1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 do { 368 unsigned long addr = vma->vm_start; 369 struct vm_area_struct *next; 370 371 /* 372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 373 * be 0. This will underflow and is okay. 374 */ 375 next = mas_find(mas, ceiling - 1); 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 if (mm_wr_locked) 382 vma_start_write(vma); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 386 if (is_vm_hugetlb_page(vma)) { 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 388 floor, next ? next->vm_start : ceiling); 389 } else { 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 } 402 free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } 405 vma = next; 406 } while (vma); 407 } 408 409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 410 { 411 spinlock_t *ptl = pmd_lock(mm, pmd); 412 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 414 mm_inc_nr_ptes(mm); 415 /* 416 * Ensure all pte setup (eg. pte page lock and page clearing) are 417 * visible before the pte is made visible to other CPUs by being 418 * put into page tables. 419 * 420 * The other side of the story is the pointer chasing in the page 421 * table walking code (when walking the page table without locking; 422 * ie. most of the time). Fortunately, these data accesses consist 423 * of a chain of data-dependent loads, meaning most CPUs (alpha 424 * being the notable exception) will already guarantee loads are 425 * seen in-order. See the alpha page table accessors for the 426 * smp_rmb() barriers in page table walking code. 427 */ 428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 429 pmd_populate(mm, pmd, *pte); 430 *pte = NULL; 431 } 432 spin_unlock(ptl); 433 } 434 435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 436 { 437 pgtable_t new = pte_alloc_one(mm); 438 if (!new) 439 return -ENOMEM; 440 441 pmd_install(mm, pmd, &new); 442 if (new) 443 pte_free(mm, new); 444 return 0; 445 } 446 447 int __pte_alloc_kernel(pmd_t *pmd) 448 { 449 pte_t *new = pte_alloc_one_kernel(&init_mm); 450 if (!new) 451 return -ENOMEM; 452 453 spin_lock(&init_mm.page_table_lock); 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 455 smp_wmb(); /* See comment in pmd_install() */ 456 pmd_populate_kernel(&init_mm, pmd, new); 457 new = NULL; 458 } 459 spin_unlock(&init_mm.page_table_lock); 460 if (new) 461 pte_free_kernel(&init_mm, new); 462 return 0; 463 } 464 465 static inline void init_rss_vec(int *rss) 466 { 467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 468 } 469 470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 471 { 472 int i; 473 474 if (current->mm == mm) 475 sync_mm_rss(mm); 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The disadvantage is that pages are refcounted 576 * (which can be slower and simply not an option for some PFNMAP users). The 577 * advantage is that we don't have to follow the strict linearity rule of 578 * PFNMAP mappings in order to support COWable mappings. 579 * 580 */ 581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 582 pte_t pte) 583 { 584 unsigned long pfn = pte_pfn(pte); 585 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 587 if (likely(!pte_special(pte))) 588 goto check_pfn; 589 if (vma->vm_ops && vma->vm_ops->find_special_page) 590 return vma->vm_ops->find_special_page(vma, addr); 591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 592 return NULL; 593 if (is_zero_pfn(pfn)) 594 return NULL; 595 if (pte_devmap(pte)) 596 /* 597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 598 * and will have refcounts incremented on their struct pages 599 * when they are inserted into PTEs, thus they are safe to 600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 601 * do not have refcounts. Example of legacy ZONE_DEVICE is 602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 603 */ 604 return NULL; 605 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 630 check_pfn: 631 if (unlikely(pfn > highest_memmap_pfn)) { 632 print_bad_pte(vma, addr, pte, NULL); 633 return NULL; 634 } 635 636 /* 637 * NOTE! We still have PageReserved() pages in the page tables. 638 * eg. VDSO mappings can cause them to exist. 639 */ 640 out: 641 return pfn_to_page(pfn); 642 } 643 644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte) 646 { 647 struct page *page = vm_normal_page(vma, addr, pte); 648 649 if (page) 650 return page_folio(page); 651 return NULL; 652 } 653 654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t pmd) 657 { 658 unsigned long pfn = pmd_pfn(pmd); 659 660 /* 661 * There is no pmd_special() but there may be special pmds, e.g. 662 * in a direct-access (dax) mapping, so let's just replicate the 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 664 */ 665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 666 if (vma->vm_flags & VM_MIXEDMAP) { 667 if (!pfn_valid(pfn)) 668 return NULL; 669 goto out; 670 } else { 671 unsigned long off; 672 off = (addr - vma->vm_start) >> PAGE_SHIFT; 673 if (pfn == vma->vm_pgoff + off) 674 return NULL; 675 if (!is_cow_mapping(vma->vm_flags)) 676 return NULL; 677 } 678 } 679 680 if (pmd_devmap(pmd)) 681 return NULL; 682 if (is_huge_zero_pmd(pmd)) 683 return NULL; 684 if (unlikely(pfn > highest_memmap_pfn)) 685 return NULL; 686 687 /* 688 * NOTE! We still have PageReserved() pages in the page tables. 689 * eg. VDSO mappings can cause them to exist. 690 */ 691 out: 692 return pfn_to_page(pfn); 693 } 694 #endif 695 696 static void restore_exclusive_pte(struct vm_area_struct *vma, 697 struct page *page, unsigned long address, 698 pte_t *ptep) 699 { 700 pte_t orig_pte; 701 pte_t pte; 702 swp_entry_t entry; 703 704 orig_pte = ptep_get(ptep); 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(orig_pte)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(orig_pte); 710 if (pte_swp_uffd_wp(orig_pte)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t orig_pte = ptep_get(src_pte); 772 pte_t pte = orig_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(orig_pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(orig_pte)) { 790 pte = pte_swp_clear_exclusive(orig_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(orig_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(orig_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(orig_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 pte_marker marker = copy_pte_marker(entry, dst_vma); 861 862 if (marker) 863 set_pte_at(dst_mm, addr, dst_pte, 864 make_pte_marker(marker)); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 vma_assert_write_locked(src_vma); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 arch_check_zapped_pte(vma, ptent); 1434 tlb_remove_tlb_entry(tlb, pte, addr); 1435 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1436 ptent); 1437 if (unlikely(!page)) { 1438 ksm_might_unmap_zero_page(mm, ptent); 1439 continue; 1440 } 1441 1442 delay_rmap = 0; 1443 if (!PageAnon(page)) { 1444 if (pte_dirty(ptent)) { 1445 set_page_dirty(page); 1446 if (tlb_delay_rmap(tlb)) { 1447 delay_rmap = 1; 1448 force_flush = 1; 1449 } 1450 } 1451 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1452 mark_page_accessed(page); 1453 } 1454 rss[mm_counter(page)]--; 1455 if (!delay_rmap) { 1456 page_remove_rmap(page, vma, false); 1457 if (unlikely(page_mapcount(page) < 0)) 1458 print_bad_pte(vma, addr, ptent, page); 1459 } 1460 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1461 force_flush = 1; 1462 addr += PAGE_SIZE; 1463 break; 1464 } 1465 continue; 1466 } 1467 1468 entry = pte_to_swp_entry(ptent); 1469 if (is_device_private_entry(entry) || 1470 is_device_exclusive_entry(entry)) { 1471 page = pfn_swap_entry_to_page(entry); 1472 if (unlikely(!should_zap_page(details, page))) 1473 continue; 1474 /* 1475 * Both device private/exclusive mappings should only 1476 * work with anonymous page so far, so we don't need to 1477 * consider uffd-wp bit when zap. For more information, 1478 * see zap_install_uffd_wp_if_needed(). 1479 */ 1480 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1481 rss[mm_counter(page)]--; 1482 if (is_device_private_entry(entry)) 1483 page_remove_rmap(page, vma, false); 1484 put_page(page); 1485 } else if (!non_swap_entry(entry)) { 1486 /* Genuine swap entry, hence a private anon page */ 1487 if (!should_zap_cows(details)) 1488 continue; 1489 rss[MM_SWAPENTS]--; 1490 if (unlikely(!free_swap_and_cache(entry))) 1491 print_bad_pte(vma, addr, ptent, NULL); 1492 } else if (is_migration_entry(entry)) { 1493 page = pfn_swap_entry_to_page(entry); 1494 if (!should_zap_page(details, page)) 1495 continue; 1496 rss[mm_counter(page)]--; 1497 } else if (pte_marker_entry_uffd_wp(entry)) { 1498 /* 1499 * For anon: always drop the marker; for file: only 1500 * drop the marker if explicitly requested. 1501 */ 1502 if (!vma_is_anonymous(vma) && 1503 !zap_drop_file_uffd_wp(details)) 1504 continue; 1505 } else if (is_hwpoison_entry(entry) || 1506 is_poisoned_swp_entry(entry)) { 1507 if (!should_zap_cows(details)) 1508 continue; 1509 } else { 1510 /* We should have covered all the swap entry types */ 1511 WARN_ON_ONCE(1); 1512 } 1513 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1514 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1515 } while (pte++, addr += PAGE_SIZE, addr != end); 1516 1517 add_mm_rss_vec(mm, rss); 1518 arch_leave_lazy_mmu_mode(); 1519 1520 /* Do the actual TLB flush before dropping ptl */ 1521 if (force_flush) { 1522 tlb_flush_mmu_tlbonly(tlb); 1523 tlb_flush_rmaps(tlb, vma); 1524 } 1525 pte_unmap_unlock(start_pte, ptl); 1526 1527 /* 1528 * If we forced a TLB flush (either due to running out of 1529 * batch buffers or because we needed to flush dirty TLB 1530 * entries before releasing the ptl), free the batched 1531 * memory too. Come back again if we didn't do everything. 1532 */ 1533 if (force_flush) 1534 tlb_flush_mmu(tlb); 1535 1536 return addr; 1537 } 1538 1539 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1540 struct vm_area_struct *vma, pud_t *pud, 1541 unsigned long addr, unsigned long end, 1542 struct zap_details *details) 1543 { 1544 pmd_t *pmd; 1545 unsigned long next; 1546 1547 pmd = pmd_offset(pud, addr); 1548 do { 1549 next = pmd_addr_end(addr, end); 1550 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1551 if (next - addr != HPAGE_PMD_SIZE) 1552 __split_huge_pmd(vma, pmd, addr, false, NULL); 1553 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1554 addr = next; 1555 continue; 1556 } 1557 /* fall through */ 1558 } else if (details && details->single_folio && 1559 folio_test_pmd_mappable(details->single_folio) && 1560 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1561 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1562 /* 1563 * Take and drop THP pmd lock so that we cannot return 1564 * prematurely, while zap_huge_pmd() has cleared *pmd, 1565 * but not yet decremented compound_mapcount(). 1566 */ 1567 spin_unlock(ptl); 1568 } 1569 if (pmd_none(*pmd)) { 1570 addr = next; 1571 continue; 1572 } 1573 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1574 if (addr != next) 1575 pmd--; 1576 } while (pmd++, cond_resched(), addr != end); 1577 1578 return addr; 1579 } 1580 1581 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1582 struct vm_area_struct *vma, p4d_t *p4d, 1583 unsigned long addr, unsigned long end, 1584 struct zap_details *details) 1585 { 1586 pud_t *pud; 1587 unsigned long next; 1588 1589 pud = pud_offset(p4d, addr); 1590 do { 1591 next = pud_addr_end(addr, end); 1592 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1593 if (next - addr != HPAGE_PUD_SIZE) { 1594 mmap_assert_locked(tlb->mm); 1595 split_huge_pud(vma, pud, addr); 1596 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1597 goto next; 1598 /* fall through */ 1599 } 1600 if (pud_none_or_clear_bad(pud)) 1601 continue; 1602 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1603 next: 1604 cond_resched(); 1605 } while (pud++, addr = next, addr != end); 1606 1607 return addr; 1608 } 1609 1610 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1611 struct vm_area_struct *vma, pgd_t *pgd, 1612 unsigned long addr, unsigned long end, 1613 struct zap_details *details) 1614 { 1615 p4d_t *p4d; 1616 unsigned long next; 1617 1618 p4d = p4d_offset(pgd, addr); 1619 do { 1620 next = p4d_addr_end(addr, end); 1621 if (p4d_none_or_clear_bad(p4d)) 1622 continue; 1623 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1624 } while (p4d++, addr = next, addr != end); 1625 1626 return addr; 1627 } 1628 1629 void unmap_page_range(struct mmu_gather *tlb, 1630 struct vm_area_struct *vma, 1631 unsigned long addr, unsigned long end, 1632 struct zap_details *details) 1633 { 1634 pgd_t *pgd; 1635 unsigned long next; 1636 1637 BUG_ON(addr >= end); 1638 tlb_start_vma(tlb, vma); 1639 pgd = pgd_offset(vma->vm_mm, addr); 1640 do { 1641 next = pgd_addr_end(addr, end); 1642 if (pgd_none_or_clear_bad(pgd)) 1643 continue; 1644 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1645 } while (pgd++, addr = next, addr != end); 1646 tlb_end_vma(tlb, vma); 1647 } 1648 1649 1650 static void unmap_single_vma(struct mmu_gather *tlb, 1651 struct vm_area_struct *vma, unsigned long start_addr, 1652 unsigned long end_addr, 1653 struct zap_details *details, bool mm_wr_locked) 1654 { 1655 unsigned long start = max(vma->vm_start, start_addr); 1656 unsigned long end; 1657 1658 if (start >= vma->vm_end) 1659 return; 1660 end = min(vma->vm_end, end_addr); 1661 if (end <= vma->vm_start) 1662 return; 1663 1664 if (vma->vm_file) 1665 uprobe_munmap(vma, start, end); 1666 1667 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1668 untrack_pfn(vma, 0, 0, mm_wr_locked); 1669 1670 if (start != end) { 1671 if (unlikely(is_vm_hugetlb_page(vma))) { 1672 /* 1673 * It is undesirable to test vma->vm_file as it 1674 * should be non-null for valid hugetlb area. 1675 * However, vm_file will be NULL in the error 1676 * cleanup path of mmap_region. When 1677 * hugetlbfs ->mmap method fails, 1678 * mmap_region() nullifies vma->vm_file 1679 * before calling this function to clean up. 1680 * Since no pte has actually been setup, it is 1681 * safe to do nothing in this case. 1682 */ 1683 if (vma->vm_file) { 1684 zap_flags_t zap_flags = details ? 1685 details->zap_flags : 0; 1686 __unmap_hugepage_range(tlb, vma, start, end, 1687 NULL, zap_flags); 1688 } 1689 } else 1690 unmap_page_range(tlb, vma, start, end, details); 1691 } 1692 } 1693 1694 /** 1695 * unmap_vmas - unmap a range of memory covered by a list of vma's 1696 * @tlb: address of the caller's struct mmu_gather 1697 * @mas: the maple state 1698 * @vma: the starting vma 1699 * @start_addr: virtual address at which to start unmapping 1700 * @end_addr: virtual address at which to end unmapping 1701 * @tree_end: The maximum index to check 1702 * @mm_wr_locked: lock flag 1703 * 1704 * Unmap all pages in the vma list. 1705 * 1706 * Only addresses between `start' and `end' will be unmapped. 1707 * 1708 * The VMA list must be sorted in ascending virtual address order. 1709 * 1710 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1711 * range after unmap_vmas() returns. So the only responsibility here is to 1712 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1713 * drops the lock and schedules. 1714 */ 1715 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1716 struct vm_area_struct *vma, unsigned long start_addr, 1717 unsigned long end_addr, unsigned long tree_end, 1718 bool mm_wr_locked) 1719 { 1720 struct mmu_notifier_range range; 1721 struct zap_details details = { 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1723 /* Careful - we need to zap private pages too! */ 1724 .even_cows = true, 1725 }; 1726 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1728 start_addr, end_addr); 1729 mmu_notifier_invalidate_range_start(&range); 1730 do { 1731 unsigned long start = start_addr; 1732 unsigned long end = end_addr; 1733 hugetlb_zap_begin(vma, &start, &end); 1734 unmap_single_vma(tlb, vma, start, end, &details, 1735 mm_wr_locked); 1736 hugetlb_zap_end(vma, &details); 1737 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1738 mmu_notifier_invalidate_range_end(&range); 1739 } 1740 1741 /** 1742 * zap_page_range_single - remove user pages in a given range 1743 * @vma: vm_area_struct holding the applicable pages 1744 * @address: starting address of pages to zap 1745 * @size: number of bytes to zap 1746 * @details: details of shared cache invalidation 1747 * 1748 * The range must fit into one VMA. 1749 */ 1750 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1751 unsigned long size, struct zap_details *details) 1752 { 1753 const unsigned long end = address + size; 1754 struct mmu_notifier_range range; 1755 struct mmu_gather tlb; 1756 1757 lru_add_drain(); 1758 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1759 address, end); 1760 hugetlb_zap_begin(vma, &range.start, &range.end); 1761 tlb_gather_mmu(&tlb, vma->vm_mm); 1762 update_hiwater_rss(vma->vm_mm); 1763 mmu_notifier_invalidate_range_start(&range); 1764 /* 1765 * unmap 'address-end' not 'range.start-range.end' as range 1766 * could have been expanded for hugetlb pmd sharing. 1767 */ 1768 unmap_single_vma(&tlb, vma, address, end, details, false); 1769 mmu_notifier_invalidate_range_end(&range); 1770 tlb_finish_mmu(&tlb); 1771 hugetlb_zap_end(vma, details); 1772 } 1773 1774 /** 1775 * zap_vma_ptes - remove ptes mapping the vma 1776 * @vma: vm_area_struct holding ptes to be zapped 1777 * @address: starting address of pages to zap 1778 * @size: number of bytes to zap 1779 * 1780 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1781 * 1782 * The entire address range must be fully contained within the vma. 1783 * 1784 */ 1785 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1786 unsigned long size) 1787 { 1788 if (!range_in_vma(vma, address, address + size) || 1789 !(vma->vm_flags & VM_PFNMAP)) 1790 return; 1791 1792 zap_page_range_single(vma, address, size, NULL); 1793 } 1794 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1795 1796 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1797 { 1798 pgd_t *pgd; 1799 p4d_t *p4d; 1800 pud_t *pud; 1801 pmd_t *pmd; 1802 1803 pgd = pgd_offset(mm, addr); 1804 p4d = p4d_alloc(mm, pgd, addr); 1805 if (!p4d) 1806 return NULL; 1807 pud = pud_alloc(mm, p4d, addr); 1808 if (!pud) 1809 return NULL; 1810 pmd = pmd_alloc(mm, pud, addr); 1811 if (!pmd) 1812 return NULL; 1813 1814 VM_BUG_ON(pmd_trans_huge(*pmd)); 1815 return pmd; 1816 } 1817 1818 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1819 spinlock_t **ptl) 1820 { 1821 pmd_t *pmd = walk_to_pmd(mm, addr); 1822 1823 if (!pmd) 1824 return NULL; 1825 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1826 } 1827 1828 static int validate_page_before_insert(struct page *page) 1829 { 1830 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1831 return -EINVAL; 1832 flush_dcache_page(page); 1833 return 0; 1834 } 1835 1836 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1837 unsigned long addr, struct page *page, pgprot_t prot) 1838 { 1839 if (!pte_none(ptep_get(pte))) 1840 return -EBUSY; 1841 /* Ok, finally just insert the thing.. */ 1842 get_page(page); 1843 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1844 page_add_file_rmap(page, vma, false); 1845 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1846 return 0; 1847 } 1848 1849 /* 1850 * This is the old fallback for page remapping. 1851 * 1852 * For historical reasons, it only allows reserved pages. Only 1853 * old drivers should use this, and they needed to mark their 1854 * pages reserved for the old functions anyway. 1855 */ 1856 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1857 struct page *page, pgprot_t prot) 1858 { 1859 int retval; 1860 pte_t *pte; 1861 spinlock_t *ptl; 1862 1863 retval = validate_page_before_insert(page); 1864 if (retval) 1865 goto out; 1866 retval = -ENOMEM; 1867 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1868 if (!pte) 1869 goto out; 1870 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1871 pte_unmap_unlock(pte, ptl); 1872 out: 1873 return retval; 1874 } 1875 1876 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1877 unsigned long addr, struct page *page, pgprot_t prot) 1878 { 1879 int err; 1880 1881 if (!page_count(page)) 1882 return -EINVAL; 1883 err = validate_page_before_insert(page); 1884 if (err) 1885 return err; 1886 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1887 } 1888 1889 /* insert_pages() amortizes the cost of spinlock operations 1890 * when inserting pages in a loop. 1891 */ 1892 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1893 struct page **pages, unsigned long *num, pgprot_t prot) 1894 { 1895 pmd_t *pmd = NULL; 1896 pte_t *start_pte, *pte; 1897 spinlock_t *pte_lock; 1898 struct mm_struct *const mm = vma->vm_mm; 1899 unsigned long curr_page_idx = 0; 1900 unsigned long remaining_pages_total = *num; 1901 unsigned long pages_to_write_in_pmd; 1902 int ret; 1903 more: 1904 ret = -EFAULT; 1905 pmd = walk_to_pmd(mm, addr); 1906 if (!pmd) 1907 goto out; 1908 1909 pages_to_write_in_pmd = min_t(unsigned long, 1910 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1911 1912 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1913 ret = -ENOMEM; 1914 if (pte_alloc(mm, pmd)) 1915 goto out; 1916 1917 while (pages_to_write_in_pmd) { 1918 int pte_idx = 0; 1919 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1920 1921 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1922 if (!start_pte) { 1923 ret = -EFAULT; 1924 goto out; 1925 } 1926 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1927 int err = insert_page_in_batch_locked(vma, pte, 1928 addr, pages[curr_page_idx], prot); 1929 if (unlikely(err)) { 1930 pte_unmap_unlock(start_pte, pte_lock); 1931 ret = err; 1932 remaining_pages_total -= pte_idx; 1933 goto out; 1934 } 1935 addr += PAGE_SIZE; 1936 ++curr_page_idx; 1937 } 1938 pte_unmap_unlock(start_pte, pte_lock); 1939 pages_to_write_in_pmd -= batch_size; 1940 remaining_pages_total -= batch_size; 1941 } 1942 if (remaining_pages_total) 1943 goto more; 1944 ret = 0; 1945 out: 1946 *num = remaining_pages_total; 1947 return ret; 1948 } 1949 1950 /** 1951 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1952 * @vma: user vma to map to 1953 * @addr: target start user address of these pages 1954 * @pages: source kernel pages 1955 * @num: in: number of pages to map. out: number of pages that were *not* 1956 * mapped. (0 means all pages were successfully mapped). 1957 * 1958 * Preferred over vm_insert_page() when inserting multiple pages. 1959 * 1960 * In case of error, we may have mapped a subset of the provided 1961 * pages. It is the caller's responsibility to account for this case. 1962 * 1963 * The same restrictions apply as in vm_insert_page(). 1964 */ 1965 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1966 struct page **pages, unsigned long *num) 1967 { 1968 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1969 1970 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1971 return -EFAULT; 1972 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1973 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1974 BUG_ON(vma->vm_flags & VM_PFNMAP); 1975 vm_flags_set(vma, VM_MIXEDMAP); 1976 } 1977 /* Defer page refcount checking till we're about to map that page. */ 1978 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1979 } 1980 EXPORT_SYMBOL(vm_insert_pages); 1981 1982 /** 1983 * vm_insert_page - insert single page into user vma 1984 * @vma: user vma to map to 1985 * @addr: target user address of this page 1986 * @page: source kernel page 1987 * 1988 * This allows drivers to insert individual pages they've allocated 1989 * into a user vma. 1990 * 1991 * The page has to be a nice clean _individual_ kernel allocation. 1992 * If you allocate a compound page, you need to have marked it as 1993 * such (__GFP_COMP), or manually just split the page up yourself 1994 * (see split_page()). 1995 * 1996 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1997 * took an arbitrary page protection parameter. This doesn't allow 1998 * that. Your vma protection will have to be set up correctly, which 1999 * means that if you want a shared writable mapping, you'd better 2000 * ask for a shared writable mapping! 2001 * 2002 * The page does not need to be reserved. 2003 * 2004 * Usually this function is called from f_op->mmap() handler 2005 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2006 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2007 * function from other places, for example from page-fault handler. 2008 * 2009 * Return: %0 on success, negative error code otherwise. 2010 */ 2011 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2012 struct page *page) 2013 { 2014 if (addr < vma->vm_start || addr >= vma->vm_end) 2015 return -EFAULT; 2016 if (!page_count(page)) 2017 return -EINVAL; 2018 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2019 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2020 BUG_ON(vma->vm_flags & VM_PFNMAP); 2021 vm_flags_set(vma, VM_MIXEDMAP); 2022 } 2023 return insert_page(vma, addr, page, vma->vm_page_prot); 2024 } 2025 EXPORT_SYMBOL(vm_insert_page); 2026 2027 /* 2028 * __vm_map_pages - maps range of kernel pages into user vma 2029 * @vma: user vma to map to 2030 * @pages: pointer to array of source kernel pages 2031 * @num: number of pages in page array 2032 * @offset: user's requested vm_pgoff 2033 * 2034 * This allows drivers to map range of kernel pages into a user vma. 2035 * 2036 * Return: 0 on success and error code otherwise. 2037 */ 2038 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2039 unsigned long num, unsigned long offset) 2040 { 2041 unsigned long count = vma_pages(vma); 2042 unsigned long uaddr = vma->vm_start; 2043 int ret, i; 2044 2045 /* Fail if the user requested offset is beyond the end of the object */ 2046 if (offset >= num) 2047 return -ENXIO; 2048 2049 /* Fail if the user requested size exceeds available object size */ 2050 if (count > num - offset) 2051 return -ENXIO; 2052 2053 for (i = 0; i < count; i++) { 2054 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2055 if (ret < 0) 2056 return ret; 2057 uaddr += PAGE_SIZE; 2058 } 2059 2060 return 0; 2061 } 2062 2063 /** 2064 * vm_map_pages - maps range of kernel pages starts with non zero offset 2065 * @vma: user vma to map to 2066 * @pages: pointer to array of source kernel pages 2067 * @num: number of pages in page array 2068 * 2069 * Maps an object consisting of @num pages, catering for the user's 2070 * requested vm_pgoff 2071 * 2072 * If we fail to insert any page into the vma, the function will return 2073 * immediately leaving any previously inserted pages present. Callers 2074 * from the mmap handler may immediately return the error as their caller 2075 * will destroy the vma, removing any successfully inserted pages. Other 2076 * callers should make their own arrangements for calling unmap_region(). 2077 * 2078 * Context: Process context. Called by mmap handlers. 2079 * Return: 0 on success and error code otherwise. 2080 */ 2081 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2082 unsigned long num) 2083 { 2084 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2085 } 2086 EXPORT_SYMBOL(vm_map_pages); 2087 2088 /** 2089 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2090 * @vma: user vma to map to 2091 * @pages: pointer to array of source kernel pages 2092 * @num: number of pages in page array 2093 * 2094 * Similar to vm_map_pages(), except that it explicitly sets the offset 2095 * to 0. This function is intended for the drivers that did not consider 2096 * vm_pgoff. 2097 * 2098 * Context: Process context. Called by mmap handlers. 2099 * Return: 0 on success and error code otherwise. 2100 */ 2101 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2102 unsigned long num) 2103 { 2104 return __vm_map_pages(vma, pages, num, 0); 2105 } 2106 EXPORT_SYMBOL(vm_map_pages_zero); 2107 2108 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2109 pfn_t pfn, pgprot_t prot, bool mkwrite) 2110 { 2111 struct mm_struct *mm = vma->vm_mm; 2112 pte_t *pte, entry; 2113 spinlock_t *ptl; 2114 2115 pte = get_locked_pte(mm, addr, &ptl); 2116 if (!pte) 2117 return VM_FAULT_OOM; 2118 entry = ptep_get(pte); 2119 if (!pte_none(entry)) { 2120 if (mkwrite) { 2121 /* 2122 * For read faults on private mappings the PFN passed 2123 * in may not match the PFN we have mapped if the 2124 * mapped PFN is a writeable COW page. In the mkwrite 2125 * case we are creating a writable PTE for a shared 2126 * mapping and we expect the PFNs to match. If they 2127 * don't match, we are likely racing with block 2128 * allocation and mapping invalidation so just skip the 2129 * update. 2130 */ 2131 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2132 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2133 goto out_unlock; 2134 } 2135 entry = pte_mkyoung(entry); 2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2137 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2138 update_mmu_cache(vma, addr, pte); 2139 } 2140 goto out_unlock; 2141 } 2142 2143 /* Ok, finally just insert the thing.. */ 2144 if (pfn_t_devmap(pfn)) 2145 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2146 else 2147 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2148 2149 if (mkwrite) { 2150 entry = pte_mkyoung(entry); 2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2152 } 2153 2154 set_pte_at(mm, addr, pte, entry); 2155 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2156 2157 out_unlock: 2158 pte_unmap_unlock(pte, ptl); 2159 return VM_FAULT_NOPAGE; 2160 } 2161 2162 /** 2163 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2164 * @vma: user vma to map to 2165 * @addr: target user address of this page 2166 * @pfn: source kernel pfn 2167 * @pgprot: pgprot flags for the inserted page 2168 * 2169 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2170 * to override pgprot on a per-page basis. 2171 * 2172 * This only makes sense for IO mappings, and it makes no sense for 2173 * COW mappings. In general, using multiple vmas is preferable; 2174 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2175 * impractical. 2176 * 2177 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2178 * caching- and encryption bits different than those of @vma->vm_page_prot, 2179 * because the caching- or encryption mode may not be known at mmap() time. 2180 * 2181 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2182 * to set caching and encryption bits for those vmas (except for COW pages). 2183 * This is ensured by core vm only modifying these page table entries using 2184 * functions that don't touch caching- or encryption bits, using pte_modify() 2185 * if needed. (See for example mprotect()). 2186 * 2187 * Also when new page-table entries are created, this is only done using the 2188 * fault() callback, and never using the value of vma->vm_page_prot, 2189 * except for page-table entries that point to anonymous pages as the result 2190 * of COW. 2191 * 2192 * Context: Process context. May allocate using %GFP_KERNEL. 2193 * Return: vm_fault_t value. 2194 */ 2195 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2196 unsigned long pfn, pgprot_t pgprot) 2197 { 2198 /* 2199 * Technically, architectures with pte_special can avoid all these 2200 * restrictions (same for remap_pfn_range). However we would like 2201 * consistency in testing and feature parity among all, so we should 2202 * try to keep these invariants in place for everybody. 2203 */ 2204 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2205 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2206 (VM_PFNMAP|VM_MIXEDMAP)); 2207 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2208 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2209 2210 if (addr < vma->vm_start || addr >= vma->vm_end) 2211 return VM_FAULT_SIGBUS; 2212 2213 if (!pfn_modify_allowed(pfn, pgprot)) 2214 return VM_FAULT_SIGBUS; 2215 2216 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2217 2218 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2219 false); 2220 } 2221 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2222 2223 /** 2224 * vmf_insert_pfn - insert single pfn into user vma 2225 * @vma: user vma to map to 2226 * @addr: target user address of this page 2227 * @pfn: source kernel pfn 2228 * 2229 * Similar to vm_insert_page, this allows drivers to insert individual pages 2230 * they've allocated into a user vma. Same comments apply. 2231 * 2232 * This function should only be called from a vm_ops->fault handler, and 2233 * in that case the handler should return the result of this function. 2234 * 2235 * vma cannot be a COW mapping. 2236 * 2237 * As this is called only for pages that do not currently exist, we 2238 * do not need to flush old virtual caches or the TLB. 2239 * 2240 * Context: Process context. May allocate using %GFP_KERNEL. 2241 * Return: vm_fault_t value. 2242 */ 2243 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2244 unsigned long pfn) 2245 { 2246 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2247 } 2248 EXPORT_SYMBOL(vmf_insert_pfn); 2249 2250 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2251 { 2252 /* these checks mirror the abort conditions in vm_normal_page */ 2253 if (vma->vm_flags & VM_MIXEDMAP) 2254 return true; 2255 if (pfn_t_devmap(pfn)) 2256 return true; 2257 if (pfn_t_special(pfn)) 2258 return true; 2259 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2260 return true; 2261 return false; 2262 } 2263 2264 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2265 unsigned long addr, pfn_t pfn, bool mkwrite) 2266 { 2267 pgprot_t pgprot = vma->vm_page_prot; 2268 int err; 2269 2270 BUG_ON(!vm_mixed_ok(vma, pfn)); 2271 2272 if (addr < vma->vm_start || addr >= vma->vm_end) 2273 return VM_FAULT_SIGBUS; 2274 2275 track_pfn_insert(vma, &pgprot, pfn); 2276 2277 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2278 return VM_FAULT_SIGBUS; 2279 2280 /* 2281 * If we don't have pte special, then we have to use the pfn_valid() 2282 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2283 * refcount the page if pfn_valid is true (hence insert_page rather 2284 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2285 * without pte special, it would there be refcounted as a normal page. 2286 */ 2287 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2288 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2289 struct page *page; 2290 2291 /* 2292 * At this point we are committed to insert_page() 2293 * regardless of whether the caller specified flags that 2294 * result in pfn_t_has_page() == false. 2295 */ 2296 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2297 err = insert_page(vma, addr, page, pgprot); 2298 } else { 2299 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2300 } 2301 2302 if (err == -ENOMEM) 2303 return VM_FAULT_OOM; 2304 if (err < 0 && err != -EBUSY) 2305 return VM_FAULT_SIGBUS; 2306 2307 return VM_FAULT_NOPAGE; 2308 } 2309 2310 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2311 pfn_t pfn) 2312 { 2313 return __vm_insert_mixed(vma, addr, pfn, false); 2314 } 2315 EXPORT_SYMBOL(vmf_insert_mixed); 2316 2317 /* 2318 * If the insertion of PTE failed because someone else already added a 2319 * different entry in the mean time, we treat that as success as we assume 2320 * the same entry was actually inserted. 2321 */ 2322 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2323 unsigned long addr, pfn_t pfn) 2324 { 2325 return __vm_insert_mixed(vma, addr, pfn, true); 2326 } 2327 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2328 2329 /* 2330 * maps a range of physical memory into the requested pages. the old 2331 * mappings are removed. any references to nonexistent pages results 2332 * in null mappings (currently treated as "copy-on-access") 2333 */ 2334 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2335 unsigned long addr, unsigned long end, 2336 unsigned long pfn, pgprot_t prot) 2337 { 2338 pte_t *pte, *mapped_pte; 2339 spinlock_t *ptl; 2340 int err = 0; 2341 2342 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2343 if (!pte) 2344 return -ENOMEM; 2345 arch_enter_lazy_mmu_mode(); 2346 do { 2347 BUG_ON(!pte_none(ptep_get(pte))); 2348 if (!pfn_modify_allowed(pfn, prot)) { 2349 err = -EACCES; 2350 break; 2351 } 2352 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2353 pfn++; 2354 } while (pte++, addr += PAGE_SIZE, addr != end); 2355 arch_leave_lazy_mmu_mode(); 2356 pte_unmap_unlock(mapped_pte, ptl); 2357 return err; 2358 } 2359 2360 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2361 unsigned long addr, unsigned long end, 2362 unsigned long pfn, pgprot_t prot) 2363 { 2364 pmd_t *pmd; 2365 unsigned long next; 2366 int err; 2367 2368 pfn -= addr >> PAGE_SHIFT; 2369 pmd = pmd_alloc(mm, pud, addr); 2370 if (!pmd) 2371 return -ENOMEM; 2372 VM_BUG_ON(pmd_trans_huge(*pmd)); 2373 do { 2374 next = pmd_addr_end(addr, end); 2375 err = remap_pte_range(mm, pmd, addr, next, 2376 pfn + (addr >> PAGE_SHIFT), prot); 2377 if (err) 2378 return err; 2379 } while (pmd++, addr = next, addr != end); 2380 return 0; 2381 } 2382 2383 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2384 unsigned long addr, unsigned long end, 2385 unsigned long pfn, pgprot_t prot) 2386 { 2387 pud_t *pud; 2388 unsigned long next; 2389 int err; 2390 2391 pfn -= addr >> PAGE_SHIFT; 2392 pud = pud_alloc(mm, p4d, addr); 2393 if (!pud) 2394 return -ENOMEM; 2395 do { 2396 next = pud_addr_end(addr, end); 2397 err = remap_pmd_range(mm, pud, addr, next, 2398 pfn + (addr >> PAGE_SHIFT), prot); 2399 if (err) 2400 return err; 2401 } while (pud++, addr = next, addr != end); 2402 return 0; 2403 } 2404 2405 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2406 unsigned long addr, unsigned long end, 2407 unsigned long pfn, pgprot_t prot) 2408 { 2409 p4d_t *p4d; 2410 unsigned long next; 2411 int err; 2412 2413 pfn -= addr >> PAGE_SHIFT; 2414 p4d = p4d_alloc(mm, pgd, addr); 2415 if (!p4d) 2416 return -ENOMEM; 2417 do { 2418 next = p4d_addr_end(addr, end); 2419 err = remap_pud_range(mm, p4d, addr, next, 2420 pfn + (addr >> PAGE_SHIFT), prot); 2421 if (err) 2422 return err; 2423 } while (p4d++, addr = next, addr != end); 2424 return 0; 2425 } 2426 2427 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2428 unsigned long pfn, unsigned long size, pgprot_t prot) 2429 { 2430 pgd_t *pgd; 2431 unsigned long next; 2432 unsigned long end = addr + PAGE_ALIGN(size); 2433 struct mm_struct *mm = vma->vm_mm; 2434 int err; 2435 2436 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2437 return -EINVAL; 2438 2439 /* 2440 * Physically remapped pages are special. Tell the 2441 * rest of the world about it: 2442 * VM_IO tells people not to look at these pages 2443 * (accesses can have side effects). 2444 * VM_PFNMAP tells the core MM that the base pages are just 2445 * raw PFN mappings, and do not have a "struct page" associated 2446 * with them. 2447 * VM_DONTEXPAND 2448 * Disable vma merging and expanding with mremap(). 2449 * VM_DONTDUMP 2450 * Omit vma from core dump, even when VM_IO turned off. 2451 * 2452 * There's a horrible special case to handle copy-on-write 2453 * behaviour that some programs depend on. We mark the "original" 2454 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2455 * See vm_normal_page() for details. 2456 */ 2457 if (is_cow_mapping(vma->vm_flags)) { 2458 if (addr != vma->vm_start || end != vma->vm_end) 2459 return -EINVAL; 2460 vma->vm_pgoff = pfn; 2461 } 2462 2463 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2464 2465 BUG_ON(addr >= end); 2466 pfn -= addr >> PAGE_SHIFT; 2467 pgd = pgd_offset(mm, addr); 2468 flush_cache_range(vma, addr, end); 2469 do { 2470 next = pgd_addr_end(addr, end); 2471 err = remap_p4d_range(mm, pgd, addr, next, 2472 pfn + (addr >> PAGE_SHIFT), prot); 2473 if (err) 2474 return err; 2475 } while (pgd++, addr = next, addr != end); 2476 2477 return 0; 2478 } 2479 2480 /* 2481 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2482 * must have pre-validated the caching bits of the pgprot_t. 2483 */ 2484 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2485 unsigned long pfn, unsigned long size, pgprot_t prot) 2486 { 2487 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2488 2489 if (!error) 2490 return 0; 2491 2492 /* 2493 * A partial pfn range mapping is dangerous: it does not 2494 * maintain page reference counts, and callers may free 2495 * pages due to the error. So zap it early. 2496 */ 2497 zap_page_range_single(vma, addr, size, NULL); 2498 return error; 2499 } 2500 2501 /** 2502 * remap_pfn_range - remap kernel memory to userspace 2503 * @vma: user vma to map to 2504 * @addr: target page aligned user address to start at 2505 * @pfn: page frame number of kernel physical memory address 2506 * @size: size of mapping area 2507 * @prot: page protection flags for this mapping 2508 * 2509 * Note: this is only safe if the mm semaphore is held when called. 2510 * 2511 * Return: %0 on success, negative error code otherwise. 2512 */ 2513 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2514 unsigned long pfn, unsigned long size, pgprot_t prot) 2515 { 2516 int err; 2517 2518 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2519 if (err) 2520 return -EINVAL; 2521 2522 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2523 if (err) 2524 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2525 return err; 2526 } 2527 EXPORT_SYMBOL(remap_pfn_range); 2528 2529 /** 2530 * vm_iomap_memory - remap memory to userspace 2531 * @vma: user vma to map to 2532 * @start: start of the physical memory to be mapped 2533 * @len: size of area 2534 * 2535 * This is a simplified io_remap_pfn_range() for common driver use. The 2536 * driver just needs to give us the physical memory range to be mapped, 2537 * we'll figure out the rest from the vma information. 2538 * 2539 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2540 * whatever write-combining details or similar. 2541 * 2542 * Return: %0 on success, negative error code otherwise. 2543 */ 2544 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2545 { 2546 unsigned long vm_len, pfn, pages; 2547 2548 /* Check that the physical memory area passed in looks valid */ 2549 if (start + len < start) 2550 return -EINVAL; 2551 /* 2552 * You *really* shouldn't map things that aren't page-aligned, 2553 * but we've historically allowed it because IO memory might 2554 * just have smaller alignment. 2555 */ 2556 len += start & ~PAGE_MASK; 2557 pfn = start >> PAGE_SHIFT; 2558 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2559 if (pfn + pages < pfn) 2560 return -EINVAL; 2561 2562 /* We start the mapping 'vm_pgoff' pages into the area */ 2563 if (vma->vm_pgoff > pages) 2564 return -EINVAL; 2565 pfn += vma->vm_pgoff; 2566 pages -= vma->vm_pgoff; 2567 2568 /* Can we fit all of the mapping? */ 2569 vm_len = vma->vm_end - vma->vm_start; 2570 if (vm_len >> PAGE_SHIFT > pages) 2571 return -EINVAL; 2572 2573 /* Ok, let it rip */ 2574 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2575 } 2576 EXPORT_SYMBOL(vm_iomap_memory); 2577 2578 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2579 unsigned long addr, unsigned long end, 2580 pte_fn_t fn, void *data, bool create, 2581 pgtbl_mod_mask *mask) 2582 { 2583 pte_t *pte, *mapped_pte; 2584 int err = 0; 2585 spinlock_t *ptl; 2586 2587 if (create) { 2588 mapped_pte = pte = (mm == &init_mm) ? 2589 pte_alloc_kernel_track(pmd, addr, mask) : 2590 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2591 if (!pte) 2592 return -ENOMEM; 2593 } else { 2594 mapped_pte = pte = (mm == &init_mm) ? 2595 pte_offset_kernel(pmd, addr) : 2596 pte_offset_map_lock(mm, pmd, addr, &ptl); 2597 if (!pte) 2598 return -EINVAL; 2599 } 2600 2601 arch_enter_lazy_mmu_mode(); 2602 2603 if (fn) { 2604 do { 2605 if (create || !pte_none(ptep_get(pte))) { 2606 err = fn(pte++, addr, data); 2607 if (err) 2608 break; 2609 } 2610 } while (addr += PAGE_SIZE, addr != end); 2611 } 2612 *mask |= PGTBL_PTE_MODIFIED; 2613 2614 arch_leave_lazy_mmu_mode(); 2615 2616 if (mm != &init_mm) 2617 pte_unmap_unlock(mapped_pte, ptl); 2618 return err; 2619 } 2620 2621 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2622 unsigned long addr, unsigned long end, 2623 pte_fn_t fn, void *data, bool create, 2624 pgtbl_mod_mask *mask) 2625 { 2626 pmd_t *pmd; 2627 unsigned long next; 2628 int err = 0; 2629 2630 BUG_ON(pud_huge(*pud)); 2631 2632 if (create) { 2633 pmd = pmd_alloc_track(mm, pud, addr, mask); 2634 if (!pmd) 2635 return -ENOMEM; 2636 } else { 2637 pmd = pmd_offset(pud, addr); 2638 } 2639 do { 2640 next = pmd_addr_end(addr, end); 2641 if (pmd_none(*pmd) && !create) 2642 continue; 2643 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2644 return -EINVAL; 2645 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2646 if (!create) 2647 continue; 2648 pmd_clear_bad(pmd); 2649 } 2650 err = apply_to_pte_range(mm, pmd, addr, next, 2651 fn, data, create, mask); 2652 if (err) 2653 break; 2654 } while (pmd++, addr = next, addr != end); 2655 2656 return err; 2657 } 2658 2659 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2660 unsigned long addr, unsigned long end, 2661 pte_fn_t fn, void *data, bool create, 2662 pgtbl_mod_mask *mask) 2663 { 2664 pud_t *pud; 2665 unsigned long next; 2666 int err = 0; 2667 2668 if (create) { 2669 pud = pud_alloc_track(mm, p4d, addr, mask); 2670 if (!pud) 2671 return -ENOMEM; 2672 } else { 2673 pud = pud_offset(p4d, addr); 2674 } 2675 do { 2676 next = pud_addr_end(addr, end); 2677 if (pud_none(*pud) && !create) 2678 continue; 2679 if (WARN_ON_ONCE(pud_leaf(*pud))) 2680 return -EINVAL; 2681 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2682 if (!create) 2683 continue; 2684 pud_clear_bad(pud); 2685 } 2686 err = apply_to_pmd_range(mm, pud, addr, next, 2687 fn, data, create, mask); 2688 if (err) 2689 break; 2690 } while (pud++, addr = next, addr != end); 2691 2692 return err; 2693 } 2694 2695 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2696 unsigned long addr, unsigned long end, 2697 pte_fn_t fn, void *data, bool create, 2698 pgtbl_mod_mask *mask) 2699 { 2700 p4d_t *p4d; 2701 unsigned long next; 2702 int err = 0; 2703 2704 if (create) { 2705 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2706 if (!p4d) 2707 return -ENOMEM; 2708 } else { 2709 p4d = p4d_offset(pgd, addr); 2710 } 2711 do { 2712 next = p4d_addr_end(addr, end); 2713 if (p4d_none(*p4d) && !create) 2714 continue; 2715 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2716 return -EINVAL; 2717 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2718 if (!create) 2719 continue; 2720 p4d_clear_bad(p4d); 2721 } 2722 err = apply_to_pud_range(mm, p4d, addr, next, 2723 fn, data, create, mask); 2724 if (err) 2725 break; 2726 } while (p4d++, addr = next, addr != end); 2727 2728 return err; 2729 } 2730 2731 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2732 unsigned long size, pte_fn_t fn, 2733 void *data, bool create) 2734 { 2735 pgd_t *pgd; 2736 unsigned long start = addr, next; 2737 unsigned long end = addr + size; 2738 pgtbl_mod_mask mask = 0; 2739 int err = 0; 2740 2741 if (WARN_ON(addr >= end)) 2742 return -EINVAL; 2743 2744 pgd = pgd_offset(mm, addr); 2745 do { 2746 next = pgd_addr_end(addr, end); 2747 if (pgd_none(*pgd) && !create) 2748 continue; 2749 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2750 return -EINVAL; 2751 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2752 if (!create) 2753 continue; 2754 pgd_clear_bad(pgd); 2755 } 2756 err = apply_to_p4d_range(mm, pgd, addr, next, 2757 fn, data, create, &mask); 2758 if (err) 2759 break; 2760 } while (pgd++, addr = next, addr != end); 2761 2762 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2763 arch_sync_kernel_mappings(start, start + size); 2764 2765 return err; 2766 } 2767 2768 /* 2769 * Scan a region of virtual memory, filling in page tables as necessary 2770 * and calling a provided function on each leaf page table. 2771 */ 2772 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2773 unsigned long size, pte_fn_t fn, void *data) 2774 { 2775 return __apply_to_page_range(mm, addr, size, fn, data, true); 2776 } 2777 EXPORT_SYMBOL_GPL(apply_to_page_range); 2778 2779 /* 2780 * Scan a region of virtual memory, calling a provided function on 2781 * each leaf page table where it exists. 2782 * 2783 * Unlike apply_to_page_range, this does _not_ fill in page tables 2784 * where they are absent. 2785 */ 2786 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2787 unsigned long size, pte_fn_t fn, void *data) 2788 { 2789 return __apply_to_page_range(mm, addr, size, fn, data, false); 2790 } 2791 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2792 2793 /* 2794 * handle_pte_fault chooses page fault handler according to an entry which was 2795 * read non-atomically. Before making any commitment, on those architectures 2796 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2797 * parts, do_swap_page must check under lock before unmapping the pte and 2798 * proceeding (but do_wp_page is only called after already making such a check; 2799 * and do_anonymous_page can safely check later on). 2800 */ 2801 static inline int pte_unmap_same(struct vm_fault *vmf) 2802 { 2803 int same = 1; 2804 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2805 if (sizeof(pte_t) > sizeof(unsigned long)) { 2806 spin_lock(vmf->ptl); 2807 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2808 spin_unlock(vmf->ptl); 2809 } 2810 #endif 2811 pte_unmap(vmf->pte); 2812 vmf->pte = NULL; 2813 return same; 2814 } 2815 2816 /* 2817 * Return: 2818 * 0: copied succeeded 2819 * -EHWPOISON: copy failed due to hwpoison in source page 2820 * -EAGAIN: copied failed (some other reason) 2821 */ 2822 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2823 struct vm_fault *vmf) 2824 { 2825 int ret; 2826 void *kaddr; 2827 void __user *uaddr; 2828 struct vm_area_struct *vma = vmf->vma; 2829 struct mm_struct *mm = vma->vm_mm; 2830 unsigned long addr = vmf->address; 2831 2832 if (likely(src)) { 2833 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2834 memory_failure_queue(page_to_pfn(src), 0); 2835 return -EHWPOISON; 2836 } 2837 return 0; 2838 } 2839 2840 /* 2841 * If the source page was a PFN mapping, we don't have 2842 * a "struct page" for it. We do a best-effort copy by 2843 * just copying from the original user address. If that 2844 * fails, we just zero-fill it. Live with it. 2845 */ 2846 kaddr = kmap_atomic(dst); 2847 uaddr = (void __user *)(addr & PAGE_MASK); 2848 2849 /* 2850 * On architectures with software "accessed" bits, we would 2851 * take a double page fault, so mark it accessed here. 2852 */ 2853 vmf->pte = NULL; 2854 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2855 pte_t entry; 2856 2857 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2858 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2859 /* 2860 * Other thread has already handled the fault 2861 * and update local tlb only 2862 */ 2863 if (vmf->pte) 2864 update_mmu_tlb(vma, addr, vmf->pte); 2865 ret = -EAGAIN; 2866 goto pte_unlock; 2867 } 2868 2869 entry = pte_mkyoung(vmf->orig_pte); 2870 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2871 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2872 } 2873 2874 /* 2875 * This really shouldn't fail, because the page is there 2876 * in the page tables. But it might just be unreadable, 2877 * in which case we just give up and fill the result with 2878 * zeroes. 2879 */ 2880 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2881 if (vmf->pte) 2882 goto warn; 2883 2884 /* Re-validate under PTL if the page is still mapped */ 2885 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2886 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2887 /* The PTE changed under us, update local tlb */ 2888 if (vmf->pte) 2889 update_mmu_tlb(vma, addr, vmf->pte); 2890 ret = -EAGAIN; 2891 goto pte_unlock; 2892 } 2893 2894 /* 2895 * The same page can be mapped back since last copy attempt. 2896 * Try to copy again under PTL. 2897 */ 2898 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2899 /* 2900 * Give a warn in case there can be some obscure 2901 * use-case 2902 */ 2903 warn: 2904 WARN_ON_ONCE(1); 2905 clear_page(kaddr); 2906 } 2907 } 2908 2909 ret = 0; 2910 2911 pte_unlock: 2912 if (vmf->pte) 2913 pte_unmap_unlock(vmf->pte, vmf->ptl); 2914 kunmap_atomic(kaddr); 2915 flush_dcache_page(dst); 2916 2917 return ret; 2918 } 2919 2920 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2921 { 2922 struct file *vm_file = vma->vm_file; 2923 2924 if (vm_file) 2925 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2926 2927 /* 2928 * Special mappings (e.g. VDSO) do not have any file so fake 2929 * a default GFP_KERNEL for them. 2930 */ 2931 return GFP_KERNEL; 2932 } 2933 2934 /* 2935 * Notify the address space that the page is about to become writable so that 2936 * it can prohibit this or wait for the page to get into an appropriate state. 2937 * 2938 * We do this without the lock held, so that it can sleep if it needs to. 2939 */ 2940 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2941 { 2942 vm_fault_t ret; 2943 unsigned int old_flags = vmf->flags; 2944 2945 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2946 2947 if (vmf->vma->vm_file && 2948 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2949 return VM_FAULT_SIGBUS; 2950 2951 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2952 /* Restore original flags so that caller is not surprised */ 2953 vmf->flags = old_flags; 2954 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2955 return ret; 2956 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2957 folio_lock(folio); 2958 if (!folio->mapping) { 2959 folio_unlock(folio); 2960 return 0; /* retry */ 2961 } 2962 ret |= VM_FAULT_LOCKED; 2963 } else 2964 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2965 return ret; 2966 } 2967 2968 /* 2969 * Handle dirtying of a page in shared file mapping on a write fault. 2970 * 2971 * The function expects the page to be locked and unlocks it. 2972 */ 2973 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2974 { 2975 struct vm_area_struct *vma = vmf->vma; 2976 struct address_space *mapping; 2977 struct folio *folio = page_folio(vmf->page); 2978 bool dirtied; 2979 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2980 2981 dirtied = folio_mark_dirty(folio); 2982 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2983 /* 2984 * Take a local copy of the address_space - folio.mapping may be zeroed 2985 * by truncate after folio_unlock(). The address_space itself remains 2986 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2987 * release semantics to prevent the compiler from undoing this copying. 2988 */ 2989 mapping = folio_raw_mapping(folio); 2990 folio_unlock(folio); 2991 2992 if (!page_mkwrite) 2993 file_update_time(vma->vm_file); 2994 2995 /* 2996 * Throttle page dirtying rate down to writeback speed. 2997 * 2998 * mapping may be NULL here because some device drivers do not 2999 * set page.mapping but still dirty their pages 3000 * 3001 * Drop the mmap_lock before waiting on IO, if we can. The file 3002 * is pinning the mapping, as per above. 3003 */ 3004 if ((dirtied || page_mkwrite) && mapping) { 3005 struct file *fpin; 3006 3007 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3008 balance_dirty_pages_ratelimited(mapping); 3009 if (fpin) { 3010 fput(fpin); 3011 return VM_FAULT_COMPLETED; 3012 } 3013 } 3014 3015 return 0; 3016 } 3017 3018 /* 3019 * Handle write page faults for pages that can be reused in the current vma 3020 * 3021 * This can happen either due to the mapping being with the VM_SHARED flag, 3022 * or due to us being the last reference standing to the page. In either 3023 * case, all we need to do here is to mark the page as writable and update 3024 * any related book-keeping. 3025 */ 3026 static inline void wp_page_reuse(struct vm_fault *vmf) 3027 __releases(vmf->ptl) 3028 { 3029 struct vm_area_struct *vma = vmf->vma; 3030 struct page *page = vmf->page; 3031 pte_t entry; 3032 3033 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3034 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3035 3036 /* 3037 * Clear the pages cpupid information as the existing 3038 * information potentially belongs to a now completely 3039 * unrelated process. 3040 */ 3041 if (page) 3042 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3043 3044 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3045 entry = pte_mkyoung(vmf->orig_pte); 3046 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3047 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3048 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3049 pte_unmap_unlock(vmf->pte, vmf->ptl); 3050 count_vm_event(PGREUSE); 3051 } 3052 3053 /* 3054 * Handle the case of a page which we actually need to copy to a new page, 3055 * either due to COW or unsharing. 3056 * 3057 * Called with mmap_lock locked and the old page referenced, but 3058 * without the ptl held. 3059 * 3060 * High level logic flow: 3061 * 3062 * - Allocate a page, copy the content of the old page to the new one. 3063 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3064 * - Take the PTL. If the pte changed, bail out and release the allocated page 3065 * - If the pte is still the way we remember it, update the page table and all 3066 * relevant references. This includes dropping the reference the page-table 3067 * held to the old page, as well as updating the rmap. 3068 * - In any case, unlock the PTL and drop the reference we took to the old page. 3069 */ 3070 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3071 { 3072 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3073 struct vm_area_struct *vma = vmf->vma; 3074 struct mm_struct *mm = vma->vm_mm; 3075 struct folio *old_folio = NULL; 3076 struct folio *new_folio = NULL; 3077 pte_t entry; 3078 int page_copied = 0; 3079 struct mmu_notifier_range range; 3080 int ret; 3081 3082 delayacct_wpcopy_start(); 3083 3084 if (vmf->page) 3085 old_folio = page_folio(vmf->page); 3086 if (unlikely(anon_vma_prepare(vma))) 3087 goto oom; 3088 3089 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3090 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3091 if (!new_folio) 3092 goto oom; 3093 } else { 3094 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3095 vmf->address, false); 3096 if (!new_folio) 3097 goto oom; 3098 3099 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3100 if (ret) { 3101 /* 3102 * COW failed, if the fault was solved by other, 3103 * it's fine. If not, userspace would re-fault on 3104 * the same address and we will handle the fault 3105 * from the second attempt. 3106 * The -EHWPOISON case will not be retried. 3107 */ 3108 folio_put(new_folio); 3109 if (old_folio) 3110 folio_put(old_folio); 3111 3112 delayacct_wpcopy_end(); 3113 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3114 } 3115 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3116 } 3117 3118 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3119 goto oom_free_new; 3120 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3121 3122 __folio_mark_uptodate(new_folio); 3123 3124 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3125 vmf->address & PAGE_MASK, 3126 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3127 mmu_notifier_invalidate_range_start(&range); 3128 3129 /* 3130 * Re-check the pte - we dropped the lock 3131 */ 3132 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3133 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3134 if (old_folio) { 3135 if (!folio_test_anon(old_folio)) { 3136 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3137 inc_mm_counter(mm, MM_ANONPAGES); 3138 } 3139 } else { 3140 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3141 inc_mm_counter(mm, MM_ANONPAGES); 3142 } 3143 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3144 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3145 entry = pte_sw_mkyoung(entry); 3146 if (unlikely(unshare)) { 3147 if (pte_soft_dirty(vmf->orig_pte)) 3148 entry = pte_mksoft_dirty(entry); 3149 if (pte_uffd_wp(vmf->orig_pte)) 3150 entry = pte_mkuffd_wp(entry); 3151 } else { 3152 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3153 } 3154 3155 /* 3156 * Clear the pte entry and flush it first, before updating the 3157 * pte with the new entry, to keep TLBs on different CPUs in 3158 * sync. This code used to set the new PTE then flush TLBs, but 3159 * that left a window where the new PTE could be loaded into 3160 * some TLBs while the old PTE remains in others. 3161 */ 3162 ptep_clear_flush(vma, vmf->address, vmf->pte); 3163 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3164 folio_add_lru_vma(new_folio, vma); 3165 /* 3166 * We call the notify macro here because, when using secondary 3167 * mmu page tables (such as kvm shadow page tables), we want the 3168 * new page to be mapped directly into the secondary page table. 3169 */ 3170 BUG_ON(unshare && pte_write(entry)); 3171 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3172 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3173 if (old_folio) { 3174 /* 3175 * Only after switching the pte to the new page may 3176 * we remove the mapcount here. Otherwise another 3177 * process may come and find the rmap count decremented 3178 * before the pte is switched to the new page, and 3179 * "reuse" the old page writing into it while our pte 3180 * here still points into it and can be read by other 3181 * threads. 3182 * 3183 * The critical issue is to order this 3184 * page_remove_rmap with the ptp_clear_flush above. 3185 * Those stores are ordered by (if nothing else,) 3186 * the barrier present in the atomic_add_negative 3187 * in page_remove_rmap. 3188 * 3189 * Then the TLB flush in ptep_clear_flush ensures that 3190 * no process can access the old page before the 3191 * decremented mapcount is visible. And the old page 3192 * cannot be reused until after the decremented 3193 * mapcount is visible. So transitively, TLBs to 3194 * old page will be flushed before it can be reused. 3195 */ 3196 page_remove_rmap(vmf->page, vma, false); 3197 } 3198 3199 /* Free the old page.. */ 3200 new_folio = old_folio; 3201 page_copied = 1; 3202 pte_unmap_unlock(vmf->pte, vmf->ptl); 3203 } else if (vmf->pte) { 3204 update_mmu_tlb(vma, vmf->address, vmf->pte); 3205 pte_unmap_unlock(vmf->pte, vmf->ptl); 3206 } 3207 3208 mmu_notifier_invalidate_range_end(&range); 3209 3210 if (new_folio) 3211 folio_put(new_folio); 3212 if (old_folio) { 3213 if (page_copied) 3214 free_swap_cache(&old_folio->page); 3215 folio_put(old_folio); 3216 } 3217 3218 delayacct_wpcopy_end(); 3219 return 0; 3220 oom_free_new: 3221 folio_put(new_folio); 3222 oom: 3223 if (old_folio) 3224 folio_put(old_folio); 3225 3226 delayacct_wpcopy_end(); 3227 return VM_FAULT_OOM; 3228 } 3229 3230 /** 3231 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3232 * writeable once the page is prepared 3233 * 3234 * @vmf: structure describing the fault 3235 * 3236 * This function handles all that is needed to finish a write page fault in a 3237 * shared mapping due to PTE being read-only once the mapped page is prepared. 3238 * It handles locking of PTE and modifying it. 3239 * 3240 * The function expects the page to be locked or other protection against 3241 * concurrent faults / writeback (such as DAX radix tree locks). 3242 * 3243 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3244 * we acquired PTE lock. 3245 */ 3246 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3247 { 3248 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3249 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3250 &vmf->ptl); 3251 if (!vmf->pte) 3252 return VM_FAULT_NOPAGE; 3253 /* 3254 * We might have raced with another page fault while we released the 3255 * pte_offset_map_lock. 3256 */ 3257 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3258 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3259 pte_unmap_unlock(vmf->pte, vmf->ptl); 3260 return VM_FAULT_NOPAGE; 3261 } 3262 wp_page_reuse(vmf); 3263 return 0; 3264 } 3265 3266 /* 3267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3268 * mapping 3269 */ 3270 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3271 { 3272 struct vm_area_struct *vma = vmf->vma; 3273 3274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3275 vm_fault_t ret; 3276 3277 pte_unmap_unlock(vmf->pte, vmf->ptl); 3278 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3279 vma_end_read(vmf->vma); 3280 return VM_FAULT_RETRY; 3281 } 3282 3283 vmf->flags |= FAULT_FLAG_MKWRITE; 3284 ret = vma->vm_ops->pfn_mkwrite(vmf); 3285 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3286 return ret; 3287 return finish_mkwrite_fault(vmf); 3288 } 3289 wp_page_reuse(vmf); 3290 return 0; 3291 } 3292 3293 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3294 __releases(vmf->ptl) 3295 { 3296 struct vm_area_struct *vma = vmf->vma; 3297 vm_fault_t ret = 0; 3298 3299 folio_get(folio); 3300 3301 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3302 vm_fault_t tmp; 3303 3304 pte_unmap_unlock(vmf->pte, vmf->ptl); 3305 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3306 folio_put(folio); 3307 vma_end_read(vmf->vma); 3308 return VM_FAULT_RETRY; 3309 } 3310 3311 tmp = do_page_mkwrite(vmf, folio); 3312 if (unlikely(!tmp || (tmp & 3313 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3314 folio_put(folio); 3315 return tmp; 3316 } 3317 tmp = finish_mkwrite_fault(vmf); 3318 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3319 folio_unlock(folio); 3320 folio_put(folio); 3321 return tmp; 3322 } 3323 } else { 3324 wp_page_reuse(vmf); 3325 folio_lock(folio); 3326 } 3327 ret |= fault_dirty_shared_page(vmf); 3328 folio_put(folio); 3329 3330 return ret; 3331 } 3332 3333 /* 3334 * This routine handles present pages, when 3335 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3336 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3337 * (FAULT_FLAG_UNSHARE) 3338 * 3339 * It is done by copying the page to a new address and decrementing the 3340 * shared-page counter for the old page. 3341 * 3342 * Note that this routine assumes that the protection checks have been 3343 * done by the caller (the low-level page fault routine in most cases). 3344 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3345 * done any necessary COW. 3346 * 3347 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3348 * though the page will change only once the write actually happens. This 3349 * avoids a few races, and potentially makes it more efficient. 3350 * 3351 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3352 * but allow concurrent faults), with pte both mapped and locked. 3353 * We return with mmap_lock still held, but pte unmapped and unlocked. 3354 */ 3355 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3356 __releases(vmf->ptl) 3357 { 3358 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3359 struct vm_area_struct *vma = vmf->vma; 3360 struct folio *folio = NULL; 3361 3362 if (likely(!unshare)) { 3363 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3364 pte_unmap_unlock(vmf->pte, vmf->ptl); 3365 return handle_userfault(vmf, VM_UFFD_WP); 3366 } 3367 3368 /* 3369 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3370 * is flushed in this case before copying. 3371 */ 3372 if (unlikely(userfaultfd_wp(vmf->vma) && 3373 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3374 flush_tlb_page(vmf->vma, vmf->address); 3375 } 3376 3377 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3378 3379 if (vmf->page) 3380 folio = page_folio(vmf->page); 3381 3382 /* 3383 * Shared mapping: we are guaranteed to have VM_WRITE and 3384 * FAULT_FLAG_WRITE set at this point. 3385 */ 3386 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3387 /* 3388 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3389 * VM_PFNMAP VMA. 3390 * 3391 * We should not cow pages in a shared writeable mapping. 3392 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3393 */ 3394 if (!vmf->page) 3395 return wp_pfn_shared(vmf); 3396 return wp_page_shared(vmf, folio); 3397 } 3398 3399 /* 3400 * Private mapping: create an exclusive anonymous page copy if reuse 3401 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3402 */ 3403 if (folio && folio_test_anon(folio)) { 3404 /* 3405 * If the page is exclusive to this process we must reuse the 3406 * page without further checks. 3407 */ 3408 if (PageAnonExclusive(vmf->page)) 3409 goto reuse; 3410 3411 /* 3412 * We have to verify under folio lock: these early checks are 3413 * just an optimization to avoid locking the folio and freeing 3414 * the swapcache if there is little hope that we can reuse. 3415 * 3416 * KSM doesn't necessarily raise the folio refcount. 3417 */ 3418 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3419 goto copy; 3420 if (!folio_test_lru(folio)) 3421 /* 3422 * We cannot easily detect+handle references from 3423 * remote LRU caches or references to LRU folios. 3424 */ 3425 lru_add_drain(); 3426 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3427 goto copy; 3428 if (!folio_trylock(folio)) 3429 goto copy; 3430 if (folio_test_swapcache(folio)) 3431 folio_free_swap(folio); 3432 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3433 folio_unlock(folio); 3434 goto copy; 3435 } 3436 /* 3437 * Ok, we've got the only folio reference from our mapping 3438 * and the folio is locked, it's dark out, and we're wearing 3439 * sunglasses. Hit it. 3440 */ 3441 page_move_anon_rmap(vmf->page, vma); 3442 folio_unlock(folio); 3443 reuse: 3444 if (unlikely(unshare)) { 3445 pte_unmap_unlock(vmf->pte, vmf->ptl); 3446 return 0; 3447 } 3448 wp_page_reuse(vmf); 3449 return 0; 3450 } 3451 copy: 3452 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { 3453 pte_unmap_unlock(vmf->pte, vmf->ptl); 3454 vma_end_read(vmf->vma); 3455 return VM_FAULT_RETRY; 3456 } 3457 3458 /* 3459 * Ok, we need to copy. Oh, well.. 3460 */ 3461 if (folio) 3462 folio_get(folio); 3463 3464 pte_unmap_unlock(vmf->pte, vmf->ptl); 3465 #ifdef CONFIG_KSM 3466 if (folio && folio_test_ksm(folio)) 3467 count_vm_event(COW_KSM); 3468 #endif 3469 return wp_page_copy(vmf); 3470 } 3471 3472 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3473 unsigned long start_addr, unsigned long end_addr, 3474 struct zap_details *details) 3475 { 3476 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3477 } 3478 3479 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3480 pgoff_t first_index, 3481 pgoff_t last_index, 3482 struct zap_details *details) 3483 { 3484 struct vm_area_struct *vma; 3485 pgoff_t vba, vea, zba, zea; 3486 3487 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3488 vba = vma->vm_pgoff; 3489 vea = vba + vma_pages(vma) - 1; 3490 zba = max(first_index, vba); 3491 zea = min(last_index, vea); 3492 3493 unmap_mapping_range_vma(vma, 3494 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3495 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3496 details); 3497 } 3498 } 3499 3500 /** 3501 * unmap_mapping_folio() - Unmap single folio from processes. 3502 * @folio: The locked folio to be unmapped. 3503 * 3504 * Unmap this folio from any userspace process which still has it mmaped. 3505 * Typically, for efficiency, the range of nearby pages has already been 3506 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3507 * truncation or invalidation holds the lock on a folio, it may find that 3508 * the page has been remapped again: and then uses unmap_mapping_folio() 3509 * to unmap it finally. 3510 */ 3511 void unmap_mapping_folio(struct folio *folio) 3512 { 3513 struct address_space *mapping = folio->mapping; 3514 struct zap_details details = { }; 3515 pgoff_t first_index; 3516 pgoff_t last_index; 3517 3518 VM_BUG_ON(!folio_test_locked(folio)); 3519 3520 first_index = folio->index; 3521 last_index = folio_next_index(folio) - 1; 3522 3523 details.even_cows = false; 3524 details.single_folio = folio; 3525 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3526 3527 i_mmap_lock_read(mapping); 3528 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3529 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3530 last_index, &details); 3531 i_mmap_unlock_read(mapping); 3532 } 3533 3534 /** 3535 * unmap_mapping_pages() - Unmap pages from processes. 3536 * @mapping: The address space containing pages to be unmapped. 3537 * @start: Index of first page to be unmapped. 3538 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3539 * @even_cows: Whether to unmap even private COWed pages. 3540 * 3541 * Unmap the pages in this address space from any userspace process which 3542 * has them mmaped. Generally, you want to remove COWed pages as well when 3543 * a file is being truncated, but not when invalidating pages from the page 3544 * cache. 3545 */ 3546 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3547 pgoff_t nr, bool even_cows) 3548 { 3549 struct zap_details details = { }; 3550 pgoff_t first_index = start; 3551 pgoff_t last_index = start + nr - 1; 3552 3553 details.even_cows = even_cows; 3554 if (last_index < first_index) 3555 last_index = ULONG_MAX; 3556 3557 i_mmap_lock_read(mapping); 3558 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3559 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3560 last_index, &details); 3561 i_mmap_unlock_read(mapping); 3562 } 3563 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3564 3565 /** 3566 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3567 * address_space corresponding to the specified byte range in the underlying 3568 * file. 3569 * 3570 * @mapping: the address space containing mmaps to be unmapped. 3571 * @holebegin: byte in first page to unmap, relative to the start of 3572 * the underlying file. This will be rounded down to a PAGE_SIZE 3573 * boundary. Note that this is different from truncate_pagecache(), which 3574 * must keep the partial page. In contrast, we must get rid of 3575 * partial pages. 3576 * @holelen: size of prospective hole in bytes. This will be rounded 3577 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3578 * end of the file. 3579 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3580 * but 0 when invalidating pagecache, don't throw away private data. 3581 */ 3582 void unmap_mapping_range(struct address_space *mapping, 3583 loff_t const holebegin, loff_t const holelen, int even_cows) 3584 { 3585 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3586 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3587 3588 /* Check for overflow. */ 3589 if (sizeof(holelen) > sizeof(hlen)) { 3590 long long holeend = 3591 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3592 if (holeend & ~(long long)ULONG_MAX) 3593 hlen = ULONG_MAX - hba + 1; 3594 } 3595 3596 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3597 } 3598 EXPORT_SYMBOL(unmap_mapping_range); 3599 3600 /* 3601 * Restore a potential device exclusive pte to a working pte entry 3602 */ 3603 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3604 { 3605 struct folio *folio = page_folio(vmf->page); 3606 struct vm_area_struct *vma = vmf->vma; 3607 struct mmu_notifier_range range; 3608 vm_fault_t ret; 3609 3610 /* 3611 * We need a reference to lock the folio because we don't hold 3612 * the PTL so a racing thread can remove the device-exclusive 3613 * entry and unmap it. If the folio is free the entry must 3614 * have been removed already. If it happens to have already 3615 * been re-allocated after being freed all we do is lock and 3616 * unlock it. 3617 */ 3618 if (!folio_try_get(folio)) 3619 return 0; 3620 3621 ret = folio_lock_or_retry(folio, vmf); 3622 if (ret) { 3623 folio_put(folio); 3624 return ret; 3625 } 3626 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3627 vma->vm_mm, vmf->address & PAGE_MASK, 3628 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3629 mmu_notifier_invalidate_range_start(&range); 3630 3631 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3632 &vmf->ptl); 3633 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3634 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3635 3636 if (vmf->pte) 3637 pte_unmap_unlock(vmf->pte, vmf->ptl); 3638 folio_unlock(folio); 3639 folio_put(folio); 3640 3641 mmu_notifier_invalidate_range_end(&range); 3642 return 0; 3643 } 3644 3645 static inline bool should_try_to_free_swap(struct folio *folio, 3646 struct vm_area_struct *vma, 3647 unsigned int fault_flags) 3648 { 3649 if (!folio_test_swapcache(folio)) 3650 return false; 3651 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3652 folio_test_mlocked(folio)) 3653 return true; 3654 /* 3655 * If we want to map a page that's in the swapcache writable, we 3656 * have to detect via the refcount if we're really the exclusive 3657 * user. Try freeing the swapcache to get rid of the swapcache 3658 * reference only in case it's likely that we'll be the exlusive user. 3659 */ 3660 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3661 folio_ref_count(folio) == 2; 3662 } 3663 3664 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3665 { 3666 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3667 vmf->address, &vmf->ptl); 3668 if (!vmf->pte) 3669 return 0; 3670 /* 3671 * Be careful so that we will only recover a special uffd-wp pte into a 3672 * none pte. Otherwise it means the pte could have changed, so retry. 3673 * 3674 * This should also cover the case where e.g. the pte changed 3675 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3676 * So is_pte_marker() check is not enough to safely drop the pte. 3677 */ 3678 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3679 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3680 pte_unmap_unlock(vmf->pte, vmf->ptl); 3681 return 0; 3682 } 3683 3684 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3685 { 3686 if (vma_is_anonymous(vmf->vma)) 3687 return do_anonymous_page(vmf); 3688 else 3689 return do_fault(vmf); 3690 } 3691 3692 /* 3693 * This is actually a page-missing access, but with uffd-wp special pte 3694 * installed. It means this pte was wr-protected before being unmapped. 3695 */ 3696 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3697 { 3698 /* 3699 * Just in case there're leftover special ptes even after the region 3700 * got unregistered - we can simply clear them. 3701 */ 3702 if (unlikely(!userfaultfd_wp(vmf->vma))) 3703 return pte_marker_clear(vmf); 3704 3705 return do_pte_missing(vmf); 3706 } 3707 3708 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3709 { 3710 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3711 unsigned long marker = pte_marker_get(entry); 3712 3713 /* 3714 * PTE markers should never be empty. If anything weird happened, 3715 * the best thing to do is to kill the process along with its mm. 3716 */ 3717 if (WARN_ON_ONCE(!marker)) 3718 return VM_FAULT_SIGBUS; 3719 3720 /* Higher priority than uffd-wp when data corrupted */ 3721 if (marker & PTE_MARKER_POISONED) 3722 return VM_FAULT_HWPOISON; 3723 3724 if (pte_marker_entry_uffd_wp(entry)) 3725 return pte_marker_handle_uffd_wp(vmf); 3726 3727 /* This is an unknown pte marker */ 3728 return VM_FAULT_SIGBUS; 3729 } 3730 3731 /* 3732 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3733 * but allow concurrent faults), and pte mapped but not yet locked. 3734 * We return with pte unmapped and unlocked. 3735 * 3736 * We return with the mmap_lock locked or unlocked in the same cases 3737 * as does filemap_fault(). 3738 */ 3739 vm_fault_t do_swap_page(struct vm_fault *vmf) 3740 { 3741 struct vm_area_struct *vma = vmf->vma; 3742 struct folio *swapcache, *folio = NULL; 3743 struct page *page; 3744 struct swap_info_struct *si = NULL; 3745 rmap_t rmap_flags = RMAP_NONE; 3746 bool need_clear_cache = false; 3747 bool exclusive = false; 3748 swp_entry_t entry; 3749 pte_t pte; 3750 vm_fault_t ret = 0; 3751 void *shadow = NULL; 3752 3753 if (!pte_unmap_same(vmf)) 3754 goto out; 3755 3756 entry = pte_to_swp_entry(vmf->orig_pte); 3757 if (unlikely(non_swap_entry(entry))) { 3758 if (is_migration_entry(entry)) { 3759 migration_entry_wait(vma->vm_mm, vmf->pmd, 3760 vmf->address); 3761 } else if (is_device_exclusive_entry(entry)) { 3762 vmf->page = pfn_swap_entry_to_page(entry); 3763 ret = remove_device_exclusive_entry(vmf); 3764 } else if (is_device_private_entry(entry)) { 3765 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3766 /* 3767 * migrate_to_ram is not yet ready to operate 3768 * under VMA lock. 3769 */ 3770 vma_end_read(vma); 3771 ret = VM_FAULT_RETRY; 3772 goto out; 3773 } 3774 3775 vmf->page = pfn_swap_entry_to_page(entry); 3776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3777 vmf->address, &vmf->ptl); 3778 if (unlikely(!vmf->pte || 3779 !pte_same(ptep_get(vmf->pte), 3780 vmf->orig_pte))) 3781 goto unlock; 3782 3783 /* 3784 * Get a page reference while we know the page can't be 3785 * freed. 3786 */ 3787 get_page(vmf->page); 3788 pte_unmap_unlock(vmf->pte, vmf->ptl); 3789 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3790 put_page(vmf->page); 3791 } else if (is_hwpoison_entry(entry)) { 3792 ret = VM_FAULT_HWPOISON; 3793 } else if (is_pte_marker_entry(entry)) { 3794 ret = handle_pte_marker(vmf); 3795 } else { 3796 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3797 ret = VM_FAULT_SIGBUS; 3798 } 3799 goto out; 3800 } 3801 3802 /* Prevent swapoff from happening to us. */ 3803 si = get_swap_device(entry); 3804 if (unlikely(!si)) 3805 goto out; 3806 3807 folio = swap_cache_get_folio(entry, vma, vmf->address); 3808 if (folio) 3809 page = folio_file_page(folio, swp_offset(entry)); 3810 swapcache = folio; 3811 3812 if (!folio) { 3813 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3814 __swap_count(entry) == 1) { 3815 /* 3816 * Prevent parallel swapin from proceeding with 3817 * the cache flag. Otherwise, another thread may 3818 * finish swapin first, free the entry, and swapout 3819 * reusing the same entry. It's undetectable as 3820 * pte_same() returns true due to entry reuse. 3821 */ 3822 if (swapcache_prepare(entry)) { 3823 /* Relax a bit to prevent rapid repeated page faults */ 3824 schedule_timeout_uninterruptible(1); 3825 goto out; 3826 } 3827 need_clear_cache = true; 3828 3829 /* skip swapcache */ 3830 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3831 vma, vmf->address, false); 3832 page = &folio->page; 3833 if (folio) { 3834 __folio_set_locked(folio); 3835 __folio_set_swapbacked(folio); 3836 3837 if (mem_cgroup_swapin_charge_folio(folio, 3838 vma->vm_mm, GFP_KERNEL, 3839 entry)) { 3840 ret = VM_FAULT_OOM; 3841 goto out_page; 3842 } 3843 mem_cgroup_swapin_uncharge_swap(entry); 3844 3845 shadow = get_shadow_from_swap_cache(entry); 3846 if (shadow) 3847 workingset_refault(folio, shadow); 3848 3849 folio_add_lru(folio); 3850 3851 /* To provide entry to swap_readpage() */ 3852 folio->swap = entry; 3853 swap_readpage(page, true, NULL); 3854 folio->private = NULL; 3855 } 3856 } else { 3857 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3858 vmf); 3859 if (page) 3860 folio = page_folio(page); 3861 swapcache = folio; 3862 } 3863 3864 if (!folio) { 3865 /* 3866 * Back out if somebody else faulted in this pte 3867 * while we released the pte lock. 3868 */ 3869 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3870 vmf->address, &vmf->ptl); 3871 if (likely(vmf->pte && 3872 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3873 ret = VM_FAULT_OOM; 3874 goto unlock; 3875 } 3876 3877 /* Had to read the page from swap area: Major fault */ 3878 ret = VM_FAULT_MAJOR; 3879 count_vm_event(PGMAJFAULT); 3880 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3881 } else if (PageHWPoison(page)) { 3882 /* 3883 * hwpoisoned dirty swapcache pages are kept for killing 3884 * owner processes (which may be unknown at hwpoison time) 3885 */ 3886 ret = VM_FAULT_HWPOISON; 3887 goto out_release; 3888 } 3889 3890 ret |= folio_lock_or_retry(folio, vmf); 3891 if (ret & VM_FAULT_RETRY) 3892 goto out_release; 3893 3894 if (swapcache) { 3895 /* 3896 * Make sure folio_free_swap() or swapoff did not release the 3897 * swapcache from under us. The page pin, and pte_same test 3898 * below, are not enough to exclude that. Even if it is still 3899 * swapcache, we need to check that the page's swap has not 3900 * changed. 3901 */ 3902 if (unlikely(!folio_test_swapcache(folio) || 3903 page_swap_entry(page).val != entry.val)) 3904 goto out_page; 3905 3906 /* 3907 * KSM sometimes has to copy on read faults, for example, if 3908 * page->index of !PageKSM() pages would be nonlinear inside the 3909 * anon VMA -- PageKSM() is lost on actual swapout. 3910 */ 3911 page = ksm_might_need_to_copy(page, vma, vmf->address); 3912 if (unlikely(!page)) { 3913 ret = VM_FAULT_OOM; 3914 goto out_page; 3915 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3916 ret = VM_FAULT_HWPOISON; 3917 goto out_page; 3918 } 3919 folio = page_folio(page); 3920 3921 /* 3922 * If we want to map a page that's in the swapcache writable, we 3923 * have to detect via the refcount if we're really the exclusive 3924 * owner. Try removing the extra reference from the local LRU 3925 * caches if required. 3926 */ 3927 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3928 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3929 lru_add_drain(); 3930 } 3931 3932 folio_throttle_swaprate(folio, GFP_KERNEL); 3933 3934 /* 3935 * Back out if somebody else already faulted in this pte. 3936 */ 3937 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3938 &vmf->ptl); 3939 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3940 goto out_nomap; 3941 3942 if (unlikely(!folio_test_uptodate(folio))) { 3943 ret = VM_FAULT_SIGBUS; 3944 goto out_nomap; 3945 } 3946 3947 /* 3948 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3949 * must never point at an anonymous page in the swapcache that is 3950 * PG_anon_exclusive. Sanity check that this holds and especially, that 3951 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3952 * check after taking the PT lock and making sure that nobody 3953 * concurrently faulted in this page and set PG_anon_exclusive. 3954 */ 3955 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3956 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3957 3958 /* 3959 * Check under PT lock (to protect against concurrent fork() sharing 3960 * the swap entry concurrently) for certainly exclusive pages. 3961 */ 3962 if (!folio_test_ksm(folio)) { 3963 exclusive = pte_swp_exclusive(vmf->orig_pte); 3964 if (folio != swapcache) { 3965 /* 3966 * We have a fresh page that is not exposed to the 3967 * swapcache -> certainly exclusive. 3968 */ 3969 exclusive = true; 3970 } else if (exclusive && folio_test_writeback(folio) && 3971 data_race(si->flags & SWP_STABLE_WRITES)) { 3972 /* 3973 * This is tricky: not all swap backends support 3974 * concurrent page modifications while under writeback. 3975 * 3976 * So if we stumble over such a page in the swapcache 3977 * we must not set the page exclusive, otherwise we can 3978 * map it writable without further checks and modify it 3979 * while still under writeback. 3980 * 3981 * For these problematic swap backends, simply drop the 3982 * exclusive marker: this is perfectly fine as we start 3983 * writeback only if we fully unmapped the page and 3984 * there are no unexpected references on the page after 3985 * unmapping succeeded. After fully unmapped, no 3986 * further GUP references (FOLL_GET and FOLL_PIN) can 3987 * appear, so dropping the exclusive marker and mapping 3988 * it only R/O is fine. 3989 */ 3990 exclusive = false; 3991 } 3992 } 3993 3994 /* 3995 * Some architectures may have to restore extra metadata to the page 3996 * when reading from swap. This metadata may be indexed by swap entry 3997 * so this must be called before swap_free(). 3998 */ 3999 arch_swap_restore(entry, folio); 4000 4001 /* 4002 * Remove the swap entry and conditionally try to free up the swapcache. 4003 * We're already holding a reference on the page but haven't mapped it 4004 * yet. 4005 */ 4006 swap_free(entry); 4007 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4008 folio_free_swap(folio); 4009 4010 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4011 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4012 pte = mk_pte(page, vma->vm_page_prot); 4013 4014 /* 4015 * Same logic as in do_wp_page(); however, optimize for pages that are 4016 * certainly not shared either because we just allocated them without 4017 * exposing them to the swapcache or because the swap entry indicates 4018 * exclusivity. 4019 */ 4020 if (!folio_test_ksm(folio) && 4021 (exclusive || folio_ref_count(folio) == 1)) { 4022 if (vmf->flags & FAULT_FLAG_WRITE) { 4023 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4024 vmf->flags &= ~FAULT_FLAG_WRITE; 4025 } 4026 rmap_flags |= RMAP_EXCLUSIVE; 4027 } 4028 flush_icache_page(vma, page); 4029 if (pte_swp_soft_dirty(vmf->orig_pte)) 4030 pte = pte_mksoft_dirty(pte); 4031 if (pte_swp_uffd_wp(vmf->orig_pte)) 4032 pte = pte_mkuffd_wp(pte); 4033 vmf->orig_pte = pte; 4034 4035 /* ksm created a completely new copy */ 4036 if (unlikely(folio != swapcache && swapcache)) { 4037 page_add_new_anon_rmap(page, vma, vmf->address); 4038 folio_add_lru_vma(folio, vma); 4039 } else { 4040 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4041 } 4042 4043 VM_BUG_ON(!folio_test_anon(folio) || 4044 (pte_write(pte) && !PageAnonExclusive(page))); 4045 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4046 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4047 4048 folio_unlock(folio); 4049 if (folio != swapcache && swapcache) { 4050 /* 4051 * Hold the lock to avoid the swap entry to be reused 4052 * until we take the PT lock for the pte_same() check 4053 * (to avoid false positives from pte_same). For 4054 * further safety release the lock after the swap_free 4055 * so that the swap count won't change under a 4056 * parallel locked swapcache. 4057 */ 4058 folio_unlock(swapcache); 4059 folio_put(swapcache); 4060 } 4061 4062 if (vmf->flags & FAULT_FLAG_WRITE) { 4063 ret |= do_wp_page(vmf); 4064 if (ret & VM_FAULT_ERROR) 4065 ret &= VM_FAULT_ERROR; 4066 goto out; 4067 } 4068 4069 /* No need to invalidate - it was non-present before */ 4070 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4071 unlock: 4072 if (vmf->pte) 4073 pte_unmap_unlock(vmf->pte, vmf->ptl); 4074 out: 4075 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4076 if (need_clear_cache) 4077 swapcache_clear(si, entry); 4078 if (si) 4079 put_swap_device(si); 4080 return ret; 4081 out_nomap: 4082 if (vmf->pte) 4083 pte_unmap_unlock(vmf->pte, vmf->ptl); 4084 out_page: 4085 folio_unlock(folio); 4086 out_release: 4087 folio_put(folio); 4088 if (folio != swapcache && swapcache) { 4089 folio_unlock(swapcache); 4090 folio_put(swapcache); 4091 } 4092 if (need_clear_cache) 4093 swapcache_clear(si, entry); 4094 if (si) 4095 put_swap_device(si); 4096 return ret; 4097 } 4098 4099 /* 4100 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4101 * but allow concurrent faults), and pte mapped but not yet locked. 4102 * We return with mmap_lock still held, but pte unmapped and unlocked. 4103 */ 4104 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4105 { 4106 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4107 struct vm_area_struct *vma = vmf->vma; 4108 struct folio *folio; 4109 vm_fault_t ret = 0; 4110 pte_t entry; 4111 4112 /* File mapping without ->vm_ops ? */ 4113 if (vma->vm_flags & VM_SHARED) 4114 return VM_FAULT_SIGBUS; 4115 4116 /* 4117 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4118 * be distinguished from a transient failure of pte_offset_map(). 4119 */ 4120 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4121 return VM_FAULT_OOM; 4122 4123 /* Use the zero-page for reads */ 4124 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4125 !mm_forbids_zeropage(vma->vm_mm)) { 4126 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4127 vma->vm_page_prot)); 4128 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4129 vmf->address, &vmf->ptl); 4130 if (!vmf->pte) 4131 goto unlock; 4132 if (vmf_pte_changed(vmf)) { 4133 update_mmu_tlb(vma, vmf->address, vmf->pte); 4134 goto unlock; 4135 } 4136 ret = check_stable_address_space(vma->vm_mm); 4137 if (ret) 4138 goto unlock; 4139 /* Deliver the page fault to userland, check inside PT lock */ 4140 if (userfaultfd_missing(vma)) { 4141 pte_unmap_unlock(vmf->pte, vmf->ptl); 4142 return handle_userfault(vmf, VM_UFFD_MISSING); 4143 } 4144 goto setpte; 4145 } 4146 4147 /* Allocate our own private page. */ 4148 if (unlikely(anon_vma_prepare(vma))) 4149 goto oom; 4150 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4151 if (!folio) 4152 goto oom; 4153 4154 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4155 goto oom_free_page; 4156 folio_throttle_swaprate(folio, GFP_KERNEL); 4157 4158 /* 4159 * The memory barrier inside __folio_mark_uptodate makes sure that 4160 * preceding stores to the page contents become visible before 4161 * the set_pte_at() write. 4162 */ 4163 __folio_mark_uptodate(folio); 4164 4165 entry = mk_pte(&folio->page, vma->vm_page_prot); 4166 entry = pte_sw_mkyoung(entry); 4167 if (vma->vm_flags & VM_WRITE) 4168 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4169 4170 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4171 &vmf->ptl); 4172 if (!vmf->pte) 4173 goto release; 4174 if (vmf_pte_changed(vmf)) { 4175 update_mmu_tlb(vma, vmf->address, vmf->pte); 4176 goto release; 4177 } 4178 4179 ret = check_stable_address_space(vma->vm_mm); 4180 if (ret) 4181 goto release; 4182 4183 /* Deliver the page fault to userland, check inside PT lock */ 4184 if (userfaultfd_missing(vma)) { 4185 pte_unmap_unlock(vmf->pte, vmf->ptl); 4186 folio_put(folio); 4187 return handle_userfault(vmf, VM_UFFD_MISSING); 4188 } 4189 4190 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4191 folio_add_new_anon_rmap(folio, vma, vmf->address); 4192 folio_add_lru_vma(folio, vma); 4193 setpte: 4194 if (uffd_wp) 4195 entry = pte_mkuffd_wp(entry); 4196 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4197 4198 /* No need to invalidate - it was non-present before */ 4199 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4200 unlock: 4201 if (vmf->pte) 4202 pte_unmap_unlock(vmf->pte, vmf->ptl); 4203 return ret; 4204 release: 4205 folio_put(folio); 4206 goto unlock; 4207 oom_free_page: 4208 folio_put(folio); 4209 oom: 4210 return VM_FAULT_OOM; 4211 } 4212 4213 /* 4214 * The mmap_lock must have been held on entry, and may have been 4215 * released depending on flags and vma->vm_ops->fault() return value. 4216 * See filemap_fault() and __lock_page_retry(). 4217 */ 4218 static vm_fault_t __do_fault(struct vm_fault *vmf) 4219 { 4220 struct vm_area_struct *vma = vmf->vma; 4221 vm_fault_t ret; 4222 4223 /* 4224 * Preallocate pte before we take page_lock because this might lead to 4225 * deadlocks for memcg reclaim which waits for pages under writeback: 4226 * lock_page(A) 4227 * SetPageWriteback(A) 4228 * unlock_page(A) 4229 * lock_page(B) 4230 * lock_page(B) 4231 * pte_alloc_one 4232 * shrink_page_list 4233 * wait_on_page_writeback(A) 4234 * SetPageWriteback(B) 4235 * unlock_page(B) 4236 * # flush A, B to clear the writeback 4237 */ 4238 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4240 if (!vmf->prealloc_pte) 4241 return VM_FAULT_OOM; 4242 } 4243 4244 ret = vma->vm_ops->fault(vmf); 4245 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4246 VM_FAULT_DONE_COW))) 4247 return ret; 4248 4249 if (unlikely(PageHWPoison(vmf->page))) { 4250 struct page *page = vmf->page; 4251 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4252 if (ret & VM_FAULT_LOCKED) { 4253 if (page_mapped(page)) 4254 unmap_mapping_pages(page_mapping(page), 4255 page->index, 1, false); 4256 /* Retry if a clean page was removed from the cache. */ 4257 if (invalidate_inode_page(page)) 4258 poisonret = VM_FAULT_NOPAGE; 4259 unlock_page(page); 4260 } 4261 put_page(page); 4262 vmf->page = NULL; 4263 return poisonret; 4264 } 4265 4266 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4267 lock_page(vmf->page); 4268 else 4269 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4270 4271 return ret; 4272 } 4273 4274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4275 static void deposit_prealloc_pte(struct vm_fault *vmf) 4276 { 4277 struct vm_area_struct *vma = vmf->vma; 4278 4279 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4280 /* 4281 * We are going to consume the prealloc table, 4282 * count that as nr_ptes. 4283 */ 4284 mm_inc_nr_ptes(vma->vm_mm); 4285 vmf->prealloc_pte = NULL; 4286 } 4287 4288 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4289 { 4290 struct vm_area_struct *vma = vmf->vma; 4291 bool write = vmf->flags & FAULT_FLAG_WRITE; 4292 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4293 pmd_t entry; 4294 vm_fault_t ret = VM_FAULT_FALLBACK; 4295 4296 /* 4297 * It is too late to allocate a small folio, we already have a large 4298 * folio in the pagecache: especially s390 KVM cannot tolerate any 4299 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 4300 * PMD mappings if THPs are disabled. 4301 */ 4302 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 4303 return ret; 4304 4305 if (!transhuge_vma_suitable(vma, haddr)) 4306 return ret; 4307 4308 page = compound_head(page); 4309 if (compound_order(page) != HPAGE_PMD_ORDER) 4310 return ret; 4311 4312 /* 4313 * Just backoff if any subpage of a THP is corrupted otherwise 4314 * the corrupted page may mapped by PMD silently to escape the 4315 * check. This kind of THP just can be PTE mapped. Access to 4316 * the corrupted subpage should trigger SIGBUS as expected. 4317 */ 4318 if (unlikely(PageHasHWPoisoned(page))) 4319 return ret; 4320 4321 /* 4322 * Archs like ppc64 need additional space to store information 4323 * related to pte entry. Use the preallocated table for that. 4324 */ 4325 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4326 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4327 if (!vmf->prealloc_pte) 4328 return VM_FAULT_OOM; 4329 } 4330 4331 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4332 if (unlikely(!pmd_none(*vmf->pmd))) 4333 goto out; 4334 4335 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4336 4337 entry = mk_huge_pmd(page, vma->vm_page_prot); 4338 if (write) 4339 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4340 4341 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4342 page_add_file_rmap(page, vma, true); 4343 4344 /* 4345 * deposit and withdraw with pmd lock held 4346 */ 4347 if (arch_needs_pgtable_deposit()) 4348 deposit_prealloc_pte(vmf); 4349 4350 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4351 4352 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4353 4354 /* fault is handled */ 4355 ret = 0; 4356 count_vm_event(THP_FILE_MAPPED); 4357 out: 4358 spin_unlock(vmf->ptl); 4359 return ret; 4360 } 4361 #else 4362 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4363 { 4364 return VM_FAULT_FALLBACK; 4365 } 4366 #endif 4367 4368 /** 4369 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4370 * @vmf: Fault decription. 4371 * @folio: The folio that contains @page. 4372 * @page: The first page to create a PTE for. 4373 * @nr: The number of PTEs to create. 4374 * @addr: The first address to create a PTE for. 4375 */ 4376 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4377 struct page *page, unsigned int nr, unsigned long addr) 4378 { 4379 struct vm_area_struct *vma = vmf->vma; 4380 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4381 bool write = vmf->flags & FAULT_FLAG_WRITE; 4382 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 4383 pte_t entry; 4384 4385 flush_icache_pages(vma, page, nr); 4386 entry = mk_pte(page, vma->vm_page_prot); 4387 4388 if (prefault && arch_wants_old_prefaulted_pte()) 4389 entry = pte_mkold(entry); 4390 else 4391 entry = pte_sw_mkyoung(entry); 4392 4393 if (write) 4394 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4395 if (unlikely(uffd_wp)) 4396 entry = pte_mkuffd_wp(entry); 4397 /* copy-on-write page */ 4398 if (write && !(vma->vm_flags & VM_SHARED)) { 4399 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4400 VM_BUG_ON_FOLIO(nr != 1, folio); 4401 folio_add_new_anon_rmap(folio, vma, addr); 4402 folio_add_lru_vma(folio, vma); 4403 } else { 4404 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4405 folio_add_file_rmap_range(folio, page, nr, vma, false); 4406 } 4407 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4408 4409 /* no need to invalidate: a not-present page won't be cached */ 4410 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4411 } 4412 4413 static bool vmf_pte_changed(struct vm_fault *vmf) 4414 { 4415 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4416 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4417 4418 return !pte_none(ptep_get(vmf->pte)); 4419 } 4420 4421 /** 4422 * finish_fault - finish page fault once we have prepared the page to fault 4423 * 4424 * @vmf: structure describing the fault 4425 * 4426 * This function handles all that is needed to finish a page fault once the 4427 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4428 * given page, adds reverse page mapping, handles memcg charges and LRU 4429 * addition. 4430 * 4431 * The function expects the page to be locked and on success it consumes a 4432 * reference of a page being mapped (for the PTE which maps it). 4433 * 4434 * Return: %0 on success, %VM_FAULT_ code in case of error. 4435 */ 4436 vm_fault_t finish_fault(struct vm_fault *vmf) 4437 { 4438 struct vm_area_struct *vma = vmf->vma; 4439 struct page *page; 4440 vm_fault_t ret; 4441 4442 /* Did we COW the page? */ 4443 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4444 page = vmf->cow_page; 4445 else 4446 page = vmf->page; 4447 4448 /* 4449 * check even for read faults because we might have lost our CoWed 4450 * page 4451 */ 4452 if (!(vma->vm_flags & VM_SHARED)) { 4453 ret = check_stable_address_space(vma->vm_mm); 4454 if (ret) 4455 return ret; 4456 } 4457 4458 if (pmd_none(*vmf->pmd)) { 4459 if (PageTransCompound(page)) { 4460 ret = do_set_pmd(vmf, page); 4461 if (ret != VM_FAULT_FALLBACK) 4462 return ret; 4463 } 4464 4465 if (vmf->prealloc_pte) 4466 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4467 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4468 return VM_FAULT_OOM; 4469 } 4470 4471 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4472 vmf->address, &vmf->ptl); 4473 if (!vmf->pte) 4474 return VM_FAULT_NOPAGE; 4475 4476 /* Re-check under ptl */ 4477 if (likely(!vmf_pte_changed(vmf))) { 4478 struct folio *folio = page_folio(page); 4479 4480 set_pte_range(vmf, folio, page, 1, vmf->address); 4481 ret = 0; 4482 } else { 4483 update_mmu_tlb(vma, vmf->address, vmf->pte); 4484 ret = VM_FAULT_NOPAGE; 4485 } 4486 4487 pte_unmap_unlock(vmf->pte, vmf->ptl); 4488 return ret; 4489 } 4490 4491 static unsigned long fault_around_pages __read_mostly = 4492 65536 >> PAGE_SHIFT; 4493 4494 #ifdef CONFIG_DEBUG_FS 4495 static int fault_around_bytes_get(void *data, u64 *val) 4496 { 4497 *val = fault_around_pages << PAGE_SHIFT; 4498 return 0; 4499 } 4500 4501 /* 4502 * fault_around_bytes must be rounded down to the nearest page order as it's 4503 * what do_fault_around() expects to see. 4504 */ 4505 static int fault_around_bytes_set(void *data, u64 val) 4506 { 4507 if (val / PAGE_SIZE > PTRS_PER_PTE) 4508 return -EINVAL; 4509 4510 /* 4511 * The minimum value is 1 page, however this results in no fault-around 4512 * at all. See should_fault_around(). 4513 */ 4514 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4515 4516 return 0; 4517 } 4518 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4519 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4520 4521 static int __init fault_around_debugfs(void) 4522 { 4523 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4524 &fault_around_bytes_fops); 4525 return 0; 4526 } 4527 late_initcall(fault_around_debugfs); 4528 #endif 4529 4530 /* 4531 * do_fault_around() tries to map few pages around the fault address. The hope 4532 * is that the pages will be needed soon and this will lower the number of 4533 * faults to handle. 4534 * 4535 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4536 * not ready to be mapped: not up-to-date, locked, etc. 4537 * 4538 * This function doesn't cross VMA or page table boundaries, in order to call 4539 * map_pages() and acquire a PTE lock only once. 4540 * 4541 * fault_around_pages defines how many pages we'll try to map. 4542 * do_fault_around() expects it to be set to a power of two less than or equal 4543 * to PTRS_PER_PTE. 4544 * 4545 * The virtual address of the area that we map is naturally aligned to 4546 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4547 * (and therefore to page order). This way it's easier to guarantee 4548 * that we don't cross page table boundaries. 4549 */ 4550 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4551 { 4552 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4553 pgoff_t pte_off = pte_index(vmf->address); 4554 /* The page offset of vmf->address within the VMA. */ 4555 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4556 pgoff_t from_pte, to_pte; 4557 vm_fault_t ret; 4558 4559 /* The PTE offset of the start address, clamped to the VMA. */ 4560 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4561 pte_off - min(pte_off, vma_off)); 4562 4563 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4564 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4565 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4566 4567 if (pmd_none(*vmf->pmd)) { 4568 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4569 if (!vmf->prealloc_pte) 4570 return VM_FAULT_OOM; 4571 } 4572 4573 rcu_read_lock(); 4574 ret = vmf->vma->vm_ops->map_pages(vmf, 4575 vmf->pgoff + from_pte - pte_off, 4576 vmf->pgoff + to_pte - pte_off); 4577 rcu_read_unlock(); 4578 4579 return ret; 4580 } 4581 4582 /* Return true if we should do read fault-around, false otherwise */ 4583 static inline bool should_fault_around(struct vm_fault *vmf) 4584 { 4585 /* No ->map_pages? No way to fault around... */ 4586 if (!vmf->vma->vm_ops->map_pages) 4587 return false; 4588 4589 if (uffd_disable_fault_around(vmf->vma)) 4590 return false; 4591 4592 /* A single page implies no faulting 'around' at all. */ 4593 return fault_around_pages > 1; 4594 } 4595 4596 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4597 { 4598 vm_fault_t ret = 0; 4599 struct folio *folio; 4600 4601 /* 4602 * Let's call ->map_pages() first and use ->fault() as fallback 4603 * if page by the offset is not ready to be mapped (cold cache or 4604 * something). 4605 */ 4606 if (should_fault_around(vmf)) { 4607 ret = do_fault_around(vmf); 4608 if (ret) 4609 return ret; 4610 } 4611 4612 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4613 vma_end_read(vmf->vma); 4614 return VM_FAULT_RETRY; 4615 } 4616 4617 ret = __do_fault(vmf); 4618 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4619 return ret; 4620 4621 ret |= finish_fault(vmf); 4622 folio = page_folio(vmf->page); 4623 folio_unlock(folio); 4624 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4625 folio_put(folio); 4626 return ret; 4627 } 4628 4629 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4630 { 4631 struct vm_area_struct *vma = vmf->vma; 4632 vm_fault_t ret; 4633 4634 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4635 vma_end_read(vma); 4636 return VM_FAULT_RETRY; 4637 } 4638 4639 if (unlikely(anon_vma_prepare(vma))) 4640 return VM_FAULT_OOM; 4641 4642 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4643 if (!vmf->cow_page) 4644 return VM_FAULT_OOM; 4645 4646 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4647 GFP_KERNEL)) { 4648 put_page(vmf->cow_page); 4649 return VM_FAULT_OOM; 4650 } 4651 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4652 4653 ret = __do_fault(vmf); 4654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4655 goto uncharge_out; 4656 if (ret & VM_FAULT_DONE_COW) 4657 return ret; 4658 4659 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4660 __SetPageUptodate(vmf->cow_page); 4661 4662 ret |= finish_fault(vmf); 4663 unlock_page(vmf->page); 4664 put_page(vmf->page); 4665 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4666 goto uncharge_out; 4667 return ret; 4668 uncharge_out: 4669 put_page(vmf->cow_page); 4670 return ret; 4671 } 4672 4673 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4674 { 4675 struct vm_area_struct *vma = vmf->vma; 4676 vm_fault_t ret, tmp; 4677 struct folio *folio; 4678 4679 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4680 vma_end_read(vma); 4681 return VM_FAULT_RETRY; 4682 } 4683 4684 ret = __do_fault(vmf); 4685 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4686 return ret; 4687 4688 folio = page_folio(vmf->page); 4689 4690 /* 4691 * Check if the backing address space wants to know that the page is 4692 * about to become writable 4693 */ 4694 if (vma->vm_ops->page_mkwrite) { 4695 folio_unlock(folio); 4696 tmp = do_page_mkwrite(vmf, folio); 4697 if (unlikely(!tmp || 4698 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4699 folio_put(folio); 4700 return tmp; 4701 } 4702 } 4703 4704 ret |= finish_fault(vmf); 4705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4706 VM_FAULT_RETRY))) { 4707 folio_unlock(folio); 4708 folio_put(folio); 4709 return ret; 4710 } 4711 4712 ret |= fault_dirty_shared_page(vmf); 4713 return ret; 4714 } 4715 4716 /* 4717 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4718 * but allow concurrent faults). 4719 * The mmap_lock may have been released depending on flags and our 4720 * return value. See filemap_fault() and __folio_lock_or_retry(). 4721 * If mmap_lock is released, vma may become invalid (for example 4722 * by other thread calling munmap()). 4723 */ 4724 static vm_fault_t do_fault(struct vm_fault *vmf) 4725 { 4726 struct vm_area_struct *vma = vmf->vma; 4727 struct mm_struct *vm_mm = vma->vm_mm; 4728 vm_fault_t ret; 4729 4730 /* 4731 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4732 */ 4733 if (!vma->vm_ops->fault) { 4734 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4735 vmf->address, &vmf->ptl); 4736 if (unlikely(!vmf->pte)) 4737 ret = VM_FAULT_SIGBUS; 4738 else { 4739 /* 4740 * Make sure this is not a temporary clearing of pte 4741 * by holding ptl and checking again. A R/M/W update 4742 * of pte involves: take ptl, clearing the pte so that 4743 * we don't have concurrent modification by hardware 4744 * followed by an update. 4745 */ 4746 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4747 ret = VM_FAULT_SIGBUS; 4748 else 4749 ret = VM_FAULT_NOPAGE; 4750 4751 pte_unmap_unlock(vmf->pte, vmf->ptl); 4752 } 4753 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4754 ret = do_read_fault(vmf); 4755 else if (!(vma->vm_flags & VM_SHARED)) 4756 ret = do_cow_fault(vmf); 4757 else 4758 ret = do_shared_fault(vmf); 4759 4760 /* preallocated pagetable is unused: free it */ 4761 if (vmf->prealloc_pte) { 4762 pte_free(vm_mm, vmf->prealloc_pte); 4763 vmf->prealloc_pte = NULL; 4764 } 4765 return ret; 4766 } 4767 4768 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4769 unsigned long addr, int page_nid, int *flags) 4770 { 4771 get_page(page); 4772 4773 /* Record the current PID acceesing VMA */ 4774 vma_set_access_pid_bit(vma); 4775 4776 count_vm_numa_event(NUMA_HINT_FAULTS); 4777 if (page_nid == numa_node_id()) { 4778 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4779 *flags |= TNF_FAULT_LOCAL; 4780 } 4781 4782 return mpol_misplaced(page, vma, addr); 4783 } 4784 4785 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4786 { 4787 struct vm_area_struct *vma = vmf->vma; 4788 struct page *page = NULL; 4789 int page_nid = NUMA_NO_NODE; 4790 bool writable = false; 4791 int last_cpupid; 4792 int target_nid; 4793 pte_t pte, old_pte; 4794 int flags = 0; 4795 4796 /* 4797 * The "pte" at this point cannot be used safely without 4798 * validation through pte_unmap_same(). It's of NUMA type but 4799 * the pfn may be screwed if the read is non atomic. 4800 */ 4801 spin_lock(vmf->ptl); 4802 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4803 pte_unmap_unlock(vmf->pte, vmf->ptl); 4804 return 0; 4805 } 4806 4807 /* Get the normal PTE */ 4808 old_pte = ptep_get(vmf->pte); 4809 pte = pte_modify(old_pte, vma->vm_page_prot); 4810 4811 /* 4812 * Detect now whether the PTE could be writable; this information 4813 * is only valid while holding the PT lock. 4814 */ 4815 writable = pte_write(pte); 4816 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4817 can_change_pte_writable(vma, vmf->address, pte)) 4818 writable = true; 4819 4820 page = vm_normal_page(vma, vmf->address, pte); 4821 if (!page || is_zone_device_page(page)) 4822 goto out_map; 4823 4824 /* TODO: handle PTE-mapped THP */ 4825 if (PageCompound(page)) 4826 goto out_map; 4827 4828 /* 4829 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4830 * much anyway since they can be in shared cache state. This misses 4831 * the case where a mapping is writable but the process never writes 4832 * to it but pte_write gets cleared during protection updates and 4833 * pte_dirty has unpredictable behaviour between PTE scan updates, 4834 * background writeback, dirty balancing and application behaviour. 4835 */ 4836 if (!writable) 4837 flags |= TNF_NO_GROUP; 4838 4839 /* 4840 * Flag if the page is shared between multiple address spaces. This 4841 * is later used when determining whether to group tasks together 4842 */ 4843 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4844 flags |= TNF_SHARED; 4845 4846 page_nid = page_to_nid(page); 4847 /* 4848 * For memory tiering mode, cpupid of slow memory page is used 4849 * to record page access time. So use default value. 4850 */ 4851 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4852 !node_is_toptier(page_nid)) 4853 last_cpupid = (-1 & LAST_CPUPID_MASK); 4854 else 4855 last_cpupid = page_cpupid_last(page); 4856 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4857 &flags); 4858 if (target_nid == NUMA_NO_NODE) { 4859 put_page(page); 4860 goto out_map; 4861 } 4862 pte_unmap_unlock(vmf->pte, vmf->ptl); 4863 writable = false; 4864 4865 /* Migrate to the requested node */ 4866 if (migrate_misplaced_page(page, vma, target_nid)) { 4867 page_nid = target_nid; 4868 flags |= TNF_MIGRATED; 4869 task_numa_fault(last_cpupid, page_nid, 1, flags); 4870 return 0; 4871 } 4872 4873 flags |= TNF_MIGRATE_FAIL; 4874 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4875 vmf->address, &vmf->ptl); 4876 if (unlikely(!vmf->pte)) 4877 return 0; 4878 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4879 pte_unmap_unlock(vmf->pte, vmf->ptl); 4880 return 0; 4881 } 4882 out_map: 4883 /* 4884 * Make it present again, depending on how arch implements 4885 * non-accessible ptes, some can allow access by kernel mode. 4886 */ 4887 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4888 pte = pte_modify(old_pte, vma->vm_page_prot); 4889 pte = pte_mkyoung(pte); 4890 if (writable) 4891 pte = pte_mkwrite(pte, vma); 4892 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4893 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4894 pte_unmap_unlock(vmf->pte, vmf->ptl); 4895 4896 if (page_nid != NUMA_NO_NODE) 4897 task_numa_fault(last_cpupid, page_nid, 1, flags); 4898 return 0; 4899 } 4900 4901 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4902 { 4903 struct vm_area_struct *vma = vmf->vma; 4904 if (vma_is_anonymous(vma)) 4905 return do_huge_pmd_anonymous_page(vmf); 4906 if (vma->vm_ops->huge_fault) 4907 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4908 return VM_FAULT_FALLBACK; 4909 } 4910 4911 /* `inline' is required to avoid gcc 4.1.2 build error */ 4912 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4913 { 4914 struct vm_area_struct *vma = vmf->vma; 4915 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4916 vm_fault_t ret; 4917 4918 if (vma_is_anonymous(vma)) { 4919 if (likely(!unshare) && 4920 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) 4921 return handle_userfault(vmf, VM_UFFD_WP); 4922 return do_huge_pmd_wp_page(vmf); 4923 } 4924 4925 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4926 if (vma->vm_ops->huge_fault) { 4927 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4928 if (!(ret & VM_FAULT_FALLBACK)) 4929 return ret; 4930 } 4931 } 4932 4933 /* COW or write-notify handled on pte level: split pmd. */ 4934 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4935 4936 return VM_FAULT_FALLBACK; 4937 } 4938 4939 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4940 { 4941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4942 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4943 struct vm_area_struct *vma = vmf->vma; 4944 /* No support for anonymous transparent PUD pages yet */ 4945 if (vma_is_anonymous(vma)) 4946 return VM_FAULT_FALLBACK; 4947 if (vma->vm_ops->huge_fault) 4948 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4949 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4950 return VM_FAULT_FALLBACK; 4951 } 4952 4953 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4954 { 4955 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4956 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4957 struct vm_area_struct *vma = vmf->vma; 4958 vm_fault_t ret; 4959 4960 /* No support for anonymous transparent PUD pages yet */ 4961 if (vma_is_anonymous(vma)) 4962 goto split; 4963 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4964 if (vma->vm_ops->huge_fault) { 4965 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4966 if (!(ret & VM_FAULT_FALLBACK)) 4967 return ret; 4968 } 4969 } 4970 split: 4971 /* COW or write-notify not handled on PUD level: split pud.*/ 4972 __split_huge_pud(vma, vmf->pud, vmf->address); 4973 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4974 return VM_FAULT_FALLBACK; 4975 } 4976 4977 /* 4978 * These routines also need to handle stuff like marking pages dirty 4979 * and/or accessed for architectures that don't do it in hardware (most 4980 * RISC architectures). The early dirtying is also good on the i386. 4981 * 4982 * There is also a hook called "update_mmu_cache()" that architectures 4983 * with external mmu caches can use to update those (ie the Sparc or 4984 * PowerPC hashed page tables that act as extended TLBs). 4985 * 4986 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4987 * concurrent faults). 4988 * 4989 * The mmap_lock may have been released depending on flags and our return value. 4990 * See filemap_fault() and __folio_lock_or_retry(). 4991 */ 4992 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4993 { 4994 pte_t entry; 4995 4996 if (unlikely(pmd_none(*vmf->pmd))) { 4997 /* 4998 * Leave __pte_alloc() until later: because vm_ops->fault may 4999 * want to allocate huge page, and if we expose page table 5000 * for an instant, it will be difficult to retract from 5001 * concurrent faults and from rmap lookups. 5002 */ 5003 vmf->pte = NULL; 5004 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5005 } else { 5006 /* 5007 * A regular pmd is established and it can't morph into a huge 5008 * pmd by anon khugepaged, since that takes mmap_lock in write 5009 * mode; but shmem or file collapse to THP could still morph 5010 * it into a huge pmd: just retry later if so. 5011 */ 5012 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5013 vmf->address, &vmf->ptl); 5014 if (unlikely(!vmf->pte)) 5015 return 0; 5016 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5017 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5018 5019 if (pte_none(vmf->orig_pte)) { 5020 pte_unmap(vmf->pte); 5021 vmf->pte = NULL; 5022 } 5023 } 5024 5025 if (!vmf->pte) 5026 return do_pte_missing(vmf); 5027 5028 if (!pte_present(vmf->orig_pte)) 5029 return do_swap_page(vmf); 5030 5031 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5032 return do_numa_page(vmf); 5033 5034 spin_lock(vmf->ptl); 5035 entry = vmf->orig_pte; 5036 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5037 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5038 goto unlock; 5039 } 5040 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5041 if (!pte_write(entry)) 5042 return do_wp_page(vmf); 5043 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5044 entry = pte_mkdirty(entry); 5045 } 5046 entry = pte_mkyoung(entry); 5047 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5048 vmf->flags & FAULT_FLAG_WRITE)) { 5049 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5050 vmf->pte, 1); 5051 } else { 5052 /* Skip spurious TLB flush for retried page fault */ 5053 if (vmf->flags & FAULT_FLAG_TRIED) 5054 goto unlock; 5055 /* 5056 * This is needed only for protection faults but the arch code 5057 * is not yet telling us if this is a protection fault or not. 5058 * This still avoids useless tlb flushes for .text page faults 5059 * with threads. 5060 */ 5061 if (vmf->flags & FAULT_FLAG_WRITE) 5062 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5063 vmf->pte); 5064 } 5065 unlock: 5066 pte_unmap_unlock(vmf->pte, vmf->ptl); 5067 return 0; 5068 } 5069 5070 /* 5071 * On entry, we hold either the VMA lock or the mmap_lock 5072 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5073 * the result, the mmap_lock is not held on exit. See filemap_fault() 5074 * and __folio_lock_or_retry(). 5075 */ 5076 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5077 unsigned long address, unsigned int flags) 5078 { 5079 struct vm_fault vmf = { 5080 .vma = vma, 5081 .address = address & PAGE_MASK, 5082 .real_address = address, 5083 .flags = flags, 5084 .pgoff = linear_page_index(vma, address), 5085 .gfp_mask = __get_fault_gfp_mask(vma), 5086 }; 5087 struct mm_struct *mm = vma->vm_mm; 5088 unsigned long vm_flags = vma->vm_flags; 5089 pgd_t *pgd; 5090 p4d_t *p4d; 5091 vm_fault_t ret; 5092 5093 pgd = pgd_offset(mm, address); 5094 p4d = p4d_alloc(mm, pgd, address); 5095 if (!p4d) 5096 return VM_FAULT_OOM; 5097 5098 vmf.pud = pud_alloc(mm, p4d, address); 5099 if (!vmf.pud) 5100 return VM_FAULT_OOM; 5101 retry_pud: 5102 if (pud_none(*vmf.pud) && 5103 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5104 ret = create_huge_pud(&vmf); 5105 if (!(ret & VM_FAULT_FALLBACK)) 5106 return ret; 5107 } else { 5108 pud_t orig_pud = *vmf.pud; 5109 5110 barrier(); 5111 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5112 5113 /* 5114 * TODO once we support anonymous PUDs: NUMA case and 5115 * FAULT_FLAG_UNSHARE handling. 5116 */ 5117 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5118 ret = wp_huge_pud(&vmf, orig_pud); 5119 if (!(ret & VM_FAULT_FALLBACK)) 5120 return ret; 5121 } else { 5122 huge_pud_set_accessed(&vmf, orig_pud); 5123 return 0; 5124 } 5125 } 5126 } 5127 5128 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5129 if (!vmf.pmd) 5130 return VM_FAULT_OOM; 5131 5132 /* Huge pud page fault raced with pmd_alloc? */ 5133 if (pud_trans_unstable(vmf.pud)) 5134 goto retry_pud; 5135 5136 if (pmd_none(*vmf.pmd) && 5137 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5138 ret = create_huge_pmd(&vmf); 5139 if (!(ret & VM_FAULT_FALLBACK)) 5140 return ret; 5141 } else { 5142 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5143 5144 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5145 VM_BUG_ON(thp_migration_supported() && 5146 !is_pmd_migration_entry(vmf.orig_pmd)); 5147 if (is_pmd_migration_entry(vmf.orig_pmd)) 5148 pmd_migration_entry_wait(mm, vmf.pmd); 5149 return 0; 5150 } 5151 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5152 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5153 return do_huge_pmd_numa_page(&vmf); 5154 5155 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5156 !pmd_write(vmf.orig_pmd)) { 5157 ret = wp_huge_pmd(&vmf); 5158 if (!(ret & VM_FAULT_FALLBACK)) 5159 return ret; 5160 } else { 5161 huge_pmd_set_accessed(&vmf); 5162 return 0; 5163 } 5164 } 5165 } 5166 5167 return handle_pte_fault(&vmf); 5168 } 5169 5170 /** 5171 * mm_account_fault - Do page fault accounting 5172 * @mm: mm from which memcg should be extracted. It can be NULL. 5173 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5174 * of perf event counters, but we'll still do the per-task accounting to 5175 * the task who triggered this page fault. 5176 * @address: the faulted address. 5177 * @flags: the fault flags. 5178 * @ret: the fault retcode. 5179 * 5180 * This will take care of most of the page fault accounting. Meanwhile, it 5181 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5182 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5183 * still be in per-arch page fault handlers at the entry of page fault. 5184 */ 5185 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5186 unsigned long address, unsigned int flags, 5187 vm_fault_t ret) 5188 { 5189 bool major; 5190 5191 /* Incomplete faults will be accounted upon completion. */ 5192 if (ret & VM_FAULT_RETRY) 5193 return; 5194 5195 /* 5196 * To preserve the behavior of older kernels, PGFAULT counters record 5197 * both successful and failed faults, as opposed to perf counters, 5198 * which ignore failed cases. 5199 */ 5200 count_vm_event(PGFAULT); 5201 count_memcg_event_mm(mm, PGFAULT); 5202 5203 /* 5204 * Do not account for unsuccessful faults (e.g. when the address wasn't 5205 * valid). That includes arch_vma_access_permitted() failing before 5206 * reaching here. So this is not a "this many hardware page faults" 5207 * counter. We should use the hw profiling for that. 5208 */ 5209 if (ret & VM_FAULT_ERROR) 5210 return; 5211 5212 /* 5213 * We define the fault as a major fault when the final successful fault 5214 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5215 * handle it immediately previously). 5216 */ 5217 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5218 5219 if (major) 5220 current->maj_flt++; 5221 else 5222 current->min_flt++; 5223 5224 /* 5225 * If the fault is done for GUP, regs will be NULL. We only do the 5226 * accounting for the per thread fault counters who triggered the 5227 * fault, and we skip the perf event updates. 5228 */ 5229 if (!regs) 5230 return; 5231 5232 if (major) 5233 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5234 else 5235 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5236 } 5237 5238 #ifdef CONFIG_LRU_GEN 5239 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5240 { 5241 /* the LRU algorithm only applies to accesses with recency */ 5242 current->in_lru_fault = vma_has_recency(vma); 5243 } 5244 5245 static void lru_gen_exit_fault(void) 5246 { 5247 current->in_lru_fault = false; 5248 } 5249 #else 5250 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5251 { 5252 } 5253 5254 static void lru_gen_exit_fault(void) 5255 { 5256 } 5257 #endif /* CONFIG_LRU_GEN */ 5258 5259 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5260 unsigned int *flags) 5261 { 5262 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5263 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5264 return VM_FAULT_SIGSEGV; 5265 /* 5266 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5267 * just treat it like an ordinary read-fault otherwise. 5268 */ 5269 if (!is_cow_mapping(vma->vm_flags)) 5270 *flags &= ~FAULT_FLAG_UNSHARE; 5271 } else if (*flags & FAULT_FLAG_WRITE) { 5272 /* Write faults on read-only mappings are impossible ... */ 5273 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5274 return VM_FAULT_SIGSEGV; 5275 /* ... and FOLL_FORCE only applies to COW mappings. */ 5276 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5277 !is_cow_mapping(vma->vm_flags))) 5278 return VM_FAULT_SIGSEGV; 5279 } 5280 #ifdef CONFIG_PER_VMA_LOCK 5281 /* 5282 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5283 * the assumption that lock is dropped on VM_FAULT_RETRY. 5284 */ 5285 if (WARN_ON_ONCE((*flags & 5286 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5287 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5288 return VM_FAULT_SIGSEGV; 5289 #endif 5290 5291 return 0; 5292 } 5293 5294 /* 5295 * By the time we get here, we already hold the mm semaphore 5296 * 5297 * The mmap_lock may have been released depending on flags and our 5298 * return value. See filemap_fault() and __folio_lock_or_retry(). 5299 */ 5300 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5301 unsigned int flags, struct pt_regs *regs) 5302 { 5303 /* If the fault handler drops the mmap_lock, vma may be freed */ 5304 struct mm_struct *mm = vma->vm_mm; 5305 vm_fault_t ret; 5306 5307 __set_current_state(TASK_RUNNING); 5308 5309 ret = sanitize_fault_flags(vma, &flags); 5310 if (ret) 5311 goto out; 5312 5313 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5314 flags & FAULT_FLAG_INSTRUCTION, 5315 flags & FAULT_FLAG_REMOTE)) { 5316 ret = VM_FAULT_SIGSEGV; 5317 goto out; 5318 } 5319 5320 /* 5321 * Enable the memcg OOM handling for faults triggered in user 5322 * space. Kernel faults are handled more gracefully. 5323 */ 5324 if (flags & FAULT_FLAG_USER) 5325 mem_cgroup_enter_user_fault(); 5326 5327 lru_gen_enter_fault(vma); 5328 5329 if (unlikely(is_vm_hugetlb_page(vma))) 5330 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5331 else 5332 ret = __handle_mm_fault(vma, address, flags); 5333 5334 lru_gen_exit_fault(); 5335 5336 if (flags & FAULT_FLAG_USER) { 5337 mem_cgroup_exit_user_fault(); 5338 /* 5339 * The task may have entered a memcg OOM situation but 5340 * if the allocation error was handled gracefully (no 5341 * VM_FAULT_OOM), there is no need to kill anything. 5342 * Just clean up the OOM state peacefully. 5343 */ 5344 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5345 mem_cgroup_oom_synchronize(false); 5346 } 5347 out: 5348 mm_account_fault(mm, regs, address, flags, ret); 5349 5350 return ret; 5351 } 5352 EXPORT_SYMBOL_GPL(handle_mm_fault); 5353 5354 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5355 #include <linux/extable.h> 5356 5357 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5358 { 5359 if (likely(mmap_read_trylock(mm))) 5360 return true; 5361 5362 if (regs && !user_mode(regs)) { 5363 unsigned long ip = exception_ip(regs); 5364 if (!search_exception_tables(ip)) 5365 return false; 5366 } 5367 5368 return !mmap_read_lock_killable(mm); 5369 } 5370 5371 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5372 { 5373 /* 5374 * We don't have this operation yet. 5375 * 5376 * It should be easy enough to do: it's basically a 5377 * atomic_long_try_cmpxchg_acquire() 5378 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5379 * it also needs the proper lockdep magic etc. 5380 */ 5381 return false; 5382 } 5383 5384 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5385 { 5386 mmap_read_unlock(mm); 5387 if (regs && !user_mode(regs)) { 5388 unsigned long ip = exception_ip(regs); 5389 if (!search_exception_tables(ip)) 5390 return false; 5391 } 5392 return !mmap_write_lock_killable(mm); 5393 } 5394 5395 /* 5396 * Helper for page fault handling. 5397 * 5398 * This is kind of equivalend to "mmap_read_lock()" followed 5399 * by "find_extend_vma()", except it's a lot more careful about 5400 * the locking (and will drop the lock on failure). 5401 * 5402 * For example, if we have a kernel bug that causes a page 5403 * fault, we don't want to just use mmap_read_lock() to get 5404 * the mm lock, because that would deadlock if the bug were 5405 * to happen while we're holding the mm lock for writing. 5406 * 5407 * So this checks the exception tables on kernel faults in 5408 * order to only do this all for instructions that are actually 5409 * expected to fault. 5410 * 5411 * We can also actually take the mm lock for writing if we 5412 * need to extend the vma, which helps the VM layer a lot. 5413 */ 5414 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5415 unsigned long addr, struct pt_regs *regs) 5416 { 5417 struct vm_area_struct *vma; 5418 5419 if (!get_mmap_lock_carefully(mm, regs)) 5420 return NULL; 5421 5422 vma = find_vma(mm, addr); 5423 if (likely(vma && (vma->vm_start <= addr))) 5424 return vma; 5425 5426 /* 5427 * Well, dang. We might still be successful, but only 5428 * if we can extend a vma to do so. 5429 */ 5430 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5431 mmap_read_unlock(mm); 5432 return NULL; 5433 } 5434 5435 /* 5436 * We can try to upgrade the mmap lock atomically, 5437 * in which case we can continue to use the vma 5438 * we already looked up. 5439 * 5440 * Otherwise we'll have to drop the mmap lock and 5441 * re-take it, and also look up the vma again, 5442 * re-checking it. 5443 */ 5444 if (!mmap_upgrade_trylock(mm)) { 5445 if (!upgrade_mmap_lock_carefully(mm, regs)) 5446 return NULL; 5447 5448 vma = find_vma(mm, addr); 5449 if (!vma) 5450 goto fail; 5451 if (vma->vm_start <= addr) 5452 goto success; 5453 if (!(vma->vm_flags & VM_GROWSDOWN)) 5454 goto fail; 5455 } 5456 5457 if (expand_stack_locked(vma, addr)) 5458 goto fail; 5459 5460 success: 5461 mmap_write_downgrade(mm); 5462 return vma; 5463 5464 fail: 5465 mmap_write_unlock(mm); 5466 return NULL; 5467 } 5468 #endif 5469 5470 #ifdef CONFIG_PER_VMA_LOCK 5471 /* 5472 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5473 * stable and not isolated. If the VMA is not found or is being modified the 5474 * function returns NULL. 5475 */ 5476 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5477 unsigned long address) 5478 { 5479 MA_STATE(mas, &mm->mm_mt, address, address); 5480 struct vm_area_struct *vma; 5481 5482 rcu_read_lock(); 5483 retry: 5484 vma = mas_walk(&mas); 5485 if (!vma) 5486 goto inval; 5487 5488 if (!vma_start_read(vma)) 5489 goto inval; 5490 5491 /* 5492 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5493 * This check must happen after vma_start_read(); otherwise, a 5494 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5495 * from its anon_vma. 5496 */ 5497 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5498 goto inval_end_read; 5499 5500 /* Check since vm_start/vm_end might change before we lock the VMA */ 5501 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5502 goto inval_end_read; 5503 5504 /* Check if the VMA got isolated after we found it */ 5505 if (vma->detached) { 5506 vma_end_read(vma); 5507 count_vm_vma_lock_event(VMA_LOCK_MISS); 5508 /* The area was replaced with another one */ 5509 goto retry; 5510 } 5511 5512 rcu_read_unlock(); 5513 return vma; 5514 5515 inval_end_read: 5516 vma_end_read(vma); 5517 inval: 5518 rcu_read_unlock(); 5519 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5520 return NULL; 5521 } 5522 #endif /* CONFIG_PER_VMA_LOCK */ 5523 5524 #ifndef __PAGETABLE_P4D_FOLDED 5525 /* 5526 * Allocate p4d page table. 5527 * We've already handled the fast-path in-line. 5528 */ 5529 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5530 { 5531 p4d_t *new = p4d_alloc_one(mm, address); 5532 if (!new) 5533 return -ENOMEM; 5534 5535 spin_lock(&mm->page_table_lock); 5536 if (pgd_present(*pgd)) { /* Another has populated it */ 5537 p4d_free(mm, new); 5538 } else { 5539 smp_wmb(); /* See comment in pmd_install() */ 5540 pgd_populate(mm, pgd, new); 5541 } 5542 spin_unlock(&mm->page_table_lock); 5543 return 0; 5544 } 5545 #endif /* __PAGETABLE_P4D_FOLDED */ 5546 5547 #ifndef __PAGETABLE_PUD_FOLDED 5548 /* 5549 * Allocate page upper directory. 5550 * We've already handled the fast-path in-line. 5551 */ 5552 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5553 { 5554 pud_t *new = pud_alloc_one(mm, address); 5555 if (!new) 5556 return -ENOMEM; 5557 5558 spin_lock(&mm->page_table_lock); 5559 if (!p4d_present(*p4d)) { 5560 mm_inc_nr_puds(mm); 5561 smp_wmb(); /* See comment in pmd_install() */ 5562 p4d_populate(mm, p4d, new); 5563 } else /* Another has populated it */ 5564 pud_free(mm, new); 5565 spin_unlock(&mm->page_table_lock); 5566 return 0; 5567 } 5568 #endif /* __PAGETABLE_PUD_FOLDED */ 5569 5570 #ifndef __PAGETABLE_PMD_FOLDED 5571 /* 5572 * Allocate page middle directory. 5573 * We've already handled the fast-path in-line. 5574 */ 5575 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5576 { 5577 spinlock_t *ptl; 5578 pmd_t *new = pmd_alloc_one(mm, address); 5579 if (!new) 5580 return -ENOMEM; 5581 5582 ptl = pud_lock(mm, pud); 5583 if (!pud_present(*pud)) { 5584 mm_inc_nr_pmds(mm); 5585 smp_wmb(); /* See comment in pmd_install() */ 5586 pud_populate(mm, pud, new); 5587 } else { /* Another has populated it */ 5588 pmd_free(mm, new); 5589 } 5590 spin_unlock(ptl); 5591 return 0; 5592 } 5593 #endif /* __PAGETABLE_PMD_FOLDED */ 5594 5595 /** 5596 * follow_pte - look up PTE at a user virtual address 5597 * @mm: the mm_struct of the target address space 5598 * @address: user virtual address 5599 * @ptepp: location to store found PTE 5600 * @ptlp: location to store the lock for the PTE 5601 * 5602 * On a successful return, the pointer to the PTE is stored in @ptepp; 5603 * the corresponding lock is taken and its location is stored in @ptlp. 5604 * The contents of the PTE are only stable until @ptlp is released; 5605 * any further use, if any, must be protected against invalidation 5606 * with MMU notifiers. 5607 * 5608 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5609 * should be taken for read. 5610 * 5611 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5612 * it is not a good general-purpose API. 5613 * 5614 * Return: zero on success, -ve otherwise. 5615 */ 5616 int follow_pte(struct mm_struct *mm, unsigned long address, 5617 pte_t **ptepp, spinlock_t **ptlp) 5618 { 5619 pgd_t *pgd; 5620 p4d_t *p4d; 5621 pud_t *pud; 5622 pmd_t *pmd; 5623 pte_t *ptep; 5624 5625 pgd = pgd_offset(mm, address); 5626 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5627 goto out; 5628 5629 p4d = p4d_offset(pgd, address); 5630 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5631 goto out; 5632 5633 pud = pud_offset(p4d, address); 5634 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5635 goto out; 5636 5637 pmd = pmd_offset(pud, address); 5638 VM_BUG_ON(pmd_trans_huge(*pmd)); 5639 5640 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5641 if (!ptep) 5642 goto out; 5643 if (!pte_present(ptep_get(ptep))) 5644 goto unlock; 5645 *ptepp = ptep; 5646 return 0; 5647 unlock: 5648 pte_unmap_unlock(ptep, *ptlp); 5649 out: 5650 return -EINVAL; 5651 } 5652 EXPORT_SYMBOL_GPL(follow_pte); 5653 5654 /** 5655 * follow_pfn - look up PFN at a user virtual address 5656 * @vma: memory mapping 5657 * @address: user virtual address 5658 * @pfn: location to store found PFN 5659 * 5660 * Only IO mappings and raw PFN mappings are allowed. 5661 * 5662 * This function does not allow the caller to read the permissions 5663 * of the PTE. Do not use it. 5664 * 5665 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5666 */ 5667 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5668 unsigned long *pfn) 5669 { 5670 int ret = -EINVAL; 5671 spinlock_t *ptl; 5672 pte_t *ptep; 5673 5674 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5675 return ret; 5676 5677 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5678 if (ret) 5679 return ret; 5680 *pfn = pte_pfn(ptep_get(ptep)); 5681 pte_unmap_unlock(ptep, ptl); 5682 return 0; 5683 } 5684 EXPORT_SYMBOL(follow_pfn); 5685 5686 #ifdef CONFIG_HAVE_IOREMAP_PROT 5687 int follow_phys(struct vm_area_struct *vma, 5688 unsigned long address, unsigned int flags, 5689 unsigned long *prot, resource_size_t *phys) 5690 { 5691 int ret = -EINVAL; 5692 pte_t *ptep, pte; 5693 spinlock_t *ptl; 5694 5695 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5696 goto out; 5697 5698 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5699 goto out; 5700 pte = ptep_get(ptep); 5701 5702 /* Never return PFNs of anon folios in COW mappings. */ 5703 if (vm_normal_folio(vma, address, pte)) 5704 goto unlock; 5705 5706 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5707 goto unlock; 5708 5709 *prot = pgprot_val(pte_pgprot(pte)); 5710 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5711 5712 ret = 0; 5713 unlock: 5714 pte_unmap_unlock(ptep, ptl); 5715 out: 5716 return ret; 5717 } 5718 5719 /** 5720 * generic_access_phys - generic implementation for iomem mmap access 5721 * @vma: the vma to access 5722 * @addr: userspace address, not relative offset within @vma 5723 * @buf: buffer to read/write 5724 * @len: length of transfer 5725 * @write: set to FOLL_WRITE when writing, otherwise reading 5726 * 5727 * This is a generic implementation for &vm_operations_struct.access for an 5728 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5729 * not page based. 5730 */ 5731 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5732 void *buf, int len, int write) 5733 { 5734 resource_size_t phys_addr; 5735 unsigned long prot = 0; 5736 void __iomem *maddr; 5737 pte_t *ptep, pte; 5738 spinlock_t *ptl; 5739 int offset = offset_in_page(addr); 5740 int ret = -EINVAL; 5741 5742 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5743 return -EINVAL; 5744 5745 retry: 5746 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5747 return -EINVAL; 5748 pte = ptep_get(ptep); 5749 pte_unmap_unlock(ptep, ptl); 5750 5751 prot = pgprot_val(pte_pgprot(pte)); 5752 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5753 5754 if ((write & FOLL_WRITE) && !pte_write(pte)) 5755 return -EINVAL; 5756 5757 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5758 if (!maddr) 5759 return -ENOMEM; 5760 5761 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5762 goto out_unmap; 5763 5764 if (!pte_same(pte, ptep_get(ptep))) { 5765 pte_unmap_unlock(ptep, ptl); 5766 iounmap(maddr); 5767 5768 goto retry; 5769 } 5770 5771 if (write) 5772 memcpy_toio(maddr + offset, buf, len); 5773 else 5774 memcpy_fromio(buf, maddr + offset, len); 5775 ret = len; 5776 pte_unmap_unlock(ptep, ptl); 5777 out_unmap: 5778 iounmap(maddr); 5779 5780 return ret; 5781 } 5782 EXPORT_SYMBOL_GPL(generic_access_phys); 5783 #endif 5784 5785 /* 5786 * Access another process' address space as given in mm. 5787 */ 5788 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5789 int len, unsigned int gup_flags) 5790 { 5791 void *old_buf = buf; 5792 int write = gup_flags & FOLL_WRITE; 5793 5794 if (mmap_read_lock_killable(mm)) 5795 return 0; 5796 5797 /* Untag the address before looking up the VMA */ 5798 addr = untagged_addr_remote(mm, addr); 5799 5800 /* Avoid triggering the temporary warning in __get_user_pages */ 5801 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5802 return 0; 5803 5804 /* ignore errors, just check how much was successfully transferred */ 5805 while (len) { 5806 int bytes, offset; 5807 void *maddr; 5808 struct vm_area_struct *vma = NULL; 5809 struct page *page = get_user_page_vma_remote(mm, addr, 5810 gup_flags, &vma); 5811 5812 if (IS_ERR_OR_NULL(page)) { 5813 /* We might need to expand the stack to access it */ 5814 vma = vma_lookup(mm, addr); 5815 if (!vma) { 5816 vma = expand_stack(mm, addr); 5817 5818 /* mmap_lock was dropped on failure */ 5819 if (!vma) 5820 return buf - old_buf; 5821 5822 /* Try again if stack expansion worked */ 5823 continue; 5824 } 5825 5826 5827 /* 5828 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5829 * we can access using slightly different code. 5830 */ 5831 bytes = 0; 5832 #ifdef CONFIG_HAVE_IOREMAP_PROT 5833 if (vma->vm_ops && vma->vm_ops->access) 5834 bytes = vma->vm_ops->access(vma, addr, buf, 5835 len, write); 5836 #endif 5837 if (bytes <= 0) 5838 break; 5839 } else { 5840 bytes = len; 5841 offset = addr & (PAGE_SIZE-1); 5842 if (bytes > PAGE_SIZE-offset) 5843 bytes = PAGE_SIZE-offset; 5844 5845 maddr = kmap(page); 5846 if (write) { 5847 copy_to_user_page(vma, page, addr, 5848 maddr + offset, buf, bytes); 5849 set_page_dirty_lock(page); 5850 } else { 5851 copy_from_user_page(vma, page, addr, 5852 buf, maddr + offset, bytes); 5853 } 5854 kunmap(page); 5855 put_page(page); 5856 } 5857 len -= bytes; 5858 buf += bytes; 5859 addr += bytes; 5860 } 5861 mmap_read_unlock(mm); 5862 5863 return buf - old_buf; 5864 } 5865 5866 /** 5867 * access_remote_vm - access another process' address space 5868 * @mm: the mm_struct of the target address space 5869 * @addr: start address to access 5870 * @buf: source or destination buffer 5871 * @len: number of bytes to transfer 5872 * @gup_flags: flags modifying lookup behaviour 5873 * 5874 * The caller must hold a reference on @mm. 5875 * 5876 * Return: number of bytes copied from source to destination. 5877 */ 5878 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5879 void *buf, int len, unsigned int gup_flags) 5880 { 5881 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5882 } 5883 5884 /* 5885 * Access another process' address space. 5886 * Source/target buffer must be kernel space, 5887 * Do not walk the page table directly, use get_user_pages 5888 */ 5889 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5890 void *buf, int len, unsigned int gup_flags) 5891 { 5892 struct mm_struct *mm; 5893 int ret; 5894 5895 mm = get_task_mm(tsk); 5896 if (!mm) 5897 return 0; 5898 5899 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5900 5901 mmput(mm); 5902 5903 return ret; 5904 } 5905 EXPORT_SYMBOL_GPL(access_process_vm); 5906 5907 /* 5908 * Print the name of a VMA. 5909 */ 5910 void print_vma_addr(char *prefix, unsigned long ip) 5911 { 5912 struct mm_struct *mm = current->mm; 5913 struct vm_area_struct *vma; 5914 5915 /* 5916 * we might be running from an atomic context so we cannot sleep 5917 */ 5918 if (!mmap_read_trylock(mm)) 5919 return; 5920 5921 vma = find_vma(mm, ip); 5922 if (vma && vma->vm_file) { 5923 struct file *f = vma->vm_file; 5924 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5925 if (buf) { 5926 char *p; 5927 5928 p = file_path(f, buf, PAGE_SIZE); 5929 if (IS_ERR(p)) 5930 p = "?"; 5931 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5932 vma->vm_start, 5933 vma->vm_end - vma->vm_start); 5934 free_page((unsigned long)buf); 5935 } 5936 } 5937 mmap_read_unlock(mm); 5938 } 5939 5940 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5941 void __might_fault(const char *file, int line) 5942 { 5943 if (pagefault_disabled()) 5944 return; 5945 __might_sleep(file, line); 5946 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5947 if (current->mm) 5948 might_lock_read(¤t->mm->mmap_lock); 5949 #endif 5950 } 5951 EXPORT_SYMBOL(__might_fault); 5952 #endif 5953 5954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5955 /* 5956 * Process all subpages of the specified huge page with the specified 5957 * operation. The target subpage will be processed last to keep its 5958 * cache lines hot. 5959 */ 5960 static inline int process_huge_page( 5961 unsigned long addr_hint, unsigned int pages_per_huge_page, 5962 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5963 void *arg) 5964 { 5965 int i, n, base, l, ret; 5966 unsigned long addr = addr_hint & 5967 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5968 5969 /* Process target subpage last to keep its cache lines hot */ 5970 might_sleep(); 5971 n = (addr_hint - addr) / PAGE_SIZE; 5972 if (2 * n <= pages_per_huge_page) { 5973 /* If target subpage in first half of huge page */ 5974 base = 0; 5975 l = n; 5976 /* Process subpages at the end of huge page */ 5977 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5978 cond_resched(); 5979 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5980 if (ret) 5981 return ret; 5982 } 5983 } else { 5984 /* If target subpage in second half of huge page */ 5985 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5986 l = pages_per_huge_page - n; 5987 /* Process subpages at the begin of huge page */ 5988 for (i = 0; i < base; i++) { 5989 cond_resched(); 5990 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5991 if (ret) 5992 return ret; 5993 } 5994 } 5995 /* 5996 * Process remaining subpages in left-right-left-right pattern 5997 * towards the target subpage 5998 */ 5999 for (i = 0; i < l; i++) { 6000 int left_idx = base + i; 6001 int right_idx = base + 2 * l - 1 - i; 6002 6003 cond_resched(); 6004 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6005 if (ret) 6006 return ret; 6007 cond_resched(); 6008 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6009 if (ret) 6010 return ret; 6011 } 6012 return 0; 6013 } 6014 6015 static void clear_gigantic_page(struct page *page, 6016 unsigned long addr, 6017 unsigned int pages_per_huge_page) 6018 { 6019 int i; 6020 struct page *p; 6021 6022 might_sleep(); 6023 for (i = 0; i < pages_per_huge_page; i++) { 6024 p = nth_page(page, i); 6025 cond_resched(); 6026 clear_user_highpage(p, addr + i * PAGE_SIZE); 6027 } 6028 } 6029 6030 static int clear_subpage(unsigned long addr, int idx, void *arg) 6031 { 6032 struct page *page = arg; 6033 6034 clear_user_highpage(page + idx, addr); 6035 return 0; 6036 } 6037 6038 void clear_huge_page(struct page *page, 6039 unsigned long addr_hint, unsigned int pages_per_huge_page) 6040 { 6041 unsigned long addr = addr_hint & 6042 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6043 6044 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6045 clear_gigantic_page(page, addr, pages_per_huge_page); 6046 return; 6047 } 6048 6049 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6050 } 6051 6052 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6053 unsigned long addr, 6054 struct vm_area_struct *vma, 6055 unsigned int pages_per_huge_page) 6056 { 6057 int i; 6058 struct page *dst_page; 6059 struct page *src_page; 6060 6061 for (i = 0; i < pages_per_huge_page; i++) { 6062 dst_page = folio_page(dst, i); 6063 src_page = folio_page(src, i); 6064 6065 cond_resched(); 6066 if (copy_mc_user_highpage(dst_page, src_page, 6067 addr + i*PAGE_SIZE, vma)) { 6068 memory_failure_queue(page_to_pfn(src_page), 0); 6069 return -EHWPOISON; 6070 } 6071 } 6072 return 0; 6073 } 6074 6075 struct copy_subpage_arg { 6076 struct page *dst; 6077 struct page *src; 6078 struct vm_area_struct *vma; 6079 }; 6080 6081 static int copy_subpage(unsigned long addr, int idx, void *arg) 6082 { 6083 struct copy_subpage_arg *copy_arg = arg; 6084 6085 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6086 addr, copy_arg->vma)) { 6087 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6088 return -EHWPOISON; 6089 } 6090 return 0; 6091 } 6092 6093 int copy_user_large_folio(struct folio *dst, struct folio *src, 6094 unsigned long addr_hint, struct vm_area_struct *vma) 6095 { 6096 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6097 unsigned long addr = addr_hint & 6098 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6099 struct copy_subpage_arg arg = { 6100 .dst = &dst->page, 6101 .src = &src->page, 6102 .vma = vma, 6103 }; 6104 6105 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6106 return copy_user_gigantic_page(dst, src, addr, vma, 6107 pages_per_huge_page); 6108 6109 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6110 } 6111 6112 long copy_folio_from_user(struct folio *dst_folio, 6113 const void __user *usr_src, 6114 bool allow_pagefault) 6115 { 6116 void *kaddr; 6117 unsigned long i, rc = 0; 6118 unsigned int nr_pages = folio_nr_pages(dst_folio); 6119 unsigned long ret_val = nr_pages * PAGE_SIZE; 6120 struct page *subpage; 6121 6122 for (i = 0; i < nr_pages; i++) { 6123 subpage = folio_page(dst_folio, i); 6124 kaddr = kmap_local_page(subpage); 6125 if (!allow_pagefault) 6126 pagefault_disable(); 6127 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6128 if (!allow_pagefault) 6129 pagefault_enable(); 6130 kunmap_local(kaddr); 6131 6132 ret_val -= (PAGE_SIZE - rc); 6133 if (rc) 6134 break; 6135 6136 flush_dcache_page(subpage); 6137 6138 cond_resched(); 6139 } 6140 return ret_val; 6141 } 6142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6143 6144 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6145 6146 static struct kmem_cache *page_ptl_cachep; 6147 6148 void __init ptlock_cache_init(void) 6149 { 6150 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6151 SLAB_PANIC, NULL); 6152 } 6153 6154 bool ptlock_alloc(struct ptdesc *ptdesc) 6155 { 6156 spinlock_t *ptl; 6157 6158 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6159 if (!ptl) 6160 return false; 6161 ptdesc->ptl = ptl; 6162 return true; 6163 } 6164 6165 void ptlock_free(struct ptdesc *ptdesc) 6166 { 6167 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6168 } 6169 #endif 6170