs to be 786 * pinned in the parent (and the child should get its own 787 * copy rather than just a reference to the same page), 788 * we'll do that here and return zero to let the caller 789 * know we're done. 790 * 791 * And if we need a pre-allocated page but don't yet have 792 * one, return a negative error to let the preallocation 793 * code know so that it can do so outside the page table 794 * lock. 795 */ 796 static inline int 797 copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm, 798 pte_t *dst_pte, pte_t *src_pte, 799 struct vm_area_struct *vma, struct vm_area_struct *new, 800 unsigned long addr, int *rss, struct page **prealloc, 801 pte_t pte, struct page *page) 802 { 803 struct page *new_page; 804 805 if (!is_cow_mapping(vma->vm_flags)) 806 return 1; 807 808 /* 809 * The trick starts. 810 * 811 * What we want to do is to check whether this page may 812 * have been pinned by the parent process. If so, 813 * instead of wrprotect the pte on both sides, we copy 814 * the page immediately so that we'll always guarantee 815 * the pinned page won't be randomly replaced in the 816 * future. 817 * 818 * To achieve this, we do the following: 819 * 820 * 1. Write-protect the pte if it's writable. This is 821 * to protect concurrent write fast-gup with 822 * FOLL_PIN, so that we'll fail the fast-gup with 823 * the write bit removed. 824 * 825 * 2. Check page_maybe_dma_pinned() to see whether this 826 * page may have been pinned. 827 * 828 * The order of these steps is important to serialize 829 * against the fast-gup code (gup_pte_range()) on the 830 * pte check and try_grab_compound_head(), so that 831 * we'll make sure either we'll capture that fast-gup 832 * so we'll copy the pinned page here, or we'll fail 833 * that fast-gup. 834 * 835 * NOTE! Even if we don't end up copying the page, 836 * we won't undo this wrprotect(), because the normal 837 * reference copy will need it anyway. 838 */ 839 if (pte_write(pte)) 840 ptep_set_wrprotect(src_mm, addr, src_pte); 841 842 /* 843 * These are the "normally we can just copy by reference" 844 * checks. 845 */ 846 if (likely(!atomic_read(&src_mm->has_pinned))) 847 return 1; 848 if (likely(!page_maybe_dma_pinned(page))) 849 return 1; 850 851 /* 852 * Uhhuh. It looks like the page might be a pinned page, 853 * and we actually need to copy it. Now we can set the 854 * source pte back to being writable. 855 */ 856 if (pte_write(pte)) 857 set_pte_at(src_mm, addr, src_pte, pte); 858 859 new_page = *prealloc; 860 if (!new_page) 861 return -EAGAIN; 862 863 /* 864 * We have a prealloc page, all good! Take it 865 * over and copy the page & arm it. 866 */ 867 *prealloc = NULL; 868 copy_user_highpage(new_page, page, addr, vma); 869 __SetPageUptodate(new_page); 870 page_add_new_anon_rmap(new_page, new, addr, false); 871 lru_cache_add_inactive_or_unevictable(new_page, new); 872 rss[mm_counter(new_page)]++; 873 874 /* All done, just insert the new page copy in the child */ 875 pte = mk_pte(new_page, new->vm_page_prot); 876 pte = maybe_mkwrite(pte_mkdirty(pte), new); 877 set_pte_at(dst_mm, addr, dst_pte, pte); 878 return 0; 879 } 880 881 /* 882 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 883 * is required to copy this pte. 884 */ 885 static inline int 886 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 887 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 888 struct vm_area_struct *new, 889 unsigned long addr, int *rss, struct page **prealloc) 890 { 891 unsigned long vm_flags = vma->vm_flags; 892 pte_t pte = *src_pte; 893 struct page *page; 894 895 page = vm_normal_page(vma, addr, pte); 896 if (page) { 897 int retval; 898 899 retval = copy_present_page(dst_mm, src_mm, 900 dst_pte, src_pte, 901 vma, new, 902 addr, rss, prealloc, 903 pte, page); 904 if (retval <= 0) 905 return retval; 906 907 get_page(page); 908 page_dup_rmap(page, false); 909 rss[mm_counter(page)]++; 910 } 911 912 /* 913 * If it's a COW mapping, write protect it both 914 * in the parent and the child 915 */ 916 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 917 ptep_set_wrprotect(src_mm, addr, src_pte); 918 pte = pte_wrprotect(pte); 919 } 920 921 /* 922 * If it's a shared mapping, mark it clean in 923 * the child 924 */ 925 if (vm_flags & VM_SHARED) 926 pte = pte_mkclean(pte); 927 pte = pte_mkold(pte); 928 929 /* 930 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 931 * does not have the VM_UFFD_WP, which means that the uffd 932 * fork event is not enabled. 933 */ 934 if (!(vm_flags & VM_UFFD_WP)) 935 pte = pte_clear_uffd_wp(pte); 936 937 set_pte_at(dst_mm, addr, dst_pte, pte); 938 return 0; 939 } 940 941 static inline struct page * 942 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 943 unsigned long addr) 944 { 945 struct page *new_page; 946 947 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 948 if (!new_page) 949 return NULL; 950 951 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 952 put_page(new_page); 953 return NULL; 954 } 955 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 956 957 return new_page; 958 } 959 960 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 961 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 962 struct vm_area_struct *new, 963 unsigned long addr, unsigned long end) 964 { 965 pte_t *orig_src_pte, *orig_dst_pte; 966 pte_t *src_pte, *dst_pte; 967 spinlock_t *src_ptl, *dst_ptl; 968 int progress, ret = 0; 969 int rss[NR_MM_COUNTERS]; 970 swp_entry_t entry = (swp_entry_t){0}; 971 struct page *prealloc = NULL; 972 973 again: 974 progress = 0; 975 init_rss_vec(rss); 976 977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 978 if (!dst_pte) { 979 ret = -ENOMEM; 980 goto out; 981 } 982 src_pte = pte_offset_map(src_pmd, addr); 983 src_ptl = pte_lockptr(src_mm, src_pmd); 984 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 985 orig_src_pte = src_pte; 986 orig_dst_pte = dst_pte; 987 arch_enter_lazy_mmu_mode(); 988 989 do { 990 /* 991 * We are holding two locks at this point - either of them 992 * could generate latencies in another task on another CPU. 993 */ 994 if (progress >= 32) { 995 progress = 0; 996 if (need_resched() || 997 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 998 break; 999 } 1000 if (pte_none(*src_pte)) { 1001 progress++; 1002 continue; 1003 } 1004 if (unlikely(!pte_present(*src_pte))) { 1005 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 1006 dst_pte, src_pte, 1007 vma, addr, rss); 1008 if (entry.val) 1009 break; 1010 progress += 8; 1011 continue; 1012 } 1013 /* copy_present_pte() will clear `*prealloc' if consumed */ 1014 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte, 1015 vma, new, addr, rss, &prealloc); 1016 /* 1017 * If we need a pre-allocated page for this pte, drop the 1018 * locks, allocate, and try again. 1019 */ 1020 if (unlikely(ret == -EAGAIN)) 1021 break; 1022 if (unlikely(prealloc)) { 1023 /* 1024 * pre-alloc page cannot be reused by next time so as 1025 * to strictly follow mempolicy (e.g., alloc_page_vma() 1026 * will allocate page according to address). This 1027 * could only happen if one pinned pte changed. 1028 */ 1029 put_page(prealloc); 1030 prealloc = NULL; 1031 } 1032 progress += 8; 1033 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1034 1035 arch_leave_lazy_mmu_mode(); 1036 spin_unlock(src_ptl); 1037 pte_unmap(orig_src_pte); 1038 add_mm_rss_vec(dst_mm, rss); 1039 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1040 cond_resched(); 1041 1042 if (entry.val) { 1043 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1044 ret = -ENOMEM; 1045 goto out; 1046 } 1047 entry.val = 0; 1048 } else if (ret) { 1049 WARN_ON_ONCE(ret != -EAGAIN); 1050 prealloc = page_copy_prealloc(src_mm, vma, addr); 1051 if (!prealloc) 1052 return -ENOMEM; 1053 /* We've captured and resolved the error. Reset, try again. */ 1054 ret = 0; 1055 } 1056 if (addr != end) 1057 goto again; 1058 out: 1059 if (unlikely(prealloc)) 1060 put_page(prealloc); 1061 return ret; 1062 } 1063 1064 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1065 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1066 struct vm_area_struct *new, 1067 unsigned long addr, unsigned long end) 1068 { 1069 pmd_t *src_pmd, *dst_pmd; 1070 unsigned long next; 1071 1072 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1073 if (!dst_pmd) 1074 return -ENOMEM; 1075 src_pmd = pmd_offset(src_pud, addr); 1076 do { 1077 next = pmd_addr_end(addr, end); 1078 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1079 || pmd_devmap(*src_pmd)) { 1080 int err; 1081 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1082 err = copy_huge_pmd(dst_mm, src_mm, 1083 dst_pmd, src_pmd, addr, vma); 1084 if (err == -ENOMEM) 1085 return -ENOMEM; 1086 if (!err) 1087 continue; 1088 /* fall through */ 1089 } 1090 if (pmd_none_or_clear_bad(src_pmd)) 1091 continue; 1092 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1093 vma, new, addr, next)) 1094 return -ENOMEM; 1095 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1096 return 0; 1097 } 1098 1099 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1100 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1101 struct vm_area_struct *new, 1102 unsigned long addr, unsigned long end) 1103 { 1104 pud_t *src_pud, *dst_pud; 1105 unsigned long next; 1106 1107 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1108 if (!dst_pud) 1109 return -ENOMEM; 1110 src_pud = pud_offset(src_p4d, addr); 1111 do { 1112 next = pud_addr_end(addr, end); 1113 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1114 int err; 1115 1116 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1117 err = copy_huge_pud(dst_mm, src_mm, 1118 dst_pud, src_pud, addr, vma); 1119 if (err == -ENOMEM) 1120 return -ENOMEM; 1121 if (!err) 1122 continue; 1123 /* fall through */ 1124 } 1125 if (pud_none_or_clear_bad(src_pud)) 1126 continue; 1127 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1128 vma, new, addr, next)) 1129 return -ENOMEM; 1130 } while (dst_pud++, src_pud++, addr = next, addr != end); 1131 return 0; 1132 } 1133 1134 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1135 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1136 struct vm_area_struct *new, 1137 unsigned long addr, unsigned long end) 1138 { 1139 p4d_t *src_p4d, *dst_p4d; 1140 unsigned long next; 1141 1142 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1143 if (!dst_p4d) 1144 return -ENOMEM; 1145 src_p4d = p4d_offset(src_pgd, addr); 1146 do { 1147 next = p4d_addr_end(addr, end); 1148 if (p4d_none_or_clear_bad(src_p4d)) 1149 continue; 1150 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1151 vma, new, addr, next)) 1152 return -ENOMEM; 1153 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1154 return 0; 1155 } 1156 1157 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1158 struct vm_area_struct *vma, struct vm_area_struct *new) 1159 { 1160 pgd_t *src_pgd, *dst_pgd; 1161 unsigned long next; 1162 unsigned long addr = vma->vm_start; 1163 unsigned long end = vma->vm_end; 1164 struct mmu_notifier_range range; 1165 bool is_cow; 1166 int ret; 1167 1168 /* 1169 * Don't copy ptes where a page fault will fill them correctly. 1170 * Fork becomes much lighter when there are big shared or private 1171 * readonly mappings. The tradeoff is that copy_page_range is more 1172 * efficient than faulting. 1173 */ 1174 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1175 !vma->anon_vma) 1176 return 0; 1177 1178 if (is_vm_hugetlb_page(vma)) 1179 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1180 1181 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1182 /* 1183 * We do not free on error cases below as remove_vma 1184 * gets called on error from higher level routine 1185 */ 1186 ret = track_pfn_copy(vma); 1187 if (ret) 1188 return ret; 1189 } 1190 1191 /* 1192 * We need to invalidate the secondary MMU mappings only when 1193 * there could be a permission downgrade on the ptes of the 1194 * parent mm. And a permission downgrade will only happen if 1195 * is_cow_mapping() returns true. 1196 */ 1197 is_cow = is_cow_mapping(vma->vm_flags); 1198 1199 if (is_cow) { 1200 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1201 0, vma, src_mm, addr, end); 1202 mmu_notifier_invalidate_range_start(&range); 1203 } 1204 1205 ret = 0; 1206 dst_pgd = pgd_offset(dst_mm, addr); 1207 src_pgd = pgd_offset(src_mm, addr); 1208 do { 1209 next = pgd_addr_end(addr, end); 1210 if (pgd_none_or_clear_bad(src_pgd)) 1211 continue; 1212 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1213 vma, new, addr, next))) { 1214 ret = -ENOMEM; 1215 break; 1216 } 1217 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1218 1219 if (is_cow) 1220 mmu_notifier_invalidate_range_end(&range); 1221 return ret; 1222 } 1223 1224 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1225 struct vm_area_struct *vma, pmd_t *pmd, 1226 unsigned long addr, unsigned long end, 1227 struct zap_details *details) 1228 { 1229 struct mm_struct *mm = tlb->mm; 1230 int force_flush = 0; 1231 int rss[NR_MM_COUNTERS]; 1232 spinlock_t *ptl; 1233 pte_t *start_pte; 1234 pte_t *pte; 1235 swp_entry_t entry; 1236 1237 tlb_change_page_size(tlb, PAGE_SIZE); 1238 again: 1239 init_rss_vec(rss); 1240 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1241 pte = start_pte; 1242 flush_tlb_batched_pending(mm); 1243 arch_enter_lazy_mmu_mode(); 1244 do { 1245 pte_t ptent = *pte; 1246 if (pte_none(ptent)) 1247 continue; 1248 1249 if (need_resched()) 1250 break; 1251 1252 if (pte_present(ptent)) { 1253 struct page *page; 1254 1255 page = vm_normal_page(vma, addr, ptent); 1256 if (unlikely(details) && page) { 1257 /* 1258 * unmap_shared_mapping_pages() wants to 1259 * invalidate cache without truncating: 1260 * unmap shared but keep private pages. 1261 */ 1262 if (details->check_mapping && 1263 details->check_mapping != page_rmapping(page)) 1264 continue; 1265 } 1266 ptent = ptep_get_and_clear_full(mm, addr, pte, 1267 tlb->fullmm); 1268 tlb_remove_tlb_entry(tlb, pte, addr); 1269 if (unlikely(!page)) 1270 continue; 1271 1272 if (!PageAnon(page)) { 1273 if (pte_dirty(ptent)) { 1274 force_flush = 1; 1275 set_page_dirty(page); 1276 } 1277 if (pte_young(ptent) && 1278 likely(!(vma->vm_flags & VM_SEQ_READ))) 1279 mark_page_accessed(page); 1280 } 1281 rss[mm_counter(page)]--; 1282 page_remove_rmap(page, false); 1283 if (unlikely(page_mapcount(page) < 0)) 1284 print_bad_pte(vma, addr, ptent, page); 1285 if (unlikely(__tlb_remove_page(tlb, page))) { 1286 force_flush = 1; 1287 addr += PAGE_SIZE; 1288 break; 1289 } 1290 continue; 1291 } 1292 1293 entry = pte_to_swp_entry(ptent); 1294 if (is_device_private_entry(entry)) { 1295 struct page *page = device_private_entry_to_page(entry); 1296 1297 if (unlikely(details && details->check_mapping)) { 1298 /* 1299 * unmap_shared_mapping_pages() wants to 1300 * invalidate cache without truncating: 1301 * unmap shared but keep private pages. 1302 */ 1303 if (details->check_mapping != 1304 page_rmapping(page)) 1305 continue; 1306 } 1307 1308 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1309 rss[mm_counter(page)]--; 1310 page_remove_rmap(page, false); 1311 put_page(page); 1312 continue; 1313 } 1314 1315 /* If details->check_mapping, we leave swap entries. */ 1316 if (unlikely(details)) 1317 continue; 1318 1319 if (!non_swap_entry(entry)) 1320 rss[MM_SWAPENTS]--; 1321 else if (is_migration_entry(entry)) { 1322 struct page *page; 1323 1324 page = migration_entry_to_page(entry); 1325 rss[mm_counter(page)]--; 1326 } 1327 if (unlikely(!free_swap_and_cache(entry))) 1328 print_bad_pte(vma, addr, ptent, NULL); 1329 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1330 } while (pte++, addr += PAGE_SIZE, addr != end); 1331 1332 add_mm_rss_vec(mm, rss); 1333 arch_leave_lazy_mmu_mode(); 1334 1335 /* Do the actual TLB flush before dropping ptl */ 1336 if (force_flush) 1337 tlb_flush_mmu_tlbonly(tlb); 1338 pte_unmap_unlock(start_pte, ptl); 1339 1340 /* 1341 * If we forced a TLB flush (either due to running out of 1342 * batch buffers or because we needed to flush dirty TLB 1343 * entries before releasing the ptl), free the batched 1344 * memory too. Restart if we didn't do everything. 1345 */ 1346 if (force_flush) { 1347 force_flush = 0; 1348 tlb_flush_mmu(tlb); 1349 } 1350 1351 if (addr != end) { 1352 cond_resched(); 1353 goto again; 1354 } 1355 1356 return addr; 1357 } 1358 1359 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1360 struct vm_area_struct *vma, pud_t *pud, 1361 unsigned long addr, unsigned long end, 1362 struct zap_details *details) 1363 { 1364 pmd_t *pmd; 1365 unsigned long next; 1366 1367 pmd = pmd_offset(pud, addr); 1368 do { 1369 next = pmd_addr_end(addr, end); 1370 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1371 if (next - addr != HPAGE_PMD_SIZE) 1372 __split_huge_pmd(vma, pmd, addr, false, NULL); 1373 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1374 goto next; 1375 /* fall through */ 1376 } 1377 /* 1378 * Here there can be other concurrent MADV_DONTNEED or 1379 * trans huge page faults running, and if the pmd is 1380 * none or trans huge it can change under us. This is 1381 * because MADV_DONTNEED holds the mmap_lock in read 1382 * mode. 1383 */ 1384 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1385 goto next; 1386 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1387 next: 1388 cond_resched(); 1389 } while (pmd++, addr = next, addr != end); 1390 1391 return addr; 1392 } 1393 1394 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, p4d_t *p4d, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 pud_t *pud; 1400 unsigned long next; 1401 1402 pud = pud_offset(p4d, addr); 1403 do { 1404 next = pud_addr_end(addr, end); 1405 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1406 if (next - addr != HPAGE_PUD_SIZE) { 1407 mmap_assert_locked(tlb->mm); 1408 split_huge_pud(vma, pud, addr); 1409 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1410 goto next; 1411 /* fall through */ 1412 } 1413 if (pud_none_or_clear_bad(pud)) 1414 continue; 1415 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1416 next: 1417 cond_resched(); 1418 } while (pud++, addr = next, addr != end); 1419 1420 return addr; 1421 } 1422 1423 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1424 struct vm_area_struct *vma, pgd_t *pgd, 1425 unsigned long addr, unsigned long end, 1426 struct zap_details *details) 1427 { 1428 p4d_t *p4d; 1429 unsigned long next; 1430 1431 p4d = p4d_offset(pgd, addr); 1432 do { 1433 next = p4d_addr_end(addr, end); 1434 if (p4d_none_or_clear_bad(p4d)) 1435 continue; 1436 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1437 } while (p4d++, addr = next, addr != end); 1438 1439 return addr; 1440 } 1441 1442 void unmap_page_range(struct mmu_gather *tlb, 1443 struct vm_area_struct *vma, 1444 unsigned long addr, unsigned long end, 1445 struct zap_details *details) 1446 { 1447 pgd_t *pgd; 1448 unsigned long next; 1449 1450 BUG_ON(addr >= end); 1451 tlb_start_vma(tlb, vma); 1452 pgd = pgd_offset(vma->vm_mm, addr); 1453 do { 1454 next = pgd_addr_end(addr, end); 1455 if (pgd_none_or_clear_bad(pgd)) 1456 continue; 1457 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1458 } while (pgd++, addr = next, addr != end); 1459 tlb_end_vma(tlb, vma); 1460 } 1461 1462 1463 static void unmap_single_vma(struct mmu_gather *tlb, 1464 struct vm_area_struct *vma, unsigned long start_addr, 1465 unsigned long end_addr, 1466 struct zap_details *details) 1467 { 1468 unsigned long start = max(vma->vm_start, start_addr); 1469 unsigned long end; 1470 1471 if (start >= vma->vm_end) 1472 return; 1473 end = min(vma->vm_end, end_addr); 1474 if (end <= vma->vm_start) 1475 return; 1476 1477 if (vma->vm_file) 1478 uprobe_munmap(vma, start, end); 1479 1480 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1481 untrack_pfn(vma, 0, 0); 1482 1483 if (start != end) { 1484 if (unlikely(is_vm_hugetlb_page(vma))) { 1485 /* 1486 * It is undesirable to test vma->vm_file as it 1487 * should be non-null for valid hugetlb area. 1488 * However, vm_file will be NULL in the error 1489 * cleanup path of mmap_region. When 1490 * hugetlbfs ->mmap method fails, 1491 * mmap_region() nullifies vma->vm_file 1492 * before calling this function to clean up. 1493 * Since no pte has actually been setup, it is 1494 * safe to do nothing in this case. 1495 */ 1496 if (vma->vm_file) { 1497 i_mmap_lock_write(vma->vm_file->f_mapping); 1498 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1499 i_mmap_unlock_write(vma->vm_file->f_mapping); 1500 } 1501 } else 1502 unmap_page_range(tlb, vma, start, end, details); 1503 } 1504 } 1505 1506 /** 1507 * unmap_vmas - unmap a range of memory covered by a list of vma's 1508 * @tlb: address of the caller's struct mmu_gather 1509 * @vma: the starting vma 1510 * @start_addr: virtual address at which to start unmapping 1511 * @end_addr: virtual address at which to end unmapping 1512 * 1513 * Unmap all pages in the vma list. 1514 * 1515 * Only addresses between `start' and `end' will be unmapped. 1516 * 1517 * The VMA list must be sorted in ascending virtual address order. 1518 * 1519 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1520 * range after unmap_vmas() returns. So the only responsibility here is to 1521 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1522 * drops the lock and schedules. 1523 */ 1524 void unmap_vmas(struct mmu_gather *tlb, 1525 struct vm_area_struct *vma, unsigned long start_addr, 1526 unsigned long end_addr) 1527 { 1528 struct mmu_notifier_range range; 1529 1530 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1531 start_addr, end_addr); 1532 mmu_notifier_invalidate_range_start(&range); 1533 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1534 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1535 mmu_notifier_invalidate_range_end(&range); 1536 } 1537 1538 /** 1539 * zap_page_range - remove user pages in a given range 1540 * @vma: vm_area_struct holding the applicable pages 1541 * @start: starting address of pages to zap 1542 * @size: number of bytes to zap 1543 * 1544 * Caller must protect the VMA list 1545 */ 1546 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1547 unsigned long size) 1548 { 1549 struct mmu_notifier_range range; 1550 struct mmu_gather tlb; 1551 1552 lru_add_drain(); 1553 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1554 start, start + size); 1555 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1556 update_hiwater_rss(vma->vm_mm); 1557 mmu_notifier_invalidate_range_start(&range); 1558 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1559 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1560 mmu_notifier_invalidate_range_end(&range); 1561 tlb_finish_mmu(&tlb, start, range.end); 1562 } 1563 1564 /** 1565 * zap_page_range_single - remove user pages in a given range 1566 * @vma: vm_area_struct holding the applicable pages 1567 * @address: starting address of pages to zap 1568 * @size: number of bytes to zap 1569 * @details: details of shared cache invalidation 1570 * 1571 * The range must fit into one VMA. 1572 */ 1573 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1574 unsigned long size, struct zap_details *details) 1575 { 1576 struct mmu_notifier_range range; 1577 struct mmu_gather tlb; 1578 1579 lru_add_drain(); 1580 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1581 address, address + size); 1582 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1583 update_hiwater_rss(vma->vm_mm); 1584 mmu_notifier_invalidate_range_start(&range); 1585 unmap_single_vma(&tlb, vma, address, range.end, details); 1586 mmu_notifier_invalidate_range_end(&range); 1587 tlb_finish_mmu(&tlb, address, range.end); 1588 } 1589 1590 /** 1591 * zap_vma_ptes - remove ptes mapping the vma 1592 * @vma: vm_area_struct holding ptes to be zapped 1593 * @address: starting address of pages to zap 1594 * @size: number of bytes to zap 1595 * 1596 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1597 * 1598 * The entire address range must be fully contained within the vma. 1599 * 1600 */ 1601 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1602 unsigned long size) 1603 { 1604 if (address < vma->vm_start || address + size > vma->vm_end || 1605 !(vma->vm_flags & VM_PFNMAP)) 1606 return; 1607 1608 zap_page_range_single(vma, address, size, NULL); 1609 } 1610 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1611 1612 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1613 { 1614 pgd_t *pgd; 1615 p4d_t *p4d; 1616 pud_t *pud; 1617 pmd_t *pmd; 1618 1619 pgd = pgd_offset(mm, addr); 1620 p4d = p4d_alloc(mm, pgd, addr); 1621 if (!p4d) 1622 return NULL; 1623 pud = pud_alloc(mm, p4d, addr); 1624 if (!pud) 1625 return NULL; 1626 pmd = pmd_alloc(mm, pud, addr); 1627 if (!pmd) 1628 return NULL; 1629 1630 VM_BUG_ON(pmd_trans_huge(*pmd)); 1631 return pmd; 1632 } 1633 1634 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1635 spinlock_t **ptl) 1636 { 1637 pmd_t *pmd = walk_to_pmd(mm, addr); 1638 1639 if (!pmd) 1640 return NULL; 1641 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1642 } 1643 1644 static int validate_page_before_insert(struct page *page) 1645 { 1646 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1647 return -EINVAL; 1648 flush_dcache_page(page); 1649 return 0; 1650 } 1651 1652 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1653 unsigned long addr, struct page *page, pgprot_t prot) 1654 { 1655 if (!pte_none(*pte)) 1656 return -EBUSY; 1657 /* Ok, finally just insert the thing.. */ 1658 get_page(page); 1659 inc_mm_counter_fast(mm, mm_counter_file(page)); 1660 page_add_file_rmap(page, false); 1661 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1662 return 0; 1663 } 1664 1665 /* 1666 * This is the old fallback for page remapping. 1667 * 1668 * For historical reasons, it only allows reserved pages. Only 1669 * old drivers should use this, and they needed to mark their 1670 * pages reserved for the old functions anyway. 1671 */ 1672 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1673 struct page *page, pgprot_t prot) 1674 { 1675 struct mm_struct *mm = vma->vm_mm; 1676 int retval; 1677 pte_t *pte; 1678 spinlock_t *ptl; 1679 1680 retval = validate_page_before_insert(page); 1681 if (retval) 1682 goto out; 1683 retval = -ENOMEM; 1684 pte = get_locked_pte(mm, addr, &ptl); 1685 if (!pte) 1686 goto out; 1687 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1688 pte_unmap_unlock(pte, ptl); 1689 out: 1690 return retval; 1691 } 1692 1693 #ifdef pte_index 1694 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1695 unsigned long addr, struct page *page, pgprot_t prot) 1696 { 1697 int err; 1698 1699 if (!page_count(page)) 1700 return -EINVAL; 1701 err = validate_page_before_insert(page); 1702 if (err) 1703 return err; 1704 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1705 } 1706 1707 /* insert_pages() amortizes the cost of spinlock operations 1708 * when inserting pages in a loop. Arch *must* define pte_index. 1709 */ 1710 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1711 struct page **pages, unsigned long *num, pgprot_t prot) 1712 { 1713 pmd_t *pmd = NULL; 1714 pte_t *start_pte, *pte; 1715 spinlock_t *pte_lock; 1716 struct mm_struct *const mm = vma->vm_mm; 1717 unsigned long curr_page_idx = 0; 1718 unsigned long remaining_pages_total = *num; 1719 unsigned long pages_to_write_in_pmd; 1720 int ret; 1721 more: 1722 ret = -EFAULT; 1723 pmd = walk_to_pmd(mm, addr); 1724 if (!pmd) 1725 goto out; 1726 1727 pages_to_write_in_pmd = min_t(unsigned long, 1728 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1729 1730 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1731 ret = -ENOMEM; 1732 if (pte_alloc(mm, pmd)) 1733 goto out; 1734 1735 while (pages_to_write_in_pmd) { 1736 int pte_idx = 0; 1737 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1738 1739 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1740 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1741 int err = insert_page_in_batch_locked(mm, pte, 1742 addr, pages[curr_page_idx], prot); 1743 if (unlikely(err)) { 1744 pte_unmap_unlock(start_pte, pte_lock); 1745 ret = err; 1746 remaining_pages_total -= pte_idx; 1747 goto out; 1748 } 1749 addr += PAGE_SIZE; 1750 ++curr_page_idx; 1751 } 1752 pte_unmap_unlock(start_pte, pte_lock); 1753 pages_to_write_in_pmd -= batch_size; 1754 remaining_pages_total -= batch_size; 1755 } 1756 if (remaining_pages_total) 1757 goto more; 1758 ret = 0; 1759 out: 1760 *num = remaining_pages_total; 1761 return ret; 1762 } 1763 #endif /* ifdef pte_index */ 1764 1765 /** 1766 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1767 * @vma: user vma to map to 1768 * @addr: target start user address of these pages 1769 * @pages: source kernel pages 1770 * @num: in: number of pages to map. out: number of pages that were *not* 1771 * mapped. (0 means all pages were successfully mapped). 1772 * 1773 * Preferred over vm_insert_page() when inserting multiple pages. 1774 * 1775 * In case of error, we may have mapped a subset of the provided 1776 * pages. It is the caller's responsibility to account for this case. 1777 * 1778 * The same restrictions apply as in vm_insert_page(). 1779 */ 1780 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1781 struct page **pages, unsigned long *num) 1782 { 1783 #ifdef pte_index 1784 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1785 1786 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1787 return -EFAULT; 1788 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1789 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1790 BUG_ON(vma->vm_flags & VM_PFNMAP); 1791 vma->vm_flags |= VM_MIXEDMAP; 1792 } 1793 /* Defer page refcount checking till we're about to map that page. */ 1794 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1795 #else 1796 unsigned long idx = 0, pgcount = *num; 1797 int err = -EINVAL; 1798 1799 for (; idx < pgcount; ++idx) { 1800 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1801 if (err) 1802 break; 1803 } 1804 *num = pgcount - idx; 1805 return err; 1806 #endif /* ifdef pte_index */ 1807 } 1808 EXPORT_SYMBOL(vm_insert_pages); 1809 1810 /** 1811 * vm_insert_page - insert single page into user vma 1812 * @vma: user vma to map to 1813 * @addr: target user address of this page 1814 * @page: source kernel page 1815 * 1816 * This allows drivers to insert individual pages they've allocated 1817 * into a user vma. 1818 * 1819 * The page has to be a nice clean _individual_ kernel allocation. 1820 * If you allocate a compound page, you need to have marked it as 1821 * such (__GFP_COMP), or manually just split the page up yourself 1822 * (see split_page()). 1823 * 1824 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1825 * took an arbitrary page protection parameter. This doesn't allow 1826 * that. Your vma protection will have to be set up correctly, which 1827 * means that if you want a shared writable mapping, you'd better 1828 * ask for a shared writable mapping! 1829 * 1830 * The page does not need to be reserved. 1831 * 1832 * Usually this function is called from f_op->mmap() handler 1833 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1834 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1835 * function from other places, for example from page-fault handler. 1836 * 1837 * Return: %0 on success, negative error code otherwise. 1838 */ 1839 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1840 struct page *page) 1841 { 1842 if (addr < vma->vm_start || addr >= vma->vm_end) 1843 return -EFAULT; 1844 if (!page_count(page)) 1845 return -EINVAL; 1846 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1847 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1848 BUG_ON(vma->vm_flags & VM_PFNMAP); 1849 vma->vm_flags |= VM_MIXEDMAP; 1850 } 1851 return insert_page(vma, addr, page, vma->vm_page_prot); 1852 } 1853 EXPORT_SYMBOL(vm_insert_page); 1854 1855 /* 1856 * __vm_map_pages - maps range of kernel pages into user vma 1857 * @vma: user vma to map to 1858 * @pages: pointer to array of source kernel pages 1859 * @num: number of pages in page array 1860 * @offset: user's requested vm_pgoff 1861 * 1862 * This allows drivers to map range of kernel pages into a user vma. 1863 * 1864 * Return: 0 on success and error code otherwise. 1865 */ 1866 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1867 unsigned long num, unsigned long offset) 1868 { 1869 unsigned long count = vma_pages(vma); 1870 unsigned long uaddr = vma->vm_start; 1871 int ret, i; 1872 1873 /* Fail if the user requested offset is beyond the end of the object */ 1874 if (offset >= num) 1875 return -ENXIO; 1876 1877 /* Fail if the user requested size exceeds available object size */ 1878 if (count > num - offset) 1879 return -ENXIO; 1880 1881 for (i = 0; i < count; i++) { 1882 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1883 if (ret < 0) 1884 return ret; 1885 uaddr += PAGE_SIZE; 1886 } 1887 1888 return 0; 1889 } 1890 1891 /** 1892 * vm_map_pages - maps range of kernel pages starts with non zero offset 1893 * @vma: user vma to map to 1894 * @pages: pointer to array of source kernel pages 1895 * @num: number of pages in page array 1896 * 1897 * Maps an object consisting of @num pages, catering for the user's 1898 * requested vm_pgoff 1899 * 1900 * If we fail to insert any page into the vma, the function will return 1901 * immediately leaving any previously inserted pages present. Callers 1902 * from the mmap handler may immediately return the error as their caller 1903 * will destroy the vma, removing any successfully inserted pages. Other 1904 * callers should make their own arrangements for calling unmap_region(). 1905 * 1906 * Context: Process context. Called by mmap handlers. 1907 * Return: 0 on success and error code otherwise. 1908 */ 1909 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1910 unsigned long num) 1911 { 1912 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1913 } 1914 EXPORT_SYMBOL(vm_map_pages); 1915 1916 /** 1917 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1918 * @vma: user vma to map to 1919 * @pages: pointer to array of source kernel pages 1920 * @num: number of pages in page array 1921 * 1922 * Similar to vm_map_pages(), except that it explicitly sets the offset 1923 * to 0. This function is intended for the drivers that did not consider 1924 * vm_pgoff. 1925 * 1926 * Context: Process context. Called by mmap handlers. 1927 * Return: 0 on success and error code otherwise. 1928 */ 1929 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1930 unsigned long num) 1931 { 1932 return __vm_map_pages(vma, pages, num, 0); 1933 } 1934 EXPORT_SYMBOL(vm_map_pages_zero); 1935 1936 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1937 pfn_t pfn, pgprot_t prot, bool mkwrite) 1938 { 1939 struct mm_struct *mm = vma->vm_mm; 1940 pte_t *pte, entry; 1941 spinlock_t *ptl; 1942 1943 pte = get_locked_pte(mm, addr, &ptl); 1944 if (!pte) 1945 return VM_FAULT_OOM; 1946 if (!pte_none(*pte)) { 1947 if (mkwrite) { 1948 /* 1949 * For read faults on private mappings the PFN passed 1950 * in may not match the PFN we have mapped if the 1951 * mapped PFN is a writeable COW page. In the mkwrite 1952 * case we are creating a writable PTE for a shared 1953 * mapping and we expect the PFNs to match. If they 1954 * don't match, we are likely racing with block 1955 * allocation and mapping invalidation so just skip the 1956 * update. 1957 */ 1958 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1959 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1960 goto out_unlock; 1961 } 1962 entry = pte_mkyoung(*pte); 1963 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1964 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1965 update_mmu_cache(vma, addr, pte); 1966 } 1967 goto out_unlock; 1968 } 1969 1970 /* Ok, finally just insert the thing.. */ 1971 if (pfn_t_devmap(pfn)) 1972 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1973 else 1974 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1975 1976 if (mkwrite) { 1977 entry = pte_mkyoung(entry); 1978 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1979 } 1980 1981 set_pte_at(mm, addr, pte, entry); 1982 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1983 1984 out_unlock: 1985 pte_unmap_unlock(pte, ptl); 1986 return VM_FAULT_NOPAGE; 1987 } 1988 1989 /** 1990 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1991 * @vma: user vma to map to 1992 * @addr: target user address of this page 1993 * @pfn: source kernel pfn 1994 * @pgprot: pgprot flags for the inserted page 1995 * 1996 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1997 * to override pgprot on a per-page basis. 1998 * 1999 * This only makes sense for IO mappings, and it makes no sense for 2000 * COW mappings. In general, using multiple vmas is preferable; 2001 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2002 * impractical. 2003 * 2004 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2005 * a value of @pgprot different from that of @vma->vm_page_prot. 2006 * 2007 * Context: Process context. May allocate using %GFP_KERNEL. 2008 * Return: vm_fault_t value. 2009 */ 2010 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2011 unsigned long pfn, pgprot_t pgprot) 2012 { 2013 /* 2014 * Technically, architectures with pte_special can avoid all these 2015 * restrictions (same for remap_pfn_range). However we would like 2016 * consistency in testing and feature parity among all, so we should 2017 * try to keep these invariants in place for everybody. 2018 */ 2019 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2020 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2021 (VM_PFNMAP|VM_MIXEDMAP)); 2022 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2023 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2024 2025 if (addr < vma->vm_start || addr >= vma->vm_end) 2026 return VM_FAULT_SIGBUS; 2027 2028 if (!pfn_modify_allowed(pfn, pgprot)) 2029 return VM_FAULT_SIGBUS; 2030 2031 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2032 2033 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2034 false); 2035 } 2036 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2037 2038 /** 2039 * vmf_insert_pfn - insert single pfn into user vma 2040 * @vma: user vma to map to 2041 * @addr: target user address of this page 2042 * @pfn: source kernel pfn 2043 * 2044 * Similar to vm_insert_page, this allows drivers to insert individual pages 2045 * they've allocated into a user vma. Same comments apply. 2046 * 2047 * This function should only be called from a vm_ops->fault handler, and 2048 * in that case the handler should return the result of this function. 2049 * 2050 * vma cannot be a COW mapping. 2051 * 2052 * As this is called only for pages that do not currently exist, we 2053 * do not need to flush old virtual caches or the TLB. 2054 * 2055 * Context: Process context. May allocate using %GFP_KERNEL. 2056 * Return: vm_fault_t value. 2057 */ 2058 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2059 unsigned long pfn) 2060 { 2061 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2062 } 2063 EXPORT_SYMBOL(vmf_insert_pfn); 2064 2065 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2066 { 2067 /* these checks mirror the abort conditions in vm_normal_page */ 2068 if (vma->vm_flags & VM_MIXEDMAP) 2069 return true; 2070 if (pfn_t_devmap(pfn)) 2071 return true; 2072 if (pfn_t_special(pfn)) 2073 return true; 2074 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2075 return true; 2076 return false; 2077 } 2078 2079 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2080 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2081 bool mkwrite) 2082 { 2083 int err; 2084 2085 BUG_ON(!vm_mixed_ok(vma, pfn)); 2086 2087 if (addr < vma->vm_start || addr >= vma->vm_end) 2088 return VM_FAULT_SIGBUS; 2089 2090 track_pfn_insert(vma, &pgprot, pfn); 2091 2092 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2093 return VM_FAULT_SIGBUS; 2094 2095 /* 2096 * If we don't have pte special, then we have to use the pfn_valid() 2097 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2098 * refcount the page if pfn_valid is true (hence insert_page rather 2099 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2100 * without pte special, it would there be refcounted as a normal page. 2101 */ 2102 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2103 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2104 struct page *page; 2105 2106 /* 2107 * At this point we are committed to insert_page() 2108 * regardless of whether the caller specified flags that 2109 * result in pfn_t_has_page() == false. 2110 */ 2111 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2112 err = insert_page(vma, addr, page, pgprot); 2113 } else { 2114 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2115 } 2116 2117 if (err == -ENOMEM) 2118 return VM_FAULT_OOM; 2119 if (err < 0 && err != -EBUSY) 2120 return VM_FAULT_SIGBUS; 2121 2122 return VM_FAULT_NOPAGE; 2123 } 2124 2125 /** 2126 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2127 * @vma: user vma to map to 2128 * @addr: target user address of this page 2129 * @pfn: source kernel pfn 2130 * @pgprot: pgprot flags for the inserted page 2131 * 2132 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2133 * to override pgprot on a per-page basis. 2134 * 2135 * Typically this function should be used by drivers to set caching- and 2136 * encryption bits different than those of @vma->vm_page_prot, because 2137 * the caching- or encryption mode may not be known at mmap() time. 2138 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2139 * to set caching and encryption bits for those vmas (except for COW pages). 2140 * This is ensured by core vm only modifying these page table entries using 2141 * functions that don't touch caching- or encryption bits, using pte_modify() 2142 * if needed. (See for example mprotect()). 2143 * Also when new page-table entries are created, this is only done using the 2144 * fault() callback, and never using the value of vma->vm_page_prot, 2145 * except for page-table entries that point to anonymous pages as the result 2146 * of COW. 2147 * 2148 * Context: Process context. May allocate using %GFP_KERNEL. 2149 * Return: vm_fault_t value. 2150 */ 2151 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2152 pfn_t pfn, pgprot_t pgprot) 2153 { 2154 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2155 } 2156 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2157 2158 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2159 pfn_t pfn) 2160 { 2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2162 } 2163 EXPORT_SYMBOL(vmf_insert_mixed); 2164 2165 /* 2166 * If the insertion of PTE failed because someone else already added a 2167 * different entry in the mean time, we treat that as success as we assume 2168 * the same entry was actually inserted. 2169 */ 2170 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2171 unsigned long addr, pfn_t pfn) 2172 { 2173 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2174 } 2175 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2176 2177 /* 2178 * maps a range of physical memory into the requested pages. the old 2179 * mappings are removed. any references to nonexistent pages results 2180 * in null mappings (currently treated as "copy-on-access") 2181 */ 2182 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2183 unsigned long addr, unsigned long end, 2184 unsigned long pfn, pgprot_t prot) 2185 { 2186 pte_t *pte; 2187 spinlock_t *ptl; 2188 int err = 0; 2189 2190 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2191 if (!pte) 2192 return -ENOMEM; 2193 arch_enter_lazy_mmu_mode(); 2194 do { 2195 BUG_ON(!pte_none(*pte)); 2196 if (!pfn_modify_allowed(pfn, prot)) { 2197 err = -EACCES; 2198 break; 2199 } 2200 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2201 pfn++; 2202 } while (pte++, addr += PAGE_SIZE, addr != end); 2203 arch_leave_lazy_mmu_mode(); 2204 pte_unmap_unlock(pte - 1, ptl); 2205 return err; 2206 } 2207 2208 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2209 unsigned long addr, unsigned long end, 2210 unsigned long pfn, pgprot_t prot) 2211 { 2212 pmd_t *pmd; 2213 unsigned long next; 2214 int err; 2215 2216 pfn -= addr >> PAGE_SHIFT; 2217 pmd = pmd_alloc(mm, pud, addr); 2218 if (!pmd) 2219 return -ENOMEM; 2220 VM_BUG_ON(pmd_trans_huge(*pmd)); 2221 do { 2222 next = pmd_addr_end(addr, end); 2223 err = remap_pte_range(mm, pmd, addr, next, 2224 pfn + (addr >> PAGE_SHIFT), prot); 2225 if (err) 2226 return err; 2227 } while (pmd++, addr = next, addr != end); 2228 return 0; 2229 } 2230 2231 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2232 unsigned long addr, unsigned long end, 2233 unsigned long pfn, pgprot_t prot) 2234 { 2235 pud_t *pud; 2236 unsigned long next; 2237 int err; 2238 2239 pfn -= addr >> PAGE_SHIFT; 2240 pud = pud_alloc(mm, p4d, addr); 2241 if (!pud) 2242 return -ENOMEM; 2243 do { 2244 next = pud_addr_end(addr, end); 2245 err = remap_pmd_range(mm, pud, addr, next, 2246 pfn + (addr >> PAGE_SHIFT), prot); 2247 if (err) 2248 return err; 2249 } while (pud++, addr = next, addr != end); 2250 return 0; 2251 } 2252 2253 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2254 unsigned long addr, unsigned long end, 2255 unsigned long pfn, pgprot_t prot) 2256 { 2257 p4d_t *p4d; 2258 unsigned long next; 2259 int err; 2260 2261 pfn -= addr >> PAGE_SHIFT; 2262 p4d = p4d_alloc(mm, pgd, addr); 2263 if (!p4d) 2264 return -ENOMEM; 2265 do { 2266 next = p4d_addr_end(addr, end); 2267 err = remap_pud_range(mm, p4d, addr, next, 2268 pfn + (addr >> PAGE_SHIFT), prot); 2269 if (err) 2270 return err; 2271 } while (p4d++, addr = next, addr != end); 2272 return 0; 2273 } 2274 2275 /** 2276 * remap_pfn_range - remap kernel memory to userspace 2277 * @vma: user vma to map to 2278 * @addr: target page aligned user address to start at 2279 * @pfn: page frame number of kernel physical memory address 2280 * @size: size of mapping area 2281 * @prot: page protection flags for this mapping 2282 * 2283 * Note: this is only safe if the mm semaphore is held when called. 2284 * 2285 * Return: %0 on success, negative error code otherwise. 2286 */ 2287 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2288 unsigned long pfn, unsigned long size, pgprot_t prot) 2289 { 2290 pgd_t *pgd; 2291 unsigned long next; 2292 unsigned long end = addr + PAGE_ALIGN(size); 2293 struct mm_struct *mm = vma->vm_mm; 2294 unsigned long remap_pfn = pfn; 2295 int err; 2296 2297 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2298 return -EINVAL; 2299 2300 /* 2301 * Physically remapped pages are special. Tell the 2302 * rest of the world about it: 2303 * VM_IO tells people not to look at these pages 2304 * (accesses can have side effects). 2305 * VM_PFNMAP tells the core MM that the base pages are just 2306 * raw PFN mappings, and do not have a "struct page" associated 2307 * with them. 2308 * VM_DONTEXPAND 2309 * Disable vma merging and expanding with mremap(). 2310 * VM_DONTDUMP 2311 * Omit vma from core dump, even when VM_IO turned off. 2312 * 2313 * There's a horrible special case to handle copy-on-write 2314 * behaviour that some programs depend on. We mark the "original" 2315 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2316 * See vm_normal_page() for details. 2317 */ 2318 if (is_cow_mapping(vma->vm_flags)) { 2319 if (addr != vma->vm_start || end != vma->vm_end) 2320 return -EINVAL; 2321 vma->vm_pgoff = pfn; 2322 } 2323 2324 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2325 if (err) 2326 return -EINVAL; 2327 2328 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2329 2330 BUG_ON(addr >= end); 2331 pfn -= addr >> PAGE_SHIFT; 2332 pgd = pgd_offset(mm, addr); 2333 flush_cache_range(vma, addr, end); 2334 do { 2335 next = pgd_addr_end(addr, end); 2336 err = remap_p4d_range(mm, pgd, addr, next, 2337 pfn + (addr >> PAGE_SHIFT), prot); 2338 if (err) 2339 break; 2340 } while (pgd++, addr = next, addr != end); 2341 2342 if (err) 2343 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2344 2345 return err; 2346 } 2347 EXPORT_SYMBOL(remap_pfn_range); 2348 2349 /** 2350 * vm_iomap_memory - remap memory to userspace 2351 * @vma: user vma to map to 2352 * @start: start of the physical memory to be mapped 2353 * @len: size of area 2354 * 2355 * This is a simplified io_remap_pfn_range() for common driver use. The 2356 * driver just needs to give us the physical memory range to be mapped, 2357 * we'll figure out the rest from the vma information. 2358 * 2359 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2360 * whatever write-combining details or similar. 2361 * 2362 * Return: %0 on success, negative error code otherwise. 2363 */ 2364 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2365 { 2366 unsigned long vm_len, pfn, pages; 2367 2368 /* Check that the physical memory area passed in looks valid */ 2369 if (start + len < start) 2370 return -EINVAL; 2371 /* 2372 * You *really* shouldn't map things that aren't page-aligned, 2373 * but we've historically allowed it because IO memory might 2374 * just have smaller alignment. 2375 */ 2376 len += start & ~PAGE_MASK; 2377 pfn = start >> PAGE_SHIFT; 2378 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2379 if (pfn + pages < pfn) 2380 return -EINVAL; 2381 2382 /* We start the mapping 'vm_pgoff' pages into the area */ 2383 if (vma->vm_pgoff > pages) 2384 return -EINVAL; 2385 pfn += vma->vm_pgoff; 2386 pages -= vma->vm_pgoff; 2387 2388 /* Can we fit all of the mapping? */ 2389 vm_len = vma->vm_end - vma->vm_start; 2390 if (vm_len >> PAGE_SHIFT > pages) 2391 return -EINVAL; 2392 2393 /* Ok, let it rip */ 2394 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2395 } 2396 EXPORT_SYMBOL(vm_iomap_memory); 2397 2398 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2399 unsigned long addr, unsigned long end, 2400 pte_fn_t fn, void *data, bool create, 2401 pgtbl_mod_mask *mask) 2402 { 2403 pte_t *pte; 2404 int err = 0; 2405 spinlock_t *ptl; 2406 2407 if (create) { 2408 pte = (mm == &init_mm) ? 2409 pte_alloc_kernel_track(pmd, addr, mask) : 2410 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2411 if (!pte) 2412 return -ENOMEM; 2413 } else { 2414 pte = (mm == &init_mm) ? 2415 pte_offset_kernel(pmd, addr) : 2416 pte_offset_map_lock(mm, pmd, addr, &ptl); 2417 } 2418 2419 BUG_ON(pmd_huge(*pmd)); 2420 2421 arch_enter_lazy_mmu_mode(); 2422 2423 do { 2424 if (create || !pte_none(*pte)) { 2425 err = fn(pte++, addr, data); 2426 if (err) 2427 break; 2428 } 2429 } while (addr += PAGE_SIZE, addr != end); 2430 *mask |= PGTBL_PTE_MODIFIED; 2431 2432 arch_leave_lazy_mmu_mode(); 2433 2434 if (mm != &init_mm) 2435 pte_unmap_unlock(pte-1, ptl); 2436 return err; 2437 } 2438 2439 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2440 unsigned long addr, unsigned long end, 2441 pte_fn_t fn, void *data, bool create, 2442 pgtbl_mod_mask *mask) 2443 { 2444 pmd_t *pmd; 2445 unsigned long next; 2446 int err = 0; 2447 2448 BUG_ON(pud_huge(*pud)); 2449 2450 if (create) { 2451 pmd = pmd_alloc_track(mm, pud, addr, mask); 2452 if (!pmd) 2453 return -ENOMEM; 2454 } else { 2455 pmd = pmd_offset(pud, addr); 2456 } 2457 do { 2458 next = pmd_addr_end(addr, end); 2459 if (create || !pmd_none_or_clear_bad(pmd)) { 2460 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2461 create, mask); 2462 if (err) 2463 break; 2464 } 2465 } while (pmd++, addr = next, addr != end); 2466 return err; 2467 } 2468 2469 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2470 unsigned long addr, unsigned long end, 2471 pte_fn_t fn, void *data, bool create, 2472 pgtbl_mod_mask *mask) 2473 { 2474 pud_t *pud; 2475 unsigned long next; 2476 int err = 0; 2477 2478 if (create) { 2479 pud = pud_alloc_track(mm, p4d, addr, mask); 2480 if (!pud) 2481 return -ENOMEM; 2482 } else { 2483 pud = pud_offset(p4d, addr); 2484 } 2485 do { 2486 next = pud_addr_end(addr, end); 2487 if (create || !pud_none_or_clear_bad(pud)) { 2488 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2489 create, mask); 2490 if (err) 2491 break; 2492 } 2493 } while (pud++, addr = next, addr != end); 2494 return err; 2495 } 2496 2497 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2498 unsigned long addr, unsigned long end, 2499 pte_fn_t fn, void *data, bool create, 2500 pgtbl_mod_mask *mask) 2501 { 2502 p4d_t *p4d; 2503 unsigned long next; 2504 int err = 0; 2505 2506 if (create) { 2507 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2508 if (!p4d) 2509 return -ENOMEM; 2510 } else { 2511 p4d = p4d_offset(pgd, addr); 2512 } 2513 do { 2514 next = p4d_addr_end(addr, end); 2515 if (create || !p4d_none_or_clear_bad(p4d)) { 2516 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2517 create, mask); 2518 if (err) 2519 break; 2520 } 2521 } while (p4d++, addr = next, addr != end); 2522 return err; 2523 } 2524 2525 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2526 unsigned long size, pte_fn_t fn, 2527 void *data, bool create) 2528 { 2529 pgd_t *pgd; 2530 unsigned long start = addr, next; 2531 unsigned long end = addr + size; 2532 pgtbl_mod_mask mask = 0; 2533 int err = 0; 2534 2535 if (WARN_ON(addr >= end)) 2536 return -EINVAL; 2537 2538 pgd = pgd_offset(mm, addr); 2539 do { 2540 next = pgd_addr_end(addr, end); 2541 if (!create && pgd_none_or_clear_bad(pgd)) 2542 continue; 2543 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2544 if (err) 2545 break; 2546 } while (pgd++, addr = next, addr != end); 2547 2548 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2549 arch_sync_kernel_mappings(start, start + size); 2550 2551 return err; 2552 } 2553 2554 /* 2555 * Scan a region of virtual memory, filling in page tables as necessary 2556 * and calling a provided function on each leaf page table. 2557 */ 2558 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2559 unsigned long size, pte_fn_t fn, void *data) 2560 { 2561 return __apply_to_page_range(mm, addr, size, fn, data, true); 2562 } 2563 EXPORT_SYMBOL_GPL(apply_to_page_range); 2564 2565 /* 2566 * Scan a region of virtual memory, calling a provided function on 2567 * each leaf page table where it exists. 2568 * 2569 * Unlike apply_to_page_range, this does _not_ fill in page tables 2570 * where they are absent. 2571 */ 2572 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2573 unsigned long size, pte_fn_t fn, void *data) 2574 { 2575 return __apply_to_page_range(mm, addr, size, fn, data, false); 2576 } 2577 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2578 2579 /* 2580 * handle_pte_fault chooses page fault handler according to an entry which was 2581 * read non-atomically. Before making any commitment, on those architectures 2582 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2583 * parts, do_swap_page must check under lock before unmapping the pte and 2584 * proceeding (but do_wp_page is only called after already making such a check; 2585 * and do_anonymous_page can safely check later on). 2586 */ 2587 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2588 pte_t *page_table, pte_t orig_pte) 2589 { 2590 int same = 1; 2591 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2592 if (sizeof(pte_t) > sizeof(unsigned long)) { 2593 spinlock_t *ptl = pte_lockptr(mm, pmd); 2594 spin_lock(ptl); 2595 same = pte_same(*page_table, orig_pte); 2596 spin_unlock(ptl); 2597 } 2598 #endif 2599 pte_unmap(page_table); 2600 return same; 2601 } 2602 2603 static inline bool cow_user_page(struct page *dst, struct page *src, 2604 struct vm_fault *vmf) 2605 { 2606 bool ret; 2607 void *kaddr; 2608 void __user *uaddr; 2609 bool locked = false; 2610 struct vm_area_struct *vma = vmf->vma; 2611 struct mm_struct *mm = vma->vm_mm; 2612 unsigned long addr = vmf->address; 2613 2614 if (likely(src)) { 2615 copy_user_highpage(dst, src, addr, vma); 2616 return true; 2617 } 2618 2619 /* 2620 * If the source page was a PFN mapping, we don't have 2621 * a "struct page" for it. We do a best-effort copy by 2622 * just copying from the original user address. If that 2623 * fails, we just zero-fill it. Live with it. 2624 */ 2625 kaddr = kmap_atomic(dst); 2626 uaddr = (void __user *)(addr & PAGE_MASK); 2627 2628 /* 2629 * On architectures with software "accessed" bits, we would 2630 * take a double page fault, so mark it accessed here. 2631 */ 2632 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2633 pte_t entry; 2634 2635 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2636 locked = true; 2637 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2638 /* 2639 * Other thread has already handled the fault 2640 * and update local tlb only 2641 */ 2642 update_mmu_tlb(vma, addr, vmf->pte); 2643 ret = false; 2644 goto pte_unlock; 2645 } 2646 2647 entry = pte_mkyoung(vmf->orig_pte); 2648 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2649 update_mmu_cache(vma, addr, vmf->pte); 2650 } 2651 2652 /* 2653 * This really shouldn't fail, because the page is there 2654 * in the page tables. But it might just be unreadable, 2655 * in which case we just give up and fill the result with 2656 * zeroes. 2657 */ 2658 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2659 if (locked) 2660 goto warn; 2661 2662 /* Re-validate under PTL if the page is still mapped */ 2663 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2664 locked = true; 2665 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2666 /* The PTE changed under us, update local tlb */ 2667 update_mmu_tlb(vma, addr, vmf->pte); 2668 ret = false; 2669 goto pte_unlock; 2670 } 2671 2672 /* 2673 * The same page can be mapped back since last copy attempt. 2674 * Try to copy again under PTL. 2675 */ 2676 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2677 /* 2678 * Give a warn in case there can be some obscure 2679 * use-case 2680 */ 2681 warn: 2682 WARN_ON_ONCE(1); 2683 clear_page(kaddr); 2684 } 2685 } 2686 2687 ret = true; 2688 2689 pte_unlock: 2690 if (locked) 2691 pte_unmap_unlock(vmf->pte, vmf->ptl); 2692 kunmap_atomic(kaddr); 2693 flush_dcache_page(dst); 2694 2695 return ret; 2696 } 2697 2698 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2699 { 2700 struct file *vm_file = vma->vm_file; 2701 2702 if (vm_file) 2703 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2704 2705 /* 2706 * Special mappings (e.g. VDSO) do not have any file so fake 2707 * a default GFP_KERNEL for them. 2708 */ 2709 return GFP_KERNEL; 2710 } 2711 2712 /* 2713 * Notify the address space that the page is about to become writable so that 2714 * it can prohibit this or wait for the page to get into an appropriate state. 2715 * 2716 * We do this without the lock held, so that it can sleep if it needs to. 2717 */ 2718 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2719 { 2720 vm_fault_t ret; 2721 struct page *page = vmf->page; 2722 unsigned int old_flags = vmf->flags; 2723 2724 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2725 2726 if (vmf->vma->vm_file && 2727 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2728 return VM_FAULT_SIGBUS; 2729 2730 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2731 /* Restore original flags so that caller is not surprised */ 2732 vmf->flags = old_flags; 2733 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2734 return ret; 2735 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2736 lock_page(page); 2737 if (!page->mapping) { 2738 unlock_page(page); 2739 return 0; /* retry */ 2740 } 2741 ret |= VM_FAULT_LOCKED; 2742 } else 2743 VM_BUG_ON_PAGE(!PageLocked(page), page); 2744 return ret; 2745 } 2746 2747 /* 2748 * Handle dirtying of a page in shared file mapping on a write fault. 2749 * 2750 * The function expects the page to be locked and unlocks it. 2751 */ 2752 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2753 { 2754 struct vm_area_struct *vma = vmf->vma; 2755 struct address_space *mapping; 2756 struct page *page = vmf->page; 2757 bool dirtied; 2758 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2759 2760 dirtied = set_page_dirty(page); 2761 VM_BUG_ON_PAGE(PageAnon(page), page); 2762 /* 2763 * Take a local copy of the address_space - page.mapping may be zeroed 2764 * by truncate after unlock_page(). The address_space itself remains 2765 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2766 * release semantics to prevent the compiler from undoing this copying. 2767 */ 2768 mapping = page_rmapping(page); 2769 unlock_page(page); 2770 2771 if (!page_mkwrite) 2772 file_update_time(vma->vm_file); 2773 2774 /* 2775 * Throttle page dirtying rate down to writeback speed. 2776 * 2777 * mapping may be NULL here because some device drivers do not 2778 * set page.mapping but still dirty their pages 2779 * 2780 * Drop the mmap_lock before waiting on IO, if we can. The file 2781 * is pinning the mapping, as per above. 2782 */ 2783 if ((dirtied || page_mkwrite) && mapping) { 2784 struct file *fpin; 2785 2786 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2787 balance_dirty_pages_ratelimited(mapping); 2788 if (fpin) { 2789 fput(fpin); 2790 return VM_FAULT_RETRY; 2791 } 2792 } 2793 2794 return 0; 2795 } 2796 2797 /* 2798 * Handle write page faults for pages that can be reused in the current vma 2799 * 2800 * This can happen either due to the mapping being with the VM_SHARED flag, 2801 * or due to us being the last reference standing to the page. In either 2802 * case, all we need to do here is to mark the page as writable and update 2803 * any related book-keeping. 2804 */ 2805 static inline void wp_page_reuse(struct vm_fault *vmf) 2806 __releases(vmf->ptl) 2807 { 2808 struct vm_area_struct *vma = vmf->vma; 2809 struct page *page = vmf->page; 2810 pte_t entry; 2811 /* 2812 * Clear the pages cpupid information as the existing 2813 * information potentially belongs to a now completely 2814 * unrelated process. 2815 */ 2816 if (page) 2817 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2818 2819 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2820 entry = pte_mkyoung(vmf->orig_pte); 2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2822 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2823 update_mmu_cache(vma, vmf->address, vmf->pte); 2824 pte_unmap_unlock(vmf->pte, vmf->ptl); 2825 count_vm_event(PGREUSE); 2826 } 2827 2828 /* 2829 * Handle the case of a page which we actually need to copy to a new page. 2830 * 2831 * Called with mmap_lock locked and the old page referenced, but 2832 * without the ptl held. 2833 * 2834 * High level logic flow: 2835 * 2836 * - Allocate a page, copy the content of the old page to the new one. 2837 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2838 * - Take the PTL. If the pte changed, bail out and release the allocated page 2839 * - If the pte is still the way we remember it, update the page table and all 2840 * relevant references. This includes dropping the reference the page-table 2841 * held to the old page, as well as updating the rmap. 2842 * - In any case, unlock the PTL and drop the reference we took to the old page. 2843 */ 2844 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2845 { 2846 struct vm_area_struct *vma = vmf->vma; 2847 struct mm_struct *mm = vma->vm_mm; 2848 struct page *old_page = vmf->page; 2849 struct page *new_page = NULL; 2850 pte_t entry; 2851 int page_copied = 0; 2852 struct mmu_notifier_range range; 2853 2854 if (unlikely(anon_vma_prepare(vma))) 2855 goto oom; 2856 2857 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2858 new_page = alloc_zeroed_user_highpage_movable(vma, 2859 vmf->address); 2860 if (!new_page) 2861 goto oom; 2862 } else { 2863 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2864 vmf->address); 2865 if (!new_page) 2866 goto oom; 2867 2868 if (!cow_user_page(new_page, old_page, vmf)) { 2869 /* 2870 * COW failed, if the fault was solved by other, 2871 * it's fine. If not, userspace would re-fault on 2872 * the same address and we will handle the fault 2873 * from the second attempt. 2874 */ 2875 put_page(new_page); 2876 if (old_page) 2877 put_page(old_page); 2878 return 0; 2879 } 2880 } 2881 2882 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2883 goto oom_free_new; 2884 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2885 2886 __SetPageUptodate(new_page); 2887 2888 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2889 vmf->address & PAGE_MASK, 2890 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2891 mmu_notifier_invalidate_range_start(&range); 2892 2893 /* 2894 * Re-check the pte - we dropped the lock 2895 */ 2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2897 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2898 if (old_page) { 2899 if (!PageAnon(old_page)) { 2900 dec_mm_counter_fast(mm, 2901 mm_counter_file(old_page)); 2902 inc_mm_counter_fast(mm, MM_ANONPAGES); 2903 } 2904 } else { 2905 inc_mm_counter_fast(mm, MM_ANONPAGES); 2906 } 2907 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2908 entry = mk_pte(new_page, vma->vm_page_prot); 2909 entry = pte_sw_mkyoung(entry); 2910 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2911 /* 2912 * Clear the pte entry and flush it first, before updating the 2913 * pte with the new entry. This will avoid a race condition 2914 * seen in the presence of one thread doing SMC and another 2915 * thread doing COW. 2916 */ 2917 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2918 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2919 lru_cache_add_inactive_or_unevictable(new_page, vma); 2920 /* 2921 * We call the notify macro here because, when using secondary 2922 * mmu page tables (such as kvm shadow page tables), we want the 2923 * new page to be mapped directly into the secondary page table. 2924 */ 2925 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2926 update_mmu_cache(vma, vmf->address, vmf->pte); 2927 if (old_page) { 2928 /* 2929 * Only after switching the pte to the new page may 2930 * we remove the mapcount here. Otherwise another 2931 * process may come and find the rmap count decremented 2932 * before the pte is switched to the new page, and 2933 * "reuse" the old page writing into it while our pte 2934 * here still points into it and can be read by other 2935 * threads. 2936 * 2937 * The critical issue is to order this 2938 * page_remove_rmap with the ptp_clear_flush above. 2939 * Those stores are ordered by (if nothing else,) 2940 * the barrier present in the atomic_add_negative 2941 * in page_remove_rmap. 2942 * 2943 * Then the TLB flush in ptep_clear_flush ensures that 2944 * no process can access the old page before the 2945 * decremented mapcount is visible. And the old page 2946 * cannot be reused until after the decremented 2947 * mapcount is visible. So transitively, TLBs to 2948 * old page will be flushed before it can be reused. 2949 */ 2950 page_remove_rmap(old_page, false); 2951 } 2952 2953 /* Free the old page.. */ 2954 new_page = old_page; 2955 page_copied = 1; 2956 } else { 2957 update_mmu_tlb(vma, vmf->address, vmf->pte); 2958 } 2959 2960 if (new_page) 2961 put_page(new_page); 2962 2963 pte_unmap_unlock(vmf->pte, vmf->ptl); 2964 /* 2965 * No need to double call mmu_notifier->invalidate_range() callback as 2966 * the above ptep_clear_flush_notify() did already call it. 2967 */ 2968 mmu_notifier_invalidate_range_only_end(&range); 2969 if (old_page) { 2970 /* 2971 * Don't let another task, with possibly unlocked vma, 2972 * keep the mlocked page. 2973 */ 2974 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2975 lock_page(old_page); /* LRU manipulation */ 2976 if (PageMlocked(old_page)) 2977 munlock_vma_page(old_page); 2978 unlock_page(old_page); 2979 } 2980 put_page(old_page); 2981 } 2982 return page_copied ? VM_FAULT_WRITE : 0; 2983 oom_free_new: 2984 put_page(new_page); 2985 oom: 2986 if (old_page) 2987 put_page(old_page); 2988 return VM_FAULT_OOM; 2989 } 2990 2991 /** 2992 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2993 * writeable once the page is prepared 2994 * 2995 * @vmf: structure describing the fault 2996 * 2997 * This function handles all that is needed to finish a write page fault in a 2998 * shared mapping due to PTE being read-only once the mapped page is prepared. 2999 * It handles locking of PTE and modifying it. 3000 * 3001 * The function expects the page to be locked or other protection against 3002 * concurrent faults / writeback (such as DAX radix tree locks). 3003 * 3004 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 3005 * we acquired PTE lock. 3006 */ 3007 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3008 { 3009 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3010 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3011 &vmf->ptl); 3012 /* 3013 * We might have raced with another page fault while we released the 3014 * pte_offset_map_lock. 3015 */ 3016 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3017 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3018 pte_unmap_unlock(vmf->pte, vmf->ptl); 3019 return VM_FAULT_NOPAGE; 3020 } 3021 wp_page_reuse(vmf); 3022 return 0; 3023 } 3024 3025 /* 3026 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3027 * mapping 3028 */ 3029 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3030 { 3031 struct vm_area_struct *vma = vmf->vma; 3032 3033 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3034 vm_fault_t ret; 3035 3036 pte_unmap_unlock(vmf->pte, vmf->ptl); 3037 vmf->flags |= FAULT_FLAG_MKWRITE; 3038 ret = vma->vm_ops->pfn_mkwrite(vmf); 3039 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3040 return ret; 3041 return finish_mkwrite_fault(vmf); 3042 } 3043 wp_page_reuse(vmf); 3044 return VM_FAULT_WRITE; 3045 } 3046 3047 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3048 __releases(vmf->ptl) 3049 { 3050 struct vm_area_struct *vma = vmf->vma; 3051 vm_fault_t ret = VM_FAULT_WRITE; 3052 3053 get_page(vmf->page); 3054 3055 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3056 vm_fault_t tmp; 3057 3058 pte_unmap_unlock(vmf->pte, vmf->ptl); 3059 tmp = do_page_mkwrite(vmf); 3060 if (unlikely(!tmp || (tmp & 3061 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3062 put_page(vmf->page); 3063 return tmp; 3064 } 3065 tmp = finish_mkwrite_fault(vmf); 3066 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3067 unlock_page(vmf->page); 3068 put_page(vmf->page); 3069 return tmp; 3070 } 3071 } else { 3072 wp_page_reuse(vmf); 3073 lock_page(vmf->page); 3074 } 3075 ret |= fault_dirty_shared_page(vmf); 3076 put_page(vmf->page); 3077 3078 return ret; 3079 } 3080 3081 /* 3082 * This routine handles present pages, when users try to write 3083 * to a shared page. It is done by copying the page to a new address 3084 * and decrementing the shared-page counter for the old page. 3085 * 3086 * Note that this routine assumes that the protection checks have been 3087 * done by the caller (the low-level page fault routine in most cases). 3088 * Thus we can safely just mark it writable once we've done any necessary 3089 * COW. 3090 * 3091 * We also mark the page dirty at this point even though the page will 3092 * change only once the write actually happens. This avoids a few races, 3093 * and potentially makes it more efficient. 3094 * 3095 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3096 * but allow concurrent faults), with pte both mapped and locked. 3097 * We return with mmap_lock still held, but pte unmapped and unlocked. 3098 */ 3099 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3100 __releases(vmf->ptl) 3101 { 3102 struct vm_area_struct *vma = vmf->vma; 3103 3104 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3105 pte_unmap_unlock(vmf->pte, vmf->ptl); 3106 return handle_userfault(vmf, VM_UFFD_WP); 3107 } 3108 3109 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3110 if (!vmf->page) { 3111 /* 3112 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3113 * VM_PFNMAP VMA. 3114 * 3115 * We should not cow pages in a shared writeable mapping. 3116 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3117 */ 3118 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3119 (VM_WRITE|VM_SHARED)) 3120 return wp_pfn_shared(vmf); 3121 3122 pte_unmap_unlock(vmf->pte, vmf->ptl); 3123 return wp_page_copy(vmf); 3124 } 3125 3126 /* 3127 * Take out anonymous pages first, anonymous shared vmas are 3128 * not dirty accountable. 3129 */ 3130 if (PageAnon(vmf->page)) { 3131 struct page *page = vmf->page; 3132 3133 /* PageKsm() doesn't necessarily raise the page refcount */ 3134 if (PageKsm(page) || page_count(page) != 1) 3135 goto copy; 3136 if (!trylock_page(page)) 3137 goto copy; 3138 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3139 unlock_page(page); 3140 goto copy; 3141 } 3142 /* 3143 * Ok, we've got the only map reference, and the only 3144 * page count reference, and the page is locked, 3145 * it's dark out, and we're wearing sunglasses. Hit it. 3146 */ 3147 unlock_page(page); 3148 wp_page_reuse(vmf); 3149 return VM_FAULT_WRITE; 3150 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3151 (VM_WRITE|VM_SHARED))) { 3152 return wp_page_shared(vmf); 3153 } 3154 copy: 3155 /* 3156 * Ok, we need to copy. Oh, well.. 3157 */ 3158 get_page(vmf->page); 3159 3160 pte_unmap_unlock(vmf->pte, vmf->ptl); 3161 return wp_page_copy(vmf); 3162 } 3163 3164 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3165 unsigned long start_addr, unsigned long end_addr, 3166 struct zap_details *details) 3167 { 3168 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3169 } 3170 3171 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3172 struct zap_details *details) 3173 { 3174 struct vm_area_struct *vma; 3175 pgoff_t vba, vea, zba, zea; 3176 3177 vma_interval_tree_foreach(vma, root, 3178 details->first_index, details->last_index) { 3179 3180 vba = vma->vm_pgoff; 3181 vea = vba + vma_pages(vma) - 1; 3182 zba = details->first_index; 3183 if (zba < vba) 3184 zba = vba; 3185 zea = details->last_index; 3186 if (zea > vea) 3187 zea = vea; 3188 3189 unmap_mapping_range_vma(vma, 3190 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3191 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3192 details); 3193 } 3194 } 3195 3196 /** 3197 * unmap_mapping_pages() - Unmap pages from processes. 3198 * @mapping: The address space containing pages to be unmapped. 3199 * @start: Index of first page to be unmapped. 3200 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3201 * @even_cows: Whether to unmap even private COWed pages. 3202 * 3203 * Unmap the pages in this address space from any userspace process which 3204 * has them mmaped. Generally, you want to remove COWed pages as well when 3205 * a file is being truncated, but not when invalidating pages from the page 3206 * cache. 3207 */ 3208 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3209 pgoff_t nr, bool even_cows) 3210 { 3211 struct zap_details details = { }; 3212 3213 details.check_mapping = even_cows ? NULL : mapping; 3214 details.first_index = start; 3215 details.last_index = start + nr - 1; 3216 if (details.last_index < details.first_index) 3217 details.last_index = ULONG_MAX; 3218 3219 i_mmap_lock_write(mapping); 3220 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3221 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3222 i_mmap_unlock_write(mapping); 3223 } 3224 3225 /** 3226 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3227 * address_space corresponding to the specified byte range in the underlying 3228 * file. 3229 * 3230 * @mapping: the address space containing mmaps to be unmapped. 3231 * @holebegin: byte in first page to unmap, relative to the start of 3232 * the underlying file. This will be rounded down to a PAGE_SIZE 3233 * boundary. Note that this is different from truncate_pagecache(), which 3234 * must keep the partial page. In contrast, we must get rid of 3235 * partial pages. 3236 * @holelen: size of prospective hole in bytes. This will be rounded 3237 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3238 * end of the file. 3239 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3240 * but 0 when invalidating pagecache, don't throw away private data. 3241 */ 3242 void unmap_mapping_range(struct address_space *mapping, 3243 loff_t const holebegin, loff_t const holelen, int even_cows) 3244 { 3245 pgoff_t hba = holebegin >> PAGE_SHIFT; 3246 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3247 3248 /* Check for overflow. */ 3249 if (sizeof(holelen) > sizeof(hlen)) { 3250 long long holeend = 3251 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3252 if (holeend & ~(long long)ULONG_MAX) 3253 hlen = ULONG_MAX - hba + 1; 3254 } 3255 3256 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3257 } 3258 EXPORT_SYMBOL(unmap_mapping_range); 3259 3260 /* 3261 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3262 * but allow concurrent faults), and pte mapped but not yet locked. 3263 * We return with pte unmapped and unlocked. 3264 * 3265 * We return with the mmap_lock locked or unlocked in the same cases 3266 * as does filemap_fault(). 3267 */ 3268 vm_fault_t do_swap_page(struct vm_fault *vmf) 3269 { 3270 struct vm_area_struct *vma = vmf->vma; 3271 struct page *page = NULL, *swapcache; 3272 swp_entry_t entry; 3273 pte_t pte; 3274 int locked; 3275 int exclusive = 0; 3276 vm_fault_t ret = 0; 3277 void *shadow = NULL; 3278 3279 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3280 goto out; 3281 3282 entry = pte_to_swp_entry(vmf->orig_pte); 3283 if (unlikely(non_swap_entry(entry))) { 3284 if (is_migration_entry(entry)) { 3285 migration_entry_wait(vma->vm_mm, vmf->pmd, 3286 vmf->address); 3287 } else if (is_device_private_entry(entry)) { 3288 vmf->page = device_private_entry_to_page(entry); 3289 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3290 } else if (is_hwpoison_entry(entry)) { 3291 ret = VM_FAULT_HWPOISON; 3292 } else { 3293 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3294 ret = VM_FAULT_SIGBUS; 3295 } 3296 goto out; 3297 } 3298 3299 3300 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3301 page = lookup_swap_cache(entry, vma, vmf->address); 3302 swapcache = page; 3303 3304 if (!page) { 3305 struct swap_info_struct *si = swp_swap_info(entry); 3306 3307 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3308 __swap_count(entry) == 1) { 3309 /* skip swapcache */ 3310 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3311 vmf->address); 3312 if (page) { 3313 int err; 3314 3315 __SetPageLocked(page); 3316 __SetPageSwapBacked(page); 3317 set_page_private(page, entry.val); 3318 3319 /* Tell memcg to use swap ownership records */ 3320 SetPageSwapCache(page); 3321 err = mem_cgroup_charge(page, vma->vm_mm, 3322 GFP_KERNEL); 3323 ClearPageSwapCache(page); 3324 if (err) { 3325 ret = VM_FAULT_OOM; 3326 goto out_page; 3327 } 3328 3329 shadow = get_shadow_from_swap_cache(entry); 3330 if (shadow) 3331 workingset_refault(page, shadow); 3332 3333 lru_cache_add(page); 3334 swap_readpage(page, true); 3335 } 3336 } else { 3337 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3338 vmf); 3339 swapcache = page; 3340 } 3341 3342 if (!page) { 3343 /* 3344 * Back out if somebody else faulted in this pte 3345 * while we released the pte lock. 3346 */ 3347 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3348 vmf->address, &vmf->ptl); 3349 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3350 ret = VM_FAULT_OOM; 3351 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3352 goto unlock; 3353 } 3354 3355 /* Had to read the page from swap area: Major fault */ 3356 ret = VM_FAULT_MAJOR; 3357 count_vm_event(PGMAJFAULT); 3358 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3359 } else if (PageHWPoison(page)) { 3360 /* 3361 * hwpoisoned dirty swapcache pages are kept for killing 3362 * owner processes (which may be unknown at hwpoison time) 3363 */ 3364 ret = VM_FAULT_HWPOISON; 3365 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3366 goto out_release; 3367 } 3368 3369 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3370 3371 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3372 if (!locked) { 3373 ret |= VM_FAULT_RETRY; 3374 goto out_release; 3375 } 3376 3377 /* 3378 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3379 * release the swapcache from under us. The page pin, and pte_same 3380 * test below, are not enough to exclude that. Even if it is still 3381 * swapcache, we need to check that the page's swap has not changed. 3382 */ 3383 if (unlikely((!PageSwapCache(page) || 3384 page_private(page) != entry.val)) && swapcache) 3385 goto out_page; 3386 3387 page = ksm_might_need_to_copy(page, vma, vmf->address); 3388 if (unlikely(!page)) { 3389 ret = VM_FAULT_OOM; 3390 page = swapcache; 3391 goto out_page; 3392 } 3393 3394 cgroup_throttle_swaprate(page, GFP_KERNEL); 3395 3396 /* 3397 * Back out if somebody else already faulted in this pte. 3398 */ 3399 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3400 &vmf->ptl); 3401 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3402 goto out_nomap; 3403 3404 if (unlikely(!PageUptodate(page))) { 3405 ret = VM_FAULT_SIGBUS; 3406 goto out_nomap; 3407 } 3408 3409 /* 3410 * The page isn't present yet, go ahead with the fault. 3411 * 3412 * Be careful about the sequence of operations here. 3413 * To get its accounting right, reuse_swap_page() must be called 3414 * while the page is counted on swap but not yet in mapcount i.e. 3415 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3416 * must be called after the swap_free(), or it will never succeed. 3417 */ 3418 3419 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3420 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3421 pte = mk_pte(page, vma->vm_page_prot); 3422 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3423 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3424 vmf->flags &= ~FAULT_FLAG_WRITE; 3425 ret |= VM_FAULT_WRITE; 3426 exclusive = RMAP_EXCLUSIVE; 3427 } 3428 flush_icache_page(vma, page); 3429 if (pte_swp_soft_dirty(vmf->orig_pte)) 3430 pte = pte_mksoft_dirty(pte); 3431 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3432 pte = pte_mkuffd_wp(pte); 3433 pte = pte_wrprotect(pte); 3434 } 3435 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3436 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3437 vmf->orig_pte = pte; 3438 3439 /* ksm created a completely new copy */ 3440 if (unlikely(page != swapcache && swapcache)) { 3441 page_add_new_anon_rmap(page, vma, vmf->address, false); 3442 lru_cache_add_inactive_or_unevictable(page, vma); 3443 } else { 3444 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3445 } 3446 3447 swap_free(entry); 3448 if (mem_cgroup_swap_full(page) || 3449 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3450 try_to_free_swap(page); 3451 unlock_page(page); 3452 if (page != swapcache && swapcache) { 3453 /* 3454 * Hold the lock to avoid the swap entry to be reused 3455 * until we take the PT lock for the pte_same() check 3456 * (to avoid false positives from pte_same). For 3457 * further safety release the lock after the swap_free 3458 * so that the swap count won't change under a 3459 * parallel locked swapcache. 3460 */ 3461 unlock_page(swapcache); 3462 put_page(swapcache); 3463 } 3464 3465 if (vmf->flags & FAULT_FLAG_WRITE) { 3466 ret |= do_wp_page(vmf); 3467 if (ret & VM_FAULT_ERROR) 3468 ret &= VM_FAULT_ERROR; 3469 goto out; 3470 } 3471 3472 /* No need to invalidate - it was non-present before */ 3473 update_mmu_cache(vma, vmf->address, vmf->pte); 3474 unlock: 3475 pte_unmap_unlock(vmf->pte, vmf->ptl); 3476 out: 3477 return ret; 3478 out_nomap: 3479 pte_unmap_unlock(vmf->pte, vmf->ptl); 3480 out_page: 3481 unlock_page(page); 3482 out_release: 3483 put_page(page); 3484 if (page != swapcache && swapcache) { 3485 unlock_page(swapcache); 3486 put_page(swapcache); 3487 } 3488 return ret; 3489 } 3490 3491 /* 3492 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3493 * but allow concurrent faults), and pte mapped but not yet locked. 3494 * We return with mmap_lock still held, but pte unmapped and unlocked. 3495 */ 3496 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3497 { 3498 struct vm_area_struct *vma = vmf->vma; 3499 struct page *page; 3500 vm_fault_t ret = 0; 3501 pte_t entry; 3502 3503 /* File mapping without ->vm_ops ? */ 3504 if (vma->vm_flags & VM_SHARED) 3505 return VM_FAULT_SIGBUS; 3506 3507 /* 3508 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3509 * pte_offset_map() on pmds where a huge pmd might be created 3510 * from a different thread. 3511 * 3512 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3513 * parallel threads are excluded by other means. 3514 * 3515 * Here we only have mmap_read_lock(mm). 3516 */ 3517 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3518 return VM_FAULT_OOM; 3519 3520 /* See the comment in pte_alloc_one_map() */ 3521 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3522 return 0; 3523 3524 /* Use the zero-page for reads */ 3525 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3526 !mm_forbids_zeropage(vma->vm_mm)) { 3527 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3528 vma->vm_page_prot)); 3529 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3530 vmf->address, &vmf->ptl); 3531 if (!pte_none(*vmf->pte)) { 3532 update_mmu_tlb(vma, vmf->address, vmf->pte); 3533 goto unlock; 3534 } 3535 ret = check_stable_address_space(vma->vm_mm); 3536 if (ret) 3537 goto unlock; 3538 /* Deliver the page fault to userland, check inside PT lock */ 3539 if (userfaultfd_missing(vma)) { 3540 pte_unmap_unlock(vmf->pte, vmf->ptl); 3541 return handle_userfault(vmf, VM_UFFD_MISSING); 3542 } 3543 goto setpte; 3544 } 3545 3546 /* Allocate our own private page. */ 3547 if (unlikely(anon_vma_prepare(vma))) 3548 goto oom; 3549 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3550 if (!page) 3551 goto oom; 3552 3553 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3554 goto oom_free_page; 3555 cgroup_throttle_swaprate(page, GFP_KERNEL); 3556 3557 /* 3558 * The memory barrier inside __SetPageUptodate makes sure that 3559 * preceding stores to the page contents become visible before 3560 * the set_pte_at() write. 3561 */ 3562 __SetPageUptodate(page); 3563 3564 entry = mk_pte(page, vma->vm_page_prot); 3565 entry = pte_sw_mkyoung(entry); 3566 if (vma->vm_flags & VM_WRITE) 3567 entry = pte_mkwrite(pte_mkdirty(entry)); 3568 3569 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3570 &vmf->ptl); 3571 if (!pte_none(*vmf->pte)) { 3572 update_mmu_cache(vma, vmf->address, vmf->pte); 3573 goto release; 3574 } 3575 3576 ret = check_stable_address_space(vma->vm_mm); 3577 if (ret) 3578 goto release; 3579 3580 /* Deliver the page fault to userland, check inside PT lock */ 3581 if (userfaultfd_missing(vma)) { 3582 pte_unmap_unlock(vmf->pte, vmf->ptl); 3583 put_page(page); 3584 return handle_userfault(vmf, VM_UFFD_MISSING); 3585 } 3586 3587 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3588 page_add_new_anon_rmap(page, vma, vmf->address, false); 3589 lru_cache_add_inactive_or_unevictable(page, vma); 3590 setpte: 3591 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3592 3593 /* No need to invalidate - it was non-present before */ 3594 update_mmu_cache(vma, vmf->address, vmf->pte); 3595 unlock: 3596 pte_unmap_unlock(vmf->pte, vmf->ptl); 3597 return ret; 3598 release: 3599 put_page(page); 3600 goto unlock; 3601 oom_free_page: 3602 put_page(page); 3603 oom: 3604 return VM_FAULT_OOM; 3605 } 3606 3607 /* 3608 * The mmap_lock must have been held on entry, and may have been 3609 * released depending on flags and vma->vm_ops->fault() return value. 3610 * See filemap_fault() and __lock_page_retry(). 3611 */ 3612 static vm_fault_t __do_fault(struct vm_fault *vmf) 3613 { 3614 struct vm_area_struct *vma = vmf->vma; 3615 vm_fault_t ret; 3616 3617 /* 3618 * Preallocate pte before we take page_lock because this might lead to 3619 * deadlocks for memcg reclaim which waits for pages under writeback: 3620 * lock_page(A) 3621 * SetPageWriteback(A) 3622 * unlock_page(A) 3623 * lock_page(B) 3624 * lock_page(B) 3625 * pte_alloc_pne 3626 * shrink_page_list 3627 * wait_on_page_writeback(A) 3628 * SetPageWriteback(B) 3629 * unlock_page(B) 3630 * # flush A, B to clear the writeback 3631 */ 3632 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3633 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3634 if (!vmf->prealloc_pte) 3635 return VM_FAULT_OOM; 3636 smp_wmb(); /* See comment in __pte_alloc() */ 3637 } 3638 3639 ret = vma->vm_ops->fault(vmf); 3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3641 VM_FAULT_DONE_COW))) 3642 return ret; 3643 3644 if (unlikely(PageHWPoison(vmf->page))) { 3645 if (ret & VM_FAULT_LOCKED) 3646 unlock_page(vmf->page); 3647 put_page(vmf->page); 3648 vmf->page = NULL; 3649 return VM_FAULT_HWPOISON; 3650 } 3651 3652 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3653 lock_page(vmf->page); 3654 else 3655 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3656 3657 return ret; 3658 } 3659 3660 /* 3661 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3662 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3663 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3664 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3665 */ 3666 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3667 { 3668 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3669 } 3670 3671 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3672 { 3673 struct vm_area_struct *vma = vmf->vma; 3674 3675 if (!pmd_none(*vmf->pmd)) 3676 goto map_pte; 3677 if (vmf->prealloc_pte) { 3678 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3679 if (unlikely(!pmd_none(*vmf->pmd))) { 3680 spin_unlock(vmf->ptl); 3681 goto map_pte; 3682 } 3683 3684 mm_inc_nr_ptes(vma->vm_mm); 3685 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3686 spin_unlock(vmf->ptl); 3687 vmf->prealloc_pte = NULL; 3688 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3689 return VM_FAULT_OOM; 3690 } 3691 map_pte: 3692 /* 3693 * If a huge pmd materialized under us just retry later. Use 3694 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3695 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3696 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3697 * running immediately after a huge pmd fault in a different thread of 3698 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3699 * All we have to ensure is that it is a regular pmd that we can walk 3700 * with pte_offset_map() and we can do that through an atomic read in 3701 * C, which is what pmd_trans_unstable() provides. 3702 */ 3703 if (pmd_devmap_trans_unstable(vmf->pmd)) 3704 return VM_FAULT_NOPAGE; 3705 3706 /* 3707 * At this point we know that our vmf->pmd points to a page of ptes 3708 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3709 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3710 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3711 * be valid and we will re-check to make sure the vmf->pte isn't 3712 * pte_none() under vmf->ptl protection when we return to 3713 * alloc_set_pte(). 3714 */ 3715 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3716 &vmf->ptl); 3717 return 0; 3718 } 3719 3720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3721 static void deposit_prealloc_pte(struct vm_fault *vmf) 3722 { 3723 struct vm_area_struct *vma = vmf->vma; 3724 3725 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3726 /* 3727 * We are going to consume the prealloc table, 3728 * count that as nr_ptes. 3729 */ 3730 mm_inc_nr_ptes(vma->vm_mm); 3731 vmf->prealloc_pte = NULL; 3732 } 3733 3734 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3735 { 3736 struct vm_area_struct *vma = vmf->vma; 3737 bool write = vmf->flags & FAULT_FLAG_WRITE; 3738 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3739 pmd_t entry; 3740 int i; 3741 vm_fault_t ret; 3742 3743 if (!transhuge_vma_suitable(vma, haddr)) 3744 return VM_FAULT_FALLBACK; 3745 3746 ret = VM_FAULT_FALLBACK; 3747 page = compound_head(page); 3748 3749 /* 3750 * Archs like ppc64 need additonal space to store information 3751 * related to pte entry. Use the preallocated table for that. 3752 */ 3753 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3754 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3755 if (!vmf->prealloc_pte) 3756 return VM_FAULT_OOM; 3757 smp_wmb(); /* See comment in __pte_alloc() */ 3758 } 3759 3760 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3761 if (unlikely(!pmd_none(*vmf->pmd))) 3762 goto out; 3763 3764 for (i = 0; i < HPAGE_PMD_NR; i++) 3765 flush_icache_page(vma, page + i); 3766 3767 entry = mk_huge_pmd(page, vma->vm_page_prot); 3768 if (write) 3769 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3770 3771 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3772 page_add_file_rmap(page, true); 3773 /* 3774 * deposit and withdraw with pmd lock held 3775 */ 3776 if (arch_needs_pgtable_deposit()) 3777 deposit_prealloc_pte(vmf); 3778 3779 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3780 3781 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3782 3783 /* fault is handled */ 3784 ret = 0; 3785 count_vm_event(THP_FILE_MAPPED); 3786 out: 3787 spin_unlock(vmf->ptl); 3788 return ret; 3789 } 3790 #else 3791 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3792 { 3793 BUILD_BUG(); 3794 return 0; 3795 } 3796 #endif 3797 3798 /** 3799 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3800 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3801 * 3802 * @vmf: fault environment 3803 * @page: page to map 3804 * 3805 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3806 * return. 3807 * 3808 * Target users are page handler itself and implementations of 3809 * vm_ops->map_pages. 3810 * 3811 * Return: %0 on success, %VM_FAULT_ code in case of error. 3812 */ 3813 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3814 { 3815 struct vm_area_struct *vma = vmf->vma; 3816 bool write = vmf->flags & FAULT_FLAG_WRITE; 3817 pte_t entry; 3818 vm_fault_t ret; 3819 3820 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3821 ret = do_set_pmd(vmf, page); 3822 if (ret != VM_FAULT_FALLBACK) 3823 return ret; 3824 } 3825 3826 if (!vmf->pte) { 3827 ret = pte_alloc_one_map(vmf); 3828 if (ret) 3829 return ret; 3830 } 3831 3832 /* Re-check under ptl */ 3833 if (unlikely(!pte_none(*vmf->pte))) { 3834 update_mmu_tlb(vma, vmf->address, vmf->pte); 3835 return VM_FAULT_NOPAGE; 3836 } 3837 3838 flush_icache_page(vma, page); 3839 entry = mk_pte(page, vma->vm_page_prot); 3840 entry = pte_sw_mkyoung(entry); 3841 if (write) 3842 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3843 /* copy-on-write page */ 3844 if (write && !(vma->vm_flags & VM_SHARED)) { 3845 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3846 page_add_new_anon_rmap(page, vma, vmf->address, false); 3847 lru_cache_add_inactive_or_unevictable(page, vma); 3848 } else { 3849 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3850 page_add_file_rmap(page, false); 3851 } 3852 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3853 3854 /* no need to invalidate: a not-present page won't be cached */ 3855 update_mmu_cache(vma, vmf->address, vmf->pte); 3856 3857 return 0; 3858 } 3859 3860 3861 /** 3862 * finish_fault - finish page fault once we have prepared the page to fault 3863 * 3864 * @vmf: structure describing the fault 3865 * 3866 * This function handles all that is needed to finish a page fault once the 3867 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3868 * given page, adds reverse page mapping, handles memcg charges and LRU 3869 * addition. 3870 * 3871 * The function expects the page to be locked and on success it consumes a 3872 * reference of a page being mapped (for the PTE which maps it). 3873 * 3874 * Return: %0 on success, %VM_FAULT_ code in case of error. 3875 */ 3876 vm_fault_t finish_fault(struct vm_fault *vmf) 3877 { 3878 struct page *page; 3879 vm_fault_t ret = 0; 3880 3881 /* Did we COW the page? */ 3882 if ((vmf->flags & FAULT_FLAG_WRITE) && 3883 !(vmf->vma->vm_flags & VM_SHARED)) 3884 page = vmf->cow_page; 3885 else 3886 page = vmf->page; 3887 3888 /* 3889 * check even for read faults because we might have lost our CoWed 3890 * page 3891 */ 3892 if (!(vmf->vma->vm_flags & VM_SHARED)) 3893 ret = check_stable_address_space(vmf->vma->vm_mm); 3894 if (!ret) 3895 ret = alloc_set_pte(vmf, page); 3896 if (vmf->pte) 3897 pte_unmap_unlock(vmf->pte, vmf->ptl); 3898 return ret; 3899 } 3900 3901 static unsigned long fault_around_bytes __read_mostly = 3902 rounddown_pow_of_two(65536); 3903 3904 #ifdef CONFIG_DEBUG_FS 3905 static int fault_around_bytes_get(void *data, u64 *val) 3906 { 3907 *val = fault_around_bytes; 3908 return 0; 3909 } 3910 3911 /* 3912 * fault_around_bytes must be rounded down to the nearest page order as it's 3913 * what do_fault_around() expects to see. 3914 */ 3915 static int fault_around_bytes_set(void *data, u64 val) 3916 { 3917 if (val / PAGE_SIZE > PTRS_PER_PTE) 3918 return -EINVAL; 3919 if (val > PAGE_SIZE) 3920 fault_around_bytes = rounddown_pow_of_two(val); 3921 else 3922 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3923 return 0; 3924 } 3925 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3926 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3927 3928 static int __init fault_around_debugfs(void) 3929 { 3930 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3931 &fault_around_bytes_fops); 3932 return 0; 3933 } 3934 late_initcall(fault_around_debugfs); 3935 #endif 3936 3937 /* 3938 * do_fault_around() tries to map few pages around the fault address. The hope 3939 * is that the pages will be needed soon and this will lower the number of 3940 * faults to handle. 3941 * 3942 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3943 * not ready to be mapped: not up-to-date, locked, etc. 3944 * 3945 * This function is called with the page table lock taken. In the split ptlock 3946 * case the page table lock only protects only those entries which belong to 3947 * the page table corresponding to the fault address. 3948 * 3949 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3950 * only once. 3951 * 3952 * fault_around_bytes defines how many bytes we'll try to map. 3953 * do_fault_around() expects it to be set to a power of two less than or equal 3954 * to PTRS_PER_PTE. 3955 * 3956 * The virtual address of the area that we map is naturally aligned to 3957 * fault_around_bytes rounded down to the machine page size 3958 * (and therefore to page order). This way it's easier to guarantee 3959 * that we don't cross page table boundaries. 3960 */ 3961 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3962 { 3963 unsigned long address = vmf->address, nr_pages, mask; 3964 pgoff_t start_pgoff = vmf->pgoff; 3965 pgoff_t end_pgoff; 3966 int off; 3967 vm_fault_t ret = 0; 3968 3969 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3970 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3971 3972 vmf->address = max(address & mask, vmf->vma->vm_start); 3973 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3974 start_pgoff -= off; 3975 3976 /* 3977 * end_pgoff is either the end of the page table, the end of 3978 * the vma or nr_pages from start_pgoff, depending what is nearest. 3979 */ 3980 end_pgoff = start_pgoff - 3981 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3982 PTRS_PER_PTE - 1; 3983 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3984 start_pgoff + nr_pages - 1); 3985 3986 if (pmd_none(*vmf->pmd)) { 3987 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3988 if (!vmf->prealloc_pte) 3989 goto out; 3990 smp_wmb(); /* See comment in __pte_alloc() */ 3991 } 3992 3993 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3994 3995 /* Huge page is mapped? Page fault is solved */ 3996 if (pmd_trans_huge(*vmf->pmd)) { 3997 ret = VM_FAULT_NOPAGE; 3998 goto out; 3999 } 4000 4001 /* ->map_pages() haven't done anything useful. Cold page cache? */ 4002 if (!vmf->pte) 4003 goto out; 4004 4005 /* check if the page fault is solved */ 4006 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 4007 if (!pte_none(*vmf->pte)) 4008 ret = VM_FAULT_NOPAGE; 4009 pte_unmap_unlock(vmf->pte, vmf->ptl); 4010 out: 4011 vmf->address = address; 4012 vmf->pte = NULL; 4013 return ret; 4014 } 4015 4016 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4017 { 4018 struct vm_area_struct *vma = vmf->vma; 4019 vm_fault_t ret = 0; 4020 4021 /* 4022 * Let's call ->map_pages() first and use ->fault() as fallback 4023 * if page by the offset is not ready to be mapped (cold cache or 4024 * something). 4025 */ 4026 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 4027 ret = do_fault_around(vmf); 4028 if (ret) 4029 return ret; 4030 } 4031 4032 ret = __do_fault(vmf); 4033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4034 return ret; 4035 4036 ret |= finish_fault(vmf); 4037 unlock_page(vmf->page); 4038 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4039 put_page(vmf->page); 4040 return ret; 4041 } 4042 4043 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4044 { 4045 struct vm_area_struct *vma = vmf->vma; 4046 vm_fault_t ret; 4047 4048 if (unlikely(anon_vma_prepare(vma))) 4049 return VM_FAULT_OOM; 4050 4051 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4052 if (!vmf->cow_page) 4053 return VM_FAULT_OOM; 4054 4055 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4056 put_page(vmf->cow_page); 4057 return VM_FAULT_OOM; 4058 } 4059 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4060 4061 ret = __do_fault(vmf); 4062 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4063 goto uncharge_out; 4064 if (ret & VM_FAULT_DONE_COW) 4065 return ret; 4066 4067 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4068 __SetPageUptodate(vmf->cow_page); 4069 4070 ret |= finish_fault(vmf); 4071 unlock_page(vmf->page); 4072 put_page(vmf->page); 4073 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4074 goto uncharge_out; 4075 return ret; 4076 uncharge_out: 4077 put_page(vmf->cow_page); 4078 return ret; 4079 } 4080 4081 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4082 { 4083 struct vm_area_struct *vma = vmf->vma; 4084 vm_fault_t ret, tmp; 4085 4086 ret = __do_fault(vmf); 4087 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4088 return ret; 4089 4090 /* 4091 * Check if the backing address space wants to know that the page is 4092 * about to become writable 4093 */ 4094 if (vma->vm_ops->page_mkwrite) { 4095 unlock_page(vmf->page); 4096 tmp = do_page_mkwrite(vmf); 4097 if (unlikely(!tmp || 4098 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4099 put_page(vmf->page); 4100 return tmp; 4101 } 4102 } 4103 4104 ret |= finish_fault(vmf); 4105 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4106 VM_FAULT_RETRY))) { 4107 unlock_page(vmf->page); 4108 put_page(vmf->page); 4109 return ret; 4110 } 4111 4112 ret |= fault_dirty_shared_page(vmf); 4113 return ret; 4114 } 4115 4116 /* 4117 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4118 * but allow concurrent faults). 4119 * The mmap_lock may have been released depending on flags and our 4120 * return value. See filemap_fault() and __lock_page_or_retry(). 4121 * If mmap_lock is released, vma may become invalid (for example 4122 * by other thread calling munmap()). 4123 */ 4124 static vm_fault_t do_fault(struct vm_fault *vmf) 4125 { 4126 struct vm_area_struct *vma = vmf->vma; 4127 struct mm_struct *vm_mm = vma->vm_mm; 4128 vm_fault_t ret; 4129 4130 /* 4131 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4132 */ 4133 if (!vma->vm_ops->fault) { 4134 /* 4135 * If we find a migration pmd entry or a none pmd entry, which 4136 * should never happen, return SIGBUS 4137 */ 4138 if (unlikely(!pmd_present(*vmf->pmd))) 4139 ret = VM_FAULT_SIGBUS; 4140 else { 4141 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4142 vmf->pmd, 4143 vmf->address, 4144 &vmf->ptl); 4145 /* 4146 * Make sure this is not a temporary clearing of pte 4147 * by holding ptl and checking again. A R/M/W update 4148 * of pte involves: take ptl, clearing the pte so that 4149 * we don't have concurrent modification by hardware 4150 * followed by an update. 4151 */ 4152 if (unlikely(pte_none(*vmf->pte))) 4153 ret = VM_FAULT_SIGBUS; 4154 else 4155 ret = VM_FAULT_NOPAGE; 4156 4157 pte_unmap_unlock(vmf->pte, vmf->ptl); 4158 } 4159 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4160 ret = do_read_fault(vmf); 4161 else if (!(vma->vm_flags & VM_SHARED)) 4162 ret = do_cow_fault(vmf); 4163 else 4164 ret = do_shared_fault(vmf); 4165 4166 /* preallocated pagetable is unused: free it */ 4167 if (vmf->prealloc_pte) { 4168 pte_free(vm_mm, vmf->prealloc_pte); 4169 vmf->prealloc_pte = NULL; 4170 } 4171 return ret; 4172 } 4173 4174 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4175 unsigned long addr, int page_nid, 4176 int *flags) 4177 { 4178 get_page(page); 4179 4180 count_vm_numa_event(NUMA_HINT_FAULTS); 4181 if (page_nid == numa_node_id()) { 4182 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4183 *flags |= TNF_FAULT_LOCAL; 4184 } 4185 4186 return mpol_misplaced(page, vma, addr); 4187 } 4188 4189 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4190 { 4191 struct vm_area_struct *vma = vmf->vma; 4192 struct page *page = NULL; 4193 int page_nid = NUMA_NO_NODE; 4194 int last_cpupid; 4195 int target_nid; 4196 bool migrated = false; 4197 pte_t pte, old_pte; 4198 bool was_writable = pte_savedwrite(vmf->orig_pte); 4199 int flags = 0; 4200 4201 /* 4202 * The "pte" at this point cannot be used safely without 4203 * validation through pte_unmap_same(). It's of NUMA type but 4204 * the pfn may be screwed if the read is non atomic. 4205 */ 4206 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4207 spin_lock(vmf->ptl); 4208 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4209 pte_unmap_unlock(vmf->pte, vmf->ptl); 4210 goto out; 4211 } 4212 4213 /* 4214 * Make it present again, Depending on how arch implementes non 4215 * accessible ptes, some can allow access by kernel mode. 4216 */ 4217 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4218 pte = pte_modify(old_pte, vma->vm_page_prot); 4219 pte = pte_mkyoung(pte); 4220 if (was_writable) 4221 pte = pte_mkwrite(pte); 4222 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4223 update_mmu_cache(vma, vmf->address, vmf->pte); 4224 4225 page = vm_normal_page(vma, vmf->address, pte); 4226 if (!page) { 4227 pte_unmap_unlock(vmf->pte, vmf->ptl); 4228 return 0; 4229 } 4230 4231 /* TODO: handle PTE-mapped THP */ 4232 if (PageCompound(page)) { 4233 pte_unmap_unlock(vmf->pte, vmf->ptl); 4234 return 0; 4235 } 4236 4237 /* 4238 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4239 * much anyway since they can be in shared cache state. This misses 4240 * the case where a mapping is writable but the process never writes 4241 * to it but pte_write gets cleared during protection updates and 4242 * pte_dirty has unpredictable behaviour between PTE scan updates, 4243 * background writeback, dirty balancing and application behaviour. 4244 */ 4245 if (!pte_write(pte)) 4246 flags |= TNF_NO_GROUP; 4247 4248 /* 4249 * Flag if the page is shared between multiple address spaces. This 4250 * is later used when determining whether to group tasks together 4251 */ 4252 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4253 flags |= TNF_SHARED; 4254 4255 last_cpupid = page_cpupid_last(page); 4256 page_nid = page_to_nid(page); 4257 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4258 &flags); 4259 pte_unmap_unlock(vmf->pte, vmf->ptl); 4260 if (target_nid == NUMA_NO_NODE) { 4261 put_page(page); 4262 goto out; 4263 } 4264 4265 /* Migrate to the requested node */ 4266 migrated = migrate_misplaced_page(page, vma, target_nid); 4267 if (migrated) { 4268 page_nid = target_nid; 4269 flags |= TNF_MIGRATED; 4270 } else 4271 flags |= TNF_MIGRATE_FAIL; 4272 4273 out: 4274 if (page_nid != NUMA_NO_NODE) 4275 task_numa_fault(last_cpupid, page_nid, 1, flags); 4276 return 0; 4277 } 4278 4279 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4280 { 4281 if (vma_is_anonymous(vmf->vma)) 4282 return do_huge_pmd_anonymous_page(vmf); 4283 if (vmf->vma->vm_ops->huge_fault) 4284 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4285 return VM_FAULT_FALLBACK; 4286 } 4287 4288 /* `inline' is required to avoid gcc 4.1.2 build error */ 4289 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4290 { 4291 if (vma_is_anonymous(vmf->vma)) { 4292 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4293 return handle_userfault(vmf, VM_UFFD_WP); 4294 return do_huge_pmd_wp_page(vmf, orig_pmd); 4295 } 4296 if (vmf->vma->vm_ops->huge_fault) { 4297 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4298 4299 if (!(ret & VM_FAULT_FALLBACK)) 4300 return ret; 4301 } 4302 4303 /* COW or write-notify handled on pte level: split pmd. */ 4304 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4305 4306 return VM_FAULT_FALLBACK; 4307 } 4308 4309 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4310 { 4311 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4312 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4313 /* No support for anonymous transparent PUD pages yet */ 4314 if (vma_is_anonymous(vmf->vma)) 4315 goto split; 4316 if (vmf->vma->vm_ops->huge_fault) { 4317 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4318 4319 if (!(ret & VM_FAULT_FALLBACK)) 4320 return ret; 4321 } 4322 split: 4323 /* COW or write-notify not handled on PUD level: split pud.*/ 4324 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4326 return VM_FAULT_FALLBACK; 4327 } 4328 4329 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4330 { 4331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4332 /* No support for anonymous transparent PUD pages yet */ 4333 if (vma_is_anonymous(vmf->vma)) 4334 return VM_FAULT_FALLBACK; 4335 if (vmf->vma->vm_ops->huge_fault) 4336 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4337 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4338 return VM_FAULT_FALLBACK; 4339 } 4340 4341 /* 4342 * These routines also need to handle stuff like marking pages dirty 4343 * and/or accessed for architectures that don't do it in hardware (most 4344 * RISC architectures). The early dirtying is also good on the i386. 4345 * 4346 * There is also a hook called "update_mmu_cache()" that architectures 4347 * with external mmu caches can use to update those (ie the Sparc or 4348 * PowerPC hashed page tables that act as extended TLBs). 4349 * 4350 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4351 * concurrent faults). 4352 * 4353 * The mmap_lock may have been released depending on flags and our return value. 4354 * See filemap_fault() and __lock_page_or_retry(). 4355 */ 4356 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4357 { 4358 pte_t entry; 4359 4360 if (unlikely(pmd_none(*vmf->pmd))) { 4361 /* 4362 * Leave __pte_alloc() until later: because vm_ops->fault may 4363 * want to allocate huge page, and if we expose page table 4364 * for an instant, it will be difficult to retract from 4365 * concurrent faults and from rmap lookups. 4366 */ 4367 vmf->pte = NULL; 4368 } else { 4369 /* See comment in pte_alloc_one_map() */ 4370 if (pmd_devmap_trans_unstable(vmf->pmd)) 4371 return 0; 4372 /* 4373 * A regular pmd is established and it can't morph into a huge 4374 * pmd from under us anymore at this point because we hold the 4375 * mmap_lock read mode and khugepaged takes it in write mode. 4376 * So now it's safe to run pte_offset_map(). 4377 */ 4378 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4379 vmf->orig_pte = *vmf->pte; 4380 4381 /* 4382 * some architectures can have larger ptes than wordsize, 4383 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4384 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4385 * accesses. The code below just needs a consistent view 4386 * for the ifs and we later double check anyway with the 4387 * ptl lock held. So here a barrier will do. 4388 */ 4389 barrier(); 4390 if (pte_none(vmf->orig_pte)) { 4391 pte_unmap(vmf->pte); 4392 vmf->pte = NULL; 4393 } 4394 } 4395 4396 if (!vmf->pte) { 4397 if (vma_is_anonymous(vmf->vma)) 4398 return do_anonymous_page(vmf); 4399 else 4400 return do_fault(vmf); 4401 } 4402 4403 if (!pte_present(vmf->orig_pte)) 4404 return do_swap_page(vmf); 4405 4406 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4407 return do_numa_page(vmf); 4408 4409 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4410 spin_lock(vmf->ptl); 4411 entry = vmf->orig_pte; 4412 if (unlikely(!pte_same(*vmf->pte, entry))) { 4413 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4414 goto unlock; 4415 } 4416 if (vmf->flags & FAULT_FLAG_WRITE) { 4417 if (!pte_write(entry)) 4418 return do_wp_page(vmf); 4419 entry = pte_mkdirty(entry); 4420 } 4421 entry = pte_mkyoung(entry); 4422 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4423 vmf->flags & FAULT_FLAG_WRITE)) { 4424 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4425 } else { 4426 /* Skip spurious TLB flush for retried page fault */ 4427 if (vmf->flags & FAULT_FLAG_TRIED) 4428 goto unlock; 4429 /* 4430 * This is needed only for protection faults but the arch code 4431 * is not yet telling us if this is a protection fault or not. 4432 * This still avoids useless tlb flushes for .text page faults 4433 * with threads. 4434 */ 4435 if (vmf->flags & FAULT_FLAG_WRITE) 4436 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4437 } 4438 unlock: 4439 pte_unmap_unlock(vmf->pte, vmf->ptl); 4440 return 0; 4441 } 4442 4443 /* 4444 * By the time we get here, we already hold the mm semaphore 4445 * 4446 * The mmap_lock may have been released depending on flags and our 4447 * return value. See filemap_fault() and __lock_page_or_retry(). 4448 */ 4449 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4450 unsigned long address, unsigned int flags) 4451 { 4452 struct vm_fault vmf = { 4453 .vma = vma, 4454 .address = address & PAGE_MASK, 4455 .flags = flags, 4456 .pgoff = linear_page_index(vma, address), 4457 .gfp_mask = __get_fault_gfp_mask(vma), 4458 }; 4459 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4460 struct mm_struct *mm = vma->vm_mm; 4461 pgd_t *pgd; 4462 p4d_t *p4d; 4463 vm_fault_t ret; 4464 4465 pgd = pgd_offset(mm, address); 4466 p4d = p4d_alloc(mm, pgd, address); 4467 if (!p4d) 4468 return VM_FAULT_OOM; 4469 4470 vmf.pud = pud_alloc(mm, p4d, address); 4471 if (!vmf.pud) 4472 return VM_FAULT_OOM; 4473 retry_pud: 4474 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4475 ret = create_huge_pud(&vmf); 4476 if (!(ret & VM_FAULT_FALLBACK)) 4477 return ret; 4478 } else { 4479 pud_t orig_pud = *vmf.pud; 4480 4481 barrier(); 4482 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4483 4484 /* NUMA case for anonymous PUDs would go here */ 4485 4486 if (dirty && !pud_write(orig_pud)) { 4487 ret = wp_huge_pud(&vmf, orig_pud); 4488 if (!(ret & VM_FAULT_FALLBACK)) 4489 return ret; 4490 } else { 4491 huge_pud_set_accessed(&vmf, orig_pud); 4492 return 0; 4493 } 4494 } 4495 } 4496 4497 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4498 if (!vmf.pmd) 4499 return VM_FAULT_OOM; 4500 4501 /* Huge pud page fault raced with pmd_alloc? */ 4502 if (pud_trans_unstable(vmf.pud)) 4503 goto retry_pud; 4504 4505 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4506 ret = create_huge_pmd(&vmf); 4507 if (!(ret & VM_FAULT_FALLBACK)) 4508 return ret; 4509 } else { 4510 pmd_t orig_pmd = *vmf.pmd; 4511 4512 barrier(); 4513 if (unlikely(is_swap_pmd(orig_pmd))) { 4514 VM_BUG_ON(thp_migration_supported() && 4515 !is_pmd_migration_entry(orig_pmd)); 4516 if (is_pmd_migration_entry(orig_pmd)) 4517 pmd_migration_entry_wait(mm, vmf.pmd); 4518 return 0; 4519 } 4520 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4521 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4522 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4523 4524 if (dirty && !pmd_write(orig_pmd)) { 4525 ret = wp_huge_pmd(&vmf, orig_pmd); 4526 if (!(ret & VM_FAULT_FALLBACK)) 4527 return ret; 4528 } else { 4529 huge_pmd_set_accessed(&vmf, orig_pmd); 4530 return 0; 4531 } 4532 } 4533 } 4534 4535 return handle_pte_fault(&vmf); 4536 } 4537 4538 /** 4539 * mm_account_fault - Do page fault accountings 4540 * 4541 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4542 * of perf event counters, but we'll still do the per-task accounting to 4543 * the task who triggered this page fault. 4544 * @address: the faulted address. 4545 * @flags: the fault flags. 4546 * @ret: the fault retcode. 4547 * 4548 * This will take care of most of the page fault accountings. Meanwhile, it 4549 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4550 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4551 * still be in per-arch page fault handlers at the entry of page fault. 4552 */ 4553 static inline void mm_account_fault(struct pt_regs *regs, 4554 unsigned long address, unsigned int flags, 4555 vm_fault_t ret) 4556 { 4557 bool major; 4558 4559 /* 4560 * We don't do accounting for some specific faults: 4561 * 4562 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4563 * includes arch_vma_access_permitted() failing before reaching here. 4564 * So this is not a "this many hardware page faults" counter. We 4565 * should use the hw profiling for that. 4566 * 4567 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4568 * once they're completed. 4569 */ 4570 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4571 return; 4572 4573 /* 4574 * We define the fault as a major fault when the final successful fault 4575 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4576 * handle it immediately previously). 4577 */ 4578 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4579 4580 if (major) 4581 current->maj_flt++; 4582 else 4583 current->min_flt++; 4584 4585 /* 4586 * If the fault is done for GUP, regs will be NULL. We only do the 4587 * accounting for the per thread fault counters who triggered the 4588 * fault, and we skip the perf event updates. 4589 */ 4590 if (!regs) 4591 return; 4592 4593 if (major) 4594 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4595 else 4596 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4597 } 4598 4599 /* 4600 * By the time we get here, we already hold the mm semaphore 4601 * 4602 * The mmap_lock may have been released depending on flags and our 4603 * return value. See filemap_fault() and __lock_page_or_retry(). 4604 */ 4605 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4606 unsigned int flags, struct pt_regs *regs) 4607 { 4608 vm_fault_t ret; 4609 4610 __set_current_state(TASK_RUNNING); 4611 4612 count_vm_event(PGFAULT); 4613 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4614 4615 /* do counter updates before entering really critical section. */ 4616 check_sync_rss_stat(current); 4617 4618 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4619 flags & FAULT_FLAG_INSTRUCTION, 4620 flags & FAULT_FLAG_REMOTE)) 4621 return VM_FAULT_SIGSEGV; 4622 4623 /* 4624 * Enable the memcg OOM handling for faults triggered in user 4625 * space. Kernel faults are handled more gracefully. 4626 */ 4627 if (flags & FAULT_FLAG_USER) 4628 mem_cgroup_enter_user_fault(); 4629 4630 if (unlikely(is_vm_hugetlb_page(vma))) 4631 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4632 else 4633 ret = __handle_mm_fault(vma, address, flags); 4634 4635 if (flags & FAULT_FLAG_USER) { 4636 mem_cgroup_exit_user_fault(); 4637 /* 4638 * The task may have entered a memcg OOM situation but 4639 * if the allocation error was handled gracefully (no 4640 * VM_FAULT_OOM), there is no need to kill anything. 4641 * Just clean up the OOM state peacefully. 4642 */ 4643 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4644 mem_cgroup_oom_synchronize(false); 4645 } 4646 4647 mm_account_fault(regs, address, flags, ret); 4648 4649 return ret; 4650 } 4651 EXPORT_SYMBOL_GPL(handle_mm_fault); 4652 4653 #ifndef __PAGETABLE_P4D_FOLDED 4654 /* 4655 * Allocate p4d page table. 4656 * We've already handled the fast-path in-line. 4657 */ 4658 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4659 { 4660 p4d_t *new = p4d_alloc_one(mm, address); 4661 if (!new) 4662 return -ENOMEM; 4663 4664 smp_wmb(); /* See comment in __pte_alloc */ 4665 4666 spin_lock(&mm->page_table_lock); 4667 if (pgd_present(*pgd)) /* Another has populated it */ 4668 p4d_free(mm, new); 4669 else 4670 pgd_populate(mm, pgd, new); 4671 spin_unlock(&mm->page_table_lock); 4672 return 0; 4673 } 4674 #endif /* __PAGETABLE_P4D_FOLDED */ 4675 4676 #ifndef __PAGETABLE_PUD_FOLDED 4677 /* 4678 * Allocate page upper directory. 4679 * We've already handled the fast-path in-line. 4680 */ 4681 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4682 { 4683 pud_t *new = pud_alloc_one(mm, address); 4684 if (!new) 4685 return -ENOMEM; 4686 4687 smp_wmb(); /* See comment in __pte_alloc */ 4688 4689 spin_lock(&mm->page_table_lock); 4690 if (!p4d_present(*p4d)) { 4691 mm_inc_nr_puds(mm); 4692 p4d_populate(mm, p4d, new); 4693 } else /* Another has populated it */ 4694 pud_free(mm, new); 4695 spin_unlock(&mm->page_table_lock); 4696 return 0; 4697 } 4698 #endif /* __PAGETABLE_PUD_FOLDED */ 4699 4700 #ifndef __PAGETABLE_PMD_FOLDED 4701 /* 4702 * Allocate page middle directory. 4703 * We've already handled the fast-path in-line. 4704 */ 4705 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4706 { 4707 spinlock_t *ptl; 4708 pmd_t *new = pmd_alloc_one(mm, address); 4709 if (!new) 4710 return -ENOMEM; 4711 4712 smp_wmb(); /* See comment in __pte_alloc */ 4713 4714 ptl = pud_lock(mm, pud); 4715 if (!pud_present(*pud)) { 4716 mm_inc_nr_pmds(mm); 4717 pud_populate(mm, pud, new); 4718 } else /* Another has populated it */ 4719 pmd_free(mm, new); 4720 spin_unlock(ptl); 4721 return 0; 4722 } 4723 #endif /* __PAGETABLE_PMD_FOLDED */ 4724 4725 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4726 struct mmu_notifier_range *range, 4727 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4728 { 4729 pgd_t *pgd; 4730 p4d_t *p4d; 4731 pud_t *pud; 4732 pmd_t *pmd; 4733 pte_t *ptep; 4734 4735 pgd = pgd_offset(mm, address); 4736 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4737 goto out; 4738 4739 p4d = p4d_offset(pgd, address); 4740 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4741 goto out; 4742 4743 pud = pud_offset(p4d, address); 4744 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4745 goto out; 4746 4747 pmd = pmd_offset(pud, address); 4748 VM_BUG_ON(pmd_trans_huge(*pmd)); 4749 4750 if (pmd_huge(*pmd)) { 4751 if (!pmdpp) 4752 goto out; 4753 4754 if (range) { 4755 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4756 NULL, mm, address & PMD_MASK, 4757 (address & PMD_MASK) + PMD_SIZE); 4758 mmu_notifier_invalidate_range_start(range); 4759 } 4760 *ptlp = pmd_lock(mm, pmd); 4761 if (pmd_huge(*pmd)) { 4762 *pmdpp = pmd; 4763 return 0; 4764 } 4765 spin_unlock(*ptlp); 4766 if (range) 4767 mmu_notifier_invalidate_range_end(range); 4768 } 4769 4770 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4771 goto out; 4772 4773 if (range) { 4774 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4775 address & PAGE_MASK, 4776 (address & PAGE_MASK) + PAGE_SIZE); 4777 mmu_notifier_invalidate_range_start(range); 4778 } 4779 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4780 if (!pte_present(*ptep)) 4781 goto unlock; 4782 *ptepp = ptep; 4783 return 0; 4784 unlock: 4785 pte_unmap_unlock(ptep, *ptlp); 4786 if (range) 4787 mmu_notifier_invalidate_range_end(range); 4788 out: 4789 return -EINVAL; 4790 } 4791 4792 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4793 pte_t **ptepp, spinlock_t **ptlp) 4794 { 4795 int res; 4796 4797 /* (void) is needed to make gcc happy */ 4798 (void) __cond_lock(*ptlp, 4799 !(res = __follow_pte_pmd(mm, address, NULL, 4800 ptepp, NULL, ptlp))); 4801 return res; 4802 } 4803 4804 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4805 struct mmu_notifier_range *range, 4806 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4807 { 4808 int res; 4809 4810 /* (void) is needed to make gcc happy */ 4811 (void) __cond_lock(*ptlp, 4812 !(res = __follow_pte_pmd(mm, address, range, 4813 ptepp, pmdpp, ptlp))); 4814 return res; 4815 } 4816 EXPORT_SYMBOL(follow_pte_pmd); 4817 4818 /** 4819 * follow_pfn - look up PFN at a user virtual address 4820 * @vma: memory mapping 4821 * @address: user virtual address 4822 * @pfn: location to store found PFN 4823 * 4824 * Only IO mappings and raw PFN mappings are allowed. 4825 * 4826 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4827 */ 4828 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4829 unsigned long *pfn) 4830 { 4831 int ret = -EINVAL; 4832 spinlock_t *ptl; 4833 pte_t *ptep; 4834 4835 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4836 return ret; 4837 4838 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4839 if (ret) 4840 return ret; 4841 *pfn = pte_pfn(*ptep); 4842 pte_unmap_unlock(ptep, ptl); 4843 return 0; 4844 } 4845 EXPORT_SYMBOL(follow_pfn); 4846 4847 #ifdef CONFIG_HAVE_IOREMAP_PROT 4848 int follow_phys(struct vm_area_struct *vma, 4849 unsigned long address, unsigned int flags, 4850 unsigned long *prot, resource_size_t *phys) 4851 { 4852 int ret = -EINVAL; 4853 pte_t *ptep, pte; 4854 spinlock_t *ptl; 4855 4856 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4857 goto out; 4858 4859 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4860 goto out; 4861 pte = *ptep; 4862 4863 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4864 goto unlock; 4865 4866 *prot = pgprot_val(pte_pgprot(pte)); 4867 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4868 4869 ret = 0; 4870 unlock: 4871 pte_unmap_unlock(ptep, ptl); 4872 out: 4873 return ret; 4874 } 4875 4876 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4877 void *buf, int len, int write) 4878 { 4879 resource_size_t phys_addr; 4880 unsigned long prot = 0; 4881 void __iomem *maddr; 4882 int offset = addr & (PAGE_SIZE-1); 4883 4884 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4885 return -EINVAL; 4886 4887 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4888 if (!maddr) 4889 return -ENOMEM; 4890 4891 if (write) 4892 memcpy_toio(maddr + offset, buf, len); 4893 else 4894 memcpy_fromio(buf, maddr + offset, len); 4895 iounmap(maddr); 4896 4897 return len; 4898 } 4899 EXPORT_SYMBOL_GPL(generic_access_phys); 4900 #endif 4901 4902 /* 4903 * Access another process' address space as given in mm. If non-NULL, use the 4904 * given task for page fault accounting. 4905 */ 4906 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4907 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4908 { 4909 struct vm_area_struct *vma; 4910 void *old_buf = buf; 4911 int write = gup_flags & FOLL_WRITE; 4912 4913 if (mmap_read_lock_killable(mm)) 4914 return 0; 4915 4916 /* ignore errors, just check how much was successfully transferred */ 4917 while (len) { 4918 int bytes, ret, offset; 4919 void *maddr; 4920 struct page *page = NULL; 4921 4922 ret = get_user_pages_remote(mm, addr, 1, 4923 gup_flags, &page, &vma, NULL); 4924 if (ret <= 0) { 4925 #ifndef CONFIG_HAVE_IOREMAP_PROT 4926 break; 4927 #else 4928 /* 4929 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4930 * we can access using slightly different code. 4931 */ 4932 vma = find_vma(mm, addr); 4933 if (!vma || vma->vm_start > addr) 4934 break; 4935 if (vma->vm_ops && vma->vm_ops->access) 4936 ret = vma->vm_ops->access(vma, addr, buf, 4937 len, write); 4938 if (ret <= 0) 4939 break; 4940 bytes = ret; 4941 #endif 4942 } else { 4943 bytes = len; 4944 offset = addr & (PAGE_SIZE-1); 4945 if (bytes > PAGE_SIZE-offset) 4946 bytes = PAGE_SIZE-offset; 4947 4948 maddr = kmap(page); 4949 if (write) { 4950 copy_to_user_page(vma, page, addr, 4951 maddr + offset, buf, bytes); 4952 set_page_dirty_lock(page); 4953 } else { 4954 copy_from_user_page(vma, page, addr, 4955 buf, maddr + offset, bytes); 4956 } 4957 kunmap(page); 4958 put_page(page); 4959 } 4960 len -= bytes; 4961 buf += bytes; 4962 addr += bytes; 4963 } 4964 mmap_read_unlock(mm); 4965 4966 return buf - old_buf; 4967 } 4968 4969 /** 4970 * access_remote_vm - access another process' address space 4971 * @mm: the mm_struct of the target address space 4972 * @addr: start address to access 4973 * @buf: source or destination buffer 4974 * @len: number of bytes to transfer 4975 * @gup_flags: flags modifying lookup behaviour 4976 * 4977 * The caller must hold a reference on @mm. 4978 * 4979 * Return: number of bytes copied from source to destination. 4980 */ 4981 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4982 void *buf, int len, unsigned int gup_flags) 4983 { 4984 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4985 } 4986 4987 /* 4988 * Access another process' address space. 4989 * Source/target buffer must be kernel space, 4990 * Do not walk the page table directly, use get_user_pages 4991 */ 4992 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4993 void *buf, int len, unsigned int gup_flags) 4994 { 4995 struct mm_struct *mm; 4996 int ret; 4997 4998 mm = get_task_mm(tsk); 4999 if (!mm) 5000 return 0; 5001 5002 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 5003 5004 mmput(mm); 5005 5006 return ret; 5007 } 5008 EXPORT_SYMBOL_GPL(access_process_vm); 5009 5010 /* 5011 * Print the name of a VMA. 5012 */ 5013 void print_vma_addr(char *prefix, unsigned long ip) 5014 { 5015 struct mm_struct *mm = current->mm; 5016 struct vm_area_struct *vma; 5017 5018 /* 5019 * we might be running from an atomic context so we cannot sleep 5020 */ 5021 if (!mmap_read_trylock(mm)) 5022 return; 5023 5024 vma = find_vma(mm, ip); 5025 if (vma && vma->vm_file) { 5026 struct file *f = vma->vm_file; 5027 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5028 if (buf) { 5029 char *p; 5030 5031 p = file_path(f, buf, PAGE_SIZE); 5032 if (IS_ERR(p)) 5033 p = "?"; 5034 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5035 vma->vm_start, 5036 vma->vm_end - vma->vm_start); 5037 free_page((unsigned long)buf); 5038 } 5039 } 5040 mmap_read_unlock(mm); 5041 } 5042 5043 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5044 void __might_fault(const char *file, int line) 5045 { 5046 /* 5047 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5048 * holding the mmap_lock, this is safe because kernel memory doesn't 5049 * get paged out, therefore we'll never actually fault, and the 5050 * below annotations will generate false positives. 5051 */ 5052 if (uaccess_kernel()) 5053 return; 5054 if (pagefault_disabled()) 5055 return; 5056 __might_sleep(file, line, 0); 5057 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5058 if (current->mm) 5059 might_lock_read(¤t->mm->mmap_lock); 5060 #endif 5061 } 5062 EXPORT_SYMBOL(__might_fault); 5063 #endif 5064 5065 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5066 /* 5067 * Process all subpages of the specified huge page with the specified 5068 * operation. The target subpage will be processed last to keep its 5069 * cache lines hot. 5070 */ 5071 static inline void process_huge_page( 5072 unsigned long addr_hint, unsigned int pages_per_huge_page, 5073 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5074 void *arg) 5075 { 5076 int i, n, base, l; 5077 unsigned long addr = addr_hint & 5078 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5079 5080 /* Process target subpage last to keep its cache lines hot */ 5081 might_sleep(); 5082 n = (addr_hint - addr) / PAGE_SIZE; 5083 if (2 * n <= pages_per_huge_page) { 5084 /* If target subpage in first half of huge page */ 5085 base = 0; 5086 l = n; 5087 /* Process subpages at the end of huge page */ 5088 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5089 cond_resched(); 5090 process_subpage(addr + i * PAGE_SIZE, i, arg); 5091 } 5092 } else { 5093 /* If target subpage in second half of huge page */ 5094 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5095 l = pages_per_huge_page - n; 5096 /* Process subpages at the begin of huge page */ 5097 for (i = 0; i < base; i++) { 5098 cond_resched(); 5099 process_subpage(addr + i * PAGE_SIZE, i, arg); 5100 } 5101 } 5102 /* 5103 * Process remaining subpages in left-right-left-right pattern 5104 * towards the target subpage 5105 */ 5106 for (i = 0; i < l; i++) { 5107 int left_idx = base + i; 5108 int right_idx = base + 2 * l - 1 - i; 5109 5110 cond_resched(); 5111 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5112 cond_resched(); 5113 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5114 } 5115 } 5116 5117 static void clear_gigantic_page(struct page *page, 5118 unsigned long addr, 5119 unsigned int pages_per_huge_page) 5120 { 5121 int i; 5122 struct page *p = page; 5123 5124 might_sleep(); 5125 for (i = 0; i < pages_per_huge_page; 5126 i++, p = mem_map_next(p, page, i)) { 5127 cond_resched(); 5128 clear_user_highpage(p, addr + i * PAGE_SIZE); 5129 } 5130 } 5131 5132 static void clear_subpage(unsigned long addr, int idx, void *arg) 5133 { 5134 struct page *page = arg; 5135 5136 clear_user_highpage(page + idx, addr); 5137 } 5138 5139 void clear_huge_page(struct page *page, 5140 unsigned long addr_hint, unsigned int pages_per_huge_page) 5141 { 5142 unsigned long addr = addr_hint & 5143 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5144 5145 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5146 clear_gigantic_page(page, addr, pages_per_huge_page); 5147 return; 5148 } 5149 5150 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5151 } 5152 5153 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5154 unsigned long addr, 5155 struct vm_area_struct *vma, 5156 unsigned int pages_per_huge_page) 5157 { 5158 int i; 5159 struct page *dst_base = dst; 5160 struct page *src_base = src; 5161 5162 for (i = 0; i < pages_per_huge_page; ) { 5163 cond_resched(); 5164 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5165 5166 i++; 5167 dst = mem_map_next(dst, dst_base, i); 5168 src = mem_map_next(src, src_base, i); 5169 } 5170 } 5171 5172 struct copy_subpage_arg { 5173 struct page *dst; 5174 struct page *src; 5175 struct vm_area_struct *vma; 5176 }; 5177 5178 static void copy_subpage(unsigned long addr, int idx, void *arg) 5179 { 5180 struct copy_subpage_arg *copy_arg = arg; 5181 5182 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5183 addr, copy_arg->vma); 5184 } 5185 5186 void copy_user_huge_page(struct page *dst, struct page *src, 5187 unsigned long addr_hint, struct vm_area_struct *vma, 5188 unsigned int pages_per_huge_page) 5189 { 5190 unsigned long addr = addr_hint & 5191 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5192 struct copy_subpage_arg arg = { 5193 .dst = dst, 5194 .src = src, 5195 .vma = vma, 5196 }; 5197 5198 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5199 copy_user_gigantic_page(dst, src, addr, vma, 5200 pages_per_huge_page); 5201 return; 5202 } 5203 5204 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5205 } 5206 5207 long copy_huge_page_from_user(struct page *dst_page, 5208 const void __user *usr_src, 5209 unsigned int pages_per_huge_page, 5210 bool allow_pagefault) 5211 { 5212 void *src = (void *)usr_src; 5213 void *page_kaddr; 5214 unsigned long i, rc = 0; 5215 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5216 5217 for (i = 0; i < pages_per_huge_page; i++) { 5218 if (allow_pagefault) 5219 page_kaddr = kmap(dst_page + i); 5220 else 5221 page_kaddr = kmap_atomic(dst_page + i); 5222 rc = copy_from_user(page_kaddr, 5223 (const void __user *)(src + i * PAGE_SIZE), 5224 PAGE_SIZE); 5225 if (allow_pagefault) 5226 kunmap(dst_page + i); 5227 else 5228 kunmap_atomic(page_kaddr); 5229 5230 ret_val -= (PAGE_SIZE - rc); 5231 if (rc) 5232 break; 5233 5234 cond_resched(); 5235 } 5236 return ret_val; 5237 } 5238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5239 5240 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5241 5242 static struct kmem_cache *page_ptl_cachep; 5243 5244 void __init ptlock_cache_init(void) 5245 { 5246 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5247 SLAB_PANIC, NULL); 5248 } 5249 5250 bool ptlock_alloc(struct page *page) 5251 { 5252 spinlock_t *ptl; 5253 5254 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5255 if (!ptl) 5256 return false; 5257 page->ptl = ptl; 5258 return true; 5259 } 5260 5261 void ptlock_free(struct page *page) 5262 { 5263 kmem_cache_free(page_ptl_cachep, page->ptl); 5264 } 5265 #endif 5266