1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 #include <linux/net_mm.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 128 * and ZONE_HIGHMEM. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 369 370 do { 371 unsigned long addr = vma->vm_start; 372 struct vm_area_struct *next; 373 374 /* 375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 376 * be 0. This will underflow and is okay. 377 */ 378 next = mas_find(&mas, ceiling - 1); 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(&mas, ceiling - 1); 400 if (mm_wr_locked) 401 vma_start_write(vma); 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 } 405 free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } 408 vma = next; 409 } while (vma); 410 } 411 412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 413 { 414 spinlock_t *ptl = pmd_lock(mm, pmd); 415 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 417 mm_inc_nr_ptes(mm); 418 /* 419 * Ensure all pte setup (eg. pte page lock and page clearing) are 420 * visible before the pte is made visible to other CPUs by being 421 * put into page tables. 422 * 423 * The other side of the story is the pointer chasing in the page 424 * table walking code (when walking the page table without locking; 425 * ie. most of the time). Fortunately, these data accesses consist 426 * of a chain of data-dependent loads, meaning most CPUs (alpha 427 * being the notable exception) will already guarantee loads are 428 * seen in-order. See the alpha page table accessors for the 429 * smp_rmb() barriers in page table walking code. 430 */ 431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 432 pmd_populate(mm, pmd, *pte); 433 *pte = NULL; 434 } 435 spin_unlock(ptl); 436 } 437 438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 439 { 440 pgtable_t new = pte_alloc_one(mm); 441 if (!new) 442 return -ENOMEM; 443 444 pmd_install(mm, pmd, &new); 445 if (new) 446 pte_free(mm, new); 447 return 0; 448 } 449 450 int __pte_alloc_kernel(pmd_t *pmd) 451 { 452 pte_t *new = pte_alloc_one_kernel(&init_mm); 453 if (!new) 454 return -ENOMEM; 455 456 spin_lock(&init_mm.page_table_lock); 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 458 smp_wmb(); /* See comment in pmd_install() */ 459 pmd_populate_kernel(&init_mm, pmd, new); 460 new = NULL; 461 } 462 spin_unlock(&init_mm.page_table_lock); 463 if (new) 464 pte_free_kernel(&init_mm, new); 465 return 0; 466 } 467 468 static inline void init_rss_vec(int *rss) 469 { 470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 471 } 472 473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 474 { 475 int i; 476 477 if (current->mm == mm) 478 sync_mm_rss(mm); 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 #endif 698 699 static void restore_exclusive_pte(struct vm_area_struct *vma, 700 struct page *page, unsigned long address, 701 pte_t *ptep) 702 { 703 pte_t orig_pte; 704 pte_t pte; 705 swp_entry_t entry; 706 707 orig_pte = ptep_get(ptep); 708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 709 if (pte_swp_soft_dirty(orig_pte)) 710 pte = pte_mksoft_dirty(pte); 711 712 entry = pte_to_swp_entry(orig_pte); 713 if (pte_swp_uffd_wp(orig_pte)) 714 pte = pte_mkuffd_wp(pte); 715 else if (is_writable_device_exclusive_entry(entry)) 716 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 717 718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 719 720 /* 721 * No need to take a page reference as one was already 722 * created when the swap entry was made. 723 */ 724 if (PageAnon(page)) 725 page_add_anon_rmap(page, vma, address, RMAP_NONE); 726 else 727 /* 728 * Currently device exclusive access only supports anonymous 729 * memory so the entry shouldn't point to a filebacked page. 730 */ 731 WARN_ON_ONCE(1); 732 733 set_pte_at(vma->vm_mm, address, ptep, pte); 734 735 /* 736 * No need to invalidate - it was non-present before. However 737 * secondary CPUs may have mappings that need invalidating. 738 */ 739 update_mmu_cache(vma, address, ptep); 740 } 741 742 /* 743 * Tries to restore an exclusive pte if the page lock can be acquired without 744 * sleeping. 745 */ 746 static int 747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 748 unsigned long addr) 749 { 750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 751 struct page *page = pfn_swap_entry_to_page(entry); 752 753 if (trylock_page(page)) { 754 restore_exclusive_pte(vma, page, addr, src_pte); 755 unlock_page(page); 756 return 0; 757 } 758 759 return -EBUSY; 760 } 761 762 /* 763 * copy one vm_area from one task to the other. Assumes the page tables 764 * already present in the new task to be cleared in the whole range 765 * covered by this vma. 766 */ 767 768 static unsigned long 769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 771 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 772 { 773 unsigned long vm_flags = dst_vma->vm_flags; 774 pte_t orig_pte = ptep_get(src_pte); 775 pte_t pte = orig_pte; 776 struct page *page; 777 swp_entry_t entry = pte_to_swp_entry(orig_pte); 778 779 if (likely(!non_swap_entry(entry))) { 780 if (swap_duplicate(entry) < 0) 781 return -EIO; 782 783 /* make sure dst_mm is on swapoff's mmlist. */ 784 if (unlikely(list_empty(&dst_mm->mmlist))) { 785 spin_lock(&mmlist_lock); 786 if (list_empty(&dst_mm->mmlist)) 787 list_add(&dst_mm->mmlist, 788 &src_mm->mmlist); 789 spin_unlock(&mmlist_lock); 790 } 791 /* Mark the swap entry as shared. */ 792 if (pte_swp_exclusive(orig_pte)) { 793 pte = pte_swp_clear_exclusive(orig_pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 rss[MM_SWAPENTS]++; 797 } else if (is_migration_entry(entry)) { 798 page = pfn_swap_entry_to_page(entry); 799 800 rss[mm_counter(page)]++; 801 802 if (!is_readable_migration_entry(entry) && 803 is_cow_mapping(vm_flags)) { 804 /* 805 * COW mappings require pages in both parent and child 806 * to be set to read. A previously exclusive entry is 807 * now shared. 808 */ 809 entry = make_readable_migration_entry( 810 swp_offset(entry)); 811 pte = swp_entry_to_pte(entry); 812 if (pte_swp_soft_dirty(orig_pte)) 813 pte = pte_swp_mksoft_dirty(pte); 814 if (pte_swp_uffd_wp(orig_pte)) 815 pte = pte_swp_mkuffd_wp(pte); 816 set_pte_at(src_mm, addr, src_pte, pte); 817 } 818 } else if (is_device_private_entry(entry)) { 819 page = pfn_swap_entry_to_page(entry); 820 821 /* 822 * Update rss count even for unaddressable pages, as 823 * they should treated just like normal pages in this 824 * respect. 825 * 826 * We will likely want to have some new rss counters 827 * for unaddressable pages, at some point. But for now 828 * keep things as they are. 829 */ 830 get_page(page); 831 rss[mm_counter(page)]++; 832 /* Cannot fail as these pages cannot get pinned. */ 833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 834 835 /* 836 * We do not preserve soft-dirty information, because so 837 * far, checkpoint/restore is the only feature that 838 * requires that. And checkpoint/restore does not work 839 * when a device driver is involved (you cannot easily 840 * save and restore device driver state). 841 */ 842 if (is_writable_device_private_entry(entry) && 843 is_cow_mapping(vm_flags)) { 844 entry = make_readable_device_private_entry( 845 swp_offset(entry)); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_uffd_wp(orig_pte)) 848 pte = pte_swp_mkuffd_wp(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } else if (is_device_exclusive_entry(entry)) { 852 /* 853 * Make device exclusive entries present by restoring the 854 * original entry then copying as for a present pte. Device 855 * exclusive entries currently only support private writable 856 * (ie. COW) mappings. 857 */ 858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 859 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 860 return -EBUSY; 861 return -ENOENT; 862 } else if (is_pte_marker_entry(entry)) { 863 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 864 set_pte_at(dst_mm, addr, dst_pte, pte); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 mmap_assert_write_locked(src_mm); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 tlb_remove_tlb_entry(tlb, pte, addr); 1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1435 ptent); 1436 if (unlikely(!page)) { 1437 ksm_might_unmap_zero_page(ptent); 1438 continue; 1439 } 1440 1441 delay_rmap = 0; 1442 if (!PageAnon(page)) { 1443 if (pte_dirty(ptent)) { 1444 set_page_dirty(page); 1445 if (tlb_delay_rmap(tlb)) { 1446 delay_rmap = 1; 1447 force_flush = 1; 1448 } 1449 } 1450 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1451 mark_page_accessed(page); 1452 } 1453 rss[mm_counter(page)]--; 1454 if (!delay_rmap) { 1455 page_remove_rmap(page, vma, false); 1456 if (unlikely(page_mapcount(page) < 0)) 1457 print_bad_pte(vma, addr, ptent, page); 1458 } 1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1460 force_flush = 1; 1461 addr += PAGE_SIZE; 1462 break; 1463 } 1464 continue; 1465 } 1466 1467 entry = pte_to_swp_entry(ptent); 1468 if (is_device_private_entry(entry) || 1469 is_device_exclusive_entry(entry)) { 1470 page = pfn_swap_entry_to_page(entry); 1471 if (unlikely(!should_zap_page(details, page))) 1472 continue; 1473 /* 1474 * Both device private/exclusive mappings should only 1475 * work with anonymous page so far, so we don't need to 1476 * consider uffd-wp bit when zap. For more information, 1477 * see zap_install_uffd_wp_if_needed(). 1478 */ 1479 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1480 rss[mm_counter(page)]--; 1481 if (is_device_private_entry(entry)) 1482 page_remove_rmap(page, vma, false); 1483 put_page(page); 1484 } else if (!non_swap_entry(entry)) { 1485 /* Genuine swap entry, hence a private anon page */ 1486 if (!should_zap_cows(details)) 1487 continue; 1488 rss[MM_SWAPENTS]--; 1489 if (unlikely(!free_swap_and_cache(entry))) 1490 print_bad_pte(vma, addr, ptent, NULL); 1491 } else if (is_migration_entry(entry)) { 1492 page = pfn_swap_entry_to_page(entry); 1493 if (!should_zap_page(details, page)) 1494 continue; 1495 rss[mm_counter(page)]--; 1496 } else if (pte_marker_entry_uffd_wp(entry)) { 1497 /* 1498 * For anon: always drop the marker; for file: only 1499 * drop the marker if explicitly requested. 1500 */ 1501 if (!vma_is_anonymous(vma) && 1502 !zap_drop_file_uffd_wp(details)) 1503 continue; 1504 } else if (is_hwpoison_entry(entry) || 1505 is_swapin_error_entry(entry)) { 1506 if (!should_zap_cows(details)) 1507 continue; 1508 } else { 1509 /* We should have covered all the swap entry types */ 1510 WARN_ON_ONCE(1); 1511 } 1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1514 } while (pte++, addr += PAGE_SIZE, addr != end); 1515 1516 add_mm_rss_vec(mm, rss); 1517 arch_leave_lazy_mmu_mode(); 1518 1519 /* Do the actual TLB flush before dropping ptl */ 1520 if (force_flush) { 1521 tlb_flush_mmu_tlbonly(tlb); 1522 tlb_flush_rmaps(tlb, vma); 1523 } 1524 pte_unmap_unlock(start_pte, ptl); 1525 1526 /* 1527 * If we forced a TLB flush (either due to running out of 1528 * batch buffers or because we needed to flush dirty TLB 1529 * entries before releasing the ptl), free the batched 1530 * memory too. Come back again if we didn't do everything. 1531 */ 1532 if (force_flush) 1533 tlb_flush_mmu(tlb); 1534 1535 return addr; 1536 } 1537 1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1539 struct vm_area_struct *vma, pud_t *pud, 1540 unsigned long addr, unsigned long end, 1541 struct zap_details *details) 1542 { 1543 pmd_t *pmd; 1544 unsigned long next; 1545 1546 pmd = pmd_offset(pud, addr); 1547 do { 1548 next = pmd_addr_end(addr, end); 1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1550 if (next - addr != HPAGE_PMD_SIZE) 1551 __split_huge_pmd(vma, pmd, addr, false, NULL); 1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1553 addr = next; 1554 continue; 1555 } 1556 /* fall through */ 1557 } else if (details && details->single_folio && 1558 folio_test_pmd_mappable(details->single_folio) && 1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1561 /* 1562 * Take and drop THP pmd lock so that we cannot return 1563 * prematurely, while zap_huge_pmd() has cleared *pmd, 1564 * but not yet decremented compound_mapcount(). 1565 */ 1566 spin_unlock(ptl); 1567 } 1568 if (pmd_none(*pmd)) { 1569 addr = next; 1570 continue; 1571 } 1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1573 if (addr != next) 1574 pmd--; 1575 } while (pmd++, cond_resched(), addr != end); 1576 1577 return addr; 1578 } 1579 1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1581 struct vm_area_struct *vma, p4d_t *p4d, 1582 unsigned long addr, unsigned long end, 1583 struct zap_details *details) 1584 { 1585 pud_t *pud; 1586 unsigned long next; 1587 1588 pud = pud_offset(p4d, addr); 1589 do { 1590 next = pud_addr_end(addr, end); 1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1592 if (next - addr != HPAGE_PUD_SIZE) { 1593 mmap_assert_locked(tlb->mm); 1594 split_huge_pud(vma, pud, addr); 1595 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1596 goto next; 1597 /* fall through */ 1598 } 1599 if (pud_none_or_clear_bad(pud)) 1600 continue; 1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1602 next: 1603 cond_resched(); 1604 } while (pud++, addr = next, addr != end); 1605 1606 return addr; 1607 } 1608 1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1610 struct vm_area_struct *vma, pgd_t *pgd, 1611 unsigned long addr, unsigned long end, 1612 struct zap_details *details) 1613 { 1614 p4d_t *p4d; 1615 unsigned long next; 1616 1617 p4d = p4d_offset(pgd, addr); 1618 do { 1619 next = p4d_addr_end(addr, end); 1620 if (p4d_none_or_clear_bad(p4d)) 1621 continue; 1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1623 } while (p4d++, addr = next, addr != end); 1624 1625 return addr; 1626 } 1627 1628 void unmap_page_range(struct mmu_gather *tlb, 1629 struct vm_area_struct *vma, 1630 unsigned long addr, unsigned long end, 1631 struct zap_details *details) 1632 { 1633 pgd_t *pgd; 1634 unsigned long next; 1635 1636 BUG_ON(addr >= end); 1637 tlb_start_vma(tlb, vma); 1638 pgd = pgd_offset(vma->vm_mm, addr); 1639 do { 1640 next = pgd_addr_end(addr, end); 1641 if (pgd_none_or_clear_bad(pgd)) 1642 continue; 1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1644 } while (pgd++, addr = next, addr != end); 1645 tlb_end_vma(tlb, vma); 1646 } 1647 1648 1649 static void unmap_single_vma(struct mmu_gather *tlb, 1650 struct vm_area_struct *vma, unsigned long start_addr, 1651 unsigned long end_addr, 1652 struct zap_details *details, bool mm_wr_locked) 1653 { 1654 unsigned long start = max(vma->vm_start, start_addr); 1655 unsigned long end; 1656 1657 if (start >= vma->vm_end) 1658 return; 1659 end = min(vma->vm_end, end_addr); 1660 if (end <= vma->vm_start) 1661 return; 1662 1663 if (vma->vm_file) 1664 uprobe_munmap(vma, start, end); 1665 1666 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1667 untrack_pfn(vma, 0, 0, mm_wr_locked); 1668 1669 if (start != end) { 1670 if (unlikely(is_vm_hugetlb_page(vma))) { 1671 /* 1672 * It is undesirable to test vma->vm_file as it 1673 * should be non-null for valid hugetlb area. 1674 * However, vm_file will be NULL in the error 1675 * cleanup path of mmap_region. When 1676 * hugetlbfs ->mmap method fails, 1677 * mmap_region() nullifies vma->vm_file 1678 * before calling this function to clean up. 1679 * Since no pte has actually been setup, it is 1680 * safe to do nothing in this case. 1681 */ 1682 if (vma->vm_file) { 1683 zap_flags_t zap_flags = details ? 1684 details->zap_flags : 0; 1685 __unmap_hugepage_range_final(tlb, vma, start, end, 1686 NULL, zap_flags); 1687 } 1688 } else 1689 unmap_page_range(tlb, vma, start, end, details); 1690 } 1691 } 1692 1693 /** 1694 * unmap_vmas - unmap a range of memory covered by a list of vma's 1695 * @tlb: address of the caller's struct mmu_gather 1696 * @mt: the maple tree 1697 * @vma: the starting vma 1698 * @start_addr: virtual address at which to start unmapping 1699 * @end_addr: virtual address at which to end unmapping 1700 * 1701 * Unmap all pages in the vma list. 1702 * 1703 * Only addresses between `start' and `end' will be unmapped. 1704 * 1705 * The VMA list must be sorted in ascending virtual address order. 1706 * 1707 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1708 * range after unmap_vmas() returns. So the only responsibility here is to 1709 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1710 * drops the lock and schedules. 1711 */ 1712 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1713 struct vm_area_struct *vma, unsigned long start_addr, 1714 unsigned long end_addr, bool mm_wr_locked) 1715 { 1716 struct mmu_notifier_range range; 1717 struct zap_details details = { 1718 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1719 /* Careful - we need to zap private pages too! */ 1720 .even_cows = true, 1721 }; 1722 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1723 1724 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1725 start_addr, end_addr); 1726 mmu_notifier_invalidate_range_start(&range); 1727 do { 1728 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1729 mm_wr_locked); 1730 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1731 mmu_notifier_invalidate_range_end(&range); 1732 } 1733 1734 /** 1735 * zap_page_range_single - remove user pages in a given range 1736 * @vma: vm_area_struct holding the applicable pages 1737 * @address: starting address of pages to zap 1738 * @size: number of bytes to zap 1739 * @details: details of shared cache invalidation 1740 * 1741 * The range must fit into one VMA. 1742 */ 1743 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1744 unsigned long size, struct zap_details *details) 1745 { 1746 const unsigned long end = address + size; 1747 struct mmu_notifier_range range; 1748 struct mmu_gather tlb; 1749 1750 lru_add_drain(); 1751 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1752 address, end); 1753 if (is_vm_hugetlb_page(vma)) 1754 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1755 &range.end); 1756 tlb_gather_mmu(&tlb, vma->vm_mm); 1757 update_hiwater_rss(vma->vm_mm); 1758 mmu_notifier_invalidate_range_start(&range); 1759 /* 1760 * unmap 'address-end' not 'range.start-range.end' as range 1761 * could have been expanded for hugetlb pmd sharing. 1762 */ 1763 unmap_single_vma(&tlb, vma, address, end, details, false); 1764 mmu_notifier_invalidate_range_end(&range); 1765 tlb_finish_mmu(&tlb); 1766 } 1767 1768 /** 1769 * zap_vma_ptes - remove ptes mapping the vma 1770 * @vma: vm_area_struct holding ptes to be zapped 1771 * @address: starting address of pages to zap 1772 * @size: number of bytes to zap 1773 * 1774 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1775 * 1776 * The entire address range must be fully contained within the vma. 1777 * 1778 */ 1779 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1780 unsigned long size) 1781 { 1782 if (!range_in_vma(vma, address, address + size) || 1783 !(vma->vm_flags & VM_PFNMAP)) 1784 return; 1785 1786 zap_page_range_single(vma, address, size, NULL); 1787 } 1788 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1789 1790 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1791 { 1792 pgd_t *pgd; 1793 p4d_t *p4d; 1794 pud_t *pud; 1795 pmd_t *pmd; 1796 1797 pgd = pgd_offset(mm, addr); 1798 p4d = p4d_alloc(mm, pgd, addr); 1799 if (!p4d) 1800 return NULL; 1801 pud = pud_alloc(mm, p4d, addr); 1802 if (!pud) 1803 return NULL; 1804 pmd = pmd_alloc(mm, pud, addr); 1805 if (!pmd) 1806 return NULL; 1807 1808 VM_BUG_ON(pmd_trans_huge(*pmd)); 1809 return pmd; 1810 } 1811 1812 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1813 spinlock_t **ptl) 1814 { 1815 pmd_t *pmd = walk_to_pmd(mm, addr); 1816 1817 if (!pmd) 1818 return NULL; 1819 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1820 } 1821 1822 static int validate_page_before_insert(struct page *page) 1823 { 1824 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1825 return -EINVAL; 1826 flush_dcache_page(page); 1827 return 0; 1828 } 1829 1830 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1831 unsigned long addr, struct page *page, pgprot_t prot) 1832 { 1833 if (!pte_none(ptep_get(pte))) 1834 return -EBUSY; 1835 /* Ok, finally just insert the thing.. */ 1836 get_page(page); 1837 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1838 page_add_file_rmap(page, vma, false); 1839 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1840 return 0; 1841 } 1842 1843 /* 1844 * This is the old fallback for page remapping. 1845 * 1846 * For historical reasons, it only allows reserved pages. Only 1847 * old drivers should use this, and they needed to mark their 1848 * pages reserved for the old functions anyway. 1849 */ 1850 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1851 struct page *page, pgprot_t prot) 1852 { 1853 int retval; 1854 pte_t *pte; 1855 spinlock_t *ptl; 1856 1857 retval = validate_page_before_insert(page); 1858 if (retval) 1859 goto out; 1860 retval = -ENOMEM; 1861 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1862 if (!pte) 1863 goto out; 1864 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1865 pte_unmap_unlock(pte, ptl); 1866 out: 1867 return retval; 1868 } 1869 1870 #ifdef pte_index 1871 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1872 unsigned long addr, struct page *page, pgprot_t prot) 1873 { 1874 int err; 1875 1876 if (!page_count(page)) 1877 return -EINVAL; 1878 err = validate_page_before_insert(page); 1879 if (err) 1880 return err; 1881 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1882 } 1883 1884 /* insert_pages() amortizes the cost of spinlock operations 1885 * when inserting pages in a loop. Arch *must* define pte_index. 1886 */ 1887 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1888 struct page **pages, unsigned long *num, pgprot_t prot) 1889 { 1890 pmd_t *pmd = NULL; 1891 pte_t *start_pte, *pte; 1892 spinlock_t *pte_lock; 1893 struct mm_struct *const mm = vma->vm_mm; 1894 unsigned long curr_page_idx = 0; 1895 unsigned long remaining_pages_total = *num; 1896 unsigned long pages_to_write_in_pmd; 1897 int ret; 1898 more: 1899 ret = -EFAULT; 1900 pmd = walk_to_pmd(mm, addr); 1901 if (!pmd) 1902 goto out; 1903 1904 pages_to_write_in_pmd = min_t(unsigned long, 1905 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1906 1907 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1908 ret = -ENOMEM; 1909 if (pte_alloc(mm, pmd)) 1910 goto out; 1911 1912 while (pages_to_write_in_pmd) { 1913 int pte_idx = 0; 1914 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1915 1916 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1917 if (!start_pte) { 1918 ret = -EFAULT; 1919 goto out; 1920 } 1921 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1922 int err = insert_page_in_batch_locked(vma, pte, 1923 addr, pages[curr_page_idx], prot); 1924 if (unlikely(err)) { 1925 pte_unmap_unlock(start_pte, pte_lock); 1926 ret = err; 1927 remaining_pages_total -= pte_idx; 1928 goto out; 1929 } 1930 addr += PAGE_SIZE; 1931 ++curr_page_idx; 1932 } 1933 pte_unmap_unlock(start_pte, pte_lock); 1934 pages_to_write_in_pmd -= batch_size; 1935 remaining_pages_total -= batch_size; 1936 } 1937 if (remaining_pages_total) 1938 goto more; 1939 ret = 0; 1940 out: 1941 *num = remaining_pages_total; 1942 return ret; 1943 } 1944 #endif /* ifdef pte_index */ 1945 1946 /** 1947 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1948 * @vma: user vma to map to 1949 * @addr: target start user address of these pages 1950 * @pages: source kernel pages 1951 * @num: in: number of pages to map. out: number of pages that were *not* 1952 * mapped. (0 means all pages were successfully mapped). 1953 * 1954 * Preferred over vm_insert_page() when inserting multiple pages. 1955 * 1956 * In case of error, we may have mapped a subset of the provided 1957 * pages. It is the caller's responsibility to account for this case. 1958 * 1959 * The same restrictions apply as in vm_insert_page(). 1960 */ 1961 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1962 struct page **pages, unsigned long *num) 1963 { 1964 #ifdef pte_index 1965 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1966 1967 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1968 return -EFAULT; 1969 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1970 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1971 BUG_ON(vma->vm_flags & VM_PFNMAP); 1972 vm_flags_set(vma, VM_MIXEDMAP); 1973 } 1974 /* Defer page refcount checking till we're about to map that page. */ 1975 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1976 #else 1977 unsigned long idx = 0, pgcount = *num; 1978 int err = -EINVAL; 1979 1980 for (; idx < pgcount; ++idx) { 1981 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1982 if (err) 1983 break; 1984 } 1985 *num = pgcount - idx; 1986 return err; 1987 #endif /* ifdef pte_index */ 1988 } 1989 EXPORT_SYMBOL(vm_insert_pages); 1990 1991 /** 1992 * vm_insert_page - insert single page into user vma 1993 * @vma: user vma to map to 1994 * @addr: target user address of this page 1995 * @page: source kernel page 1996 * 1997 * This allows drivers to insert individual pages they've allocated 1998 * into a user vma. 1999 * 2000 * The page has to be a nice clean _individual_ kernel allocation. 2001 * If you allocate a compound page, you need to have marked it as 2002 * such (__GFP_COMP), or manually just split the page up yourself 2003 * (see split_page()). 2004 * 2005 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2006 * took an arbitrary page protection parameter. This doesn't allow 2007 * that. Your vma protection will have to be set up correctly, which 2008 * means that if you want a shared writable mapping, you'd better 2009 * ask for a shared writable mapping! 2010 * 2011 * The page does not need to be reserved. 2012 * 2013 * Usually this function is called from f_op->mmap() handler 2014 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2015 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2016 * function from other places, for example from page-fault handler. 2017 * 2018 * Return: %0 on success, negative error code otherwise. 2019 */ 2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2021 struct page *page) 2022 { 2023 if (addr < vma->vm_start || addr >= vma->vm_end) 2024 return -EFAULT; 2025 if (!page_count(page)) 2026 return -EINVAL; 2027 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2028 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2029 BUG_ON(vma->vm_flags & VM_PFNMAP); 2030 vm_flags_set(vma, VM_MIXEDMAP); 2031 } 2032 return insert_page(vma, addr, page, vma->vm_page_prot); 2033 } 2034 EXPORT_SYMBOL(vm_insert_page); 2035 2036 /* 2037 * __vm_map_pages - maps range of kernel pages into user vma 2038 * @vma: user vma to map to 2039 * @pages: pointer to array of source kernel pages 2040 * @num: number of pages in page array 2041 * @offset: user's requested vm_pgoff 2042 * 2043 * This allows drivers to map range of kernel pages into a user vma. 2044 * 2045 * Return: 0 on success and error code otherwise. 2046 */ 2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2048 unsigned long num, unsigned long offset) 2049 { 2050 unsigned long count = vma_pages(vma); 2051 unsigned long uaddr = vma->vm_start; 2052 int ret, i; 2053 2054 /* Fail if the user requested offset is beyond the end of the object */ 2055 if (offset >= num) 2056 return -ENXIO; 2057 2058 /* Fail if the user requested size exceeds available object size */ 2059 if (count > num - offset) 2060 return -ENXIO; 2061 2062 for (i = 0; i < count; i++) { 2063 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2064 if (ret < 0) 2065 return ret; 2066 uaddr += PAGE_SIZE; 2067 } 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * vm_map_pages - maps range of kernel pages starts with non zero offset 2074 * @vma: user vma to map to 2075 * @pages: pointer to array of source kernel pages 2076 * @num: number of pages in page array 2077 * 2078 * Maps an object consisting of @num pages, catering for the user's 2079 * requested vm_pgoff 2080 * 2081 * If we fail to insert any page into the vma, the function will return 2082 * immediately leaving any previously inserted pages present. Callers 2083 * from the mmap handler may immediately return the error as their caller 2084 * will destroy the vma, removing any successfully inserted pages. Other 2085 * callers should make their own arrangements for calling unmap_region(). 2086 * 2087 * Context: Process context. Called by mmap handlers. 2088 * Return: 0 on success and error code otherwise. 2089 */ 2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2091 unsigned long num) 2092 { 2093 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2094 } 2095 EXPORT_SYMBOL(vm_map_pages); 2096 2097 /** 2098 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2099 * @vma: user vma to map to 2100 * @pages: pointer to array of source kernel pages 2101 * @num: number of pages in page array 2102 * 2103 * Similar to vm_map_pages(), except that it explicitly sets the offset 2104 * to 0. This function is intended for the drivers that did not consider 2105 * vm_pgoff. 2106 * 2107 * Context: Process context. Called by mmap handlers. 2108 * Return: 0 on success and error code otherwise. 2109 */ 2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2111 unsigned long num) 2112 { 2113 return __vm_map_pages(vma, pages, num, 0); 2114 } 2115 EXPORT_SYMBOL(vm_map_pages_zero); 2116 2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2118 pfn_t pfn, pgprot_t prot, bool mkwrite) 2119 { 2120 struct mm_struct *mm = vma->vm_mm; 2121 pte_t *pte, entry; 2122 spinlock_t *ptl; 2123 2124 pte = get_locked_pte(mm, addr, &ptl); 2125 if (!pte) 2126 return VM_FAULT_OOM; 2127 entry = ptep_get(pte); 2128 if (!pte_none(entry)) { 2129 if (mkwrite) { 2130 /* 2131 * For read faults on private mappings the PFN passed 2132 * in may not match the PFN we have mapped if the 2133 * mapped PFN is a writeable COW page. In the mkwrite 2134 * case we are creating a writable PTE for a shared 2135 * mapping and we expect the PFNs to match. If they 2136 * don't match, we are likely racing with block 2137 * allocation and mapping invalidation so just skip the 2138 * update. 2139 */ 2140 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2141 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2142 goto out_unlock; 2143 } 2144 entry = pte_mkyoung(entry); 2145 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2146 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2147 update_mmu_cache(vma, addr, pte); 2148 } 2149 goto out_unlock; 2150 } 2151 2152 /* Ok, finally just insert the thing.. */ 2153 if (pfn_t_devmap(pfn)) 2154 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2155 else 2156 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2157 2158 if (mkwrite) { 2159 entry = pte_mkyoung(entry); 2160 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2161 } 2162 2163 set_pte_at(mm, addr, pte, entry); 2164 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2165 2166 out_unlock: 2167 pte_unmap_unlock(pte, ptl); 2168 return VM_FAULT_NOPAGE; 2169 } 2170 2171 /** 2172 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2173 * @vma: user vma to map to 2174 * @addr: target user address of this page 2175 * @pfn: source kernel pfn 2176 * @pgprot: pgprot flags for the inserted page 2177 * 2178 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2179 * to override pgprot on a per-page basis. 2180 * 2181 * This only makes sense for IO mappings, and it makes no sense for 2182 * COW mappings. In general, using multiple vmas is preferable; 2183 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2184 * impractical. 2185 * 2186 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2187 * caching- and encryption bits different than those of @vma->vm_page_prot, 2188 * because the caching- or encryption mode may not be known at mmap() time. 2189 * 2190 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2191 * to set caching and encryption bits for those vmas (except for COW pages). 2192 * This is ensured by core vm only modifying these page table entries using 2193 * functions that don't touch caching- or encryption bits, using pte_modify() 2194 * if needed. (See for example mprotect()). 2195 * 2196 * Also when new page-table entries are created, this is only done using the 2197 * fault() callback, and never using the value of vma->vm_page_prot, 2198 * except for page-table entries that point to anonymous pages as the result 2199 * of COW. 2200 * 2201 * Context: Process context. May allocate using %GFP_KERNEL. 2202 * Return: vm_fault_t value. 2203 */ 2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2205 unsigned long pfn, pgprot_t pgprot) 2206 { 2207 /* 2208 * Technically, architectures with pte_special can avoid all these 2209 * restrictions (same for remap_pfn_range). However we would like 2210 * consistency in testing and feature parity among all, so we should 2211 * try to keep these invariants in place for everybody. 2212 */ 2213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2215 (VM_PFNMAP|VM_MIXEDMAP)); 2216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2217 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2218 2219 if (addr < vma->vm_start || addr >= vma->vm_end) 2220 return VM_FAULT_SIGBUS; 2221 2222 if (!pfn_modify_allowed(pfn, pgprot)) 2223 return VM_FAULT_SIGBUS; 2224 2225 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2226 2227 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2228 false); 2229 } 2230 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2231 2232 /** 2233 * vmf_insert_pfn - insert single pfn into user vma 2234 * @vma: user vma to map to 2235 * @addr: target user address of this page 2236 * @pfn: source kernel pfn 2237 * 2238 * Similar to vm_insert_page, this allows drivers to insert individual pages 2239 * they've allocated into a user vma. Same comments apply. 2240 * 2241 * This function should only be called from a vm_ops->fault handler, and 2242 * in that case the handler should return the result of this function. 2243 * 2244 * vma cannot be a COW mapping. 2245 * 2246 * As this is called only for pages that do not currently exist, we 2247 * do not need to flush old virtual caches or the TLB. 2248 * 2249 * Context: Process context. May allocate using %GFP_KERNEL. 2250 * Return: vm_fault_t value. 2251 */ 2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2253 unsigned long pfn) 2254 { 2255 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2256 } 2257 EXPORT_SYMBOL(vmf_insert_pfn); 2258 2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2260 { 2261 /* these checks mirror the abort conditions in vm_normal_page */ 2262 if (vma->vm_flags & VM_MIXEDMAP) 2263 return true; 2264 if (pfn_t_devmap(pfn)) 2265 return true; 2266 if (pfn_t_special(pfn)) 2267 return true; 2268 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2269 return true; 2270 return false; 2271 } 2272 2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2274 unsigned long addr, pfn_t pfn, bool mkwrite) 2275 { 2276 pgprot_t pgprot = vma->vm_page_prot; 2277 int err; 2278 2279 BUG_ON(!vm_mixed_ok(vma, pfn)); 2280 2281 if (addr < vma->vm_start || addr >= vma->vm_end) 2282 return VM_FAULT_SIGBUS; 2283 2284 track_pfn_insert(vma, &pgprot, pfn); 2285 2286 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2287 return VM_FAULT_SIGBUS; 2288 2289 /* 2290 * If we don't have pte special, then we have to use the pfn_valid() 2291 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2292 * refcount the page if pfn_valid is true (hence insert_page rather 2293 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2294 * without pte special, it would there be refcounted as a normal page. 2295 */ 2296 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2297 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2298 struct page *page; 2299 2300 /* 2301 * At this point we are committed to insert_page() 2302 * regardless of whether the caller specified flags that 2303 * result in pfn_t_has_page() == false. 2304 */ 2305 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2306 err = insert_page(vma, addr, page, pgprot); 2307 } else { 2308 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2309 } 2310 2311 if (err == -ENOMEM) 2312 return VM_FAULT_OOM; 2313 if (err < 0 && err != -EBUSY) 2314 return VM_FAULT_SIGBUS; 2315 2316 return VM_FAULT_NOPAGE; 2317 } 2318 2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2320 pfn_t pfn) 2321 { 2322 return __vm_insert_mixed(vma, addr, pfn, false); 2323 } 2324 EXPORT_SYMBOL(vmf_insert_mixed); 2325 2326 /* 2327 * If the insertion of PTE failed because someone else already added a 2328 * different entry in the mean time, we treat that as success as we assume 2329 * the same entry was actually inserted. 2330 */ 2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2332 unsigned long addr, pfn_t pfn) 2333 { 2334 return __vm_insert_mixed(vma, addr, pfn, true); 2335 } 2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2337 2338 /* 2339 * maps a range of physical memory into the requested pages. the old 2340 * mappings are removed. any references to nonexistent pages results 2341 * in null mappings (currently treated as "copy-on-access") 2342 */ 2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2344 unsigned long addr, unsigned long end, 2345 unsigned long pfn, pgprot_t prot) 2346 { 2347 pte_t *pte, *mapped_pte; 2348 spinlock_t *ptl; 2349 int err = 0; 2350 2351 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2352 if (!pte) 2353 return -ENOMEM; 2354 arch_enter_lazy_mmu_mode(); 2355 do { 2356 BUG_ON(!pte_none(ptep_get(pte))); 2357 if (!pfn_modify_allowed(pfn, prot)) { 2358 err = -EACCES; 2359 break; 2360 } 2361 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2362 pfn++; 2363 } while (pte++, addr += PAGE_SIZE, addr != end); 2364 arch_leave_lazy_mmu_mode(); 2365 pte_unmap_unlock(mapped_pte, ptl); 2366 return err; 2367 } 2368 2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2370 unsigned long addr, unsigned long end, 2371 unsigned long pfn, pgprot_t prot) 2372 { 2373 pmd_t *pmd; 2374 unsigned long next; 2375 int err; 2376 2377 pfn -= addr >> PAGE_SHIFT; 2378 pmd = pmd_alloc(mm, pud, addr); 2379 if (!pmd) 2380 return -ENOMEM; 2381 VM_BUG_ON(pmd_trans_huge(*pmd)); 2382 do { 2383 next = pmd_addr_end(addr, end); 2384 err = remap_pte_range(mm, pmd, addr, next, 2385 pfn + (addr >> PAGE_SHIFT), prot); 2386 if (err) 2387 return err; 2388 } while (pmd++, addr = next, addr != end); 2389 return 0; 2390 } 2391 2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2393 unsigned long addr, unsigned long end, 2394 unsigned long pfn, pgprot_t prot) 2395 { 2396 pud_t *pud; 2397 unsigned long next; 2398 int err; 2399 2400 pfn -= addr >> PAGE_SHIFT; 2401 pud = pud_alloc(mm, p4d, addr); 2402 if (!pud) 2403 return -ENOMEM; 2404 do { 2405 next = pud_addr_end(addr, end); 2406 err = remap_pmd_range(mm, pud, addr, next, 2407 pfn + (addr >> PAGE_SHIFT), prot); 2408 if (err) 2409 return err; 2410 } while (pud++, addr = next, addr != end); 2411 return 0; 2412 } 2413 2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2415 unsigned long addr, unsigned long end, 2416 unsigned long pfn, pgprot_t prot) 2417 { 2418 p4d_t *p4d; 2419 unsigned long next; 2420 int err; 2421 2422 pfn -= addr >> PAGE_SHIFT; 2423 p4d = p4d_alloc(mm, pgd, addr); 2424 if (!p4d) 2425 return -ENOMEM; 2426 do { 2427 next = p4d_addr_end(addr, end); 2428 err = remap_pud_range(mm, p4d, addr, next, 2429 pfn + (addr >> PAGE_SHIFT), prot); 2430 if (err) 2431 return err; 2432 } while (p4d++, addr = next, addr != end); 2433 return 0; 2434 } 2435 2436 /* 2437 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2438 * must have pre-validated the caching bits of the pgprot_t. 2439 */ 2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2441 unsigned long pfn, unsigned long size, pgprot_t prot) 2442 { 2443 pgd_t *pgd; 2444 unsigned long next; 2445 unsigned long end = addr + PAGE_ALIGN(size); 2446 struct mm_struct *mm = vma->vm_mm; 2447 int err; 2448 2449 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2450 return -EINVAL; 2451 2452 /* 2453 * Physically remapped pages are special. Tell the 2454 * rest of the world about it: 2455 * VM_IO tells people not to look at these pages 2456 * (accesses can have side effects). 2457 * VM_PFNMAP tells the core MM that the base pages are just 2458 * raw PFN mappings, and do not have a "struct page" associated 2459 * with them. 2460 * VM_DONTEXPAND 2461 * Disable vma merging and expanding with mremap(). 2462 * VM_DONTDUMP 2463 * Omit vma from core dump, even when VM_IO turned off. 2464 * 2465 * There's a horrible special case to handle copy-on-write 2466 * behaviour that some programs depend on. We mark the "original" 2467 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2468 * See vm_normal_page() for details. 2469 */ 2470 if (is_cow_mapping(vma->vm_flags)) { 2471 if (addr != vma->vm_start || end != vma->vm_end) 2472 return -EINVAL; 2473 vma->vm_pgoff = pfn; 2474 } 2475 2476 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2477 2478 BUG_ON(addr >= end); 2479 pfn -= addr >> PAGE_SHIFT; 2480 pgd = pgd_offset(mm, addr); 2481 flush_cache_range(vma, addr, end); 2482 do { 2483 next = pgd_addr_end(addr, end); 2484 err = remap_p4d_range(mm, pgd, addr, next, 2485 pfn + (addr >> PAGE_SHIFT), prot); 2486 if (err) 2487 return err; 2488 } while (pgd++, addr = next, addr != end); 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * remap_pfn_range - remap kernel memory to userspace 2495 * @vma: user vma to map to 2496 * @addr: target page aligned user address to start at 2497 * @pfn: page frame number of kernel physical memory address 2498 * @size: size of mapping area 2499 * @prot: page protection flags for this mapping 2500 * 2501 * Note: this is only safe if the mm semaphore is held when called. 2502 * 2503 * Return: %0 on success, negative error code otherwise. 2504 */ 2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2506 unsigned long pfn, unsigned long size, pgprot_t prot) 2507 { 2508 int err; 2509 2510 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2511 if (err) 2512 return -EINVAL; 2513 2514 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2515 if (err) 2516 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2517 return err; 2518 } 2519 EXPORT_SYMBOL(remap_pfn_range); 2520 2521 /** 2522 * vm_iomap_memory - remap memory to userspace 2523 * @vma: user vma to map to 2524 * @start: start of the physical memory to be mapped 2525 * @len: size of area 2526 * 2527 * This is a simplified io_remap_pfn_range() for common driver use. The 2528 * driver just needs to give us the physical memory range to be mapped, 2529 * we'll figure out the rest from the vma information. 2530 * 2531 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2532 * whatever write-combining details or similar. 2533 * 2534 * Return: %0 on success, negative error code otherwise. 2535 */ 2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2537 { 2538 unsigned long vm_len, pfn, pages; 2539 2540 /* Check that the physical memory area passed in looks valid */ 2541 if (start + len < start) 2542 return -EINVAL; 2543 /* 2544 * You *really* shouldn't map things that aren't page-aligned, 2545 * but we've historically allowed it because IO memory might 2546 * just have smaller alignment. 2547 */ 2548 len += start & ~PAGE_MASK; 2549 pfn = start >> PAGE_SHIFT; 2550 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2551 if (pfn + pages < pfn) 2552 return -EINVAL; 2553 2554 /* We start the mapping 'vm_pgoff' pages into the area */ 2555 if (vma->vm_pgoff > pages) 2556 return -EINVAL; 2557 pfn += vma->vm_pgoff; 2558 pages -= vma->vm_pgoff; 2559 2560 /* Can we fit all of the mapping? */ 2561 vm_len = vma->vm_end - vma->vm_start; 2562 if (vm_len >> PAGE_SHIFT > pages) 2563 return -EINVAL; 2564 2565 /* Ok, let it rip */ 2566 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2567 } 2568 EXPORT_SYMBOL(vm_iomap_memory); 2569 2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2571 unsigned long addr, unsigned long end, 2572 pte_fn_t fn, void *data, bool create, 2573 pgtbl_mod_mask *mask) 2574 { 2575 pte_t *pte, *mapped_pte; 2576 int err = 0; 2577 spinlock_t *ptl; 2578 2579 if (create) { 2580 mapped_pte = pte = (mm == &init_mm) ? 2581 pte_alloc_kernel_track(pmd, addr, mask) : 2582 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2583 if (!pte) 2584 return -ENOMEM; 2585 } else { 2586 mapped_pte = pte = (mm == &init_mm) ? 2587 pte_offset_kernel(pmd, addr) : 2588 pte_offset_map_lock(mm, pmd, addr, &ptl); 2589 if (!pte) 2590 return -EINVAL; 2591 } 2592 2593 arch_enter_lazy_mmu_mode(); 2594 2595 if (fn) { 2596 do { 2597 if (create || !pte_none(ptep_get(pte))) { 2598 err = fn(pte++, addr, data); 2599 if (err) 2600 break; 2601 } 2602 } while (addr += PAGE_SIZE, addr != end); 2603 } 2604 *mask |= PGTBL_PTE_MODIFIED; 2605 2606 arch_leave_lazy_mmu_mode(); 2607 2608 if (mm != &init_mm) 2609 pte_unmap_unlock(mapped_pte, ptl); 2610 return err; 2611 } 2612 2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2614 unsigned long addr, unsigned long end, 2615 pte_fn_t fn, void *data, bool create, 2616 pgtbl_mod_mask *mask) 2617 { 2618 pmd_t *pmd; 2619 unsigned long next; 2620 int err = 0; 2621 2622 BUG_ON(pud_huge(*pud)); 2623 2624 if (create) { 2625 pmd = pmd_alloc_track(mm, pud, addr, mask); 2626 if (!pmd) 2627 return -ENOMEM; 2628 } else { 2629 pmd = pmd_offset(pud, addr); 2630 } 2631 do { 2632 next = pmd_addr_end(addr, end); 2633 if (pmd_none(*pmd) && !create) 2634 continue; 2635 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2636 return -EINVAL; 2637 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2638 if (!create) 2639 continue; 2640 pmd_clear_bad(pmd); 2641 } 2642 err = apply_to_pte_range(mm, pmd, addr, next, 2643 fn, data, create, mask); 2644 if (err) 2645 break; 2646 } while (pmd++, addr = next, addr != end); 2647 2648 return err; 2649 } 2650 2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2652 unsigned long addr, unsigned long end, 2653 pte_fn_t fn, void *data, bool create, 2654 pgtbl_mod_mask *mask) 2655 { 2656 pud_t *pud; 2657 unsigned long next; 2658 int err = 0; 2659 2660 if (create) { 2661 pud = pud_alloc_track(mm, p4d, addr, mask); 2662 if (!pud) 2663 return -ENOMEM; 2664 } else { 2665 pud = pud_offset(p4d, addr); 2666 } 2667 do { 2668 next = pud_addr_end(addr, end); 2669 if (pud_none(*pud) && !create) 2670 continue; 2671 if (WARN_ON_ONCE(pud_leaf(*pud))) 2672 return -EINVAL; 2673 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2674 if (!create) 2675 continue; 2676 pud_clear_bad(pud); 2677 } 2678 err = apply_to_pmd_range(mm, pud, addr, next, 2679 fn, data, create, mask); 2680 if (err) 2681 break; 2682 } while (pud++, addr = next, addr != end); 2683 2684 return err; 2685 } 2686 2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2688 unsigned long addr, unsigned long end, 2689 pte_fn_t fn, void *data, bool create, 2690 pgtbl_mod_mask *mask) 2691 { 2692 p4d_t *p4d; 2693 unsigned long next; 2694 int err = 0; 2695 2696 if (create) { 2697 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2698 if (!p4d) 2699 return -ENOMEM; 2700 } else { 2701 p4d = p4d_offset(pgd, addr); 2702 } 2703 do { 2704 next = p4d_addr_end(addr, end); 2705 if (p4d_none(*p4d) && !create) 2706 continue; 2707 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2708 return -EINVAL; 2709 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2710 if (!create) 2711 continue; 2712 p4d_clear_bad(p4d); 2713 } 2714 err = apply_to_pud_range(mm, p4d, addr, next, 2715 fn, data, create, mask); 2716 if (err) 2717 break; 2718 } while (p4d++, addr = next, addr != end); 2719 2720 return err; 2721 } 2722 2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2724 unsigned long size, pte_fn_t fn, 2725 void *data, bool create) 2726 { 2727 pgd_t *pgd; 2728 unsigned long start = addr, next; 2729 unsigned long end = addr + size; 2730 pgtbl_mod_mask mask = 0; 2731 int err = 0; 2732 2733 if (WARN_ON(addr >= end)) 2734 return -EINVAL; 2735 2736 pgd = pgd_offset(mm, addr); 2737 do { 2738 next = pgd_addr_end(addr, end); 2739 if (pgd_none(*pgd) && !create) 2740 continue; 2741 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2742 return -EINVAL; 2743 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2744 if (!create) 2745 continue; 2746 pgd_clear_bad(pgd); 2747 } 2748 err = apply_to_p4d_range(mm, pgd, addr, next, 2749 fn, data, create, &mask); 2750 if (err) 2751 break; 2752 } while (pgd++, addr = next, addr != end); 2753 2754 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2755 arch_sync_kernel_mappings(start, start + size); 2756 2757 return err; 2758 } 2759 2760 /* 2761 * Scan a region of virtual memory, filling in page tables as necessary 2762 * and calling a provided function on each leaf page table. 2763 */ 2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2765 unsigned long size, pte_fn_t fn, void *data) 2766 { 2767 return __apply_to_page_range(mm, addr, size, fn, data, true); 2768 } 2769 EXPORT_SYMBOL_GPL(apply_to_page_range); 2770 2771 /* 2772 * Scan a region of virtual memory, calling a provided function on 2773 * each leaf page table where it exists. 2774 * 2775 * Unlike apply_to_page_range, this does _not_ fill in page tables 2776 * where they are absent. 2777 */ 2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2779 unsigned long size, pte_fn_t fn, void *data) 2780 { 2781 return __apply_to_page_range(mm, addr, size, fn, data, false); 2782 } 2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2784 2785 /* 2786 * handle_pte_fault chooses page fault handler according to an entry which was 2787 * read non-atomically. Before making any commitment, on those architectures 2788 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2789 * parts, do_swap_page must check under lock before unmapping the pte and 2790 * proceeding (but do_wp_page is only called after already making such a check; 2791 * and do_anonymous_page can safely check later on). 2792 */ 2793 static inline int pte_unmap_same(struct vm_fault *vmf) 2794 { 2795 int same = 1; 2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2797 if (sizeof(pte_t) > sizeof(unsigned long)) { 2798 spin_lock(vmf->ptl); 2799 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2800 spin_unlock(vmf->ptl); 2801 } 2802 #endif 2803 pte_unmap(vmf->pte); 2804 vmf->pte = NULL; 2805 return same; 2806 } 2807 2808 /* 2809 * Return: 2810 * 0: copied succeeded 2811 * -EHWPOISON: copy failed due to hwpoison in source page 2812 * -EAGAIN: copied failed (some other reason) 2813 */ 2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2815 struct vm_fault *vmf) 2816 { 2817 int ret; 2818 void *kaddr; 2819 void __user *uaddr; 2820 struct vm_area_struct *vma = vmf->vma; 2821 struct mm_struct *mm = vma->vm_mm; 2822 unsigned long addr = vmf->address; 2823 2824 if (likely(src)) { 2825 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2826 memory_failure_queue(page_to_pfn(src), 0); 2827 return -EHWPOISON; 2828 } 2829 return 0; 2830 } 2831 2832 /* 2833 * If the source page was a PFN mapping, we don't have 2834 * a "struct page" for it. We do a best-effort copy by 2835 * just copying from the original user address. If that 2836 * fails, we just zero-fill it. Live with it. 2837 */ 2838 kaddr = kmap_atomic(dst); 2839 uaddr = (void __user *)(addr & PAGE_MASK); 2840 2841 /* 2842 * On architectures with software "accessed" bits, we would 2843 * take a double page fault, so mark it accessed here. 2844 */ 2845 vmf->pte = NULL; 2846 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2847 pte_t entry; 2848 2849 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2850 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2851 /* 2852 * Other thread has already handled the fault 2853 * and update local tlb only 2854 */ 2855 if (vmf->pte) 2856 update_mmu_tlb(vma, addr, vmf->pte); 2857 ret = -EAGAIN; 2858 goto pte_unlock; 2859 } 2860 2861 entry = pte_mkyoung(vmf->orig_pte); 2862 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2863 update_mmu_cache(vma, addr, vmf->pte); 2864 } 2865 2866 /* 2867 * This really shouldn't fail, because the page is there 2868 * in the page tables. But it might just be unreadable, 2869 * in which case we just give up and fill the result with 2870 * zeroes. 2871 */ 2872 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2873 if (vmf->pte) 2874 goto warn; 2875 2876 /* Re-validate under PTL if the page is still mapped */ 2877 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2878 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2879 /* The PTE changed under us, update local tlb */ 2880 if (vmf->pte) 2881 update_mmu_tlb(vma, addr, vmf->pte); 2882 ret = -EAGAIN; 2883 goto pte_unlock; 2884 } 2885 2886 /* 2887 * The same page can be mapped back since last copy attempt. 2888 * Try to copy again under PTL. 2889 */ 2890 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2891 /* 2892 * Give a warn in case there can be some obscure 2893 * use-case 2894 */ 2895 warn: 2896 WARN_ON_ONCE(1); 2897 clear_page(kaddr); 2898 } 2899 } 2900 2901 ret = 0; 2902 2903 pte_unlock: 2904 if (vmf->pte) 2905 pte_unmap_unlock(vmf->pte, vmf->ptl); 2906 kunmap_atomic(kaddr); 2907 flush_dcache_page(dst); 2908 2909 return ret; 2910 } 2911 2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2913 { 2914 struct file *vm_file = vma->vm_file; 2915 2916 if (vm_file) 2917 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2918 2919 /* 2920 * Special mappings (e.g. VDSO) do not have any file so fake 2921 * a default GFP_KERNEL for them. 2922 */ 2923 return GFP_KERNEL; 2924 } 2925 2926 /* 2927 * Notify the address space that the page is about to become writable so that 2928 * it can prohibit this or wait for the page to get into an appropriate state. 2929 * 2930 * We do this without the lock held, so that it can sleep if it needs to. 2931 */ 2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2933 { 2934 vm_fault_t ret; 2935 struct page *page = vmf->page; 2936 unsigned int old_flags = vmf->flags; 2937 2938 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2939 2940 if (vmf->vma->vm_file && 2941 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2942 return VM_FAULT_SIGBUS; 2943 2944 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2945 /* Restore original flags so that caller is not surprised */ 2946 vmf->flags = old_flags; 2947 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2948 return ret; 2949 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2950 lock_page(page); 2951 if (!page->mapping) { 2952 unlock_page(page); 2953 return 0; /* retry */ 2954 } 2955 ret |= VM_FAULT_LOCKED; 2956 } else 2957 VM_BUG_ON_PAGE(!PageLocked(page), page); 2958 return ret; 2959 } 2960 2961 /* 2962 * Handle dirtying of a page in shared file mapping on a write fault. 2963 * 2964 * The function expects the page to be locked and unlocks it. 2965 */ 2966 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2967 { 2968 struct vm_area_struct *vma = vmf->vma; 2969 struct address_space *mapping; 2970 struct folio *folio = page_folio(vmf->page); 2971 bool dirtied; 2972 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2973 2974 dirtied = folio_mark_dirty(folio); 2975 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2976 /* 2977 * Take a local copy of the address_space - folio.mapping may be zeroed 2978 * by truncate after folio_unlock(). The address_space itself remains 2979 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2980 * release semantics to prevent the compiler from undoing this copying. 2981 */ 2982 mapping = folio_raw_mapping(folio); 2983 folio_unlock(folio); 2984 2985 if (!page_mkwrite) 2986 file_update_time(vma->vm_file); 2987 2988 /* 2989 * Throttle page dirtying rate down to writeback speed. 2990 * 2991 * mapping may be NULL here because some device drivers do not 2992 * set page.mapping but still dirty their pages 2993 * 2994 * Drop the mmap_lock before waiting on IO, if we can. The file 2995 * is pinning the mapping, as per above. 2996 */ 2997 if ((dirtied || page_mkwrite) && mapping) { 2998 struct file *fpin; 2999 3000 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3001 balance_dirty_pages_ratelimited(mapping); 3002 if (fpin) { 3003 fput(fpin); 3004 return VM_FAULT_COMPLETED; 3005 } 3006 } 3007 3008 return 0; 3009 } 3010 3011 /* 3012 * Handle write page faults for pages that can be reused in the current vma 3013 * 3014 * This can happen either due to the mapping being with the VM_SHARED flag, 3015 * or due to us being the last reference standing to the page. In either 3016 * case, all we need to do here is to mark the page as writable and update 3017 * any related book-keeping. 3018 */ 3019 static inline void wp_page_reuse(struct vm_fault *vmf) 3020 __releases(vmf->ptl) 3021 { 3022 struct vm_area_struct *vma = vmf->vma; 3023 struct page *page = vmf->page; 3024 pte_t entry; 3025 3026 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3027 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3028 3029 /* 3030 * Clear the pages cpupid information as the existing 3031 * information potentially belongs to a now completely 3032 * unrelated process. 3033 */ 3034 if (page) 3035 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3036 3037 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3038 entry = pte_mkyoung(vmf->orig_pte); 3039 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3040 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3041 update_mmu_cache(vma, vmf->address, vmf->pte); 3042 pte_unmap_unlock(vmf->pte, vmf->ptl); 3043 count_vm_event(PGREUSE); 3044 } 3045 3046 /* 3047 * Handle the case of a page which we actually need to copy to a new page, 3048 * either due to COW or unsharing. 3049 * 3050 * Called with mmap_lock locked and the old page referenced, but 3051 * without the ptl held. 3052 * 3053 * High level logic flow: 3054 * 3055 * - Allocate a page, copy the content of the old page to the new one. 3056 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3057 * - Take the PTL. If the pte changed, bail out and release the allocated page 3058 * - If the pte is still the way we remember it, update the page table and all 3059 * relevant references. This includes dropping the reference the page-table 3060 * held to the old page, as well as updating the rmap. 3061 * - In any case, unlock the PTL and drop the reference we took to the old page. 3062 */ 3063 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3064 { 3065 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3066 struct vm_area_struct *vma = vmf->vma; 3067 struct mm_struct *mm = vma->vm_mm; 3068 struct folio *old_folio = NULL; 3069 struct folio *new_folio = NULL; 3070 pte_t entry; 3071 int page_copied = 0; 3072 struct mmu_notifier_range range; 3073 int ret; 3074 3075 delayacct_wpcopy_start(); 3076 3077 if (vmf->page) 3078 old_folio = page_folio(vmf->page); 3079 if (unlikely(anon_vma_prepare(vma))) 3080 goto oom; 3081 3082 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3083 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3084 if (!new_folio) 3085 goto oom; 3086 } else { 3087 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3088 vmf->address, false); 3089 if (!new_folio) 3090 goto oom; 3091 3092 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3093 if (ret) { 3094 /* 3095 * COW failed, if the fault was solved by other, 3096 * it's fine. If not, userspace would re-fault on 3097 * the same address and we will handle the fault 3098 * from the second attempt. 3099 * The -EHWPOISON case will not be retried. 3100 */ 3101 folio_put(new_folio); 3102 if (old_folio) 3103 folio_put(old_folio); 3104 3105 delayacct_wpcopy_end(); 3106 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3107 } 3108 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3109 } 3110 3111 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3112 goto oom_free_new; 3113 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3114 3115 __folio_mark_uptodate(new_folio); 3116 3117 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3118 vmf->address & PAGE_MASK, 3119 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3120 mmu_notifier_invalidate_range_start(&range); 3121 3122 /* 3123 * Re-check the pte - we dropped the lock 3124 */ 3125 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3126 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3127 if (old_folio) { 3128 if (!folio_test_anon(old_folio)) { 3129 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3130 inc_mm_counter(mm, MM_ANONPAGES); 3131 } 3132 } else { 3133 ksm_might_unmap_zero_page(vmf->orig_pte); 3134 inc_mm_counter(mm, MM_ANONPAGES); 3135 } 3136 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3137 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3138 entry = pte_sw_mkyoung(entry); 3139 if (unlikely(unshare)) { 3140 if (pte_soft_dirty(vmf->orig_pte)) 3141 entry = pte_mksoft_dirty(entry); 3142 if (pte_uffd_wp(vmf->orig_pte)) 3143 entry = pte_mkuffd_wp(entry); 3144 } else { 3145 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3146 } 3147 3148 /* 3149 * Clear the pte entry and flush it first, before updating the 3150 * pte with the new entry, to keep TLBs on different CPUs in 3151 * sync. This code used to set the new PTE then flush TLBs, but 3152 * that left a window where the new PTE could be loaded into 3153 * some TLBs while the old PTE remains in others. 3154 */ 3155 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3156 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3157 folio_add_lru_vma(new_folio, vma); 3158 /* 3159 * We call the notify macro here because, when using secondary 3160 * mmu page tables (such as kvm shadow page tables), we want the 3161 * new page to be mapped directly into the secondary page table. 3162 */ 3163 BUG_ON(unshare && pte_write(entry)); 3164 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3165 update_mmu_cache(vma, vmf->address, vmf->pte); 3166 if (old_folio) { 3167 /* 3168 * Only after switching the pte to the new page may 3169 * we remove the mapcount here. Otherwise another 3170 * process may come and find the rmap count decremented 3171 * before the pte is switched to the new page, and 3172 * "reuse" the old page writing into it while our pte 3173 * here still points into it and can be read by other 3174 * threads. 3175 * 3176 * The critical issue is to order this 3177 * page_remove_rmap with the ptp_clear_flush above. 3178 * Those stores are ordered by (if nothing else,) 3179 * the barrier present in the atomic_add_negative 3180 * in page_remove_rmap. 3181 * 3182 * Then the TLB flush in ptep_clear_flush ensures that 3183 * no process can access the old page before the 3184 * decremented mapcount is visible. And the old page 3185 * cannot be reused until after the decremented 3186 * mapcount is visible. So transitively, TLBs to 3187 * old page will be flushed before it can be reused. 3188 */ 3189 page_remove_rmap(vmf->page, vma, false); 3190 } 3191 3192 /* Free the old page.. */ 3193 new_folio = old_folio; 3194 page_copied = 1; 3195 pte_unmap_unlock(vmf->pte, vmf->ptl); 3196 } else if (vmf->pte) { 3197 update_mmu_tlb(vma, vmf->address, vmf->pte); 3198 pte_unmap_unlock(vmf->pte, vmf->ptl); 3199 } 3200 3201 /* 3202 * No need to double call mmu_notifier->invalidate_range() callback as 3203 * the above ptep_clear_flush_notify() did already call it. 3204 */ 3205 mmu_notifier_invalidate_range_only_end(&range); 3206 3207 if (new_folio) 3208 folio_put(new_folio); 3209 if (old_folio) { 3210 if (page_copied) 3211 free_swap_cache(&old_folio->page); 3212 folio_put(old_folio); 3213 } 3214 3215 delayacct_wpcopy_end(); 3216 return 0; 3217 oom_free_new: 3218 folio_put(new_folio); 3219 oom: 3220 if (old_folio) 3221 folio_put(old_folio); 3222 3223 delayacct_wpcopy_end(); 3224 return VM_FAULT_OOM; 3225 } 3226 3227 /** 3228 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3229 * writeable once the page is prepared 3230 * 3231 * @vmf: structure describing the fault 3232 * 3233 * This function handles all that is needed to finish a write page fault in a 3234 * shared mapping due to PTE being read-only once the mapped page is prepared. 3235 * It handles locking of PTE and modifying it. 3236 * 3237 * The function expects the page to be locked or other protection against 3238 * concurrent faults / writeback (such as DAX radix tree locks). 3239 * 3240 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3241 * we acquired PTE lock. 3242 */ 3243 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3244 { 3245 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3246 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3247 &vmf->ptl); 3248 if (!vmf->pte) 3249 return VM_FAULT_NOPAGE; 3250 /* 3251 * We might have raced with another page fault while we released the 3252 * pte_offset_map_lock. 3253 */ 3254 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3255 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3256 pte_unmap_unlock(vmf->pte, vmf->ptl); 3257 return VM_FAULT_NOPAGE; 3258 } 3259 wp_page_reuse(vmf); 3260 return 0; 3261 } 3262 3263 /* 3264 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3265 * mapping 3266 */ 3267 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3268 { 3269 struct vm_area_struct *vma = vmf->vma; 3270 3271 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3272 vm_fault_t ret; 3273 3274 pte_unmap_unlock(vmf->pte, vmf->ptl); 3275 vmf->flags |= FAULT_FLAG_MKWRITE; 3276 ret = vma->vm_ops->pfn_mkwrite(vmf); 3277 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3278 return ret; 3279 return finish_mkwrite_fault(vmf); 3280 } 3281 wp_page_reuse(vmf); 3282 return 0; 3283 } 3284 3285 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3286 __releases(vmf->ptl) 3287 { 3288 struct vm_area_struct *vma = vmf->vma; 3289 vm_fault_t ret = 0; 3290 3291 get_page(vmf->page); 3292 3293 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3294 vm_fault_t tmp; 3295 3296 pte_unmap_unlock(vmf->pte, vmf->ptl); 3297 tmp = do_page_mkwrite(vmf); 3298 if (unlikely(!tmp || (tmp & 3299 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3300 put_page(vmf->page); 3301 return tmp; 3302 } 3303 tmp = finish_mkwrite_fault(vmf); 3304 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3305 unlock_page(vmf->page); 3306 put_page(vmf->page); 3307 return tmp; 3308 } 3309 } else { 3310 wp_page_reuse(vmf); 3311 lock_page(vmf->page); 3312 } 3313 ret |= fault_dirty_shared_page(vmf); 3314 put_page(vmf->page); 3315 3316 return ret; 3317 } 3318 3319 /* 3320 * This routine handles present pages, when 3321 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3322 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3323 * (FAULT_FLAG_UNSHARE) 3324 * 3325 * It is done by copying the page to a new address and decrementing the 3326 * shared-page counter for the old page. 3327 * 3328 * Note that this routine assumes that the protection checks have been 3329 * done by the caller (the low-level page fault routine in most cases). 3330 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3331 * done any necessary COW. 3332 * 3333 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3334 * though the page will change only once the write actually happens. This 3335 * avoids a few races, and potentially makes it more efficient. 3336 * 3337 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3338 * but allow concurrent faults), with pte both mapped and locked. 3339 * We return with mmap_lock still held, but pte unmapped and unlocked. 3340 */ 3341 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3342 __releases(vmf->ptl) 3343 { 3344 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3345 struct vm_area_struct *vma = vmf->vma; 3346 struct folio *folio = NULL; 3347 3348 if (likely(!unshare)) { 3349 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3350 pte_unmap_unlock(vmf->pte, vmf->ptl); 3351 return handle_userfault(vmf, VM_UFFD_WP); 3352 } 3353 3354 /* 3355 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3356 * is flushed in this case before copying. 3357 */ 3358 if (unlikely(userfaultfd_wp(vmf->vma) && 3359 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3360 flush_tlb_page(vmf->vma, vmf->address); 3361 } 3362 3363 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3364 3365 /* 3366 * Shared mapping: we are guaranteed to have VM_WRITE and 3367 * FAULT_FLAG_WRITE set at this point. 3368 */ 3369 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3370 /* 3371 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3372 * VM_PFNMAP VMA. 3373 * 3374 * We should not cow pages in a shared writeable mapping. 3375 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3376 */ 3377 if (!vmf->page) 3378 return wp_pfn_shared(vmf); 3379 return wp_page_shared(vmf); 3380 } 3381 3382 if (vmf->page) 3383 folio = page_folio(vmf->page); 3384 3385 /* 3386 * Private mapping: create an exclusive anonymous page copy if reuse 3387 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3388 */ 3389 if (folio && folio_test_anon(folio)) { 3390 /* 3391 * If the page is exclusive to this process we must reuse the 3392 * page without further checks. 3393 */ 3394 if (PageAnonExclusive(vmf->page)) 3395 goto reuse; 3396 3397 /* 3398 * We have to verify under folio lock: these early checks are 3399 * just an optimization to avoid locking the folio and freeing 3400 * the swapcache if there is little hope that we can reuse. 3401 * 3402 * KSM doesn't necessarily raise the folio refcount. 3403 */ 3404 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3405 goto copy; 3406 if (!folio_test_lru(folio)) 3407 /* 3408 * We cannot easily detect+handle references from 3409 * remote LRU caches or references to LRU folios. 3410 */ 3411 lru_add_drain(); 3412 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3413 goto copy; 3414 if (!folio_trylock(folio)) 3415 goto copy; 3416 if (folio_test_swapcache(folio)) 3417 folio_free_swap(folio); 3418 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3419 folio_unlock(folio); 3420 goto copy; 3421 } 3422 /* 3423 * Ok, we've got the only folio reference from our mapping 3424 * and the folio is locked, it's dark out, and we're wearing 3425 * sunglasses. Hit it. 3426 */ 3427 page_move_anon_rmap(vmf->page, vma); 3428 folio_unlock(folio); 3429 reuse: 3430 if (unlikely(unshare)) { 3431 pte_unmap_unlock(vmf->pte, vmf->ptl); 3432 return 0; 3433 } 3434 wp_page_reuse(vmf); 3435 return 0; 3436 } 3437 copy: 3438 /* 3439 * Ok, we need to copy. Oh, well.. 3440 */ 3441 if (folio) 3442 folio_get(folio); 3443 3444 pte_unmap_unlock(vmf->pte, vmf->ptl); 3445 #ifdef CONFIG_KSM 3446 if (folio && folio_test_ksm(folio)) 3447 count_vm_event(COW_KSM); 3448 #endif 3449 return wp_page_copy(vmf); 3450 } 3451 3452 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3453 unsigned long start_addr, unsigned long end_addr, 3454 struct zap_details *details) 3455 { 3456 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3457 } 3458 3459 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3460 pgoff_t first_index, 3461 pgoff_t last_index, 3462 struct zap_details *details) 3463 { 3464 struct vm_area_struct *vma; 3465 pgoff_t vba, vea, zba, zea; 3466 3467 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3468 vba = vma->vm_pgoff; 3469 vea = vba + vma_pages(vma) - 1; 3470 zba = max(first_index, vba); 3471 zea = min(last_index, vea); 3472 3473 unmap_mapping_range_vma(vma, 3474 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3475 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3476 details); 3477 } 3478 } 3479 3480 /** 3481 * unmap_mapping_folio() - Unmap single folio from processes. 3482 * @folio: The locked folio to be unmapped. 3483 * 3484 * Unmap this folio from any userspace process which still has it mmaped. 3485 * Typically, for efficiency, the range of nearby pages has already been 3486 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3487 * truncation or invalidation holds the lock on a folio, it may find that 3488 * the page has been remapped again: and then uses unmap_mapping_folio() 3489 * to unmap it finally. 3490 */ 3491 void unmap_mapping_folio(struct folio *folio) 3492 { 3493 struct address_space *mapping = folio->mapping; 3494 struct zap_details details = { }; 3495 pgoff_t first_index; 3496 pgoff_t last_index; 3497 3498 VM_BUG_ON(!folio_test_locked(folio)); 3499 3500 first_index = folio->index; 3501 last_index = folio_next_index(folio) - 1; 3502 3503 details.even_cows = false; 3504 details.single_folio = folio; 3505 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3506 3507 i_mmap_lock_read(mapping); 3508 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3509 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3510 last_index, &details); 3511 i_mmap_unlock_read(mapping); 3512 } 3513 3514 /** 3515 * unmap_mapping_pages() - Unmap pages from processes. 3516 * @mapping: The address space containing pages to be unmapped. 3517 * @start: Index of first page to be unmapped. 3518 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3519 * @even_cows: Whether to unmap even private COWed pages. 3520 * 3521 * Unmap the pages in this address space from any userspace process which 3522 * has them mmaped. Generally, you want to remove COWed pages as well when 3523 * a file is being truncated, but not when invalidating pages from the page 3524 * cache. 3525 */ 3526 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3527 pgoff_t nr, bool even_cows) 3528 { 3529 struct zap_details details = { }; 3530 pgoff_t first_index = start; 3531 pgoff_t last_index = start + nr - 1; 3532 3533 details.even_cows = even_cows; 3534 if (last_index < first_index) 3535 last_index = ULONG_MAX; 3536 3537 i_mmap_lock_read(mapping); 3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3540 last_index, &details); 3541 i_mmap_unlock_read(mapping); 3542 } 3543 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3544 3545 /** 3546 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3547 * address_space corresponding to the specified byte range in the underlying 3548 * file. 3549 * 3550 * @mapping: the address space containing mmaps to be unmapped. 3551 * @holebegin: byte in first page to unmap, relative to the start of 3552 * the underlying file. This will be rounded down to a PAGE_SIZE 3553 * boundary. Note that this is different from truncate_pagecache(), which 3554 * must keep the partial page. In contrast, we must get rid of 3555 * partial pages. 3556 * @holelen: size of prospective hole in bytes. This will be rounded 3557 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3558 * end of the file. 3559 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3560 * but 0 when invalidating pagecache, don't throw away private data. 3561 */ 3562 void unmap_mapping_range(struct address_space *mapping, 3563 loff_t const holebegin, loff_t const holelen, int even_cows) 3564 { 3565 pgoff_t hba = holebegin >> PAGE_SHIFT; 3566 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3567 3568 /* Check for overflow. */ 3569 if (sizeof(holelen) > sizeof(hlen)) { 3570 long long holeend = 3571 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3572 if (holeend & ~(long long)ULONG_MAX) 3573 hlen = ULONG_MAX - hba + 1; 3574 } 3575 3576 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3577 } 3578 EXPORT_SYMBOL(unmap_mapping_range); 3579 3580 /* 3581 * Restore a potential device exclusive pte to a working pte entry 3582 */ 3583 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3584 { 3585 struct folio *folio = page_folio(vmf->page); 3586 struct vm_area_struct *vma = vmf->vma; 3587 struct mmu_notifier_range range; 3588 3589 /* 3590 * We need a reference to lock the folio because we don't hold 3591 * the PTL so a racing thread can remove the device-exclusive 3592 * entry and unmap it. If the folio is free the entry must 3593 * have been removed already. If it happens to have already 3594 * been re-allocated after being freed all we do is lock and 3595 * unlock it. 3596 */ 3597 if (!folio_try_get(folio)) 3598 return 0; 3599 3600 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3601 folio_put(folio); 3602 return VM_FAULT_RETRY; 3603 } 3604 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3605 vma->vm_mm, vmf->address & PAGE_MASK, 3606 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3607 mmu_notifier_invalidate_range_start(&range); 3608 3609 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3610 &vmf->ptl); 3611 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3612 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3613 3614 if (vmf->pte) 3615 pte_unmap_unlock(vmf->pte, vmf->ptl); 3616 folio_unlock(folio); 3617 folio_put(folio); 3618 3619 mmu_notifier_invalidate_range_end(&range); 3620 return 0; 3621 } 3622 3623 static inline bool should_try_to_free_swap(struct folio *folio, 3624 struct vm_area_struct *vma, 3625 unsigned int fault_flags) 3626 { 3627 if (!folio_test_swapcache(folio)) 3628 return false; 3629 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3630 folio_test_mlocked(folio)) 3631 return true; 3632 /* 3633 * If we want to map a page that's in the swapcache writable, we 3634 * have to detect via the refcount if we're really the exclusive 3635 * user. Try freeing the swapcache to get rid of the swapcache 3636 * reference only in case it's likely that we'll be the exlusive user. 3637 */ 3638 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3639 folio_ref_count(folio) == 2; 3640 } 3641 3642 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3643 { 3644 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3645 vmf->address, &vmf->ptl); 3646 if (!vmf->pte) 3647 return 0; 3648 /* 3649 * Be careful so that we will only recover a special uffd-wp pte into a 3650 * none pte. Otherwise it means the pte could have changed, so retry. 3651 * 3652 * This should also cover the case where e.g. the pte changed 3653 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3654 * So is_pte_marker() check is not enough to safely drop the pte. 3655 */ 3656 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3657 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3658 pte_unmap_unlock(vmf->pte, vmf->ptl); 3659 return 0; 3660 } 3661 3662 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3663 { 3664 if (vma_is_anonymous(vmf->vma)) 3665 return do_anonymous_page(vmf); 3666 else 3667 return do_fault(vmf); 3668 } 3669 3670 /* 3671 * This is actually a page-missing access, but with uffd-wp special pte 3672 * installed. It means this pte was wr-protected before being unmapped. 3673 */ 3674 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3675 { 3676 /* 3677 * Just in case there're leftover special ptes even after the region 3678 * got unregistered - we can simply clear them. 3679 */ 3680 if (unlikely(!userfaultfd_wp(vmf->vma))) 3681 return pte_marker_clear(vmf); 3682 3683 return do_pte_missing(vmf); 3684 } 3685 3686 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3687 { 3688 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3689 unsigned long marker = pte_marker_get(entry); 3690 3691 /* 3692 * PTE markers should never be empty. If anything weird happened, 3693 * the best thing to do is to kill the process along with its mm. 3694 */ 3695 if (WARN_ON_ONCE(!marker)) 3696 return VM_FAULT_SIGBUS; 3697 3698 /* Higher priority than uffd-wp when data corrupted */ 3699 if (marker & PTE_MARKER_SWAPIN_ERROR) 3700 return VM_FAULT_SIGBUS; 3701 3702 if (pte_marker_entry_uffd_wp(entry)) 3703 return pte_marker_handle_uffd_wp(vmf); 3704 3705 /* This is an unknown pte marker */ 3706 return VM_FAULT_SIGBUS; 3707 } 3708 3709 /* 3710 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3711 * but allow concurrent faults), and pte mapped but not yet locked. 3712 * We return with pte unmapped and unlocked. 3713 * 3714 * We return with the mmap_lock locked or unlocked in the same cases 3715 * as does filemap_fault(). 3716 */ 3717 vm_fault_t do_swap_page(struct vm_fault *vmf) 3718 { 3719 struct vm_area_struct *vma = vmf->vma; 3720 struct folio *swapcache, *folio = NULL; 3721 struct page *page; 3722 struct swap_info_struct *si = NULL; 3723 rmap_t rmap_flags = RMAP_NONE; 3724 bool exclusive = false; 3725 swp_entry_t entry; 3726 pte_t pte; 3727 int locked; 3728 vm_fault_t ret = 0; 3729 void *shadow = NULL; 3730 3731 if (!pte_unmap_same(vmf)) 3732 goto out; 3733 3734 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3735 ret = VM_FAULT_RETRY; 3736 goto out; 3737 } 3738 3739 entry = pte_to_swp_entry(vmf->orig_pte); 3740 if (unlikely(non_swap_entry(entry))) { 3741 if (is_migration_entry(entry)) { 3742 migration_entry_wait(vma->vm_mm, vmf->pmd, 3743 vmf->address); 3744 } else if (is_device_exclusive_entry(entry)) { 3745 vmf->page = pfn_swap_entry_to_page(entry); 3746 ret = remove_device_exclusive_entry(vmf); 3747 } else if (is_device_private_entry(entry)) { 3748 vmf->page = pfn_swap_entry_to_page(entry); 3749 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3750 vmf->address, &vmf->ptl); 3751 if (unlikely(!vmf->pte || 3752 !pte_same(ptep_get(vmf->pte), 3753 vmf->orig_pte))) 3754 goto unlock; 3755 3756 /* 3757 * Get a page reference while we know the page can't be 3758 * freed. 3759 */ 3760 get_page(vmf->page); 3761 pte_unmap_unlock(vmf->pte, vmf->ptl); 3762 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3763 put_page(vmf->page); 3764 } else if (is_hwpoison_entry(entry)) { 3765 ret = VM_FAULT_HWPOISON; 3766 } else if (is_pte_marker_entry(entry)) { 3767 ret = handle_pte_marker(vmf); 3768 } else { 3769 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3770 ret = VM_FAULT_SIGBUS; 3771 } 3772 goto out; 3773 } 3774 3775 /* Prevent swapoff from happening to us. */ 3776 si = get_swap_device(entry); 3777 if (unlikely(!si)) 3778 goto out; 3779 3780 folio = swap_cache_get_folio(entry, vma, vmf->address); 3781 if (folio) 3782 page = folio_file_page(folio, swp_offset(entry)); 3783 swapcache = folio; 3784 3785 if (!folio) { 3786 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3787 __swap_count(entry) == 1) { 3788 /* skip swapcache */ 3789 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3790 vma, vmf->address, false); 3791 page = &folio->page; 3792 if (folio) { 3793 __folio_set_locked(folio); 3794 __folio_set_swapbacked(folio); 3795 3796 if (mem_cgroup_swapin_charge_folio(folio, 3797 vma->vm_mm, GFP_KERNEL, 3798 entry)) { 3799 ret = VM_FAULT_OOM; 3800 goto out_page; 3801 } 3802 mem_cgroup_swapin_uncharge_swap(entry); 3803 3804 shadow = get_shadow_from_swap_cache(entry); 3805 if (shadow) 3806 workingset_refault(folio, shadow); 3807 3808 folio_add_lru(folio); 3809 3810 /* To provide entry to swap_readpage() */ 3811 folio_set_swap_entry(folio, entry); 3812 swap_readpage(page, true, NULL); 3813 folio->private = NULL; 3814 } 3815 } else { 3816 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3817 vmf); 3818 if (page) 3819 folio = page_folio(page); 3820 swapcache = folio; 3821 } 3822 3823 if (!folio) { 3824 /* 3825 * Back out if somebody else faulted in this pte 3826 * while we released the pte lock. 3827 */ 3828 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3829 vmf->address, &vmf->ptl); 3830 if (likely(vmf->pte && 3831 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3832 ret = VM_FAULT_OOM; 3833 goto unlock; 3834 } 3835 3836 /* Had to read the page from swap area: Major fault */ 3837 ret = VM_FAULT_MAJOR; 3838 count_vm_event(PGMAJFAULT); 3839 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3840 } else if (PageHWPoison(page)) { 3841 /* 3842 * hwpoisoned dirty swapcache pages are kept for killing 3843 * owner processes (which may be unknown at hwpoison time) 3844 */ 3845 ret = VM_FAULT_HWPOISON; 3846 goto out_release; 3847 } 3848 3849 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3850 3851 if (!locked) { 3852 ret |= VM_FAULT_RETRY; 3853 goto out_release; 3854 } 3855 3856 if (swapcache) { 3857 /* 3858 * Make sure folio_free_swap() or swapoff did not release the 3859 * swapcache from under us. The page pin, and pte_same test 3860 * below, are not enough to exclude that. Even if it is still 3861 * swapcache, we need to check that the page's swap has not 3862 * changed. 3863 */ 3864 if (unlikely(!folio_test_swapcache(folio) || 3865 page_private(page) != entry.val)) 3866 goto out_page; 3867 3868 /* 3869 * KSM sometimes has to copy on read faults, for example, if 3870 * page->index of !PageKSM() pages would be nonlinear inside the 3871 * anon VMA -- PageKSM() is lost on actual swapout. 3872 */ 3873 page = ksm_might_need_to_copy(page, vma, vmf->address); 3874 if (unlikely(!page)) { 3875 ret = VM_FAULT_OOM; 3876 goto out_page; 3877 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3878 ret = VM_FAULT_HWPOISON; 3879 goto out_page; 3880 } 3881 folio = page_folio(page); 3882 3883 /* 3884 * If we want to map a page that's in the swapcache writable, we 3885 * have to detect via the refcount if we're really the exclusive 3886 * owner. Try removing the extra reference from the local LRU 3887 * caches if required. 3888 */ 3889 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3890 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3891 lru_add_drain(); 3892 } 3893 3894 folio_throttle_swaprate(folio, GFP_KERNEL); 3895 3896 /* 3897 * Back out if somebody else already faulted in this pte. 3898 */ 3899 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3900 &vmf->ptl); 3901 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3902 goto out_nomap; 3903 3904 if (unlikely(!folio_test_uptodate(folio))) { 3905 ret = VM_FAULT_SIGBUS; 3906 goto out_nomap; 3907 } 3908 3909 /* 3910 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3911 * must never point at an anonymous page in the swapcache that is 3912 * PG_anon_exclusive. Sanity check that this holds and especially, that 3913 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3914 * check after taking the PT lock and making sure that nobody 3915 * concurrently faulted in this page and set PG_anon_exclusive. 3916 */ 3917 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3918 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3919 3920 /* 3921 * Check under PT lock (to protect against concurrent fork() sharing 3922 * the swap entry concurrently) for certainly exclusive pages. 3923 */ 3924 if (!folio_test_ksm(folio)) { 3925 exclusive = pte_swp_exclusive(vmf->orig_pte); 3926 if (folio != swapcache) { 3927 /* 3928 * We have a fresh page that is not exposed to the 3929 * swapcache -> certainly exclusive. 3930 */ 3931 exclusive = true; 3932 } else if (exclusive && folio_test_writeback(folio) && 3933 data_race(si->flags & SWP_STABLE_WRITES)) { 3934 /* 3935 * This is tricky: not all swap backends support 3936 * concurrent page modifications while under writeback. 3937 * 3938 * So if we stumble over such a page in the swapcache 3939 * we must not set the page exclusive, otherwise we can 3940 * map it writable without further checks and modify it 3941 * while still under writeback. 3942 * 3943 * For these problematic swap backends, simply drop the 3944 * exclusive marker: this is perfectly fine as we start 3945 * writeback only if we fully unmapped the page and 3946 * there are no unexpected references on the page after 3947 * unmapping succeeded. After fully unmapped, no 3948 * further GUP references (FOLL_GET and FOLL_PIN) can 3949 * appear, so dropping the exclusive marker and mapping 3950 * it only R/O is fine. 3951 */ 3952 exclusive = false; 3953 } 3954 } 3955 3956 /* 3957 * Some architectures may have to restore extra metadata to the page 3958 * when reading from swap. This metadata may be indexed by swap entry 3959 * so this must be called before swap_free(). 3960 */ 3961 arch_swap_restore(entry, folio); 3962 3963 /* 3964 * Remove the swap entry and conditionally try to free up the swapcache. 3965 * We're already holding a reference on the page but haven't mapped it 3966 * yet. 3967 */ 3968 swap_free(entry); 3969 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3970 folio_free_swap(folio); 3971 3972 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3973 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3974 pte = mk_pte(page, vma->vm_page_prot); 3975 3976 /* 3977 * Same logic as in do_wp_page(); however, optimize for pages that are 3978 * certainly not shared either because we just allocated them without 3979 * exposing them to the swapcache or because the swap entry indicates 3980 * exclusivity. 3981 */ 3982 if (!folio_test_ksm(folio) && 3983 (exclusive || folio_ref_count(folio) == 1)) { 3984 if (vmf->flags & FAULT_FLAG_WRITE) { 3985 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3986 vmf->flags &= ~FAULT_FLAG_WRITE; 3987 } 3988 rmap_flags |= RMAP_EXCLUSIVE; 3989 } 3990 flush_icache_page(vma, page); 3991 if (pte_swp_soft_dirty(vmf->orig_pte)) 3992 pte = pte_mksoft_dirty(pte); 3993 if (pte_swp_uffd_wp(vmf->orig_pte)) 3994 pte = pte_mkuffd_wp(pte); 3995 vmf->orig_pte = pte; 3996 3997 /* ksm created a completely new copy */ 3998 if (unlikely(folio != swapcache && swapcache)) { 3999 page_add_new_anon_rmap(page, vma, vmf->address); 4000 folio_add_lru_vma(folio, vma); 4001 } else { 4002 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4003 } 4004 4005 VM_BUG_ON(!folio_test_anon(folio) || 4006 (pte_write(pte) && !PageAnonExclusive(page))); 4007 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4008 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4009 4010 folio_unlock(folio); 4011 if (folio != swapcache && swapcache) { 4012 /* 4013 * Hold the lock to avoid the swap entry to be reused 4014 * until we take the PT lock for the pte_same() check 4015 * (to avoid false positives from pte_same). For 4016 * further safety release the lock after the swap_free 4017 * so that the swap count won't change under a 4018 * parallel locked swapcache. 4019 */ 4020 folio_unlock(swapcache); 4021 folio_put(swapcache); 4022 } 4023 4024 if (vmf->flags & FAULT_FLAG_WRITE) { 4025 ret |= do_wp_page(vmf); 4026 if (ret & VM_FAULT_ERROR) 4027 ret &= VM_FAULT_ERROR; 4028 goto out; 4029 } 4030 4031 /* No need to invalidate - it was non-present before */ 4032 update_mmu_cache(vma, vmf->address, vmf->pte); 4033 unlock: 4034 if (vmf->pte) 4035 pte_unmap_unlock(vmf->pte, vmf->ptl); 4036 out: 4037 if (si) 4038 put_swap_device(si); 4039 return ret; 4040 out_nomap: 4041 if (vmf->pte) 4042 pte_unmap_unlock(vmf->pte, vmf->ptl); 4043 out_page: 4044 folio_unlock(folio); 4045 out_release: 4046 folio_put(folio); 4047 if (folio != swapcache && swapcache) { 4048 folio_unlock(swapcache); 4049 folio_put(swapcache); 4050 } 4051 if (si) 4052 put_swap_device(si); 4053 return ret; 4054 } 4055 4056 /* 4057 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4058 * but allow concurrent faults), and pte mapped but not yet locked. 4059 * We return with mmap_lock still held, but pte unmapped and unlocked. 4060 */ 4061 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4062 { 4063 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4064 struct vm_area_struct *vma = vmf->vma; 4065 struct folio *folio; 4066 vm_fault_t ret = 0; 4067 pte_t entry; 4068 4069 /* File mapping without ->vm_ops ? */ 4070 if (vma->vm_flags & VM_SHARED) 4071 return VM_FAULT_SIGBUS; 4072 4073 /* 4074 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4075 * be distinguished from a transient failure of pte_offset_map(). 4076 */ 4077 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4078 return VM_FAULT_OOM; 4079 4080 /* Use the zero-page for reads */ 4081 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4082 !mm_forbids_zeropage(vma->vm_mm)) { 4083 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4084 vma->vm_page_prot)); 4085 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4086 vmf->address, &vmf->ptl); 4087 if (!vmf->pte) 4088 goto unlock; 4089 if (vmf_pte_changed(vmf)) { 4090 update_mmu_tlb(vma, vmf->address, vmf->pte); 4091 goto unlock; 4092 } 4093 ret = check_stable_address_space(vma->vm_mm); 4094 if (ret) 4095 goto unlock; 4096 /* Deliver the page fault to userland, check inside PT lock */ 4097 if (userfaultfd_missing(vma)) { 4098 pte_unmap_unlock(vmf->pte, vmf->ptl); 4099 return handle_userfault(vmf, VM_UFFD_MISSING); 4100 } 4101 goto setpte; 4102 } 4103 4104 /* Allocate our own private page. */ 4105 if (unlikely(anon_vma_prepare(vma))) 4106 goto oom; 4107 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4108 if (!folio) 4109 goto oom; 4110 4111 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4112 goto oom_free_page; 4113 folio_throttle_swaprate(folio, GFP_KERNEL); 4114 4115 /* 4116 * The memory barrier inside __folio_mark_uptodate makes sure that 4117 * preceding stores to the page contents become visible before 4118 * the set_pte_at() write. 4119 */ 4120 __folio_mark_uptodate(folio); 4121 4122 entry = mk_pte(&folio->page, vma->vm_page_prot); 4123 entry = pte_sw_mkyoung(entry); 4124 if (vma->vm_flags & VM_WRITE) 4125 entry = pte_mkwrite(pte_mkdirty(entry)); 4126 4127 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4128 &vmf->ptl); 4129 if (!vmf->pte) 4130 goto release; 4131 if (vmf_pte_changed(vmf)) { 4132 update_mmu_tlb(vma, vmf->address, vmf->pte); 4133 goto release; 4134 } 4135 4136 ret = check_stable_address_space(vma->vm_mm); 4137 if (ret) 4138 goto release; 4139 4140 /* Deliver the page fault to userland, check inside PT lock */ 4141 if (userfaultfd_missing(vma)) { 4142 pte_unmap_unlock(vmf->pte, vmf->ptl); 4143 folio_put(folio); 4144 return handle_userfault(vmf, VM_UFFD_MISSING); 4145 } 4146 4147 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4148 folio_add_new_anon_rmap(folio, vma, vmf->address); 4149 folio_add_lru_vma(folio, vma); 4150 setpte: 4151 if (uffd_wp) 4152 entry = pte_mkuffd_wp(entry); 4153 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4154 4155 /* No need to invalidate - it was non-present before */ 4156 update_mmu_cache(vma, vmf->address, vmf->pte); 4157 unlock: 4158 if (vmf->pte) 4159 pte_unmap_unlock(vmf->pte, vmf->ptl); 4160 return ret; 4161 release: 4162 folio_put(folio); 4163 goto unlock; 4164 oom_free_page: 4165 folio_put(folio); 4166 oom: 4167 return VM_FAULT_OOM; 4168 } 4169 4170 /* 4171 * The mmap_lock must have been held on entry, and may have been 4172 * released depending on flags and vma->vm_ops->fault() return value. 4173 * See filemap_fault() and __lock_page_retry(). 4174 */ 4175 static vm_fault_t __do_fault(struct vm_fault *vmf) 4176 { 4177 struct vm_area_struct *vma = vmf->vma; 4178 vm_fault_t ret; 4179 4180 /* 4181 * Preallocate pte before we take page_lock because this might lead to 4182 * deadlocks for memcg reclaim which waits for pages under writeback: 4183 * lock_page(A) 4184 * SetPageWriteback(A) 4185 * unlock_page(A) 4186 * lock_page(B) 4187 * lock_page(B) 4188 * pte_alloc_one 4189 * shrink_page_list 4190 * wait_on_page_writeback(A) 4191 * SetPageWriteback(B) 4192 * unlock_page(B) 4193 * # flush A, B to clear the writeback 4194 */ 4195 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4196 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4197 if (!vmf->prealloc_pte) 4198 return VM_FAULT_OOM; 4199 } 4200 4201 ret = vma->vm_ops->fault(vmf); 4202 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4203 VM_FAULT_DONE_COW))) 4204 return ret; 4205 4206 if (unlikely(PageHWPoison(vmf->page))) { 4207 struct page *page = vmf->page; 4208 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4209 if (ret & VM_FAULT_LOCKED) { 4210 if (page_mapped(page)) 4211 unmap_mapping_pages(page_mapping(page), 4212 page->index, 1, false); 4213 /* Retry if a clean page was removed from the cache. */ 4214 if (invalidate_inode_page(page)) 4215 poisonret = VM_FAULT_NOPAGE; 4216 unlock_page(page); 4217 } 4218 put_page(page); 4219 vmf->page = NULL; 4220 return poisonret; 4221 } 4222 4223 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4224 lock_page(vmf->page); 4225 else 4226 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4227 4228 return ret; 4229 } 4230 4231 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4232 static void deposit_prealloc_pte(struct vm_fault *vmf) 4233 { 4234 struct vm_area_struct *vma = vmf->vma; 4235 4236 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4237 /* 4238 * We are going to consume the prealloc table, 4239 * count that as nr_ptes. 4240 */ 4241 mm_inc_nr_ptes(vma->vm_mm); 4242 vmf->prealloc_pte = NULL; 4243 } 4244 4245 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4246 { 4247 struct vm_area_struct *vma = vmf->vma; 4248 bool write = vmf->flags & FAULT_FLAG_WRITE; 4249 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4250 pmd_t entry; 4251 int i; 4252 vm_fault_t ret = VM_FAULT_FALLBACK; 4253 4254 if (!transhuge_vma_suitable(vma, haddr)) 4255 return ret; 4256 4257 page = compound_head(page); 4258 if (compound_order(page) != HPAGE_PMD_ORDER) 4259 return ret; 4260 4261 /* 4262 * Just backoff if any subpage of a THP is corrupted otherwise 4263 * the corrupted page may mapped by PMD silently to escape the 4264 * check. This kind of THP just can be PTE mapped. Access to 4265 * the corrupted subpage should trigger SIGBUS as expected. 4266 */ 4267 if (unlikely(PageHasHWPoisoned(page))) 4268 return ret; 4269 4270 /* 4271 * Archs like ppc64 need additional space to store information 4272 * related to pte entry. Use the preallocated table for that. 4273 */ 4274 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4275 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4276 if (!vmf->prealloc_pte) 4277 return VM_FAULT_OOM; 4278 } 4279 4280 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4281 if (unlikely(!pmd_none(*vmf->pmd))) 4282 goto out; 4283 4284 for (i = 0; i < HPAGE_PMD_NR; i++) 4285 flush_icache_page(vma, page + i); 4286 4287 entry = mk_huge_pmd(page, vma->vm_page_prot); 4288 if (write) 4289 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4290 4291 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4292 page_add_file_rmap(page, vma, true); 4293 4294 /* 4295 * deposit and withdraw with pmd lock held 4296 */ 4297 if (arch_needs_pgtable_deposit()) 4298 deposit_prealloc_pte(vmf); 4299 4300 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4301 4302 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4303 4304 /* fault is handled */ 4305 ret = 0; 4306 count_vm_event(THP_FILE_MAPPED); 4307 out: 4308 spin_unlock(vmf->ptl); 4309 return ret; 4310 } 4311 #else 4312 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4313 { 4314 return VM_FAULT_FALLBACK; 4315 } 4316 #endif 4317 4318 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4319 { 4320 struct vm_area_struct *vma = vmf->vma; 4321 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4322 bool write = vmf->flags & FAULT_FLAG_WRITE; 4323 bool prefault = vmf->address != addr; 4324 pte_t entry; 4325 4326 flush_icache_page(vma, page); 4327 entry = mk_pte(page, vma->vm_page_prot); 4328 4329 if (prefault && arch_wants_old_prefaulted_pte()) 4330 entry = pte_mkold(entry); 4331 else 4332 entry = pte_sw_mkyoung(entry); 4333 4334 if (write) 4335 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4336 if (unlikely(uffd_wp)) 4337 entry = pte_mkuffd_wp(entry); 4338 /* copy-on-write page */ 4339 if (write && !(vma->vm_flags & VM_SHARED)) { 4340 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4341 page_add_new_anon_rmap(page, vma, addr); 4342 lru_cache_add_inactive_or_unevictable(page, vma); 4343 } else { 4344 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4345 page_add_file_rmap(page, vma, false); 4346 } 4347 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4348 } 4349 4350 static bool vmf_pte_changed(struct vm_fault *vmf) 4351 { 4352 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4353 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4354 4355 return !pte_none(ptep_get(vmf->pte)); 4356 } 4357 4358 /** 4359 * finish_fault - finish page fault once we have prepared the page to fault 4360 * 4361 * @vmf: structure describing the fault 4362 * 4363 * This function handles all that is needed to finish a page fault once the 4364 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4365 * given page, adds reverse page mapping, handles memcg charges and LRU 4366 * addition. 4367 * 4368 * The function expects the page to be locked and on success it consumes a 4369 * reference of a page being mapped (for the PTE which maps it). 4370 * 4371 * Return: %0 on success, %VM_FAULT_ code in case of error. 4372 */ 4373 vm_fault_t finish_fault(struct vm_fault *vmf) 4374 { 4375 struct vm_area_struct *vma = vmf->vma; 4376 struct page *page; 4377 vm_fault_t ret; 4378 4379 /* Did we COW the page? */ 4380 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4381 page = vmf->cow_page; 4382 else 4383 page = vmf->page; 4384 4385 /* 4386 * check even for read faults because we might have lost our CoWed 4387 * page 4388 */ 4389 if (!(vma->vm_flags & VM_SHARED)) { 4390 ret = check_stable_address_space(vma->vm_mm); 4391 if (ret) 4392 return ret; 4393 } 4394 4395 if (pmd_none(*vmf->pmd)) { 4396 if (PageTransCompound(page)) { 4397 ret = do_set_pmd(vmf, page); 4398 if (ret != VM_FAULT_FALLBACK) 4399 return ret; 4400 } 4401 4402 if (vmf->prealloc_pte) 4403 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4404 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4405 return VM_FAULT_OOM; 4406 } 4407 4408 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4409 vmf->address, &vmf->ptl); 4410 if (!vmf->pte) 4411 return VM_FAULT_NOPAGE; 4412 4413 /* Re-check under ptl */ 4414 if (likely(!vmf_pte_changed(vmf))) { 4415 do_set_pte(vmf, page, vmf->address); 4416 4417 /* no need to invalidate: a not-present page won't be cached */ 4418 update_mmu_cache(vma, vmf->address, vmf->pte); 4419 4420 ret = 0; 4421 } else { 4422 update_mmu_tlb(vma, vmf->address, vmf->pte); 4423 ret = VM_FAULT_NOPAGE; 4424 } 4425 4426 pte_unmap_unlock(vmf->pte, vmf->ptl); 4427 return ret; 4428 } 4429 4430 static unsigned long fault_around_pages __read_mostly = 4431 65536 >> PAGE_SHIFT; 4432 4433 #ifdef CONFIG_DEBUG_FS 4434 static int fault_around_bytes_get(void *data, u64 *val) 4435 { 4436 *val = fault_around_pages << PAGE_SHIFT; 4437 return 0; 4438 } 4439 4440 /* 4441 * fault_around_bytes must be rounded down to the nearest page order as it's 4442 * what do_fault_around() expects to see. 4443 */ 4444 static int fault_around_bytes_set(void *data, u64 val) 4445 { 4446 if (val / PAGE_SIZE > PTRS_PER_PTE) 4447 return -EINVAL; 4448 4449 /* 4450 * The minimum value is 1 page, however this results in no fault-around 4451 * at all. See should_fault_around(). 4452 */ 4453 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4454 4455 return 0; 4456 } 4457 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4458 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4459 4460 static int __init fault_around_debugfs(void) 4461 { 4462 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4463 &fault_around_bytes_fops); 4464 return 0; 4465 } 4466 late_initcall(fault_around_debugfs); 4467 #endif 4468 4469 /* 4470 * do_fault_around() tries to map few pages around the fault address. The hope 4471 * is that the pages will be needed soon and this will lower the number of 4472 * faults to handle. 4473 * 4474 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4475 * not ready to be mapped: not up-to-date, locked, etc. 4476 * 4477 * This function doesn't cross VMA or page table boundaries, in order to call 4478 * map_pages() and acquire a PTE lock only once. 4479 * 4480 * fault_around_pages defines how many pages we'll try to map. 4481 * do_fault_around() expects it to be set to a power of two less than or equal 4482 * to PTRS_PER_PTE. 4483 * 4484 * The virtual address of the area that we map is naturally aligned to 4485 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4486 * (and therefore to page order). This way it's easier to guarantee 4487 * that we don't cross page table boundaries. 4488 */ 4489 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4490 { 4491 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4492 pgoff_t pte_off = pte_index(vmf->address); 4493 /* The page offset of vmf->address within the VMA. */ 4494 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4495 pgoff_t from_pte, to_pte; 4496 vm_fault_t ret; 4497 4498 /* The PTE offset of the start address, clamped to the VMA. */ 4499 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4500 pte_off - min(pte_off, vma_off)); 4501 4502 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4503 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4504 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4505 4506 if (pmd_none(*vmf->pmd)) { 4507 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4508 if (!vmf->prealloc_pte) 4509 return VM_FAULT_OOM; 4510 } 4511 4512 rcu_read_lock(); 4513 ret = vmf->vma->vm_ops->map_pages(vmf, 4514 vmf->pgoff + from_pte - pte_off, 4515 vmf->pgoff + to_pte - pte_off); 4516 rcu_read_unlock(); 4517 4518 return ret; 4519 } 4520 4521 /* Return true if we should do read fault-around, false otherwise */ 4522 static inline bool should_fault_around(struct vm_fault *vmf) 4523 { 4524 /* No ->map_pages? No way to fault around... */ 4525 if (!vmf->vma->vm_ops->map_pages) 4526 return false; 4527 4528 if (uffd_disable_fault_around(vmf->vma)) 4529 return false; 4530 4531 /* A single page implies no faulting 'around' at all. */ 4532 return fault_around_pages > 1; 4533 } 4534 4535 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4536 { 4537 vm_fault_t ret = 0; 4538 4539 /* 4540 * Let's call ->map_pages() first and use ->fault() as fallback 4541 * if page by the offset is not ready to be mapped (cold cache or 4542 * something). 4543 */ 4544 if (should_fault_around(vmf)) { 4545 ret = do_fault_around(vmf); 4546 if (ret) 4547 return ret; 4548 } 4549 4550 ret = __do_fault(vmf); 4551 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4552 return ret; 4553 4554 ret |= finish_fault(vmf); 4555 unlock_page(vmf->page); 4556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4557 put_page(vmf->page); 4558 return ret; 4559 } 4560 4561 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4562 { 4563 struct vm_area_struct *vma = vmf->vma; 4564 vm_fault_t ret; 4565 4566 if (unlikely(anon_vma_prepare(vma))) 4567 return VM_FAULT_OOM; 4568 4569 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4570 if (!vmf->cow_page) 4571 return VM_FAULT_OOM; 4572 4573 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4574 GFP_KERNEL)) { 4575 put_page(vmf->cow_page); 4576 return VM_FAULT_OOM; 4577 } 4578 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4579 4580 ret = __do_fault(vmf); 4581 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4582 goto uncharge_out; 4583 if (ret & VM_FAULT_DONE_COW) 4584 return ret; 4585 4586 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4587 __SetPageUptodate(vmf->cow_page); 4588 4589 ret |= finish_fault(vmf); 4590 unlock_page(vmf->page); 4591 put_page(vmf->page); 4592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4593 goto uncharge_out; 4594 return ret; 4595 uncharge_out: 4596 put_page(vmf->cow_page); 4597 return ret; 4598 } 4599 4600 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4601 { 4602 struct vm_area_struct *vma = vmf->vma; 4603 vm_fault_t ret, tmp; 4604 4605 ret = __do_fault(vmf); 4606 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4607 return ret; 4608 4609 /* 4610 * Check if the backing address space wants to know that the page is 4611 * about to become writable 4612 */ 4613 if (vma->vm_ops->page_mkwrite) { 4614 unlock_page(vmf->page); 4615 tmp = do_page_mkwrite(vmf); 4616 if (unlikely(!tmp || 4617 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4618 put_page(vmf->page); 4619 return tmp; 4620 } 4621 } 4622 4623 ret |= finish_fault(vmf); 4624 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4625 VM_FAULT_RETRY))) { 4626 unlock_page(vmf->page); 4627 put_page(vmf->page); 4628 return ret; 4629 } 4630 4631 ret |= fault_dirty_shared_page(vmf); 4632 return ret; 4633 } 4634 4635 /* 4636 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4637 * but allow concurrent faults). 4638 * The mmap_lock may have been released depending on flags and our 4639 * return value. See filemap_fault() and __folio_lock_or_retry(). 4640 * If mmap_lock is released, vma may become invalid (for example 4641 * by other thread calling munmap()). 4642 */ 4643 static vm_fault_t do_fault(struct vm_fault *vmf) 4644 { 4645 struct vm_area_struct *vma = vmf->vma; 4646 struct mm_struct *vm_mm = vma->vm_mm; 4647 vm_fault_t ret; 4648 4649 /* 4650 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4651 */ 4652 if (!vma->vm_ops->fault) { 4653 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4654 vmf->address, &vmf->ptl); 4655 if (unlikely(!vmf->pte)) 4656 ret = VM_FAULT_SIGBUS; 4657 else { 4658 /* 4659 * Make sure this is not a temporary clearing of pte 4660 * by holding ptl and checking again. A R/M/W update 4661 * of pte involves: take ptl, clearing the pte so that 4662 * we don't have concurrent modification by hardware 4663 * followed by an update. 4664 */ 4665 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4666 ret = VM_FAULT_SIGBUS; 4667 else 4668 ret = VM_FAULT_NOPAGE; 4669 4670 pte_unmap_unlock(vmf->pte, vmf->ptl); 4671 } 4672 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4673 ret = do_read_fault(vmf); 4674 else if (!(vma->vm_flags & VM_SHARED)) 4675 ret = do_cow_fault(vmf); 4676 else 4677 ret = do_shared_fault(vmf); 4678 4679 /* preallocated pagetable is unused: free it */ 4680 if (vmf->prealloc_pte) { 4681 pte_free(vm_mm, vmf->prealloc_pte); 4682 vmf->prealloc_pte = NULL; 4683 } 4684 return ret; 4685 } 4686 4687 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4688 unsigned long addr, int page_nid, int *flags) 4689 { 4690 get_page(page); 4691 4692 /* Record the current PID acceesing VMA */ 4693 vma_set_access_pid_bit(vma); 4694 4695 count_vm_numa_event(NUMA_HINT_FAULTS); 4696 if (page_nid == numa_node_id()) { 4697 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4698 *flags |= TNF_FAULT_LOCAL; 4699 } 4700 4701 return mpol_misplaced(page, vma, addr); 4702 } 4703 4704 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4705 { 4706 struct vm_area_struct *vma = vmf->vma; 4707 struct page *page = NULL; 4708 int page_nid = NUMA_NO_NODE; 4709 bool writable = false; 4710 int last_cpupid; 4711 int target_nid; 4712 pte_t pte, old_pte; 4713 int flags = 0; 4714 4715 /* 4716 * The "pte" at this point cannot be used safely without 4717 * validation through pte_unmap_same(). It's of NUMA type but 4718 * the pfn may be screwed if the read is non atomic. 4719 */ 4720 spin_lock(vmf->ptl); 4721 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4722 pte_unmap_unlock(vmf->pte, vmf->ptl); 4723 goto out; 4724 } 4725 4726 /* Get the normal PTE */ 4727 old_pte = ptep_get(vmf->pte); 4728 pte = pte_modify(old_pte, vma->vm_page_prot); 4729 4730 /* 4731 * Detect now whether the PTE could be writable; this information 4732 * is only valid while holding the PT lock. 4733 */ 4734 writable = pte_write(pte); 4735 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4736 can_change_pte_writable(vma, vmf->address, pte)) 4737 writable = true; 4738 4739 page = vm_normal_page(vma, vmf->address, pte); 4740 if (!page || is_zone_device_page(page)) 4741 goto out_map; 4742 4743 /* TODO: handle PTE-mapped THP */ 4744 if (PageCompound(page)) 4745 goto out_map; 4746 4747 /* 4748 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4749 * much anyway since they can be in shared cache state. This misses 4750 * the case where a mapping is writable but the process never writes 4751 * to it but pte_write gets cleared during protection updates and 4752 * pte_dirty has unpredictable behaviour between PTE scan updates, 4753 * background writeback, dirty balancing and application behaviour. 4754 */ 4755 if (!writable) 4756 flags |= TNF_NO_GROUP; 4757 4758 /* 4759 * Flag if the page is shared between multiple address spaces. This 4760 * is later used when determining whether to group tasks together 4761 */ 4762 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4763 flags |= TNF_SHARED; 4764 4765 page_nid = page_to_nid(page); 4766 /* 4767 * For memory tiering mode, cpupid of slow memory page is used 4768 * to record page access time. So use default value. 4769 */ 4770 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4771 !node_is_toptier(page_nid)) 4772 last_cpupid = (-1 & LAST_CPUPID_MASK); 4773 else 4774 last_cpupid = page_cpupid_last(page); 4775 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4776 &flags); 4777 if (target_nid == NUMA_NO_NODE) { 4778 put_page(page); 4779 goto out_map; 4780 } 4781 pte_unmap_unlock(vmf->pte, vmf->ptl); 4782 writable = false; 4783 4784 /* Migrate to the requested node */ 4785 if (migrate_misplaced_page(page, vma, target_nid)) { 4786 page_nid = target_nid; 4787 flags |= TNF_MIGRATED; 4788 } else { 4789 flags |= TNF_MIGRATE_FAIL; 4790 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4791 vmf->address, &vmf->ptl); 4792 if (unlikely(!vmf->pte)) 4793 goto out; 4794 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4795 pte_unmap_unlock(vmf->pte, vmf->ptl); 4796 goto out; 4797 } 4798 goto out_map; 4799 } 4800 4801 out: 4802 if (page_nid != NUMA_NO_NODE) 4803 task_numa_fault(last_cpupid, page_nid, 1, flags); 4804 return 0; 4805 out_map: 4806 /* 4807 * Make it present again, depending on how arch implements 4808 * non-accessible ptes, some can allow access by kernel mode. 4809 */ 4810 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4811 pte = pte_modify(old_pte, vma->vm_page_prot); 4812 pte = pte_mkyoung(pte); 4813 if (writable) 4814 pte = pte_mkwrite(pte); 4815 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4816 update_mmu_cache(vma, vmf->address, vmf->pte); 4817 pte_unmap_unlock(vmf->pte, vmf->ptl); 4818 goto out; 4819 } 4820 4821 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4822 { 4823 if (vma_is_anonymous(vmf->vma)) 4824 return do_huge_pmd_anonymous_page(vmf); 4825 if (vmf->vma->vm_ops->huge_fault) 4826 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4827 return VM_FAULT_FALLBACK; 4828 } 4829 4830 /* `inline' is required to avoid gcc 4.1.2 build error */ 4831 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4832 { 4833 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4834 vm_fault_t ret; 4835 4836 if (vma_is_anonymous(vmf->vma)) { 4837 if (likely(!unshare) && 4838 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4839 return handle_userfault(vmf, VM_UFFD_WP); 4840 return do_huge_pmd_wp_page(vmf); 4841 } 4842 4843 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4844 if (vmf->vma->vm_ops->huge_fault) { 4845 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4846 if (!(ret & VM_FAULT_FALLBACK)) 4847 return ret; 4848 } 4849 } 4850 4851 /* COW or write-notify handled on pte level: split pmd. */ 4852 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4853 4854 return VM_FAULT_FALLBACK; 4855 } 4856 4857 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4858 { 4859 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4860 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4861 /* No support for anonymous transparent PUD pages yet */ 4862 if (vma_is_anonymous(vmf->vma)) 4863 return VM_FAULT_FALLBACK; 4864 if (vmf->vma->vm_ops->huge_fault) 4865 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4866 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4867 return VM_FAULT_FALLBACK; 4868 } 4869 4870 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4871 { 4872 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4873 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4874 vm_fault_t ret; 4875 4876 /* No support for anonymous transparent PUD pages yet */ 4877 if (vma_is_anonymous(vmf->vma)) 4878 goto split; 4879 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4880 if (vmf->vma->vm_ops->huge_fault) { 4881 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4882 if (!(ret & VM_FAULT_FALLBACK)) 4883 return ret; 4884 } 4885 } 4886 split: 4887 /* COW or write-notify not handled on PUD level: split pud.*/ 4888 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4889 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4890 return VM_FAULT_FALLBACK; 4891 } 4892 4893 /* 4894 * These routines also need to handle stuff like marking pages dirty 4895 * and/or accessed for architectures that don't do it in hardware (most 4896 * RISC architectures). The early dirtying is also good on the i386. 4897 * 4898 * There is also a hook called "update_mmu_cache()" that architectures 4899 * with external mmu caches can use to update those (ie the Sparc or 4900 * PowerPC hashed page tables that act as extended TLBs). 4901 * 4902 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4903 * concurrent faults). 4904 * 4905 * The mmap_lock may have been released depending on flags and our return value. 4906 * See filemap_fault() and __folio_lock_or_retry(). 4907 */ 4908 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4909 { 4910 pte_t entry; 4911 4912 if (unlikely(pmd_none(*vmf->pmd))) { 4913 /* 4914 * Leave __pte_alloc() until later: because vm_ops->fault may 4915 * want to allocate huge page, and if we expose page table 4916 * for an instant, it will be difficult to retract from 4917 * concurrent faults and from rmap lookups. 4918 */ 4919 vmf->pte = NULL; 4920 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4921 } else { 4922 /* 4923 * A regular pmd is established and it can't morph into a huge 4924 * pmd by anon khugepaged, since that takes mmap_lock in write 4925 * mode; but shmem or file collapse to THP could still morph 4926 * it into a huge pmd: just retry later if so. 4927 */ 4928 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4929 vmf->address, &vmf->ptl); 4930 if (unlikely(!vmf->pte)) 4931 return 0; 4932 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4933 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4934 4935 if (pte_none(vmf->orig_pte)) { 4936 pte_unmap(vmf->pte); 4937 vmf->pte = NULL; 4938 } 4939 } 4940 4941 if (!vmf->pte) 4942 return do_pte_missing(vmf); 4943 4944 if (!pte_present(vmf->orig_pte)) 4945 return do_swap_page(vmf); 4946 4947 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4948 return do_numa_page(vmf); 4949 4950 spin_lock(vmf->ptl); 4951 entry = vmf->orig_pte; 4952 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 4953 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4954 goto unlock; 4955 } 4956 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4957 if (!pte_write(entry)) 4958 return do_wp_page(vmf); 4959 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4960 entry = pte_mkdirty(entry); 4961 } 4962 entry = pte_mkyoung(entry); 4963 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4964 vmf->flags & FAULT_FLAG_WRITE)) { 4965 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4966 } else { 4967 /* Skip spurious TLB flush for retried page fault */ 4968 if (vmf->flags & FAULT_FLAG_TRIED) 4969 goto unlock; 4970 /* 4971 * This is needed only for protection faults but the arch code 4972 * is not yet telling us if this is a protection fault or not. 4973 * This still avoids useless tlb flushes for .text page faults 4974 * with threads. 4975 */ 4976 if (vmf->flags & FAULT_FLAG_WRITE) 4977 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4978 vmf->pte); 4979 } 4980 unlock: 4981 pte_unmap_unlock(vmf->pte, vmf->ptl); 4982 return 0; 4983 } 4984 4985 /* 4986 * By the time we get here, we already hold the mm semaphore 4987 * 4988 * The mmap_lock may have been released depending on flags and our 4989 * return value. See filemap_fault() and __folio_lock_or_retry(). 4990 */ 4991 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4992 unsigned long address, unsigned int flags) 4993 { 4994 struct vm_fault vmf = { 4995 .vma = vma, 4996 .address = address & PAGE_MASK, 4997 .real_address = address, 4998 .flags = flags, 4999 .pgoff = linear_page_index(vma, address), 5000 .gfp_mask = __get_fault_gfp_mask(vma), 5001 }; 5002 struct mm_struct *mm = vma->vm_mm; 5003 unsigned long vm_flags = vma->vm_flags; 5004 pgd_t *pgd; 5005 p4d_t *p4d; 5006 vm_fault_t ret; 5007 5008 pgd = pgd_offset(mm, address); 5009 p4d = p4d_alloc(mm, pgd, address); 5010 if (!p4d) 5011 return VM_FAULT_OOM; 5012 5013 vmf.pud = pud_alloc(mm, p4d, address); 5014 if (!vmf.pud) 5015 return VM_FAULT_OOM; 5016 retry_pud: 5017 if (pud_none(*vmf.pud) && 5018 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5019 ret = create_huge_pud(&vmf); 5020 if (!(ret & VM_FAULT_FALLBACK)) 5021 return ret; 5022 } else { 5023 pud_t orig_pud = *vmf.pud; 5024 5025 barrier(); 5026 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5027 5028 /* 5029 * TODO once we support anonymous PUDs: NUMA case and 5030 * FAULT_FLAG_UNSHARE handling. 5031 */ 5032 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5033 ret = wp_huge_pud(&vmf, orig_pud); 5034 if (!(ret & VM_FAULT_FALLBACK)) 5035 return ret; 5036 } else { 5037 huge_pud_set_accessed(&vmf, orig_pud); 5038 return 0; 5039 } 5040 } 5041 } 5042 5043 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5044 if (!vmf.pmd) 5045 return VM_FAULT_OOM; 5046 5047 /* Huge pud page fault raced with pmd_alloc? */ 5048 if (pud_trans_unstable(vmf.pud)) 5049 goto retry_pud; 5050 5051 if (pmd_none(*vmf.pmd) && 5052 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5053 ret = create_huge_pmd(&vmf); 5054 if (!(ret & VM_FAULT_FALLBACK)) 5055 return ret; 5056 } else { 5057 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5058 5059 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5060 VM_BUG_ON(thp_migration_supported() && 5061 !is_pmd_migration_entry(vmf.orig_pmd)); 5062 if (is_pmd_migration_entry(vmf.orig_pmd)) 5063 pmd_migration_entry_wait(mm, vmf.pmd); 5064 return 0; 5065 } 5066 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5067 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5068 return do_huge_pmd_numa_page(&vmf); 5069 5070 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5071 !pmd_write(vmf.orig_pmd)) { 5072 ret = wp_huge_pmd(&vmf); 5073 if (!(ret & VM_FAULT_FALLBACK)) 5074 return ret; 5075 } else { 5076 huge_pmd_set_accessed(&vmf); 5077 return 0; 5078 } 5079 } 5080 } 5081 5082 return handle_pte_fault(&vmf); 5083 } 5084 5085 /** 5086 * mm_account_fault - Do page fault accounting 5087 * 5088 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5089 * of perf event counters, but we'll still do the per-task accounting to 5090 * the task who triggered this page fault. 5091 * @address: the faulted address. 5092 * @flags: the fault flags. 5093 * @ret: the fault retcode. 5094 * 5095 * This will take care of most of the page fault accounting. Meanwhile, it 5096 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5097 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5098 * still be in per-arch page fault handlers at the entry of page fault. 5099 */ 5100 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5101 unsigned long address, unsigned int flags, 5102 vm_fault_t ret) 5103 { 5104 bool major; 5105 5106 /* Incomplete faults will be accounted upon completion. */ 5107 if (ret & VM_FAULT_RETRY) 5108 return; 5109 5110 /* 5111 * To preserve the behavior of older kernels, PGFAULT counters record 5112 * both successful and failed faults, as opposed to perf counters, 5113 * which ignore failed cases. 5114 */ 5115 count_vm_event(PGFAULT); 5116 count_memcg_event_mm(mm, PGFAULT); 5117 5118 /* 5119 * Do not account for unsuccessful faults (e.g. when the address wasn't 5120 * valid). That includes arch_vma_access_permitted() failing before 5121 * reaching here. So this is not a "this many hardware page faults" 5122 * counter. We should use the hw profiling for that. 5123 */ 5124 if (ret & VM_FAULT_ERROR) 5125 return; 5126 5127 /* 5128 * We define the fault as a major fault when the final successful fault 5129 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5130 * handle it immediately previously). 5131 */ 5132 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5133 5134 if (major) 5135 current->maj_flt++; 5136 else 5137 current->min_flt++; 5138 5139 /* 5140 * If the fault is done for GUP, regs will be NULL. We only do the 5141 * accounting for the per thread fault counters who triggered the 5142 * fault, and we skip the perf event updates. 5143 */ 5144 if (!regs) 5145 return; 5146 5147 if (major) 5148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5149 else 5150 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5151 } 5152 5153 #ifdef CONFIG_LRU_GEN 5154 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5155 { 5156 /* the LRU algorithm only applies to accesses with recency */ 5157 current->in_lru_fault = vma_has_recency(vma); 5158 } 5159 5160 static void lru_gen_exit_fault(void) 5161 { 5162 current->in_lru_fault = false; 5163 } 5164 #else 5165 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5166 { 5167 } 5168 5169 static void lru_gen_exit_fault(void) 5170 { 5171 } 5172 #endif /* CONFIG_LRU_GEN */ 5173 5174 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5175 unsigned int *flags) 5176 { 5177 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5178 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5179 return VM_FAULT_SIGSEGV; 5180 /* 5181 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5182 * just treat it like an ordinary read-fault otherwise. 5183 */ 5184 if (!is_cow_mapping(vma->vm_flags)) 5185 *flags &= ~FAULT_FLAG_UNSHARE; 5186 } else if (*flags & FAULT_FLAG_WRITE) { 5187 /* Write faults on read-only mappings are impossible ... */ 5188 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5189 return VM_FAULT_SIGSEGV; 5190 /* ... and FOLL_FORCE only applies to COW mappings. */ 5191 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5192 !is_cow_mapping(vma->vm_flags))) 5193 return VM_FAULT_SIGSEGV; 5194 } 5195 return 0; 5196 } 5197 5198 /* 5199 * By the time we get here, we already hold the mm semaphore 5200 * 5201 * The mmap_lock may have been released depending on flags and our 5202 * return value. See filemap_fault() and __folio_lock_or_retry(). 5203 */ 5204 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5205 unsigned int flags, struct pt_regs *regs) 5206 { 5207 /* If the fault handler drops the mmap_lock, vma may be freed */ 5208 struct mm_struct *mm = vma->vm_mm; 5209 vm_fault_t ret; 5210 5211 __set_current_state(TASK_RUNNING); 5212 5213 ret = sanitize_fault_flags(vma, &flags); 5214 if (ret) 5215 goto out; 5216 5217 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5218 flags & FAULT_FLAG_INSTRUCTION, 5219 flags & FAULT_FLAG_REMOTE)) { 5220 ret = VM_FAULT_SIGSEGV; 5221 goto out; 5222 } 5223 5224 /* 5225 * Enable the memcg OOM handling for faults triggered in user 5226 * space. Kernel faults are handled more gracefully. 5227 */ 5228 if (flags & FAULT_FLAG_USER) 5229 mem_cgroup_enter_user_fault(); 5230 5231 lru_gen_enter_fault(vma); 5232 5233 if (unlikely(is_vm_hugetlb_page(vma))) 5234 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5235 else 5236 ret = __handle_mm_fault(vma, address, flags); 5237 5238 lru_gen_exit_fault(); 5239 5240 if (flags & FAULT_FLAG_USER) { 5241 mem_cgroup_exit_user_fault(); 5242 /* 5243 * The task may have entered a memcg OOM situation but 5244 * if the allocation error was handled gracefully (no 5245 * VM_FAULT_OOM), there is no need to kill anything. 5246 * Just clean up the OOM state peacefully. 5247 */ 5248 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5249 mem_cgroup_oom_synchronize(false); 5250 } 5251 out: 5252 mm_account_fault(mm, regs, address, flags, ret); 5253 5254 return ret; 5255 } 5256 EXPORT_SYMBOL_GPL(handle_mm_fault); 5257 5258 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5259 #include <linux/extable.h> 5260 5261 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5262 { 5263 /* Even if this succeeds, make it clear we *might* have slept */ 5264 if (likely(mmap_read_trylock(mm))) { 5265 might_sleep(); 5266 return true; 5267 } 5268 5269 if (regs && !user_mode(regs)) { 5270 unsigned long ip = instruction_pointer(regs); 5271 if (!search_exception_tables(ip)) 5272 return false; 5273 } 5274 5275 return !mmap_read_lock_killable(mm); 5276 } 5277 5278 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5279 { 5280 /* 5281 * We don't have this operation yet. 5282 * 5283 * It should be easy enough to do: it's basically a 5284 * atomic_long_try_cmpxchg_acquire() 5285 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5286 * it also needs the proper lockdep magic etc. 5287 */ 5288 return false; 5289 } 5290 5291 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5292 { 5293 mmap_read_unlock(mm); 5294 if (regs && !user_mode(regs)) { 5295 unsigned long ip = instruction_pointer(regs); 5296 if (!search_exception_tables(ip)) 5297 return false; 5298 } 5299 return !mmap_write_lock_killable(mm); 5300 } 5301 5302 /* 5303 * Helper for page fault handling. 5304 * 5305 * This is kind of equivalend to "mmap_read_lock()" followed 5306 * by "find_extend_vma()", except it's a lot more careful about 5307 * the locking (and will drop the lock on failure). 5308 * 5309 * For example, if we have a kernel bug that causes a page 5310 * fault, we don't want to just use mmap_read_lock() to get 5311 * the mm lock, because that would deadlock if the bug were 5312 * to happen while we're holding the mm lock for writing. 5313 * 5314 * So this checks the exception tables on kernel faults in 5315 * order to only do this all for instructions that are actually 5316 * expected to fault. 5317 * 5318 * We can also actually take the mm lock for writing if we 5319 * need to extend the vma, which helps the VM layer a lot. 5320 */ 5321 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5322 unsigned long addr, struct pt_regs *regs) 5323 { 5324 struct vm_area_struct *vma; 5325 5326 if (!get_mmap_lock_carefully(mm, regs)) 5327 return NULL; 5328 5329 vma = find_vma(mm, addr); 5330 if (likely(vma && (vma->vm_start <= addr))) 5331 return vma; 5332 5333 /* 5334 * Well, dang. We might still be successful, but only 5335 * if we can extend a vma to do so. 5336 */ 5337 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5338 mmap_read_unlock(mm); 5339 return NULL; 5340 } 5341 5342 /* 5343 * We can try to upgrade the mmap lock atomically, 5344 * in which case we can continue to use the vma 5345 * we already looked up. 5346 * 5347 * Otherwise we'll have to drop the mmap lock and 5348 * re-take it, and also look up the vma again, 5349 * re-checking it. 5350 */ 5351 if (!mmap_upgrade_trylock(mm)) { 5352 if (!upgrade_mmap_lock_carefully(mm, regs)) 5353 return NULL; 5354 5355 vma = find_vma(mm, addr); 5356 if (!vma) 5357 goto fail; 5358 if (vma->vm_start <= addr) 5359 goto success; 5360 if (!(vma->vm_flags & VM_GROWSDOWN)) 5361 goto fail; 5362 } 5363 5364 if (expand_stack_locked(vma, addr)) 5365 goto fail; 5366 5367 success: 5368 mmap_write_downgrade(mm); 5369 return vma; 5370 5371 fail: 5372 mmap_write_unlock(mm); 5373 return NULL; 5374 } 5375 #endif 5376 5377 #ifdef CONFIG_PER_VMA_LOCK 5378 /* 5379 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5380 * stable and not isolated. If the VMA is not found or is being modified the 5381 * function returns NULL. 5382 */ 5383 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5384 unsigned long address) 5385 { 5386 MA_STATE(mas, &mm->mm_mt, address, address); 5387 struct vm_area_struct *vma; 5388 5389 rcu_read_lock(); 5390 retry: 5391 vma = mas_walk(&mas); 5392 if (!vma) 5393 goto inval; 5394 5395 /* Only anonymous and tcp vmas are supported for now */ 5396 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma)) 5397 goto inval; 5398 5399 if (!vma_start_read(vma)) 5400 goto inval; 5401 5402 /* 5403 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5404 * This check must happen after vma_start_read(); otherwise, a 5405 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5406 * from its anon_vma. 5407 */ 5408 if (unlikely(!vma->anon_vma && !vma_is_tcp(vma))) 5409 goto inval_end_read; 5410 5411 /* 5412 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5413 * it for now and fall back to page fault handling under mmap_lock. 5414 */ 5415 if (userfaultfd_armed(vma)) 5416 goto inval_end_read; 5417 5418 /* Check since vm_start/vm_end might change before we lock the VMA */ 5419 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5420 goto inval_end_read; 5421 5422 /* Check if the VMA got isolated after we found it */ 5423 if (vma->detached) { 5424 vma_end_read(vma); 5425 count_vm_vma_lock_event(VMA_LOCK_MISS); 5426 /* The area was replaced with another one */ 5427 goto retry; 5428 } 5429 5430 rcu_read_unlock(); 5431 return vma; 5432 5433 inval_end_read: 5434 vma_end_read(vma); 5435 inval: 5436 rcu_read_unlock(); 5437 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5438 return NULL; 5439 } 5440 #endif /* CONFIG_PER_VMA_LOCK */ 5441 5442 #ifndef __PAGETABLE_P4D_FOLDED 5443 /* 5444 * Allocate p4d page table. 5445 * We've already handled the fast-path in-line. 5446 */ 5447 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5448 { 5449 p4d_t *new = p4d_alloc_one(mm, address); 5450 if (!new) 5451 return -ENOMEM; 5452 5453 spin_lock(&mm->page_table_lock); 5454 if (pgd_present(*pgd)) { /* Another has populated it */ 5455 p4d_free(mm, new); 5456 } else { 5457 smp_wmb(); /* See comment in pmd_install() */ 5458 pgd_populate(mm, pgd, new); 5459 } 5460 spin_unlock(&mm->page_table_lock); 5461 return 0; 5462 } 5463 #endif /* __PAGETABLE_P4D_FOLDED */ 5464 5465 #ifndef __PAGETABLE_PUD_FOLDED 5466 /* 5467 * Allocate page upper directory. 5468 * We've already handled the fast-path in-line. 5469 */ 5470 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5471 { 5472 pud_t *new = pud_alloc_one(mm, address); 5473 if (!new) 5474 return -ENOMEM; 5475 5476 spin_lock(&mm->page_table_lock); 5477 if (!p4d_present(*p4d)) { 5478 mm_inc_nr_puds(mm); 5479 smp_wmb(); /* See comment in pmd_install() */ 5480 p4d_populate(mm, p4d, new); 5481 } else /* Another has populated it */ 5482 pud_free(mm, new); 5483 spin_unlock(&mm->page_table_lock); 5484 return 0; 5485 } 5486 #endif /* __PAGETABLE_PUD_FOLDED */ 5487 5488 #ifndef __PAGETABLE_PMD_FOLDED 5489 /* 5490 * Allocate page middle directory. 5491 * We've already handled the fast-path in-line. 5492 */ 5493 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5494 { 5495 spinlock_t *ptl; 5496 pmd_t *new = pmd_alloc_one(mm, address); 5497 if (!new) 5498 return -ENOMEM; 5499 5500 ptl = pud_lock(mm, pud); 5501 if (!pud_present(*pud)) { 5502 mm_inc_nr_pmds(mm); 5503 smp_wmb(); /* See comment in pmd_install() */ 5504 pud_populate(mm, pud, new); 5505 } else { /* Another has populated it */ 5506 pmd_free(mm, new); 5507 } 5508 spin_unlock(ptl); 5509 return 0; 5510 } 5511 #endif /* __PAGETABLE_PMD_FOLDED */ 5512 5513 /** 5514 * follow_pte - look up PTE at a user virtual address 5515 * @mm: the mm_struct of the target address space 5516 * @address: user virtual address 5517 * @ptepp: location to store found PTE 5518 * @ptlp: location to store the lock for the PTE 5519 * 5520 * On a successful return, the pointer to the PTE is stored in @ptepp; 5521 * the corresponding lock is taken and its location is stored in @ptlp. 5522 * The contents of the PTE are only stable until @ptlp is released; 5523 * any further use, if any, must be protected against invalidation 5524 * with MMU notifiers. 5525 * 5526 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5527 * should be taken for read. 5528 * 5529 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5530 * it is not a good general-purpose API. 5531 * 5532 * Return: zero on success, -ve otherwise. 5533 */ 5534 int follow_pte(struct mm_struct *mm, unsigned long address, 5535 pte_t **ptepp, spinlock_t **ptlp) 5536 { 5537 pgd_t *pgd; 5538 p4d_t *p4d; 5539 pud_t *pud; 5540 pmd_t *pmd; 5541 pte_t *ptep; 5542 5543 pgd = pgd_offset(mm, address); 5544 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5545 goto out; 5546 5547 p4d = p4d_offset(pgd, address); 5548 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5549 goto out; 5550 5551 pud = pud_offset(p4d, address); 5552 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5553 goto out; 5554 5555 pmd = pmd_offset(pud, address); 5556 VM_BUG_ON(pmd_trans_huge(*pmd)); 5557 5558 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5559 if (!ptep) 5560 goto out; 5561 if (!pte_present(ptep_get(ptep))) 5562 goto unlock; 5563 *ptepp = ptep; 5564 return 0; 5565 unlock: 5566 pte_unmap_unlock(ptep, *ptlp); 5567 out: 5568 return -EINVAL; 5569 } 5570 EXPORT_SYMBOL_GPL(follow_pte); 5571 5572 /** 5573 * follow_pfn - look up PFN at a user virtual address 5574 * @vma: memory mapping 5575 * @address: user virtual address 5576 * @pfn: location to store found PFN 5577 * 5578 * Only IO mappings and raw PFN mappings are allowed. 5579 * 5580 * This function does not allow the caller to read the permissions 5581 * of the PTE. Do not use it. 5582 * 5583 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5584 */ 5585 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5586 unsigned long *pfn) 5587 { 5588 int ret = -EINVAL; 5589 spinlock_t *ptl; 5590 pte_t *ptep; 5591 5592 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5593 return ret; 5594 5595 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5596 if (ret) 5597 return ret; 5598 *pfn = pte_pfn(ptep_get(ptep)); 5599 pte_unmap_unlock(ptep, ptl); 5600 return 0; 5601 } 5602 EXPORT_SYMBOL(follow_pfn); 5603 5604 #ifdef CONFIG_HAVE_IOREMAP_PROT 5605 int follow_phys(struct vm_area_struct *vma, 5606 unsigned long address, unsigned int flags, 5607 unsigned long *prot, resource_size_t *phys) 5608 { 5609 int ret = -EINVAL; 5610 pte_t *ptep, pte; 5611 spinlock_t *ptl; 5612 5613 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5614 goto out; 5615 5616 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5617 goto out; 5618 pte = ptep_get(ptep); 5619 5620 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5621 goto unlock; 5622 5623 *prot = pgprot_val(pte_pgprot(pte)); 5624 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5625 5626 ret = 0; 5627 unlock: 5628 pte_unmap_unlock(ptep, ptl); 5629 out: 5630 return ret; 5631 } 5632 5633 /** 5634 * generic_access_phys - generic implementation for iomem mmap access 5635 * @vma: the vma to access 5636 * @addr: userspace address, not relative offset within @vma 5637 * @buf: buffer to read/write 5638 * @len: length of transfer 5639 * @write: set to FOLL_WRITE when writing, otherwise reading 5640 * 5641 * This is a generic implementation for &vm_operations_struct.access for an 5642 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5643 * not page based. 5644 */ 5645 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5646 void *buf, int len, int write) 5647 { 5648 resource_size_t phys_addr; 5649 unsigned long prot = 0; 5650 void __iomem *maddr; 5651 pte_t *ptep, pte; 5652 spinlock_t *ptl; 5653 int offset = offset_in_page(addr); 5654 int ret = -EINVAL; 5655 5656 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5657 return -EINVAL; 5658 5659 retry: 5660 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5661 return -EINVAL; 5662 pte = ptep_get(ptep); 5663 pte_unmap_unlock(ptep, ptl); 5664 5665 prot = pgprot_val(pte_pgprot(pte)); 5666 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5667 5668 if ((write & FOLL_WRITE) && !pte_write(pte)) 5669 return -EINVAL; 5670 5671 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5672 if (!maddr) 5673 return -ENOMEM; 5674 5675 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5676 goto out_unmap; 5677 5678 if (!pte_same(pte, ptep_get(ptep))) { 5679 pte_unmap_unlock(ptep, ptl); 5680 iounmap(maddr); 5681 5682 goto retry; 5683 } 5684 5685 if (write) 5686 memcpy_toio(maddr + offset, buf, len); 5687 else 5688 memcpy_fromio(buf, maddr + offset, len); 5689 ret = len; 5690 pte_unmap_unlock(ptep, ptl); 5691 out_unmap: 5692 iounmap(maddr); 5693 5694 return ret; 5695 } 5696 EXPORT_SYMBOL_GPL(generic_access_phys); 5697 #endif 5698 5699 /* 5700 * Access another process' address space as given in mm. 5701 */ 5702 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5703 int len, unsigned int gup_flags) 5704 { 5705 void *old_buf = buf; 5706 int write = gup_flags & FOLL_WRITE; 5707 5708 if (mmap_read_lock_killable(mm)) 5709 return 0; 5710 5711 /* Avoid triggering the temporary warning in __get_user_pages */ 5712 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5713 return 0; 5714 5715 /* ignore errors, just check how much was successfully transferred */ 5716 while (len) { 5717 int bytes, offset; 5718 void *maddr; 5719 struct vm_area_struct *vma = NULL; 5720 struct page *page = get_user_page_vma_remote(mm, addr, 5721 gup_flags, &vma); 5722 5723 if (IS_ERR_OR_NULL(page)) { 5724 /* We might need to expand the stack to access it */ 5725 vma = vma_lookup(mm, addr); 5726 if (!vma) { 5727 vma = expand_stack(mm, addr); 5728 5729 /* mmap_lock was dropped on failure */ 5730 if (!vma) 5731 return buf - old_buf; 5732 5733 /* Try again if stack expansion worked */ 5734 continue; 5735 } 5736 5737 5738 /* 5739 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5740 * we can access using slightly different code. 5741 */ 5742 bytes = 0; 5743 #ifdef CONFIG_HAVE_IOREMAP_PROT 5744 if (vma->vm_ops && vma->vm_ops->access) 5745 bytes = vma->vm_ops->access(vma, addr, buf, 5746 len, write); 5747 #endif 5748 if (bytes <= 0) 5749 break; 5750 } else { 5751 bytes = len; 5752 offset = addr & (PAGE_SIZE-1); 5753 if (bytes > PAGE_SIZE-offset) 5754 bytes = PAGE_SIZE-offset; 5755 5756 maddr = kmap(page); 5757 if (write) { 5758 copy_to_user_page(vma, page, addr, 5759 maddr + offset, buf, bytes); 5760 set_page_dirty_lock(page); 5761 } else { 5762 copy_from_user_page(vma, page, addr, 5763 buf, maddr + offset, bytes); 5764 } 5765 kunmap(page); 5766 put_page(page); 5767 } 5768 len -= bytes; 5769 buf += bytes; 5770 addr += bytes; 5771 } 5772 mmap_read_unlock(mm); 5773 5774 return buf - old_buf; 5775 } 5776 5777 /** 5778 * access_remote_vm - access another process' address space 5779 * @mm: the mm_struct of the target address space 5780 * @addr: start address to access 5781 * @buf: source or destination buffer 5782 * @len: number of bytes to transfer 5783 * @gup_flags: flags modifying lookup behaviour 5784 * 5785 * The caller must hold a reference on @mm. 5786 * 5787 * Return: number of bytes copied from source to destination. 5788 */ 5789 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5790 void *buf, int len, unsigned int gup_flags) 5791 { 5792 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5793 } 5794 5795 /* 5796 * Access another process' address space. 5797 * Source/target buffer must be kernel space, 5798 * Do not walk the page table directly, use get_user_pages 5799 */ 5800 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5801 void *buf, int len, unsigned int gup_flags) 5802 { 5803 struct mm_struct *mm; 5804 int ret; 5805 5806 mm = get_task_mm(tsk); 5807 if (!mm) 5808 return 0; 5809 5810 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5811 5812 mmput(mm); 5813 5814 return ret; 5815 } 5816 EXPORT_SYMBOL_GPL(access_process_vm); 5817 5818 /* 5819 * Print the name of a VMA. 5820 */ 5821 void print_vma_addr(char *prefix, unsigned long ip) 5822 { 5823 struct mm_struct *mm = current->mm; 5824 struct vm_area_struct *vma; 5825 5826 /* 5827 * we might be running from an atomic context so we cannot sleep 5828 */ 5829 if (!mmap_read_trylock(mm)) 5830 return; 5831 5832 vma = find_vma(mm, ip); 5833 if (vma && vma->vm_file) { 5834 struct file *f = vma->vm_file; 5835 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5836 if (buf) { 5837 char *p; 5838 5839 p = file_path(f, buf, PAGE_SIZE); 5840 if (IS_ERR(p)) 5841 p = "?"; 5842 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5843 vma->vm_start, 5844 vma->vm_end - vma->vm_start); 5845 free_page((unsigned long)buf); 5846 } 5847 } 5848 mmap_read_unlock(mm); 5849 } 5850 5851 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5852 void __might_fault(const char *file, int line) 5853 { 5854 if (pagefault_disabled()) 5855 return; 5856 __might_sleep(file, line); 5857 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5858 if (current->mm) 5859 might_lock_read(¤t->mm->mmap_lock); 5860 #endif 5861 } 5862 EXPORT_SYMBOL(__might_fault); 5863 #endif 5864 5865 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5866 /* 5867 * Process all subpages of the specified huge page with the specified 5868 * operation. The target subpage will be processed last to keep its 5869 * cache lines hot. 5870 */ 5871 static inline int process_huge_page( 5872 unsigned long addr_hint, unsigned int pages_per_huge_page, 5873 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5874 void *arg) 5875 { 5876 int i, n, base, l, ret; 5877 unsigned long addr = addr_hint & 5878 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5879 5880 /* Process target subpage last to keep its cache lines hot */ 5881 might_sleep(); 5882 n = (addr_hint - addr) / PAGE_SIZE; 5883 if (2 * n <= pages_per_huge_page) { 5884 /* If target subpage in first half of huge page */ 5885 base = 0; 5886 l = n; 5887 /* Process subpages at the end of huge page */ 5888 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5889 cond_resched(); 5890 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5891 if (ret) 5892 return ret; 5893 } 5894 } else { 5895 /* If target subpage in second half of huge page */ 5896 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5897 l = pages_per_huge_page - n; 5898 /* Process subpages at the begin of huge page */ 5899 for (i = 0; i < base; i++) { 5900 cond_resched(); 5901 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5902 if (ret) 5903 return ret; 5904 } 5905 } 5906 /* 5907 * Process remaining subpages in left-right-left-right pattern 5908 * towards the target subpage 5909 */ 5910 for (i = 0; i < l; i++) { 5911 int left_idx = base + i; 5912 int right_idx = base + 2 * l - 1 - i; 5913 5914 cond_resched(); 5915 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5916 if (ret) 5917 return ret; 5918 cond_resched(); 5919 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5920 if (ret) 5921 return ret; 5922 } 5923 return 0; 5924 } 5925 5926 static void clear_gigantic_page(struct page *page, 5927 unsigned long addr, 5928 unsigned int pages_per_huge_page) 5929 { 5930 int i; 5931 struct page *p; 5932 5933 might_sleep(); 5934 for (i = 0; i < pages_per_huge_page; i++) { 5935 p = nth_page(page, i); 5936 cond_resched(); 5937 clear_user_highpage(p, addr + i * PAGE_SIZE); 5938 } 5939 } 5940 5941 static int clear_subpage(unsigned long addr, int idx, void *arg) 5942 { 5943 struct page *page = arg; 5944 5945 clear_user_highpage(page + idx, addr); 5946 return 0; 5947 } 5948 5949 void clear_huge_page(struct page *page, 5950 unsigned long addr_hint, unsigned int pages_per_huge_page) 5951 { 5952 unsigned long addr = addr_hint & 5953 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5954 5955 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5956 clear_gigantic_page(page, addr, pages_per_huge_page); 5957 return; 5958 } 5959 5960 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5961 } 5962 5963 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5964 unsigned long addr, 5965 struct vm_area_struct *vma, 5966 unsigned int pages_per_huge_page) 5967 { 5968 int i; 5969 struct page *dst_page; 5970 struct page *src_page; 5971 5972 for (i = 0; i < pages_per_huge_page; i++) { 5973 dst_page = folio_page(dst, i); 5974 src_page = folio_page(src, i); 5975 5976 cond_resched(); 5977 if (copy_mc_user_highpage(dst_page, src_page, 5978 addr + i*PAGE_SIZE, vma)) { 5979 memory_failure_queue(page_to_pfn(src_page), 0); 5980 return -EHWPOISON; 5981 } 5982 } 5983 return 0; 5984 } 5985 5986 struct copy_subpage_arg { 5987 struct page *dst; 5988 struct page *src; 5989 struct vm_area_struct *vma; 5990 }; 5991 5992 static int copy_subpage(unsigned long addr, int idx, void *arg) 5993 { 5994 struct copy_subpage_arg *copy_arg = arg; 5995 5996 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5997 addr, copy_arg->vma)) { 5998 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 5999 return -EHWPOISON; 6000 } 6001 return 0; 6002 } 6003 6004 int copy_user_large_folio(struct folio *dst, struct folio *src, 6005 unsigned long addr_hint, struct vm_area_struct *vma) 6006 { 6007 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6008 unsigned long addr = addr_hint & 6009 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6010 struct copy_subpage_arg arg = { 6011 .dst = &dst->page, 6012 .src = &src->page, 6013 .vma = vma, 6014 }; 6015 6016 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6017 return copy_user_gigantic_page(dst, src, addr, vma, 6018 pages_per_huge_page); 6019 6020 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6021 } 6022 6023 long copy_folio_from_user(struct folio *dst_folio, 6024 const void __user *usr_src, 6025 bool allow_pagefault) 6026 { 6027 void *kaddr; 6028 unsigned long i, rc = 0; 6029 unsigned int nr_pages = folio_nr_pages(dst_folio); 6030 unsigned long ret_val = nr_pages * PAGE_SIZE; 6031 struct page *subpage; 6032 6033 for (i = 0; i < nr_pages; i++) { 6034 subpage = folio_page(dst_folio, i); 6035 kaddr = kmap_local_page(subpage); 6036 if (!allow_pagefault) 6037 pagefault_disable(); 6038 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6039 if (!allow_pagefault) 6040 pagefault_enable(); 6041 kunmap_local(kaddr); 6042 6043 ret_val -= (PAGE_SIZE - rc); 6044 if (rc) 6045 break; 6046 6047 flush_dcache_page(subpage); 6048 6049 cond_resched(); 6050 } 6051 return ret_val; 6052 } 6053 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6054 6055 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6056 6057 static struct kmem_cache *page_ptl_cachep; 6058 6059 void __init ptlock_cache_init(void) 6060 { 6061 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6062 SLAB_PANIC, NULL); 6063 } 6064 6065 bool ptlock_alloc(struct page *page) 6066 { 6067 spinlock_t *ptl; 6068 6069 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6070 if (!ptl) 6071 return false; 6072 page->ptl = ptl; 6073 return true; 6074 } 6075 6076 void ptlock_free(struct page *page) 6077 { 6078 kmem_cache_free(page_ptl_cachep, page->ptl); 6079 } 6080 #endif 6081