1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <asm/io.h> 76 #include <asm/mmu_context.h> 77 #include <asm/pgalloc.h> 78 #include <linux/uaccess.h> 79 #include <asm/tlb.h> 80 #include <asm/tlbflush.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 87 #endif 88 89 #ifndef CONFIG_NEED_MULTIPLE_NODES 90 /* use the per-pgdat data instead for discontigmem - mbligh */ 91 unsigned long max_mapnr; 92 EXPORT_SYMBOL(max_mapnr); 93 94 struct page *mem_map; 95 EXPORT_SYMBOL(mem_map); 96 #endif 97 98 /* 99 * A number of key systems in x86 including ioremap() rely on the assumption 100 * that high_memory defines the upper bound on direct map memory, then end 101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 103 * and ZONE_HIGHMEM. 104 */ 105 void *high_memory; 106 EXPORT_SYMBOL(high_memory); 107 108 /* 109 * Randomize the address space (stacks, mmaps, brk, etc.). 110 * 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 112 * as ancient (libc5 based) binaries can segfault. ) 113 */ 114 int randomize_va_space __read_mostly = 115 #ifdef CONFIG_COMPAT_BRK 116 1; 117 #else 118 2; 119 #endif 120 121 static int __init disable_randmaps(char *s) 122 { 123 randomize_va_space = 0; 124 return 1; 125 } 126 __setup("norandmaps", disable_randmaps); 127 128 unsigned long zero_pfn __read_mostly; 129 EXPORT_SYMBOL(zero_pfn); 130 131 unsigned long highest_memmap_pfn __read_mostly; 132 133 /* 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 135 */ 136 static int __init init_zero_pfn(void) 137 { 138 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 139 return 0; 140 } 141 core_initcall(init_zero_pfn); 142 143 144 #if defined(SPLIT_RSS_COUNTING) 145 146 void sync_mm_rss(struct mm_struct *mm) 147 { 148 int i; 149 150 for (i = 0; i < NR_MM_COUNTERS; i++) { 151 if (current->rss_stat.count[i]) { 152 add_mm_counter(mm, i, current->rss_stat.count[i]); 153 current->rss_stat.count[i] = 0; 154 } 155 } 156 current->rss_stat.events = 0; 157 } 158 159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 160 { 161 struct task_struct *task = current; 162 163 if (likely(task->mm == mm)) 164 task->rss_stat.count[member] += val; 165 else 166 add_mm_counter(mm, member, val); 167 } 168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 170 171 /* sync counter once per 64 page faults */ 172 #define TASK_RSS_EVENTS_THRESH (64) 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 if (unlikely(task != current)) 176 return; 177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 178 sync_mm_rss(task->mm); 179 } 180 #else /* SPLIT_RSS_COUNTING */ 181 182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 184 185 static void check_sync_rss_stat(struct task_struct *task) 186 { 187 } 188 189 #endif /* SPLIT_RSS_COUNTING */ 190 191 /* 192 * Note: this doesn't free the actual pages themselves. That 193 * has been handled earlier when unmapping all the memory regions. 194 */ 195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 196 unsigned long addr) 197 { 198 pgtable_t token = pmd_pgtable(*pmd); 199 pmd_clear(pmd); 200 pte_free_tlb(tlb, token, addr); 201 mm_dec_nr_ptes(tlb->mm); 202 } 203 204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pmd_t *pmd; 209 unsigned long next; 210 unsigned long start; 211 212 start = addr; 213 pmd = pmd_offset(pud, addr); 214 do { 215 next = pmd_addr_end(addr, end); 216 if (pmd_none_or_clear_bad(pmd)) 217 continue; 218 free_pte_range(tlb, pmd, addr); 219 } while (pmd++, addr = next, addr != end); 220 221 start &= PUD_MASK; 222 if (start < floor) 223 return; 224 if (ceiling) { 225 ceiling &= PUD_MASK; 226 if (!ceiling) 227 return; 228 } 229 if (end - 1 > ceiling - 1) 230 return; 231 232 pmd = pmd_offset(pud, start); 233 pud_clear(pud); 234 pmd_free_tlb(tlb, pmd, start); 235 mm_dec_nr_pmds(tlb->mm); 236 } 237 238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 239 unsigned long addr, unsigned long end, 240 unsigned long floor, unsigned long ceiling) 241 { 242 pud_t *pud; 243 unsigned long next; 244 unsigned long start; 245 246 start = addr; 247 pud = pud_offset(p4d, addr); 248 do { 249 next = pud_addr_end(addr, end); 250 if (pud_none_or_clear_bad(pud)) 251 continue; 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 253 } while (pud++, addr = next, addr != end); 254 255 start &= P4D_MASK; 256 if (start < floor) 257 return; 258 if (ceiling) { 259 ceiling &= P4D_MASK; 260 if (!ceiling) 261 return; 262 } 263 if (end - 1 > ceiling - 1) 264 return; 265 266 pud = pud_offset(p4d, start); 267 p4d_clear(p4d); 268 pud_free_tlb(tlb, pud, start); 269 mm_dec_nr_puds(tlb->mm); 270 } 271 272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 273 unsigned long addr, unsigned long end, 274 unsigned long floor, unsigned long ceiling) 275 { 276 p4d_t *p4d; 277 unsigned long next; 278 unsigned long start; 279 280 start = addr; 281 p4d = p4d_offset(pgd, addr); 282 do { 283 next = p4d_addr_end(addr, end); 284 if (p4d_none_or_clear_bad(p4d)) 285 continue; 286 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 287 } while (p4d++, addr = next, addr != end); 288 289 start &= PGDIR_MASK; 290 if (start < floor) 291 return; 292 if (ceiling) { 293 ceiling &= PGDIR_MASK; 294 if (!ceiling) 295 return; 296 } 297 if (end - 1 > ceiling - 1) 298 return; 299 300 p4d = p4d_offset(pgd, start); 301 pgd_clear(pgd); 302 p4d_free_tlb(tlb, p4d, start); 303 } 304 305 /* 306 * This function frees user-level page tables of a process. 307 */ 308 void free_pgd_range(struct mmu_gather *tlb, 309 unsigned long addr, unsigned long end, 310 unsigned long floor, unsigned long ceiling) 311 { 312 pgd_t *pgd; 313 unsigned long next; 314 315 /* 316 * The next few lines have given us lots of grief... 317 * 318 * Why are we testing PMD* at this top level? Because often 319 * there will be no work to do at all, and we'd prefer not to 320 * go all the way down to the bottom just to discover that. 321 * 322 * Why all these "- 1"s? Because 0 represents both the bottom 323 * of the address space and the top of it (using -1 for the 324 * top wouldn't help much: the masks would do the wrong thing). 325 * The rule is that addr 0 and floor 0 refer to the bottom of 326 * the address space, but end 0 and ceiling 0 refer to the top 327 * Comparisons need to use "end - 1" and "ceiling - 1" (though 328 * that end 0 case should be mythical). 329 * 330 * Wherever addr is brought up or ceiling brought down, we must 331 * be careful to reject "the opposite 0" before it confuses the 332 * subsequent tests. But what about where end is brought down 333 * by PMD_SIZE below? no, end can't go down to 0 there. 334 * 335 * Whereas we round start (addr) and ceiling down, by different 336 * masks at different levels, in order to test whether a table 337 * now has no other vmas using it, so can be freed, we don't 338 * bother to round floor or end up - the tests don't need that. 339 */ 340 341 addr &= PMD_MASK; 342 if (addr < floor) { 343 addr += PMD_SIZE; 344 if (!addr) 345 return; 346 } 347 if (ceiling) { 348 ceiling &= PMD_MASK; 349 if (!ceiling) 350 return; 351 } 352 if (end - 1 > ceiling - 1) 353 end -= PMD_SIZE; 354 if (addr > end - 1) 355 return; 356 /* 357 * We add page table cache pages with PAGE_SIZE, 358 * (see pte_free_tlb()), flush the tlb if we need 359 */ 360 tlb_change_page_size(tlb, PAGE_SIZE); 361 pgd = pgd_offset(tlb->mm, addr); 362 do { 363 next = pgd_addr_end(addr, end); 364 if (pgd_none_or_clear_bad(pgd)) 365 continue; 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 367 } while (pgd++, addr = next, addr != end); 368 } 369 370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 371 unsigned long floor, unsigned long ceiling) 372 { 373 while (vma) { 374 struct vm_area_struct *next = vma->vm_next; 375 unsigned long addr = vma->vm_start; 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 unlink_anon_vmas(vma); 382 unlink_file_vma(vma); 383 384 if (is_vm_hugetlb_page(vma)) { 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 386 floor, next ? next->vm_start : ceiling); 387 } else { 388 /* 389 * Optimization: gather nearby vmas into one call down 390 */ 391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 392 && !is_vm_hugetlb_page(next)) { 393 vma = next; 394 next = vma->vm_next; 395 unlink_anon_vmas(vma); 396 unlink_file_vma(vma); 397 } 398 free_pgd_range(tlb, addr, vma->vm_end, 399 floor, next ? next->vm_start : ceiling); 400 } 401 vma = next; 402 } 403 } 404 405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 406 { 407 spinlock_t *ptl; 408 pgtable_t new = pte_alloc_one(mm); 409 if (!new) 410 return -ENOMEM; 411 412 /* 413 * Ensure all pte setup (eg. pte page lock and page clearing) are 414 * visible before the pte is made visible to other CPUs by being 415 * put into page tables. 416 * 417 * The other side of the story is the pointer chasing in the page 418 * table walking code (when walking the page table without locking; 419 * ie. most of the time). Fortunately, these data accesses consist 420 * of a chain of data-dependent loads, meaning most CPUs (alpha 421 * being the notable exception) will already guarantee loads are 422 * seen in-order. See the alpha page table accessors for the 423 * smp_read_barrier_depends() barriers in page table walking code. 424 */ 425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 426 427 ptl = pmd_lock(mm, pmd); 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 pmd_populate(mm, pmd, new); 431 new = NULL; 432 } 433 spin_unlock(ptl); 434 if (new) 435 pte_free(mm, new); 436 return 0; 437 } 438 439 int __pte_alloc_kernel(pmd_t *pmd) 440 { 441 pte_t *new = pte_alloc_one_kernel(&init_mm); 442 if (!new) 443 return -ENOMEM; 444 445 smp_wmb(); /* See comment in __pte_alloc */ 446 447 spin_lock(&init_mm.page_table_lock); 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 449 pmd_populate_kernel(&init_mm, pmd, new); 450 new = NULL; 451 } 452 spin_unlock(&init_mm.page_table_lock); 453 if (new) 454 pte_free_kernel(&init_mm, new); 455 return 0; 456 } 457 458 static inline void init_rss_vec(int *rss) 459 { 460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 461 } 462 463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 464 { 465 int i; 466 467 if (current->mm == mm) 468 sync_mm_rss(mm); 469 for (i = 0; i < NR_MM_COUNTERS; i++) 470 if (rss[i]) 471 add_mm_counter(mm, i, rss[i]); 472 } 473 474 /* 475 * This function is called to print an error when a bad pte 476 * is found. For example, we might have a PFN-mapped pte in 477 * a region that doesn't allow it. 478 * 479 * The calling function must still handle the error. 480 */ 481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 482 pte_t pte, struct page *page) 483 { 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 485 p4d_t *p4d = p4d_offset(pgd, addr); 486 pud_t *pud = pud_offset(p4d, addr); 487 pmd_t *pmd = pmd_offset(pud, addr); 488 struct address_space *mapping; 489 pgoff_t index; 490 static unsigned long resume; 491 static unsigned long nr_shown; 492 static unsigned long nr_unshown; 493 494 /* 495 * Allow a burst of 60 reports, then keep quiet for that minute; 496 * or allow a steady drip of one report per second. 497 */ 498 if (nr_shown == 60) { 499 if (time_before(jiffies, resume)) { 500 nr_unshown++; 501 return; 502 } 503 if (nr_unshown) { 504 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 505 nr_unshown); 506 nr_unshown = 0; 507 } 508 nr_shown = 0; 509 } 510 if (nr_shown++ == 0) 511 resume = jiffies + 60 * HZ; 512 513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 514 index = linear_page_index(vma, addr); 515 516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 517 current->comm, 518 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 519 if (page) 520 dump_page(page, "bad pte"); 521 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 524 vma->vm_file, 525 vma->vm_ops ? vma->vm_ops->fault : NULL, 526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 527 mapping ? mapping->a_ops->readpage : NULL); 528 dump_stack(); 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 530 } 531 532 /* 533 * vm_normal_page -- This function gets the "struct page" associated with a pte. 534 * 535 * "Special" mappings do not wish to be associated with a "struct page" (either 536 * it doesn't exist, or it exists but they don't want to touch it). In this 537 * case, NULL is returned here. "Normal" mappings do have a struct page. 538 * 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 540 * pte bit, in which case this function is trivial. Secondly, an architecture 541 * may not have a spare pte bit, which requires a more complicated scheme, 542 * described below. 543 * 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 545 * special mapping (even if there are underlying and valid "struct pages"). 546 * COWed pages of a VM_PFNMAP are always normal. 547 * 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 551 * mapping will always honor the rule 552 * 553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 554 * 555 * And for normal mappings this is false. 556 * 557 * This restricts such mappings to be a linear translation from virtual address 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long 559 * as the vma is not a COW mapping; in that case, we know that all ptes are 560 * special (because none can have been COWed). 561 * 562 * 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 564 * 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 566 * page" backing, however the difference is that _all_ pages with a struct 567 * page (that is, those where pfn_valid is true) are refcounted and considered 568 * normal pages by the VM. The disadvantage is that pages are refcounted 569 * (which can be slower and simply not an option for some PFNMAP users). The 570 * advantage is that we don't have to follow the strict linearity rule of 571 * PFNMAP mappings in order to support COWable mappings. 572 * 573 */ 574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 575 pte_t pte) 576 { 577 unsigned long pfn = pte_pfn(pte); 578 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 580 if (likely(!pte_special(pte))) 581 goto check_pfn; 582 if (vma->vm_ops && vma->vm_ops->find_special_page) 583 return vma->vm_ops->find_special_page(vma, addr); 584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 585 return NULL; 586 if (is_zero_pfn(pfn)) 587 return NULL; 588 if (pte_devmap(pte)) 589 return NULL; 590 591 print_bad_pte(vma, addr, pte, NULL); 592 return NULL; 593 } 594 595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 596 597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 598 if (vma->vm_flags & VM_MIXEDMAP) { 599 if (!pfn_valid(pfn)) 600 return NULL; 601 goto out; 602 } else { 603 unsigned long off; 604 off = (addr - vma->vm_start) >> PAGE_SHIFT; 605 if (pfn == vma->vm_pgoff + off) 606 return NULL; 607 if (!is_cow_mapping(vma->vm_flags)) 608 return NULL; 609 } 610 } 611 612 if (is_zero_pfn(pfn)) 613 return NULL; 614 615 check_pfn: 616 if (unlikely(pfn > highest_memmap_pfn)) { 617 print_bad_pte(vma, addr, pte, NULL); 618 return NULL; 619 } 620 621 /* 622 * NOTE! We still have PageReserved() pages in the page tables. 623 * eg. VDSO mappings can cause them to exist. 624 */ 625 out: 626 return pfn_to_page(pfn); 627 } 628 629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 631 pmd_t pmd) 632 { 633 unsigned long pfn = pmd_pfn(pmd); 634 635 /* 636 * There is no pmd_special() but there may be special pmds, e.g. 637 * in a direct-access (dax) mapping, so let's just replicate the 638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 639 */ 640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 641 if (vma->vm_flags & VM_MIXEDMAP) { 642 if (!pfn_valid(pfn)) 643 return NULL; 644 goto out; 645 } else { 646 unsigned long off; 647 off = (addr - vma->vm_start) >> PAGE_SHIFT; 648 if (pfn == vma->vm_pgoff + off) 649 return NULL; 650 if (!is_cow_mapping(vma->vm_flags)) 651 return NULL; 652 } 653 } 654 655 if (pmd_devmap(pmd)) 656 return NULL; 657 if (is_zero_pfn(pfn)) 658 return NULL; 659 if (unlikely(pfn > highest_memmap_pfn)) 660 return NULL; 661 662 /* 663 * NOTE! We still have PageReserved() pages in the page tables. 664 * eg. VDSO mappings can cause them to exist. 665 */ 666 out: 667 return pfn_to_page(pfn); 668 } 669 #endif 670 671 /* 672 * copy one vm_area from one task to the other. Assumes the page tables 673 * already present in the new task to be cleared in the whole range 674 * covered by this vma. 675 */ 676 677 static inline unsigned long 678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 680 unsigned long addr, int *rss) 681 { 682 unsigned long vm_flags = vma->vm_flags; 683 pte_t pte = *src_pte; 684 struct page *page; 685 686 /* pte contains position in swap or file, so copy. */ 687 if (unlikely(!pte_present(pte))) { 688 swp_entry_t entry = pte_to_swp_entry(pte); 689 690 if (likely(!non_swap_entry(entry))) { 691 if (swap_duplicate(entry) < 0) 692 return entry.val; 693 694 /* make sure dst_mm is on swapoff's mmlist. */ 695 if (unlikely(list_empty(&dst_mm->mmlist))) { 696 spin_lock(&mmlist_lock); 697 if (list_empty(&dst_mm->mmlist)) 698 list_add(&dst_mm->mmlist, 699 &src_mm->mmlist); 700 spin_unlock(&mmlist_lock); 701 } 702 rss[MM_SWAPENTS]++; 703 } else if (is_migration_entry(entry)) { 704 page = migration_entry_to_page(entry); 705 706 rss[mm_counter(page)]++; 707 708 if (is_write_migration_entry(entry) && 709 is_cow_mapping(vm_flags)) { 710 /* 711 * COW mappings require pages in both 712 * parent and child to be set to read. 713 */ 714 make_migration_entry_read(&entry); 715 pte = swp_entry_to_pte(entry); 716 if (pte_swp_soft_dirty(*src_pte)) 717 pte = pte_swp_mksoft_dirty(pte); 718 set_pte_at(src_mm, addr, src_pte, pte); 719 } 720 } else if (is_device_private_entry(entry)) { 721 page = device_private_entry_to_page(entry); 722 723 /* 724 * Update rss count even for unaddressable pages, as 725 * they should treated just like normal pages in this 726 * respect. 727 * 728 * We will likely want to have some new rss counters 729 * for unaddressable pages, at some point. But for now 730 * keep things as they are. 731 */ 732 get_page(page); 733 rss[mm_counter(page)]++; 734 page_dup_rmap(page, false); 735 736 /* 737 * We do not preserve soft-dirty information, because so 738 * far, checkpoint/restore is the only feature that 739 * requires that. And checkpoint/restore does not work 740 * when a device driver is involved (you cannot easily 741 * save and restore device driver state). 742 */ 743 if (is_write_device_private_entry(entry) && 744 is_cow_mapping(vm_flags)) { 745 make_device_private_entry_read(&entry); 746 pte = swp_entry_to_pte(entry); 747 set_pte_at(src_mm, addr, src_pte, pte); 748 } 749 } 750 goto out_set_pte; 751 } 752 753 /* 754 * If it's a COW mapping, write protect it both 755 * in the parent and the child 756 */ 757 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 758 ptep_set_wrprotect(src_mm, addr, src_pte); 759 pte = pte_wrprotect(pte); 760 } 761 762 /* 763 * If it's a shared mapping, mark it clean in 764 * the child 765 */ 766 if (vm_flags & VM_SHARED) 767 pte = pte_mkclean(pte); 768 pte = pte_mkold(pte); 769 770 page = vm_normal_page(vma, addr, pte); 771 if (page) { 772 get_page(page); 773 page_dup_rmap(page, false); 774 rss[mm_counter(page)]++; 775 } else if (pte_devmap(pte)) { 776 page = pte_page(pte); 777 } 778 779 out_set_pte: 780 set_pte_at(dst_mm, addr, dst_pte, pte); 781 return 0; 782 } 783 784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 786 unsigned long addr, unsigned long end) 787 { 788 pte_t *orig_src_pte, *orig_dst_pte; 789 pte_t *src_pte, *dst_pte; 790 spinlock_t *src_ptl, *dst_ptl; 791 int progress = 0; 792 int rss[NR_MM_COUNTERS]; 793 swp_entry_t entry = (swp_entry_t){0}; 794 795 again: 796 init_rss_vec(rss); 797 798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 799 if (!dst_pte) 800 return -ENOMEM; 801 src_pte = pte_offset_map(src_pmd, addr); 802 src_ptl = pte_lockptr(src_mm, src_pmd); 803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 804 orig_src_pte = src_pte; 805 orig_dst_pte = dst_pte; 806 arch_enter_lazy_mmu_mode(); 807 808 do { 809 /* 810 * We are holding two locks at this point - either of them 811 * could generate latencies in another task on another CPU. 812 */ 813 if (progress >= 32) { 814 progress = 0; 815 if (need_resched() || 816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 817 break; 818 } 819 if (pte_none(*src_pte)) { 820 progress++; 821 continue; 822 } 823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 824 vma, addr, rss); 825 if (entry.val) 826 break; 827 progress += 8; 828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 829 830 arch_leave_lazy_mmu_mode(); 831 spin_unlock(src_ptl); 832 pte_unmap(orig_src_pte); 833 add_mm_rss_vec(dst_mm, rss); 834 pte_unmap_unlock(orig_dst_pte, dst_ptl); 835 cond_resched(); 836 837 if (entry.val) { 838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 839 return -ENOMEM; 840 progress = 0; 841 } 842 if (addr != end) 843 goto again; 844 return 0; 845 } 846 847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 849 unsigned long addr, unsigned long end) 850 { 851 pmd_t *src_pmd, *dst_pmd; 852 unsigned long next; 853 854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 855 if (!dst_pmd) 856 return -ENOMEM; 857 src_pmd = pmd_offset(src_pud, addr); 858 do { 859 next = pmd_addr_end(addr, end); 860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 861 || pmd_devmap(*src_pmd)) { 862 int err; 863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 864 err = copy_huge_pmd(dst_mm, src_mm, 865 dst_pmd, src_pmd, addr, vma); 866 if (err == -ENOMEM) 867 return -ENOMEM; 868 if (!err) 869 continue; 870 /* fall through */ 871 } 872 if (pmd_none_or_clear_bad(src_pmd)) 873 continue; 874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 875 vma, addr, next)) 876 return -ENOMEM; 877 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 878 return 0; 879 } 880 881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 883 unsigned long addr, unsigned long end) 884 { 885 pud_t *src_pud, *dst_pud; 886 unsigned long next; 887 888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 889 if (!dst_pud) 890 return -ENOMEM; 891 src_pud = pud_offset(src_p4d, addr); 892 do { 893 next = pud_addr_end(addr, end); 894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 895 int err; 896 897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 898 err = copy_huge_pud(dst_mm, src_mm, 899 dst_pud, src_pud, addr, vma); 900 if (err == -ENOMEM) 901 return -ENOMEM; 902 if (!err) 903 continue; 904 /* fall through */ 905 } 906 if (pud_none_or_clear_bad(src_pud)) 907 continue; 908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 909 vma, addr, next)) 910 return -ENOMEM; 911 } while (dst_pud++, src_pud++, addr = next, addr != end); 912 return 0; 913 } 914 915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 917 unsigned long addr, unsigned long end) 918 { 919 p4d_t *src_p4d, *dst_p4d; 920 unsigned long next; 921 922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 923 if (!dst_p4d) 924 return -ENOMEM; 925 src_p4d = p4d_offset(src_pgd, addr); 926 do { 927 next = p4d_addr_end(addr, end); 928 if (p4d_none_or_clear_bad(src_p4d)) 929 continue; 930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 931 vma, addr, next)) 932 return -ENOMEM; 933 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 934 return 0; 935 } 936 937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 938 struct vm_area_struct *vma) 939 { 940 pgd_t *src_pgd, *dst_pgd; 941 unsigned long next; 942 unsigned long addr = vma->vm_start; 943 unsigned long end = vma->vm_end; 944 struct mmu_notifier_range range; 945 bool is_cow; 946 int ret; 947 948 /* 949 * Don't copy ptes where a page fault will fill them correctly. 950 * Fork becomes much lighter when there are big shared or private 951 * readonly mappings. The tradeoff is that copy_page_range is more 952 * efficient than faulting. 953 */ 954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 955 !vma->anon_vma) 956 return 0; 957 958 if (is_vm_hugetlb_page(vma)) 959 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 960 961 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 962 /* 963 * We do not free on error cases below as remove_vma 964 * gets called on error from higher level routine 965 */ 966 ret = track_pfn_copy(vma); 967 if (ret) 968 return ret; 969 } 970 971 /* 972 * We need to invalidate the secondary MMU mappings only when 973 * there could be a permission downgrade on the ptes of the 974 * parent mm. And a permission downgrade will only happen if 975 * is_cow_mapping() returns true. 976 */ 977 is_cow = is_cow_mapping(vma->vm_flags); 978 979 if (is_cow) { 980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 981 0, vma, src_mm, addr, end); 982 mmu_notifier_invalidate_range_start(&range); 983 } 984 985 ret = 0; 986 dst_pgd = pgd_offset(dst_mm, addr); 987 src_pgd = pgd_offset(src_mm, addr); 988 do { 989 next = pgd_addr_end(addr, end); 990 if (pgd_none_or_clear_bad(src_pgd)) 991 continue; 992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 993 vma, addr, next))) { 994 ret = -ENOMEM; 995 break; 996 } 997 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 998 999 if (is_cow) 1000 mmu_notifier_invalidate_range_end(&range); 1001 return ret; 1002 } 1003 1004 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1005 struct vm_area_struct *vma, pmd_t *pmd, 1006 unsigned long addr, unsigned long end, 1007 struct zap_details *details) 1008 { 1009 struct mm_struct *mm = tlb->mm; 1010 int force_flush = 0; 1011 int rss[NR_MM_COUNTERS]; 1012 spinlock_t *ptl; 1013 pte_t *start_pte; 1014 pte_t *pte; 1015 swp_entry_t entry; 1016 1017 tlb_change_page_size(tlb, PAGE_SIZE); 1018 again: 1019 init_rss_vec(rss); 1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1021 pte = start_pte; 1022 flush_tlb_batched_pending(mm); 1023 arch_enter_lazy_mmu_mode(); 1024 do { 1025 pte_t ptent = *pte; 1026 if (pte_none(ptent)) 1027 continue; 1028 1029 if (need_resched()) 1030 break; 1031 1032 if (pte_present(ptent)) { 1033 struct page *page; 1034 1035 page = vm_normal_page(vma, addr, ptent); 1036 if (unlikely(details) && page) { 1037 /* 1038 * unmap_shared_mapping_pages() wants to 1039 * invalidate cache without truncating: 1040 * unmap shared but keep private pages. 1041 */ 1042 if (details->check_mapping && 1043 details->check_mapping != page_rmapping(page)) 1044 continue; 1045 } 1046 ptent = ptep_get_and_clear_full(mm, addr, pte, 1047 tlb->fullmm); 1048 tlb_remove_tlb_entry(tlb, pte, addr); 1049 if (unlikely(!page)) 1050 continue; 1051 1052 if (!PageAnon(page)) { 1053 if (pte_dirty(ptent)) { 1054 force_flush = 1; 1055 set_page_dirty(page); 1056 } 1057 if (pte_young(ptent) && 1058 likely(!(vma->vm_flags & VM_SEQ_READ))) 1059 mark_page_accessed(page); 1060 } 1061 rss[mm_counter(page)]--; 1062 page_remove_rmap(page, false); 1063 if (unlikely(page_mapcount(page) < 0)) 1064 print_bad_pte(vma, addr, ptent, page); 1065 if (unlikely(__tlb_remove_page(tlb, page))) { 1066 force_flush = 1; 1067 addr += PAGE_SIZE; 1068 break; 1069 } 1070 continue; 1071 } 1072 1073 entry = pte_to_swp_entry(ptent); 1074 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1075 struct page *page = device_private_entry_to_page(entry); 1076 1077 if (unlikely(details && details->check_mapping)) { 1078 /* 1079 * unmap_shared_mapping_pages() wants to 1080 * invalidate cache without truncating: 1081 * unmap shared but keep private pages. 1082 */ 1083 if (details->check_mapping != 1084 page_rmapping(page)) 1085 continue; 1086 } 1087 1088 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1089 rss[mm_counter(page)]--; 1090 page_remove_rmap(page, false); 1091 put_page(page); 1092 continue; 1093 } 1094 1095 /* If details->check_mapping, we leave swap entries. */ 1096 if (unlikely(details)) 1097 continue; 1098 1099 if (!non_swap_entry(entry)) 1100 rss[MM_SWAPENTS]--; 1101 else if (is_migration_entry(entry)) { 1102 struct page *page; 1103 1104 page = migration_entry_to_page(entry); 1105 rss[mm_counter(page)]--; 1106 } 1107 if (unlikely(!free_swap_and_cache(entry))) 1108 print_bad_pte(vma, addr, ptent, NULL); 1109 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1110 } while (pte++, addr += PAGE_SIZE, addr != end); 1111 1112 add_mm_rss_vec(mm, rss); 1113 arch_leave_lazy_mmu_mode(); 1114 1115 /* Do the actual TLB flush before dropping ptl */ 1116 if (force_flush) 1117 tlb_flush_mmu_tlbonly(tlb); 1118 pte_unmap_unlock(start_pte, ptl); 1119 1120 /* 1121 * If we forced a TLB flush (either due to running out of 1122 * batch buffers or because we needed to flush dirty TLB 1123 * entries before releasing the ptl), free the batched 1124 * memory too. Restart if we didn't do everything. 1125 */ 1126 if (force_flush) { 1127 force_flush = 0; 1128 tlb_flush_mmu(tlb); 1129 } 1130 1131 if (addr != end) { 1132 cond_resched(); 1133 goto again; 1134 } 1135 1136 return addr; 1137 } 1138 1139 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1140 struct vm_area_struct *vma, pud_t *pud, 1141 unsigned long addr, unsigned long end, 1142 struct zap_details *details) 1143 { 1144 pmd_t *pmd; 1145 unsigned long next; 1146 1147 pmd = pmd_offset(pud, addr); 1148 do { 1149 next = pmd_addr_end(addr, end); 1150 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1151 if (next - addr != HPAGE_PMD_SIZE) 1152 __split_huge_pmd(vma, pmd, addr, false, NULL); 1153 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1154 goto next; 1155 /* fall through */ 1156 } 1157 /* 1158 * Here there can be other concurrent MADV_DONTNEED or 1159 * trans huge page faults running, and if the pmd is 1160 * none or trans huge it can change under us. This is 1161 * because MADV_DONTNEED holds the mmap_sem in read 1162 * mode. 1163 */ 1164 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1165 goto next; 1166 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1167 next: 1168 cond_resched(); 1169 } while (pmd++, addr = next, addr != end); 1170 1171 return addr; 1172 } 1173 1174 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1175 struct vm_area_struct *vma, p4d_t *p4d, 1176 unsigned long addr, unsigned long end, 1177 struct zap_details *details) 1178 { 1179 pud_t *pud; 1180 unsigned long next; 1181 1182 pud = pud_offset(p4d, addr); 1183 do { 1184 next = pud_addr_end(addr, end); 1185 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1186 if (next - addr != HPAGE_PUD_SIZE) { 1187 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1188 split_huge_pud(vma, pud, addr); 1189 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1190 goto next; 1191 /* fall through */ 1192 } 1193 if (pud_none_or_clear_bad(pud)) 1194 continue; 1195 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1196 next: 1197 cond_resched(); 1198 } while (pud++, addr = next, addr != end); 1199 1200 return addr; 1201 } 1202 1203 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1204 struct vm_area_struct *vma, pgd_t *pgd, 1205 unsigned long addr, unsigned long end, 1206 struct zap_details *details) 1207 { 1208 p4d_t *p4d; 1209 unsigned long next; 1210 1211 p4d = p4d_offset(pgd, addr); 1212 do { 1213 next = p4d_addr_end(addr, end); 1214 if (p4d_none_or_clear_bad(p4d)) 1215 continue; 1216 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1217 } while (p4d++, addr = next, addr != end); 1218 1219 return addr; 1220 } 1221 1222 void unmap_page_range(struct mmu_gather *tlb, 1223 struct vm_area_struct *vma, 1224 unsigned long addr, unsigned long end, 1225 struct zap_details *details) 1226 { 1227 pgd_t *pgd; 1228 unsigned long next; 1229 1230 BUG_ON(addr >= end); 1231 tlb_start_vma(tlb, vma); 1232 pgd = pgd_offset(vma->vm_mm, addr); 1233 do { 1234 next = pgd_addr_end(addr, end); 1235 if (pgd_none_or_clear_bad(pgd)) 1236 continue; 1237 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1238 } while (pgd++, addr = next, addr != end); 1239 tlb_end_vma(tlb, vma); 1240 } 1241 1242 1243 static void unmap_single_vma(struct mmu_gather *tlb, 1244 struct vm_area_struct *vma, unsigned long start_addr, 1245 unsigned long end_addr, 1246 struct zap_details *details) 1247 { 1248 unsigned long start = max(vma->vm_start, start_addr); 1249 unsigned long end; 1250 1251 if (start >= vma->vm_end) 1252 return; 1253 end = min(vma->vm_end, end_addr); 1254 if (end <= vma->vm_start) 1255 return; 1256 1257 if (vma->vm_file) 1258 uprobe_munmap(vma, start, end); 1259 1260 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1261 untrack_pfn(vma, 0, 0); 1262 1263 if (start != end) { 1264 if (unlikely(is_vm_hugetlb_page(vma))) { 1265 /* 1266 * It is undesirable to test vma->vm_file as it 1267 * should be non-null for valid hugetlb area. 1268 * However, vm_file will be NULL in the error 1269 * cleanup path of mmap_region. When 1270 * hugetlbfs ->mmap method fails, 1271 * mmap_region() nullifies vma->vm_file 1272 * before calling this function to clean up. 1273 * Since no pte has actually been setup, it is 1274 * safe to do nothing in this case. 1275 */ 1276 if (vma->vm_file) { 1277 i_mmap_lock_write(vma->vm_file->f_mapping); 1278 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1279 i_mmap_unlock_write(vma->vm_file->f_mapping); 1280 } 1281 } else 1282 unmap_page_range(tlb, vma, start, end, details); 1283 } 1284 } 1285 1286 /** 1287 * unmap_vmas - unmap a range of memory covered by a list of vma's 1288 * @tlb: address of the caller's struct mmu_gather 1289 * @vma: the starting vma 1290 * @start_addr: virtual address at which to start unmapping 1291 * @end_addr: virtual address at which to end unmapping 1292 * 1293 * Unmap all pages in the vma list. 1294 * 1295 * Only addresses between `start' and `end' will be unmapped. 1296 * 1297 * The VMA list must be sorted in ascending virtual address order. 1298 * 1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1300 * range after unmap_vmas() returns. So the only responsibility here is to 1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1302 * drops the lock and schedules. 1303 */ 1304 void unmap_vmas(struct mmu_gather *tlb, 1305 struct vm_area_struct *vma, unsigned long start_addr, 1306 unsigned long end_addr) 1307 { 1308 struct mmu_notifier_range range; 1309 1310 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1311 start_addr, end_addr); 1312 mmu_notifier_invalidate_range_start(&range); 1313 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1314 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1315 mmu_notifier_invalidate_range_end(&range); 1316 } 1317 1318 /** 1319 * zap_page_range - remove user pages in a given range 1320 * @vma: vm_area_struct holding the applicable pages 1321 * @start: starting address of pages to zap 1322 * @size: number of bytes to zap 1323 * 1324 * Caller must protect the VMA list 1325 */ 1326 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1327 unsigned long size) 1328 { 1329 struct mmu_notifier_range range; 1330 struct mmu_gather tlb; 1331 1332 lru_add_drain(); 1333 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1334 start, start + size); 1335 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1336 update_hiwater_rss(vma->vm_mm); 1337 mmu_notifier_invalidate_range_start(&range); 1338 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1339 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1340 mmu_notifier_invalidate_range_end(&range); 1341 tlb_finish_mmu(&tlb, start, range.end); 1342 } 1343 1344 /** 1345 * zap_page_range_single - remove user pages in a given range 1346 * @vma: vm_area_struct holding the applicable pages 1347 * @address: starting address of pages to zap 1348 * @size: number of bytes to zap 1349 * @details: details of shared cache invalidation 1350 * 1351 * The range must fit into one VMA. 1352 */ 1353 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1354 unsigned long size, struct zap_details *details) 1355 { 1356 struct mmu_notifier_range range; 1357 struct mmu_gather tlb; 1358 1359 lru_add_drain(); 1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1361 address, address + size); 1362 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1363 update_hiwater_rss(vma->vm_mm); 1364 mmu_notifier_invalidate_range_start(&range); 1365 unmap_single_vma(&tlb, vma, address, range.end, details); 1366 mmu_notifier_invalidate_range_end(&range); 1367 tlb_finish_mmu(&tlb, address, range.end); 1368 } 1369 1370 /** 1371 * zap_vma_ptes - remove ptes mapping the vma 1372 * @vma: vm_area_struct holding ptes to be zapped 1373 * @address: starting address of pages to zap 1374 * @size: number of bytes to zap 1375 * 1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1377 * 1378 * The entire address range must be fully contained within the vma. 1379 * 1380 */ 1381 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1382 unsigned long size) 1383 { 1384 if (address < vma->vm_start || address + size > vma->vm_end || 1385 !(vma->vm_flags & VM_PFNMAP)) 1386 return; 1387 1388 zap_page_range_single(vma, address, size, NULL); 1389 } 1390 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1391 1392 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1393 spinlock_t **ptl) 1394 { 1395 pgd_t *pgd; 1396 p4d_t *p4d; 1397 pud_t *pud; 1398 pmd_t *pmd; 1399 1400 pgd = pgd_offset(mm, addr); 1401 p4d = p4d_alloc(mm, pgd, addr); 1402 if (!p4d) 1403 return NULL; 1404 pud = pud_alloc(mm, p4d, addr); 1405 if (!pud) 1406 return NULL; 1407 pmd = pmd_alloc(mm, pud, addr); 1408 if (!pmd) 1409 return NULL; 1410 1411 VM_BUG_ON(pmd_trans_huge(*pmd)); 1412 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1413 } 1414 1415 /* 1416 * This is the old fallback for page remapping. 1417 * 1418 * For historical reasons, it only allows reserved pages. Only 1419 * old drivers should use this, and they needed to mark their 1420 * pages reserved for the old functions anyway. 1421 */ 1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1423 struct page *page, pgprot_t prot) 1424 { 1425 struct mm_struct *mm = vma->vm_mm; 1426 int retval; 1427 pte_t *pte; 1428 spinlock_t *ptl; 1429 1430 retval = -EINVAL; 1431 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1432 goto out; 1433 retval = -ENOMEM; 1434 flush_dcache_page(page); 1435 pte = get_locked_pte(mm, addr, &ptl); 1436 if (!pte) 1437 goto out; 1438 retval = -EBUSY; 1439 if (!pte_none(*pte)) 1440 goto out_unlock; 1441 1442 /* Ok, finally just insert the thing.. */ 1443 get_page(page); 1444 inc_mm_counter_fast(mm, mm_counter_file(page)); 1445 page_add_file_rmap(page, false); 1446 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1447 1448 retval = 0; 1449 out_unlock: 1450 pte_unmap_unlock(pte, ptl); 1451 out: 1452 return retval; 1453 } 1454 1455 /** 1456 * vm_insert_page - insert single page into user vma 1457 * @vma: user vma to map to 1458 * @addr: target user address of this page 1459 * @page: source kernel page 1460 * 1461 * This allows drivers to insert individual pages they've allocated 1462 * into a user vma. 1463 * 1464 * The page has to be a nice clean _individual_ kernel allocation. 1465 * If you allocate a compound page, you need to have marked it as 1466 * such (__GFP_COMP), or manually just split the page up yourself 1467 * (see split_page()). 1468 * 1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1470 * took an arbitrary page protection parameter. This doesn't allow 1471 * that. Your vma protection will have to be set up correctly, which 1472 * means that if you want a shared writable mapping, you'd better 1473 * ask for a shared writable mapping! 1474 * 1475 * The page does not need to be reserved. 1476 * 1477 * Usually this function is called from f_op->mmap() handler 1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1480 * function from other places, for example from page-fault handler. 1481 * 1482 * Return: %0 on success, negative error code otherwise. 1483 */ 1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1485 struct page *page) 1486 { 1487 if (addr < vma->vm_start || addr >= vma->vm_end) 1488 return -EFAULT; 1489 if (!page_count(page)) 1490 return -EINVAL; 1491 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1492 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1493 BUG_ON(vma->vm_flags & VM_PFNMAP); 1494 vma->vm_flags |= VM_MIXEDMAP; 1495 } 1496 return insert_page(vma, addr, page, vma->vm_page_prot); 1497 } 1498 EXPORT_SYMBOL(vm_insert_page); 1499 1500 /* 1501 * __vm_map_pages - maps range of kernel pages into user vma 1502 * @vma: user vma to map to 1503 * @pages: pointer to array of source kernel pages 1504 * @num: number of pages in page array 1505 * @offset: user's requested vm_pgoff 1506 * 1507 * This allows drivers to map range of kernel pages into a user vma. 1508 * 1509 * Return: 0 on success and error code otherwise. 1510 */ 1511 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1512 unsigned long num, unsigned long offset) 1513 { 1514 unsigned long count = vma_pages(vma); 1515 unsigned long uaddr = vma->vm_start; 1516 int ret, i; 1517 1518 /* Fail if the user requested offset is beyond the end of the object */ 1519 if (offset >= num) 1520 return -ENXIO; 1521 1522 /* Fail if the user requested size exceeds available object size */ 1523 if (count > num - offset) 1524 return -ENXIO; 1525 1526 for (i = 0; i < count; i++) { 1527 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1528 if (ret < 0) 1529 return ret; 1530 uaddr += PAGE_SIZE; 1531 } 1532 1533 return 0; 1534 } 1535 1536 /** 1537 * vm_map_pages - maps range of kernel pages starts with non zero offset 1538 * @vma: user vma to map to 1539 * @pages: pointer to array of source kernel pages 1540 * @num: number of pages in page array 1541 * 1542 * Maps an object consisting of @num pages, catering for the user's 1543 * requested vm_pgoff 1544 * 1545 * If we fail to insert any page into the vma, the function will return 1546 * immediately leaving any previously inserted pages present. Callers 1547 * from the mmap handler may immediately return the error as their caller 1548 * will destroy the vma, removing any successfully inserted pages. Other 1549 * callers should make their own arrangements for calling unmap_region(). 1550 * 1551 * Context: Process context. Called by mmap handlers. 1552 * Return: 0 on success and error code otherwise. 1553 */ 1554 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1555 unsigned long num) 1556 { 1557 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1558 } 1559 EXPORT_SYMBOL(vm_map_pages); 1560 1561 /** 1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1563 * @vma: user vma to map to 1564 * @pages: pointer to array of source kernel pages 1565 * @num: number of pages in page array 1566 * 1567 * Similar to vm_map_pages(), except that it explicitly sets the offset 1568 * to 0. This function is intended for the drivers that did not consider 1569 * vm_pgoff. 1570 * 1571 * Context: Process context. Called by mmap handlers. 1572 * Return: 0 on success and error code otherwise. 1573 */ 1574 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1575 unsigned long num) 1576 { 1577 return __vm_map_pages(vma, pages, num, 0); 1578 } 1579 EXPORT_SYMBOL(vm_map_pages_zero); 1580 1581 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1582 pfn_t pfn, pgprot_t prot, bool mkwrite) 1583 { 1584 struct mm_struct *mm = vma->vm_mm; 1585 pte_t *pte, entry; 1586 spinlock_t *ptl; 1587 1588 pte = get_locked_pte(mm, addr, &ptl); 1589 if (!pte) 1590 return VM_FAULT_OOM; 1591 if (!pte_none(*pte)) { 1592 if (mkwrite) { 1593 /* 1594 * For read faults on private mappings the PFN passed 1595 * in may not match the PFN we have mapped if the 1596 * mapped PFN is a writeable COW page. In the mkwrite 1597 * case we are creating a writable PTE for a shared 1598 * mapping and we expect the PFNs to match. If they 1599 * don't match, we are likely racing with block 1600 * allocation and mapping invalidation so just skip the 1601 * update. 1602 */ 1603 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1604 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1605 goto out_unlock; 1606 } 1607 entry = pte_mkyoung(*pte); 1608 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1609 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1610 update_mmu_cache(vma, addr, pte); 1611 } 1612 goto out_unlock; 1613 } 1614 1615 /* Ok, finally just insert the thing.. */ 1616 if (pfn_t_devmap(pfn)) 1617 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1618 else 1619 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1620 1621 if (mkwrite) { 1622 entry = pte_mkyoung(entry); 1623 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1624 } 1625 1626 set_pte_at(mm, addr, pte, entry); 1627 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1628 1629 out_unlock: 1630 pte_unmap_unlock(pte, ptl); 1631 return VM_FAULT_NOPAGE; 1632 } 1633 1634 /** 1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1636 * @vma: user vma to map to 1637 * @addr: target user address of this page 1638 * @pfn: source kernel pfn 1639 * @pgprot: pgprot flags for the inserted page 1640 * 1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1642 * to override pgprot on a per-page basis. 1643 * 1644 * This only makes sense for IO mappings, and it makes no sense for 1645 * COW mappings. In general, using multiple vmas is preferable; 1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1647 * impractical. 1648 * 1649 * Context: Process context. May allocate using %GFP_KERNEL. 1650 * Return: vm_fault_t value. 1651 */ 1652 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1653 unsigned long pfn, pgprot_t pgprot) 1654 { 1655 /* 1656 * Technically, architectures with pte_special can avoid all these 1657 * restrictions (same for remap_pfn_range). However we would like 1658 * consistency in testing and feature parity among all, so we should 1659 * try to keep these invariants in place for everybody. 1660 */ 1661 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1662 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1663 (VM_PFNMAP|VM_MIXEDMAP)); 1664 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1665 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1666 1667 if (addr < vma->vm_start || addr >= vma->vm_end) 1668 return VM_FAULT_SIGBUS; 1669 1670 if (!pfn_modify_allowed(pfn, pgprot)) 1671 return VM_FAULT_SIGBUS; 1672 1673 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1674 1675 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1676 false); 1677 } 1678 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1679 1680 /** 1681 * vmf_insert_pfn - insert single pfn into user vma 1682 * @vma: user vma to map to 1683 * @addr: target user address of this page 1684 * @pfn: source kernel pfn 1685 * 1686 * Similar to vm_insert_page, this allows drivers to insert individual pages 1687 * they've allocated into a user vma. Same comments apply. 1688 * 1689 * This function should only be called from a vm_ops->fault handler, and 1690 * in that case the handler should return the result of this function. 1691 * 1692 * vma cannot be a COW mapping. 1693 * 1694 * As this is called only for pages that do not currently exist, we 1695 * do not need to flush old virtual caches or the TLB. 1696 * 1697 * Context: Process context. May allocate using %GFP_KERNEL. 1698 * Return: vm_fault_t value. 1699 */ 1700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1701 unsigned long pfn) 1702 { 1703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1704 } 1705 EXPORT_SYMBOL(vmf_insert_pfn); 1706 1707 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1708 { 1709 /* these checks mirror the abort conditions in vm_normal_page */ 1710 if (vma->vm_flags & VM_MIXEDMAP) 1711 return true; 1712 if (pfn_t_devmap(pfn)) 1713 return true; 1714 if (pfn_t_special(pfn)) 1715 return true; 1716 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1717 return true; 1718 return false; 1719 } 1720 1721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1722 unsigned long addr, pfn_t pfn, bool mkwrite) 1723 { 1724 pgprot_t pgprot = vma->vm_page_prot; 1725 int err; 1726 1727 BUG_ON(!vm_mixed_ok(vma, pfn)); 1728 1729 if (addr < vma->vm_start || addr >= vma->vm_end) 1730 return VM_FAULT_SIGBUS; 1731 1732 track_pfn_insert(vma, &pgprot, pfn); 1733 1734 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1735 return VM_FAULT_SIGBUS; 1736 1737 /* 1738 * If we don't have pte special, then we have to use the pfn_valid() 1739 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1740 * refcount the page if pfn_valid is true (hence insert_page rather 1741 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1742 * without pte special, it would there be refcounted as a normal page. 1743 */ 1744 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1745 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1746 struct page *page; 1747 1748 /* 1749 * At this point we are committed to insert_page() 1750 * regardless of whether the caller specified flags that 1751 * result in pfn_t_has_page() == false. 1752 */ 1753 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1754 err = insert_page(vma, addr, page, pgprot); 1755 } else { 1756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1757 } 1758 1759 if (err == -ENOMEM) 1760 return VM_FAULT_OOM; 1761 if (err < 0 && err != -EBUSY) 1762 return VM_FAULT_SIGBUS; 1763 1764 return VM_FAULT_NOPAGE; 1765 } 1766 1767 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1768 pfn_t pfn) 1769 { 1770 return __vm_insert_mixed(vma, addr, pfn, false); 1771 } 1772 EXPORT_SYMBOL(vmf_insert_mixed); 1773 1774 /* 1775 * If the insertion of PTE failed because someone else already added a 1776 * different entry in the mean time, we treat that as success as we assume 1777 * the same entry was actually inserted. 1778 */ 1779 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1780 unsigned long addr, pfn_t pfn) 1781 { 1782 return __vm_insert_mixed(vma, addr, pfn, true); 1783 } 1784 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1785 1786 /* 1787 * maps a range of physical memory into the requested pages. the old 1788 * mappings are removed. any references to nonexistent pages results 1789 * in null mappings (currently treated as "copy-on-access") 1790 */ 1791 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1792 unsigned long addr, unsigned long end, 1793 unsigned long pfn, pgprot_t prot) 1794 { 1795 pte_t *pte; 1796 spinlock_t *ptl; 1797 int err = 0; 1798 1799 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1800 if (!pte) 1801 return -ENOMEM; 1802 arch_enter_lazy_mmu_mode(); 1803 do { 1804 BUG_ON(!pte_none(*pte)); 1805 if (!pfn_modify_allowed(pfn, prot)) { 1806 err = -EACCES; 1807 break; 1808 } 1809 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1810 pfn++; 1811 } while (pte++, addr += PAGE_SIZE, addr != end); 1812 arch_leave_lazy_mmu_mode(); 1813 pte_unmap_unlock(pte - 1, ptl); 1814 return err; 1815 } 1816 1817 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1818 unsigned long addr, unsigned long end, 1819 unsigned long pfn, pgprot_t prot) 1820 { 1821 pmd_t *pmd; 1822 unsigned long next; 1823 int err; 1824 1825 pfn -= addr >> PAGE_SHIFT; 1826 pmd = pmd_alloc(mm, pud, addr); 1827 if (!pmd) 1828 return -ENOMEM; 1829 VM_BUG_ON(pmd_trans_huge(*pmd)); 1830 do { 1831 next = pmd_addr_end(addr, end); 1832 err = remap_pte_range(mm, pmd, addr, next, 1833 pfn + (addr >> PAGE_SHIFT), prot); 1834 if (err) 1835 return err; 1836 } while (pmd++, addr = next, addr != end); 1837 return 0; 1838 } 1839 1840 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1841 unsigned long addr, unsigned long end, 1842 unsigned long pfn, pgprot_t prot) 1843 { 1844 pud_t *pud; 1845 unsigned long next; 1846 int err; 1847 1848 pfn -= addr >> PAGE_SHIFT; 1849 pud = pud_alloc(mm, p4d, addr); 1850 if (!pud) 1851 return -ENOMEM; 1852 do { 1853 next = pud_addr_end(addr, end); 1854 err = remap_pmd_range(mm, pud, addr, next, 1855 pfn + (addr >> PAGE_SHIFT), prot); 1856 if (err) 1857 return err; 1858 } while (pud++, addr = next, addr != end); 1859 return 0; 1860 } 1861 1862 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1863 unsigned long addr, unsigned long end, 1864 unsigned long pfn, pgprot_t prot) 1865 { 1866 p4d_t *p4d; 1867 unsigned long next; 1868 int err; 1869 1870 pfn -= addr >> PAGE_SHIFT; 1871 p4d = p4d_alloc(mm, pgd, addr); 1872 if (!p4d) 1873 return -ENOMEM; 1874 do { 1875 next = p4d_addr_end(addr, end); 1876 err = remap_pud_range(mm, p4d, addr, next, 1877 pfn + (addr >> PAGE_SHIFT), prot); 1878 if (err) 1879 return err; 1880 } while (p4d++, addr = next, addr != end); 1881 return 0; 1882 } 1883 1884 /** 1885 * remap_pfn_range - remap kernel memory to userspace 1886 * @vma: user vma to map to 1887 * @addr: target user address to start at 1888 * @pfn: physical address of kernel memory 1889 * @size: size of map area 1890 * @prot: page protection flags for this mapping 1891 * 1892 * Note: this is only safe if the mm semaphore is held when called. 1893 * 1894 * Return: %0 on success, negative error code otherwise. 1895 */ 1896 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1897 unsigned long pfn, unsigned long size, pgprot_t prot) 1898 { 1899 pgd_t *pgd; 1900 unsigned long next; 1901 unsigned long end = addr + PAGE_ALIGN(size); 1902 struct mm_struct *mm = vma->vm_mm; 1903 unsigned long remap_pfn = pfn; 1904 int err; 1905 1906 /* 1907 * Physically remapped pages are special. Tell the 1908 * rest of the world about it: 1909 * VM_IO tells people not to look at these pages 1910 * (accesses can have side effects). 1911 * VM_PFNMAP tells the core MM that the base pages are just 1912 * raw PFN mappings, and do not have a "struct page" associated 1913 * with them. 1914 * VM_DONTEXPAND 1915 * Disable vma merging and expanding with mremap(). 1916 * VM_DONTDUMP 1917 * Omit vma from core dump, even when VM_IO turned off. 1918 * 1919 * There's a horrible special case to handle copy-on-write 1920 * behaviour that some programs depend on. We mark the "original" 1921 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1922 * See vm_normal_page() for details. 1923 */ 1924 if (is_cow_mapping(vma->vm_flags)) { 1925 if (addr != vma->vm_start || end != vma->vm_end) 1926 return -EINVAL; 1927 vma->vm_pgoff = pfn; 1928 } 1929 1930 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1931 if (err) 1932 return -EINVAL; 1933 1934 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1935 1936 BUG_ON(addr >= end); 1937 pfn -= addr >> PAGE_SHIFT; 1938 pgd = pgd_offset(mm, addr); 1939 flush_cache_range(vma, addr, end); 1940 do { 1941 next = pgd_addr_end(addr, end); 1942 err = remap_p4d_range(mm, pgd, addr, next, 1943 pfn + (addr >> PAGE_SHIFT), prot); 1944 if (err) 1945 break; 1946 } while (pgd++, addr = next, addr != end); 1947 1948 if (err) 1949 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1950 1951 return err; 1952 } 1953 EXPORT_SYMBOL(remap_pfn_range); 1954 1955 /** 1956 * vm_iomap_memory - remap memory to userspace 1957 * @vma: user vma to map to 1958 * @start: start of area 1959 * @len: size of area 1960 * 1961 * This is a simplified io_remap_pfn_range() for common driver use. The 1962 * driver just needs to give us the physical memory range to be mapped, 1963 * we'll figure out the rest from the vma information. 1964 * 1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1966 * whatever write-combining details or similar. 1967 * 1968 * Return: %0 on success, negative error code otherwise. 1969 */ 1970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1971 { 1972 unsigned long vm_len, pfn, pages; 1973 1974 /* Check that the physical memory area passed in looks valid */ 1975 if (start + len < start) 1976 return -EINVAL; 1977 /* 1978 * You *really* shouldn't map things that aren't page-aligned, 1979 * but we've historically allowed it because IO memory might 1980 * just have smaller alignment. 1981 */ 1982 len += start & ~PAGE_MASK; 1983 pfn = start >> PAGE_SHIFT; 1984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1985 if (pfn + pages < pfn) 1986 return -EINVAL; 1987 1988 /* We start the mapping 'vm_pgoff' pages into the area */ 1989 if (vma->vm_pgoff > pages) 1990 return -EINVAL; 1991 pfn += vma->vm_pgoff; 1992 pages -= vma->vm_pgoff; 1993 1994 /* Can we fit all of the mapping? */ 1995 vm_len = vma->vm_end - vma->vm_start; 1996 if (vm_len >> PAGE_SHIFT > pages) 1997 return -EINVAL; 1998 1999 /* Ok, let it rip */ 2000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2001 } 2002 EXPORT_SYMBOL(vm_iomap_memory); 2003 2004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2005 unsigned long addr, unsigned long end, 2006 pte_fn_t fn, void *data) 2007 { 2008 pte_t *pte; 2009 int err; 2010 spinlock_t *uninitialized_var(ptl); 2011 2012 pte = (mm == &init_mm) ? 2013 pte_alloc_kernel(pmd, addr) : 2014 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2015 if (!pte) 2016 return -ENOMEM; 2017 2018 BUG_ON(pmd_huge(*pmd)); 2019 2020 arch_enter_lazy_mmu_mode(); 2021 2022 do { 2023 err = fn(pte++, addr, data); 2024 if (err) 2025 break; 2026 } while (addr += PAGE_SIZE, addr != end); 2027 2028 arch_leave_lazy_mmu_mode(); 2029 2030 if (mm != &init_mm) 2031 pte_unmap_unlock(pte-1, ptl); 2032 return err; 2033 } 2034 2035 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2036 unsigned long addr, unsigned long end, 2037 pte_fn_t fn, void *data) 2038 { 2039 pmd_t *pmd; 2040 unsigned long next; 2041 int err; 2042 2043 BUG_ON(pud_huge(*pud)); 2044 2045 pmd = pmd_alloc(mm, pud, addr); 2046 if (!pmd) 2047 return -ENOMEM; 2048 do { 2049 next = pmd_addr_end(addr, end); 2050 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2051 if (err) 2052 break; 2053 } while (pmd++, addr = next, addr != end); 2054 return err; 2055 } 2056 2057 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2058 unsigned long addr, unsigned long end, 2059 pte_fn_t fn, void *data) 2060 { 2061 pud_t *pud; 2062 unsigned long next; 2063 int err; 2064 2065 pud = pud_alloc(mm, p4d, addr); 2066 if (!pud) 2067 return -ENOMEM; 2068 do { 2069 next = pud_addr_end(addr, end); 2070 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2071 if (err) 2072 break; 2073 } while (pud++, addr = next, addr != end); 2074 return err; 2075 } 2076 2077 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2078 unsigned long addr, unsigned long end, 2079 pte_fn_t fn, void *data) 2080 { 2081 p4d_t *p4d; 2082 unsigned long next; 2083 int err; 2084 2085 p4d = p4d_alloc(mm, pgd, addr); 2086 if (!p4d) 2087 return -ENOMEM; 2088 do { 2089 next = p4d_addr_end(addr, end); 2090 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2091 if (err) 2092 break; 2093 } while (p4d++, addr = next, addr != end); 2094 return err; 2095 } 2096 2097 /* 2098 * Scan a region of virtual memory, filling in page tables as necessary 2099 * and calling a provided function on each leaf page table. 2100 */ 2101 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2102 unsigned long size, pte_fn_t fn, void *data) 2103 { 2104 pgd_t *pgd; 2105 unsigned long next; 2106 unsigned long end = addr + size; 2107 int err; 2108 2109 if (WARN_ON(addr >= end)) 2110 return -EINVAL; 2111 2112 pgd = pgd_offset(mm, addr); 2113 do { 2114 next = pgd_addr_end(addr, end); 2115 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2116 if (err) 2117 break; 2118 } while (pgd++, addr = next, addr != end); 2119 2120 return err; 2121 } 2122 EXPORT_SYMBOL_GPL(apply_to_page_range); 2123 2124 /* 2125 * handle_pte_fault chooses page fault handler according to an entry which was 2126 * read non-atomically. Before making any commitment, on those architectures 2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2128 * parts, do_swap_page must check under lock before unmapping the pte and 2129 * proceeding (but do_wp_page is only called after already making such a check; 2130 * and do_anonymous_page can safely check later on). 2131 */ 2132 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2133 pte_t *page_table, pte_t orig_pte) 2134 { 2135 int same = 1; 2136 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2137 if (sizeof(pte_t) > sizeof(unsigned long)) { 2138 spinlock_t *ptl = pte_lockptr(mm, pmd); 2139 spin_lock(ptl); 2140 same = pte_same(*page_table, orig_pte); 2141 spin_unlock(ptl); 2142 } 2143 #endif 2144 pte_unmap(page_table); 2145 return same; 2146 } 2147 2148 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2149 { 2150 debug_dma_assert_idle(src); 2151 2152 /* 2153 * If the source page was a PFN mapping, we don't have 2154 * a "struct page" for it. We do a best-effort copy by 2155 * just copying from the original user address. If that 2156 * fails, we just zero-fill it. Live with it. 2157 */ 2158 if (unlikely(!src)) { 2159 void *kaddr = kmap_atomic(dst); 2160 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2161 2162 /* 2163 * This really shouldn't fail, because the page is there 2164 * in the page tables. But it might just be unreadable, 2165 * in which case we just give up and fill the result with 2166 * zeroes. 2167 */ 2168 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2169 clear_page(kaddr); 2170 kunmap_atomic(kaddr); 2171 flush_dcache_page(dst); 2172 } else 2173 copy_user_highpage(dst, src, va, vma); 2174 } 2175 2176 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2177 { 2178 struct file *vm_file = vma->vm_file; 2179 2180 if (vm_file) 2181 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2182 2183 /* 2184 * Special mappings (e.g. VDSO) do not have any file so fake 2185 * a default GFP_KERNEL for them. 2186 */ 2187 return GFP_KERNEL; 2188 } 2189 2190 /* 2191 * Notify the address space that the page is about to become writable so that 2192 * it can prohibit this or wait for the page to get into an appropriate state. 2193 * 2194 * We do this without the lock held, so that it can sleep if it needs to. 2195 */ 2196 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2197 { 2198 vm_fault_t ret; 2199 struct page *page = vmf->page; 2200 unsigned int old_flags = vmf->flags; 2201 2202 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2203 2204 if (vmf->vma->vm_file && 2205 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2206 return VM_FAULT_SIGBUS; 2207 2208 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2209 /* Restore original flags so that caller is not surprised */ 2210 vmf->flags = old_flags; 2211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2212 return ret; 2213 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2214 lock_page(page); 2215 if (!page->mapping) { 2216 unlock_page(page); 2217 return 0; /* retry */ 2218 } 2219 ret |= VM_FAULT_LOCKED; 2220 } else 2221 VM_BUG_ON_PAGE(!PageLocked(page), page); 2222 return ret; 2223 } 2224 2225 /* 2226 * Handle dirtying of a page in shared file mapping on a write fault. 2227 * 2228 * The function expects the page to be locked and unlocks it. 2229 */ 2230 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2231 struct page *page) 2232 { 2233 struct address_space *mapping; 2234 bool dirtied; 2235 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2236 2237 dirtied = set_page_dirty(page); 2238 VM_BUG_ON_PAGE(PageAnon(page), page); 2239 /* 2240 * Take a local copy of the address_space - page.mapping may be zeroed 2241 * by truncate after unlock_page(). The address_space itself remains 2242 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2243 * release semantics to prevent the compiler from undoing this copying. 2244 */ 2245 mapping = page_rmapping(page); 2246 unlock_page(page); 2247 2248 if ((dirtied || page_mkwrite) && mapping) { 2249 /* 2250 * Some device drivers do not set page.mapping 2251 * but still dirty their pages 2252 */ 2253 balance_dirty_pages_ratelimited(mapping); 2254 } 2255 2256 if (!page_mkwrite) 2257 file_update_time(vma->vm_file); 2258 } 2259 2260 /* 2261 * Handle write page faults for pages that can be reused in the current vma 2262 * 2263 * This can happen either due to the mapping being with the VM_SHARED flag, 2264 * or due to us being the last reference standing to the page. In either 2265 * case, all we need to do here is to mark the page as writable and update 2266 * any related book-keeping. 2267 */ 2268 static inline void wp_page_reuse(struct vm_fault *vmf) 2269 __releases(vmf->ptl) 2270 { 2271 struct vm_area_struct *vma = vmf->vma; 2272 struct page *page = vmf->page; 2273 pte_t entry; 2274 /* 2275 * Clear the pages cpupid information as the existing 2276 * information potentially belongs to a now completely 2277 * unrelated process. 2278 */ 2279 if (page) 2280 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2281 2282 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2283 entry = pte_mkyoung(vmf->orig_pte); 2284 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2285 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2286 update_mmu_cache(vma, vmf->address, vmf->pte); 2287 pte_unmap_unlock(vmf->pte, vmf->ptl); 2288 } 2289 2290 /* 2291 * Handle the case of a page which we actually need to copy to a new page. 2292 * 2293 * Called with mmap_sem locked and the old page referenced, but 2294 * without the ptl held. 2295 * 2296 * High level logic flow: 2297 * 2298 * - Allocate a page, copy the content of the old page to the new one. 2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2300 * - Take the PTL. If the pte changed, bail out and release the allocated page 2301 * - If the pte is still the way we remember it, update the page table and all 2302 * relevant references. This includes dropping the reference the page-table 2303 * held to the old page, as well as updating the rmap. 2304 * - In any case, unlock the PTL and drop the reference we took to the old page. 2305 */ 2306 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2307 { 2308 struct vm_area_struct *vma = vmf->vma; 2309 struct mm_struct *mm = vma->vm_mm; 2310 struct page *old_page = vmf->page; 2311 struct page *new_page = NULL; 2312 pte_t entry; 2313 int page_copied = 0; 2314 struct mem_cgroup *memcg; 2315 struct mmu_notifier_range range; 2316 2317 if (unlikely(anon_vma_prepare(vma))) 2318 goto oom; 2319 2320 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2321 new_page = alloc_zeroed_user_highpage_movable(vma, 2322 vmf->address); 2323 if (!new_page) 2324 goto oom; 2325 } else { 2326 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2327 vmf->address); 2328 if (!new_page) 2329 goto oom; 2330 cow_user_page(new_page, old_page, vmf->address, vma); 2331 } 2332 2333 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2334 goto oom_free_new; 2335 2336 __SetPageUptodate(new_page); 2337 2338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2339 vmf->address & PAGE_MASK, 2340 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2341 mmu_notifier_invalidate_range_start(&range); 2342 2343 /* 2344 * Re-check the pte - we dropped the lock 2345 */ 2346 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2347 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2348 if (old_page) { 2349 if (!PageAnon(old_page)) { 2350 dec_mm_counter_fast(mm, 2351 mm_counter_file(old_page)); 2352 inc_mm_counter_fast(mm, MM_ANONPAGES); 2353 } 2354 } else { 2355 inc_mm_counter_fast(mm, MM_ANONPAGES); 2356 } 2357 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2358 entry = mk_pte(new_page, vma->vm_page_prot); 2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2360 /* 2361 * Clear the pte entry and flush it first, before updating the 2362 * pte with the new entry. This will avoid a race condition 2363 * seen in the presence of one thread doing SMC and another 2364 * thread doing COW. 2365 */ 2366 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2367 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2368 mem_cgroup_commit_charge(new_page, memcg, false, false); 2369 lru_cache_add_active_or_unevictable(new_page, vma); 2370 /* 2371 * We call the notify macro here because, when using secondary 2372 * mmu page tables (such as kvm shadow page tables), we want the 2373 * new page to be mapped directly into the secondary page table. 2374 */ 2375 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2376 update_mmu_cache(vma, vmf->address, vmf->pte); 2377 if (old_page) { 2378 /* 2379 * Only after switching the pte to the new page may 2380 * we remove the mapcount here. Otherwise another 2381 * process may come and find the rmap count decremented 2382 * before the pte is switched to the new page, and 2383 * "reuse" the old page writing into it while our pte 2384 * here still points into it and can be read by other 2385 * threads. 2386 * 2387 * The critical issue is to order this 2388 * page_remove_rmap with the ptp_clear_flush above. 2389 * Those stores are ordered by (if nothing else,) 2390 * the barrier present in the atomic_add_negative 2391 * in page_remove_rmap. 2392 * 2393 * Then the TLB flush in ptep_clear_flush ensures that 2394 * no process can access the old page before the 2395 * decremented mapcount is visible. And the old page 2396 * cannot be reused until after the decremented 2397 * mapcount is visible. So transitively, TLBs to 2398 * old page will be flushed before it can be reused. 2399 */ 2400 page_remove_rmap(old_page, false); 2401 } 2402 2403 /* Free the old page.. */ 2404 new_page = old_page; 2405 page_copied = 1; 2406 } else { 2407 mem_cgroup_cancel_charge(new_page, memcg, false); 2408 } 2409 2410 if (new_page) 2411 put_page(new_page); 2412 2413 pte_unmap_unlock(vmf->pte, vmf->ptl); 2414 /* 2415 * No need to double call mmu_notifier->invalidate_range() callback as 2416 * the above ptep_clear_flush_notify() did already call it. 2417 */ 2418 mmu_notifier_invalidate_range_only_end(&range); 2419 if (old_page) { 2420 /* 2421 * Don't let another task, with possibly unlocked vma, 2422 * keep the mlocked page. 2423 */ 2424 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2425 lock_page(old_page); /* LRU manipulation */ 2426 if (PageMlocked(old_page)) 2427 munlock_vma_page(old_page); 2428 unlock_page(old_page); 2429 } 2430 put_page(old_page); 2431 } 2432 return page_copied ? VM_FAULT_WRITE : 0; 2433 oom_free_new: 2434 put_page(new_page); 2435 oom: 2436 if (old_page) 2437 put_page(old_page); 2438 return VM_FAULT_OOM; 2439 } 2440 2441 /** 2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2443 * writeable once the page is prepared 2444 * 2445 * @vmf: structure describing the fault 2446 * 2447 * This function handles all that is needed to finish a write page fault in a 2448 * shared mapping due to PTE being read-only once the mapped page is prepared. 2449 * It handles locking of PTE and modifying it. 2450 * 2451 * The function expects the page to be locked or other protection against 2452 * concurrent faults / writeback (such as DAX radix tree locks). 2453 * 2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2455 * we acquired PTE lock. 2456 */ 2457 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2458 { 2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2461 &vmf->ptl); 2462 /* 2463 * We might have raced with another page fault while we released the 2464 * pte_offset_map_lock. 2465 */ 2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2467 pte_unmap_unlock(vmf->pte, vmf->ptl); 2468 return VM_FAULT_NOPAGE; 2469 } 2470 wp_page_reuse(vmf); 2471 return 0; 2472 } 2473 2474 /* 2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2476 * mapping 2477 */ 2478 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2479 { 2480 struct vm_area_struct *vma = vmf->vma; 2481 2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2483 vm_fault_t ret; 2484 2485 pte_unmap_unlock(vmf->pte, vmf->ptl); 2486 vmf->flags |= FAULT_FLAG_MKWRITE; 2487 ret = vma->vm_ops->pfn_mkwrite(vmf); 2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2489 return ret; 2490 return finish_mkwrite_fault(vmf); 2491 } 2492 wp_page_reuse(vmf); 2493 return VM_FAULT_WRITE; 2494 } 2495 2496 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2497 __releases(vmf->ptl) 2498 { 2499 struct vm_area_struct *vma = vmf->vma; 2500 2501 get_page(vmf->page); 2502 2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2504 vm_fault_t tmp; 2505 2506 pte_unmap_unlock(vmf->pte, vmf->ptl); 2507 tmp = do_page_mkwrite(vmf); 2508 if (unlikely(!tmp || (tmp & 2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2510 put_page(vmf->page); 2511 return tmp; 2512 } 2513 tmp = finish_mkwrite_fault(vmf); 2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2515 unlock_page(vmf->page); 2516 put_page(vmf->page); 2517 return tmp; 2518 } 2519 } else { 2520 wp_page_reuse(vmf); 2521 lock_page(vmf->page); 2522 } 2523 fault_dirty_shared_page(vma, vmf->page); 2524 put_page(vmf->page); 2525 2526 return VM_FAULT_WRITE; 2527 } 2528 2529 /* 2530 * This routine handles present pages, when users try to write 2531 * to a shared page. It is done by copying the page to a new address 2532 * and decrementing the shared-page counter for the old page. 2533 * 2534 * Note that this routine assumes that the protection checks have been 2535 * done by the caller (the low-level page fault routine in most cases). 2536 * Thus we can safely just mark it writable once we've done any necessary 2537 * COW. 2538 * 2539 * We also mark the page dirty at this point even though the page will 2540 * change only once the write actually happens. This avoids a few races, 2541 * and potentially makes it more efficient. 2542 * 2543 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2544 * but allow concurrent faults), with pte both mapped and locked. 2545 * We return with mmap_sem still held, but pte unmapped and unlocked. 2546 */ 2547 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2548 __releases(vmf->ptl) 2549 { 2550 struct vm_area_struct *vma = vmf->vma; 2551 2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2553 if (!vmf->page) { 2554 /* 2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2556 * VM_PFNMAP VMA. 2557 * 2558 * We should not cow pages in a shared writeable mapping. 2559 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2560 */ 2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2562 (VM_WRITE|VM_SHARED)) 2563 return wp_pfn_shared(vmf); 2564 2565 pte_unmap_unlock(vmf->pte, vmf->ptl); 2566 return wp_page_copy(vmf); 2567 } 2568 2569 /* 2570 * Take out anonymous pages first, anonymous shared vmas are 2571 * not dirty accountable. 2572 */ 2573 if (PageAnon(vmf->page)) { 2574 int total_map_swapcount; 2575 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2576 page_count(vmf->page) != 1)) 2577 goto copy; 2578 if (!trylock_page(vmf->page)) { 2579 get_page(vmf->page); 2580 pte_unmap_unlock(vmf->pte, vmf->ptl); 2581 lock_page(vmf->page); 2582 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2583 vmf->address, &vmf->ptl); 2584 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2585 unlock_page(vmf->page); 2586 pte_unmap_unlock(vmf->pte, vmf->ptl); 2587 put_page(vmf->page); 2588 return 0; 2589 } 2590 put_page(vmf->page); 2591 } 2592 if (PageKsm(vmf->page)) { 2593 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2594 vmf->address); 2595 unlock_page(vmf->page); 2596 if (!reused) 2597 goto copy; 2598 wp_page_reuse(vmf); 2599 return VM_FAULT_WRITE; 2600 } 2601 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2602 if (total_map_swapcount == 1) { 2603 /* 2604 * The page is all ours. Move it to 2605 * our anon_vma so the rmap code will 2606 * not search our parent or siblings. 2607 * Protected against the rmap code by 2608 * the page lock. 2609 */ 2610 page_move_anon_rmap(vmf->page, vma); 2611 } 2612 unlock_page(vmf->page); 2613 wp_page_reuse(vmf); 2614 return VM_FAULT_WRITE; 2615 } 2616 unlock_page(vmf->page); 2617 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2618 (VM_WRITE|VM_SHARED))) { 2619 return wp_page_shared(vmf); 2620 } 2621 copy: 2622 /* 2623 * Ok, we need to copy. Oh, well.. 2624 */ 2625 get_page(vmf->page); 2626 2627 pte_unmap_unlock(vmf->pte, vmf->ptl); 2628 return wp_page_copy(vmf); 2629 } 2630 2631 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2632 unsigned long start_addr, unsigned long end_addr, 2633 struct zap_details *details) 2634 { 2635 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2636 } 2637 2638 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2639 struct zap_details *details) 2640 { 2641 struct vm_area_struct *vma; 2642 pgoff_t vba, vea, zba, zea; 2643 2644 vma_interval_tree_foreach(vma, root, 2645 details->first_index, details->last_index) { 2646 2647 vba = vma->vm_pgoff; 2648 vea = vba + vma_pages(vma) - 1; 2649 zba = details->first_index; 2650 if (zba < vba) 2651 zba = vba; 2652 zea = details->last_index; 2653 if (zea > vea) 2654 zea = vea; 2655 2656 unmap_mapping_range_vma(vma, 2657 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2658 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2659 details); 2660 } 2661 } 2662 2663 /** 2664 * unmap_mapping_pages() - Unmap pages from processes. 2665 * @mapping: The address space containing pages to be unmapped. 2666 * @start: Index of first page to be unmapped. 2667 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2668 * @even_cows: Whether to unmap even private COWed pages. 2669 * 2670 * Unmap the pages in this address space from any userspace process which 2671 * has them mmaped. Generally, you want to remove COWed pages as well when 2672 * a file is being truncated, but not when invalidating pages from the page 2673 * cache. 2674 */ 2675 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2676 pgoff_t nr, bool even_cows) 2677 { 2678 struct zap_details details = { }; 2679 2680 details.check_mapping = even_cows ? NULL : mapping; 2681 details.first_index = start; 2682 details.last_index = start + nr - 1; 2683 if (details.last_index < details.first_index) 2684 details.last_index = ULONG_MAX; 2685 2686 i_mmap_lock_write(mapping); 2687 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2688 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2689 i_mmap_unlock_write(mapping); 2690 } 2691 2692 /** 2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2694 * address_space corresponding to the specified byte range in the underlying 2695 * file. 2696 * 2697 * @mapping: the address space containing mmaps to be unmapped. 2698 * @holebegin: byte in first page to unmap, relative to the start of 2699 * the underlying file. This will be rounded down to a PAGE_SIZE 2700 * boundary. Note that this is different from truncate_pagecache(), which 2701 * must keep the partial page. In contrast, we must get rid of 2702 * partial pages. 2703 * @holelen: size of prospective hole in bytes. This will be rounded 2704 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2705 * end of the file. 2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2707 * but 0 when invalidating pagecache, don't throw away private data. 2708 */ 2709 void unmap_mapping_range(struct address_space *mapping, 2710 loff_t const holebegin, loff_t const holelen, int even_cows) 2711 { 2712 pgoff_t hba = holebegin >> PAGE_SHIFT; 2713 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2714 2715 /* Check for overflow. */ 2716 if (sizeof(holelen) > sizeof(hlen)) { 2717 long long holeend = 2718 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2719 if (holeend & ~(long long)ULONG_MAX) 2720 hlen = ULONG_MAX - hba + 1; 2721 } 2722 2723 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2724 } 2725 EXPORT_SYMBOL(unmap_mapping_range); 2726 2727 /* 2728 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2729 * but allow concurrent faults), and pte mapped but not yet locked. 2730 * We return with pte unmapped and unlocked. 2731 * 2732 * We return with the mmap_sem locked or unlocked in the same cases 2733 * as does filemap_fault(). 2734 */ 2735 vm_fault_t do_swap_page(struct vm_fault *vmf) 2736 { 2737 struct vm_area_struct *vma = vmf->vma; 2738 struct page *page = NULL, *swapcache; 2739 struct mem_cgroup *memcg; 2740 swp_entry_t entry; 2741 pte_t pte; 2742 int locked; 2743 int exclusive = 0; 2744 vm_fault_t ret = 0; 2745 2746 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2747 goto out; 2748 2749 entry = pte_to_swp_entry(vmf->orig_pte); 2750 if (unlikely(non_swap_entry(entry))) { 2751 if (is_migration_entry(entry)) { 2752 migration_entry_wait(vma->vm_mm, vmf->pmd, 2753 vmf->address); 2754 } else if (is_device_private_entry(entry)) { 2755 vmf->page = device_private_entry_to_page(entry); 2756 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 2757 } else if (is_hwpoison_entry(entry)) { 2758 ret = VM_FAULT_HWPOISON; 2759 } else { 2760 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2761 ret = VM_FAULT_SIGBUS; 2762 } 2763 goto out; 2764 } 2765 2766 2767 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2768 page = lookup_swap_cache(entry, vma, vmf->address); 2769 swapcache = page; 2770 2771 if (!page) { 2772 struct swap_info_struct *si = swp_swap_info(entry); 2773 2774 if (si->flags & SWP_SYNCHRONOUS_IO && 2775 __swap_count(entry) == 1) { 2776 /* skip swapcache */ 2777 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2778 vmf->address); 2779 if (page) { 2780 __SetPageLocked(page); 2781 __SetPageSwapBacked(page); 2782 set_page_private(page, entry.val); 2783 lru_cache_add_anon(page); 2784 swap_readpage(page, true); 2785 } 2786 } else { 2787 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2788 vmf); 2789 swapcache = page; 2790 } 2791 2792 if (!page) { 2793 /* 2794 * Back out if somebody else faulted in this pte 2795 * while we released the pte lock. 2796 */ 2797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2798 vmf->address, &vmf->ptl); 2799 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2800 ret = VM_FAULT_OOM; 2801 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2802 goto unlock; 2803 } 2804 2805 /* Had to read the page from swap area: Major fault */ 2806 ret = VM_FAULT_MAJOR; 2807 count_vm_event(PGMAJFAULT); 2808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2809 } else if (PageHWPoison(page)) { 2810 /* 2811 * hwpoisoned dirty swapcache pages are kept for killing 2812 * owner processes (which may be unknown at hwpoison time) 2813 */ 2814 ret = VM_FAULT_HWPOISON; 2815 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2816 goto out_release; 2817 } 2818 2819 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2820 2821 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2822 if (!locked) { 2823 ret |= VM_FAULT_RETRY; 2824 goto out_release; 2825 } 2826 2827 /* 2828 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2829 * release the swapcache from under us. The page pin, and pte_same 2830 * test below, are not enough to exclude that. Even if it is still 2831 * swapcache, we need to check that the page's swap has not changed. 2832 */ 2833 if (unlikely((!PageSwapCache(page) || 2834 page_private(page) != entry.val)) && swapcache) 2835 goto out_page; 2836 2837 page = ksm_might_need_to_copy(page, vma, vmf->address); 2838 if (unlikely(!page)) { 2839 ret = VM_FAULT_OOM; 2840 page = swapcache; 2841 goto out_page; 2842 } 2843 2844 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2845 &memcg, false)) { 2846 ret = VM_FAULT_OOM; 2847 goto out_page; 2848 } 2849 2850 /* 2851 * Back out if somebody else already faulted in this pte. 2852 */ 2853 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2854 &vmf->ptl); 2855 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2856 goto out_nomap; 2857 2858 if (unlikely(!PageUptodate(page))) { 2859 ret = VM_FAULT_SIGBUS; 2860 goto out_nomap; 2861 } 2862 2863 /* 2864 * The page isn't present yet, go ahead with the fault. 2865 * 2866 * Be careful about the sequence of operations here. 2867 * To get its accounting right, reuse_swap_page() must be called 2868 * while the page is counted on swap but not yet in mapcount i.e. 2869 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2870 * must be called after the swap_free(), or it will never succeed. 2871 */ 2872 2873 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2874 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2875 pte = mk_pte(page, vma->vm_page_prot); 2876 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2877 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2878 vmf->flags &= ~FAULT_FLAG_WRITE; 2879 ret |= VM_FAULT_WRITE; 2880 exclusive = RMAP_EXCLUSIVE; 2881 } 2882 flush_icache_page(vma, page); 2883 if (pte_swp_soft_dirty(vmf->orig_pte)) 2884 pte = pte_mksoft_dirty(pte); 2885 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2886 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2887 vmf->orig_pte = pte; 2888 2889 /* ksm created a completely new copy */ 2890 if (unlikely(page != swapcache && swapcache)) { 2891 page_add_new_anon_rmap(page, vma, vmf->address, false); 2892 mem_cgroup_commit_charge(page, memcg, false, false); 2893 lru_cache_add_active_or_unevictable(page, vma); 2894 } else { 2895 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2896 mem_cgroup_commit_charge(page, memcg, true, false); 2897 activate_page(page); 2898 } 2899 2900 swap_free(entry); 2901 if (mem_cgroup_swap_full(page) || 2902 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2903 try_to_free_swap(page); 2904 unlock_page(page); 2905 if (page != swapcache && swapcache) { 2906 /* 2907 * Hold the lock to avoid the swap entry to be reused 2908 * until we take the PT lock for the pte_same() check 2909 * (to avoid false positives from pte_same). For 2910 * further safety release the lock after the swap_free 2911 * so that the swap count won't change under a 2912 * parallel locked swapcache. 2913 */ 2914 unlock_page(swapcache); 2915 put_page(swapcache); 2916 } 2917 2918 if (vmf->flags & FAULT_FLAG_WRITE) { 2919 ret |= do_wp_page(vmf); 2920 if (ret & VM_FAULT_ERROR) 2921 ret &= VM_FAULT_ERROR; 2922 goto out; 2923 } 2924 2925 /* No need to invalidate - it was non-present before */ 2926 update_mmu_cache(vma, vmf->address, vmf->pte); 2927 unlock: 2928 pte_unmap_unlock(vmf->pte, vmf->ptl); 2929 out: 2930 return ret; 2931 out_nomap: 2932 mem_cgroup_cancel_charge(page, memcg, false); 2933 pte_unmap_unlock(vmf->pte, vmf->ptl); 2934 out_page: 2935 unlock_page(page); 2936 out_release: 2937 put_page(page); 2938 if (page != swapcache && swapcache) { 2939 unlock_page(swapcache); 2940 put_page(swapcache); 2941 } 2942 return ret; 2943 } 2944 2945 /* 2946 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2947 * but allow concurrent faults), and pte mapped but not yet locked. 2948 * We return with mmap_sem still held, but pte unmapped and unlocked. 2949 */ 2950 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2951 { 2952 struct vm_area_struct *vma = vmf->vma; 2953 struct mem_cgroup *memcg; 2954 struct page *page; 2955 vm_fault_t ret = 0; 2956 pte_t entry; 2957 2958 /* File mapping without ->vm_ops ? */ 2959 if (vma->vm_flags & VM_SHARED) 2960 return VM_FAULT_SIGBUS; 2961 2962 /* 2963 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2964 * pte_offset_map() on pmds where a huge pmd might be created 2965 * from a different thread. 2966 * 2967 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2968 * parallel threads are excluded by other means. 2969 * 2970 * Here we only have down_read(mmap_sem). 2971 */ 2972 if (pte_alloc(vma->vm_mm, vmf->pmd)) 2973 return VM_FAULT_OOM; 2974 2975 /* See the comment in pte_alloc_one_map() */ 2976 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2977 return 0; 2978 2979 /* Use the zero-page for reads */ 2980 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2981 !mm_forbids_zeropage(vma->vm_mm)) { 2982 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2983 vma->vm_page_prot)); 2984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2985 vmf->address, &vmf->ptl); 2986 if (!pte_none(*vmf->pte)) 2987 goto unlock; 2988 ret = check_stable_address_space(vma->vm_mm); 2989 if (ret) 2990 goto unlock; 2991 /* Deliver the page fault to userland, check inside PT lock */ 2992 if (userfaultfd_missing(vma)) { 2993 pte_unmap_unlock(vmf->pte, vmf->ptl); 2994 return handle_userfault(vmf, VM_UFFD_MISSING); 2995 } 2996 goto setpte; 2997 } 2998 2999 /* Allocate our own private page. */ 3000 if (unlikely(anon_vma_prepare(vma))) 3001 goto oom; 3002 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3003 if (!page) 3004 goto oom; 3005 3006 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3007 false)) 3008 goto oom_free_page; 3009 3010 /* 3011 * The memory barrier inside __SetPageUptodate makes sure that 3012 * preceeding stores to the page contents become visible before 3013 * the set_pte_at() write. 3014 */ 3015 __SetPageUptodate(page); 3016 3017 entry = mk_pte(page, vma->vm_page_prot); 3018 if (vma->vm_flags & VM_WRITE) 3019 entry = pte_mkwrite(pte_mkdirty(entry)); 3020 3021 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3022 &vmf->ptl); 3023 if (!pte_none(*vmf->pte)) 3024 goto release; 3025 3026 ret = check_stable_address_space(vma->vm_mm); 3027 if (ret) 3028 goto release; 3029 3030 /* Deliver the page fault to userland, check inside PT lock */ 3031 if (userfaultfd_missing(vma)) { 3032 pte_unmap_unlock(vmf->pte, vmf->ptl); 3033 mem_cgroup_cancel_charge(page, memcg, false); 3034 put_page(page); 3035 return handle_userfault(vmf, VM_UFFD_MISSING); 3036 } 3037 3038 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3039 page_add_new_anon_rmap(page, vma, vmf->address, false); 3040 mem_cgroup_commit_charge(page, memcg, false, false); 3041 lru_cache_add_active_or_unevictable(page, vma); 3042 setpte: 3043 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3044 3045 /* No need to invalidate - it was non-present before */ 3046 update_mmu_cache(vma, vmf->address, vmf->pte); 3047 unlock: 3048 pte_unmap_unlock(vmf->pte, vmf->ptl); 3049 return ret; 3050 release: 3051 mem_cgroup_cancel_charge(page, memcg, false); 3052 put_page(page); 3053 goto unlock; 3054 oom_free_page: 3055 put_page(page); 3056 oom: 3057 return VM_FAULT_OOM; 3058 } 3059 3060 /* 3061 * The mmap_sem must have been held on entry, and may have been 3062 * released depending on flags and vma->vm_ops->fault() return value. 3063 * See filemap_fault() and __lock_page_retry(). 3064 */ 3065 static vm_fault_t __do_fault(struct vm_fault *vmf) 3066 { 3067 struct vm_area_struct *vma = vmf->vma; 3068 vm_fault_t ret; 3069 3070 /* 3071 * Preallocate pte before we take page_lock because this might lead to 3072 * deadlocks for memcg reclaim which waits for pages under writeback: 3073 * lock_page(A) 3074 * SetPageWriteback(A) 3075 * unlock_page(A) 3076 * lock_page(B) 3077 * lock_page(B) 3078 * pte_alloc_pne 3079 * shrink_page_list 3080 * wait_on_page_writeback(A) 3081 * SetPageWriteback(B) 3082 * unlock_page(B) 3083 * # flush A, B to clear the writeback 3084 */ 3085 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3086 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3087 if (!vmf->prealloc_pte) 3088 return VM_FAULT_OOM; 3089 smp_wmb(); /* See comment in __pte_alloc() */ 3090 } 3091 3092 ret = vma->vm_ops->fault(vmf); 3093 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3094 VM_FAULT_DONE_COW))) 3095 return ret; 3096 3097 if (unlikely(PageHWPoison(vmf->page))) { 3098 if (ret & VM_FAULT_LOCKED) 3099 unlock_page(vmf->page); 3100 put_page(vmf->page); 3101 vmf->page = NULL; 3102 return VM_FAULT_HWPOISON; 3103 } 3104 3105 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3106 lock_page(vmf->page); 3107 else 3108 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3118 */ 3119 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3120 { 3121 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3122 } 3123 3124 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3125 { 3126 struct vm_area_struct *vma = vmf->vma; 3127 3128 if (!pmd_none(*vmf->pmd)) 3129 goto map_pte; 3130 if (vmf->prealloc_pte) { 3131 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3132 if (unlikely(!pmd_none(*vmf->pmd))) { 3133 spin_unlock(vmf->ptl); 3134 goto map_pte; 3135 } 3136 3137 mm_inc_nr_ptes(vma->vm_mm); 3138 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3139 spin_unlock(vmf->ptl); 3140 vmf->prealloc_pte = NULL; 3141 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3142 return VM_FAULT_OOM; 3143 } 3144 map_pte: 3145 /* 3146 * If a huge pmd materialized under us just retry later. Use 3147 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3148 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3149 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3150 * running immediately after a huge pmd fault in a different thread of 3151 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3152 * All we have to ensure is that it is a regular pmd that we can walk 3153 * with pte_offset_map() and we can do that through an atomic read in 3154 * C, which is what pmd_trans_unstable() provides. 3155 */ 3156 if (pmd_devmap_trans_unstable(vmf->pmd)) 3157 return VM_FAULT_NOPAGE; 3158 3159 /* 3160 * At this point we know that our vmf->pmd points to a page of ptes 3161 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3162 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3163 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3164 * be valid and we will re-check to make sure the vmf->pte isn't 3165 * pte_none() under vmf->ptl protection when we return to 3166 * alloc_set_pte(). 3167 */ 3168 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3169 &vmf->ptl); 3170 return 0; 3171 } 3172 3173 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3174 static void deposit_prealloc_pte(struct vm_fault *vmf) 3175 { 3176 struct vm_area_struct *vma = vmf->vma; 3177 3178 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3179 /* 3180 * We are going to consume the prealloc table, 3181 * count that as nr_ptes. 3182 */ 3183 mm_inc_nr_ptes(vma->vm_mm); 3184 vmf->prealloc_pte = NULL; 3185 } 3186 3187 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3188 { 3189 struct vm_area_struct *vma = vmf->vma; 3190 bool write = vmf->flags & FAULT_FLAG_WRITE; 3191 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3192 pmd_t entry; 3193 int i; 3194 vm_fault_t ret; 3195 3196 if (!transhuge_vma_suitable(vma, haddr)) 3197 return VM_FAULT_FALLBACK; 3198 3199 ret = VM_FAULT_FALLBACK; 3200 page = compound_head(page); 3201 3202 /* 3203 * Archs like ppc64 need additonal space to store information 3204 * related to pte entry. Use the preallocated table for that. 3205 */ 3206 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3207 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3208 if (!vmf->prealloc_pte) 3209 return VM_FAULT_OOM; 3210 smp_wmb(); /* See comment in __pte_alloc() */ 3211 } 3212 3213 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3214 if (unlikely(!pmd_none(*vmf->pmd))) 3215 goto out; 3216 3217 for (i = 0; i < HPAGE_PMD_NR; i++) 3218 flush_icache_page(vma, page + i); 3219 3220 entry = mk_huge_pmd(page, vma->vm_page_prot); 3221 if (write) 3222 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3223 3224 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3225 page_add_file_rmap(page, true); 3226 /* 3227 * deposit and withdraw with pmd lock held 3228 */ 3229 if (arch_needs_pgtable_deposit()) 3230 deposit_prealloc_pte(vmf); 3231 3232 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3233 3234 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3235 3236 /* fault is handled */ 3237 ret = 0; 3238 count_vm_event(THP_FILE_MAPPED); 3239 out: 3240 spin_unlock(vmf->ptl); 3241 return ret; 3242 } 3243 #else 3244 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3245 { 3246 BUILD_BUG(); 3247 return 0; 3248 } 3249 #endif 3250 3251 /** 3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3254 * 3255 * @vmf: fault environment 3256 * @memcg: memcg to charge page (only for private mappings) 3257 * @page: page to map 3258 * 3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3260 * return. 3261 * 3262 * Target users are page handler itself and implementations of 3263 * vm_ops->map_pages. 3264 * 3265 * Return: %0 on success, %VM_FAULT_ code in case of error. 3266 */ 3267 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3268 struct page *page) 3269 { 3270 struct vm_area_struct *vma = vmf->vma; 3271 bool write = vmf->flags & FAULT_FLAG_WRITE; 3272 pte_t entry; 3273 vm_fault_t ret; 3274 3275 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3276 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3277 /* THP on COW? */ 3278 VM_BUG_ON_PAGE(memcg, page); 3279 3280 ret = do_set_pmd(vmf, page); 3281 if (ret != VM_FAULT_FALLBACK) 3282 return ret; 3283 } 3284 3285 if (!vmf->pte) { 3286 ret = pte_alloc_one_map(vmf); 3287 if (ret) 3288 return ret; 3289 } 3290 3291 /* Re-check under ptl */ 3292 if (unlikely(!pte_none(*vmf->pte))) 3293 return VM_FAULT_NOPAGE; 3294 3295 flush_icache_page(vma, page); 3296 entry = mk_pte(page, vma->vm_page_prot); 3297 if (write) 3298 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3299 /* copy-on-write page */ 3300 if (write && !(vma->vm_flags & VM_SHARED)) { 3301 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3302 page_add_new_anon_rmap(page, vma, vmf->address, false); 3303 mem_cgroup_commit_charge(page, memcg, false, false); 3304 lru_cache_add_active_or_unevictable(page, vma); 3305 } else { 3306 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3307 page_add_file_rmap(page, false); 3308 } 3309 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3310 3311 /* no need to invalidate: a not-present page won't be cached */ 3312 update_mmu_cache(vma, vmf->address, vmf->pte); 3313 3314 return 0; 3315 } 3316 3317 3318 /** 3319 * finish_fault - finish page fault once we have prepared the page to fault 3320 * 3321 * @vmf: structure describing the fault 3322 * 3323 * This function handles all that is needed to finish a page fault once the 3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3325 * given page, adds reverse page mapping, handles memcg charges and LRU 3326 * addition. 3327 * 3328 * The function expects the page to be locked and on success it consumes a 3329 * reference of a page being mapped (for the PTE which maps it). 3330 * 3331 * Return: %0 on success, %VM_FAULT_ code in case of error. 3332 */ 3333 vm_fault_t finish_fault(struct vm_fault *vmf) 3334 { 3335 struct page *page; 3336 vm_fault_t ret = 0; 3337 3338 /* Did we COW the page? */ 3339 if ((vmf->flags & FAULT_FLAG_WRITE) && 3340 !(vmf->vma->vm_flags & VM_SHARED)) 3341 page = vmf->cow_page; 3342 else 3343 page = vmf->page; 3344 3345 /* 3346 * check even for read faults because we might have lost our CoWed 3347 * page 3348 */ 3349 if (!(vmf->vma->vm_flags & VM_SHARED)) 3350 ret = check_stable_address_space(vmf->vma->vm_mm); 3351 if (!ret) 3352 ret = alloc_set_pte(vmf, vmf->memcg, page); 3353 if (vmf->pte) 3354 pte_unmap_unlock(vmf->pte, vmf->ptl); 3355 return ret; 3356 } 3357 3358 static unsigned long fault_around_bytes __read_mostly = 3359 rounddown_pow_of_two(65536); 3360 3361 #ifdef CONFIG_DEBUG_FS 3362 static int fault_around_bytes_get(void *data, u64 *val) 3363 { 3364 *val = fault_around_bytes; 3365 return 0; 3366 } 3367 3368 /* 3369 * fault_around_bytes must be rounded down to the nearest page order as it's 3370 * what do_fault_around() expects to see. 3371 */ 3372 static int fault_around_bytes_set(void *data, u64 val) 3373 { 3374 if (val / PAGE_SIZE > PTRS_PER_PTE) 3375 return -EINVAL; 3376 if (val > PAGE_SIZE) 3377 fault_around_bytes = rounddown_pow_of_two(val); 3378 else 3379 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3380 return 0; 3381 } 3382 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3383 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3384 3385 static int __init fault_around_debugfs(void) 3386 { 3387 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3388 &fault_around_bytes_fops); 3389 return 0; 3390 } 3391 late_initcall(fault_around_debugfs); 3392 #endif 3393 3394 /* 3395 * do_fault_around() tries to map few pages around the fault address. The hope 3396 * is that the pages will be needed soon and this will lower the number of 3397 * faults to handle. 3398 * 3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3400 * not ready to be mapped: not up-to-date, locked, etc. 3401 * 3402 * This function is called with the page table lock taken. In the split ptlock 3403 * case the page table lock only protects only those entries which belong to 3404 * the page table corresponding to the fault address. 3405 * 3406 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3407 * only once. 3408 * 3409 * fault_around_bytes defines how many bytes we'll try to map. 3410 * do_fault_around() expects it to be set to a power of two less than or equal 3411 * to PTRS_PER_PTE. 3412 * 3413 * The virtual address of the area that we map is naturally aligned to 3414 * fault_around_bytes rounded down to the machine page size 3415 * (and therefore to page order). This way it's easier to guarantee 3416 * that we don't cross page table boundaries. 3417 */ 3418 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3419 { 3420 unsigned long address = vmf->address, nr_pages, mask; 3421 pgoff_t start_pgoff = vmf->pgoff; 3422 pgoff_t end_pgoff; 3423 int off; 3424 vm_fault_t ret = 0; 3425 3426 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3427 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3428 3429 vmf->address = max(address & mask, vmf->vma->vm_start); 3430 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3431 start_pgoff -= off; 3432 3433 /* 3434 * end_pgoff is either the end of the page table, the end of 3435 * the vma or nr_pages from start_pgoff, depending what is nearest. 3436 */ 3437 end_pgoff = start_pgoff - 3438 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3439 PTRS_PER_PTE - 1; 3440 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3441 start_pgoff + nr_pages - 1); 3442 3443 if (pmd_none(*vmf->pmd)) { 3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3445 if (!vmf->prealloc_pte) 3446 goto out; 3447 smp_wmb(); /* See comment in __pte_alloc() */ 3448 } 3449 3450 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3451 3452 /* Huge page is mapped? Page fault is solved */ 3453 if (pmd_trans_huge(*vmf->pmd)) { 3454 ret = VM_FAULT_NOPAGE; 3455 goto out; 3456 } 3457 3458 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3459 if (!vmf->pte) 3460 goto out; 3461 3462 /* check if the page fault is solved */ 3463 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3464 if (!pte_none(*vmf->pte)) 3465 ret = VM_FAULT_NOPAGE; 3466 pte_unmap_unlock(vmf->pte, vmf->ptl); 3467 out: 3468 vmf->address = address; 3469 vmf->pte = NULL; 3470 return ret; 3471 } 3472 3473 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3474 { 3475 struct vm_area_struct *vma = vmf->vma; 3476 vm_fault_t ret = 0; 3477 3478 /* 3479 * Let's call ->map_pages() first and use ->fault() as fallback 3480 * if page by the offset is not ready to be mapped (cold cache or 3481 * something). 3482 */ 3483 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3484 ret = do_fault_around(vmf); 3485 if (ret) 3486 return ret; 3487 } 3488 3489 ret = __do_fault(vmf); 3490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3491 return ret; 3492 3493 ret |= finish_fault(vmf); 3494 unlock_page(vmf->page); 3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3496 put_page(vmf->page); 3497 return ret; 3498 } 3499 3500 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3501 { 3502 struct vm_area_struct *vma = vmf->vma; 3503 vm_fault_t ret; 3504 3505 if (unlikely(anon_vma_prepare(vma))) 3506 return VM_FAULT_OOM; 3507 3508 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3509 if (!vmf->cow_page) 3510 return VM_FAULT_OOM; 3511 3512 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3513 &vmf->memcg, false)) { 3514 put_page(vmf->cow_page); 3515 return VM_FAULT_OOM; 3516 } 3517 3518 ret = __do_fault(vmf); 3519 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3520 goto uncharge_out; 3521 if (ret & VM_FAULT_DONE_COW) 3522 return ret; 3523 3524 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3525 __SetPageUptodate(vmf->cow_page); 3526 3527 ret |= finish_fault(vmf); 3528 unlock_page(vmf->page); 3529 put_page(vmf->page); 3530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3531 goto uncharge_out; 3532 return ret; 3533 uncharge_out: 3534 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3535 put_page(vmf->cow_page); 3536 return ret; 3537 } 3538 3539 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3540 { 3541 struct vm_area_struct *vma = vmf->vma; 3542 vm_fault_t ret, tmp; 3543 3544 ret = __do_fault(vmf); 3545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3546 return ret; 3547 3548 /* 3549 * Check if the backing address space wants to know that the page is 3550 * about to become writable 3551 */ 3552 if (vma->vm_ops->page_mkwrite) { 3553 unlock_page(vmf->page); 3554 tmp = do_page_mkwrite(vmf); 3555 if (unlikely(!tmp || 3556 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3557 put_page(vmf->page); 3558 return tmp; 3559 } 3560 } 3561 3562 ret |= finish_fault(vmf); 3563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3564 VM_FAULT_RETRY))) { 3565 unlock_page(vmf->page); 3566 put_page(vmf->page); 3567 return ret; 3568 } 3569 3570 fault_dirty_shared_page(vma, vmf->page); 3571 return ret; 3572 } 3573 3574 /* 3575 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3576 * but allow concurrent faults). 3577 * The mmap_sem may have been released depending on flags and our 3578 * return value. See filemap_fault() and __lock_page_or_retry(). 3579 * If mmap_sem is released, vma may become invalid (for example 3580 * by other thread calling munmap()). 3581 */ 3582 static vm_fault_t do_fault(struct vm_fault *vmf) 3583 { 3584 struct vm_area_struct *vma = vmf->vma; 3585 struct mm_struct *vm_mm = vma->vm_mm; 3586 vm_fault_t ret; 3587 3588 /* 3589 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3590 */ 3591 if (!vma->vm_ops->fault) { 3592 /* 3593 * If we find a migration pmd entry or a none pmd entry, which 3594 * should never happen, return SIGBUS 3595 */ 3596 if (unlikely(!pmd_present(*vmf->pmd))) 3597 ret = VM_FAULT_SIGBUS; 3598 else { 3599 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3600 vmf->pmd, 3601 vmf->address, 3602 &vmf->ptl); 3603 /* 3604 * Make sure this is not a temporary clearing of pte 3605 * by holding ptl and checking again. A R/M/W update 3606 * of pte involves: take ptl, clearing the pte so that 3607 * we don't have concurrent modification by hardware 3608 * followed by an update. 3609 */ 3610 if (unlikely(pte_none(*vmf->pte))) 3611 ret = VM_FAULT_SIGBUS; 3612 else 3613 ret = VM_FAULT_NOPAGE; 3614 3615 pte_unmap_unlock(vmf->pte, vmf->ptl); 3616 } 3617 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3618 ret = do_read_fault(vmf); 3619 else if (!(vma->vm_flags & VM_SHARED)) 3620 ret = do_cow_fault(vmf); 3621 else 3622 ret = do_shared_fault(vmf); 3623 3624 /* preallocated pagetable is unused: free it */ 3625 if (vmf->prealloc_pte) { 3626 pte_free(vm_mm, vmf->prealloc_pte); 3627 vmf->prealloc_pte = NULL; 3628 } 3629 return ret; 3630 } 3631 3632 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3633 unsigned long addr, int page_nid, 3634 int *flags) 3635 { 3636 get_page(page); 3637 3638 count_vm_numa_event(NUMA_HINT_FAULTS); 3639 if (page_nid == numa_node_id()) { 3640 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3641 *flags |= TNF_FAULT_LOCAL; 3642 } 3643 3644 return mpol_misplaced(page, vma, addr); 3645 } 3646 3647 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3648 { 3649 struct vm_area_struct *vma = vmf->vma; 3650 struct page *page = NULL; 3651 int page_nid = NUMA_NO_NODE; 3652 int last_cpupid; 3653 int target_nid; 3654 bool migrated = false; 3655 pte_t pte, old_pte; 3656 bool was_writable = pte_savedwrite(vmf->orig_pte); 3657 int flags = 0; 3658 3659 /* 3660 * The "pte" at this point cannot be used safely without 3661 * validation through pte_unmap_same(). It's of NUMA type but 3662 * the pfn may be screwed if the read is non atomic. 3663 */ 3664 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3665 spin_lock(vmf->ptl); 3666 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3667 pte_unmap_unlock(vmf->pte, vmf->ptl); 3668 goto out; 3669 } 3670 3671 /* 3672 * Make it present again, Depending on how arch implementes non 3673 * accessible ptes, some can allow access by kernel mode. 3674 */ 3675 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3676 pte = pte_modify(old_pte, vma->vm_page_prot); 3677 pte = pte_mkyoung(pte); 3678 if (was_writable) 3679 pte = pte_mkwrite(pte); 3680 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3681 update_mmu_cache(vma, vmf->address, vmf->pte); 3682 3683 page = vm_normal_page(vma, vmf->address, pte); 3684 if (!page) { 3685 pte_unmap_unlock(vmf->pte, vmf->ptl); 3686 return 0; 3687 } 3688 3689 /* TODO: handle PTE-mapped THP */ 3690 if (PageCompound(page)) { 3691 pte_unmap_unlock(vmf->pte, vmf->ptl); 3692 return 0; 3693 } 3694 3695 /* 3696 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3697 * much anyway since they can be in shared cache state. This misses 3698 * the case where a mapping is writable but the process never writes 3699 * to it but pte_write gets cleared during protection updates and 3700 * pte_dirty has unpredictable behaviour between PTE scan updates, 3701 * background writeback, dirty balancing and application behaviour. 3702 */ 3703 if (!pte_write(pte)) 3704 flags |= TNF_NO_GROUP; 3705 3706 /* 3707 * Flag if the page is shared between multiple address spaces. This 3708 * is later used when determining whether to group tasks together 3709 */ 3710 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3711 flags |= TNF_SHARED; 3712 3713 last_cpupid = page_cpupid_last(page); 3714 page_nid = page_to_nid(page); 3715 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3716 &flags); 3717 pte_unmap_unlock(vmf->pte, vmf->ptl); 3718 if (target_nid == NUMA_NO_NODE) { 3719 put_page(page); 3720 goto out; 3721 } 3722 3723 /* Migrate to the requested node */ 3724 migrated = migrate_misplaced_page(page, vma, target_nid); 3725 if (migrated) { 3726 page_nid = target_nid; 3727 flags |= TNF_MIGRATED; 3728 } else 3729 flags |= TNF_MIGRATE_FAIL; 3730 3731 out: 3732 if (page_nid != NUMA_NO_NODE) 3733 task_numa_fault(last_cpupid, page_nid, 1, flags); 3734 return 0; 3735 } 3736 3737 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3738 { 3739 if (vma_is_anonymous(vmf->vma)) 3740 return do_huge_pmd_anonymous_page(vmf); 3741 if (vmf->vma->vm_ops->huge_fault) 3742 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3743 return VM_FAULT_FALLBACK; 3744 } 3745 3746 /* `inline' is required to avoid gcc 4.1.2 build error */ 3747 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3748 { 3749 if (vma_is_anonymous(vmf->vma)) 3750 return do_huge_pmd_wp_page(vmf, orig_pmd); 3751 if (vmf->vma->vm_ops->huge_fault) 3752 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3753 3754 /* COW handled on pte level: split pmd */ 3755 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3756 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3757 3758 return VM_FAULT_FALLBACK; 3759 } 3760 3761 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3762 { 3763 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3764 } 3765 3766 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3767 { 3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3769 /* No support for anonymous transparent PUD pages yet */ 3770 if (vma_is_anonymous(vmf->vma)) 3771 return VM_FAULT_FALLBACK; 3772 if (vmf->vma->vm_ops->huge_fault) 3773 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3775 return VM_FAULT_FALLBACK; 3776 } 3777 3778 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3779 { 3780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3781 /* No support for anonymous transparent PUD pages yet */ 3782 if (vma_is_anonymous(vmf->vma)) 3783 return VM_FAULT_FALLBACK; 3784 if (vmf->vma->vm_ops->huge_fault) 3785 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3787 return VM_FAULT_FALLBACK; 3788 } 3789 3790 /* 3791 * These routines also need to handle stuff like marking pages dirty 3792 * and/or accessed for architectures that don't do it in hardware (most 3793 * RISC architectures). The early dirtying is also good on the i386. 3794 * 3795 * There is also a hook called "update_mmu_cache()" that architectures 3796 * with external mmu caches can use to update those (ie the Sparc or 3797 * PowerPC hashed page tables that act as extended TLBs). 3798 * 3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3800 * concurrent faults). 3801 * 3802 * The mmap_sem may have been released depending on flags and our return value. 3803 * See filemap_fault() and __lock_page_or_retry(). 3804 */ 3805 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3806 { 3807 pte_t entry; 3808 3809 if (unlikely(pmd_none(*vmf->pmd))) { 3810 /* 3811 * Leave __pte_alloc() until later: because vm_ops->fault may 3812 * want to allocate huge page, and if we expose page table 3813 * for an instant, it will be difficult to retract from 3814 * concurrent faults and from rmap lookups. 3815 */ 3816 vmf->pte = NULL; 3817 } else { 3818 /* See comment in pte_alloc_one_map() */ 3819 if (pmd_devmap_trans_unstable(vmf->pmd)) 3820 return 0; 3821 /* 3822 * A regular pmd is established and it can't morph into a huge 3823 * pmd from under us anymore at this point because we hold the 3824 * mmap_sem read mode and khugepaged takes it in write mode. 3825 * So now it's safe to run pte_offset_map(). 3826 */ 3827 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3828 vmf->orig_pte = *vmf->pte; 3829 3830 /* 3831 * some architectures can have larger ptes than wordsize, 3832 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3833 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3834 * accesses. The code below just needs a consistent view 3835 * for the ifs and we later double check anyway with the 3836 * ptl lock held. So here a barrier will do. 3837 */ 3838 barrier(); 3839 if (pte_none(vmf->orig_pte)) { 3840 pte_unmap(vmf->pte); 3841 vmf->pte = NULL; 3842 } 3843 } 3844 3845 if (!vmf->pte) { 3846 if (vma_is_anonymous(vmf->vma)) 3847 return do_anonymous_page(vmf); 3848 else 3849 return do_fault(vmf); 3850 } 3851 3852 if (!pte_present(vmf->orig_pte)) 3853 return do_swap_page(vmf); 3854 3855 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3856 return do_numa_page(vmf); 3857 3858 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3859 spin_lock(vmf->ptl); 3860 entry = vmf->orig_pte; 3861 if (unlikely(!pte_same(*vmf->pte, entry))) 3862 goto unlock; 3863 if (vmf->flags & FAULT_FLAG_WRITE) { 3864 if (!pte_write(entry)) 3865 return do_wp_page(vmf); 3866 entry = pte_mkdirty(entry); 3867 } 3868 entry = pte_mkyoung(entry); 3869 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3870 vmf->flags & FAULT_FLAG_WRITE)) { 3871 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3872 } else { 3873 /* 3874 * This is needed only for protection faults but the arch code 3875 * is not yet telling us if this is a protection fault or not. 3876 * This still avoids useless tlb flushes for .text page faults 3877 * with threads. 3878 */ 3879 if (vmf->flags & FAULT_FLAG_WRITE) 3880 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3881 } 3882 unlock: 3883 pte_unmap_unlock(vmf->pte, vmf->ptl); 3884 return 0; 3885 } 3886 3887 /* 3888 * By the time we get here, we already hold the mm semaphore 3889 * 3890 * The mmap_sem may have been released depending on flags and our 3891 * return value. See filemap_fault() and __lock_page_or_retry(). 3892 */ 3893 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3894 unsigned long address, unsigned int flags) 3895 { 3896 struct vm_fault vmf = { 3897 .vma = vma, 3898 .address = address & PAGE_MASK, 3899 .flags = flags, 3900 .pgoff = linear_page_index(vma, address), 3901 .gfp_mask = __get_fault_gfp_mask(vma), 3902 }; 3903 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3904 struct mm_struct *mm = vma->vm_mm; 3905 pgd_t *pgd; 3906 p4d_t *p4d; 3907 vm_fault_t ret; 3908 3909 pgd = pgd_offset(mm, address); 3910 p4d = p4d_alloc(mm, pgd, address); 3911 if (!p4d) 3912 return VM_FAULT_OOM; 3913 3914 vmf.pud = pud_alloc(mm, p4d, address); 3915 if (!vmf.pud) 3916 return VM_FAULT_OOM; 3917 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3918 ret = create_huge_pud(&vmf); 3919 if (!(ret & VM_FAULT_FALLBACK)) 3920 return ret; 3921 } else { 3922 pud_t orig_pud = *vmf.pud; 3923 3924 barrier(); 3925 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3926 3927 /* NUMA case for anonymous PUDs would go here */ 3928 3929 if (dirty && !pud_write(orig_pud)) { 3930 ret = wp_huge_pud(&vmf, orig_pud); 3931 if (!(ret & VM_FAULT_FALLBACK)) 3932 return ret; 3933 } else { 3934 huge_pud_set_accessed(&vmf, orig_pud); 3935 return 0; 3936 } 3937 } 3938 } 3939 3940 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3941 if (!vmf.pmd) 3942 return VM_FAULT_OOM; 3943 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3944 ret = create_huge_pmd(&vmf); 3945 if (!(ret & VM_FAULT_FALLBACK)) 3946 return ret; 3947 } else { 3948 pmd_t orig_pmd = *vmf.pmd; 3949 3950 barrier(); 3951 if (unlikely(is_swap_pmd(orig_pmd))) { 3952 VM_BUG_ON(thp_migration_supported() && 3953 !is_pmd_migration_entry(orig_pmd)); 3954 if (is_pmd_migration_entry(orig_pmd)) 3955 pmd_migration_entry_wait(mm, vmf.pmd); 3956 return 0; 3957 } 3958 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3959 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3960 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3961 3962 if (dirty && !pmd_write(orig_pmd)) { 3963 ret = wp_huge_pmd(&vmf, orig_pmd); 3964 if (!(ret & VM_FAULT_FALLBACK)) 3965 return ret; 3966 } else { 3967 huge_pmd_set_accessed(&vmf, orig_pmd); 3968 return 0; 3969 } 3970 } 3971 } 3972 3973 return handle_pte_fault(&vmf); 3974 } 3975 3976 /* 3977 * By the time we get here, we already hold the mm semaphore 3978 * 3979 * The mmap_sem may have been released depending on flags and our 3980 * return value. See filemap_fault() and __lock_page_or_retry(). 3981 */ 3982 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3983 unsigned int flags) 3984 { 3985 vm_fault_t ret; 3986 3987 __set_current_state(TASK_RUNNING); 3988 3989 count_vm_event(PGFAULT); 3990 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3991 3992 /* do counter updates before entering really critical section. */ 3993 check_sync_rss_stat(current); 3994 3995 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3996 flags & FAULT_FLAG_INSTRUCTION, 3997 flags & FAULT_FLAG_REMOTE)) 3998 return VM_FAULT_SIGSEGV; 3999 4000 /* 4001 * Enable the memcg OOM handling for faults triggered in user 4002 * space. Kernel faults are handled more gracefully. 4003 */ 4004 if (flags & FAULT_FLAG_USER) 4005 mem_cgroup_enter_user_fault(); 4006 4007 if (unlikely(is_vm_hugetlb_page(vma))) 4008 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4009 else 4010 ret = __handle_mm_fault(vma, address, flags); 4011 4012 if (flags & FAULT_FLAG_USER) { 4013 mem_cgroup_exit_user_fault(); 4014 /* 4015 * The task may have entered a memcg OOM situation but 4016 * if the allocation error was handled gracefully (no 4017 * VM_FAULT_OOM), there is no need to kill anything. 4018 * Just clean up the OOM state peacefully. 4019 */ 4020 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4021 mem_cgroup_oom_synchronize(false); 4022 } 4023 4024 return ret; 4025 } 4026 EXPORT_SYMBOL_GPL(handle_mm_fault); 4027 4028 #ifndef __PAGETABLE_P4D_FOLDED 4029 /* 4030 * Allocate p4d page table. 4031 * We've already handled the fast-path in-line. 4032 */ 4033 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4034 { 4035 p4d_t *new = p4d_alloc_one(mm, address); 4036 if (!new) 4037 return -ENOMEM; 4038 4039 smp_wmb(); /* See comment in __pte_alloc */ 4040 4041 spin_lock(&mm->page_table_lock); 4042 if (pgd_present(*pgd)) /* Another has populated it */ 4043 p4d_free(mm, new); 4044 else 4045 pgd_populate(mm, pgd, new); 4046 spin_unlock(&mm->page_table_lock); 4047 return 0; 4048 } 4049 #endif /* __PAGETABLE_P4D_FOLDED */ 4050 4051 #ifndef __PAGETABLE_PUD_FOLDED 4052 /* 4053 * Allocate page upper directory. 4054 * We've already handled the fast-path in-line. 4055 */ 4056 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4057 { 4058 pud_t *new = pud_alloc_one(mm, address); 4059 if (!new) 4060 return -ENOMEM; 4061 4062 smp_wmb(); /* See comment in __pte_alloc */ 4063 4064 spin_lock(&mm->page_table_lock); 4065 #ifndef __ARCH_HAS_5LEVEL_HACK 4066 if (!p4d_present(*p4d)) { 4067 mm_inc_nr_puds(mm); 4068 p4d_populate(mm, p4d, new); 4069 } else /* Another has populated it */ 4070 pud_free(mm, new); 4071 #else 4072 if (!pgd_present(*p4d)) { 4073 mm_inc_nr_puds(mm); 4074 pgd_populate(mm, p4d, new); 4075 } else /* Another has populated it */ 4076 pud_free(mm, new); 4077 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4078 spin_unlock(&mm->page_table_lock); 4079 return 0; 4080 } 4081 #endif /* __PAGETABLE_PUD_FOLDED */ 4082 4083 #ifndef __PAGETABLE_PMD_FOLDED 4084 /* 4085 * Allocate page middle directory. 4086 * We've already handled the fast-path in-line. 4087 */ 4088 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4089 { 4090 spinlock_t *ptl; 4091 pmd_t *new = pmd_alloc_one(mm, address); 4092 if (!new) 4093 return -ENOMEM; 4094 4095 smp_wmb(); /* See comment in __pte_alloc */ 4096 4097 ptl = pud_lock(mm, pud); 4098 #ifndef __ARCH_HAS_4LEVEL_HACK 4099 if (!pud_present(*pud)) { 4100 mm_inc_nr_pmds(mm); 4101 pud_populate(mm, pud, new); 4102 } else /* Another has populated it */ 4103 pmd_free(mm, new); 4104 #else 4105 if (!pgd_present(*pud)) { 4106 mm_inc_nr_pmds(mm); 4107 pgd_populate(mm, pud, new); 4108 } else /* Another has populated it */ 4109 pmd_free(mm, new); 4110 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4111 spin_unlock(ptl); 4112 return 0; 4113 } 4114 #endif /* __PAGETABLE_PMD_FOLDED */ 4115 4116 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4117 struct mmu_notifier_range *range, 4118 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4119 { 4120 pgd_t *pgd; 4121 p4d_t *p4d; 4122 pud_t *pud; 4123 pmd_t *pmd; 4124 pte_t *ptep; 4125 4126 pgd = pgd_offset(mm, address); 4127 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4128 goto out; 4129 4130 p4d = p4d_offset(pgd, address); 4131 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4132 goto out; 4133 4134 pud = pud_offset(p4d, address); 4135 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4136 goto out; 4137 4138 pmd = pmd_offset(pud, address); 4139 VM_BUG_ON(pmd_trans_huge(*pmd)); 4140 4141 if (pmd_huge(*pmd)) { 4142 if (!pmdpp) 4143 goto out; 4144 4145 if (range) { 4146 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4147 NULL, mm, address & PMD_MASK, 4148 (address & PMD_MASK) + PMD_SIZE); 4149 mmu_notifier_invalidate_range_start(range); 4150 } 4151 *ptlp = pmd_lock(mm, pmd); 4152 if (pmd_huge(*pmd)) { 4153 *pmdpp = pmd; 4154 return 0; 4155 } 4156 spin_unlock(*ptlp); 4157 if (range) 4158 mmu_notifier_invalidate_range_end(range); 4159 } 4160 4161 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4162 goto out; 4163 4164 if (range) { 4165 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4166 address & PAGE_MASK, 4167 (address & PAGE_MASK) + PAGE_SIZE); 4168 mmu_notifier_invalidate_range_start(range); 4169 } 4170 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4171 if (!pte_present(*ptep)) 4172 goto unlock; 4173 *ptepp = ptep; 4174 return 0; 4175 unlock: 4176 pte_unmap_unlock(ptep, *ptlp); 4177 if (range) 4178 mmu_notifier_invalidate_range_end(range); 4179 out: 4180 return -EINVAL; 4181 } 4182 4183 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4184 pte_t **ptepp, spinlock_t **ptlp) 4185 { 4186 int res; 4187 4188 /* (void) is needed to make gcc happy */ 4189 (void) __cond_lock(*ptlp, 4190 !(res = __follow_pte_pmd(mm, address, NULL, 4191 ptepp, NULL, ptlp))); 4192 return res; 4193 } 4194 4195 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4196 struct mmu_notifier_range *range, 4197 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4198 { 4199 int res; 4200 4201 /* (void) is needed to make gcc happy */ 4202 (void) __cond_lock(*ptlp, 4203 !(res = __follow_pte_pmd(mm, address, range, 4204 ptepp, pmdpp, ptlp))); 4205 return res; 4206 } 4207 EXPORT_SYMBOL(follow_pte_pmd); 4208 4209 /** 4210 * follow_pfn - look up PFN at a user virtual address 4211 * @vma: memory mapping 4212 * @address: user virtual address 4213 * @pfn: location to store found PFN 4214 * 4215 * Only IO mappings and raw PFN mappings are allowed. 4216 * 4217 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4218 */ 4219 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4220 unsigned long *pfn) 4221 { 4222 int ret = -EINVAL; 4223 spinlock_t *ptl; 4224 pte_t *ptep; 4225 4226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4227 return ret; 4228 4229 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4230 if (ret) 4231 return ret; 4232 *pfn = pte_pfn(*ptep); 4233 pte_unmap_unlock(ptep, ptl); 4234 return 0; 4235 } 4236 EXPORT_SYMBOL(follow_pfn); 4237 4238 #ifdef CONFIG_HAVE_IOREMAP_PROT 4239 int follow_phys(struct vm_area_struct *vma, 4240 unsigned long address, unsigned int flags, 4241 unsigned long *prot, resource_size_t *phys) 4242 { 4243 int ret = -EINVAL; 4244 pte_t *ptep, pte; 4245 spinlock_t *ptl; 4246 4247 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4248 goto out; 4249 4250 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4251 goto out; 4252 pte = *ptep; 4253 4254 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4255 goto unlock; 4256 4257 *prot = pgprot_val(pte_pgprot(pte)); 4258 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4259 4260 ret = 0; 4261 unlock: 4262 pte_unmap_unlock(ptep, ptl); 4263 out: 4264 return ret; 4265 } 4266 4267 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4268 void *buf, int len, int write) 4269 { 4270 resource_size_t phys_addr; 4271 unsigned long prot = 0; 4272 void __iomem *maddr; 4273 int offset = addr & (PAGE_SIZE-1); 4274 4275 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4276 return -EINVAL; 4277 4278 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4279 if (!maddr) 4280 return -ENOMEM; 4281 4282 if (write) 4283 memcpy_toio(maddr + offset, buf, len); 4284 else 4285 memcpy_fromio(buf, maddr + offset, len); 4286 iounmap(maddr); 4287 4288 return len; 4289 } 4290 EXPORT_SYMBOL_GPL(generic_access_phys); 4291 #endif 4292 4293 /* 4294 * Access another process' address space as given in mm. If non-NULL, use the 4295 * given task for page fault accounting. 4296 */ 4297 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4298 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4299 { 4300 struct vm_area_struct *vma; 4301 void *old_buf = buf; 4302 int write = gup_flags & FOLL_WRITE; 4303 4304 if (down_read_killable(&mm->mmap_sem)) 4305 return 0; 4306 4307 /* ignore errors, just check how much was successfully transferred */ 4308 while (len) { 4309 int bytes, ret, offset; 4310 void *maddr; 4311 struct page *page = NULL; 4312 4313 ret = get_user_pages_remote(tsk, mm, addr, 1, 4314 gup_flags, &page, &vma, NULL); 4315 if (ret <= 0) { 4316 #ifndef CONFIG_HAVE_IOREMAP_PROT 4317 break; 4318 #else 4319 /* 4320 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4321 * we can access using slightly different code. 4322 */ 4323 vma = find_vma(mm, addr); 4324 if (!vma || vma->vm_start > addr) 4325 break; 4326 if (vma->vm_ops && vma->vm_ops->access) 4327 ret = vma->vm_ops->access(vma, addr, buf, 4328 len, write); 4329 if (ret <= 0) 4330 break; 4331 bytes = ret; 4332 #endif 4333 } else { 4334 bytes = len; 4335 offset = addr & (PAGE_SIZE-1); 4336 if (bytes > PAGE_SIZE-offset) 4337 bytes = PAGE_SIZE-offset; 4338 4339 maddr = kmap(page); 4340 if (write) { 4341 copy_to_user_page(vma, page, addr, 4342 maddr + offset, buf, bytes); 4343 set_page_dirty_lock(page); 4344 } else { 4345 copy_from_user_page(vma, page, addr, 4346 buf, maddr + offset, bytes); 4347 } 4348 kunmap(page); 4349 put_page(page); 4350 } 4351 len -= bytes; 4352 buf += bytes; 4353 addr += bytes; 4354 } 4355 up_read(&mm->mmap_sem); 4356 4357 return buf - old_buf; 4358 } 4359 4360 /** 4361 * access_remote_vm - access another process' address space 4362 * @mm: the mm_struct of the target address space 4363 * @addr: start address to access 4364 * @buf: source or destination buffer 4365 * @len: number of bytes to transfer 4366 * @gup_flags: flags modifying lookup behaviour 4367 * 4368 * The caller must hold a reference on @mm. 4369 * 4370 * Return: number of bytes copied from source to destination. 4371 */ 4372 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4373 void *buf, int len, unsigned int gup_flags) 4374 { 4375 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4376 } 4377 4378 /* 4379 * Access another process' address space. 4380 * Source/target buffer must be kernel space, 4381 * Do not walk the page table directly, use get_user_pages 4382 */ 4383 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4384 void *buf, int len, unsigned int gup_flags) 4385 { 4386 struct mm_struct *mm; 4387 int ret; 4388 4389 mm = get_task_mm(tsk); 4390 if (!mm) 4391 return 0; 4392 4393 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4394 4395 mmput(mm); 4396 4397 return ret; 4398 } 4399 EXPORT_SYMBOL_GPL(access_process_vm); 4400 4401 /* 4402 * Print the name of a VMA. 4403 */ 4404 void print_vma_addr(char *prefix, unsigned long ip) 4405 { 4406 struct mm_struct *mm = current->mm; 4407 struct vm_area_struct *vma; 4408 4409 /* 4410 * we might be running from an atomic context so we cannot sleep 4411 */ 4412 if (!down_read_trylock(&mm->mmap_sem)) 4413 return; 4414 4415 vma = find_vma(mm, ip); 4416 if (vma && vma->vm_file) { 4417 struct file *f = vma->vm_file; 4418 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4419 if (buf) { 4420 char *p; 4421 4422 p = file_path(f, buf, PAGE_SIZE); 4423 if (IS_ERR(p)) 4424 p = "?"; 4425 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4426 vma->vm_start, 4427 vma->vm_end - vma->vm_start); 4428 free_page((unsigned long)buf); 4429 } 4430 } 4431 up_read(&mm->mmap_sem); 4432 } 4433 4434 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4435 void __might_fault(const char *file, int line) 4436 { 4437 /* 4438 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4439 * holding the mmap_sem, this is safe because kernel memory doesn't 4440 * get paged out, therefore we'll never actually fault, and the 4441 * below annotations will generate false positives. 4442 */ 4443 if (uaccess_kernel()) 4444 return; 4445 if (pagefault_disabled()) 4446 return; 4447 __might_sleep(file, line, 0); 4448 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4449 if (current->mm) 4450 might_lock_read(¤t->mm->mmap_sem); 4451 #endif 4452 } 4453 EXPORT_SYMBOL(__might_fault); 4454 #endif 4455 4456 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4457 /* 4458 * Process all subpages of the specified huge page with the specified 4459 * operation. The target subpage will be processed last to keep its 4460 * cache lines hot. 4461 */ 4462 static inline void process_huge_page( 4463 unsigned long addr_hint, unsigned int pages_per_huge_page, 4464 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4465 void *arg) 4466 { 4467 int i, n, base, l; 4468 unsigned long addr = addr_hint & 4469 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4470 4471 /* Process target subpage last to keep its cache lines hot */ 4472 might_sleep(); 4473 n = (addr_hint - addr) / PAGE_SIZE; 4474 if (2 * n <= pages_per_huge_page) { 4475 /* If target subpage in first half of huge page */ 4476 base = 0; 4477 l = n; 4478 /* Process subpages at the end of huge page */ 4479 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4480 cond_resched(); 4481 process_subpage(addr + i * PAGE_SIZE, i, arg); 4482 } 4483 } else { 4484 /* If target subpage in second half of huge page */ 4485 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4486 l = pages_per_huge_page - n; 4487 /* Process subpages at the begin of huge page */ 4488 for (i = 0; i < base; i++) { 4489 cond_resched(); 4490 process_subpage(addr + i * PAGE_SIZE, i, arg); 4491 } 4492 } 4493 /* 4494 * Process remaining subpages in left-right-left-right pattern 4495 * towards the target subpage 4496 */ 4497 for (i = 0; i < l; i++) { 4498 int left_idx = base + i; 4499 int right_idx = base + 2 * l - 1 - i; 4500 4501 cond_resched(); 4502 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4503 cond_resched(); 4504 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4505 } 4506 } 4507 4508 static void clear_gigantic_page(struct page *page, 4509 unsigned long addr, 4510 unsigned int pages_per_huge_page) 4511 { 4512 int i; 4513 struct page *p = page; 4514 4515 might_sleep(); 4516 for (i = 0; i < pages_per_huge_page; 4517 i++, p = mem_map_next(p, page, i)) { 4518 cond_resched(); 4519 clear_user_highpage(p, addr + i * PAGE_SIZE); 4520 } 4521 } 4522 4523 static void clear_subpage(unsigned long addr, int idx, void *arg) 4524 { 4525 struct page *page = arg; 4526 4527 clear_user_highpage(page + idx, addr); 4528 } 4529 4530 void clear_huge_page(struct page *page, 4531 unsigned long addr_hint, unsigned int pages_per_huge_page) 4532 { 4533 unsigned long addr = addr_hint & 4534 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4535 4536 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4537 clear_gigantic_page(page, addr, pages_per_huge_page); 4538 return; 4539 } 4540 4541 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4542 } 4543 4544 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4545 unsigned long addr, 4546 struct vm_area_struct *vma, 4547 unsigned int pages_per_huge_page) 4548 { 4549 int i; 4550 struct page *dst_base = dst; 4551 struct page *src_base = src; 4552 4553 for (i = 0; i < pages_per_huge_page; ) { 4554 cond_resched(); 4555 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4556 4557 i++; 4558 dst = mem_map_next(dst, dst_base, i); 4559 src = mem_map_next(src, src_base, i); 4560 } 4561 } 4562 4563 struct copy_subpage_arg { 4564 struct page *dst; 4565 struct page *src; 4566 struct vm_area_struct *vma; 4567 }; 4568 4569 static void copy_subpage(unsigned long addr, int idx, void *arg) 4570 { 4571 struct copy_subpage_arg *copy_arg = arg; 4572 4573 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4574 addr, copy_arg->vma); 4575 } 4576 4577 void copy_user_huge_page(struct page *dst, struct page *src, 4578 unsigned long addr_hint, struct vm_area_struct *vma, 4579 unsigned int pages_per_huge_page) 4580 { 4581 unsigned long addr = addr_hint & 4582 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4583 struct copy_subpage_arg arg = { 4584 .dst = dst, 4585 .src = src, 4586 .vma = vma, 4587 }; 4588 4589 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4590 copy_user_gigantic_page(dst, src, addr, vma, 4591 pages_per_huge_page); 4592 return; 4593 } 4594 4595 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4596 } 4597 4598 long copy_huge_page_from_user(struct page *dst_page, 4599 const void __user *usr_src, 4600 unsigned int pages_per_huge_page, 4601 bool allow_pagefault) 4602 { 4603 void *src = (void *)usr_src; 4604 void *page_kaddr; 4605 unsigned long i, rc = 0; 4606 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4607 4608 for (i = 0; i < pages_per_huge_page; i++) { 4609 if (allow_pagefault) 4610 page_kaddr = kmap(dst_page + i); 4611 else 4612 page_kaddr = kmap_atomic(dst_page + i); 4613 rc = copy_from_user(page_kaddr, 4614 (const void __user *)(src + i * PAGE_SIZE), 4615 PAGE_SIZE); 4616 if (allow_pagefault) 4617 kunmap(dst_page + i); 4618 else 4619 kunmap_atomic(page_kaddr); 4620 4621 ret_val -= (PAGE_SIZE - rc); 4622 if (rc) 4623 break; 4624 4625 cond_resched(); 4626 } 4627 return ret_val; 4628 } 4629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4630 4631 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4632 4633 static struct kmem_cache *page_ptl_cachep; 4634 4635 void __init ptlock_cache_init(void) 4636 { 4637 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4638 SLAB_PANIC, NULL); 4639 } 4640 4641 bool ptlock_alloc(struct page *page) 4642 { 4643 spinlock_t *ptl; 4644 4645 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4646 if (!ptl) 4647 return false; 4648 page->ptl = ptl; 4649 return true; 4650 } 4651 4652 void ptlock_free(struct page *page) 4653 { 4654 kmem_cache_free(page_ptl_cachep, page->ptl); 4655 } 4656 #endif 4657