1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 108 /* 109 * A number of key systems in x86 including ioremap() rely on the assumption 110 * that high_memory defines the upper bound on direct map memory, then end 111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 113 * and ZONE_HIGHMEM. 114 */ 115 void *high_memory; 116 EXPORT_SYMBOL(high_memory); 117 118 /* 119 * Randomize the address space (stacks, mmaps, brk, etc.). 120 * 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 122 * as ancient (libc5 based) binaries can segfault. ) 123 */ 124 int randomize_va_space __read_mostly = 125 #ifdef CONFIG_COMPAT_BRK 126 1; 127 #else 128 2; 129 #endif 130 131 #ifndef arch_wants_old_prefaulted_pte 132 static inline bool arch_wants_old_prefaulted_pte(void) 133 { 134 /* 135 * Transitioning a PTE from 'old' to 'young' can be expensive on 136 * some architectures, even if it's performed in hardware. By 137 * default, "false" means prefaulted entries will be 'young'. 138 */ 139 return false; 140 } 141 #endif 142 143 static int __init disable_randmaps(char *s) 144 { 145 randomize_va_space = 0; 146 return 1; 147 } 148 __setup("norandmaps", disable_randmaps); 149 150 unsigned long zero_pfn __read_mostly; 151 EXPORT_SYMBOL(zero_pfn); 152 153 unsigned long highest_memmap_pfn __read_mostly; 154 155 /* 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 157 */ 158 static int __init init_zero_pfn(void) 159 { 160 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 161 return 0; 162 } 163 early_initcall(init_zero_pfn); 164 165 void mm_trace_rss_stat(struct mm_struct *mm, int member) 166 { 167 trace_rss_stat(mm, member); 168 } 169 170 /* 171 * Note: this doesn't free the actual pages themselves. That 172 * has been handled earlier when unmapping all the memory regions. 173 */ 174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 175 unsigned long addr) 176 { 177 pgtable_t token = pmd_pgtable(*pmd); 178 pmd_clear(pmd); 179 pte_free_tlb(tlb, token, addr); 180 mm_dec_nr_ptes(tlb->mm); 181 } 182 183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 184 unsigned long addr, unsigned long end, 185 unsigned long floor, unsigned long ceiling) 186 { 187 pmd_t *pmd; 188 unsigned long next; 189 unsigned long start; 190 191 start = addr; 192 pmd = pmd_offset(pud, addr); 193 do { 194 next = pmd_addr_end(addr, end); 195 if (pmd_none_or_clear_bad(pmd)) 196 continue; 197 free_pte_range(tlb, pmd, addr); 198 } while (pmd++, addr = next, addr != end); 199 200 start &= PUD_MASK; 201 if (start < floor) 202 return; 203 if (ceiling) { 204 ceiling &= PUD_MASK; 205 if (!ceiling) 206 return; 207 } 208 if (end - 1 > ceiling - 1) 209 return; 210 211 pmd = pmd_offset(pud, start); 212 pud_clear(pud); 213 pmd_free_tlb(tlb, pmd, start); 214 mm_dec_nr_pmds(tlb->mm); 215 } 216 217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pud_t *pud; 222 unsigned long next; 223 unsigned long start; 224 225 start = addr; 226 pud = pud_offset(p4d, addr); 227 do { 228 next = pud_addr_end(addr, end); 229 if (pud_none_or_clear_bad(pud)) 230 continue; 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 232 } while (pud++, addr = next, addr != end); 233 234 start &= P4D_MASK; 235 if (start < floor) 236 return; 237 if (ceiling) { 238 ceiling &= P4D_MASK; 239 if (!ceiling) 240 return; 241 } 242 if (end - 1 > ceiling - 1) 243 return; 244 245 pud = pud_offset(p4d, start); 246 p4d_clear(p4d); 247 pud_free_tlb(tlb, pud, start); 248 mm_dec_nr_puds(tlb->mm); 249 } 250 251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 252 unsigned long addr, unsigned long end, 253 unsigned long floor, unsigned long ceiling) 254 { 255 p4d_t *p4d; 256 unsigned long next; 257 unsigned long start; 258 259 start = addr; 260 p4d = p4d_offset(pgd, addr); 261 do { 262 next = p4d_addr_end(addr, end); 263 if (p4d_none_or_clear_bad(p4d)) 264 continue; 265 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 266 } while (p4d++, addr = next, addr != end); 267 268 start &= PGDIR_MASK; 269 if (start < floor) 270 return; 271 if (ceiling) { 272 ceiling &= PGDIR_MASK; 273 if (!ceiling) 274 return; 275 } 276 if (end - 1 > ceiling - 1) 277 return; 278 279 p4d = p4d_offset(pgd, start); 280 pgd_clear(pgd); 281 p4d_free_tlb(tlb, p4d, start); 282 } 283 284 /* 285 * This function frees user-level page tables of a process. 286 */ 287 void free_pgd_range(struct mmu_gather *tlb, 288 unsigned long addr, unsigned long end, 289 unsigned long floor, unsigned long ceiling) 290 { 291 pgd_t *pgd; 292 unsigned long next; 293 294 /* 295 * The next few lines have given us lots of grief... 296 * 297 * Why are we testing PMD* at this top level? Because often 298 * there will be no work to do at all, and we'd prefer not to 299 * go all the way down to the bottom just to discover that. 300 * 301 * Why all these "- 1"s? Because 0 represents both the bottom 302 * of the address space and the top of it (using -1 for the 303 * top wouldn't help much: the masks would do the wrong thing). 304 * The rule is that addr 0 and floor 0 refer to the bottom of 305 * the address space, but end 0 and ceiling 0 refer to the top 306 * Comparisons need to use "end - 1" and "ceiling - 1" (though 307 * that end 0 case should be mythical). 308 * 309 * Wherever addr is brought up or ceiling brought down, we must 310 * be careful to reject "the opposite 0" before it confuses the 311 * subsequent tests. But what about where end is brought down 312 * by PMD_SIZE below? no, end can't go down to 0 there. 313 * 314 * Whereas we round start (addr) and ceiling down, by different 315 * masks at different levels, in order to test whether a table 316 * now has no other vmas using it, so can be freed, we don't 317 * bother to round floor or end up - the tests don't need that. 318 */ 319 320 addr &= PMD_MASK; 321 if (addr < floor) { 322 addr += PMD_SIZE; 323 if (!addr) 324 return; 325 } 326 if (ceiling) { 327 ceiling &= PMD_MASK; 328 if (!ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 end -= PMD_SIZE; 333 if (addr > end - 1) 334 return; 335 /* 336 * We add page table cache pages with PAGE_SIZE, 337 * (see pte_free_tlb()), flush the tlb if we need 338 */ 339 tlb_change_page_size(tlb, PAGE_SIZE); 340 pgd = pgd_offset(tlb->mm, addr); 341 do { 342 next = pgd_addr_end(addr, end); 343 if (pgd_none_or_clear_bad(pgd)) 344 continue; 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 346 } while (pgd++, addr = next, addr != end); 347 } 348 349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 350 struct vm_area_struct *vma, unsigned long floor, 351 unsigned long ceiling) 352 { 353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 354 355 do { 356 unsigned long addr = vma->vm_start; 357 struct vm_area_struct *next; 358 359 /* 360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 361 * be 0. This will underflow and is okay. 362 */ 363 next = mas_find(&mas, ceiling - 1); 364 365 /* 366 * Hide vma from rmap and truncate_pagecache before freeing 367 * pgtables 368 */ 369 unlink_anon_vmas(vma); 370 unlink_file_vma(vma); 371 372 if (is_vm_hugetlb_page(vma)) { 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 374 floor, next ? next->vm_start : ceiling); 375 } else { 376 /* 377 * Optimization: gather nearby vmas into one call down 378 */ 379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 380 && !is_vm_hugetlb_page(next)) { 381 vma = next; 382 next = mas_find(&mas, ceiling - 1); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 } 386 free_pgd_range(tlb, addr, vma->vm_end, 387 floor, next ? next->vm_start : ceiling); 388 } 389 vma = next; 390 } while (vma); 391 } 392 393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 394 { 395 spinlock_t *ptl = pmd_lock(mm, pmd); 396 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 398 mm_inc_nr_ptes(mm); 399 /* 400 * Ensure all pte setup (eg. pte page lock and page clearing) are 401 * visible before the pte is made visible to other CPUs by being 402 * put into page tables. 403 * 404 * The other side of the story is the pointer chasing in the page 405 * table walking code (when walking the page table without locking; 406 * ie. most of the time). Fortunately, these data accesses consist 407 * of a chain of data-dependent loads, meaning most CPUs (alpha 408 * being the notable exception) will already guarantee loads are 409 * seen in-order. See the alpha page table accessors for the 410 * smp_rmb() barriers in page table walking code. 411 */ 412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 413 pmd_populate(mm, pmd, *pte); 414 *pte = NULL; 415 } 416 spin_unlock(ptl); 417 } 418 419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 420 { 421 pgtable_t new = pte_alloc_one(mm); 422 if (!new) 423 return -ENOMEM; 424 425 pmd_install(mm, pmd, &new); 426 if (new) 427 pte_free(mm, new); 428 return 0; 429 } 430 431 int __pte_alloc_kernel(pmd_t *pmd) 432 { 433 pte_t *new = pte_alloc_one_kernel(&init_mm); 434 if (!new) 435 return -ENOMEM; 436 437 spin_lock(&init_mm.page_table_lock); 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 439 smp_wmb(); /* See comment in pmd_install() */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 p4d_t *p4d = p4d_offset(pgd, addr); 477 pud_t *pud = pud_offset(p4d, addr); 478 pmd_t *pmd = pmd_offset(pud, addr); 479 struct address_space *mapping; 480 pgoff_t index; 481 static unsigned long resume; 482 static unsigned long nr_shown; 483 static unsigned long nr_unshown; 484 485 /* 486 * Allow a burst of 60 reports, then keep quiet for that minute; 487 * or allow a steady drip of one report per second. 488 */ 489 if (nr_shown == 60) { 490 if (time_before(jiffies, resume)) { 491 nr_unshown++; 492 return; 493 } 494 if (nr_unshown) { 495 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 508 current->comm, 509 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 510 if (page) 511 dump_page(page, "bad pte"); 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 515 vma->vm_file, 516 vma->vm_ops ? vma->vm_ops->fault : NULL, 517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 518 mapping ? mapping->a_ops->read_folio : NULL); 519 dump_stack(); 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 521 } 522 523 /* 524 * vm_normal_page -- This function gets the "struct page" associated with a pte. 525 * 526 * "Special" mappings do not wish to be associated with a "struct page" (either 527 * it doesn't exist, or it exists but they don't want to touch it). In this 528 * case, NULL is returned here. "Normal" mappings do have a struct page. 529 * 530 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 531 * pte bit, in which case this function is trivial. Secondly, an architecture 532 * may not have a spare pte bit, which requires a more complicated scheme, 533 * described below. 534 * 535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 536 * special mapping (even if there are underlying and valid "struct pages"). 537 * COWed pages of a VM_PFNMAP are always normal. 538 * 539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 542 * mapping will always honor the rule 543 * 544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 545 * 546 * And for normal mappings this is false. 547 * 548 * This restricts such mappings to be a linear translation from virtual address 549 * to pfn. To get around this restriction, we allow arbitrary mappings so long 550 * as the vma is not a COW mapping; in that case, we know that all ptes are 551 * special (because none can have been COWed). 552 * 553 * 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 555 * 556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 557 * page" backing, however the difference is that _all_ pages with a struct 558 * page (that is, those where pfn_valid is true) are refcounted and considered 559 * normal pages by the VM. The disadvantage is that pages are refcounted 560 * (which can be slower and simply not an option for some PFNMAP users). The 561 * advantage is that we don't have to follow the strict linearity rule of 562 * PFNMAP mappings in order to support COWable mappings. 563 * 564 */ 565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 566 pte_t pte) 567 { 568 unsigned long pfn = pte_pfn(pte); 569 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 571 if (likely(!pte_special(pte))) 572 goto check_pfn; 573 if (vma->vm_ops && vma->vm_ops->find_special_page) 574 return vma->vm_ops->find_special_page(vma, addr); 575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 576 return NULL; 577 if (is_zero_pfn(pfn)) 578 return NULL; 579 if (pte_devmap(pte)) 580 /* 581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 582 * and will have refcounts incremented on their struct pages 583 * when they are inserted into PTEs, thus they are safe to 584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 585 * do not have refcounts. Example of legacy ZONE_DEVICE is 586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 587 */ 588 return NULL; 589 590 print_bad_pte(vma, addr, pte, NULL); 591 return NULL; 592 } 593 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 595 596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 597 if (vma->vm_flags & VM_MIXEDMAP) { 598 if (!pfn_valid(pfn)) 599 return NULL; 600 goto out; 601 } else { 602 unsigned long off; 603 off = (addr - vma->vm_start) >> PAGE_SHIFT; 604 if (pfn == vma->vm_pgoff + off) 605 return NULL; 606 if (!is_cow_mapping(vma->vm_flags)) 607 return NULL; 608 } 609 } 610 611 if (is_zero_pfn(pfn)) 612 return NULL; 613 614 check_pfn: 615 if (unlikely(pfn > highest_memmap_pfn)) { 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* 621 * NOTE! We still have PageReserved() pages in the page tables. 622 * eg. VDSO mappings can cause them to exist. 623 */ 624 out: 625 return pfn_to_page(pfn); 626 } 627 628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 629 pte_t pte) 630 { 631 struct page *page = vm_normal_page(vma, addr, pte); 632 633 if (page) 634 return page_folio(page); 635 return NULL; 636 } 637 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 640 pmd_t pmd) 641 { 642 unsigned long pfn = pmd_pfn(pmd); 643 644 /* 645 * There is no pmd_special() but there may be special pmds, e.g. 646 * in a direct-access (dax) mapping, so let's just replicate the 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 648 */ 649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 650 if (vma->vm_flags & VM_MIXEDMAP) { 651 if (!pfn_valid(pfn)) 652 return NULL; 653 goto out; 654 } else { 655 unsigned long off; 656 off = (addr - vma->vm_start) >> PAGE_SHIFT; 657 if (pfn == vma->vm_pgoff + off) 658 return NULL; 659 if (!is_cow_mapping(vma->vm_flags)) 660 return NULL; 661 } 662 } 663 664 if (pmd_devmap(pmd)) 665 return NULL; 666 if (is_huge_zero_pmd(pmd)) 667 return NULL; 668 if (unlikely(pfn > highest_memmap_pfn)) 669 return NULL; 670 671 /* 672 * NOTE! We still have PageReserved() pages in the page tables. 673 * eg. VDSO mappings can cause them to exist. 674 */ 675 out: 676 return pfn_to_page(pfn); 677 } 678 #endif 679 680 static void restore_exclusive_pte(struct vm_area_struct *vma, 681 struct page *page, unsigned long address, 682 pte_t *ptep) 683 { 684 pte_t pte; 685 swp_entry_t entry; 686 687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 688 if (pte_swp_soft_dirty(*ptep)) 689 pte = pte_mksoft_dirty(pte); 690 691 entry = pte_to_swp_entry(*ptep); 692 if (pte_swp_uffd_wp(*ptep)) 693 pte = pte_mkuffd_wp(pte); 694 else if (is_writable_device_exclusive_entry(entry)) 695 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 696 697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 698 699 /* 700 * No need to take a page reference as one was already 701 * created when the swap entry was made. 702 */ 703 if (PageAnon(page)) 704 page_add_anon_rmap(page, vma, address, RMAP_NONE); 705 else 706 /* 707 * Currently device exclusive access only supports anonymous 708 * memory so the entry shouldn't point to a filebacked page. 709 */ 710 WARN_ON_ONCE(1); 711 712 set_pte_at(vma->vm_mm, address, ptep, pte); 713 714 /* 715 * No need to invalidate - it was non-present before. However 716 * secondary CPUs may have mappings that need invalidating. 717 */ 718 update_mmu_cache(vma, address, ptep); 719 } 720 721 /* 722 * Tries to restore an exclusive pte if the page lock can be acquired without 723 * sleeping. 724 */ 725 static int 726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 727 unsigned long addr) 728 { 729 swp_entry_t entry = pte_to_swp_entry(*src_pte); 730 struct page *page = pfn_swap_entry_to_page(entry); 731 732 if (trylock_page(page)) { 733 restore_exclusive_pte(vma, page, addr, src_pte); 734 unlock_page(page); 735 return 0; 736 } 737 738 return -EBUSY; 739 } 740 741 /* 742 * copy one vm_area from one task to the other. Assumes the page tables 743 * already present in the new task to be cleared in the whole range 744 * covered by this vma. 745 */ 746 747 static unsigned long 748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 750 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 751 { 752 unsigned long vm_flags = dst_vma->vm_flags; 753 pte_t pte = *src_pte; 754 struct page *page; 755 swp_entry_t entry = pte_to_swp_entry(pte); 756 757 if (likely(!non_swap_entry(entry))) { 758 if (swap_duplicate(entry) < 0) 759 return -EIO; 760 761 /* make sure dst_mm is on swapoff's mmlist. */ 762 if (unlikely(list_empty(&dst_mm->mmlist))) { 763 spin_lock(&mmlist_lock); 764 if (list_empty(&dst_mm->mmlist)) 765 list_add(&dst_mm->mmlist, 766 &src_mm->mmlist); 767 spin_unlock(&mmlist_lock); 768 } 769 /* Mark the swap entry as shared. */ 770 if (pte_swp_exclusive(*src_pte)) { 771 pte = pte_swp_clear_exclusive(*src_pte); 772 set_pte_at(src_mm, addr, src_pte, pte); 773 } 774 rss[MM_SWAPENTS]++; 775 } else if (is_migration_entry(entry)) { 776 page = pfn_swap_entry_to_page(entry); 777 778 rss[mm_counter(page)]++; 779 780 if (!is_readable_migration_entry(entry) && 781 is_cow_mapping(vm_flags)) { 782 /* 783 * COW mappings require pages in both parent and child 784 * to be set to read. A previously exclusive entry is 785 * now shared. 786 */ 787 entry = make_readable_migration_entry( 788 swp_offset(entry)); 789 pte = swp_entry_to_pte(entry); 790 if (pte_swp_soft_dirty(*src_pte)) 791 pte = pte_swp_mksoft_dirty(pte); 792 if (pte_swp_uffd_wp(*src_pte)) 793 pte = pte_swp_mkuffd_wp(pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 } else if (is_device_private_entry(entry)) { 797 page = pfn_swap_entry_to_page(entry); 798 799 /* 800 * Update rss count even for unaddressable pages, as 801 * they should treated just like normal pages in this 802 * respect. 803 * 804 * We will likely want to have some new rss counters 805 * for unaddressable pages, at some point. But for now 806 * keep things as they are. 807 */ 808 get_page(page); 809 rss[mm_counter(page)]++; 810 /* Cannot fail as these pages cannot get pinned. */ 811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 812 813 /* 814 * We do not preserve soft-dirty information, because so 815 * far, checkpoint/restore is the only feature that 816 * requires that. And checkpoint/restore does not work 817 * when a device driver is involved (you cannot easily 818 * save and restore device driver state). 819 */ 820 if (is_writable_device_private_entry(entry) && 821 is_cow_mapping(vm_flags)) { 822 entry = make_readable_device_private_entry( 823 swp_offset(entry)); 824 pte = swp_entry_to_pte(entry); 825 if (pte_swp_uffd_wp(*src_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_exclusive_entry(entry)) { 830 /* 831 * Make device exclusive entries present by restoring the 832 * original entry then copying as for a present pte. Device 833 * exclusive entries currently only support private writable 834 * (ie. COW) mappings. 835 */ 836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 837 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 838 return -EBUSY; 839 return -ENOENT; 840 } else if (is_pte_marker_entry(entry)) { 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 842 set_pte_at(dst_mm, addr, dst_pte, pte); 843 return 0; 844 } 845 if (!userfaultfd_wp(dst_vma)) 846 pte = pte_swp_clear_uffd_wp(pte); 847 set_pte_at(dst_mm, addr, dst_pte, pte); 848 return 0; 849 } 850 851 /* 852 * Copy a present and normal page. 853 * 854 * NOTE! The usual case is that this isn't required; 855 * instead, the caller can just increase the page refcount 856 * and re-use the pte the traditional way. 857 * 858 * And if we need a pre-allocated page but don't yet have 859 * one, return a negative error to let the preallocation 860 * code know so that it can do so outside the page table 861 * lock. 862 */ 863 static inline int 864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 866 struct folio **prealloc, struct page *page) 867 { 868 struct folio *new_folio; 869 pte_t pte; 870 871 new_folio = *prealloc; 872 if (!new_folio) 873 return -EAGAIN; 874 875 /* 876 * We have a prealloc page, all good! Take it 877 * over and copy the page & arm it. 878 */ 879 *prealloc = NULL; 880 copy_user_highpage(&new_folio->page, page, addr, src_vma); 881 __folio_mark_uptodate(new_folio); 882 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 883 folio_add_lru_vma(new_folio, dst_vma); 884 rss[MM_ANONPAGES]++; 885 886 /* All done, just insert the new page copy in the child */ 887 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 889 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 890 /* Uffd-wp needs to be delivered to dest pte as well */ 891 pte = pte_mkuffd_wp(pte); 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 893 return 0; 894 } 895 896 /* 897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 898 * is required to copy this pte. 899 */ 900 static inline int 901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc) 904 { 905 struct mm_struct *src_mm = src_vma->vm_mm; 906 unsigned long vm_flags = src_vma->vm_flags; 907 pte_t pte = *src_pte; 908 struct page *page; 909 struct folio *folio; 910 911 page = vm_normal_page(src_vma, addr, pte); 912 if (page) 913 folio = page_folio(page); 914 if (page && folio_test_anon(folio)) { 915 /* 916 * If this page may have been pinned by the parent process, 917 * copy the page immediately for the child so that we'll always 918 * guarantee the pinned page won't be randomly replaced in the 919 * future. 920 */ 921 folio_get(folio); 922 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 923 /* Page may be pinned, we have to copy. */ 924 folio_put(folio); 925 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 926 addr, rss, prealloc, page); 927 } 928 rss[MM_ANONPAGES]++; 929 } else if (page) { 930 folio_get(folio); 931 page_dup_file_rmap(page, false); 932 rss[mm_counter_file(page)]++; 933 } 934 935 /* 936 * If it's a COW mapping, write protect it both 937 * in the parent and the child 938 */ 939 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 940 ptep_set_wrprotect(src_mm, addr, src_pte); 941 pte = pte_wrprotect(pte); 942 } 943 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 944 945 /* 946 * If it's a shared mapping, mark it clean in 947 * the child 948 */ 949 if (vm_flags & VM_SHARED) 950 pte = pte_mkclean(pte); 951 pte = pte_mkold(pte); 952 953 if (!userfaultfd_wp(dst_vma)) 954 pte = pte_clear_uffd_wp(pte); 955 956 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 957 return 0; 958 } 959 960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 961 struct vm_area_struct *vma, unsigned long addr) 962 { 963 struct folio *new_folio; 964 965 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 966 if (!new_folio) 967 return NULL; 968 969 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 970 folio_put(new_folio); 971 return NULL; 972 } 973 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL); 974 975 return new_folio; 976 } 977 978 static int 979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 980 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 981 unsigned long end) 982 { 983 struct mm_struct *dst_mm = dst_vma->vm_mm; 984 struct mm_struct *src_mm = src_vma->vm_mm; 985 pte_t *orig_src_pte, *orig_dst_pte; 986 pte_t *src_pte, *dst_pte; 987 spinlock_t *src_ptl, *dst_ptl; 988 int progress, ret = 0; 989 int rss[NR_MM_COUNTERS]; 990 swp_entry_t entry = (swp_entry_t){0}; 991 struct folio *prealloc = NULL; 992 993 again: 994 progress = 0; 995 init_rss_vec(rss); 996 997 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 998 if (!dst_pte) { 999 ret = -ENOMEM; 1000 goto out; 1001 } 1002 src_pte = pte_offset_map(src_pmd, addr); 1003 src_ptl = pte_lockptr(src_mm, src_pmd); 1004 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1005 orig_src_pte = src_pte; 1006 orig_dst_pte = dst_pte; 1007 arch_enter_lazy_mmu_mode(); 1008 1009 do { 1010 /* 1011 * We are holding two locks at this point - either of them 1012 * could generate latencies in another task on another CPU. 1013 */ 1014 if (progress >= 32) { 1015 progress = 0; 1016 if (need_resched() || 1017 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1018 break; 1019 } 1020 if (pte_none(*src_pte)) { 1021 progress++; 1022 continue; 1023 } 1024 if (unlikely(!pte_present(*src_pte))) { 1025 ret = copy_nonpresent_pte(dst_mm, src_mm, 1026 dst_pte, src_pte, 1027 dst_vma, src_vma, 1028 addr, rss); 1029 if (ret == -EIO) { 1030 entry = pte_to_swp_entry(*src_pte); 1031 break; 1032 } else if (ret == -EBUSY) { 1033 break; 1034 } else if (!ret) { 1035 progress += 8; 1036 continue; 1037 } 1038 1039 /* 1040 * Device exclusive entry restored, continue by copying 1041 * the now present pte. 1042 */ 1043 WARN_ON_ONCE(ret != -ENOENT); 1044 } 1045 /* copy_present_pte() will clear `*prealloc' if consumed */ 1046 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1047 addr, rss, &prealloc); 1048 /* 1049 * If we need a pre-allocated page for this pte, drop the 1050 * locks, allocate, and try again. 1051 */ 1052 if (unlikely(ret == -EAGAIN)) 1053 break; 1054 if (unlikely(prealloc)) { 1055 /* 1056 * pre-alloc page cannot be reused by next time so as 1057 * to strictly follow mempolicy (e.g., alloc_page_vma() 1058 * will allocate page according to address). This 1059 * could only happen if one pinned pte changed. 1060 */ 1061 folio_put(prealloc); 1062 prealloc = NULL; 1063 } 1064 progress += 8; 1065 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1066 1067 arch_leave_lazy_mmu_mode(); 1068 spin_unlock(src_ptl); 1069 pte_unmap(orig_src_pte); 1070 add_mm_rss_vec(dst_mm, rss); 1071 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1072 cond_resched(); 1073 1074 if (ret == -EIO) { 1075 VM_WARN_ON_ONCE(!entry.val); 1076 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1077 ret = -ENOMEM; 1078 goto out; 1079 } 1080 entry.val = 0; 1081 } else if (ret == -EBUSY) { 1082 goto out; 1083 } else if (ret == -EAGAIN) { 1084 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1085 if (!prealloc) 1086 return -ENOMEM; 1087 } else if (ret) { 1088 VM_WARN_ON_ONCE(1); 1089 } 1090 1091 /* We've captured and resolved the error. Reset, try again. */ 1092 ret = 0; 1093 1094 if (addr != end) 1095 goto again; 1096 out: 1097 if (unlikely(prealloc)) 1098 folio_put(prealloc); 1099 return ret; 1100 } 1101 1102 static inline int 1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1104 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1105 unsigned long end) 1106 { 1107 struct mm_struct *dst_mm = dst_vma->vm_mm; 1108 struct mm_struct *src_mm = src_vma->vm_mm; 1109 pmd_t *src_pmd, *dst_pmd; 1110 unsigned long next; 1111 1112 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1113 if (!dst_pmd) 1114 return -ENOMEM; 1115 src_pmd = pmd_offset(src_pud, addr); 1116 do { 1117 next = pmd_addr_end(addr, end); 1118 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1119 || pmd_devmap(*src_pmd)) { 1120 int err; 1121 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1122 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1123 addr, dst_vma, src_vma); 1124 if (err == -ENOMEM) 1125 return -ENOMEM; 1126 if (!err) 1127 continue; 1128 /* fall through */ 1129 } 1130 if (pmd_none_or_clear_bad(src_pmd)) 1131 continue; 1132 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1133 addr, next)) 1134 return -ENOMEM; 1135 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1136 return 0; 1137 } 1138 1139 static inline int 1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1141 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1142 unsigned long end) 1143 { 1144 struct mm_struct *dst_mm = dst_vma->vm_mm; 1145 struct mm_struct *src_mm = src_vma->vm_mm; 1146 pud_t *src_pud, *dst_pud; 1147 unsigned long next; 1148 1149 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1150 if (!dst_pud) 1151 return -ENOMEM; 1152 src_pud = pud_offset(src_p4d, addr); 1153 do { 1154 next = pud_addr_end(addr, end); 1155 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1156 int err; 1157 1158 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1159 err = copy_huge_pud(dst_mm, src_mm, 1160 dst_pud, src_pud, addr, src_vma); 1161 if (err == -ENOMEM) 1162 return -ENOMEM; 1163 if (!err) 1164 continue; 1165 /* fall through */ 1166 } 1167 if (pud_none_or_clear_bad(src_pud)) 1168 continue; 1169 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1170 addr, next)) 1171 return -ENOMEM; 1172 } while (dst_pud++, src_pud++, addr = next, addr != end); 1173 return 0; 1174 } 1175 1176 static inline int 1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1178 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1179 unsigned long end) 1180 { 1181 struct mm_struct *dst_mm = dst_vma->vm_mm; 1182 p4d_t *src_p4d, *dst_p4d; 1183 unsigned long next; 1184 1185 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1186 if (!dst_p4d) 1187 return -ENOMEM; 1188 src_p4d = p4d_offset(src_pgd, addr); 1189 do { 1190 next = p4d_addr_end(addr, end); 1191 if (p4d_none_or_clear_bad(src_p4d)) 1192 continue; 1193 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1194 addr, next)) 1195 return -ENOMEM; 1196 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1197 return 0; 1198 } 1199 1200 /* 1201 * Return true if the vma needs to copy the pgtable during this fork(). Return 1202 * false when we can speed up fork() by allowing lazy page faults later until 1203 * when the child accesses the memory range. 1204 */ 1205 static bool 1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1207 { 1208 /* 1209 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1210 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1211 * contains uffd-wp protection information, that's something we can't 1212 * retrieve from page cache, and skip copying will lose those info. 1213 */ 1214 if (userfaultfd_wp(dst_vma)) 1215 return true; 1216 1217 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1218 return true; 1219 1220 if (src_vma->anon_vma) 1221 return true; 1222 1223 /* 1224 * Don't copy ptes where a page fault will fill them correctly. Fork 1225 * becomes much lighter when there are big shared or private readonly 1226 * mappings. The tradeoff is that copy_page_range is more efficient 1227 * than faulting. 1228 */ 1229 return false; 1230 } 1231 1232 int 1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1234 { 1235 pgd_t *src_pgd, *dst_pgd; 1236 unsigned long next; 1237 unsigned long addr = src_vma->vm_start; 1238 unsigned long end = src_vma->vm_end; 1239 struct mm_struct *dst_mm = dst_vma->vm_mm; 1240 struct mm_struct *src_mm = src_vma->vm_mm; 1241 struct mmu_notifier_range range; 1242 bool is_cow; 1243 int ret; 1244 1245 if (!vma_needs_copy(dst_vma, src_vma)) 1246 return 0; 1247 1248 if (is_vm_hugetlb_page(src_vma)) 1249 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1250 1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1252 /* 1253 * We do not free on error cases below as remove_vma 1254 * gets called on error from higher level routine 1255 */ 1256 ret = track_pfn_copy(src_vma); 1257 if (ret) 1258 return ret; 1259 } 1260 1261 /* 1262 * We need to invalidate the secondary MMU mappings only when 1263 * there could be a permission downgrade on the ptes of the 1264 * parent mm. And a permission downgrade will only happen if 1265 * is_cow_mapping() returns true. 1266 */ 1267 is_cow = is_cow_mapping(src_vma->vm_flags); 1268 1269 if (is_cow) { 1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1271 0, src_mm, addr, end); 1272 mmu_notifier_invalidate_range_start(&range); 1273 /* 1274 * Disabling preemption is not needed for the write side, as 1275 * the read side doesn't spin, but goes to the mmap_lock. 1276 * 1277 * Use the raw variant of the seqcount_t write API to avoid 1278 * lockdep complaining about preemptibility. 1279 */ 1280 mmap_assert_write_locked(src_mm); 1281 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1282 } 1283 1284 ret = 0; 1285 dst_pgd = pgd_offset(dst_mm, addr); 1286 src_pgd = pgd_offset(src_mm, addr); 1287 do { 1288 next = pgd_addr_end(addr, end); 1289 if (pgd_none_or_clear_bad(src_pgd)) 1290 continue; 1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1292 addr, next))) { 1293 ret = -ENOMEM; 1294 break; 1295 } 1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1297 1298 if (is_cow) { 1299 raw_write_seqcount_end(&src_mm->write_protect_seq); 1300 mmu_notifier_invalidate_range_end(&range); 1301 } 1302 return ret; 1303 } 1304 1305 /* Whether we should zap all COWed (private) pages too */ 1306 static inline bool should_zap_cows(struct zap_details *details) 1307 { 1308 /* By default, zap all pages */ 1309 if (!details) 1310 return true; 1311 1312 /* Or, we zap COWed pages only if the caller wants to */ 1313 return details->even_cows; 1314 } 1315 1316 /* Decides whether we should zap this page with the page pointer specified */ 1317 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1318 { 1319 /* If we can make a decision without *page.. */ 1320 if (should_zap_cows(details)) 1321 return true; 1322 1323 /* E.g. the caller passes NULL for the case of a zero page */ 1324 if (!page) 1325 return true; 1326 1327 /* Otherwise we should only zap non-anon pages */ 1328 return !PageAnon(page); 1329 } 1330 1331 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1332 { 1333 if (!details) 1334 return false; 1335 1336 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1337 } 1338 1339 /* 1340 * This function makes sure that we'll replace the none pte with an uffd-wp 1341 * swap special pte marker when necessary. Must be with the pgtable lock held. 1342 */ 1343 static inline void 1344 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1345 unsigned long addr, pte_t *pte, 1346 struct zap_details *details, pte_t pteval) 1347 { 1348 if (zap_drop_file_uffd_wp(details)) 1349 return; 1350 1351 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1352 } 1353 1354 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1355 struct vm_area_struct *vma, pmd_t *pmd, 1356 unsigned long addr, unsigned long end, 1357 struct zap_details *details) 1358 { 1359 struct mm_struct *mm = tlb->mm; 1360 int force_flush = 0; 1361 int rss[NR_MM_COUNTERS]; 1362 spinlock_t *ptl; 1363 pte_t *start_pte; 1364 pte_t *pte; 1365 swp_entry_t entry; 1366 1367 tlb_change_page_size(tlb, PAGE_SIZE); 1368 again: 1369 init_rss_vec(rss); 1370 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1371 pte = start_pte; 1372 flush_tlb_batched_pending(mm); 1373 arch_enter_lazy_mmu_mode(); 1374 do { 1375 pte_t ptent = *pte; 1376 struct page *page; 1377 1378 if (pte_none(ptent)) 1379 continue; 1380 1381 if (need_resched()) 1382 break; 1383 1384 if (pte_present(ptent)) { 1385 unsigned int delay_rmap; 1386 1387 page = vm_normal_page(vma, addr, ptent); 1388 if (unlikely(!should_zap_page(details, page))) 1389 continue; 1390 ptent = ptep_get_and_clear_full(mm, addr, pte, 1391 tlb->fullmm); 1392 tlb_remove_tlb_entry(tlb, pte, addr); 1393 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1394 ptent); 1395 if (unlikely(!page)) 1396 continue; 1397 1398 delay_rmap = 0; 1399 if (!PageAnon(page)) { 1400 if (pte_dirty(ptent)) { 1401 set_page_dirty(page); 1402 if (tlb_delay_rmap(tlb)) { 1403 delay_rmap = 1; 1404 force_flush = 1; 1405 } 1406 } 1407 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1408 mark_page_accessed(page); 1409 } 1410 rss[mm_counter(page)]--; 1411 if (!delay_rmap) { 1412 page_remove_rmap(page, vma, false); 1413 if (unlikely(page_mapcount(page) < 0)) 1414 print_bad_pte(vma, addr, ptent, page); 1415 } 1416 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1417 force_flush = 1; 1418 addr += PAGE_SIZE; 1419 break; 1420 } 1421 continue; 1422 } 1423 1424 entry = pte_to_swp_entry(ptent); 1425 if (is_device_private_entry(entry) || 1426 is_device_exclusive_entry(entry)) { 1427 page = pfn_swap_entry_to_page(entry); 1428 if (unlikely(!should_zap_page(details, page))) 1429 continue; 1430 /* 1431 * Both device private/exclusive mappings should only 1432 * work with anonymous page so far, so we don't need to 1433 * consider uffd-wp bit when zap. For more information, 1434 * see zap_install_uffd_wp_if_needed(). 1435 */ 1436 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1437 rss[mm_counter(page)]--; 1438 if (is_device_private_entry(entry)) 1439 page_remove_rmap(page, vma, false); 1440 put_page(page); 1441 } else if (!non_swap_entry(entry)) { 1442 /* Genuine swap entry, hence a private anon page */ 1443 if (!should_zap_cows(details)) 1444 continue; 1445 rss[MM_SWAPENTS]--; 1446 if (unlikely(!free_swap_and_cache(entry))) 1447 print_bad_pte(vma, addr, ptent, NULL); 1448 } else if (is_migration_entry(entry)) { 1449 page = pfn_swap_entry_to_page(entry); 1450 if (!should_zap_page(details, page)) 1451 continue; 1452 rss[mm_counter(page)]--; 1453 } else if (pte_marker_entry_uffd_wp(entry)) { 1454 /* Only drop the uffd-wp marker if explicitly requested */ 1455 if (!zap_drop_file_uffd_wp(details)) 1456 continue; 1457 } else if (is_hwpoison_entry(entry) || 1458 is_swapin_error_entry(entry)) { 1459 if (!should_zap_cows(details)) 1460 continue; 1461 } else { 1462 /* We should have covered all the swap entry types */ 1463 WARN_ON_ONCE(1); 1464 } 1465 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1466 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1467 } while (pte++, addr += PAGE_SIZE, addr != end); 1468 1469 add_mm_rss_vec(mm, rss); 1470 arch_leave_lazy_mmu_mode(); 1471 1472 /* Do the actual TLB flush before dropping ptl */ 1473 if (force_flush) { 1474 tlb_flush_mmu_tlbonly(tlb); 1475 tlb_flush_rmaps(tlb, vma); 1476 } 1477 pte_unmap_unlock(start_pte, ptl); 1478 1479 /* 1480 * If we forced a TLB flush (either due to running out of 1481 * batch buffers or because we needed to flush dirty TLB 1482 * entries before releasing the ptl), free the batched 1483 * memory too. Restart if we didn't do everything. 1484 */ 1485 if (force_flush) { 1486 force_flush = 0; 1487 tlb_flush_mmu(tlb); 1488 } 1489 1490 if (addr != end) { 1491 cond_resched(); 1492 goto again; 1493 } 1494 1495 return addr; 1496 } 1497 1498 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1499 struct vm_area_struct *vma, pud_t *pud, 1500 unsigned long addr, unsigned long end, 1501 struct zap_details *details) 1502 { 1503 pmd_t *pmd; 1504 unsigned long next; 1505 1506 pmd = pmd_offset(pud, addr); 1507 do { 1508 next = pmd_addr_end(addr, end); 1509 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1510 if (next - addr != HPAGE_PMD_SIZE) 1511 __split_huge_pmd(vma, pmd, addr, false, NULL); 1512 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1513 goto next; 1514 /* fall through */ 1515 } else if (details && details->single_folio && 1516 folio_test_pmd_mappable(details->single_folio) && 1517 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1518 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1519 /* 1520 * Take and drop THP pmd lock so that we cannot return 1521 * prematurely, while zap_huge_pmd() has cleared *pmd, 1522 * but not yet decremented compound_mapcount(). 1523 */ 1524 spin_unlock(ptl); 1525 } 1526 1527 /* 1528 * Here there can be other concurrent MADV_DONTNEED or 1529 * trans huge page faults running, and if the pmd is 1530 * none or trans huge it can change under us. This is 1531 * because MADV_DONTNEED holds the mmap_lock in read 1532 * mode. 1533 */ 1534 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1535 goto next; 1536 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1537 next: 1538 cond_resched(); 1539 } while (pmd++, addr = next, addr != end); 1540 1541 return addr; 1542 } 1543 1544 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1545 struct vm_area_struct *vma, p4d_t *p4d, 1546 unsigned long addr, unsigned long end, 1547 struct zap_details *details) 1548 { 1549 pud_t *pud; 1550 unsigned long next; 1551 1552 pud = pud_offset(p4d, addr); 1553 do { 1554 next = pud_addr_end(addr, end); 1555 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1556 if (next - addr != HPAGE_PUD_SIZE) { 1557 mmap_assert_locked(tlb->mm); 1558 split_huge_pud(vma, pud, addr); 1559 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1560 goto next; 1561 /* fall through */ 1562 } 1563 if (pud_none_or_clear_bad(pud)) 1564 continue; 1565 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1566 next: 1567 cond_resched(); 1568 } while (pud++, addr = next, addr != end); 1569 1570 return addr; 1571 } 1572 1573 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1574 struct vm_area_struct *vma, pgd_t *pgd, 1575 unsigned long addr, unsigned long end, 1576 struct zap_details *details) 1577 { 1578 p4d_t *p4d; 1579 unsigned long next; 1580 1581 p4d = p4d_offset(pgd, addr); 1582 do { 1583 next = p4d_addr_end(addr, end); 1584 if (p4d_none_or_clear_bad(p4d)) 1585 continue; 1586 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1587 } while (p4d++, addr = next, addr != end); 1588 1589 return addr; 1590 } 1591 1592 void unmap_page_range(struct mmu_gather *tlb, 1593 struct vm_area_struct *vma, 1594 unsigned long addr, unsigned long end, 1595 struct zap_details *details) 1596 { 1597 pgd_t *pgd; 1598 unsigned long next; 1599 1600 BUG_ON(addr >= end); 1601 tlb_start_vma(tlb, vma); 1602 pgd = pgd_offset(vma->vm_mm, addr); 1603 do { 1604 next = pgd_addr_end(addr, end); 1605 if (pgd_none_or_clear_bad(pgd)) 1606 continue; 1607 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1608 } while (pgd++, addr = next, addr != end); 1609 tlb_end_vma(tlb, vma); 1610 } 1611 1612 1613 static void unmap_single_vma(struct mmu_gather *tlb, 1614 struct vm_area_struct *vma, unsigned long start_addr, 1615 unsigned long end_addr, 1616 struct zap_details *details) 1617 { 1618 unsigned long start = max(vma->vm_start, start_addr); 1619 unsigned long end; 1620 1621 if (start >= vma->vm_end) 1622 return; 1623 end = min(vma->vm_end, end_addr); 1624 if (end <= vma->vm_start) 1625 return; 1626 1627 if (vma->vm_file) 1628 uprobe_munmap(vma, start, end); 1629 1630 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1631 untrack_pfn(vma, 0, 0); 1632 1633 if (start != end) { 1634 if (unlikely(is_vm_hugetlb_page(vma))) { 1635 /* 1636 * It is undesirable to test vma->vm_file as it 1637 * should be non-null for valid hugetlb area. 1638 * However, vm_file will be NULL in the error 1639 * cleanup path of mmap_region. When 1640 * hugetlbfs ->mmap method fails, 1641 * mmap_region() nullifies vma->vm_file 1642 * before calling this function to clean up. 1643 * Since no pte has actually been setup, it is 1644 * safe to do nothing in this case. 1645 */ 1646 if (vma->vm_file) { 1647 zap_flags_t zap_flags = details ? 1648 details->zap_flags : 0; 1649 __unmap_hugepage_range_final(tlb, vma, start, end, 1650 NULL, zap_flags); 1651 } 1652 } else 1653 unmap_page_range(tlb, vma, start, end, details); 1654 } 1655 } 1656 1657 /** 1658 * unmap_vmas - unmap a range of memory covered by a list of vma's 1659 * @tlb: address of the caller's struct mmu_gather 1660 * @mt: the maple tree 1661 * @vma: the starting vma 1662 * @start_addr: virtual address at which to start unmapping 1663 * @end_addr: virtual address at which to end unmapping 1664 * 1665 * Unmap all pages in the vma list. 1666 * 1667 * Only addresses between `start' and `end' will be unmapped. 1668 * 1669 * The VMA list must be sorted in ascending virtual address order. 1670 * 1671 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1672 * range after unmap_vmas() returns. So the only responsibility here is to 1673 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1674 * drops the lock and schedules. 1675 */ 1676 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1677 struct vm_area_struct *vma, unsigned long start_addr, 1678 unsigned long end_addr) 1679 { 1680 struct mmu_notifier_range range; 1681 struct zap_details details = { 1682 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1683 /* Careful - we need to zap private pages too! */ 1684 .even_cows = true, 1685 }; 1686 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1687 1688 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1689 start_addr, end_addr); 1690 mmu_notifier_invalidate_range_start(&range); 1691 do { 1692 unmap_single_vma(tlb, vma, start_addr, end_addr, &details); 1693 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1694 mmu_notifier_invalidate_range_end(&range); 1695 } 1696 1697 /** 1698 * zap_page_range_single - remove user pages in a given range 1699 * @vma: vm_area_struct holding the applicable pages 1700 * @address: starting address of pages to zap 1701 * @size: number of bytes to zap 1702 * @details: details of shared cache invalidation 1703 * 1704 * The range must fit into one VMA. 1705 */ 1706 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1707 unsigned long size, struct zap_details *details) 1708 { 1709 const unsigned long end = address + size; 1710 struct mmu_notifier_range range; 1711 struct mmu_gather tlb; 1712 1713 lru_add_drain(); 1714 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1715 address, end); 1716 if (is_vm_hugetlb_page(vma)) 1717 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1718 &range.end); 1719 tlb_gather_mmu(&tlb, vma->vm_mm); 1720 update_hiwater_rss(vma->vm_mm); 1721 mmu_notifier_invalidate_range_start(&range); 1722 /* 1723 * unmap 'address-end' not 'range.start-range.end' as range 1724 * could have been expanded for hugetlb pmd sharing. 1725 */ 1726 unmap_single_vma(&tlb, vma, address, end, details); 1727 mmu_notifier_invalidate_range_end(&range); 1728 tlb_finish_mmu(&tlb); 1729 } 1730 1731 /** 1732 * zap_vma_ptes - remove ptes mapping the vma 1733 * @vma: vm_area_struct holding ptes to be zapped 1734 * @address: starting address of pages to zap 1735 * @size: number of bytes to zap 1736 * 1737 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1738 * 1739 * The entire address range must be fully contained within the vma. 1740 * 1741 */ 1742 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1743 unsigned long size) 1744 { 1745 if (!range_in_vma(vma, address, address + size) || 1746 !(vma->vm_flags & VM_PFNMAP)) 1747 return; 1748 1749 zap_page_range_single(vma, address, size, NULL); 1750 } 1751 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1752 1753 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1754 { 1755 pgd_t *pgd; 1756 p4d_t *p4d; 1757 pud_t *pud; 1758 pmd_t *pmd; 1759 1760 pgd = pgd_offset(mm, addr); 1761 p4d = p4d_alloc(mm, pgd, addr); 1762 if (!p4d) 1763 return NULL; 1764 pud = pud_alloc(mm, p4d, addr); 1765 if (!pud) 1766 return NULL; 1767 pmd = pmd_alloc(mm, pud, addr); 1768 if (!pmd) 1769 return NULL; 1770 1771 VM_BUG_ON(pmd_trans_huge(*pmd)); 1772 return pmd; 1773 } 1774 1775 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1776 spinlock_t **ptl) 1777 { 1778 pmd_t *pmd = walk_to_pmd(mm, addr); 1779 1780 if (!pmd) 1781 return NULL; 1782 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1783 } 1784 1785 static int validate_page_before_insert(struct page *page) 1786 { 1787 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1788 return -EINVAL; 1789 flush_dcache_page(page); 1790 return 0; 1791 } 1792 1793 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1794 unsigned long addr, struct page *page, pgprot_t prot) 1795 { 1796 if (!pte_none(*pte)) 1797 return -EBUSY; 1798 /* Ok, finally just insert the thing.. */ 1799 get_page(page); 1800 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1801 page_add_file_rmap(page, vma, false); 1802 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1803 return 0; 1804 } 1805 1806 /* 1807 * This is the old fallback for page remapping. 1808 * 1809 * For historical reasons, it only allows reserved pages. Only 1810 * old drivers should use this, and they needed to mark their 1811 * pages reserved for the old functions anyway. 1812 */ 1813 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1814 struct page *page, pgprot_t prot) 1815 { 1816 int retval; 1817 pte_t *pte; 1818 spinlock_t *ptl; 1819 1820 retval = validate_page_before_insert(page); 1821 if (retval) 1822 goto out; 1823 retval = -ENOMEM; 1824 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1825 if (!pte) 1826 goto out; 1827 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1828 pte_unmap_unlock(pte, ptl); 1829 out: 1830 return retval; 1831 } 1832 1833 #ifdef pte_index 1834 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1835 unsigned long addr, struct page *page, pgprot_t prot) 1836 { 1837 int err; 1838 1839 if (!page_count(page)) 1840 return -EINVAL; 1841 err = validate_page_before_insert(page); 1842 if (err) 1843 return err; 1844 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1845 } 1846 1847 /* insert_pages() amortizes the cost of spinlock operations 1848 * when inserting pages in a loop. Arch *must* define pte_index. 1849 */ 1850 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1851 struct page **pages, unsigned long *num, pgprot_t prot) 1852 { 1853 pmd_t *pmd = NULL; 1854 pte_t *start_pte, *pte; 1855 spinlock_t *pte_lock; 1856 struct mm_struct *const mm = vma->vm_mm; 1857 unsigned long curr_page_idx = 0; 1858 unsigned long remaining_pages_total = *num; 1859 unsigned long pages_to_write_in_pmd; 1860 int ret; 1861 more: 1862 ret = -EFAULT; 1863 pmd = walk_to_pmd(mm, addr); 1864 if (!pmd) 1865 goto out; 1866 1867 pages_to_write_in_pmd = min_t(unsigned long, 1868 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1869 1870 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1871 ret = -ENOMEM; 1872 if (pte_alloc(mm, pmd)) 1873 goto out; 1874 1875 while (pages_to_write_in_pmd) { 1876 int pte_idx = 0; 1877 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1878 1879 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1880 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1881 int err = insert_page_in_batch_locked(vma, pte, 1882 addr, pages[curr_page_idx], prot); 1883 if (unlikely(err)) { 1884 pte_unmap_unlock(start_pte, pte_lock); 1885 ret = err; 1886 remaining_pages_total -= pte_idx; 1887 goto out; 1888 } 1889 addr += PAGE_SIZE; 1890 ++curr_page_idx; 1891 } 1892 pte_unmap_unlock(start_pte, pte_lock); 1893 pages_to_write_in_pmd -= batch_size; 1894 remaining_pages_total -= batch_size; 1895 } 1896 if (remaining_pages_total) 1897 goto more; 1898 ret = 0; 1899 out: 1900 *num = remaining_pages_total; 1901 return ret; 1902 } 1903 #endif /* ifdef pte_index */ 1904 1905 /** 1906 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1907 * @vma: user vma to map to 1908 * @addr: target start user address of these pages 1909 * @pages: source kernel pages 1910 * @num: in: number of pages to map. out: number of pages that were *not* 1911 * mapped. (0 means all pages were successfully mapped). 1912 * 1913 * Preferred over vm_insert_page() when inserting multiple pages. 1914 * 1915 * In case of error, we may have mapped a subset of the provided 1916 * pages. It is the caller's responsibility to account for this case. 1917 * 1918 * The same restrictions apply as in vm_insert_page(). 1919 */ 1920 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1921 struct page **pages, unsigned long *num) 1922 { 1923 #ifdef pte_index 1924 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1925 1926 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1927 return -EFAULT; 1928 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1929 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1930 BUG_ON(vma->vm_flags & VM_PFNMAP); 1931 vma->vm_flags |= VM_MIXEDMAP; 1932 } 1933 /* Defer page refcount checking till we're about to map that page. */ 1934 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1935 #else 1936 unsigned long idx = 0, pgcount = *num; 1937 int err = -EINVAL; 1938 1939 for (; idx < pgcount; ++idx) { 1940 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1941 if (err) 1942 break; 1943 } 1944 *num = pgcount - idx; 1945 return err; 1946 #endif /* ifdef pte_index */ 1947 } 1948 EXPORT_SYMBOL(vm_insert_pages); 1949 1950 /** 1951 * vm_insert_page - insert single page into user vma 1952 * @vma: user vma to map to 1953 * @addr: target user address of this page 1954 * @page: source kernel page 1955 * 1956 * This allows drivers to insert individual pages they've allocated 1957 * into a user vma. 1958 * 1959 * The page has to be a nice clean _individual_ kernel allocation. 1960 * If you allocate a compound page, you need to have marked it as 1961 * such (__GFP_COMP), or manually just split the page up yourself 1962 * (see split_page()). 1963 * 1964 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1965 * took an arbitrary page protection parameter. This doesn't allow 1966 * that. Your vma protection will have to be set up correctly, which 1967 * means that if you want a shared writable mapping, you'd better 1968 * ask for a shared writable mapping! 1969 * 1970 * The page does not need to be reserved. 1971 * 1972 * Usually this function is called from f_op->mmap() handler 1973 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1974 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1975 * function from other places, for example from page-fault handler. 1976 * 1977 * Return: %0 on success, negative error code otherwise. 1978 */ 1979 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1980 struct page *page) 1981 { 1982 if (addr < vma->vm_start || addr >= vma->vm_end) 1983 return -EFAULT; 1984 if (!page_count(page)) 1985 return -EINVAL; 1986 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1987 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1988 BUG_ON(vma->vm_flags & VM_PFNMAP); 1989 vma->vm_flags |= VM_MIXEDMAP; 1990 } 1991 return insert_page(vma, addr, page, vma->vm_page_prot); 1992 } 1993 EXPORT_SYMBOL(vm_insert_page); 1994 1995 /* 1996 * __vm_map_pages - maps range of kernel pages into user vma 1997 * @vma: user vma to map to 1998 * @pages: pointer to array of source kernel pages 1999 * @num: number of pages in page array 2000 * @offset: user's requested vm_pgoff 2001 * 2002 * This allows drivers to map range of kernel pages into a user vma. 2003 * 2004 * Return: 0 on success and error code otherwise. 2005 */ 2006 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2007 unsigned long num, unsigned long offset) 2008 { 2009 unsigned long count = vma_pages(vma); 2010 unsigned long uaddr = vma->vm_start; 2011 int ret, i; 2012 2013 /* Fail if the user requested offset is beyond the end of the object */ 2014 if (offset >= num) 2015 return -ENXIO; 2016 2017 /* Fail if the user requested size exceeds available object size */ 2018 if (count > num - offset) 2019 return -ENXIO; 2020 2021 for (i = 0; i < count; i++) { 2022 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2023 if (ret < 0) 2024 return ret; 2025 uaddr += PAGE_SIZE; 2026 } 2027 2028 return 0; 2029 } 2030 2031 /** 2032 * vm_map_pages - maps range of kernel pages starts with non zero offset 2033 * @vma: user vma to map to 2034 * @pages: pointer to array of source kernel pages 2035 * @num: number of pages in page array 2036 * 2037 * Maps an object consisting of @num pages, catering for the user's 2038 * requested vm_pgoff 2039 * 2040 * If we fail to insert any page into the vma, the function will return 2041 * immediately leaving any previously inserted pages present. Callers 2042 * from the mmap handler may immediately return the error as their caller 2043 * will destroy the vma, removing any successfully inserted pages. Other 2044 * callers should make their own arrangements for calling unmap_region(). 2045 * 2046 * Context: Process context. Called by mmap handlers. 2047 * Return: 0 on success and error code otherwise. 2048 */ 2049 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2050 unsigned long num) 2051 { 2052 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2053 } 2054 EXPORT_SYMBOL(vm_map_pages); 2055 2056 /** 2057 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2058 * @vma: user vma to map to 2059 * @pages: pointer to array of source kernel pages 2060 * @num: number of pages in page array 2061 * 2062 * Similar to vm_map_pages(), except that it explicitly sets the offset 2063 * to 0. This function is intended for the drivers that did not consider 2064 * vm_pgoff. 2065 * 2066 * Context: Process context. Called by mmap handlers. 2067 * Return: 0 on success and error code otherwise. 2068 */ 2069 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2070 unsigned long num) 2071 { 2072 return __vm_map_pages(vma, pages, num, 0); 2073 } 2074 EXPORT_SYMBOL(vm_map_pages_zero); 2075 2076 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2077 pfn_t pfn, pgprot_t prot, bool mkwrite) 2078 { 2079 struct mm_struct *mm = vma->vm_mm; 2080 pte_t *pte, entry; 2081 spinlock_t *ptl; 2082 2083 pte = get_locked_pte(mm, addr, &ptl); 2084 if (!pte) 2085 return VM_FAULT_OOM; 2086 if (!pte_none(*pte)) { 2087 if (mkwrite) { 2088 /* 2089 * For read faults on private mappings the PFN passed 2090 * in may not match the PFN we have mapped if the 2091 * mapped PFN is a writeable COW page. In the mkwrite 2092 * case we are creating a writable PTE for a shared 2093 * mapping and we expect the PFNs to match. If they 2094 * don't match, we are likely racing with block 2095 * allocation and mapping invalidation so just skip the 2096 * update. 2097 */ 2098 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2099 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2100 goto out_unlock; 2101 } 2102 entry = pte_mkyoung(*pte); 2103 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2104 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2105 update_mmu_cache(vma, addr, pte); 2106 } 2107 goto out_unlock; 2108 } 2109 2110 /* Ok, finally just insert the thing.. */ 2111 if (pfn_t_devmap(pfn)) 2112 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2113 else 2114 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2115 2116 if (mkwrite) { 2117 entry = pte_mkyoung(entry); 2118 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2119 } 2120 2121 set_pte_at(mm, addr, pte, entry); 2122 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2123 2124 out_unlock: 2125 pte_unmap_unlock(pte, ptl); 2126 return VM_FAULT_NOPAGE; 2127 } 2128 2129 /** 2130 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2131 * @vma: user vma to map to 2132 * @addr: target user address of this page 2133 * @pfn: source kernel pfn 2134 * @pgprot: pgprot flags for the inserted page 2135 * 2136 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2137 * to override pgprot on a per-page basis. 2138 * 2139 * This only makes sense for IO mappings, and it makes no sense for 2140 * COW mappings. In general, using multiple vmas is preferable; 2141 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2142 * impractical. 2143 * 2144 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2145 * a value of @pgprot different from that of @vma->vm_page_prot. 2146 * 2147 * Context: Process context. May allocate using %GFP_KERNEL. 2148 * Return: vm_fault_t value. 2149 */ 2150 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2151 unsigned long pfn, pgprot_t pgprot) 2152 { 2153 /* 2154 * Technically, architectures with pte_special can avoid all these 2155 * restrictions (same for remap_pfn_range). However we would like 2156 * consistency in testing and feature parity among all, so we should 2157 * try to keep these invariants in place for everybody. 2158 */ 2159 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2160 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2161 (VM_PFNMAP|VM_MIXEDMAP)); 2162 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2163 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2164 2165 if (addr < vma->vm_start || addr >= vma->vm_end) 2166 return VM_FAULT_SIGBUS; 2167 2168 if (!pfn_modify_allowed(pfn, pgprot)) 2169 return VM_FAULT_SIGBUS; 2170 2171 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2172 2173 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2174 false); 2175 } 2176 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2177 2178 /** 2179 * vmf_insert_pfn - insert single pfn into user vma 2180 * @vma: user vma to map to 2181 * @addr: target user address of this page 2182 * @pfn: source kernel pfn 2183 * 2184 * Similar to vm_insert_page, this allows drivers to insert individual pages 2185 * they've allocated into a user vma. Same comments apply. 2186 * 2187 * This function should only be called from a vm_ops->fault handler, and 2188 * in that case the handler should return the result of this function. 2189 * 2190 * vma cannot be a COW mapping. 2191 * 2192 * As this is called only for pages that do not currently exist, we 2193 * do not need to flush old virtual caches or the TLB. 2194 * 2195 * Context: Process context. May allocate using %GFP_KERNEL. 2196 * Return: vm_fault_t value. 2197 */ 2198 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2199 unsigned long pfn) 2200 { 2201 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2202 } 2203 EXPORT_SYMBOL(vmf_insert_pfn); 2204 2205 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2206 { 2207 /* these checks mirror the abort conditions in vm_normal_page */ 2208 if (vma->vm_flags & VM_MIXEDMAP) 2209 return true; 2210 if (pfn_t_devmap(pfn)) 2211 return true; 2212 if (pfn_t_special(pfn)) 2213 return true; 2214 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2215 return true; 2216 return false; 2217 } 2218 2219 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2220 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2221 bool mkwrite) 2222 { 2223 int err; 2224 2225 BUG_ON(!vm_mixed_ok(vma, pfn)); 2226 2227 if (addr < vma->vm_start || addr >= vma->vm_end) 2228 return VM_FAULT_SIGBUS; 2229 2230 track_pfn_insert(vma, &pgprot, pfn); 2231 2232 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2233 return VM_FAULT_SIGBUS; 2234 2235 /* 2236 * If we don't have pte special, then we have to use the pfn_valid() 2237 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2238 * refcount the page if pfn_valid is true (hence insert_page rather 2239 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2240 * without pte special, it would there be refcounted as a normal page. 2241 */ 2242 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2243 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2244 struct page *page; 2245 2246 /* 2247 * At this point we are committed to insert_page() 2248 * regardless of whether the caller specified flags that 2249 * result in pfn_t_has_page() == false. 2250 */ 2251 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2252 err = insert_page(vma, addr, page, pgprot); 2253 } else { 2254 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2255 } 2256 2257 if (err == -ENOMEM) 2258 return VM_FAULT_OOM; 2259 if (err < 0 && err != -EBUSY) 2260 return VM_FAULT_SIGBUS; 2261 2262 return VM_FAULT_NOPAGE; 2263 } 2264 2265 /** 2266 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2267 * @vma: user vma to map to 2268 * @addr: target user address of this page 2269 * @pfn: source kernel pfn 2270 * @pgprot: pgprot flags for the inserted page 2271 * 2272 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2273 * to override pgprot on a per-page basis. 2274 * 2275 * Typically this function should be used by drivers to set caching- and 2276 * encryption bits different than those of @vma->vm_page_prot, because 2277 * the caching- or encryption mode may not be known at mmap() time. 2278 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2279 * to set caching and encryption bits for those vmas (except for COW pages). 2280 * This is ensured by core vm only modifying these page table entries using 2281 * functions that don't touch caching- or encryption bits, using pte_modify() 2282 * if needed. (See for example mprotect()). 2283 * Also when new page-table entries are created, this is only done using the 2284 * fault() callback, and never using the value of vma->vm_page_prot, 2285 * except for page-table entries that point to anonymous pages as the result 2286 * of COW. 2287 * 2288 * Context: Process context. May allocate using %GFP_KERNEL. 2289 * Return: vm_fault_t value. 2290 */ 2291 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2292 pfn_t pfn, pgprot_t pgprot) 2293 { 2294 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2295 } 2296 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2297 2298 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2299 pfn_t pfn) 2300 { 2301 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2302 } 2303 EXPORT_SYMBOL(vmf_insert_mixed); 2304 2305 /* 2306 * If the insertion of PTE failed because someone else already added a 2307 * different entry in the mean time, we treat that as success as we assume 2308 * the same entry was actually inserted. 2309 */ 2310 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2311 unsigned long addr, pfn_t pfn) 2312 { 2313 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2314 } 2315 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2316 2317 /* 2318 * maps a range of physical memory into the requested pages. the old 2319 * mappings are removed. any references to nonexistent pages results 2320 * in null mappings (currently treated as "copy-on-access") 2321 */ 2322 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2323 unsigned long addr, unsigned long end, 2324 unsigned long pfn, pgprot_t prot) 2325 { 2326 pte_t *pte, *mapped_pte; 2327 spinlock_t *ptl; 2328 int err = 0; 2329 2330 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2331 if (!pte) 2332 return -ENOMEM; 2333 arch_enter_lazy_mmu_mode(); 2334 do { 2335 BUG_ON(!pte_none(*pte)); 2336 if (!pfn_modify_allowed(pfn, prot)) { 2337 err = -EACCES; 2338 break; 2339 } 2340 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2341 pfn++; 2342 } while (pte++, addr += PAGE_SIZE, addr != end); 2343 arch_leave_lazy_mmu_mode(); 2344 pte_unmap_unlock(mapped_pte, ptl); 2345 return err; 2346 } 2347 2348 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2349 unsigned long addr, unsigned long end, 2350 unsigned long pfn, pgprot_t prot) 2351 { 2352 pmd_t *pmd; 2353 unsigned long next; 2354 int err; 2355 2356 pfn -= addr >> PAGE_SHIFT; 2357 pmd = pmd_alloc(mm, pud, addr); 2358 if (!pmd) 2359 return -ENOMEM; 2360 VM_BUG_ON(pmd_trans_huge(*pmd)); 2361 do { 2362 next = pmd_addr_end(addr, end); 2363 err = remap_pte_range(mm, pmd, addr, next, 2364 pfn + (addr >> PAGE_SHIFT), prot); 2365 if (err) 2366 return err; 2367 } while (pmd++, addr = next, addr != end); 2368 return 0; 2369 } 2370 2371 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2372 unsigned long addr, unsigned long end, 2373 unsigned long pfn, pgprot_t prot) 2374 { 2375 pud_t *pud; 2376 unsigned long next; 2377 int err; 2378 2379 pfn -= addr >> PAGE_SHIFT; 2380 pud = pud_alloc(mm, p4d, addr); 2381 if (!pud) 2382 return -ENOMEM; 2383 do { 2384 next = pud_addr_end(addr, end); 2385 err = remap_pmd_range(mm, pud, addr, next, 2386 pfn + (addr >> PAGE_SHIFT), prot); 2387 if (err) 2388 return err; 2389 } while (pud++, addr = next, addr != end); 2390 return 0; 2391 } 2392 2393 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2394 unsigned long addr, unsigned long end, 2395 unsigned long pfn, pgprot_t prot) 2396 { 2397 p4d_t *p4d; 2398 unsigned long next; 2399 int err; 2400 2401 pfn -= addr >> PAGE_SHIFT; 2402 p4d = p4d_alloc(mm, pgd, addr); 2403 if (!p4d) 2404 return -ENOMEM; 2405 do { 2406 next = p4d_addr_end(addr, end); 2407 err = remap_pud_range(mm, p4d, addr, next, 2408 pfn + (addr >> PAGE_SHIFT), prot); 2409 if (err) 2410 return err; 2411 } while (p4d++, addr = next, addr != end); 2412 return 0; 2413 } 2414 2415 /* 2416 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2417 * must have pre-validated the caching bits of the pgprot_t. 2418 */ 2419 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2420 unsigned long pfn, unsigned long size, pgprot_t prot) 2421 { 2422 pgd_t *pgd; 2423 unsigned long next; 2424 unsigned long end = addr + PAGE_ALIGN(size); 2425 struct mm_struct *mm = vma->vm_mm; 2426 int err; 2427 2428 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2429 return -EINVAL; 2430 2431 /* 2432 * Physically remapped pages are special. Tell the 2433 * rest of the world about it: 2434 * VM_IO tells people not to look at these pages 2435 * (accesses can have side effects). 2436 * VM_PFNMAP tells the core MM that the base pages are just 2437 * raw PFN mappings, and do not have a "struct page" associated 2438 * with them. 2439 * VM_DONTEXPAND 2440 * Disable vma merging and expanding with mremap(). 2441 * VM_DONTDUMP 2442 * Omit vma from core dump, even when VM_IO turned off. 2443 * 2444 * There's a horrible special case to handle copy-on-write 2445 * behaviour that some programs depend on. We mark the "original" 2446 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2447 * See vm_normal_page() for details. 2448 */ 2449 if (is_cow_mapping(vma->vm_flags)) { 2450 if (addr != vma->vm_start || end != vma->vm_end) 2451 return -EINVAL; 2452 vma->vm_pgoff = pfn; 2453 } 2454 2455 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2456 2457 BUG_ON(addr >= end); 2458 pfn -= addr >> PAGE_SHIFT; 2459 pgd = pgd_offset(mm, addr); 2460 flush_cache_range(vma, addr, end); 2461 do { 2462 next = pgd_addr_end(addr, end); 2463 err = remap_p4d_range(mm, pgd, addr, next, 2464 pfn + (addr >> PAGE_SHIFT), prot); 2465 if (err) 2466 return err; 2467 } while (pgd++, addr = next, addr != end); 2468 2469 return 0; 2470 } 2471 2472 /** 2473 * remap_pfn_range - remap kernel memory to userspace 2474 * @vma: user vma to map to 2475 * @addr: target page aligned user address to start at 2476 * @pfn: page frame number of kernel physical memory address 2477 * @size: size of mapping area 2478 * @prot: page protection flags for this mapping 2479 * 2480 * Note: this is only safe if the mm semaphore is held when called. 2481 * 2482 * Return: %0 on success, negative error code otherwise. 2483 */ 2484 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2485 unsigned long pfn, unsigned long size, pgprot_t prot) 2486 { 2487 int err; 2488 2489 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2490 if (err) 2491 return -EINVAL; 2492 2493 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2494 if (err) 2495 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2496 return err; 2497 } 2498 EXPORT_SYMBOL(remap_pfn_range); 2499 2500 /** 2501 * vm_iomap_memory - remap memory to userspace 2502 * @vma: user vma to map to 2503 * @start: start of the physical memory to be mapped 2504 * @len: size of area 2505 * 2506 * This is a simplified io_remap_pfn_range() for common driver use. The 2507 * driver just needs to give us the physical memory range to be mapped, 2508 * we'll figure out the rest from the vma information. 2509 * 2510 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2511 * whatever write-combining details or similar. 2512 * 2513 * Return: %0 on success, negative error code otherwise. 2514 */ 2515 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2516 { 2517 unsigned long vm_len, pfn, pages; 2518 2519 /* Check that the physical memory area passed in looks valid */ 2520 if (start + len < start) 2521 return -EINVAL; 2522 /* 2523 * You *really* shouldn't map things that aren't page-aligned, 2524 * but we've historically allowed it because IO memory might 2525 * just have smaller alignment. 2526 */ 2527 len += start & ~PAGE_MASK; 2528 pfn = start >> PAGE_SHIFT; 2529 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2530 if (pfn + pages < pfn) 2531 return -EINVAL; 2532 2533 /* We start the mapping 'vm_pgoff' pages into the area */ 2534 if (vma->vm_pgoff > pages) 2535 return -EINVAL; 2536 pfn += vma->vm_pgoff; 2537 pages -= vma->vm_pgoff; 2538 2539 /* Can we fit all of the mapping? */ 2540 vm_len = vma->vm_end - vma->vm_start; 2541 if (vm_len >> PAGE_SHIFT > pages) 2542 return -EINVAL; 2543 2544 /* Ok, let it rip */ 2545 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2546 } 2547 EXPORT_SYMBOL(vm_iomap_memory); 2548 2549 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2550 unsigned long addr, unsigned long end, 2551 pte_fn_t fn, void *data, bool create, 2552 pgtbl_mod_mask *mask) 2553 { 2554 pte_t *pte, *mapped_pte; 2555 int err = 0; 2556 spinlock_t *ptl; 2557 2558 if (create) { 2559 mapped_pte = pte = (mm == &init_mm) ? 2560 pte_alloc_kernel_track(pmd, addr, mask) : 2561 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2562 if (!pte) 2563 return -ENOMEM; 2564 } else { 2565 mapped_pte = pte = (mm == &init_mm) ? 2566 pte_offset_kernel(pmd, addr) : 2567 pte_offset_map_lock(mm, pmd, addr, &ptl); 2568 } 2569 2570 BUG_ON(pmd_huge(*pmd)); 2571 2572 arch_enter_lazy_mmu_mode(); 2573 2574 if (fn) { 2575 do { 2576 if (create || !pte_none(*pte)) { 2577 err = fn(pte++, addr, data); 2578 if (err) 2579 break; 2580 } 2581 } while (addr += PAGE_SIZE, addr != end); 2582 } 2583 *mask |= PGTBL_PTE_MODIFIED; 2584 2585 arch_leave_lazy_mmu_mode(); 2586 2587 if (mm != &init_mm) 2588 pte_unmap_unlock(mapped_pte, ptl); 2589 return err; 2590 } 2591 2592 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2593 unsigned long addr, unsigned long end, 2594 pte_fn_t fn, void *data, bool create, 2595 pgtbl_mod_mask *mask) 2596 { 2597 pmd_t *pmd; 2598 unsigned long next; 2599 int err = 0; 2600 2601 BUG_ON(pud_huge(*pud)); 2602 2603 if (create) { 2604 pmd = pmd_alloc_track(mm, pud, addr, mask); 2605 if (!pmd) 2606 return -ENOMEM; 2607 } else { 2608 pmd = pmd_offset(pud, addr); 2609 } 2610 do { 2611 next = pmd_addr_end(addr, end); 2612 if (pmd_none(*pmd) && !create) 2613 continue; 2614 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2615 return -EINVAL; 2616 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2617 if (!create) 2618 continue; 2619 pmd_clear_bad(pmd); 2620 } 2621 err = apply_to_pte_range(mm, pmd, addr, next, 2622 fn, data, create, mask); 2623 if (err) 2624 break; 2625 } while (pmd++, addr = next, addr != end); 2626 2627 return err; 2628 } 2629 2630 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2631 unsigned long addr, unsigned long end, 2632 pte_fn_t fn, void *data, bool create, 2633 pgtbl_mod_mask *mask) 2634 { 2635 pud_t *pud; 2636 unsigned long next; 2637 int err = 0; 2638 2639 if (create) { 2640 pud = pud_alloc_track(mm, p4d, addr, mask); 2641 if (!pud) 2642 return -ENOMEM; 2643 } else { 2644 pud = pud_offset(p4d, addr); 2645 } 2646 do { 2647 next = pud_addr_end(addr, end); 2648 if (pud_none(*pud) && !create) 2649 continue; 2650 if (WARN_ON_ONCE(pud_leaf(*pud))) 2651 return -EINVAL; 2652 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2653 if (!create) 2654 continue; 2655 pud_clear_bad(pud); 2656 } 2657 err = apply_to_pmd_range(mm, pud, addr, next, 2658 fn, data, create, mask); 2659 if (err) 2660 break; 2661 } while (pud++, addr = next, addr != end); 2662 2663 return err; 2664 } 2665 2666 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2667 unsigned long addr, unsigned long end, 2668 pte_fn_t fn, void *data, bool create, 2669 pgtbl_mod_mask *mask) 2670 { 2671 p4d_t *p4d; 2672 unsigned long next; 2673 int err = 0; 2674 2675 if (create) { 2676 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2677 if (!p4d) 2678 return -ENOMEM; 2679 } else { 2680 p4d = p4d_offset(pgd, addr); 2681 } 2682 do { 2683 next = p4d_addr_end(addr, end); 2684 if (p4d_none(*p4d) && !create) 2685 continue; 2686 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2687 return -EINVAL; 2688 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2689 if (!create) 2690 continue; 2691 p4d_clear_bad(p4d); 2692 } 2693 err = apply_to_pud_range(mm, p4d, addr, next, 2694 fn, data, create, mask); 2695 if (err) 2696 break; 2697 } while (p4d++, addr = next, addr != end); 2698 2699 return err; 2700 } 2701 2702 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2703 unsigned long size, pte_fn_t fn, 2704 void *data, bool create) 2705 { 2706 pgd_t *pgd; 2707 unsigned long start = addr, next; 2708 unsigned long end = addr + size; 2709 pgtbl_mod_mask mask = 0; 2710 int err = 0; 2711 2712 if (WARN_ON(addr >= end)) 2713 return -EINVAL; 2714 2715 pgd = pgd_offset(mm, addr); 2716 do { 2717 next = pgd_addr_end(addr, end); 2718 if (pgd_none(*pgd) && !create) 2719 continue; 2720 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2721 return -EINVAL; 2722 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2723 if (!create) 2724 continue; 2725 pgd_clear_bad(pgd); 2726 } 2727 err = apply_to_p4d_range(mm, pgd, addr, next, 2728 fn, data, create, &mask); 2729 if (err) 2730 break; 2731 } while (pgd++, addr = next, addr != end); 2732 2733 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2734 arch_sync_kernel_mappings(start, start + size); 2735 2736 return err; 2737 } 2738 2739 /* 2740 * Scan a region of virtual memory, filling in page tables as necessary 2741 * and calling a provided function on each leaf page table. 2742 */ 2743 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2744 unsigned long size, pte_fn_t fn, void *data) 2745 { 2746 return __apply_to_page_range(mm, addr, size, fn, data, true); 2747 } 2748 EXPORT_SYMBOL_GPL(apply_to_page_range); 2749 2750 /* 2751 * Scan a region of virtual memory, calling a provided function on 2752 * each leaf page table where it exists. 2753 * 2754 * Unlike apply_to_page_range, this does _not_ fill in page tables 2755 * where they are absent. 2756 */ 2757 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2758 unsigned long size, pte_fn_t fn, void *data) 2759 { 2760 return __apply_to_page_range(mm, addr, size, fn, data, false); 2761 } 2762 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2763 2764 /* 2765 * handle_pte_fault chooses page fault handler according to an entry which was 2766 * read non-atomically. Before making any commitment, on those architectures 2767 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2768 * parts, do_swap_page must check under lock before unmapping the pte and 2769 * proceeding (but do_wp_page is only called after already making such a check; 2770 * and do_anonymous_page can safely check later on). 2771 */ 2772 static inline int pte_unmap_same(struct vm_fault *vmf) 2773 { 2774 int same = 1; 2775 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2776 if (sizeof(pte_t) > sizeof(unsigned long)) { 2777 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2778 spin_lock(ptl); 2779 same = pte_same(*vmf->pte, vmf->orig_pte); 2780 spin_unlock(ptl); 2781 } 2782 #endif 2783 pte_unmap(vmf->pte); 2784 vmf->pte = NULL; 2785 return same; 2786 } 2787 2788 /* 2789 * Return: 2790 * 0: copied succeeded 2791 * -EHWPOISON: copy failed due to hwpoison in source page 2792 * -EAGAIN: copied failed (some other reason) 2793 */ 2794 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2795 struct vm_fault *vmf) 2796 { 2797 int ret; 2798 void *kaddr; 2799 void __user *uaddr; 2800 bool locked = false; 2801 struct vm_area_struct *vma = vmf->vma; 2802 struct mm_struct *mm = vma->vm_mm; 2803 unsigned long addr = vmf->address; 2804 2805 if (likely(src)) { 2806 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2807 memory_failure_queue(page_to_pfn(src), 0); 2808 return -EHWPOISON; 2809 } 2810 return 0; 2811 } 2812 2813 /* 2814 * If the source page was a PFN mapping, we don't have 2815 * a "struct page" for it. We do a best-effort copy by 2816 * just copying from the original user address. If that 2817 * fails, we just zero-fill it. Live with it. 2818 */ 2819 kaddr = kmap_atomic(dst); 2820 uaddr = (void __user *)(addr & PAGE_MASK); 2821 2822 /* 2823 * On architectures with software "accessed" bits, we would 2824 * take a double page fault, so mark it accessed here. 2825 */ 2826 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2827 pte_t entry; 2828 2829 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2830 locked = true; 2831 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2832 /* 2833 * Other thread has already handled the fault 2834 * and update local tlb only 2835 */ 2836 update_mmu_tlb(vma, addr, vmf->pte); 2837 ret = -EAGAIN; 2838 goto pte_unlock; 2839 } 2840 2841 entry = pte_mkyoung(vmf->orig_pte); 2842 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2843 update_mmu_cache(vma, addr, vmf->pte); 2844 } 2845 2846 /* 2847 * This really shouldn't fail, because the page is there 2848 * in the page tables. But it might just be unreadable, 2849 * in which case we just give up and fill the result with 2850 * zeroes. 2851 */ 2852 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2853 if (locked) 2854 goto warn; 2855 2856 /* Re-validate under PTL if the page is still mapped */ 2857 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2858 locked = true; 2859 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2860 /* The PTE changed under us, update local tlb */ 2861 update_mmu_tlb(vma, addr, vmf->pte); 2862 ret = -EAGAIN; 2863 goto pte_unlock; 2864 } 2865 2866 /* 2867 * The same page can be mapped back since last copy attempt. 2868 * Try to copy again under PTL. 2869 */ 2870 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2871 /* 2872 * Give a warn in case there can be some obscure 2873 * use-case 2874 */ 2875 warn: 2876 WARN_ON_ONCE(1); 2877 clear_page(kaddr); 2878 } 2879 } 2880 2881 ret = 0; 2882 2883 pte_unlock: 2884 if (locked) 2885 pte_unmap_unlock(vmf->pte, vmf->ptl); 2886 kunmap_atomic(kaddr); 2887 flush_dcache_page(dst); 2888 2889 return ret; 2890 } 2891 2892 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2893 { 2894 struct file *vm_file = vma->vm_file; 2895 2896 if (vm_file) 2897 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2898 2899 /* 2900 * Special mappings (e.g. VDSO) do not have any file so fake 2901 * a default GFP_KERNEL for them. 2902 */ 2903 return GFP_KERNEL; 2904 } 2905 2906 /* 2907 * Notify the address space that the page is about to become writable so that 2908 * it can prohibit this or wait for the page to get into an appropriate state. 2909 * 2910 * We do this without the lock held, so that it can sleep if it needs to. 2911 */ 2912 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2913 { 2914 vm_fault_t ret; 2915 struct page *page = vmf->page; 2916 unsigned int old_flags = vmf->flags; 2917 2918 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2919 2920 if (vmf->vma->vm_file && 2921 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2922 return VM_FAULT_SIGBUS; 2923 2924 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2925 /* Restore original flags so that caller is not surprised */ 2926 vmf->flags = old_flags; 2927 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2928 return ret; 2929 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2930 lock_page(page); 2931 if (!page->mapping) { 2932 unlock_page(page); 2933 return 0; /* retry */ 2934 } 2935 ret |= VM_FAULT_LOCKED; 2936 } else 2937 VM_BUG_ON_PAGE(!PageLocked(page), page); 2938 return ret; 2939 } 2940 2941 /* 2942 * Handle dirtying of a page in shared file mapping on a write fault. 2943 * 2944 * The function expects the page to be locked and unlocks it. 2945 */ 2946 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2947 { 2948 struct vm_area_struct *vma = vmf->vma; 2949 struct address_space *mapping; 2950 struct page *page = vmf->page; 2951 bool dirtied; 2952 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2953 2954 dirtied = set_page_dirty(page); 2955 VM_BUG_ON_PAGE(PageAnon(page), page); 2956 /* 2957 * Take a local copy of the address_space - page.mapping may be zeroed 2958 * by truncate after unlock_page(). The address_space itself remains 2959 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2960 * release semantics to prevent the compiler from undoing this copying. 2961 */ 2962 mapping = page_rmapping(page); 2963 unlock_page(page); 2964 2965 if (!page_mkwrite) 2966 file_update_time(vma->vm_file); 2967 2968 /* 2969 * Throttle page dirtying rate down to writeback speed. 2970 * 2971 * mapping may be NULL here because some device drivers do not 2972 * set page.mapping but still dirty their pages 2973 * 2974 * Drop the mmap_lock before waiting on IO, if we can. The file 2975 * is pinning the mapping, as per above. 2976 */ 2977 if ((dirtied || page_mkwrite) && mapping) { 2978 struct file *fpin; 2979 2980 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2981 balance_dirty_pages_ratelimited(mapping); 2982 if (fpin) { 2983 fput(fpin); 2984 return VM_FAULT_COMPLETED; 2985 } 2986 } 2987 2988 return 0; 2989 } 2990 2991 /* 2992 * Handle write page faults for pages that can be reused in the current vma 2993 * 2994 * This can happen either due to the mapping being with the VM_SHARED flag, 2995 * or due to us being the last reference standing to the page. In either 2996 * case, all we need to do here is to mark the page as writable and update 2997 * any related book-keeping. 2998 */ 2999 static inline void wp_page_reuse(struct vm_fault *vmf) 3000 __releases(vmf->ptl) 3001 { 3002 struct vm_area_struct *vma = vmf->vma; 3003 struct page *page = vmf->page; 3004 pte_t entry; 3005 3006 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3007 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3008 3009 /* 3010 * Clear the pages cpupid information as the existing 3011 * information potentially belongs to a now completely 3012 * unrelated process. 3013 */ 3014 if (page) 3015 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3016 3017 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3018 entry = pte_mkyoung(vmf->orig_pte); 3019 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3020 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3021 update_mmu_cache(vma, vmf->address, vmf->pte); 3022 pte_unmap_unlock(vmf->pte, vmf->ptl); 3023 count_vm_event(PGREUSE); 3024 } 3025 3026 /* 3027 * Handle the case of a page which we actually need to copy to a new page, 3028 * either due to COW or unsharing. 3029 * 3030 * Called with mmap_lock locked and the old page referenced, but 3031 * without the ptl held. 3032 * 3033 * High level logic flow: 3034 * 3035 * - Allocate a page, copy the content of the old page to the new one. 3036 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3037 * - Take the PTL. If the pte changed, bail out and release the allocated page 3038 * - If the pte is still the way we remember it, update the page table and all 3039 * relevant references. This includes dropping the reference the page-table 3040 * held to the old page, as well as updating the rmap. 3041 * - In any case, unlock the PTL and drop the reference we took to the old page. 3042 */ 3043 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3044 { 3045 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3046 struct vm_area_struct *vma = vmf->vma; 3047 struct mm_struct *mm = vma->vm_mm; 3048 struct folio *old_folio = NULL; 3049 struct folio *new_folio = NULL; 3050 pte_t entry; 3051 int page_copied = 0; 3052 struct mmu_notifier_range range; 3053 int ret; 3054 3055 delayacct_wpcopy_start(); 3056 3057 if (vmf->page) 3058 old_folio = page_folio(vmf->page); 3059 if (unlikely(anon_vma_prepare(vma))) 3060 goto oom; 3061 3062 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3063 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3064 if (!new_folio) 3065 goto oom; 3066 } else { 3067 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3068 vmf->address, false); 3069 if (!new_folio) 3070 goto oom; 3071 3072 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3073 if (ret) { 3074 /* 3075 * COW failed, if the fault was solved by other, 3076 * it's fine. If not, userspace would re-fault on 3077 * the same address and we will handle the fault 3078 * from the second attempt. 3079 * The -EHWPOISON case will not be retried. 3080 */ 3081 folio_put(new_folio); 3082 if (old_folio) 3083 folio_put(old_folio); 3084 3085 delayacct_wpcopy_end(); 3086 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3087 } 3088 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3089 } 3090 3091 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3092 goto oom_free_new; 3093 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL); 3094 3095 __folio_mark_uptodate(new_folio); 3096 3097 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3098 vmf->address & PAGE_MASK, 3099 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3100 mmu_notifier_invalidate_range_start(&range); 3101 3102 /* 3103 * Re-check the pte - we dropped the lock 3104 */ 3105 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3106 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3107 if (old_folio) { 3108 if (!folio_test_anon(old_folio)) { 3109 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3110 inc_mm_counter(mm, MM_ANONPAGES); 3111 } 3112 } else { 3113 inc_mm_counter(mm, MM_ANONPAGES); 3114 } 3115 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3116 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3117 entry = pte_sw_mkyoung(entry); 3118 if (unlikely(unshare)) { 3119 if (pte_soft_dirty(vmf->orig_pte)) 3120 entry = pte_mksoft_dirty(entry); 3121 if (pte_uffd_wp(vmf->orig_pte)) 3122 entry = pte_mkuffd_wp(entry); 3123 } else { 3124 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3125 } 3126 3127 /* 3128 * Clear the pte entry and flush it first, before updating the 3129 * pte with the new entry, to keep TLBs on different CPUs in 3130 * sync. This code used to set the new PTE then flush TLBs, but 3131 * that left a window where the new PTE could be loaded into 3132 * some TLBs while the old PTE remains in others. 3133 */ 3134 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3135 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3136 folio_add_lru_vma(new_folio, vma); 3137 /* 3138 * We call the notify macro here because, when using secondary 3139 * mmu page tables (such as kvm shadow page tables), we want the 3140 * new page to be mapped directly into the secondary page table. 3141 */ 3142 BUG_ON(unshare && pte_write(entry)); 3143 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3144 update_mmu_cache(vma, vmf->address, vmf->pte); 3145 if (old_folio) { 3146 /* 3147 * Only after switching the pte to the new page may 3148 * we remove the mapcount here. Otherwise another 3149 * process may come and find the rmap count decremented 3150 * before the pte is switched to the new page, and 3151 * "reuse" the old page writing into it while our pte 3152 * here still points into it and can be read by other 3153 * threads. 3154 * 3155 * The critical issue is to order this 3156 * page_remove_rmap with the ptp_clear_flush above. 3157 * Those stores are ordered by (if nothing else,) 3158 * the barrier present in the atomic_add_negative 3159 * in page_remove_rmap. 3160 * 3161 * Then the TLB flush in ptep_clear_flush ensures that 3162 * no process can access the old page before the 3163 * decremented mapcount is visible. And the old page 3164 * cannot be reused until after the decremented 3165 * mapcount is visible. So transitively, TLBs to 3166 * old page will be flushed before it can be reused. 3167 */ 3168 page_remove_rmap(vmf->page, vma, false); 3169 } 3170 3171 /* Free the old page.. */ 3172 new_folio = old_folio; 3173 page_copied = 1; 3174 } else { 3175 update_mmu_tlb(vma, vmf->address, vmf->pte); 3176 } 3177 3178 if (new_folio) 3179 folio_put(new_folio); 3180 3181 pte_unmap_unlock(vmf->pte, vmf->ptl); 3182 /* 3183 * No need to double call mmu_notifier->invalidate_range() callback as 3184 * the above ptep_clear_flush_notify() did already call it. 3185 */ 3186 mmu_notifier_invalidate_range_only_end(&range); 3187 if (old_folio) { 3188 if (page_copied) 3189 free_swap_cache(&old_folio->page); 3190 folio_put(old_folio); 3191 } 3192 3193 delayacct_wpcopy_end(); 3194 return 0; 3195 oom_free_new: 3196 folio_put(new_folio); 3197 oom: 3198 if (old_folio) 3199 folio_put(old_folio); 3200 3201 delayacct_wpcopy_end(); 3202 return VM_FAULT_OOM; 3203 } 3204 3205 /** 3206 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3207 * writeable once the page is prepared 3208 * 3209 * @vmf: structure describing the fault 3210 * 3211 * This function handles all that is needed to finish a write page fault in a 3212 * shared mapping due to PTE being read-only once the mapped page is prepared. 3213 * It handles locking of PTE and modifying it. 3214 * 3215 * The function expects the page to be locked or other protection against 3216 * concurrent faults / writeback (such as DAX radix tree locks). 3217 * 3218 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3219 * we acquired PTE lock. 3220 */ 3221 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3222 { 3223 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3224 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3225 &vmf->ptl); 3226 /* 3227 * We might have raced with another page fault while we released the 3228 * pte_offset_map_lock. 3229 */ 3230 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3231 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3232 pte_unmap_unlock(vmf->pte, vmf->ptl); 3233 return VM_FAULT_NOPAGE; 3234 } 3235 wp_page_reuse(vmf); 3236 return 0; 3237 } 3238 3239 /* 3240 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3241 * mapping 3242 */ 3243 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3244 { 3245 struct vm_area_struct *vma = vmf->vma; 3246 3247 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3248 vm_fault_t ret; 3249 3250 pte_unmap_unlock(vmf->pte, vmf->ptl); 3251 vmf->flags |= FAULT_FLAG_MKWRITE; 3252 ret = vma->vm_ops->pfn_mkwrite(vmf); 3253 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3254 return ret; 3255 return finish_mkwrite_fault(vmf); 3256 } 3257 wp_page_reuse(vmf); 3258 return 0; 3259 } 3260 3261 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3262 __releases(vmf->ptl) 3263 { 3264 struct vm_area_struct *vma = vmf->vma; 3265 vm_fault_t ret = 0; 3266 3267 get_page(vmf->page); 3268 3269 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3270 vm_fault_t tmp; 3271 3272 pte_unmap_unlock(vmf->pte, vmf->ptl); 3273 tmp = do_page_mkwrite(vmf); 3274 if (unlikely(!tmp || (tmp & 3275 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3276 put_page(vmf->page); 3277 return tmp; 3278 } 3279 tmp = finish_mkwrite_fault(vmf); 3280 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3281 unlock_page(vmf->page); 3282 put_page(vmf->page); 3283 return tmp; 3284 } 3285 } else { 3286 wp_page_reuse(vmf); 3287 lock_page(vmf->page); 3288 } 3289 ret |= fault_dirty_shared_page(vmf); 3290 put_page(vmf->page); 3291 3292 return ret; 3293 } 3294 3295 /* 3296 * This routine handles present pages, when 3297 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3298 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3299 * (FAULT_FLAG_UNSHARE) 3300 * 3301 * It is done by copying the page to a new address and decrementing the 3302 * shared-page counter for the old page. 3303 * 3304 * Note that this routine assumes that the protection checks have been 3305 * done by the caller (the low-level page fault routine in most cases). 3306 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3307 * done any necessary COW. 3308 * 3309 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3310 * though the page will change only once the write actually happens. This 3311 * avoids a few races, and potentially makes it more efficient. 3312 * 3313 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3314 * but allow concurrent faults), with pte both mapped and locked. 3315 * We return with mmap_lock still held, but pte unmapped and unlocked. 3316 */ 3317 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3318 __releases(vmf->ptl) 3319 { 3320 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3321 struct vm_area_struct *vma = vmf->vma; 3322 struct folio *folio = NULL; 3323 3324 if (likely(!unshare)) { 3325 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3326 pte_unmap_unlock(vmf->pte, vmf->ptl); 3327 return handle_userfault(vmf, VM_UFFD_WP); 3328 } 3329 3330 /* 3331 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3332 * is flushed in this case before copying. 3333 */ 3334 if (unlikely(userfaultfd_wp(vmf->vma) && 3335 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3336 flush_tlb_page(vmf->vma, vmf->address); 3337 } 3338 3339 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3340 3341 /* 3342 * Shared mapping: we are guaranteed to have VM_WRITE and 3343 * FAULT_FLAG_WRITE set at this point. 3344 */ 3345 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3346 /* 3347 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3348 * VM_PFNMAP VMA. 3349 * 3350 * We should not cow pages in a shared writeable mapping. 3351 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3352 */ 3353 if (!vmf->page) 3354 return wp_pfn_shared(vmf); 3355 return wp_page_shared(vmf); 3356 } 3357 3358 if (vmf->page) 3359 folio = page_folio(vmf->page); 3360 3361 /* 3362 * Private mapping: create an exclusive anonymous page copy if reuse 3363 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3364 */ 3365 if (folio && folio_test_anon(folio)) { 3366 /* 3367 * If the page is exclusive to this process we must reuse the 3368 * page without further checks. 3369 */ 3370 if (PageAnonExclusive(vmf->page)) 3371 goto reuse; 3372 3373 /* 3374 * We have to verify under folio lock: these early checks are 3375 * just an optimization to avoid locking the folio and freeing 3376 * the swapcache if there is little hope that we can reuse. 3377 * 3378 * KSM doesn't necessarily raise the folio refcount. 3379 */ 3380 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3381 goto copy; 3382 if (!folio_test_lru(folio)) 3383 /* 3384 * Note: We cannot easily detect+handle references from 3385 * remote LRU pagevecs or references to LRU folios. 3386 */ 3387 lru_add_drain(); 3388 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3389 goto copy; 3390 if (!folio_trylock(folio)) 3391 goto copy; 3392 if (folio_test_swapcache(folio)) 3393 folio_free_swap(folio); 3394 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3395 folio_unlock(folio); 3396 goto copy; 3397 } 3398 /* 3399 * Ok, we've got the only folio reference from our mapping 3400 * and the folio is locked, it's dark out, and we're wearing 3401 * sunglasses. Hit it. 3402 */ 3403 page_move_anon_rmap(vmf->page, vma); 3404 folio_unlock(folio); 3405 reuse: 3406 if (unlikely(unshare)) { 3407 pte_unmap_unlock(vmf->pte, vmf->ptl); 3408 return 0; 3409 } 3410 wp_page_reuse(vmf); 3411 return 0; 3412 } 3413 copy: 3414 /* 3415 * Ok, we need to copy. Oh, well.. 3416 */ 3417 if (folio) 3418 folio_get(folio); 3419 3420 pte_unmap_unlock(vmf->pte, vmf->ptl); 3421 #ifdef CONFIG_KSM 3422 if (folio && folio_test_ksm(folio)) 3423 count_vm_event(COW_KSM); 3424 #endif 3425 return wp_page_copy(vmf); 3426 } 3427 3428 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3429 unsigned long start_addr, unsigned long end_addr, 3430 struct zap_details *details) 3431 { 3432 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3433 } 3434 3435 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3436 pgoff_t first_index, 3437 pgoff_t last_index, 3438 struct zap_details *details) 3439 { 3440 struct vm_area_struct *vma; 3441 pgoff_t vba, vea, zba, zea; 3442 3443 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3444 vba = vma->vm_pgoff; 3445 vea = vba + vma_pages(vma) - 1; 3446 zba = max(first_index, vba); 3447 zea = min(last_index, vea); 3448 3449 unmap_mapping_range_vma(vma, 3450 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3451 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3452 details); 3453 } 3454 } 3455 3456 /** 3457 * unmap_mapping_folio() - Unmap single folio from processes. 3458 * @folio: The locked folio to be unmapped. 3459 * 3460 * Unmap this folio from any userspace process which still has it mmaped. 3461 * Typically, for efficiency, the range of nearby pages has already been 3462 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3463 * truncation or invalidation holds the lock on a folio, it may find that 3464 * the page has been remapped again: and then uses unmap_mapping_folio() 3465 * to unmap it finally. 3466 */ 3467 void unmap_mapping_folio(struct folio *folio) 3468 { 3469 struct address_space *mapping = folio->mapping; 3470 struct zap_details details = { }; 3471 pgoff_t first_index; 3472 pgoff_t last_index; 3473 3474 VM_BUG_ON(!folio_test_locked(folio)); 3475 3476 first_index = folio->index; 3477 last_index = folio->index + folio_nr_pages(folio) - 1; 3478 3479 details.even_cows = false; 3480 details.single_folio = folio; 3481 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3482 3483 i_mmap_lock_read(mapping); 3484 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3485 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3486 last_index, &details); 3487 i_mmap_unlock_read(mapping); 3488 } 3489 3490 /** 3491 * unmap_mapping_pages() - Unmap pages from processes. 3492 * @mapping: The address space containing pages to be unmapped. 3493 * @start: Index of first page to be unmapped. 3494 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3495 * @even_cows: Whether to unmap even private COWed pages. 3496 * 3497 * Unmap the pages in this address space from any userspace process which 3498 * has them mmaped. Generally, you want to remove COWed pages as well when 3499 * a file is being truncated, but not when invalidating pages from the page 3500 * cache. 3501 */ 3502 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3503 pgoff_t nr, bool even_cows) 3504 { 3505 struct zap_details details = { }; 3506 pgoff_t first_index = start; 3507 pgoff_t last_index = start + nr - 1; 3508 3509 details.even_cows = even_cows; 3510 if (last_index < first_index) 3511 last_index = ULONG_MAX; 3512 3513 i_mmap_lock_read(mapping); 3514 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3515 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3516 last_index, &details); 3517 i_mmap_unlock_read(mapping); 3518 } 3519 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3520 3521 /** 3522 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3523 * address_space corresponding to the specified byte range in the underlying 3524 * file. 3525 * 3526 * @mapping: the address space containing mmaps to be unmapped. 3527 * @holebegin: byte in first page to unmap, relative to the start of 3528 * the underlying file. This will be rounded down to a PAGE_SIZE 3529 * boundary. Note that this is different from truncate_pagecache(), which 3530 * must keep the partial page. In contrast, we must get rid of 3531 * partial pages. 3532 * @holelen: size of prospective hole in bytes. This will be rounded 3533 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3534 * end of the file. 3535 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3536 * but 0 when invalidating pagecache, don't throw away private data. 3537 */ 3538 void unmap_mapping_range(struct address_space *mapping, 3539 loff_t const holebegin, loff_t const holelen, int even_cows) 3540 { 3541 pgoff_t hba = holebegin >> PAGE_SHIFT; 3542 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3543 3544 /* Check for overflow. */ 3545 if (sizeof(holelen) > sizeof(hlen)) { 3546 long long holeend = 3547 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3548 if (holeend & ~(long long)ULONG_MAX) 3549 hlen = ULONG_MAX - hba + 1; 3550 } 3551 3552 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3553 } 3554 EXPORT_SYMBOL(unmap_mapping_range); 3555 3556 /* 3557 * Restore a potential device exclusive pte to a working pte entry 3558 */ 3559 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3560 { 3561 struct folio *folio = page_folio(vmf->page); 3562 struct vm_area_struct *vma = vmf->vma; 3563 struct mmu_notifier_range range; 3564 3565 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) 3566 return VM_FAULT_RETRY; 3567 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3568 vma->vm_mm, vmf->address & PAGE_MASK, 3569 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3570 mmu_notifier_invalidate_range_start(&range); 3571 3572 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3573 &vmf->ptl); 3574 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3575 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3576 3577 pte_unmap_unlock(vmf->pte, vmf->ptl); 3578 folio_unlock(folio); 3579 3580 mmu_notifier_invalidate_range_end(&range); 3581 return 0; 3582 } 3583 3584 static inline bool should_try_to_free_swap(struct folio *folio, 3585 struct vm_area_struct *vma, 3586 unsigned int fault_flags) 3587 { 3588 if (!folio_test_swapcache(folio)) 3589 return false; 3590 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3591 folio_test_mlocked(folio)) 3592 return true; 3593 /* 3594 * If we want to map a page that's in the swapcache writable, we 3595 * have to detect via the refcount if we're really the exclusive 3596 * user. Try freeing the swapcache to get rid of the swapcache 3597 * reference only in case it's likely that we'll be the exlusive user. 3598 */ 3599 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3600 folio_ref_count(folio) == 2; 3601 } 3602 3603 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3604 { 3605 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3606 vmf->address, &vmf->ptl); 3607 /* 3608 * Be careful so that we will only recover a special uffd-wp pte into a 3609 * none pte. Otherwise it means the pte could have changed, so retry. 3610 * 3611 * This should also cover the case where e.g. the pte changed 3612 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3613 * So is_pte_marker() check is not enough to safely drop the pte. 3614 */ 3615 if (pte_same(vmf->orig_pte, *vmf->pte)) 3616 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3617 pte_unmap_unlock(vmf->pte, vmf->ptl); 3618 return 0; 3619 } 3620 3621 /* 3622 * This is actually a page-missing access, but with uffd-wp special pte 3623 * installed. It means this pte was wr-protected before being unmapped. 3624 */ 3625 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3626 { 3627 /* 3628 * Just in case there're leftover special ptes even after the region 3629 * got unregistered - we can simply clear them. We can also do that 3630 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp 3631 * ranges, but it should be more efficient to be done lazily here. 3632 */ 3633 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3634 return pte_marker_clear(vmf); 3635 3636 /* do_fault() can handle pte markers too like none pte */ 3637 return do_fault(vmf); 3638 } 3639 3640 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3641 { 3642 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3643 unsigned long marker = pte_marker_get(entry); 3644 3645 /* 3646 * PTE markers should never be empty. If anything weird happened, 3647 * the best thing to do is to kill the process along with its mm. 3648 */ 3649 if (WARN_ON_ONCE(!marker)) 3650 return VM_FAULT_SIGBUS; 3651 3652 /* Higher priority than uffd-wp when data corrupted */ 3653 if (marker & PTE_MARKER_SWAPIN_ERROR) 3654 return VM_FAULT_SIGBUS; 3655 3656 if (pte_marker_entry_uffd_wp(entry)) 3657 return pte_marker_handle_uffd_wp(vmf); 3658 3659 /* This is an unknown pte marker */ 3660 return VM_FAULT_SIGBUS; 3661 } 3662 3663 /* 3664 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3665 * but allow concurrent faults), and pte mapped but not yet locked. 3666 * We return with pte unmapped and unlocked. 3667 * 3668 * We return with the mmap_lock locked or unlocked in the same cases 3669 * as does filemap_fault(). 3670 */ 3671 vm_fault_t do_swap_page(struct vm_fault *vmf) 3672 { 3673 struct vm_area_struct *vma = vmf->vma; 3674 struct folio *swapcache, *folio = NULL; 3675 struct page *page; 3676 struct swap_info_struct *si = NULL; 3677 rmap_t rmap_flags = RMAP_NONE; 3678 bool exclusive = false; 3679 swp_entry_t entry; 3680 pte_t pte; 3681 int locked; 3682 vm_fault_t ret = 0; 3683 void *shadow = NULL; 3684 3685 if (!pte_unmap_same(vmf)) 3686 goto out; 3687 3688 entry = pte_to_swp_entry(vmf->orig_pte); 3689 if (unlikely(non_swap_entry(entry))) { 3690 if (is_migration_entry(entry)) { 3691 migration_entry_wait(vma->vm_mm, vmf->pmd, 3692 vmf->address); 3693 } else if (is_device_exclusive_entry(entry)) { 3694 vmf->page = pfn_swap_entry_to_page(entry); 3695 ret = remove_device_exclusive_entry(vmf); 3696 } else if (is_device_private_entry(entry)) { 3697 vmf->page = pfn_swap_entry_to_page(entry); 3698 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3699 vmf->address, &vmf->ptl); 3700 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3701 spin_unlock(vmf->ptl); 3702 goto out; 3703 } 3704 3705 /* 3706 * Get a page reference while we know the page can't be 3707 * freed. 3708 */ 3709 get_page(vmf->page); 3710 pte_unmap_unlock(vmf->pte, vmf->ptl); 3711 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3712 put_page(vmf->page); 3713 } else if (is_hwpoison_entry(entry)) { 3714 ret = VM_FAULT_HWPOISON; 3715 } else if (is_pte_marker_entry(entry)) { 3716 ret = handle_pte_marker(vmf); 3717 } else { 3718 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3719 ret = VM_FAULT_SIGBUS; 3720 } 3721 goto out; 3722 } 3723 3724 /* Prevent swapoff from happening to us. */ 3725 si = get_swap_device(entry); 3726 if (unlikely(!si)) 3727 goto out; 3728 3729 folio = swap_cache_get_folio(entry, vma, vmf->address); 3730 if (folio) 3731 page = folio_file_page(folio, swp_offset(entry)); 3732 swapcache = folio; 3733 3734 if (!folio) { 3735 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3736 __swap_count(entry) == 1) { 3737 /* skip swapcache */ 3738 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3739 vma, vmf->address, false); 3740 page = &folio->page; 3741 if (folio) { 3742 __folio_set_locked(folio); 3743 __folio_set_swapbacked(folio); 3744 3745 if (mem_cgroup_swapin_charge_folio(folio, 3746 vma->vm_mm, GFP_KERNEL, 3747 entry)) { 3748 ret = VM_FAULT_OOM; 3749 goto out_page; 3750 } 3751 mem_cgroup_swapin_uncharge_swap(entry); 3752 3753 shadow = get_shadow_from_swap_cache(entry); 3754 if (shadow) 3755 workingset_refault(folio, shadow); 3756 3757 folio_add_lru(folio); 3758 3759 /* To provide entry to swap_readpage() */ 3760 folio_set_swap_entry(folio, entry); 3761 swap_readpage(page, true, NULL); 3762 folio->private = NULL; 3763 } 3764 } else { 3765 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3766 vmf); 3767 if (page) 3768 folio = page_folio(page); 3769 swapcache = folio; 3770 } 3771 3772 if (!folio) { 3773 /* 3774 * Back out if somebody else faulted in this pte 3775 * while we released the pte lock. 3776 */ 3777 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3778 vmf->address, &vmf->ptl); 3779 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3780 ret = VM_FAULT_OOM; 3781 goto unlock; 3782 } 3783 3784 /* Had to read the page from swap area: Major fault */ 3785 ret = VM_FAULT_MAJOR; 3786 count_vm_event(PGMAJFAULT); 3787 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3788 } else if (PageHWPoison(page)) { 3789 /* 3790 * hwpoisoned dirty swapcache pages are kept for killing 3791 * owner processes (which may be unknown at hwpoison time) 3792 */ 3793 ret = VM_FAULT_HWPOISON; 3794 goto out_release; 3795 } 3796 3797 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3798 3799 if (!locked) { 3800 ret |= VM_FAULT_RETRY; 3801 goto out_release; 3802 } 3803 3804 if (swapcache) { 3805 /* 3806 * Make sure folio_free_swap() or swapoff did not release the 3807 * swapcache from under us. The page pin, and pte_same test 3808 * below, are not enough to exclude that. Even if it is still 3809 * swapcache, we need to check that the page's swap has not 3810 * changed. 3811 */ 3812 if (unlikely(!folio_test_swapcache(folio) || 3813 page_private(page) != entry.val)) 3814 goto out_page; 3815 3816 /* 3817 * KSM sometimes has to copy on read faults, for example, if 3818 * page->index of !PageKSM() pages would be nonlinear inside the 3819 * anon VMA -- PageKSM() is lost on actual swapout. 3820 */ 3821 page = ksm_might_need_to_copy(page, vma, vmf->address); 3822 if (unlikely(!page)) { 3823 ret = VM_FAULT_OOM; 3824 goto out_page; 3825 } 3826 folio = page_folio(page); 3827 3828 /* 3829 * If we want to map a page that's in the swapcache writable, we 3830 * have to detect via the refcount if we're really the exclusive 3831 * owner. Try removing the extra reference from the local LRU 3832 * pagevecs if required. 3833 */ 3834 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3835 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3836 lru_add_drain(); 3837 } 3838 3839 cgroup_throttle_swaprate(page, GFP_KERNEL); 3840 3841 /* 3842 * Back out if somebody else already faulted in this pte. 3843 */ 3844 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3845 &vmf->ptl); 3846 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3847 goto out_nomap; 3848 3849 if (unlikely(!folio_test_uptodate(folio))) { 3850 ret = VM_FAULT_SIGBUS; 3851 goto out_nomap; 3852 } 3853 3854 /* 3855 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3856 * must never point at an anonymous page in the swapcache that is 3857 * PG_anon_exclusive. Sanity check that this holds and especially, that 3858 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3859 * check after taking the PT lock and making sure that nobody 3860 * concurrently faulted in this page and set PG_anon_exclusive. 3861 */ 3862 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3863 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3864 3865 /* 3866 * Check under PT lock (to protect against concurrent fork() sharing 3867 * the swap entry concurrently) for certainly exclusive pages. 3868 */ 3869 if (!folio_test_ksm(folio)) { 3870 exclusive = pte_swp_exclusive(vmf->orig_pte); 3871 if (folio != swapcache) { 3872 /* 3873 * We have a fresh page that is not exposed to the 3874 * swapcache -> certainly exclusive. 3875 */ 3876 exclusive = true; 3877 } else if (exclusive && folio_test_writeback(folio) && 3878 data_race(si->flags & SWP_STABLE_WRITES)) { 3879 /* 3880 * This is tricky: not all swap backends support 3881 * concurrent page modifications while under writeback. 3882 * 3883 * So if we stumble over such a page in the swapcache 3884 * we must not set the page exclusive, otherwise we can 3885 * map it writable without further checks and modify it 3886 * while still under writeback. 3887 * 3888 * For these problematic swap backends, simply drop the 3889 * exclusive marker: this is perfectly fine as we start 3890 * writeback only if we fully unmapped the page and 3891 * there are no unexpected references on the page after 3892 * unmapping succeeded. After fully unmapped, no 3893 * further GUP references (FOLL_GET and FOLL_PIN) can 3894 * appear, so dropping the exclusive marker and mapping 3895 * it only R/O is fine. 3896 */ 3897 exclusive = false; 3898 } 3899 } 3900 3901 /* 3902 * Remove the swap entry and conditionally try to free up the swapcache. 3903 * We're already holding a reference on the page but haven't mapped it 3904 * yet. 3905 */ 3906 swap_free(entry); 3907 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3908 folio_free_swap(folio); 3909 3910 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3911 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3912 pte = mk_pte(page, vma->vm_page_prot); 3913 3914 /* 3915 * Same logic as in do_wp_page(); however, optimize for pages that are 3916 * certainly not shared either because we just allocated them without 3917 * exposing them to the swapcache or because the swap entry indicates 3918 * exclusivity. 3919 */ 3920 if (!folio_test_ksm(folio) && 3921 (exclusive || folio_ref_count(folio) == 1)) { 3922 if (vmf->flags & FAULT_FLAG_WRITE) { 3923 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3924 vmf->flags &= ~FAULT_FLAG_WRITE; 3925 } 3926 rmap_flags |= RMAP_EXCLUSIVE; 3927 } 3928 flush_icache_page(vma, page); 3929 if (pte_swp_soft_dirty(vmf->orig_pte)) 3930 pte = pte_mksoft_dirty(pte); 3931 if (pte_swp_uffd_wp(vmf->orig_pte)) 3932 pte = pte_mkuffd_wp(pte); 3933 vmf->orig_pte = pte; 3934 3935 /* ksm created a completely new copy */ 3936 if (unlikely(folio != swapcache && swapcache)) { 3937 page_add_new_anon_rmap(page, vma, vmf->address); 3938 folio_add_lru_vma(folio, vma); 3939 } else { 3940 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3941 } 3942 3943 VM_BUG_ON(!folio_test_anon(folio) || 3944 (pte_write(pte) && !PageAnonExclusive(page))); 3945 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3946 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3947 3948 folio_unlock(folio); 3949 if (folio != swapcache && swapcache) { 3950 /* 3951 * Hold the lock to avoid the swap entry to be reused 3952 * until we take the PT lock for the pte_same() check 3953 * (to avoid false positives from pte_same). For 3954 * further safety release the lock after the swap_free 3955 * so that the swap count won't change under a 3956 * parallel locked swapcache. 3957 */ 3958 folio_unlock(swapcache); 3959 folio_put(swapcache); 3960 } 3961 3962 if (vmf->flags & FAULT_FLAG_WRITE) { 3963 ret |= do_wp_page(vmf); 3964 if (ret & VM_FAULT_ERROR) 3965 ret &= VM_FAULT_ERROR; 3966 goto out; 3967 } 3968 3969 /* No need to invalidate - it was non-present before */ 3970 update_mmu_cache(vma, vmf->address, vmf->pte); 3971 unlock: 3972 pte_unmap_unlock(vmf->pte, vmf->ptl); 3973 out: 3974 if (si) 3975 put_swap_device(si); 3976 return ret; 3977 out_nomap: 3978 pte_unmap_unlock(vmf->pte, vmf->ptl); 3979 out_page: 3980 folio_unlock(folio); 3981 out_release: 3982 folio_put(folio); 3983 if (folio != swapcache && swapcache) { 3984 folio_unlock(swapcache); 3985 folio_put(swapcache); 3986 } 3987 if (si) 3988 put_swap_device(si); 3989 return ret; 3990 } 3991 3992 /* 3993 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3994 * but allow concurrent faults), and pte mapped but not yet locked. 3995 * We return with mmap_lock still held, but pte unmapped and unlocked. 3996 */ 3997 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3998 { 3999 struct vm_area_struct *vma = vmf->vma; 4000 struct folio *folio; 4001 vm_fault_t ret = 0; 4002 pte_t entry; 4003 4004 /* File mapping without ->vm_ops ? */ 4005 if (vma->vm_flags & VM_SHARED) 4006 return VM_FAULT_SIGBUS; 4007 4008 /* 4009 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4010 * pte_offset_map() on pmds where a huge pmd might be created 4011 * from a different thread. 4012 * 4013 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4014 * parallel threads are excluded by other means. 4015 * 4016 * Here we only have mmap_read_lock(mm). 4017 */ 4018 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4019 return VM_FAULT_OOM; 4020 4021 /* See comment in handle_pte_fault() */ 4022 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4023 return 0; 4024 4025 /* Use the zero-page for reads */ 4026 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4027 !mm_forbids_zeropage(vma->vm_mm)) { 4028 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4029 vma->vm_page_prot)); 4030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4031 vmf->address, &vmf->ptl); 4032 if (!pte_none(*vmf->pte)) { 4033 update_mmu_tlb(vma, vmf->address, vmf->pte); 4034 goto unlock; 4035 } 4036 ret = check_stable_address_space(vma->vm_mm); 4037 if (ret) 4038 goto unlock; 4039 /* Deliver the page fault to userland, check inside PT lock */ 4040 if (userfaultfd_missing(vma)) { 4041 pte_unmap_unlock(vmf->pte, vmf->ptl); 4042 return handle_userfault(vmf, VM_UFFD_MISSING); 4043 } 4044 goto setpte; 4045 } 4046 4047 /* Allocate our own private page. */ 4048 if (unlikely(anon_vma_prepare(vma))) 4049 goto oom; 4050 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4051 if (!folio) 4052 goto oom; 4053 4054 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4055 goto oom_free_page; 4056 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL); 4057 4058 /* 4059 * The memory barrier inside __folio_mark_uptodate makes sure that 4060 * preceding stores to the page contents become visible before 4061 * the set_pte_at() write. 4062 */ 4063 __folio_mark_uptodate(folio); 4064 4065 entry = mk_pte(&folio->page, vma->vm_page_prot); 4066 entry = pte_sw_mkyoung(entry); 4067 if (vma->vm_flags & VM_WRITE) 4068 entry = pte_mkwrite(pte_mkdirty(entry)); 4069 4070 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4071 &vmf->ptl); 4072 if (!pte_none(*vmf->pte)) { 4073 update_mmu_tlb(vma, vmf->address, vmf->pte); 4074 goto release; 4075 } 4076 4077 ret = check_stable_address_space(vma->vm_mm); 4078 if (ret) 4079 goto release; 4080 4081 /* Deliver the page fault to userland, check inside PT lock */ 4082 if (userfaultfd_missing(vma)) { 4083 pte_unmap_unlock(vmf->pte, vmf->ptl); 4084 folio_put(folio); 4085 return handle_userfault(vmf, VM_UFFD_MISSING); 4086 } 4087 4088 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4089 folio_add_new_anon_rmap(folio, vma, vmf->address); 4090 folio_add_lru_vma(folio, vma); 4091 setpte: 4092 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4093 4094 /* No need to invalidate - it was non-present before */ 4095 update_mmu_cache(vma, vmf->address, vmf->pte); 4096 unlock: 4097 pte_unmap_unlock(vmf->pte, vmf->ptl); 4098 return ret; 4099 release: 4100 folio_put(folio); 4101 goto unlock; 4102 oom_free_page: 4103 folio_put(folio); 4104 oom: 4105 return VM_FAULT_OOM; 4106 } 4107 4108 /* 4109 * The mmap_lock must have been held on entry, and may have been 4110 * released depending on flags and vma->vm_ops->fault() return value. 4111 * See filemap_fault() and __lock_page_retry(). 4112 */ 4113 static vm_fault_t __do_fault(struct vm_fault *vmf) 4114 { 4115 struct vm_area_struct *vma = vmf->vma; 4116 vm_fault_t ret; 4117 4118 /* 4119 * Preallocate pte before we take page_lock because this might lead to 4120 * deadlocks for memcg reclaim which waits for pages under writeback: 4121 * lock_page(A) 4122 * SetPageWriteback(A) 4123 * unlock_page(A) 4124 * lock_page(B) 4125 * lock_page(B) 4126 * pte_alloc_one 4127 * shrink_page_list 4128 * wait_on_page_writeback(A) 4129 * SetPageWriteback(B) 4130 * unlock_page(B) 4131 * # flush A, B to clear the writeback 4132 */ 4133 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4134 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4135 if (!vmf->prealloc_pte) 4136 return VM_FAULT_OOM; 4137 } 4138 4139 ret = vma->vm_ops->fault(vmf); 4140 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4141 VM_FAULT_DONE_COW))) 4142 return ret; 4143 4144 if (unlikely(PageHWPoison(vmf->page))) { 4145 struct page *page = vmf->page; 4146 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4147 if (ret & VM_FAULT_LOCKED) { 4148 if (page_mapped(page)) 4149 unmap_mapping_pages(page_mapping(page), 4150 page->index, 1, false); 4151 /* Retry if a clean page was removed from the cache. */ 4152 if (invalidate_inode_page(page)) 4153 poisonret = VM_FAULT_NOPAGE; 4154 unlock_page(page); 4155 } 4156 put_page(page); 4157 vmf->page = NULL; 4158 return poisonret; 4159 } 4160 4161 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4162 lock_page(vmf->page); 4163 else 4164 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4165 4166 return ret; 4167 } 4168 4169 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4170 static void deposit_prealloc_pte(struct vm_fault *vmf) 4171 { 4172 struct vm_area_struct *vma = vmf->vma; 4173 4174 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4175 /* 4176 * We are going to consume the prealloc table, 4177 * count that as nr_ptes. 4178 */ 4179 mm_inc_nr_ptes(vma->vm_mm); 4180 vmf->prealloc_pte = NULL; 4181 } 4182 4183 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4184 { 4185 struct vm_area_struct *vma = vmf->vma; 4186 bool write = vmf->flags & FAULT_FLAG_WRITE; 4187 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4188 pmd_t entry; 4189 int i; 4190 vm_fault_t ret = VM_FAULT_FALLBACK; 4191 4192 if (!transhuge_vma_suitable(vma, haddr)) 4193 return ret; 4194 4195 page = compound_head(page); 4196 if (compound_order(page) != HPAGE_PMD_ORDER) 4197 return ret; 4198 4199 /* 4200 * Just backoff if any subpage of a THP is corrupted otherwise 4201 * the corrupted page may mapped by PMD silently to escape the 4202 * check. This kind of THP just can be PTE mapped. Access to 4203 * the corrupted subpage should trigger SIGBUS as expected. 4204 */ 4205 if (unlikely(PageHasHWPoisoned(page))) 4206 return ret; 4207 4208 /* 4209 * Archs like ppc64 need additional space to store information 4210 * related to pte entry. Use the preallocated table for that. 4211 */ 4212 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4213 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4214 if (!vmf->prealloc_pte) 4215 return VM_FAULT_OOM; 4216 } 4217 4218 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4219 if (unlikely(!pmd_none(*vmf->pmd))) 4220 goto out; 4221 4222 for (i = 0; i < HPAGE_PMD_NR; i++) 4223 flush_icache_page(vma, page + i); 4224 4225 entry = mk_huge_pmd(page, vma->vm_page_prot); 4226 if (write) 4227 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4228 4229 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4230 page_add_file_rmap(page, vma, true); 4231 4232 /* 4233 * deposit and withdraw with pmd lock held 4234 */ 4235 if (arch_needs_pgtable_deposit()) 4236 deposit_prealloc_pte(vmf); 4237 4238 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4239 4240 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4241 4242 /* fault is handled */ 4243 ret = 0; 4244 count_vm_event(THP_FILE_MAPPED); 4245 out: 4246 spin_unlock(vmf->ptl); 4247 return ret; 4248 } 4249 #else 4250 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4251 { 4252 return VM_FAULT_FALLBACK; 4253 } 4254 #endif 4255 4256 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4257 { 4258 struct vm_area_struct *vma = vmf->vma; 4259 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4260 bool write = vmf->flags & FAULT_FLAG_WRITE; 4261 bool prefault = vmf->address != addr; 4262 pte_t entry; 4263 4264 flush_icache_page(vma, page); 4265 entry = mk_pte(page, vma->vm_page_prot); 4266 4267 if (prefault && arch_wants_old_prefaulted_pte()) 4268 entry = pte_mkold(entry); 4269 else 4270 entry = pte_sw_mkyoung(entry); 4271 4272 if (write) 4273 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4274 if (unlikely(uffd_wp)) 4275 entry = pte_mkuffd_wp(entry); 4276 /* copy-on-write page */ 4277 if (write && !(vma->vm_flags & VM_SHARED)) { 4278 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4279 page_add_new_anon_rmap(page, vma, addr); 4280 lru_cache_add_inactive_or_unevictable(page, vma); 4281 } else { 4282 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4283 page_add_file_rmap(page, vma, false); 4284 } 4285 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4286 } 4287 4288 static bool vmf_pte_changed(struct vm_fault *vmf) 4289 { 4290 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4291 return !pte_same(*vmf->pte, vmf->orig_pte); 4292 4293 return !pte_none(*vmf->pte); 4294 } 4295 4296 /** 4297 * finish_fault - finish page fault once we have prepared the page to fault 4298 * 4299 * @vmf: structure describing the fault 4300 * 4301 * This function handles all that is needed to finish a page fault once the 4302 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4303 * given page, adds reverse page mapping, handles memcg charges and LRU 4304 * addition. 4305 * 4306 * The function expects the page to be locked and on success it consumes a 4307 * reference of a page being mapped (for the PTE which maps it). 4308 * 4309 * Return: %0 on success, %VM_FAULT_ code in case of error. 4310 */ 4311 vm_fault_t finish_fault(struct vm_fault *vmf) 4312 { 4313 struct vm_area_struct *vma = vmf->vma; 4314 struct page *page; 4315 vm_fault_t ret; 4316 4317 /* Did we COW the page? */ 4318 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4319 page = vmf->cow_page; 4320 else 4321 page = vmf->page; 4322 4323 /* 4324 * check even for read faults because we might have lost our CoWed 4325 * page 4326 */ 4327 if (!(vma->vm_flags & VM_SHARED)) { 4328 ret = check_stable_address_space(vma->vm_mm); 4329 if (ret) 4330 return ret; 4331 } 4332 4333 if (pmd_none(*vmf->pmd)) { 4334 if (PageTransCompound(page)) { 4335 ret = do_set_pmd(vmf, page); 4336 if (ret != VM_FAULT_FALLBACK) 4337 return ret; 4338 } 4339 4340 if (vmf->prealloc_pte) 4341 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4342 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4343 return VM_FAULT_OOM; 4344 } 4345 4346 /* 4347 * See comment in handle_pte_fault() for how this scenario happens, we 4348 * need to return NOPAGE so that we drop this page. 4349 */ 4350 if (pmd_devmap_trans_unstable(vmf->pmd)) 4351 return VM_FAULT_NOPAGE; 4352 4353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4354 vmf->address, &vmf->ptl); 4355 4356 /* Re-check under ptl */ 4357 if (likely(!vmf_pte_changed(vmf))) { 4358 do_set_pte(vmf, page, vmf->address); 4359 4360 /* no need to invalidate: a not-present page won't be cached */ 4361 update_mmu_cache(vma, vmf->address, vmf->pte); 4362 4363 ret = 0; 4364 } else { 4365 update_mmu_tlb(vma, vmf->address, vmf->pte); 4366 ret = VM_FAULT_NOPAGE; 4367 } 4368 4369 pte_unmap_unlock(vmf->pte, vmf->ptl); 4370 return ret; 4371 } 4372 4373 static unsigned long fault_around_bytes __read_mostly = 4374 rounddown_pow_of_two(65536); 4375 4376 #ifdef CONFIG_DEBUG_FS 4377 static int fault_around_bytes_get(void *data, u64 *val) 4378 { 4379 *val = fault_around_bytes; 4380 return 0; 4381 } 4382 4383 /* 4384 * fault_around_bytes must be rounded down to the nearest page order as it's 4385 * what do_fault_around() expects to see. 4386 */ 4387 static int fault_around_bytes_set(void *data, u64 val) 4388 { 4389 if (val / PAGE_SIZE > PTRS_PER_PTE) 4390 return -EINVAL; 4391 if (val > PAGE_SIZE) 4392 fault_around_bytes = rounddown_pow_of_two(val); 4393 else 4394 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4395 return 0; 4396 } 4397 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4398 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4399 4400 static int __init fault_around_debugfs(void) 4401 { 4402 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4403 &fault_around_bytes_fops); 4404 return 0; 4405 } 4406 late_initcall(fault_around_debugfs); 4407 #endif 4408 4409 /* 4410 * do_fault_around() tries to map few pages around the fault address. The hope 4411 * is that the pages will be needed soon and this will lower the number of 4412 * faults to handle. 4413 * 4414 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4415 * not ready to be mapped: not up-to-date, locked, etc. 4416 * 4417 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4418 * only once. 4419 * 4420 * fault_around_bytes defines how many bytes we'll try to map. 4421 * do_fault_around() expects it to be set to a power of two less than or equal 4422 * to PTRS_PER_PTE. 4423 * 4424 * The virtual address of the area that we map is naturally aligned to 4425 * fault_around_bytes rounded down to the machine page size 4426 * (and therefore to page order). This way it's easier to guarantee 4427 * that we don't cross page table boundaries. 4428 */ 4429 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4430 { 4431 unsigned long address = vmf->address, nr_pages, mask; 4432 pgoff_t start_pgoff = vmf->pgoff; 4433 pgoff_t end_pgoff; 4434 int off; 4435 4436 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4437 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4438 4439 address = max(address & mask, vmf->vma->vm_start); 4440 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4441 start_pgoff -= off; 4442 4443 /* 4444 * end_pgoff is either the end of the page table, the end of 4445 * the vma or nr_pages from start_pgoff, depending what is nearest. 4446 */ 4447 end_pgoff = start_pgoff - 4448 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4449 PTRS_PER_PTE - 1; 4450 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4451 start_pgoff + nr_pages - 1); 4452 4453 if (pmd_none(*vmf->pmd)) { 4454 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4455 if (!vmf->prealloc_pte) 4456 return VM_FAULT_OOM; 4457 } 4458 4459 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4460 } 4461 4462 /* Return true if we should do read fault-around, false otherwise */ 4463 static inline bool should_fault_around(struct vm_fault *vmf) 4464 { 4465 /* No ->map_pages? No way to fault around... */ 4466 if (!vmf->vma->vm_ops->map_pages) 4467 return false; 4468 4469 if (uffd_disable_fault_around(vmf->vma)) 4470 return false; 4471 4472 return fault_around_bytes >> PAGE_SHIFT > 1; 4473 } 4474 4475 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4476 { 4477 vm_fault_t ret = 0; 4478 4479 /* 4480 * Let's call ->map_pages() first and use ->fault() as fallback 4481 * if page by the offset is not ready to be mapped (cold cache or 4482 * something). 4483 */ 4484 if (should_fault_around(vmf)) { 4485 ret = do_fault_around(vmf); 4486 if (ret) 4487 return ret; 4488 } 4489 4490 ret = __do_fault(vmf); 4491 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4492 return ret; 4493 4494 ret |= finish_fault(vmf); 4495 unlock_page(vmf->page); 4496 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4497 put_page(vmf->page); 4498 return ret; 4499 } 4500 4501 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4502 { 4503 struct vm_area_struct *vma = vmf->vma; 4504 vm_fault_t ret; 4505 4506 if (unlikely(anon_vma_prepare(vma))) 4507 return VM_FAULT_OOM; 4508 4509 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4510 if (!vmf->cow_page) 4511 return VM_FAULT_OOM; 4512 4513 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4514 GFP_KERNEL)) { 4515 put_page(vmf->cow_page); 4516 return VM_FAULT_OOM; 4517 } 4518 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4519 4520 ret = __do_fault(vmf); 4521 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4522 goto uncharge_out; 4523 if (ret & VM_FAULT_DONE_COW) 4524 return ret; 4525 4526 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4527 __SetPageUptodate(vmf->cow_page); 4528 4529 ret |= finish_fault(vmf); 4530 unlock_page(vmf->page); 4531 put_page(vmf->page); 4532 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4533 goto uncharge_out; 4534 return ret; 4535 uncharge_out: 4536 put_page(vmf->cow_page); 4537 return ret; 4538 } 4539 4540 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4541 { 4542 struct vm_area_struct *vma = vmf->vma; 4543 vm_fault_t ret, tmp; 4544 4545 ret = __do_fault(vmf); 4546 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4547 return ret; 4548 4549 /* 4550 * Check if the backing address space wants to know that the page is 4551 * about to become writable 4552 */ 4553 if (vma->vm_ops->page_mkwrite) { 4554 unlock_page(vmf->page); 4555 tmp = do_page_mkwrite(vmf); 4556 if (unlikely(!tmp || 4557 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4558 put_page(vmf->page); 4559 return tmp; 4560 } 4561 } 4562 4563 ret |= finish_fault(vmf); 4564 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4565 VM_FAULT_RETRY))) { 4566 unlock_page(vmf->page); 4567 put_page(vmf->page); 4568 return ret; 4569 } 4570 4571 ret |= fault_dirty_shared_page(vmf); 4572 return ret; 4573 } 4574 4575 /* 4576 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4577 * but allow concurrent faults). 4578 * The mmap_lock may have been released depending on flags and our 4579 * return value. See filemap_fault() and __folio_lock_or_retry(). 4580 * If mmap_lock is released, vma may become invalid (for example 4581 * by other thread calling munmap()). 4582 */ 4583 static vm_fault_t do_fault(struct vm_fault *vmf) 4584 { 4585 struct vm_area_struct *vma = vmf->vma; 4586 struct mm_struct *vm_mm = vma->vm_mm; 4587 vm_fault_t ret; 4588 4589 /* 4590 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4591 */ 4592 if (!vma->vm_ops->fault) { 4593 /* 4594 * If we find a migration pmd entry or a none pmd entry, which 4595 * should never happen, return SIGBUS 4596 */ 4597 if (unlikely(!pmd_present(*vmf->pmd))) 4598 ret = VM_FAULT_SIGBUS; 4599 else { 4600 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4601 vmf->pmd, 4602 vmf->address, 4603 &vmf->ptl); 4604 /* 4605 * Make sure this is not a temporary clearing of pte 4606 * by holding ptl and checking again. A R/M/W update 4607 * of pte involves: take ptl, clearing the pte so that 4608 * we don't have concurrent modification by hardware 4609 * followed by an update. 4610 */ 4611 if (unlikely(pte_none(*vmf->pte))) 4612 ret = VM_FAULT_SIGBUS; 4613 else 4614 ret = VM_FAULT_NOPAGE; 4615 4616 pte_unmap_unlock(vmf->pte, vmf->ptl); 4617 } 4618 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4619 ret = do_read_fault(vmf); 4620 else if (!(vma->vm_flags & VM_SHARED)) 4621 ret = do_cow_fault(vmf); 4622 else 4623 ret = do_shared_fault(vmf); 4624 4625 /* preallocated pagetable is unused: free it */ 4626 if (vmf->prealloc_pte) { 4627 pte_free(vm_mm, vmf->prealloc_pte); 4628 vmf->prealloc_pte = NULL; 4629 } 4630 return ret; 4631 } 4632 4633 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4634 unsigned long addr, int page_nid, int *flags) 4635 { 4636 get_page(page); 4637 4638 count_vm_numa_event(NUMA_HINT_FAULTS); 4639 if (page_nid == numa_node_id()) { 4640 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4641 *flags |= TNF_FAULT_LOCAL; 4642 } 4643 4644 return mpol_misplaced(page, vma, addr); 4645 } 4646 4647 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4648 { 4649 struct vm_area_struct *vma = vmf->vma; 4650 struct page *page = NULL; 4651 int page_nid = NUMA_NO_NODE; 4652 bool writable = false; 4653 int last_cpupid; 4654 int target_nid; 4655 pte_t pte, old_pte; 4656 int flags = 0; 4657 4658 /* 4659 * The "pte" at this point cannot be used safely without 4660 * validation through pte_unmap_same(). It's of NUMA type but 4661 * the pfn may be screwed if the read is non atomic. 4662 */ 4663 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4664 spin_lock(vmf->ptl); 4665 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4666 pte_unmap_unlock(vmf->pte, vmf->ptl); 4667 goto out; 4668 } 4669 4670 /* Get the normal PTE */ 4671 old_pte = ptep_get(vmf->pte); 4672 pte = pte_modify(old_pte, vma->vm_page_prot); 4673 4674 /* 4675 * Detect now whether the PTE could be writable; this information 4676 * is only valid while holding the PT lock. 4677 */ 4678 writable = pte_write(pte); 4679 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4680 can_change_pte_writable(vma, vmf->address, pte)) 4681 writable = true; 4682 4683 page = vm_normal_page(vma, vmf->address, pte); 4684 if (!page || is_zone_device_page(page)) 4685 goto out_map; 4686 4687 /* TODO: handle PTE-mapped THP */ 4688 if (PageCompound(page)) 4689 goto out_map; 4690 4691 /* 4692 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4693 * much anyway since they can be in shared cache state. This misses 4694 * the case where a mapping is writable but the process never writes 4695 * to it but pte_write gets cleared during protection updates and 4696 * pte_dirty has unpredictable behaviour between PTE scan updates, 4697 * background writeback, dirty balancing and application behaviour. 4698 */ 4699 if (!writable) 4700 flags |= TNF_NO_GROUP; 4701 4702 /* 4703 * Flag if the page is shared between multiple address spaces. This 4704 * is later used when determining whether to group tasks together 4705 */ 4706 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4707 flags |= TNF_SHARED; 4708 4709 page_nid = page_to_nid(page); 4710 /* 4711 * For memory tiering mode, cpupid of slow memory page is used 4712 * to record page access time. So use default value. 4713 */ 4714 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4715 !node_is_toptier(page_nid)) 4716 last_cpupid = (-1 & LAST_CPUPID_MASK); 4717 else 4718 last_cpupid = page_cpupid_last(page); 4719 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4720 &flags); 4721 if (target_nid == NUMA_NO_NODE) { 4722 put_page(page); 4723 goto out_map; 4724 } 4725 pte_unmap_unlock(vmf->pte, vmf->ptl); 4726 writable = false; 4727 4728 /* Migrate to the requested node */ 4729 if (migrate_misplaced_page(page, vma, target_nid)) { 4730 page_nid = target_nid; 4731 flags |= TNF_MIGRATED; 4732 } else { 4733 flags |= TNF_MIGRATE_FAIL; 4734 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4735 spin_lock(vmf->ptl); 4736 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4737 pte_unmap_unlock(vmf->pte, vmf->ptl); 4738 goto out; 4739 } 4740 goto out_map; 4741 } 4742 4743 out: 4744 if (page_nid != NUMA_NO_NODE) 4745 task_numa_fault(last_cpupid, page_nid, 1, flags); 4746 return 0; 4747 out_map: 4748 /* 4749 * Make it present again, depending on how arch implements 4750 * non-accessible ptes, some can allow access by kernel mode. 4751 */ 4752 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4753 pte = pte_modify(old_pte, vma->vm_page_prot); 4754 pte = pte_mkyoung(pte); 4755 if (writable) 4756 pte = pte_mkwrite(pte); 4757 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4758 update_mmu_cache(vma, vmf->address, vmf->pte); 4759 pte_unmap_unlock(vmf->pte, vmf->ptl); 4760 goto out; 4761 } 4762 4763 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4764 { 4765 if (vma_is_anonymous(vmf->vma)) 4766 return do_huge_pmd_anonymous_page(vmf); 4767 if (vmf->vma->vm_ops->huge_fault) 4768 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4769 return VM_FAULT_FALLBACK; 4770 } 4771 4772 /* `inline' is required to avoid gcc 4.1.2 build error */ 4773 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4774 { 4775 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4776 vm_fault_t ret; 4777 4778 if (vma_is_anonymous(vmf->vma)) { 4779 if (likely(!unshare) && 4780 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4781 return handle_userfault(vmf, VM_UFFD_WP); 4782 return do_huge_pmd_wp_page(vmf); 4783 } 4784 4785 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4786 if (vmf->vma->vm_ops->huge_fault) { 4787 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4788 if (!(ret & VM_FAULT_FALLBACK)) 4789 return ret; 4790 } 4791 } 4792 4793 /* COW or write-notify handled on pte level: split pmd. */ 4794 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4795 4796 return VM_FAULT_FALLBACK; 4797 } 4798 4799 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4800 { 4801 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4802 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4803 /* No support for anonymous transparent PUD pages yet */ 4804 if (vma_is_anonymous(vmf->vma)) 4805 return VM_FAULT_FALLBACK; 4806 if (vmf->vma->vm_ops->huge_fault) 4807 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4808 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4809 return VM_FAULT_FALLBACK; 4810 } 4811 4812 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4813 { 4814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4815 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4816 vm_fault_t ret; 4817 4818 /* No support for anonymous transparent PUD pages yet */ 4819 if (vma_is_anonymous(vmf->vma)) 4820 goto split; 4821 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4822 if (vmf->vma->vm_ops->huge_fault) { 4823 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4824 if (!(ret & VM_FAULT_FALLBACK)) 4825 return ret; 4826 } 4827 } 4828 split: 4829 /* COW or write-notify not handled on PUD level: split pud.*/ 4830 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4831 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4832 return VM_FAULT_FALLBACK; 4833 } 4834 4835 /* 4836 * These routines also need to handle stuff like marking pages dirty 4837 * and/or accessed for architectures that don't do it in hardware (most 4838 * RISC architectures). The early dirtying is also good on the i386. 4839 * 4840 * There is also a hook called "update_mmu_cache()" that architectures 4841 * with external mmu caches can use to update those (ie the Sparc or 4842 * PowerPC hashed page tables that act as extended TLBs). 4843 * 4844 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4845 * concurrent faults). 4846 * 4847 * The mmap_lock may have been released depending on flags and our return value. 4848 * See filemap_fault() and __folio_lock_or_retry(). 4849 */ 4850 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4851 { 4852 pte_t entry; 4853 4854 if (unlikely(pmd_none(*vmf->pmd))) { 4855 /* 4856 * Leave __pte_alloc() until later: because vm_ops->fault may 4857 * want to allocate huge page, and if we expose page table 4858 * for an instant, it will be difficult to retract from 4859 * concurrent faults and from rmap lookups. 4860 */ 4861 vmf->pte = NULL; 4862 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4863 } else { 4864 /* 4865 * If a huge pmd materialized under us just retry later. Use 4866 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4867 * of pmd_trans_huge() to ensure the pmd didn't become 4868 * pmd_trans_huge under us and then back to pmd_none, as a 4869 * result of MADV_DONTNEED running immediately after a huge pmd 4870 * fault in a different thread of this mm, in turn leading to a 4871 * misleading pmd_trans_huge() retval. All we have to ensure is 4872 * that it is a regular pmd that we can walk with 4873 * pte_offset_map() and we can do that through an atomic read 4874 * in C, which is what pmd_trans_unstable() provides. 4875 */ 4876 if (pmd_devmap_trans_unstable(vmf->pmd)) 4877 return 0; 4878 /* 4879 * A regular pmd is established and it can't morph into a huge 4880 * pmd from under us anymore at this point because we hold the 4881 * mmap_lock read mode and khugepaged takes it in write mode. 4882 * So now it's safe to run pte_offset_map(). 4883 */ 4884 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4885 vmf->orig_pte = *vmf->pte; 4886 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4887 4888 /* 4889 * some architectures can have larger ptes than wordsize, 4890 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4891 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4892 * accesses. The code below just needs a consistent view 4893 * for the ifs and we later double check anyway with the 4894 * ptl lock held. So here a barrier will do. 4895 */ 4896 barrier(); 4897 if (pte_none(vmf->orig_pte)) { 4898 pte_unmap(vmf->pte); 4899 vmf->pte = NULL; 4900 } 4901 } 4902 4903 if (!vmf->pte) { 4904 if (vma_is_anonymous(vmf->vma)) 4905 return do_anonymous_page(vmf); 4906 else 4907 return do_fault(vmf); 4908 } 4909 4910 if (!pte_present(vmf->orig_pte)) 4911 return do_swap_page(vmf); 4912 4913 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4914 return do_numa_page(vmf); 4915 4916 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4917 spin_lock(vmf->ptl); 4918 entry = vmf->orig_pte; 4919 if (unlikely(!pte_same(*vmf->pte, entry))) { 4920 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4921 goto unlock; 4922 } 4923 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4924 if (!pte_write(entry)) 4925 return do_wp_page(vmf); 4926 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4927 entry = pte_mkdirty(entry); 4928 } 4929 entry = pte_mkyoung(entry); 4930 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4931 vmf->flags & FAULT_FLAG_WRITE)) { 4932 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4933 } else { 4934 /* Skip spurious TLB flush for retried page fault */ 4935 if (vmf->flags & FAULT_FLAG_TRIED) 4936 goto unlock; 4937 /* 4938 * This is needed only for protection faults but the arch code 4939 * is not yet telling us if this is a protection fault or not. 4940 * This still avoids useless tlb flushes for .text page faults 4941 * with threads. 4942 */ 4943 if (vmf->flags & FAULT_FLAG_WRITE) 4944 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4945 } 4946 unlock: 4947 pte_unmap_unlock(vmf->pte, vmf->ptl); 4948 return 0; 4949 } 4950 4951 /* 4952 * By the time we get here, we already hold the mm semaphore 4953 * 4954 * The mmap_lock may have been released depending on flags and our 4955 * return value. See filemap_fault() and __folio_lock_or_retry(). 4956 */ 4957 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4958 unsigned long address, unsigned int flags) 4959 { 4960 struct vm_fault vmf = { 4961 .vma = vma, 4962 .address = address & PAGE_MASK, 4963 .real_address = address, 4964 .flags = flags, 4965 .pgoff = linear_page_index(vma, address), 4966 .gfp_mask = __get_fault_gfp_mask(vma), 4967 }; 4968 struct mm_struct *mm = vma->vm_mm; 4969 unsigned long vm_flags = vma->vm_flags; 4970 pgd_t *pgd; 4971 p4d_t *p4d; 4972 vm_fault_t ret; 4973 4974 pgd = pgd_offset(mm, address); 4975 p4d = p4d_alloc(mm, pgd, address); 4976 if (!p4d) 4977 return VM_FAULT_OOM; 4978 4979 vmf.pud = pud_alloc(mm, p4d, address); 4980 if (!vmf.pud) 4981 return VM_FAULT_OOM; 4982 retry_pud: 4983 if (pud_none(*vmf.pud) && 4984 hugepage_vma_check(vma, vm_flags, false, true, true)) { 4985 ret = create_huge_pud(&vmf); 4986 if (!(ret & VM_FAULT_FALLBACK)) 4987 return ret; 4988 } else { 4989 pud_t orig_pud = *vmf.pud; 4990 4991 barrier(); 4992 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4993 4994 /* 4995 * TODO once we support anonymous PUDs: NUMA case and 4996 * FAULT_FLAG_UNSHARE handling. 4997 */ 4998 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 4999 ret = wp_huge_pud(&vmf, orig_pud); 5000 if (!(ret & VM_FAULT_FALLBACK)) 5001 return ret; 5002 } else { 5003 huge_pud_set_accessed(&vmf, orig_pud); 5004 return 0; 5005 } 5006 } 5007 } 5008 5009 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5010 if (!vmf.pmd) 5011 return VM_FAULT_OOM; 5012 5013 /* Huge pud page fault raced with pmd_alloc? */ 5014 if (pud_trans_unstable(vmf.pud)) 5015 goto retry_pud; 5016 5017 if (pmd_none(*vmf.pmd) && 5018 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5019 ret = create_huge_pmd(&vmf); 5020 if (!(ret & VM_FAULT_FALLBACK)) 5021 return ret; 5022 } else { 5023 vmf.orig_pmd = *vmf.pmd; 5024 5025 barrier(); 5026 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5027 VM_BUG_ON(thp_migration_supported() && 5028 !is_pmd_migration_entry(vmf.orig_pmd)); 5029 if (is_pmd_migration_entry(vmf.orig_pmd)) 5030 pmd_migration_entry_wait(mm, vmf.pmd); 5031 return 0; 5032 } 5033 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5034 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5035 return do_huge_pmd_numa_page(&vmf); 5036 5037 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5038 !pmd_write(vmf.orig_pmd)) { 5039 ret = wp_huge_pmd(&vmf); 5040 if (!(ret & VM_FAULT_FALLBACK)) 5041 return ret; 5042 } else { 5043 huge_pmd_set_accessed(&vmf); 5044 return 0; 5045 } 5046 } 5047 } 5048 5049 return handle_pte_fault(&vmf); 5050 } 5051 5052 /** 5053 * mm_account_fault - Do page fault accounting 5054 * 5055 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5056 * of perf event counters, but we'll still do the per-task accounting to 5057 * the task who triggered this page fault. 5058 * @address: the faulted address. 5059 * @flags: the fault flags. 5060 * @ret: the fault retcode. 5061 * 5062 * This will take care of most of the page fault accounting. Meanwhile, it 5063 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5064 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5065 * still be in per-arch page fault handlers at the entry of page fault. 5066 */ 5067 static inline void mm_account_fault(struct pt_regs *regs, 5068 unsigned long address, unsigned int flags, 5069 vm_fault_t ret) 5070 { 5071 bool major; 5072 5073 /* 5074 * We don't do accounting for some specific faults: 5075 * 5076 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5077 * includes arch_vma_access_permitted() failing before reaching here. 5078 * So this is not a "this many hardware page faults" counter. We 5079 * should use the hw profiling for that. 5080 * 5081 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5082 * once they're completed. 5083 */ 5084 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5085 return; 5086 5087 /* 5088 * We define the fault as a major fault when the final successful fault 5089 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5090 * handle it immediately previously). 5091 */ 5092 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5093 5094 if (major) 5095 current->maj_flt++; 5096 else 5097 current->min_flt++; 5098 5099 /* 5100 * If the fault is done for GUP, regs will be NULL. We only do the 5101 * accounting for the per thread fault counters who triggered the 5102 * fault, and we skip the perf event updates. 5103 */ 5104 if (!regs) 5105 return; 5106 5107 if (major) 5108 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5109 else 5110 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5111 } 5112 5113 #ifdef CONFIG_LRU_GEN 5114 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5115 { 5116 /* the LRU algorithm only applies to accesses with recency */ 5117 current->in_lru_fault = vma_has_recency(vma); 5118 } 5119 5120 static void lru_gen_exit_fault(void) 5121 { 5122 current->in_lru_fault = false; 5123 } 5124 #else 5125 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5126 { 5127 } 5128 5129 static void lru_gen_exit_fault(void) 5130 { 5131 } 5132 #endif /* CONFIG_LRU_GEN */ 5133 5134 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5135 unsigned int *flags) 5136 { 5137 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5138 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5139 return VM_FAULT_SIGSEGV; 5140 /* 5141 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5142 * just treat it like an ordinary read-fault otherwise. 5143 */ 5144 if (!is_cow_mapping(vma->vm_flags)) 5145 *flags &= ~FAULT_FLAG_UNSHARE; 5146 } else if (*flags & FAULT_FLAG_WRITE) { 5147 /* Write faults on read-only mappings are impossible ... */ 5148 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5149 return VM_FAULT_SIGSEGV; 5150 /* ... and FOLL_FORCE only applies to COW mappings. */ 5151 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5152 !is_cow_mapping(vma->vm_flags))) 5153 return VM_FAULT_SIGSEGV; 5154 } 5155 return 0; 5156 } 5157 5158 /* 5159 * By the time we get here, we already hold the mm semaphore 5160 * 5161 * The mmap_lock may have been released depending on flags and our 5162 * return value. See filemap_fault() and __folio_lock_or_retry(). 5163 */ 5164 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5165 unsigned int flags, struct pt_regs *regs) 5166 { 5167 vm_fault_t ret; 5168 5169 __set_current_state(TASK_RUNNING); 5170 5171 count_vm_event(PGFAULT); 5172 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5173 5174 ret = sanitize_fault_flags(vma, &flags); 5175 if (ret) 5176 return ret; 5177 5178 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5179 flags & FAULT_FLAG_INSTRUCTION, 5180 flags & FAULT_FLAG_REMOTE)) 5181 return VM_FAULT_SIGSEGV; 5182 5183 /* 5184 * Enable the memcg OOM handling for faults triggered in user 5185 * space. Kernel faults are handled more gracefully. 5186 */ 5187 if (flags & FAULT_FLAG_USER) 5188 mem_cgroup_enter_user_fault(); 5189 5190 lru_gen_enter_fault(vma); 5191 5192 if (unlikely(is_vm_hugetlb_page(vma))) 5193 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5194 else 5195 ret = __handle_mm_fault(vma, address, flags); 5196 5197 lru_gen_exit_fault(); 5198 5199 if (flags & FAULT_FLAG_USER) { 5200 mem_cgroup_exit_user_fault(); 5201 /* 5202 * The task may have entered a memcg OOM situation but 5203 * if the allocation error was handled gracefully (no 5204 * VM_FAULT_OOM), there is no need to kill anything. 5205 * Just clean up the OOM state peacefully. 5206 */ 5207 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5208 mem_cgroup_oom_synchronize(false); 5209 } 5210 5211 mm_account_fault(regs, address, flags, ret); 5212 5213 return ret; 5214 } 5215 EXPORT_SYMBOL_GPL(handle_mm_fault); 5216 5217 #ifndef __PAGETABLE_P4D_FOLDED 5218 /* 5219 * Allocate p4d page table. 5220 * We've already handled the fast-path in-line. 5221 */ 5222 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5223 { 5224 p4d_t *new = p4d_alloc_one(mm, address); 5225 if (!new) 5226 return -ENOMEM; 5227 5228 spin_lock(&mm->page_table_lock); 5229 if (pgd_present(*pgd)) { /* Another has populated it */ 5230 p4d_free(mm, new); 5231 } else { 5232 smp_wmb(); /* See comment in pmd_install() */ 5233 pgd_populate(mm, pgd, new); 5234 } 5235 spin_unlock(&mm->page_table_lock); 5236 return 0; 5237 } 5238 #endif /* __PAGETABLE_P4D_FOLDED */ 5239 5240 #ifndef __PAGETABLE_PUD_FOLDED 5241 /* 5242 * Allocate page upper directory. 5243 * We've already handled the fast-path in-line. 5244 */ 5245 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5246 { 5247 pud_t *new = pud_alloc_one(mm, address); 5248 if (!new) 5249 return -ENOMEM; 5250 5251 spin_lock(&mm->page_table_lock); 5252 if (!p4d_present(*p4d)) { 5253 mm_inc_nr_puds(mm); 5254 smp_wmb(); /* See comment in pmd_install() */ 5255 p4d_populate(mm, p4d, new); 5256 } else /* Another has populated it */ 5257 pud_free(mm, new); 5258 spin_unlock(&mm->page_table_lock); 5259 return 0; 5260 } 5261 #endif /* __PAGETABLE_PUD_FOLDED */ 5262 5263 #ifndef __PAGETABLE_PMD_FOLDED 5264 /* 5265 * Allocate page middle directory. 5266 * We've already handled the fast-path in-line. 5267 */ 5268 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5269 { 5270 spinlock_t *ptl; 5271 pmd_t *new = pmd_alloc_one(mm, address); 5272 if (!new) 5273 return -ENOMEM; 5274 5275 ptl = pud_lock(mm, pud); 5276 if (!pud_present(*pud)) { 5277 mm_inc_nr_pmds(mm); 5278 smp_wmb(); /* See comment in pmd_install() */ 5279 pud_populate(mm, pud, new); 5280 } else { /* Another has populated it */ 5281 pmd_free(mm, new); 5282 } 5283 spin_unlock(ptl); 5284 return 0; 5285 } 5286 #endif /* __PAGETABLE_PMD_FOLDED */ 5287 5288 /** 5289 * follow_pte - look up PTE at a user virtual address 5290 * @mm: the mm_struct of the target address space 5291 * @address: user virtual address 5292 * @ptepp: location to store found PTE 5293 * @ptlp: location to store the lock for the PTE 5294 * 5295 * On a successful return, the pointer to the PTE is stored in @ptepp; 5296 * the corresponding lock is taken and its location is stored in @ptlp. 5297 * The contents of the PTE are only stable until @ptlp is released; 5298 * any further use, if any, must be protected against invalidation 5299 * with MMU notifiers. 5300 * 5301 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5302 * should be taken for read. 5303 * 5304 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5305 * it is not a good general-purpose API. 5306 * 5307 * Return: zero on success, -ve otherwise. 5308 */ 5309 int follow_pte(struct mm_struct *mm, unsigned long address, 5310 pte_t **ptepp, spinlock_t **ptlp) 5311 { 5312 pgd_t *pgd; 5313 p4d_t *p4d; 5314 pud_t *pud; 5315 pmd_t *pmd; 5316 pte_t *ptep; 5317 5318 pgd = pgd_offset(mm, address); 5319 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5320 goto out; 5321 5322 p4d = p4d_offset(pgd, address); 5323 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5324 goto out; 5325 5326 pud = pud_offset(p4d, address); 5327 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5328 goto out; 5329 5330 pmd = pmd_offset(pud, address); 5331 VM_BUG_ON(pmd_trans_huge(*pmd)); 5332 5333 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5334 goto out; 5335 5336 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5337 if (!pte_present(*ptep)) 5338 goto unlock; 5339 *ptepp = ptep; 5340 return 0; 5341 unlock: 5342 pte_unmap_unlock(ptep, *ptlp); 5343 out: 5344 return -EINVAL; 5345 } 5346 EXPORT_SYMBOL_GPL(follow_pte); 5347 5348 /** 5349 * follow_pfn - look up PFN at a user virtual address 5350 * @vma: memory mapping 5351 * @address: user virtual address 5352 * @pfn: location to store found PFN 5353 * 5354 * Only IO mappings and raw PFN mappings are allowed. 5355 * 5356 * This function does not allow the caller to read the permissions 5357 * of the PTE. Do not use it. 5358 * 5359 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5360 */ 5361 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5362 unsigned long *pfn) 5363 { 5364 int ret = -EINVAL; 5365 spinlock_t *ptl; 5366 pte_t *ptep; 5367 5368 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5369 return ret; 5370 5371 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5372 if (ret) 5373 return ret; 5374 *pfn = pte_pfn(*ptep); 5375 pte_unmap_unlock(ptep, ptl); 5376 return 0; 5377 } 5378 EXPORT_SYMBOL(follow_pfn); 5379 5380 #ifdef CONFIG_HAVE_IOREMAP_PROT 5381 int follow_phys(struct vm_area_struct *vma, 5382 unsigned long address, unsigned int flags, 5383 unsigned long *prot, resource_size_t *phys) 5384 { 5385 int ret = -EINVAL; 5386 pte_t *ptep, pte; 5387 spinlock_t *ptl; 5388 5389 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5390 goto out; 5391 5392 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5393 goto out; 5394 pte = *ptep; 5395 5396 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5397 goto unlock; 5398 5399 *prot = pgprot_val(pte_pgprot(pte)); 5400 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5401 5402 ret = 0; 5403 unlock: 5404 pte_unmap_unlock(ptep, ptl); 5405 out: 5406 return ret; 5407 } 5408 5409 /** 5410 * generic_access_phys - generic implementation for iomem mmap access 5411 * @vma: the vma to access 5412 * @addr: userspace address, not relative offset within @vma 5413 * @buf: buffer to read/write 5414 * @len: length of transfer 5415 * @write: set to FOLL_WRITE when writing, otherwise reading 5416 * 5417 * This is a generic implementation for &vm_operations_struct.access for an 5418 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5419 * not page based. 5420 */ 5421 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5422 void *buf, int len, int write) 5423 { 5424 resource_size_t phys_addr; 5425 unsigned long prot = 0; 5426 void __iomem *maddr; 5427 pte_t *ptep, pte; 5428 spinlock_t *ptl; 5429 int offset = offset_in_page(addr); 5430 int ret = -EINVAL; 5431 5432 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5433 return -EINVAL; 5434 5435 retry: 5436 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5437 return -EINVAL; 5438 pte = *ptep; 5439 pte_unmap_unlock(ptep, ptl); 5440 5441 prot = pgprot_val(pte_pgprot(pte)); 5442 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5443 5444 if ((write & FOLL_WRITE) && !pte_write(pte)) 5445 return -EINVAL; 5446 5447 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5448 if (!maddr) 5449 return -ENOMEM; 5450 5451 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5452 goto out_unmap; 5453 5454 if (!pte_same(pte, *ptep)) { 5455 pte_unmap_unlock(ptep, ptl); 5456 iounmap(maddr); 5457 5458 goto retry; 5459 } 5460 5461 if (write) 5462 memcpy_toio(maddr + offset, buf, len); 5463 else 5464 memcpy_fromio(buf, maddr + offset, len); 5465 ret = len; 5466 pte_unmap_unlock(ptep, ptl); 5467 out_unmap: 5468 iounmap(maddr); 5469 5470 return ret; 5471 } 5472 EXPORT_SYMBOL_GPL(generic_access_phys); 5473 #endif 5474 5475 /* 5476 * Access another process' address space as given in mm. 5477 */ 5478 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5479 int len, unsigned int gup_flags) 5480 { 5481 struct vm_area_struct *vma; 5482 void *old_buf = buf; 5483 int write = gup_flags & FOLL_WRITE; 5484 5485 if (mmap_read_lock_killable(mm)) 5486 return 0; 5487 5488 /* ignore errors, just check how much was successfully transferred */ 5489 while (len) { 5490 int bytes, ret, offset; 5491 void *maddr; 5492 struct page *page = NULL; 5493 5494 ret = get_user_pages_remote(mm, addr, 1, 5495 gup_flags, &page, &vma, NULL); 5496 if (ret <= 0) { 5497 #ifndef CONFIG_HAVE_IOREMAP_PROT 5498 break; 5499 #else 5500 /* 5501 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5502 * we can access using slightly different code. 5503 */ 5504 vma = vma_lookup(mm, addr); 5505 if (!vma) 5506 break; 5507 if (vma->vm_ops && vma->vm_ops->access) 5508 ret = vma->vm_ops->access(vma, addr, buf, 5509 len, write); 5510 if (ret <= 0) 5511 break; 5512 bytes = ret; 5513 #endif 5514 } else { 5515 bytes = len; 5516 offset = addr & (PAGE_SIZE-1); 5517 if (bytes > PAGE_SIZE-offset) 5518 bytes = PAGE_SIZE-offset; 5519 5520 maddr = kmap(page); 5521 if (write) { 5522 copy_to_user_page(vma, page, addr, 5523 maddr + offset, buf, bytes); 5524 set_page_dirty_lock(page); 5525 } else { 5526 copy_from_user_page(vma, page, addr, 5527 buf, maddr + offset, bytes); 5528 } 5529 kunmap(page); 5530 put_page(page); 5531 } 5532 len -= bytes; 5533 buf += bytes; 5534 addr += bytes; 5535 } 5536 mmap_read_unlock(mm); 5537 5538 return buf - old_buf; 5539 } 5540 5541 /** 5542 * access_remote_vm - access another process' address space 5543 * @mm: the mm_struct of the target address space 5544 * @addr: start address to access 5545 * @buf: source or destination buffer 5546 * @len: number of bytes to transfer 5547 * @gup_flags: flags modifying lookup behaviour 5548 * 5549 * The caller must hold a reference on @mm. 5550 * 5551 * Return: number of bytes copied from source to destination. 5552 */ 5553 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5554 void *buf, int len, unsigned int gup_flags) 5555 { 5556 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5557 } 5558 5559 /* 5560 * Access another process' address space. 5561 * Source/target buffer must be kernel space, 5562 * Do not walk the page table directly, use get_user_pages 5563 */ 5564 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5565 void *buf, int len, unsigned int gup_flags) 5566 { 5567 struct mm_struct *mm; 5568 int ret; 5569 5570 mm = get_task_mm(tsk); 5571 if (!mm) 5572 return 0; 5573 5574 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5575 5576 mmput(mm); 5577 5578 return ret; 5579 } 5580 EXPORT_SYMBOL_GPL(access_process_vm); 5581 5582 /* 5583 * Print the name of a VMA. 5584 */ 5585 void print_vma_addr(char *prefix, unsigned long ip) 5586 { 5587 struct mm_struct *mm = current->mm; 5588 struct vm_area_struct *vma; 5589 5590 /* 5591 * we might be running from an atomic context so we cannot sleep 5592 */ 5593 if (!mmap_read_trylock(mm)) 5594 return; 5595 5596 vma = find_vma(mm, ip); 5597 if (vma && vma->vm_file) { 5598 struct file *f = vma->vm_file; 5599 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5600 if (buf) { 5601 char *p; 5602 5603 p = file_path(f, buf, PAGE_SIZE); 5604 if (IS_ERR(p)) 5605 p = "?"; 5606 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5607 vma->vm_start, 5608 vma->vm_end - vma->vm_start); 5609 free_page((unsigned long)buf); 5610 } 5611 } 5612 mmap_read_unlock(mm); 5613 } 5614 5615 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5616 void __might_fault(const char *file, int line) 5617 { 5618 if (pagefault_disabled()) 5619 return; 5620 __might_sleep(file, line); 5621 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5622 if (current->mm) 5623 might_lock_read(¤t->mm->mmap_lock); 5624 #endif 5625 } 5626 EXPORT_SYMBOL(__might_fault); 5627 #endif 5628 5629 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5630 /* 5631 * Process all subpages of the specified huge page with the specified 5632 * operation. The target subpage will be processed last to keep its 5633 * cache lines hot. 5634 */ 5635 static inline void process_huge_page( 5636 unsigned long addr_hint, unsigned int pages_per_huge_page, 5637 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5638 void *arg) 5639 { 5640 int i, n, base, l; 5641 unsigned long addr = addr_hint & 5642 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5643 5644 /* Process target subpage last to keep its cache lines hot */ 5645 might_sleep(); 5646 n = (addr_hint - addr) / PAGE_SIZE; 5647 if (2 * n <= pages_per_huge_page) { 5648 /* If target subpage in first half of huge page */ 5649 base = 0; 5650 l = n; 5651 /* Process subpages at the end of huge page */ 5652 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5653 cond_resched(); 5654 process_subpage(addr + i * PAGE_SIZE, i, arg); 5655 } 5656 } else { 5657 /* If target subpage in second half of huge page */ 5658 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5659 l = pages_per_huge_page - n; 5660 /* Process subpages at the begin of huge page */ 5661 for (i = 0; i < base; i++) { 5662 cond_resched(); 5663 process_subpage(addr + i * PAGE_SIZE, i, arg); 5664 } 5665 } 5666 /* 5667 * Process remaining subpages in left-right-left-right pattern 5668 * towards the target subpage 5669 */ 5670 for (i = 0; i < l; i++) { 5671 int left_idx = base + i; 5672 int right_idx = base + 2 * l - 1 - i; 5673 5674 cond_resched(); 5675 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5676 cond_resched(); 5677 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5678 } 5679 } 5680 5681 static void clear_gigantic_page(struct page *page, 5682 unsigned long addr, 5683 unsigned int pages_per_huge_page) 5684 { 5685 int i; 5686 struct page *p; 5687 5688 might_sleep(); 5689 for (i = 0; i < pages_per_huge_page; i++) { 5690 p = nth_page(page, i); 5691 cond_resched(); 5692 clear_user_highpage(p, addr + i * PAGE_SIZE); 5693 } 5694 } 5695 5696 static void clear_subpage(unsigned long addr, int idx, void *arg) 5697 { 5698 struct page *page = arg; 5699 5700 clear_user_highpage(page + idx, addr); 5701 } 5702 5703 void clear_huge_page(struct page *page, 5704 unsigned long addr_hint, unsigned int pages_per_huge_page) 5705 { 5706 unsigned long addr = addr_hint & 5707 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5708 5709 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5710 clear_gigantic_page(page, addr, pages_per_huge_page); 5711 return; 5712 } 5713 5714 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5715 } 5716 5717 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5718 unsigned long addr, 5719 struct vm_area_struct *vma, 5720 unsigned int pages_per_huge_page) 5721 { 5722 int i; 5723 struct page *dst_base = dst; 5724 struct page *src_base = src; 5725 5726 for (i = 0; i < pages_per_huge_page; i++) { 5727 dst = nth_page(dst_base, i); 5728 src = nth_page(src_base, i); 5729 5730 cond_resched(); 5731 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5732 } 5733 } 5734 5735 struct copy_subpage_arg { 5736 struct page *dst; 5737 struct page *src; 5738 struct vm_area_struct *vma; 5739 }; 5740 5741 static void copy_subpage(unsigned long addr, int idx, void *arg) 5742 { 5743 struct copy_subpage_arg *copy_arg = arg; 5744 5745 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5746 addr, copy_arg->vma); 5747 } 5748 5749 void copy_user_huge_page(struct page *dst, struct page *src, 5750 unsigned long addr_hint, struct vm_area_struct *vma, 5751 unsigned int pages_per_huge_page) 5752 { 5753 unsigned long addr = addr_hint & 5754 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5755 struct copy_subpage_arg arg = { 5756 .dst = dst, 5757 .src = src, 5758 .vma = vma, 5759 }; 5760 5761 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5762 copy_user_gigantic_page(dst, src, addr, vma, 5763 pages_per_huge_page); 5764 return; 5765 } 5766 5767 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5768 } 5769 5770 long copy_huge_page_from_user(struct page *dst_page, 5771 const void __user *usr_src, 5772 unsigned int pages_per_huge_page, 5773 bool allow_pagefault) 5774 { 5775 void *page_kaddr; 5776 unsigned long i, rc = 0; 5777 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5778 struct page *subpage; 5779 5780 for (i = 0; i < pages_per_huge_page; i++) { 5781 subpage = nth_page(dst_page, i); 5782 if (allow_pagefault) 5783 page_kaddr = kmap(subpage); 5784 else 5785 page_kaddr = kmap_atomic(subpage); 5786 rc = copy_from_user(page_kaddr, 5787 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5788 if (allow_pagefault) 5789 kunmap(subpage); 5790 else 5791 kunmap_atomic(page_kaddr); 5792 5793 ret_val -= (PAGE_SIZE - rc); 5794 if (rc) 5795 break; 5796 5797 flush_dcache_page(subpage); 5798 5799 cond_resched(); 5800 } 5801 return ret_val; 5802 } 5803 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5804 5805 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5806 5807 static struct kmem_cache *page_ptl_cachep; 5808 5809 void __init ptlock_cache_init(void) 5810 { 5811 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5812 SLAB_PANIC, NULL); 5813 } 5814 5815 bool ptlock_alloc(struct page *page) 5816 { 5817 spinlock_t *ptl; 5818 5819 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5820 if (!ptl) 5821 return false; 5822 page->ptl = ptl; 5823 return true; 5824 } 5825 5826 void ptlock_free(struct page *page) 5827 { 5828 kmem_cache_free(page_ptl_cachep, page->ptl); 5829 } 5830 #endif 5831