1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 #include <linux/kallsyms.h> 56 #include <linux/swapops.h> 57 #include <linux/elf.h> 58 59 #include <asm/pgalloc.h> 60 #include <asm/uaccess.h> 61 #include <asm/tlb.h> 62 #include <asm/tlbflush.h> 63 #include <asm/pgtable.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 379 pte_t pte, struct page *page) 380 { 381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 382 pud_t *pud = pud_offset(pgd, addr); 383 pmd_t *pmd = pmd_offset(pud, addr); 384 struct address_space *mapping; 385 pgoff_t index; 386 static unsigned long resume; 387 static unsigned long nr_shown; 388 static unsigned long nr_unshown; 389 390 /* 391 * Allow a burst of 60 reports, then keep quiet for that minute; 392 * or allow a steady drip of one report per second. 393 */ 394 if (nr_shown == 60) { 395 if (time_before(jiffies, resume)) { 396 nr_unshown++; 397 return; 398 } 399 if (nr_unshown) { 400 printk(KERN_ALERT 401 "BUG: Bad page map: %lu messages suppressed\n", 402 nr_unshown); 403 nr_unshown = 0; 404 } 405 nr_shown = 0; 406 } 407 if (nr_shown++ == 0) 408 resume = jiffies + 60 * HZ; 409 410 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 411 index = linear_page_index(vma, addr); 412 413 printk(KERN_ALERT 414 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 415 current->comm, 416 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 417 if (page) { 418 printk(KERN_ALERT 419 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 420 page, (void *)page->flags, page_count(page), 421 page_mapcount(page), page->mapping, page->index); 422 } 423 printk(KERN_ALERT 424 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 425 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 426 /* 427 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 428 */ 429 if (vma->vm_ops) 430 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 431 (unsigned long)vma->vm_ops->fault); 432 if (vma->vm_file && vma->vm_file->f_op) 433 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 434 (unsigned long)vma->vm_file->f_op->mmap); 435 dump_stack(); 436 add_taint(TAINT_BAD_PAGE); 437 } 438 439 static inline int is_cow_mapping(unsigned int flags) 440 { 441 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 442 } 443 444 /* 445 * vm_normal_page -- This function gets the "struct page" associated with a pte. 446 * 447 * "Special" mappings do not wish to be associated with a "struct page" (either 448 * it doesn't exist, or it exists but they don't want to touch it). In this 449 * case, NULL is returned here. "Normal" mappings do have a struct page. 450 * 451 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 452 * pte bit, in which case this function is trivial. Secondly, an architecture 453 * may not have a spare pte bit, which requires a more complicated scheme, 454 * described below. 455 * 456 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 457 * special mapping (even if there are underlying and valid "struct pages"). 458 * COWed pages of a VM_PFNMAP are always normal. 459 * 460 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 461 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 462 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 463 * mapping will always honor the rule 464 * 465 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 466 * 467 * And for normal mappings this is false. 468 * 469 * This restricts such mappings to be a linear translation from virtual address 470 * to pfn. To get around this restriction, we allow arbitrary mappings so long 471 * as the vma is not a COW mapping; in that case, we know that all ptes are 472 * special (because none can have been COWed). 473 * 474 * 475 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 476 * 477 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 478 * page" backing, however the difference is that _all_ pages with a struct 479 * page (that is, those where pfn_valid is true) are refcounted and considered 480 * normal pages by the VM. The disadvantage is that pages are refcounted 481 * (which can be slower and simply not an option for some PFNMAP users). The 482 * advantage is that we don't have to follow the strict linearity rule of 483 * PFNMAP mappings in order to support COWable mappings. 484 * 485 */ 486 #ifdef __HAVE_ARCH_PTE_SPECIAL 487 # define HAVE_PTE_SPECIAL 1 488 #else 489 # define HAVE_PTE_SPECIAL 0 490 #endif 491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte) 493 { 494 unsigned long pfn = pte_pfn(pte); 495 496 if (HAVE_PTE_SPECIAL) { 497 if (likely(!pte_special(pte))) 498 goto check_pfn; 499 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) 500 print_bad_pte(vma, addr, pte, NULL); 501 return NULL; 502 } 503 504 /* !HAVE_PTE_SPECIAL case follows: */ 505 506 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 507 if (vma->vm_flags & VM_MIXEDMAP) { 508 if (!pfn_valid(pfn)) 509 return NULL; 510 goto out; 511 } else { 512 unsigned long off; 513 off = (addr - vma->vm_start) >> PAGE_SHIFT; 514 if (pfn == vma->vm_pgoff + off) 515 return NULL; 516 if (!is_cow_mapping(vma->vm_flags)) 517 return NULL; 518 } 519 } 520 521 check_pfn: 522 if (unlikely(pfn > highest_memmap_pfn)) { 523 print_bad_pte(vma, addr, pte, NULL); 524 return NULL; 525 } 526 527 /* 528 * NOTE! We still have PageReserved() pages in the page tables. 529 * eg. VDSO mappings can cause them to exist. 530 */ 531 out: 532 return pfn_to_page(pfn); 533 } 534 535 /* 536 * copy one vm_area from one task to the other. Assumes the page tables 537 * already present in the new task to be cleared in the whole range 538 * covered by this vma. 539 */ 540 541 static inline void 542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 543 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 544 unsigned long addr, int *rss) 545 { 546 unsigned long vm_flags = vma->vm_flags; 547 pte_t pte = *src_pte; 548 struct page *page; 549 550 /* pte contains position in swap or file, so copy. */ 551 if (unlikely(!pte_present(pte))) { 552 if (!pte_file(pte)) { 553 swp_entry_t entry = pte_to_swp_entry(pte); 554 555 swap_duplicate(entry); 556 /* make sure dst_mm is on swapoff's mmlist. */ 557 if (unlikely(list_empty(&dst_mm->mmlist))) { 558 spin_lock(&mmlist_lock); 559 if (list_empty(&dst_mm->mmlist)) 560 list_add(&dst_mm->mmlist, 561 &src_mm->mmlist); 562 spin_unlock(&mmlist_lock); 563 } 564 if (is_write_migration_entry(entry) && 565 is_cow_mapping(vm_flags)) { 566 /* 567 * COW mappings require pages in both parent 568 * and child to be set to read. 569 */ 570 make_migration_entry_read(&entry); 571 pte = swp_entry_to_pte(entry); 572 set_pte_at(src_mm, addr, src_pte, pte); 573 } 574 } 575 goto out_set_pte; 576 } 577 578 /* 579 * If it's a COW mapping, write protect it both 580 * in the parent and the child 581 */ 582 if (is_cow_mapping(vm_flags)) { 583 ptep_set_wrprotect(src_mm, addr, src_pte); 584 pte = pte_wrprotect(pte); 585 } 586 587 /* 588 * If it's a shared mapping, mark it clean in 589 * the child 590 */ 591 if (vm_flags & VM_SHARED) 592 pte = pte_mkclean(pte); 593 pte = pte_mkold(pte); 594 595 page = vm_normal_page(vma, addr, pte); 596 if (page) { 597 get_page(page); 598 page_dup_rmap(page, vma, addr); 599 rss[!!PageAnon(page)]++; 600 } 601 602 out_set_pte: 603 set_pte_at(dst_mm, addr, dst_pte, pte); 604 } 605 606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 607 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 608 unsigned long addr, unsigned long end) 609 { 610 pte_t *src_pte, *dst_pte; 611 spinlock_t *src_ptl, *dst_ptl; 612 int progress = 0; 613 int rss[2]; 614 615 again: 616 rss[1] = rss[0] = 0; 617 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 618 if (!dst_pte) 619 return -ENOMEM; 620 src_pte = pte_offset_map_nested(src_pmd, addr); 621 src_ptl = pte_lockptr(src_mm, src_pmd); 622 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 623 arch_enter_lazy_mmu_mode(); 624 625 do { 626 /* 627 * We are holding two locks at this point - either of them 628 * could generate latencies in another task on another CPU. 629 */ 630 if (progress >= 32) { 631 progress = 0; 632 if (need_resched() || 633 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 634 break; 635 } 636 if (pte_none(*src_pte)) { 637 progress++; 638 continue; 639 } 640 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 641 progress += 8; 642 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 643 644 arch_leave_lazy_mmu_mode(); 645 spin_unlock(src_ptl); 646 pte_unmap_nested(src_pte - 1); 647 add_mm_rss(dst_mm, rss[0], rss[1]); 648 pte_unmap_unlock(dst_pte - 1, dst_ptl); 649 cond_resched(); 650 if (addr != end) 651 goto again; 652 return 0; 653 } 654 655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 656 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 657 unsigned long addr, unsigned long end) 658 { 659 pmd_t *src_pmd, *dst_pmd; 660 unsigned long next; 661 662 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 663 if (!dst_pmd) 664 return -ENOMEM; 665 src_pmd = pmd_offset(src_pud, addr); 666 do { 667 next = pmd_addr_end(addr, end); 668 if (pmd_none_or_clear_bad(src_pmd)) 669 continue; 670 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 671 vma, addr, next)) 672 return -ENOMEM; 673 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 674 return 0; 675 } 676 677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 678 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 679 unsigned long addr, unsigned long end) 680 { 681 pud_t *src_pud, *dst_pud; 682 unsigned long next; 683 684 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 685 if (!dst_pud) 686 return -ENOMEM; 687 src_pud = pud_offset(src_pgd, addr); 688 do { 689 next = pud_addr_end(addr, end); 690 if (pud_none_or_clear_bad(src_pud)) 691 continue; 692 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 693 vma, addr, next)) 694 return -ENOMEM; 695 } while (dst_pud++, src_pud++, addr = next, addr != end); 696 return 0; 697 } 698 699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 struct vm_area_struct *vma) 701 { 702 pgd_t *src_pgd, *dst_pgd; 703 unsigned long next; 704 unsigned long addr = vma->vm_start; 705 unsigned long end = vma->vm_end; 706 int ret; 707 708 /* 709 * Don't copy ptes where a page fault will fill them correctly. 710 * Fork becomes much lighter when there are big shared or private 711 * readonly mappings. The tradeoff is that copy_page_range is more 712 * efficient than faulting. 713 */ 714 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 715 if (!vma->anon_vma) 716 return 0; 717 } 718 719 if (is_vm_hugetlb_page(vma)) 720 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 721 722 if (unlikely(is_pfn_mapping(vma))) { 723 /* 724 * We do not free on error cases below as remove_vma 725 * gets called on error from higher level routine 726 */ 727 ret = track_pfn_vma_copy(vma); 728 if (ret) 729 return ret; 730 } 731 732 /* 733 * We need to invalidate the secondary MMU mappings only when 734 * there could be a permission downgrade on the ptes of the 735 * parent mm. And a permission downgrade will only happen if 736 * is_cow_mapping() returns true. 737 */ 738 if (is_cow_mapping(vma->vm_flags)) 739 mmu_notifier_invalidate_range_start(src_mm, addr, end); 740 741 ret = 0; 742 dst_pgd = pgd_offset(dst_mm, addr); 743 src_pgd = pgd_offset(src_mm, addr); 744 do { 745 next = pgd_addr_end(addr, end); 746 if (pgd_none_or_clear_bad(src_pgd)) 747 continue; 748 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 749 vma, addr, next))) { 750 ret = -ENOMEM; 751 break; 752 } 753 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 754 755 if (is_cow_mapping(vma->vm_flags)) 756 mmu_notifier_invalidate_range_end(src_mm, 757 vma->vm_start, end); 758 return ret; 759 } 760 761 static unsigned long zap_pte_range(struct mmu_gather *tlb, 762 struct vm_area_struct *vma, pmd_t *pmd, 763 unsigned long addr, unsigned long end, 764 long *zap_work, struct zap_details *details) 765 { 766 struct mm_struct *mm = tlb->mm; 767 pte_t *pte; 768 spinlock_t *ptl; 769 int file_rss = 0; 770 int anon_rss = 0; 771 772 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 773 arch_enter_lazy_mmu_mode(); 774 do { 775 pte_t ptent = *pte; 776 if (pte_none(ptent)) { 777 (*zap_work)--; 778 continue; 779 } 780 781 (*zap_work) -= PAGE_SIZE; 782 783 if (pte_present(ptent)) { 784 struct page *page; 785 786 page = vm_normal_page(vma, addr, ptent); 787 if (unlikely(details) && page) { 788 /* 789 * unmap_shared_mapping_pages() wants to 790 * invalidate cache without truncating: 791 * unmap shared but keep private pages. 792 */ 793 if (details->check_mapping && 794 details->check_mapping != page->mapping) 795 continue; 796 /* 797 * Each page->index must be checked when 798 * invalidating or truncating nonlinear. 799 */ 800 if (details->nonlinear_vma && 801 (page->index < details->first_index || 802 page->index > details->last_index)) 803 continue; 804 } 805 ptent = ptep_get_and_clear_full(mm, addr, pte, 806 tlb->fullmm); 807 tlb_remove_tlb_entry(tlb, pte, addr); 808 if (unlikely(!page)) 809 continue; 810 if (unlikely(details) && details->nonlinear_vma 811 && linear_page_index(details->nonlinear_vma, 812 addr) != page->index) 813 set_pte_at(mm, addr, pte, 814 pgoff_to_pte(page->index)); 815 if (PageAnon(page)) 816 anon_rss--; 817 else { 818 if (pte_dirty(ptent)) 819 set_page_dirty(page); 820 if (pte_young(ptent) && 821 likely(!VM_SequentialReadHint(vma))) 822 mark_page_accessed(page); 823 file_rss--; 824 } 825 page_remove_rmap(page); 826 if (unlikely(page_mapcount(page) < 0)) 827 print_bad_pte(vma, addr, ptent, page); 828 tlb_remove_page(tlb, page); 829 continue; 830 } 831 /* 832 * If details->check_mapping, we leave swap entries; 833 * if details->nonlinear_vma, we leave file entries. 834 */ 835 if (unlikely(details)) 836 continue; 837 if (pte_file(ptent)) { 838 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 839 print_bad_pte(vma, addr, ptent, NULL); 840 } else if 841 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) 842 print_bad_pte(vma, addr, ptent, NULL); 843 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 844 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 845 846 add_mm_rss(mm, file_rss, anon_rss); 847 arch_leave_lazy_mmu_mode(); 848 pte_unmap_unlock(pte - 1, ptl); 849 850 return addr; 851 } 852 853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 854 struct vm_area_struct *vma, pud_t *pud, 855 unsigned long addr, unsigned long end, 856 long *zap_work, struct zap_details *details) 857 { 858 pmd_t *pmd; 859 unsigned long next; 860 861 pmd = pmd_offset(pud, addr); 862 do { 863 next = pmd_addr_end(addr, end); 864 if (pmd_none_or_clear_bad(pmd)) { 865 (*zap_work)--; 866 continue; 867 } 868 next = zap_pte_range(tlb, vma, pmd, addr, next, 869 zap_work, details); 870 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 871 872 return addr; 873 } 874 875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 876 struct vm_area_struct *vma, pgd_t *pgd, 877 unsigned long addr, unsigned long end, 878 long *zap_work, struct zap_details *details) 879 { 880 pud_t *pud; 881 unsigned long next; 882 883 pud = pud_offset(pgd, addr); 884 do { 885 next = pud_addr_end(addr, end); 886 if (pud_none_or_clear_bad(pud)) { 887 (*zap_work)--; 888 continue; 889 } 890 next = zap_pmd_range(tlb, vma, pud, addr, next, 891 zap_work, details); 892 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 893 894 return addr; 895 } 896 897 static unsigned long unmap_page_range(struct mmu_gather *tlb, 898 struct vm_area_struct *vma, 899 unsigned long addr, unsigned long end, 900 long *zap_work, struct zap_details *details) 901 { 902 pgd_t *pgd; 903 unsigned long next; 904 905 if (details && !details->check_mapping && !details->nonlinear_vma) 906 details = NULL; 907 908 BUG_ON(addr >= end); 909 tlb_start_vma(tlb, vma); 910 pgd = pgd_offset(vma->vm_mm, addr); 911 do { 912 next = pgd_addr_end(addr, end); 913 if (pgd_none_or_clear_bad(pgd)) { 914 (*zap_work)--; 915 continue; 916 } 917 next = zap_pud_range(tlb, vma, pgd, addr, next, 918 zap_work, details); 919 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 920 tlb_end_vma(tlb, vma); 921 922 return addr; 923 } 924 925 #ifdef CONFIG_PREEMPT 926 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 927 #else 928 /* No preempt: go for improved straight-line efficiency */ 929 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 930 #endif 931 932 /** 933 * unmap_vmas - unmap a range of memory covered by a list of vma's 934 * @tlbp: address of the caller's struct mmu_gather 935 * @vma: the starting vma 936 * @start_addr: virtual address at which to start unmapping 937 * @end_addr: virtual address at which to end unmapping 938 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 939 * @details: details of nonlinear truncation or shared cache invalidation 940 * 941 * Returns the end address of the unmapping (restart addr if interrupted). 942 * 943 * Unmap all pages in the vma list. 944 * 945 * We aim to not hold locks for too long (for scheduling latency reasons). 946 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 947 * return the ending mmu_gather to the caller. 948 * 949 * Only addresses between `start' and `end' will be unmapped. 950 * 951 * The VMA list must be sorted in ascending virtual address order. 952 * 953 * unmap_vmas() assumes that the caller will flush the whole unmapped address 954 * range after unmap_vmas() returns. So the only responsibility here is to 955 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 956 * drops the lock and schedules. 957 */ 958 unsigned long unmap_vmas(struct mmu_gather **tlbp, 959 struct vm_area_struct *vma, unsigned long start_addr, 960 unsigned long end_addr, unsigned long *nr_accounted, 961 struct zap_details *details) 962 { 963 long zap_work = ZAP_BLOCK_SIZE; 964 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 965 int tlb_start_valid = 0; 966 unsigned long start = start_addr; 967 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 968 int fullmm = (*tlbp)->fullmm; 969 struct mm_struct *mm = vma->vm_mm; 970 971 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 972 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 973 unsigned long end; 974 975 start = max(vma->vm_start, start_addr); 976 if (start >= vma->vm_end) 977 continue; 978 end = min(vma->vm_end, end_addr); 979 if (end <= vma->vm_start) 980 continue; 981 982 if (vma->vm_flags & VM_ACCOUNT) 983 *nr_accounted += (end - start) >> PAGE_SHIFT; 984 985 if (unlikely(is_pfn_mapping(vma))) 986 untrack_pfn_vma(vma, 0, 0); 987 988 while (start != end) { 989 if (!tlb_start_valid) { 990 tlb_start = start; 991 tlb_start_valid = 1; 992 } 993 994 if (unlikely(is_vm_hugetlb_page(vma))) { 995 /* 996 * It is undesirable to test vma->vm_file as it 997 * should be non-null for valid hugetlb area. 998 * However, vm_file will be NULL in the error 999 * cleanup path of do_mmap_pgoff. When 1000 * hugetlbfs ->mmap method fails, 1001 * do_mmap_pgoff() nullifies vma->vm_file 1002 * before calling this function to clean up. 1003 * Since no pte has actually been setup, it is 1004 * safe to do nothing in this case. 1005 */ 1006 if (vma->vm_file) { 1007 unmap_hugepage_range(vma, start, end, NULL); 1008 zap_work -= (end - start) / 1009 pages_per_huge_page(hstate_vma(vma)); 1010 } 1011 1012 start = end; 1013 } else 1014 start = unmap_page_range(*tlbp, vma, 1015 start, end, &zap_work, details); 1016 1017 if (zap_work > 0) { 1018 BUG_ON(start != end); 1019 break; 1020 } 1021 1022 tlb_finish_mmu(*tlbp, tlb_start, start); 1023 1024 if (need_resched() || 1025 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1026 if (i_mmap_lock) { 1027 *tlbp = NULL; 1028 goto out; 1029 } 1030 cond_resched(); 1031 } 1032 1033 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1034 tlb_start_valid = 0; 1035 zap_work = ZAP_BLOCK_SIZE; 1036 } 1037 } 1038 out: 1039 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1040 return start; /* which is now the end (or restart) address */ 1041 } 1042 1043 /** 1044 * zap_page_range - remove user pages in a given range 1045 * @vma: vm_area_struct holding the applicable pages 1046 * @address: starting address of pages to zap 1047 * @size: number of bytes to zap 1048 * @details: details of nonlinear truncation or shared cache invalidation 1049 */ 1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1051 unsigned long size, struct zap_details *details) 1052 { 1053 struct mm_struct *mm = vma->vm_mm; 1054 struct mmu_gather *tlb; 1055 unsigned long end = address + size; 1056 unsigned long nr_accounted = 0; 1057 1058 lru_add_drain(); 1059 tlb = tlb_gather_mmu(mm, 0); 1060 update_hiwater_rss(mm); 1061 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1062 if (tlb) 1063 tlb_finish_mmu(tlb, address, end); 1064 return end; 1065 } 1066 1067 /** 1068 * zap_vma_ptes - remove ptes mapping the vma 1069 * @vma: vm_area_struct holding ptes to be zapped 1070 * @address: starting address of pages to zap 1071 * @size: number of bytes to zap 1072 * 1073 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1074 * 1075 * The entire address range must be fully contained within the vma. 1076 * 1077 * Returns 0 if successful. 1078 */ 1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1080 unsigned long size) 1081 { 1082 if (address < vma->vm_start || address + size > vma->vm_end || 1083 !(vma->vm_flags & VM_PFNMAP)) 1084 return -1; 1085 zap_page_range(vma, address, size, NULL); 1086 return 0; 1087 } 1088 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1089 1090 /* 1091 * Do a quick page-table lookup for a single page. 1092 */ 1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1094 unsigned int flags) 1095 { 1096 pgd_t *pgd; 1097 pud_t *pud; 1098 pmd_t *pmd; 1099 pte_t *ptep, pte; 1100 spinlock_t *ptl; 1101 struct page *page; 1102 struct mm_struct *mm = vma->vm_mm; 1103 1104 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1105 if (!IS_ERR(page)) { 1106 BUG_ON(flags & FOLL_GET); 1107 goto out; 1108 } 1109 1110 page = NULL; 1111 pgd = pgd_offset(mm, address); 1112 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1113 goto no_page_table; 1114 1115 pud = pud_offset(pgd, address); 1116 if (pud_none(*pud)) 1117 goto no_page_table; 1118 if (pud_huge(*pud)) { 1119 BUG_ON(flags & FOLL_GET); 1120 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1121 goto out; 1122 } 1123 if (unlikely(pud_bad(*pud))) 1124 goto no_page_table; 1125 1126 pmd = pmd_offset(pud, address); 1127 if (pmd_none(*pmd)) 1128 goto no_page_table; 1129 if (pmd_huge(*pmd)) { 1130 BUG_ON(flags & FOLL_GET); 1131 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1132 goto out; 1133 } 1134 if (unlikely(pmd_bad(*pmd))) 1135 goto no_page_table; 1136 1137 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1138 1139 pte = *ptep; 1140 if (!pte_present(pte)) 1141 goto no_page; 1142 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1143 goto unlock; 1144 page = vm_normal_page(vma, address, pte); 1145 if (unlikely(!page)) 1146 goto bad_page; 1147 1148 if (flags & FOLL_GET) 1149 get_page(page); 1150 if (flags & FOLL_TOUCH) { 1151 if ((flags & FOLL_WRITE) && 1152 !pte_dirty(pte) && !PageDirty(page)) 1153 set_page_dirty(page); 1154 mark_page_accessed(page); 1155 } 1156 unlock: 1157 pte_unmap_unlock(ptep, ptl); 1158 out: 1159 return page; 1160 1161 bad_page: 1162 pte_unmap_unlock(ptep, ptl); 1163 return ERR_PTR(-EFAULT); 1164 1165 no_page: 1166 pte_unmap_unlock(ptep, ptl); 1167 if (!pte_none(pte)) 1168 return page; 1169 /* Fall through to ZERO_PAGE handling */ 1170 no_page_table: 1171 /* 1172 * When core dumping an enormous anonymous area that nobody 1173 * has touched so far, we don't want to allocate page tables. 1174 */ 1175 if (flags & FOLL_ANON) { 1176 page = ZERO_PAGE(0); 1177 if (flags & FOLL_GET) 1178 get_page(page); 1179 BUG_ON(flags & FOLL_WRITE); 1180 } 1181 return page; 1182 } 1183 1184 /* Can we do the FOLL_ANON optimization? */ 1185 static inline int use_zero_page(struct vm_area_struct *vma) 1186 { 1187 /* 1188 * We don't want to optimize FOLL_ANON for make_pages_present() 1189 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1190 * we want to get the page from the page tables to make sure 1191 * that we serialize and update with any other user of that 1192 * mapping. 1193 */ 1194 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1195 return 0; 1196 /* 1197 * And if we have a fault routine, it's not an anonymous region. 1198 */ 1199 return !vma->vm_ops || !vma->vm_ops->fault; 1200 } 1201 1202 1203 1204 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1205 unsigned long start, int len, int flags, 1206 struct page **pages, struct vm_area_struct **vmas) 1207 { 1208 int i; 1209 unsigned int vm_flags = 0; 1210 int write = !!(flags & GUP_FLAGS_WRITE); 1211 int force = !!(flags & GUP_FLAGS_FORCE); 1212 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1213 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL); 1214 1215 if (len <= 0) 1216 return 0; 1217 /* 1218 * Require read or write permissions. 1219 * If 'force' is set, we only require the "MAY" flags. 1220 */ 1221 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1222 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1223 i = 0; 1224 1225 do { 1226 struct vm_area_struct *vma; 1227 unsigned int foll_flags; 1228 1229 vma = find_extend_vma(mm, start); 1230 if (!vma && in_gate_area(tsk, start)) { 1231 unsigned long pg = start & PAGE_MASK; 1232 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1233 pgd_t *pgd; 1234 pud_t *pud; 1235 pmd_t *pmd; 1236 pte_t *pte; 1237 1238 /* user gate pages are read-only */ 1239 if (!ignore && write) 1240 return i ? : -EFAULT; 1241 if (pg > TASK_SIZE) 1242 pgd = pgd_offset_k(pg); 1243 else 1244 pgd = pgd_offset_gate(mm, pg); 1245 BUG_ON(pgd_none(*pgd)); 1246 pud = pud_offset(pgd, pg); 1247 BUG_ON(pud_none(*pud)); 1248 pmd = pmd_offset(pud, pg); 1249 if (pmd_none(*pmd)) 1250 return i ? : -EFAULT; 1251 pte = pte_offset_map(pmd, pg); 1252 if (pte_none(*pte)) { 1253 pte_unmap(pte); 1254 return i ? : -EFAULT; 1255 } 1256 if (pages) { 1257 struct page *page = vm_normal_page(gate_vma, start, *pte); 1258 pages[i] = page; 1259 if (page) 1260 get_page(page); 1261 } 1262 pte_unmap(pte); 1263 if (vmas) 1264 vmas[i] = gate_vma; 1265 i++; 1266 start += PAGE_SIZE; 1267 len--; 1268 continue; 1269 } 1270 1271 if (!vma || 1272 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1273 (!ignore && !(vm_flags & vma->vm_flags))) 1274 return i ? : -EFAULT; 1275 1276 if (is_vm_hugetlb_page(vma)) { 1277 i = follow_hugetlb_page(mm, vma, pages, vmas, 1278 &start, &len, i, write); 1279 continue; 1280 } 1281 1282 foll_flags = FOLL_TOUCH; 1283 if (pages) 1284 foll_flags |= FOLL_GET; 1285 if (!write && use_zero_page(vma)) 1286 foll_flags |= FOLL_ANON; 1287 1288 do { 1289 struct page *page; 1290 1291 /* 1292 * If we have a pending SIGKILL, don't keep faulting 1293 * pages and potentially allocating memory, unless 1294 * current is handling munlock--e.g., on exit. In 1295 * that case, we are not allocating memory. Rather, 1296 * we're only unlocking already resident/mapped pages. 1297 */ 1298 if (unlikely(!ignore_sigkill && 1299 fatal_signal_pending(current))) 1300 return i ? i : -ERESTARTSYS; 1301 1302 if (write) 1303 foll_flags |= FOLL_WRITE; 1304 1305 cond_resched(); 1306 while (!(page = follow_page(vma, start, foll_flags))) { 1307 int ret; 1308 ret = handle_mm_fault(mm, vma, start, 1309 foll_flags & FOLL_WRITE); 1310 if (ret & VM_FAULT_ERROR) { 1311 if (ret & VM_FAULT_OOM) 1312 return i ? i : -ENOMEM; 1313 else if (ret & VM_FAULT_SIGBUS) 1314 return i ? i : -EFAULT; 1315 BUG(); 1316 } 1317 if (ret & VM_FAULT_MAJOR) 1318 tsk->maj_flt++; 1319 else 1320 tsk->min_flt++; 1321 1322 /* 1323 * The VM_FAULT_WRITE bit tells us that 1324 * do_wp_page has broken COW when necessary, 1325 * even if maybe_mkwrite decided not to set 1326 * pte_write. We can thus safely do subsequent 1327 * page lookups as if they were reads. But only 1328 * do so when looping for pte_write is futile: 1329 * in some cases userspace may also be wanting 1330 * to write to the gotten user page, which a 1331 * read fault here might prevent (a readonly 1332 * page might get reCOWed by userspace write). 1333 */ 1334 if ((ret & VM_FAULT_WRITE) && 1335 !(vma->vm_flags & VM_WRITE)) 1336 foll_flags &= ~FOLL_WRITE; 1337 1338 cond_resched(); 1339 } 1340 if (IS_ERR(page)) 1341 return i ? i : PTR_ERR(page); 1342 if (pages) { 1343 pages[i] = page; 1344 1345 flush_anon_page(vma, page, start); 1346 flush_dcache_page(page); 1347 } 1348 if (vmas) 1349 vmas[i] = vma; 1350 i++; 1351 start += PAGE_SIZE; 1352 len--; 1353 } while (len && start < vma->vm_end); 1354 } while (len); 1355 return i; 1356 } 1357 1358 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1359 unsigned long start, int len, int write, int force, 1360 struct page **pages, struct vm_area_struct **vmas) 1361 { 1362 int flags = 0; 1363 1364 if (write) 1365 flags |= GUP_FLAGS_WRITE; 1366 if (force) 1367 flags |= GUP_FLAGS_FORCE; 1368 1369 return __get_user_pages(tsk, mm, 1370 start, len, flags, 1371 pages, vmas); 1372 } 1373 1374 EXPORT_SYMBOL(get_user_pages); 1375 1376 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1377 spinlock_t **ptl) 1378 { 1379 pgd_t * pgd = pgd_offset(mm, addr); 1380 pud_t * pud = pud_alloc(mm, pgd, addr); 1381 if (pud) { 1382 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1383 if (pmd) 1384 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1385 } 1386 return NULL; 1387 } 1388 1389 /* 1390 * This is the old fallback for page remapping. 1391 * 1392 * For historical reasons, it only allows reserved pages. Only 1393 * old drivers should use this, and they needed to mark their 1394 * pages reserved for the old functions anyway. 1395 */ 1396 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1397 struct page *page, pgprot_t prot) 1398 { 1399 struct mm_struct *mm = vma->vm_mm; 1400 int retval; 1401 pte_t *pte; 1402 spinlock_t *ptl; 1403 1404 retval = -EINVAL; 1405 if (PageAnon(page)) 1406 goto out; 1407 retval = -ENOMEM; 1408 flush_dcache_page(page); 1409 pte = get_locked_pte(mm, addr, &ptl); 1410 if (!pte) 1411 goto out; 1412 retval = -EBUSY; 1413 if (!pte_none(*pte)) 1414 goto out_unlock; 1415 1416 /* Ok, finally just insert the thing.. */ 1417 get_page(page); 1418 inc_mm_counter(mm, file_rss); 1419 page_add_file_rmap(page); 1420 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1421 1422 retval = 0; 1423 pte_unmap_unlock(pte, ptl); 1424 return retval; 1425 out_unlock: 1426 pte_unmap_unlock(pte, ptl); 1427 out: 1428 return retval; 1429 } 1430 1431 /** 1432 * vm_insert_page - insert single page into user vma 1433 * @vma: user vma to map to 1434 * @addr: target user address of this page 1435 * @page: source kernel page 1436 * 1437 * This allows drivers to insert individual pages they've allocated 1438 * into a user vma. 1439 * 1440 * The page has to be a nice clean _individual_ kernel allocation. 1441 * If you allocate a compound page, you need to have marked it as 1442 * such (__GFP_COMP), or manually just split the page up yourself 1443 * (see split_page()). 1444 * 1445 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1446 * took an arbitrary page protection parameter. This doesn't allow 1447 * that. Your vma protection will have to be set up correctly, which 1448 * means that if you want a shared writable mapping, you'd better 1449 * ask for a shared writable mapping! 1450 * 1451 * The page does not need to be reserved. 1452 */ 1453 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1454 struct page *page) 1455 { 1456 if (addr < vma->vm_start || addr >= vma->vm_end) 1457 return -EFAULT; 1458 if (!page_count(page)) 1459 return -EINVAL; 1460 vma->vm_flags |= VM_INSERTPAGE; 1461 return insert_page(vma, addr, page, vma->vm_page_prot); 1462 } 1463 EXPORT_SYMBOL(vm_insert_page); 1464 1465 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1466 unsigned long pfn, pgprot_t prot) 1467 { 1468 struct mm_struct *mm = vma->vm_mm; 1469 int retval; 1470 pte_t *pte, entry; 1471 spinlock_t *ptl; 1472 1473 retval = -ENOMEM; 1474 pte = get_locked_pte(mm, addr, &ptl); 1475 if (!pte) 1476 goto out; 1477 retval = -EBUSY; 1478 if (!pte_none(*pte)) 1479 goto out_unlock; 1480 1481 /* Ok, finally just insert the thing.. */ 1482 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1483 set_pte_at(mm, addr, pte, entry); 1484 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1485 1486 retval = 0; 1487 out_unlock: 1488 pte_unmap_unlock(pte, ptl); 1489 out: 1490 return retval; 1491 } 1492 1493 /** 1494 * vm_insert_pfn - insert single pfn into user vma 1495 * @vma: user vma to map to 1496 * @addr: target user address of this page 1497 * @pfn: source kernel pfn 1498 * 1499 * Similar to vm_inert_page, this allows drivers to insert individual pages 1500 * they've allocated into a user vma. Same comments apply. 1501 * 1502 * This function should only be called from a vm_ops->fault handler, and 1503 * in that case the handler should return NULL. 1504 * 1505 * vma cannot be a COW mapping. 1506 * 1507 * As this is called only for pages that do not currently exist, we 1508 * do not need to flush old virtual caches or the TLB. 1509 */ 1510 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1511 unsigned long pfn) 1512 { 1513 int ret; 1514 pgprot_t pgprot = vma->vm_page_prot; 1515 /* 1516 * Technically, architectures with pte_special can avoid all these 1517 * restrictions (same for remap_pfn_range). However we would like 1518 * consistency in testing and feature parity among all, so we should 1519 * try to keep these invariants in place for everybody. 1520 */ 1521 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1522 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1523 (VM_PFNMAP|VM_MIXEDMAP)); 1524 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1525 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1526 1527 if (addr < vma->vm_start || addr >= vma->vm_end) 1528 return -EFAULT; 1529 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1530 return -EINVAL; 1531 1532 ret = insert_pfn(vma, addr, pfn, pgprot); 1533 1534 if (ret) 1535 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1536 1537 return ret; 1538 } 1539 EXPORT_SYMBOL(vm_insert_pfn); 1540 1541 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1542 unsigned long pfn) 1543 { 1544 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1545 1546 if (addr < vma->vm_start || addr >= vma->vm_end) 1547 return -EFAULT; 1548 1549 /* 1550 * If we don't have pte special, then we have to use the pfn_valid() 1551 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1552 * refcount the page if pfn_valid is true (hence insert_page rather 1553 * than insert_pfn). 1554 */ 1555 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1556 struct page *page; 1557 1558 page = pfn_to_page(pfn); 1559 return insert_page(vma, addr, page, vma->vm_page_prot); 1560 } 1561 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1562 } 1563 EXPORT_SYMBOL(vm_insert_mixed); 1564 1565 /* 1566 * maps a range of physical memory into the requested pages. the old 1567 * mappings are removed. any references to nonexistent pages results 1568 * in null mappings (currently treated as "copy-on-access") 1569 */ 1570 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1571 unsigned long addr, unsigned long end, 1572 unsigned long pfn, pgprot_t prot) 1573 { 1574 pte_t *pte; 1575 spinlock_t *ptl; 1576 1577 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1578 if (!pte) 1579 return -ENOMEM; 1580 arch_enter_lazy_mmu_mode(); 1581 do { 1582 BUG_ON(!pte_none(*pte)); 1583 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1584 pfn++; 1585 } while (pte++, addr += PAGE_SIZE, addr != end); 1586 arch_leave_lazy_mmu_mode(); 1587 pte_unmap_unlock(pte - 1, ptl); 1588 return 0; 1589 } 1590 1591 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1592 unsigned long addr, unsigned long end, 1593 unsigned long pfn, pgprot_t prot) 1594 { 1595 pmd_t *pmd; 1596 unsigned long next; 1597 1598 pfn -= addr >> PAGE_SHIFT; 1599 pmd = pmd_alloc(mm, pud, addr); 1600 if (!pmd) 1601 return -ENOMEM; 1602 do { 1603 next = pmd_addr_end(addr, end); 1604 if (remap_pte_range(mm, pmd, addr, next, 1605 pfn + (addr >> PAGE_SHIFT), prot)) 1606 return -ENOMEM; 1607 } while (pmd++, addr = next, addr != end); 1608 return 0; 1609 } 1610 1611 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1612 unsigned long addr, unsigned long end, 1613 unsigned long pfn, pgprot_t prot) 1614 { 1615 pud_t *pud; 1616 unsigned long next; 1617 1618 pfn -= addr >> PAGE_SHIFT; 1619 pud = pud_alloc(mm, pgd, addr); 1620 if (!pud) 1621 return -ENOMEM; 1622 do { 1623 next = pud_addr_end(addr, end); 1624 if (remap_pmd_range(mm, pud, addr, next, 1625 pfn + (addr >> PAGE_SHIFT), prot)) 1626 return -ENOMEM; 1627 } while (pud++, addr = next, addr != end); 1628 return 0; 1629 } 1630 1631 /** 1632 * remap_pfn_range - remap kernel memory to userspace 1633 * @vma: user vma to map to 1634 * @addr: target user address to start at 1635 * @pfn: physical address of kernel memory 1636 * @size: size of map area 1637 * @prot: page protection flags for this mapping 1638 * 1639 * Note: this is only safe if the mm semaphore is held when called. 1640 */ 1641 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1642 unsigned long pfn, unsigned long size, pgprot_t prot) 1643 { 1644 pgd_t *pgd; 1645 unsigned long next; 1646 unsigned long end = addr + PAGE_ALIGN(size); 1647 struct mm_struct *mm = vma->vm_mm; 1648 int err; 1649 1650 /* 1651 * Physically remapped pages are special. Tell the 1652 * rest of the world about it: 1653 * VM_IO tells people not to look at these pages 1654 * (accesses can have side effects). 1655 * VM_RESERVED is specified all over the place, because 1656 * in 2.4 it kept swapout's vma scan off this vma; but 1657 * in 2.6 the LRU scan won't even find its pages, so this 1658 * flag means no more than count its pages in reserved_vm, 1659 * and omit it from core dump, even when VM_IO turned off. 1660 * VM_PFNMAP tells the core MM that the base pages are just 1661 * raw PFN mappings, and do not have a "struct page" associated 1662 * with them. 1663 * 1664 * There's a horrible special case to handle copy-on-write 1665 * behaviour that some programs depend on. We mark the "original" 1666 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1667 */ 1668 if (addr == vma->vm_start && end == vma->vm_end) 1669 vma->vm_pgoff = pfn; 1670 else if (is_cow_mapping(vma->vm_flags)) 1671 return -EINVAL; 1672 1673 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1674 1675 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1676 if (err) { 1677 /* 1678 * To indicate that track_pfn related cleanup is not 1679 * needed from higher level routine calling unmap_vmas 1680 */ 1681 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1682 return -EINVAL; 1683 } 1684 1685 BUG_ON(addr >= end); 1686 pfn -= addr >> PAGE_SHIFT; 1687 pgd = pgd_offset(mm, addr); 1688 flush_cache_range(vma, addr, end); 1689 do { 1690 next = pgd_addr_end(addr, end); 1691 err = remap_pud_range(mm, pgd, addr, next, 1692 pfn + (addr >> PAGE_SHIFT), prot); 1693 if (err) 1694 break; 1695 } while (pgd++, addr = next, addr != end); 1696 1697 if (err) 1698 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1699 1700 return err; 1701 } 1702 EXPORT_SYMBOL(remap_pfn_range); 1703 1704 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1705 unsigned long addr, unsigned long end, 1706 pte_fn_t fn, void *data) 1707 { 1708 pte_t *pte; 1709 int err; 1710 pgtable_t token; 1711 spinlock_t *uninitialized_var(ptl); 1712 1713 pte = (mm == &init_mm) ? 1714 pte_alloc_kernel(pmd, addr) : 1715 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1716 if (!pte) 1717 return -ENOMEM; 1718 1719 BUG_ON(pmd_huge(*pmd)); 1720 1721 arch_enter_lazy_mmu_mode(); 1722 1723 token = pmd_pgtable(*pmd); 1724 1725 do { 1726 err = fn(pte, token, addr, data); 1727 if (err) 1728 break; 1729 } while (pte++, addr += PAGE_SIZE, addr != end); 1730 1731 arch_leave_lazy_mmu_mode(); 1732 1733 if (mm != &init_mm) 1734 pte_unmap_unlock(pte-1, ptl); 1735 return err; 1736 } 1737 1738 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1739 unsigned long addr, unsigned long end, 1740 pte_fn_t fn, void *data) 1741 { 1742 pmd_t *pmd; 1743 unsigned long next; 1744 int err; 1745 1746 BUG_ON(pud_huge(*pud)); 1747 1748 pmd = pmd_alloc(mm, pud, addr); 1749 if (!pmd) 1750 return -ENOMEM; 1751 do { 1752 next = pmd_addr_end(addr, end); 1753 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1754 if (err) 1755 break; 1756 } while (pmd++, addr = next, addr != end); 1757 return err; 1758 } 1759 1760 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1761 unsigned long addr, unsigned long end, 1762 pte_fn_t fn, void *data) 1763 { 1764 pud_t *pud; 1765 unsigned long next; 1766 int err; 1767 1768 pud = pud_alloc(mm, pgd, addr); 1769 if (!pud) 1770 return -ENOMEM; 1771 do { 1772 next = pud_addr_end(addr, end); 1773 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1774 if (err) 1775 break; 1776 } while (pud++, addr = next, addr != end); 1777 return err; 1778 } 1779 1780 /* 1781 * Scan a region of virtual memory, filling in page tables as necessary 1782 * and calling a provided function on each leaf page table. 1783 */ 1784 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1785 unsigned long size, pte_fn_t fn, void *data) 1786 { 1787 pgd_t *pgd; 1788 unsigned long next; 1789 unsigned long start = addr, end = addr + size; 1790 int err; 1791 1792 BUG_ON(addr >= end); 1793 mmu_notifier_invalidate_range_start(mm, start, end); 1794 pgd = pgd_offset(mm, addr); 1795 do { 1796 next = pgd_addr_end(addr, end); 1797 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1798 if (err) 1799 break; 1800 } while (pgd++, addr = next, addr != end); 1801 mmu_notifier_invalidate_range_end(mm, start, end); 1802 return err; 1803 } 1804 EXPORT_SYMBOL_GPL(apply_to_page_range); 1805 1806 /* 1807 * handle_pte_fault chooses page fault handler according to an entry 1808 * which was read non-atomically. Before making any commitment, on 1809 * those architectures or configurations (e.g. i386 with PAE) which 1810 * might give a mix of unmatched parts, do_swap_page and do_file_page 1811 * must check under lock before unmapping the pte and proceeding 1812 * (but do_wp_page is only called after already making such a check; 1813 * and do_anonymous_page and do_no_page can safely check later on). 1814 */ 1815 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1816 pte_t *page_table, pte_t orig_pte) 1817 { 1818 int same = 1; 1819 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1820 if (sizeof(pte_t) > sizeof(unsigned long)) { 1821 spinlock_t *ptl = pte_lockptr(mm, pmd); 1822 spin_lock(ptl); 1823 same = pte_same(*page_table, orig_pte); 1824 spin_unlock(ptl); 1825 } 1826 #endif 1827 pte_unmap(page_table); 1828 return same; 1829 } 1830 1831 /* 1832 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1833 * servicing faults for write access. In the normal case, do always want 1834 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1835 * that do not have writing enabled, when used by access_process_vm. 1836 */ 1837 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1838 { 1839 if (likely(vma->vm_flags & VM_WRITE)) 1840 pte = pte_mkwrite(pte); 1841 return pte; 1842 } 1843 1844 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1845 { 1846 /* 1847 * If the source page was a PFN mapping, we don't have 1848 * a "struct page" for it. We do a best-effort copy by 1849 * just copying from the original user address. If that 1850 * fails, we just zero-fill it. Live with it. 1851 */ 1852 if (unlikely(!src)) { 1853 void *kaddr = kmap_atomic(dst, KM_USER0); 1854 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1855 1856 /* 1857 * This really shouldn't fail, because the page is there 1858 * in the page tables. But it might just be unreadable, 1859 * in which case we just give up and fill the result with 1860 * zeroes. 1861 */ 1862 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1863 memset(kaddr, 0, PAGE_SIZE); 1864 kunmap_atomic(kaddr, KM_USER0); 1865 flush_dcache_page(dst); 1866 } else 1867 copy_user_highpage(dst, src, va, vma); 1868 } 1869 1870 /* 1871 * This routine handles present pages, when users try to write 1872 * to a shared page. It is done by copying the page to a new address 1873 * and decrementing the shared-page counter for the old page. 1874 * 1875 * Note that this routine assumes that the protection checks have been 1876 * done by the caller (the low-level page fault routine in most cases). 1877 * Thus we can safely just mark it writable once we've done any necessary 1878 * COW. 1879 * 1880 * We also mark the page dirty at this point even though the page will 1881 * change only once the write actually happens. This avoids a few races, 1882 * and potentially makes it more efficient. 1883 * 1884 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1885 * but allow concurrent faults), with pte both mapped and locked. 1886 * We return with mmap_sem still held, but pte unmapped and unlocked. 1887 */ 1888 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1889 unsigned long address, pte_t *page_table, pmd_t *pmd, 1890 spinlock_t *ptl, pte_t orig_pte) 1891 { 1892 struct page *old_page, *new_page; 1893 pte_t entry; 1894 int reuse = 0, ret = 0; 1895 int page_mkwrite = 0; 1896 struct page *dirty_page = NULL; 1897 1898 old_page = vm_normal_page(vma, address, orig_pte); 1899 if (!old_page) { 1900 /* 1901 * VM_MIXEDMAP !pfn_valid() case 1902 * 1903 * We should not cow pages in a shared writeable mapping. 1904 * Just mark the pages writable as we can't do any dirty 1905 * accounting on raw pfn maps. 1906 */ 1907 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1908 (VM_WRITE|VM_SHARED)) 1909 goto reuse; 1910 goto gotten; 1911 } 1912 1913 /* 1914 * Take out anonymous pages first, anonymous shared vmas are 1915 * not dirty accountable. 1916 */ 1917 if (PageAnon(old_page)) { 1918 if (!trylock_page(old_page)) { 1919 page_cache_get(old_page); 1920 pte_unmap_unlock(page_table, ptl); 1921 lock_page(old_page); 1922 page_table = pte_offset_map_lock(mm, pmd, address, 1923 &ptl); 1924 if (!pte_same(*page_table, orig_pte)) { 1925 unlock_page(old_page); 1926 page_cache_release(old_page); 1927 goto unlock; 1928 } 1929 page_cache_release(old_page); 1930 } 1931 reuse = reuse_swap_page(old_page); 1932 unlock_page(old_page); 1933 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1934 (VM_WRITE|VM_SHARED))) { 1935 /* 1936 * Only catch write-faults on shared writable pages, 1937 * read-only shared pages can get COWed by 1938 * get_user_pages(.write=1, .force=1). 1939 */ 1940 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1941 /* 1942 * Notify the address space that the page is about to 1943 * become writable so that it can prohibit this or wait 1944 * for the page to get into an appropriate state. 1945 * 1946 * We do this without the lock held, so that it can 1947 * sleep if it needs to. 1948 */ 1949 page_cache_get(old_page); 1950 pte_unmap_unlock(page_table, ptl); 1951 1952 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1953 goto unwritable_page; 1954 1955 /* 1956 * Since we dropped the lock we need to revalidate 1957 * the PTE as someone else may have changed it. If 1958 * they did, we just return, as we can count on the 1959 * MMU to tell us if they didn't also make it writable. 1960 */ 1961 page_table = pte_offset_map_lock(mm, pmd, address, 1962 &ptl); 1963 page_cache_release(old_page); 1964 if (!pte_same(*page_table, orig_pte)) 1965 goto unlock; 1966 1967 page_mkwrite = 1; 1968 } 1969 dirty_page = old_page; 1970 get_page(dirty_page); 1971 reuse = 1; 1972 } 1973 1974 if (reuse) { 1975 reuse: 1976 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1977 entry = pte_mkyoung(orig_pte); 1978 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1979 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1980 update_mmu_cache(vma, address, entry); 1981 ret |= VM_FAULT_WRITE; 1982 goto unlock; 1983 } 1984 1985 /* 1986 * Ok, we need to copy. Oh, well.. 1987 */ 1988 page_cache_get(old_page); 1989 gotten: 1990 pte_unmap_unlock(page_table, ptl); 1991 1992 if (unlikely(anon_vma_prepare(vma))) 1993 goto oom; 1994 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1995 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1996 if (!new_page) 1997 goto oom; 1998 /* 1999 * Don't let another task, with possibly unlocked vma, 2000 * keep the mlocked page. 2001 */ 2002 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2003 lock_page(old_page); /* for LRU manipulation */ 2004 clear_page_mlock(old_page); 2005 unlock_page(old_page); 2006 } 2007 cow_user_page(new_page, old_page, address, vma); 2008 __SetPageUptodate(new_page); 2009 2010 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2011 goto oom_free_new; 2012 2013 /* 2014 * Re-check the pte - we dropped the lock 2015 */ 2016 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2017 if (likely(pte_same(*page_table, orig_pte))) { 2018 if (old_page) { 2019 if (!PageAnon(old_page)) { 2020 dec_mm_counter(mm, file_rss); 2021 inc_mm_counter(mm, anon_rss); 2022 } 2023 } else 2024 inc_mm_counter(mm, anon_rss); 2025 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2026 entry = mk_pte(new_page, vma->vm_page_prot); 2027 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2028 /* 2029 * Clear the pte entry and flush it first, before updating the 2030 * pte with the new entry. This will avoid a race condition 2031 * seen in the presence of one thread doing SMC and another 2032 * thread doing COW. 2033 */ 2034 ptep_clear_flush_notify(vma, address, page_table); 2035 page_add_new_anon_rmap(new_page, vma, address); 2036 set_pte_at(mm, address, page_table, entry); 2037 update_mmu_cache(vma, address, entry); 2038 if (old_page) { 2039 /* 2040 * Only after switching the pte to the new page may 2041 * we remove the mapcount here. Otherwise another 2042 * process may come and find the rmap count decremented 2043 * before the pte is switched to the new page, and 2044 * "reuse" the old page writing into it while our pte 2045 * here still points into it and can be read by other 2046 * threads. 2047 * 2048 * The critical issue is to order this 2049 * page_remove_rmap with the ptp_clear_flush above. 2050 * Those stores are ordered by (if nothing else,) 2051 * the barrier present in the atomic_add_negative 2052 * in page_remove_rmap. 2053 * 2054 * Then the TLB flush in ptep_clear_flush ensures that 2055 * no process can access the old page before the 2056 * decremented mapcount is visible. And the old page 2057 * cannot be reused until after the decremented 2058 * mapcount is visible. So transitively, TLBs to 2059 * old page will be flushed before it can be reused. 2060 */ 2061 page_remove_rmap(old_page); 2062 } 2063 2064 /* Free the old page.. */ 2065 new_page = old_page; 2066 ret |= VM_FAULT_WRITE; 2067 } else 2068 mem_cgroup_uncharge_page(new_page); 2069 2070 if (new_page) 2071 page_cache_release(new_page); 2072 if (old_page) 2073 page_cache_release(old_page); 2074 unlock: 2075 pte_unmap_unlock(page_table, ptl); 2076 if (dirty_page) { 2077 if (vma->vm_file) 2078 file_update_time(vma->vm_file); 2079 2080 /* 2081 * Yes, Virginia, this is actually required to prevent a race 2082 * with clear_page_dirty_for_io() from clearing the page dirty 2083 * bit after it clear all dirty ptes, but before a racing 2084 * do_wp_page installs a dirty pte. 2085 * 2086 * do_no_page is protected similarly. 2087 */ 2088 wait_on_page_locked(dirty_page); 2089 set_page_dirty_balance(dirty_page, page_mkwrite); 2090 put_page(dirty_page); 2091 } 2092 return ret; 2093 oom_free_new: 2094 page_cache_release(new_page); 2095 oom: 2096 if (old_page) 2097 page_cache_release(old_page); 2098 return VM_FAULT_OOM; 2099 2100 unwritable_page: 2101 page_cache_release(old_page); 2102 return VM_FAULT_SIGBUS; 2103 } 2104 2105 /* 2106 * Helper functions for unmap_mapping_range(). 2107 * 2108 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2109 * 2110 * We have to restart searching the prio_tree whenever we drop the lock, 2111 * since the iterator is only valid while the lock is held, and anyway 2112 * a later vma might be split and reinserted earlier while lock dropped. 2113 * 2114 * The list of nonlinear vmas could be handled more efficiently, using 2115 * a placeholder, but handle it in the same way until a need is shown. 2116 * It is important to search the prio_tree before nonlinear list: a vma 2117 * may become nonlinear and be shifted from prio_tree to nonlinear list 2118 * while the lock is dropped; but never shifted from list to prio_tree. 2119 * 2120 * In order to make forward progress despite restarting the search, 2121 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2122 * quickly skip it next time around. Since the prio_tree search only 2123 * shows us those vmas affected by unmapping the range in question, we 2124 * can't efficiently keep all vmas in step with mapping->truncate_count: 2125 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2126 * mapping->truncate_count and vma->vm_truncate_count are protected by 2127 * i_mmap_lock. 2128 * 2129 * In order to make forward progress despite repeatedly restarting some 2130 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2131 * and restart from that address when we reach that vma again. It might 2132 * have been split or merged, shrunk or extended, but never shifted: so 2133 * restart_addr remains valid so long as it remains in the vma's range. 2134 * unmap_mapping_range forces truncate_count to leap over page-aligned 2135 * values so we can save vma's restart_addr in its truncate_count field. 2136 */ 2137 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2138 2139 static void reset_vma_truncate_counts(struct address_space *mapping) 2140 { 2141 struct vm_area_struct *vma; 2142 struct prio_tree_iter iter; 2143 2144 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2145 vma->vm_truncate_count = 0; 2146 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2147 vma->vm_truncate_count = 0; 2148 } 2149 2150 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2151 unsigned long start_addr, unsigned long end_addr, 2152 struct zap_details *details) 2153 { 2154 unsigned long restart_addr; 2155 int need_break; 2156 2157 /* 2158 * files that support invalidating or truncating portions of the 2159 * file from under mmaped areas must have their ->fault function 2160 * return a locked page (and set VM_FAULT_LOCKED in the return). 2161 * This provides synchronisation against concurrent unmapping here. 2162 */ 2163 2164 again: 2165 restart_addr = vma->vm_truncate_count; 2166 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2167 start_addr = restart_addr; 2168 if (start_addr >= end_addr) { 2169 /* Top of vma has been split off since last time */ 2170 vma->vm_truncate_count = details->truncate_count; 2171 return 0; 2172 } 2173 } 2174 2175 restart_addr = zap_page_range(vma, start_addr, 2176 end_addr - start_addr, details); 2177 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2178 2179 if (restart_addr >= end_addr) { 2180 /* We have now completed this vma: mark it so */ 2181 vma->vm_truncate_count = details->truncate_count; 2182 if (!need_break) 2183 return 0; 2184 } else { 2185 /* Note restart_addr in vma's truncate_count field */ 2186 vma->vm_truncate_count = restart_addr; 2187 if (!need_break) 2188 goto again; 2189 } 2190 2191 spin_unlock(details->i_mmap_lock); 2192 cond_resched(); 2193 spin_lock(details->i_mmap_lock); 2194 return -EINTR; 2195 } 2196 2197 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2198 struct zap_details *details) 2199 { 2200 struct vm_area_struct *vma; 2201 struct prio_tree_iter iter; 2202 pgoff_t vba, vea, zba, zea; 2203 2204 restart: 2205 vma_prio_tree_foreach(vma, &iter, root, 2206 details->first_index, details->last_index) { 2207 /* Skip quickly over those we have already dealt with */ 2208 if (vma->vm_truncate_count == details->truncate_count) 2209 continue; 2210 2211 vba = vma->vm_pgoff; 2212 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2213 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2214 zba = details->first_index; 2215 if (zba < vba) 2216 zba = vba; 2217 zea = details->last_index; 2218 if (zea > vea) 2219 zea = vea; 2220 2221 if (unmap_mapping_range_vma(vma, 2222 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2223 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2224 details) < 0) 2225 goto restart; 2226 } 2227 } 2228 2229 static inline void unmap_mapping_range_list(struct list_head *head, 2230 struct zap_details *details) 2231 { 2232 struct vm_area_struct *vma; 2233 2234 /* 2235 * In nonlinear VMAs there is no correspondence between virtual address 2236 * offset and file offset. So we must perform an exhaustive search 2237 * across *all* the pages in each nonlinear VMA, not just the pages 2238 * whose virtual address lies outside the file truncation point. 2239 */ 2240 restart: 2241 list_for_each_entry(vma, head, shared.vm_set.list) { 2242 /* Skip quickly over those we have already dealt with */ 2243 if (vma->vm_truncate_count == details->truncate_count) 2244 continue; 2245 details->nonlinear_vma = vma; 2246 if (unmap_mapping_range_vma(vma, vma->vm_start, 2247 vma->vm_end, details) < 0) 2248 goto restart; 2249 } 2250 } 2251 2252 /** 2253 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2254 * @mapping: the address space containing mmaps to be unmapped. 2255 * @holebegin: byte in first page to unmap, relative to the start of 2256 * the underlying file. This will be rounded down to a PAGE_SIZE 2257 * boundary. Note that this is different from vmtruncate(), which 2258 * must keep the partial page. In contrast, we must get rid of 2259 * partial pages. 2260 * @holelen: size of prospective hole in bytes. This will be rounded 2261 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2262 * end of the file. 2263 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2264 * but 0 when invalidating pagecache, don't throw away private data. 2265 */ 2266 void unmap_mapping_range(struct address_space *mapping, 2267 loff_t const holebegin, loff_t const holelen, int even_cows) 2268 { 2269 struct zap_details details; 2270 pgoff_t hba = holebegin >> PAGE_SHIFT; 2271 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2272 2273 /* Check for overflow. */ 2274 if (sizeof(holelen) > sizeof(hlen)) { 2275 long long holeend = 2276 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2277 if (holeend & ~(long long)ULONG_MAX) 2278 hlen = ULONG_MAX - hba + 1; 2279 } 2280 2281 details.check_mapping = even_cows? NULL: mapping; 2282 details.nonlinear_vma = NULL; 2283 details.first_index = hba; 2284 details.last_index = hba + hlen - 1; 2285 if (details.last_index < details.first_index) 2286 details.last_index = ULONG_MAX; 2287 details.i_mmap_lock = &mapping->i_mmap_lock; 2288 2289 spin_lock(&mapping->i_mmap_lock); 2290 2291 /* Protect against endless unmapping loops */ 2292 mapping->truncate_count++; 2293 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2294 if (mapping->truncate_count == 0) 2295 reset_vma_truncate_counts(mapping); 2296 mapping->truncate_count++; 2297 } 2298 details.truncate_count = mapping->truncate_count; 2299 2300 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2301 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2302 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2303 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2304 spin_unlock(&mapping->i_mmap_lock); 2305 } 2306 EXPORT_SYMBOL(unmap_mapping_range); 2307 2308 /** 2309 * vmtruncate - unmap mappings "freed" by truncate() syscall 2310 * @inode: inode of the file used 2311 * @offset: file offset to start truncating 2312 * 2313 * NOTE! We have to be ready to update the memory sharing 2314 * between the file and the memory map for a potential last 2315 * incomplete page. Ugly, but necessary. 2316 */ 2317 int vmtruncate(struct inode * inode, loff_t offset) 2318 { 2319 if (inode->i_size < offset) { 2320 unsigned long limit; 2321 2322 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2323 if (limit != RLIM_INFINITY && offset > limit) 2324 goto out_sig; 2325 if (offset > inode->i_sb->s_maxbytes) 2326 goto out_big; 2327 i_size_write(inode, offset); 2328 } else { 2329 struct address_space *mapping = inode->i_mapping; 2330 2331 /* 2332 * truncation of in-use swapfiles is disallowed - it would 2333 * cause subsequent swapout to scribble on the now-freed 2334 * blocks. 2335 */ 2336 if (IS_SWAPFILE(inode)) 2337 return -ETXTBSY; 2338 i_size_write(inode, offset); 2339 2340 /* 2341 * unmap_mapping_range is called twice, first simply for 2342 * efficiency so that truncate_inode_pages does fewer 2343 * single-page unmaps. However after this first call, and 2344 * before truncate_inode_pages finishes, it is possible for 2345 * private pages to be COWed, which remain after 2346 * truncate_inode_pages finishes, hence the second 2347 * unmap_mapping_range call must be made for correctness. 2348 */ 2349 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2350 truncate_inode_pages(mapping, offset); 2351 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2352 } 2353 2354 if (inode->i_op->truncate) 2355 inode->i_op->truncate(inode); 2356 return 0; 2357 2358 out_sig: 2359 send_sig(SIGXFSZ, current, 0); 2360 out_big: 2361 return -EFBIG; 2362 } 2363 EXPORT_SYMBOL(vmtruncate); 2364 2365 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2366 { 2367 struct address_space *mapping = inode->i_mapping; 2368 2369 /* 2370 * If the underlying filesystem is not going to provide 2371 * a way to truncate a range of blocks (punch a hole) - 2372 * we should return failure right now. 2373 */ 2374 if (!inode->i_op->truncate_range) 2375 return -ENOSYS; 2376 2377 mutex_lock(&inode->i_mutex); 2378 down_write(&inode->i_alloc_sem); 2379 unmap_mapping_range(mapping, offset, (end - offset), 1); 2380 truncate_inode_pages_range(mapping, offset, end); 2381 unmap_mapping_range(mapping, offset, (end - offset), 1); 2382 inode->i_op->truncate_range(inode, offset, end); 2383 up_write(&inode->i_alloc_sem); 2384 mutex_unlock(&inode->i_mutex); 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2391 * but allow concurrent faults), and pte mapped but not yet locked. 2392 * We return with mmap_sem still held, but pte unmapped and unlocked. 2393 */ 2394 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2395 unsigned long address, pte_t *page_table, pmd_t *pmd, 2396 int write_access, pte_t orig_pte) 2397 { 2398 spinlock_t *ptl; 2399 struct page *page; 2400 swp_entry_t entry; 2401 pte_t pte; 2402 struct mem_cgroup *ptr = NULL; 2403 int ret = 0; 2404 2405 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2406 goto out; 2407 2408 entry = pte_to_swp_entry(orig_pte); 2409 if (is_migration_entry(entry)) { 2410 migration_entry_wait(mm, pmd, address); 2411 goto out; 2412 } 2413 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2414 page = lookup_swap_cache(entry); 2415 if (!page) { 2416 grab_swap_token(); /* Contend for token _before_ read-in */ 2417 page = swapin_readahead(entry, 2418 GFP_HIGHUSER_MOVABLE, vma, address); 2419 if (!page) { 2420 /* 2421 * Back out if somebody else faulted in this pte 2422 * while we released the pte lock. 2423 */ 2424 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2425 if (likely(pte_same(*page_table, orig_pte))) 2426 ret = VM_FAULT_OOM; 2427 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2428 goto unlock; 2429 } 2430 2431 /* Had to read the page from swap area: Major fault */ 2432 ret = VM_FAULT_MAJOR; 2433 count_vm_event(PGMAJFAULT); 2434 } 2435 2436 mark_page_accessed(page); 2437 2438 lock_page(page); 2439 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2440 2441 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2442 ret = VM_FAULT_OOM; 2443 unlock_page(page); 2444 goto out; 2445 } 2446 2447 /* 2448 * Back out if somebody else already faulted in this pte. 2449 */ 2450 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2451 if (unlikely(!pte_same(*page_table, orig_pte))) 2452 goto out_nomap; 2453 2454 if (unlikely(!PageUptodate(page))) { 2455 ret = VM_FAULT_SIGBUS; 2456 goto out_nomap; 2457 } 2458 2459 /* 2460 * The page isn't present yet, go ahead with the fault. 2461 * 2462 * Be careful about the sequence of operations here. 2463 * To get its accounting right, reuse_swap_page() must be called 2464 * while the page is counted on swap but not yet in mapcount i.e. 2465 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2466 * must be called after the swap_free(), or it will never succeed. 2467 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2468 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2469 * in page->private. In this case, a record in swap_cgroup is silently 2470 * discarded at swap_free(). 2471 */ 2472 2473 inc_mm_counter(mm, anon_rss); 2474 pte = mk_pte(page, vma->vm_page_prot); 2475 if (write_access && reuse_swap_page(page)) { 2476 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2477 write_access = 0; 2478 } 2479 flush_icache_page(vma, page); 2480 set_pte_at(mm, address, page_table, pte); 2481 page_add_anon_rmap(page, vma, address); 2482 /* It's better to call commit-charge after rmap is established */ 2483 mem_cgroup_commit_charge_swapin(page, ptr); 2484 2485 swap_free(entry); 2486 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2487 try_to_free_swap(page); 2488 unlock_page(page); 2489 2490 if (write_access) { 2491 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2492 if (ret & VM_FAULT_ERROR) 2493 ret &= VM_FAULT_ERROR; 2494 goto out; 2495 } 2496 2497 /* No need to invalidate - it was non-present before */ 2498 update_mmu_cache(vma, address, pte); 2499 unlock: 2500 pte_unmap_unlock(page_table, ptl); 2501 out: 2502 return ret; 2503 out_nomap: 2504 mem_cgroup_cancel_charge_swapin(ptr); 2505 pte_unmap_unlock(page_table, ptl); 2506 unlock_page(page); 2507 page_cache_release(page); 2508 return ret; 2509 } 2510 2511 /* 2512 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2513 * but allow concurrent faults), and pte mapped but not yet locked. 2514 * We return with mmap_sem still held, but pte unmapped and unlocked. 2515 */ 2516 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2517 unsigned long address, pte_t *page_table, pmd_t *pmd, 2518 int write_access) 2519 { 2520 struct page *page; 2521 spinlock_t *ptl; 2522 pte_t entry; 2523 2524 /* Allocate our own private page. */ 2525 pte_unmap(page_table); 2526 2527 if (unlikely(anon_vma_prepare(vma))) 2528 goto oom; 2529 page = alloc_zeroed_user_highpage_movable(vma, address); 2530 if (!page) 2531 goto oom; 2532 __SetPageUptodate(page); 2533 2534 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2535 goto oom_free_page; 2536 2537 entry = mk_pte(page, vma->vm_page_prot); 2538 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2539 2540 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2541 if (!pte_none(*page_table)) 2542 goto release; 2543 inc_mm_counter(mm, anon_rss); 2544 page_add_new_anon_rmap(page, vma, address); 2545 set_pte_at(mm, address, page_table, entry); 2546 2547 /* No need to invalidate - it was non-present before */ 2548 update_mmu_cache(vma, address, entry); 2549 unlock: 2550 pte_unmap_unlock(page_table, ptl); 2551 return 0; 2552 release: 2553 mem_cgroup_uncharge_page(page); 2554 page_cache_release(page); 2555 goto unlock; 2556 oom_free_page: 2557 page_cache_release(page); 2558 oom: 2559 return VM_FAULT_OOM; 2560 } 2561 2562 /* 2563 * __do_fault() tries to create a new page mapping. It aggressively 2564 * tries to share with existing pages, but makes a separate copy if 2565 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2566 * the next page fault. 2567 * 2568 * As this is called only for pages that do not currently exist, we 2569 * do not need to flush old virtual caches or the TLB. 2570 * 2571 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2572 * but allow concurrent faults), and pte neither mapped nor locked. 2573 * We return with mmap_sem still held, but pte unmapped and unlocked. 2574 */ 2575 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2576 unsigned long address, pmd_t *pmd, 2577 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2578 { 2579 pte_t *page_table; 2580 spinlock_t *ptl; 2581 struct page *page; 2582 pte_t entry; 2583 int anon = 0; 2584 int charged = 0; 2585 struct page *dirty_page = NULL; 2586 struct vm_fault vmf; 2587 int ret; 2588 int page_mkwrite = 0; 2589 2590 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2591 vmf.pgoff = pgoff; 2592 vmf.flags = flags; 2593 vmf.page = NULL; 2594 2595 ret = vma->vm_ops->fault(vma, &vmf); 2596 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2597 return ret; 2598 2599 /* 2600 * For consistency in subsequent calls, make the faulted page always 2601 * locked. 2602 */ 2603 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2604 lock_page(vmf.page); 2605 else 2606 VM_BUG_ON(!PageLocked(vmf.page)); 2607 2608 /* 2609 * Should we do an early C-O-W break? 2610 */ 2611 page = vmf.page; 2612 if (flags & FAULT_FLAG_WRITE) { 2613 if (!(vma->vm_flags & VM_SHARED)) { 2614 anon = 1; 2615 if (unlikely(anon_vma_prepare(vma))) { 2616 ret = VM_FAULT_OOM; 2617 goto out; 2618 } 2619 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2620 vma, address); 2621 if (!page) { 2622 ret = VM_FAULT_OOM; 2623 goto out; 2624 } 2625 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2626 ret = VM_FAULT_OOM; 2627 page_cache_release(page); 2628 goto out; 2629 } 2630 charged = 1; 2631 /* 2632 * Don't let another task, with possibly unlocked vma, 2633 * keep the mlocked page. 2634 */ 2635 if (vma->vm_flags & VM_LOCKED) 2636 clear_page_mlock(vmf.page); 2637 copy_user_highpage(page, vmf.page, address, vma); 2638 __SetPageUptodate(page); 2639 } else { 2640 /* 2641 * If the page will be shareable, see if the backing 2642 * address space wants to know that the page is about 2643 * to become writable 2644 */ 2645 if (vma->vm_ops->page_mkwrite) { 2646 unlock_page(page); 2647 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2648 ret = VM_FAULT_SIGBUS; 2649 anon = 1; /* no anon but release vmf.page */ 2650 goto out_unlocked; 2651 } 2652 lock_page(page); 2653 /* 2654 * XXX: this is not quite right (racy vs 2655 * invalidate) to unlock and relock the page 2656 * like this, however a better fix requires 2657 * reworking page_mkwrite locking API, which 2658 * is better done later. 2659 */ 2660 if (!page->mapping) { 2661 ret = 0; 2662 anon = 1; /* no anon but release vmf.page */ 2663 goto out; 2664 } 2665 page_mkwrite = 1; 2666 } 2667 } 2668 2669 } 2670 2671 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2672 2673 /* 2674 * This silly early PAGE_DIRTY setting removes a race 2675 * due to the bad i386 page protection. But it's valid 2676 * for other architectures too. 2677 * 2678 * Note that if write_access is true, we either now have 2679 * an exclusive copy of the page, or this is a shared mapping, 2680 * so we can make it writable and dirty to avoid having to 2681 * handle that later. 2682 */ 2683 /* Only go through if we didn't race with anybody else... */ 2684 if (likely(pte_same(*page_table, orig_pte))) { 2685 flush_icache_page(vma, page); 2686 entry = mk_pte(page, vma->vm_page_prot); 2687 if (flags & FAULT_FLAG_WRITE) 2688 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2689 if (anon) { 2690 inc_mm_counter(mm, anon_rss); 2691 page_add_new_anon_rmap(page, vma, address); 2692 } else { 2693 inc_mm_counter(mm, file_rss); 2694 page_add_file_rmap(page); 2695 if (flags & FAULT_FLAG_WRITE) { 2696 dirty_page = page; 2697 get_page(dirty_page); 2698 } 2699 } 2700 set_pte_at(mm, address, page_table, entry); 2701 2702 /* no need to invalidate: a not-present page won't be cached */ 2703 update_mmu_cache(vma, address, entry); 2704 } else { 2705 if (charged) 2706 mem_cgroup_uncharge_page(page); 2707 if (anon) 2708 page_cache_release(page); 2709 else 2710 anon = 1; /* no anon but release faulted_page */ 2711 } 2712 2713 pte_unmap_unlock(page_table, ptl); 2714 2715 out: 2716 unlock_page(vmf.page); 2717 out_unlocked: 2718 if (anon) 2719 page_cache_release(vmf.page); 2720 else if (dirty_page) { 2721 if (vma->vm_file) 2722 file_update_time(vma->vm_file); 2723 2724 set_page_dirty_balance(dirty_page, page_mkwrite); 2725 put_page(dirty_page); 2726 } 2727 2728 return ret; 2729 } 2730 2731 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2732 unsigned long address, pte_t *page_table, pmd_t *pmd, 2733 int write_access, pte_t orig_pte) 2734 { 2735 pgoff_t pgoff = (((address & PAGE_MASK) 2736 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2737 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2738 2739 pte_unmap(page_table); 2740 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2741 } 2742 2743 /* 2744 * Fault of a previously existing named mapping. Repopulate the pte 2745 * from the encoded file_pte if possible. This enables swappable 2746 * nonlinear vmas. 2747 * 2748 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2749 * but allow concurrent faults), and pte mapped but not yet locked. 2750 * We return with mmap_sem still held, but pte unmapped and unlocked. 2751 */ 2752 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2753 unsigned long address, pte_t *page_table, pmd_t *pmd, 2754 int write_access, pte_t orig_pte) 2755 { 2756 unsigned int flags = FAULT_FLAG_NONLINEAR | 2757 (write_access ? FAULT_FLAG_WRITE : 0); 2758 pgoff_t pgoff; 2759 2760 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2761 return 0; 2762 2763 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2764 /* 2765 * Page table corrupted: show pte and kill process. 2766 */ 2767 print_bad_pte(vma, address, orig_pte, NULL); 2768 return VM_FAULT_OOM; 2769 } 2770 2771 pgoff = pte_to_pgoff(orig_pte); 2772 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2773 } 2774 2775 /* 2776 * These routines also need to handle stuff like marking pages dirty 2777 * and/or accessed for architectures that don't do it in hardware (most 2778 * RISC architectures). The early dirtying is also good on the i386. 2779 * 2780 * There is also a hook called "update_mmu_cache()" that architectures 2781 * with external mmu caches can use to update those (ie the Sparc or 2782 * PowerPC hashed page tables that act as extended TLBs). 2783 * 2784 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2785 * but allow concurrent faults), and pte mapped but not yet locked. 2786 * We return with mmap_sem still held, but pte unmapped and unlocked. 2787 */ 2788 static inline int handle_pte_fault(struct mm_struct *mm, 2789 struct vm_area_struct *vma, unsigned long address, 2790 pte_t *pte, pmd_t *pmd, int write_access) 2791 { 2792 pte_t entry; 2793 spinlock_t *ptl; 2794 2795 entry = *pte; 2796 if (!pte_present(entry)) { 2797 if (pte_none(entry)) { 2798 if (vma->vm_ops) { 2799 if (likely(vma->vm_ops->fault)) 2800 return do_linear_fault(mm, vma, address, 2801 pte, pmd, write_access, entry); 2802 } 2803 return do_anonymous_page(mm, vma, address, 2804 pte, pmd, write_access); 2805 } 2806 if (pte_file(entry)) 2807 return do_nonlinear_fault(mm, vma, address, 2808 pte, pmd, write_access, entry); 2809 return do_swap_page(mm, vma, address, 2810 pte, pmd, write_access, entry); 2811 } 2812 2813 ptl = pte_lockptr(mm, pmd); 2814 spin_lock(ptl); 2815 if (unlikely(!pte_same(*pte, entry))) 2816 goto unlock; 2817 if (write_access) { 2818 if (!pte_write(entry)) 2819 return do_wp_page(mm, vma, address, 2820 pte, pmd, ptl, entry); 2821 entry = pte_mkdirty(entry); 2822 } 2823 entry = pte_mkyoung(entry); 2824 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2825 update_mmu_cache(vma, address, entry); 2826 } else { 2827 /* 2828 * This is needed only for protection faults but the arch code 2829 * is not yet telling us if this is a protection fault or not. 2830 * This still avoids useless tlb flushes for .text page faults 2831 * with threads. 2832 */ 2833 if (write_access) 2834 flush_tlb_page(vma, address); 2835 } 2836 unlock: 2837 pte_unmap_unlock(pte, ptl); 2838 return 0; 2839 } 2840 2841 /* 2842 * By the time we get here, we already hold the mm semaphore 2843 */ 2844 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2845 unsigned long address, int write_access) 2846 { 2847 pgd_t *pgd; 2848 pud_t *pud; 2849 pmd_t *pmd; 2850 pte_t *pte; 2851 2852 __set_current_state(TASK_RUNNING); 2853 2854 count_vm_event(PGFAULT); 2855 2856 if (unlikely(is_vm_hugetlb_page(vma))) 2857 return hugetlb_fault(mm, vma, address, write_access); 2858 2859 pgd = pgd_offset(mm, address); 2860 pud = pud_alloc(mm, pgd, address); 2861 if (!pud) 2862 return VM_FAULT_OOM; 2863 pmd = pmd_alloc(mm, pud, address); 2864 if (!pmd) 2865 return VM_FAULT_OOM; 2866 pte = pte_alloc_map(mm, pmd, address); 2867 if (!pte) 2868 return VM_FAULT_OOM; 2869 2870 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2871 } 2872 2873 #ifndef __PAGETABLE_PUD_FOLDED 2874 /* 2875 * Allocate page upper directory. 2876 * We've already handled the fast-path in-line. 2877 */ 2878 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2879 { 2880 pud_t *new = pud_alloc_one(mm, address); 2881 if (!new) 2882 return -ENOMEM; 2883 2884 smp_wmb(); /* See comment in __pte_alloc */ 2885 2886 spin_lock(&mm->page_table_lock); 2887 if (pgd_present(*pgd)) /* Another has populated it */ 2888 pud_free(mm, new); 2889 else 2890 pgd_populate(mm, pgd, new); 2891 spin_unlock(&mm->page_table_lock); 2892 return 0; 2893 } 2894 #endif /* __PAGETABLE_PUD_FOLDED */ 2895 2896 #ifndef __PAGETABLE_PMD_FOLDED 2897 /* 2898 * Allocate page middle directory. 2899 * We've already handled the fast-path in-line. 2900 */ 2901 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2902 { 2903 pmd_t *new = pmd_alloc_one(mm, address); 2904 if (!new) 2905 return -ENOMEM; 2906 2907 smp_wmb(); /* See comment in __pte_alloc */ 2908 2909 spin_lock(&mm->page_table_lock); 2910 #ifndef __ARCH_HAS_4LEVEL_HACK 2911 if (pud_present(*pud)) /* Another has populated it */ 2912 pmd_free(mm, new); 2913 else 2914 pud_populate(mm, pud, new); 2915 #else 2916 if (pgd_present(*pud)) /* Another has populated it */ 2917 pmd_free(mm, new); 2918 else 2919 pgd_populate(mm, pud, new); 2920 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2921 spin_unlock(&mm->page_table_lock); 2922 return 0; 2923 } 2924 #endif /* __PAGETABLE_PMD_FOLDED */ 2925 2926 int make_pages_present(unsigned long addr, unsigned long end) 2927 { 2928 int ret, len, write; 2929 struct vm_area_struct * vma; 2930 2931 vma = find_vma(current->mm, addr); 2932 if (!vma) 2933 return -ENOMEM; 2934 write = (vma->vm_flags & VM_WRITE) != 0; 2935 BUG_ON(addr >= end); 2936 BUG_ON(end > vma->vm_end); 2937 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2938 ret = get_user_pages(current, current->mm, addr, 2939 len, write, 0, NULL, NULL); 2940 if (ret < 0) 2941 return ret; 2942 return ret == len ? 0 : -EFAULT; 2943 } 2944 2945 #if !defined(__HAVE_ARCH_GATE_AREA) 2946 2947 #if defined(AT_SYSINFO_EHDR) 2948 static struct vm_area_struct gate_vma; 2949 2950 static int __init gate_vma_init(void) 2951 { 2952 gate_vma.vm_mm = NULL; 2953 gate_vma.vm_start = FIXADDR_USER_START; 2954 gate_vma.vm_end = FIXADDR_USER_END; 2955 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2956 gate_vma.vm_page_prot = __P101; 2957 /* 2958 * Make sure the vDSO gets into every core dump. 2959 * Dumping its contents makes post-mortem fully interpretable later 2960 * without matching up the same kernel and hardware config to see 2961 * what PC values meant. 2962 */ 2963 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2964 return 0; 2965 } 2966 __initcall(gate_vma_init); 2967 #endif 2968 2969 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2970 { 2971 #ifdef AT_SYSINFO_EHDR 2972 return &gate_vma; 2973 #else 2974 return NULL; 2975 #endif 2976 } 2977 2978 int in_gate_area_no_task(unsigned long addr) 2979 { 2980 #ifdef AT_SYSINFO_EHDR 2981 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2982 return 1; 2983 #endif 2984 return 0; 2985 } 2986 2987 #endif /* __HAVE_ARCH_GATE_AREA */ 2988 2989 #ifdef CONFIG_HAVE_IOREMAP_PROT 2990 int follow_phys(struct vm_area_struct *vma, 2991 unsigned long address, unsigned int flags, 2992 unsigned long *prot, resource_size_t *phys) 2993 { 2994 pgd_t *pgd; 2995 pud_t *pud; 2996 pmd_t *pmd; 2997 pte_t *ptep, pte; 2998 spinlock_t *ptl; 2999 resource_size_t phys_addr = 0; 3000 struct mm_struct *mm = vma->vm_mm; 3001 int ret = -EINVAL; 3002 3003 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3004 goto out; 3005 3006 pgd = pgd_offset(mm, address); 3007 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3008 goto out; 3009 3010 pud = pud_offset(pgd, address); 3011 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3012 goto out; 3013 3014 pmd = pmd_offset(pud, address); 3015 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3016 goto out; 3017 3018 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3019 if (pmd_huge(*pmd)) 3020 goto out; 3021 3022 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 3023 if (!ptep) 3024 goto out; 3025 3026 pte = *ptep; 3027 if (!pte_present(pte)) 3028 goto unlock; 3029 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3030 goto unlock; 3031 phys_addr = pte_pfn(pte); 3032 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 3033 3034 *prot = pgprot_val(pte_pgprot(pte)); 3035 *phys = phys_addr; 3036 ret = 0; 3037 3038 unlock: 3039 pte_unmap_unlock(ptep, ptl); 3040 out: 3041 return ret; 3042 } 3043 3044 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3045 void *buf, int len, int write) 3046 { 3047 resource_size_t phys_addr; 3048 unsigned long prot = 0; 3049 void __iomem *maddr; 3050 int offset = addr & (PAGE_SIZE-1); 3051 3052 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3053 return -EINVAL; 3054 3055 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3056 if (write) 3057 memcpy_toio(maddr + offset, buf, len); 3058 else 3059 memcpy_fromio(buf, maddr + offset, len); 3060 iounmap(maddr); 3061 3062 return len; 3063 } 3064 #endif 3065 3066 /* 3067 * Access another process' address space. 3068 * Source/target buffer must be kernel space, 3069 * Do not walk the page table directly, use get_user_pages 3070 */ 3071 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3072 { 3073 struct mm_struct *mm; 3074 struct vm_area_struct *vma; 3075 void *old_buf = buf; 3076 3077 mm = get_task_mm(tsk); 3078 if (!mm) 3079 return 0; 3080 3081 down_read(&mm->mmap_sem); 3082 /* ignore errors, just check how much was successfully transferred */ 3083 while (len) { 3084 int bytes, ret, offset; 3085 void *maddr; 3086 struct page *page = NULL; 3087 3088 ret = get_user_pages(tsk, mm, addr, 1, 3089 write, 1, &page, &vma); 3090 if (ret <= 0) { 3091 /* 3092 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3093 * we can access using slightly different code. 3094 */ 3095 #ifdef CONFIG_HAVE_IOREMAP_PROT 3096 vma = find_vma(mm, addr); 3097 if (!vma) 3098 break; 3099 if (vma->vm_ops && vma->vm_ops->access) 3100 ret = vma->vm_ops->access(vma, addr, buf, 3101 len, write); 3102 if (ret <= 0) 3103 #endif 3104 break; 3105 bytes = ret; 3106 } else { 3107 bytes = len; 3108 offset = addr & (PAGE_SIZE-1); 3109 if (bytes > PAGE_SIZE-offset) 3110 bytes = PAGE_SIZE-offset; 3111 3112 maddr = kmap(page); 3113 if (write) { 3114 copy_to_user_page(vma, page, addr, 3115 maddr + offset, buf, bytes); 3116 set_page_dirty_lock(page); 3117 } else { 3118 copy_from_user_page(vma, page, addr, 3119 buf, maddr + offset, bytes); 3120 } 3121 kunmap(page); 3122 page_cache_release(page); 3123 } 3124 len -= bytes; 3125 buf += bytes; 3126 addr += bytes; 3127 } 3128 up_read(&mm->mmap_sem); 3129 mmput(mm); 3130 3131 return buf - old_buf; 3132 } 3133 3134 /* 3135 * Print the name of a VMA. 3136 */ 3137 void print_vma_addr(char *prefix, unsigned long ip) 3138 { 3139 struct mm_struct *mm = current->mm; 3140 struct vm_area_struct *vma; 3141 3142 /* 3143 * Do not print if we are in atomic 3144 * contexts (in exception stacks, etc.): 3145 */ 3146 if (preempt_count()) 3147 return; 3148 3149 down_read(&mm->mmap_sem); 3150 vma = find_vma(mm, ip); 3151 if (vma && vma->vm_file) { 3152 struct file *f = vma->vm_file; 3153 char *buf = (char *)__get_free_page(GFP_KERNEL); 3154 if (buf) { 3155 char *p, *s; 3156 3157 p = d_path(&f->f_path, buf, PAGE_SIZE); 3158 if (IS_ERR(p)) 3159 p = "?"; 3160 s = strrchr(p, '/'); 3161 if (s) 3162 p = s+1; 3163 printk("%s%s[%lx+%lx]", prefix, p, 3164 vma->vm_start, 3165 vma->vm_end - vma->vm_start); 3166 free_page((unsigned long)buf); 3167 } 3168 } 3169 up_read(¤t->mm->mmap_sem); 3170 } 3171 3172 #ifdef CONFIG_PROVE_LOCKING 3173 void might_fault(void) 3174 { 3175 /* 3176 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3177 * holding the mmap_sem, this is safe because kernel memory doesn't 3178 * get paged out, therefore we'll never actually fault, and the 3179 * below annotations will generate false positives. 3180 */ 3181 if (segment_eq(get_fs(), KERNEL_DS)) 3182 return; 3183 3184 might_sleep(); 3185 /* 3186 * it would be nicer only to annotate paths which are not under 3187 * pagefault_disable, however that requires a larger audit and 3188 * providing helpers like get_user_atomic. 3189 */ 3190 if (!in_atomic() && current->mm) 3191 might_lock_read(¤t->mm->mmap_sem); 3192 } 3193 EXPORT_SYMBOL(might_fault); 3194 #endif 3195