xref: /openbmc/linux/mm/memory.c (revision e2942062)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369 
370 	do {
371 		unsigned long addr = vma->vm_start;
372 		struct vm_area_struct *next;
373 
374 		/*
375 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 		 * be 0.  This will underflow and is okay.
377 		 */
378 		next = mas_find(&mas, ceiling - 1);
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(&mas, ceiling - 1);
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	if (current->mm == mm)
478 		sync_mm_rss(mm);
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 #endif
698 
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700 				  struct page *page, unsigned long address,
701 				  pte_t *ptep)
702 {
703 	pte_t orig_pte;
704 	pte_t pte;
705 	swp_entry_t entry;
706 
707 	orig_pte = ptep_get(ptep);
708 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 	if (pte_swp_soft_dirty(orig_pte))
710 		pte = pte_mksoft_dirty(pte);
711 
712 	entry = pte_to_swp_entry(orig_pte);
713 	if (pte_swp_uffd_wp(orig_pte))
714 		pte = pte_mkuffd_wp(pte);
715 	else if (is_writable_device_exclusive_entry(entry))
716 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717 
718 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719 
720 	/*
721 	 * No need to take a page reference as one was already
722 	 * created when the swap entry was made.
723 	 */
724 	if (PageAnon(page))
725 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
726 	else
727 		/*
728 		 * Currently device exclusive access only supports anonymous
729 		 * memory so the entry shouldn't point to a filebacked page.
730 		 */
731 		WARN_ON_ONCE(1);
732 
733 	set_pte_at(vma->vm_mm, address, ptep, pte);
734 
735 	/*
736 	 * No need to invalidate - it was non-present before. However
737 	 * secondary CPUs may have mappings that need invalidating.
738 	 */
739 	update_mmu_cache(vma, address, ptep);
740 }
741 
742 /*
743  * Tries to restore an exclusive pte if the page lock can be acquired without
744  * sleeping.
745  */
746 static int
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 			unsigned long addr)
749 {
750 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 	struct page *page = pfn_swap_entry_to_page(entry);
752 
753 	if (trylock_page(page)) {
754 		restore_exclusive_pte(vma, page, addr, src_pte);
755 		unlock_page(page);
756 		return 0;
757 	}
758 
759 	return -EBUSY;
760 }
761 
762 /*
763  * copy one vm_area from one task to the other. Assumes the page tables
764  * already present in the new task to be cleared in the whole range
765  * covered by this vma.
766  */
767 
768 static unsigned long
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 {
773 	unsigned long vm_flags = dst_vma->vm_flags;
774 	pte_t orig_pte = ptep_get(src_pte);
775 	pte_t pte = orig_pte;
776 	struct page *page;
777 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
778 
779 	if (likely(!non_swap_entry(entry))) {
780 		if (swap_duplicate(entry) < 0)
781 			return -EIO;
782 
783 		/* make sure dst_mm is on swapoff's mmlist. */
784 		if (unlikely(list_empty(&dst_mm->mmlist))) {
785 			spin_lock(&mmlist_lock);
786 			if (list_empty(&dst_mm->mmlist))
787 				list_add(&dst_mm->mmlist,
788 						&src_mm->mmlist);
789 			spin_unlock(&mmlist_lock);
790 		}
791 		/* Mark the swap entry as shared. */
792 		if (pte_swp_exclusive(orig_pte)) {
793 			pte = pte_swp_clear_exclusive(orig_pte);
794 			set_pte_at(src_mm, addr, src_pte, pte);
795 		}
796 		rss[MM_SWAPENTS]++;
797 	} else if (is_migration_entry(entry)) {
798 		page = pfn_swap_entry_to_page(entry);
799 
800 		rss[mm_counter(page)]++;
801 
802 		if (!is_readable_migration_entry(entry) &&
803 				is_cow_mapping(vm_flags)) {
804 			/*
805 			 * COW mappings require pages in both parent and child
806 			 * to be set to read. A previously exclusive entry is
807 			 * now shared.
808 			 */
809 			entry = make_readable_migration_entry(
810 							swp_offset(entry));
811 			pte = swp_entry_to_pte(entry);
812 			if (pte_swp_soft_dirty(orig_pte))
813 				pte = pte_swp_mksoft_dirty(pte);
814 			if (pte_swp_uffd_wp(orig_pte))
815 				pte = pte_swp_mkuffd_wp(pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 	} else if (is_device_private_entry(entry)) {
819 		page = pfn_swap_entry_to_page(entry);
820 
821 		/*
822 		 * Update rss count even for unaddressable pages, as
823 		 * they should treated just like normal pages in this
824 		 * respect.
825 		 *
826 		 * We will likely want to have some new rss counters
827 		 * for unaddressable pages, at some point. But for now
828 		 * keep things as they are.
829 		 */
830 		get_page(page);
831 		rss[mm_counter(page)]++;
832 		/* Cannot fail as these pages cannot get pinned. */
833 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834 
835 		/*
836 		 * We do not preserve soft-dirty information, because so
837 		 * far, checkpoint/restore is the only feature that
838 		 * requires that. And checkpoint/restore does not work
839 		 * when a device driver is involved (you cannot easily
840 		 * save and restore device driver state).
841 		 */
842 		if (is_writable_device_private_entry(entry) &&
843 		    is_cow_mapping(vm_flags)) {
844 			entry = make_readable_device_private_entry(
845 							swp_offset(entry));
846 			pte = swp_entry_to_pte(entry);
847 			if (pte_swp_uffd_wp(orig_pte))
848 				pte = pte_swp_mkuffd_wp(pte);
849 			set_pte_at(src_mm, addr, src_pte, pte);
850 		}
851 	} else if (is_device_exclusive_entry(entry)) {
852 		/*
853 		 * Make device exclusive entries present by restoring the
854 		 * original entry then copying as for a present pte. Device
855 		 * exclusive entries currently only support private writable
856 		 * (ie. COW) mappings.
857 		 */
858 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 			return -EBUSY;
861 		return -ENOENT;
862 	} else if (is_pte_marker_entry(entry)) {
863 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864 			set_pte_at(dst_mm, addr, dst_pte, pte);
865 		return 0;
866 	}
867 	if (!userfaultfd_wp(dst_vma))
868 		pte = pte_swp_clear_uffd_wp(pte);
869 	set_pte_at(dst_mm, addr, dst_pte, pte);
870 	return 0;
871 }
872 
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 		  struct folio **prealloc, struct page *page)
889 {
890 	struct folio *new_folio;
891 	pte_t pte;
892 
893 	new_folio = *prealloc;
894 	if (!new_folio)
895 		return -EAGAIN;
896 
897 	/*
898 	 * We have a prealloc page, all good!  Take it
899 	 * over and copy the page & arm it.
900 	 */
901 	*prealloc = NULL;
902 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 	__folio_mark_uptodate(new_folio);
904 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 	folio_add_lru_vma(new_folio, dst_vma);
906 	rss[MM_ANONPAGES]++;
907 
908 	/* All done, just insert the new page copy in the child */
909 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 		/* Uffd-wp needs to be delivered to dest pte as well */
913 		pte = pte_mkuffd_wp(pte);
914 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 	return 0;
916 }
917 
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 		 struct folio **prealloc)
926 {
927 	struct mm_struct *src_mm = src_vma->vm_mm;
928 	unsigned long vm_flags = src_vma->vm_flags;
929 	pte_t pte = ptep_get(src_pte);
930 	struct page *page;
931 	struct folio *folio;
932 
933 	page = vm_normal_page(src_vma, addr, pte);
934 	if (page)
935 		folio = page_folio(page);
936 	if (page && folio_test_anon(folio)) {
937 		/*
938 		 * If this page may have been pinned by the parent process,
939 		 * copy the page immediately for the child so that we'll always
940 		 * guarantee the pinned page won't be randomly replaced in the
941 		 * future.
942 		 */
943 		folio_get(folio);
944 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 			/* Page may be pinned, we have to copy. */
946 			folio_put(folio);
947 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 						 addr, rss, prealloc, page);
949 		}
950 		rss[MM_ANONPAGES]++;
951 	} else if (page) {
952 		folio_get(folio);
953 		page_dup_file_rmap(page, false);
954 		rss[mm_counter_file(page)]++;
955 	}
956 
957 	/*
958 	 * If it's a COW mapping, write protect it both
959 	 * in the parent and the child
960 	 */
961 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 		ptep_set_wrprotect(src_mm, addr, src_pte);
963 		pte = pte_wrprotect(pte);
964 	}
965 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966 
967 	/*
968 	 * If it's a shared mapping, mark it clean in
969 	 * the child
970 	 */
971 	if (vm_flags & VM_SHARED)
972 		pte = pte_mkclean(pte);
973 	pte = pte_mkold(pte);
974 
975 	if (!userfaultfd_wp(dst_vma))
976 		pte = pte_clear_uffd_wp(pte);
977 
978 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 	return 0;
980 }
981 
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 		struct vm_area_struct *vma, unsigned long addr)
984 {
985 	struct folio *new_folio;
986 
987 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 	if (!new_folio)
989 		return NULL;
990 
991 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 		folio_put(new_folio);
993 		return NULL;
994 	}
995 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
996 
997 	return new_folio;
998 }
999 
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 	       unsigned long end)
1004 {
1005 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 	struct mm_struct *src_mm = src_vma->vm_mm;
1007 	pte_t *orig_src_pte, *orig_dst_pte;
1008 	pte_t *src_pte, *dst_pte;
1009 	pte_t ptent;
1010 	spinlock_t *src_ptl, *dst_ptl;
1011 	int progress, ret = 0;
1012 	int rss[NR_MM_COUNTERS];
1013 	swp_entry_t entry = (swp_entry_t){0};
1014 	struct folio *prealloc = NULL;
1015 
1016 again:
1017 	progress = 0;
1018 	init_rss_vec(rss);
1019 
1020 	/*
1021 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 	 * error handling here, assume that exclusive mmap_lock on dst and src
1023 	 * protects anon from unexpected THP transitions; with shmem and file
1024 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026 	 * can remove such assumptions later, but this is good enough for now.
1027 	 */
1028 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 	if (!dst_pte) {
1030 		ret = -ENOMEM;
1031 		goto out;
1032 	}
1033 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 	if (!src_pte) {
1035 		pte_unmap_unlock(dst_pte, dst_ptl);
1036 		/* ret == 0 */
1037 		goto out;
1038 	}
1039 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 	orig_src_pte = src_pte;
1041 	orig_dst_pte = dst_pte;
1042 	arch_enter_lazy_mmu_mode();
1043 
1044 	do {
1045 		/*
1046 		 * We are holding two locks at this point - either of them
1047 		 * could generate latencies in another task on another CPU.
1048 		 */
1049 		if (progress >= 32) {
1050 			progress = 0;
1051 			if (need_resched() ||
1052 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 				break;
1054 		}
1055 		ptent = ptep_get(src_pte);
1056 		if (pte_none(ptent)) {
1057 			progress++;
1058 			continue;
1059 		}
1060 		if (unlikely(!pte_present(ptent))) {
1061 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 						  dst_pte, src_pte,
1063 						  dst_vma, src_vma,
1064 						  addr, rss);
1065 			if (ret == -EIO) {
1066 				entry = pte_to_swp_entry(ptep_get(src_pte));
1067 				break;
1068 			} else if (ret == -EBUSY) {
1069 				break;
1070 			} else if (!ret) {
1071 				progress += 8;
1072 				continue;
1073 			}
1074 
1075 			/*
1076 			 * Device exclusive entry restored, continue by copying
1077 			 * the now present pte.
1078 			 */
1079 			WARN_ON_ONCE(ret != -ENOENT);
1080 		}
1081 		/* copy_present_pte() will clear `*prealloc' if consumed */
1082 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 				       addr, rss, &prealloc);
1084 		/*
1085 		 * If we need a pre-allocated page for this pte, drop the
1086 		 * locks, allocate, and try again.
1087 		 */
1088 		if (unlikely(ret == -EAGAIN))
1089 			break;
1090 		if (unlikely(prealloc)) {
1091 			/*
1092 			 * pre-alloc page cannot be reused by next time so as
1093 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 			 * will allocate page according to address).  This
1095 			 * could only happen if one pinned pte changed.
1096 			 */
1097 			folio_put(prealloc);
1098 			prealloc = NULL;
1099 		}
1100 		progress += 8;
1101 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 
1103 	arch_leave_lazy_mmu_mode();
1104 	pte_unmap_unlock(orig_src_pte, src_ptl);
1105 	add_mm_rss_vec(dst_mm, rss);
1106 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 	cond_resched();
1108 
1109 	if (ret == -EIO) {
1110 		VM_WARN_ON_ONCE(!entry.val);
1111 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 			ret = -ENOMEM;
1113 			goto out;
1114 		}
1115 		entry.val = 0;
1116 	} else if (ret == -EBUSY) {
1117 		goto out;
1118 	} else if (ret ==  -EAGAIN) {
1119 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 		if (!prealloc)
1121 			return -ENOMEM;
1122 	} else if (ret) {
1123 		VM_WARN_ON_ONCE(1);
1124 	}
1125 
1126 	/* We've captured and resolved the error. Reset, try again. */
1127 	ret = 0;
1128 
1129 	if (addr != end)
1130 		goto again;
1131 out:
1132 	if (unlikely(prealloc))
1133 		folio_put(prealloc);
1134 	return ret;
1135 }
1136 
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 	       unsigned long end)
1141 {
1142 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 	struct mm_struct *src_mm = src_vma->vm_mm;
1144 	pmd_t *src_pmd, *dst_pmd;
1145 	unsigned long next;
1146 
1147 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 	if (!dst_pmd)
1149 		return -ENOMEM;
1150 	src_pmd = pmd_offset(src_pud, addr);
1151 	do {
1152 		next = pmd_addr_end(addr, end);
1153 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 			|| pmd_devmap(*src_pmd)) {
1155 			int err;
1156 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 					    addr, dst_vma, src_vma);
1159 			if (err == -ENOMEM)
1160 				return -ENOMEM;
1161 			if (!err)
1162 				continue;
1163 			/* fall through */
1164 		}
1165 		if (pmd_none_or_clear_bad(src_pmd))
1166 			continue;
1167 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 				   addr, next))
1169 			return -ENOMEM;
1170 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 	return 0;
1172 }
1173 
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 	       unsigned long end)
1178 {
1179 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 	struct mm_struct *src_mm = src_vma->vm_mm;
1181 	pud_t *src_pud, *dst_pud;
1182 	unsigned long next;
1183 
1184 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 	if (!dst_pud)
1186 		return -ENOMEM;
1187 	src_pud = pud_offset(src_p4d, addr);
1188 	do {
1189 		next = pud_addr_end(addr, end);
1190 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 			int err;
1192 
1193 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 			err = copy_huge_pud(dst_mm, src_mm,
1195 					    dst_pud, src_pud, addr, src_vma);
1196 			if (err == -ENOMEM)
1197 				return -ENOMEM;
1198 			if (!err)
1199 				continue;
1200 			/* fall through */
1201 		}
1202 		if (pud_none_or_clear_bad(src_pud))
1203 			continue;
1204 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 				   addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 	       unsigned long end)
1215 {
1216 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 	p4d_t *src_p4d, *dst_p4d;
1218 	unsigned long next;
1219 
1220 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 	if (!dst_p4d)
1222 		return -ENOMEM;
1223 	src_p4d = p4d_offset(src_pgd, addr);
1224 	do {
1225 		next = p4d_addr_end(addr, end);
1226 		if (p4d_none_or_clear_bad(src_p4d))
1227 			continue;
1228 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 				   addr, next))
1230 			return -ENOMEM;
1231 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 	/*
1244 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 	 * contains uffd-wp protection information, that's something we can't
1247 	 * retrieve from page cache, and skip copying will lose those info.
1248 	 */
1249 	if (userfaultfd_wp(dst_vma))
1250 		return true;
1251 
1252 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 		return true;
1254 
1255 	if (src_vma->anon_vma)
1256 		return true;
1257 
1258 	/*
1259 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1260 	 * becomes much lighter when there are big shared or private readonly
1261 	 * mappings. The tradeoff is that copy_page_range is more efficient
1262 	 * than faulting.
1263 	 */
1264 	return false;
1265 }
1266 
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 	pgd_t *src_pgd, *dst_pgd;
1271 	unsigned long next;
1272 	unsigned long addr = src_vma->vm_start;
1273 	unsigned long end = src_vma->vm_end;
1274 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 	struct mm_struct *src_mm = src_vma->vm_mm;
1276 	struct mmu_notifier_range range;
1277 	bool is_cow;
1278 	int ret;
1279 
1280 	if (!vma_needs_copy(dst_vma, src_vma))
1281 		return 0;
1282 
1283 	if (is_vm_hugetlb_page(src_vma))
1284 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285 
1286 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 		/*
1288 		 * We do not free on error cases below as remove_vma
1289 		 * gets called on error from higher level routine
1290 		 */
1291 		ret = track_pfn_copy(src_vma);
1292 		if (ret)
1293 			return ret;
1294 	}
1295 
1296 	/*
1297 	 * We need to invalidate the secondary MMU mappings only when
1298 	 * there could be a permission downgrade on the ptes of the
1299 	 * parent mm. And a permission downgrade will only happen if
1300 	 * is_cow_mapping() returns true.
1301 	 */
1302 	is_cow = is_cow_mapping(src_vma->vm_flags);
1303 
1304 	if (is_cow) {
1305 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 					0, src_mm, addr, end);
1307 		mmu_notifier_invalidate_range_start(&range);
1308 		/*
1309 		 * Disabling preemption is not needed for the write side, as
1310 		 * the read side doesn't spin, but goes to the mmap_lock.
1311 		 *
1312 		 * Use the raw variant of the seqcount_t write API to avoid
1313 		 * lockdep complaining about preemptibility.
1314 		 */
1315 		mmap_assert_write_locked(src_mm);
1316 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 	}
1318 
1319 	ret = 0;
1320 	dst_pgd = pgd_offset(dst_mm, addr);
1321 	src_pgd = pgd_offset(src_mm, addr);
1322 	do {
1323 		next = pgd_addr_end(addr, end);
1324 		if (pgd_none_or_clear_bad(src_pgd))
1325 			continue;
1326 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 					    addr, next))) {
1328 			untrack_pfn_clear(dst_vma);
1329 			ret = -ENOMEM;
1330 			break;
1331 		}
1332 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333 
1334 	if (is_cow) {
1335 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 		mmu_notifier_invalidate_range_end(&range);
1337 	}
1338 	return ret;
1339 }
1340 
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344 	/* By default, zap all pages */
1345 	if (!details)
1346 		return true;
1347 
1348 	/* Or, we zap COWed pages only if the caller wants to */
1349 	return details->even_cows;
1350 }
1351 
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355 	/* If we can make a decision without *page.. */
1356 	if (should_zap_cows(details))
1357 		return true;
1358 
1359 	/* E.g. the caller passes NULL for the case of a zero page */
1360 	if (!page)
1361 		return true;
1362 
1363 	/* Otherwise we should only zap non-anon pages */
1364 	return !PageAnon(page);
1365 }
1366 
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369 	if (!details)
1370 		return false;
1371 
1372 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374 
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 			      unsigned long addr, pte_t *pte,
1382 			      struct zap_details *details, pte_t pteval)
1383 {
1384 	/* Zap on anonymous always means dropping everything */
1385 	if (vma_is_anonymous(vma))
1386 		return;
1387 
1388 	if (zap_drop_file_uffd_wp(details))
1389 		return;
1390 
1391 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393 
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 				struct vm_area_struct *vma, pmd_t *pmd,
1396 				unsigned long addr, unsigned long end,
1397 				struct zap_details *details)
1398 {
1399 	struct mm_struct *mm = tlb->mm;
1400 	int force_flush = 0;
1401 	int rss[NR_MM_COUNTERS];
1402 	spinlock_t *ptl;
1403 	pte_t *start_pte;
1404 	pte_t *pte;
1405 	swp_entry_t entry;
1406 
1407 	tlb_change_page_size(tlb, PAGE_SIZE);
1408 	init_rss_vec(rss);
1409 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 	if (!pte)
1411 		return addr;
1412 
1413 	flush_tlb_batched_pending(mm);
1414 	arch_enter_lazy_mmu_mode();
1415 	do {
1416 		pte_t ptent = ptep_get(pte);
1417 		struct page *page;
1418 
1419 		if (pte_none(ptent))
1420 			continue;
1421 
1422 		if (need_resched())
1423 			break;
1424 
1425 		if (pte_present(ptent)) {
1426 			unsigned int delay_rmap;
1427 
1428 			page = vm_normal_page(vma, addr, ptent);
1429 			if (unlikely(!should_zap_page(details, page)))
1430 				continue;
1431 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 							tlb->fullmm);
1433 			tlb_remove_tlb_entry(tlb, pte, addr);
1434 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 						      ptent);
1436 			if (unlikely(!page)) {
1437 				ksm_might_unmap_zero_page(ptent);
1438 				continue;
1439 			}
1440 
1441 			delay_rmap = 0;
1442 			if (!PageAnon(page)) {
1443 				if (pte_dirty(ptent)) {
1444 					set_page_dirty(page);
1445 					if (tlb_delay_rmap(tlb)) {
1446 						delay_rmap = 1;
1447 						force_flush = 1;
1448 					}
1449 				}
1450 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1451 					mark_page_accessed(page);
1452 			}
1453 			rss[mm_counter(page)]--;
1454 			if (!delay_rmap) {
1455 				page_remove_rmap(page, vma, false);
1456 				if (unlikely(page_mapcount(page) < 0))
1457 					print_bad_pte(vma, addr, ptent, page);
1458 			}
1459 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1460 				force_flush = 1;
1461 				addr += PAGE_SIZE;
1462 				break;
1463 			}
1464 			continue;
1465 		}
1466 
1467 		entry = pte_to_swp_entry(ptent);
1468 		if (is_device_private_entry(entry) ||
1469 		    is_device_exclusive_entry(entry)) {
1470 			page = pfn_swap_entry_to_page(entry);
1471 			if (unlikely(!should_zap_page(details, page)))
1472 				continue;
1473 			/*
1474 			 * Both device private/exclusive mappings should only
1475 			 * work with anonymous page so far, so we don't need to
1476 			 * consider uffd-wp bit when zap. For more information,
1477 			 * see zap_install_uffd_wp_if_needed().
1478 			 */
1479 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1480 			rss[mm_counter(page)]--;
1481 			if (is_device_private_entry(entry))
1482 				page_remove_rmap(page, vma, false);
1483 			put_page(page);
1484 		} else if (!non_swap_entry(entry)) {
1485 			/* Genuine swap entry, hence a private anon page */
1486 			if (!should_zap_cows(details))
1487 				continue;
1488 			rss[MM_SWAPENTS]--;
1489 			if (unlikely(!free_swap_and_cache(entry)))
1490 				print_bad_pte(vma, addr, ptent, NULL);
1491 		} else if (is_migration_entry(entry)) {
1492 			page = pfn_swap_entry_to_page(entry);
1493 			if (!should_zap_page(details, page))
1494 				continue;
1495 			rss[mm_counter(page)]--;
1496 		} else if (pte_marker_entry_uffd_wp(entry)) {
1497 			/*
1498 			 * For anon: always drop the marker; for file: only
1499 			 * drop the marker if explicitly requested.
1500 			 */
1501 			if (!vma_is_anonymous(vma) &&
1502 			    !zap_drop_file_uffd_wp(details))
1503 				continue;
1504 		} else if (is_hwpoison_entry(entry) ||
1505 			   is_swapin_error_entry(entry)) {
1506 			if (!should_zap_cows(details))
1507 				continue;
1508 		} else {
1509 			/* We should have covered all the swap entry types */
1510 			WARN_ON_ONCE(1);
1511 		}
1512 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1513 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1514 	} while (pte++, addr += PAGE_SIZE, addr != end);
1515 
1516 	add_mm_rss_vec(mm, rss);
1517 	arch_leave_lazy_mmu_mode();
1518 
1519 	/* Do the actual TLB flush before dropping ptl */
1520 	if (force_flush) {
1521 		tlb_flush_mmu_tlbonly(tlb);
1522 		tlb_flush_rmaps(tlb, vma);
1523 	}
1524 	pte_unmap_unlock(start_pte, ptl);
1525 
1526 	/*
1527 	 * If we forced a TLB flush (either due to running out of
1528 	 * batch buffers or because we needed to flush dirty TLB
1529 	 * entries before releasing the ptl), free the batched
1530 	 * memory too. Come back again if we didn't do everything.
1531 	 */
1532 	if (force_flush)
1533 		tlb_flush_mmu(tlb);
1534 
1535 	return addr;
1536 }
1537 
1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1539 				struct vm_area_struct *vma, pud_t *pud,
1540 				unsigned long addr, unsigned long end,
1541 				struct zap_details *details)
1542 {
1543 	pmd_t *pmd;
1544 	unsigned long next;
1545 
1546 	pmd = pmd_offset(pud, addr);
1547 	do {
1548 		next = pmd_addr_end(addr, end);
1549 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1550 			if (next - addr != HPAGE_PMD_SIZE)
1551 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1552 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553 				addr = next;
1554 				continue;
1555 			}
1556 			/* fall through */
1557 		} else if (details && details->single_folio &&
1558 			   folio_test_pmd_mappable(details->single_folio) &&
1559 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561 			/*
1562 			 * Take and drop THP pmd lock so that we cannot return
1563 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1564 			 * but not yet decremented compound_mapcount().
1565 			 */
1566 			spin_unlock(ptl);
1567 		}
1568 		if (pmd_none(*pmd)) {
1569 			addr = next;
1570 			continue;
1571 		}
1572 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573 		if (addr != next)
1574 			pmd--;
1575 	} while (pmd++, cond_resched(), addr != end);
1576 
1577 	return addr;
1578 }
1579 
1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1581 				struct vm_area_struct *vma, p4d_t *p4d,
1582 				unsigned long addr, unsigned long end,
1583 				struct zap_details *details)
1584 {
1585 	pud_t *pud;
1586 	unsigned long next;
1587 
1588 	pud = pud_offset(p4d, addr);
1589 	do {
1590 		next = pud_addr_end(addr, end);
1591 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592 			if (next - addr != HPAGE_PUD_SIZE) {
1593 				mmap_assert_locked(tlb->mm);
1594 				split_huge_pud(vma, pud, addr);
1595 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1596 				goto next;
1597 			/* fall through */
1598 		}
1599 		if (pud_none_or_clear_bad(pud))
1600 			continue;
1601 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1602 next:
1603 		cond_resched();
1604 	} while (pud++, addr = next, addr != end);
1605 
1606 	return addr;
1607 }
1608 
1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610 				struct vm_area_struct *vma, pgd_t *pgd,
1611 				unsigned long addr, unsigned long end,
1612 				struct zap_details *details)
1613 {
1614 	p4d_t *p4d;
1615 	unsigned long next;
1616 
1617 	p4d = p4d_offset(pgd, addr);
1618 	do {
1619 		next = p4d_addr_end(addr, end);
1620 		if (p4d_none_or_clear_bad(p4d))
1621 			continue;
1622 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623 	} while (p4d++, addr = next, addr != end);
1624 
1625 	return addr;
1626 }
1627 
1628 void unmap_page_range(struct mmu_gather *tlb,
1629 			     struct vm_area_struct *vma,
1630 			     unsigned long addr, unsigned long end,
1631 			     struct zap_details *details)
1632 {
1633 	pgd_t *pgd;
1634 	unsigned long next;
1635 
1636 	BUG_ON(addr >= end);
1637 	tlb_start_vma(tlb, vma);
1638 	pgd = pgd_offset(vma->vm_mm, addr);
1639 	do {
1640 		next = pgd_addr_end(addr, end);
1641 		if (pgd_none_or_clear_bad(pgd))
1642 			continue;
1643 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1644 	} while (pgd++, addr = next, addr != end);
1645 	tlb_end_vma(tlb, vma);
1646 }
1647 
1648 
1649 static void unmap_single_vma(struct mmu_gather *tlb,
1650 		struct vm_area_struct *vma, unsigned long start_addr,
1651 		unsigned long end_addr,
1652 		struct zap_details *details, bool mm_wr_locked)
1653 {
1654 	unsigned long start = max(vma->vm_start, start_addr);
1655 	unsigned long end;
1656 
1657 	if (start >= vma->vm_end)
1658 		return;
1659 	end = min(vma->vm_end, end_addr);
1660 	if (end <= vma->vm_start)
1661 		return;
1662 
1663 	if (vma->vm_file)
1664 		uprobe_munmap(vma, start, end);
1665 
1666 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1667 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1668 
1669 	if (start != end) {
1670 		if (unlikely(is_vm_hugetlb_page(vma))) {
1671 			/*
1672 			 * It is undesirable to test vma->vm_file as it
1673 			 * should be non-null for valid hugetlb area.
1674 			 * However, vm_file will be NULL in the error
1675 			 * cleanup path of mmap_region. When
1676 			 * hugetlbfs ->mmap method fails,
1677 			 * mmap_region() nullifies vma->vm_file
1678 			 * before calling this function to clean up.
1679 			 * Since no pte has actually been setup, it is
1680 			 * safe to do nothing in this case.
1681 			 */
1682 			if (vma->vm_file) {
1683 				zap_flags_t zap_flags = details ?
1684 				    details->zap_flags : 0;
1685 				__unmap_hugepage_range_final(tlb, vma, start, end,
1686 							     NULL, zap_flags);
1687 			}
1688 		} else
1689 			unmap_page_range(tlb, vma, start, end, details);
1690 	}
1691 }
1692 
1693 /**
1694  * unmap_vmas - unmap a range of memory covered by a list of vma's
1695  * @tlb: address of the caller's struct mmu_gather
1696  * @mt: the maple tree
1697  * @vma: the starting vma
1698  * @start_addr: virtual address at which to start unmapping
1699  * @end_addr: virtual address at which to end unmapping
1700  *
1701  * Unmap all pages in the vma list.
1702  *
1703  * Only addresses between `start' and `end' will be unmapped.
1704  *
1705  * The VMA list must be sorted in ascending virtual address order.
1706  *
1707  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1708  * range after unmap_vmas() returns.  So the only responsibility here is to
1709  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1710  * drops the lock and schedules.
1711  */
1712 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1713 		struct vm_area_struct *vma, unsigned long start_addr,
1714 		unsigned long end_addr, bool mm_wr_locked)
1715 {
1716 	struct mmu_notifier_range range;
1717 	struct zap_details details = {
1718 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1719 		/* Careful - we need to zap private pages too! */
1720 		.even_cows = true,
1721 	};
1722 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1723 
1724 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1725 				start_addr, end_addr);
1726 	mmu_notifier_invalidate_range_start(&range);
1727 	do {
1728 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1729 				 mm_wr_locked);
1730 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1731 	mmu_notifier_invalidate_range_end(&range);
1732 }
1733 
1734 /**
1735  * zap_page_range_single - remove user pages in a given range
1736  * @vma: vm_area_struct holding the applicable pages
1737  * @address: starting address of pages to zap
1738  * @size: number of bytes to zap
1739  * @details: details of shared cache invalidation
1740  *
1741  * The range must fit into one VMA.
1742  */
1743 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1744 		unsigned long size, struct zap_details *details)
1745 {
1746 	const unsigned long end = address + size;
1747 	struct mmu_notifier_range range;
1748 	struct mmu_gather tlb;
1749 
1750 	lru_add_drain();
1751 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1752 				address, end);
1753 	if (is_vm_hugetlb_page(vma))
1754 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1755 						     &range.end);
1756 	tlb_gather_mmu(&tlb, vma->vm_mm);
1757 	update_hiwater_rss(vma->vm_mm);
1758 	mmu_notifier_invalidate_range_start(&range);
1759 	/*
1760 	 * unmap 'address-end' not 'range.start-range.end' as range
1761 	 * could have been expanded for hugetlb pmd sharing.
1762 	 */
1763 	unmap_single_vma(&tlb, vma, address, end, details, false);
1764 	mmu_notifier_invalidate_range_end(&range);
1765 	tlb_finish_mmu(&tlb);
1766 }
1767 
1768 /**
1769  * zap_vma_ptes - remove ptes mapping the vma
1770  * @vma: vm_area_struct holding ptes to be zapped
1771  * @address: starting address of pages to zap
1772  * @size: number of bytes to zap
1773  *
1774  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1775  *
1776  * The entire address range must be fully contained within the vma.
1777  *
1778  */
1779 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1780 		unsigned long size)
1781 {
1782 	if (!range_in_vma(vma, address, address + size) ||
1783 	    		!(vma->vm_flags & VM_PFNMAP))
1784 		return;
1785 
1786 	zap_page_range_single(vma, address, size, NULL);
1787 }
1788 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1789 
1790 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1791 {
1792 	pgd_t *pgd;
1793 	p4d_t *p4d;
1794 	pud_t *pud;
1795 	pmd_t *pmd;
1796 
1797 	pgd = pgd_offset(mm, addr);
1798 	p4d = p4d_alloc(mm, pgd, addr);
1799 	if (!p4d)
1800 		return NULL;
1801 	pud = pud_alloc(mm, p4d, addr);
1802 	if (!pud)
1803 		return NULL;
1804 	pmd = pmd_alloc(mm, pud, addr);
1805 	if (!pmd)
1806 		return NULL;
1807 
1808 	VM_BUG_ON(pmd_trans_huge(*pmd));
1809 	return pmd;
1810 }
1811 
1812 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1813 			spinlock_t **ptl)
1814 {
1815 	pmd_t *pmd = walk_to_pmd(mm, addr);
1816 
1817 	if (!pmd)
1818 		return NULL;
1819 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1820 }
1821 
1822 static int validate_page_before_insert(struct page *page)
1823 {
1824 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1825 		return -EINVAL;
1826 	flush_dcache_page(page);
1827 	return 0;
1828 }
1829 
1830 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1831 			unsigned long addr, struct page *page, pgprot_t prot)
1832 {
1833 	if (!pte_none(ptep_get(pte)))
1834 		return -EBUSY;
1835 	/* Ok, finally just insert the thing.. */
1836 	get_page(page);
1837 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1838 	page_add_file_rmap(page, vma, false);
1839 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1840 	return 0;
1841 }
1842 
1843 /*
1844  * This is the old fallback for page remapping.
1845  *
1846  * For historical reasons, it only allows reserved pages. Only
1847  * old drivers should use this, and they needed to mark their
1848  * pages reserved for the old functions anyway.
1849  */
1850 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1851 			struct page *page, pgprot_t prot)
1852 {
1853 	int retval;
1854 	pte_t *pte;
1855 	spinlock_t *ptl;
1856 
1857 	retval = validate_page_before_insert(page);
1858 	if (retval)
1859 		goto out;
1860 	retval = -ENOMEM;
1861 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1862 	if (!pte)
1863 		goto out;
1864 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1865 	pte_unmap_unlock(pte, ptl);
1866 out:
1867 	return retval;
1868 }
1869 
1870 #ifdef pte_index
1871 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1872 			unsigned long addr, struct page *page, pgprot_t prot)
1873 {
1874 	int err;
1875 
1876 	if (!page_count(page))
1877 		return -EINVAL;
1878 	err = validate_page_before_insert(page);
1879 	if (err)
1880 		return err;
1881 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1882 }
1883 
1884 /* insert_pages() amortizes the cost of spinlock operations
1885  * when inserting pages in a loop. Arch *must* define pte_index.
1886  */
1887 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1888 			struct page **pages, unsigned long *num, pgprot_t prot)
1889 {
1890 	pmd_t *pmd = NULL;
1891 	pte_t *start_pte, *pte;
1892 	spinlock_t *pte_lock;
1893 	struct mm_struct *const mm = vma->vm_mm;
1894 	unsigned long curr_page_idx = 0;
1895 	unsigned long remaining_pages_total = *num;
1896 	unsigned long pages_to_write_in_pmd;
1897 	int ret;
1898 more:
1899 	ret = -EFAULT;
1900 	pmd = walk_to_pmd(mm, addr);
1901 	if (!pmd)
1902 		goto out;
1903 
1904 	pages_to_write_in_pmd = min_t(unsigned long,
1905 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1906 
1907 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1908 	ret = -ENOMEM;
1909 	if (pte_alloc(mm, pmd))
1910 		goto out;
1911 
1912 	while (pages_to_write_in_pmd) {
1913 		int pte_idx = 0;
1914 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1915 
1916 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1917 		if (!start_pte) {
1918 			ret = -EFAULT;
1919 			goto out;
1920 		}
1921 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1922 			int err = insert_page_in_batch_locked(vma, pte,
1923 				addr, pages[curr_page_idx], prot);
1924 			if (unlikely(err)) {
1925 				pte_unmap_unlock(start_pte, pte_lock);
1926 				ret = err;
1927 				remaining_pages_total -= pte_idx;
1928 				goto out;
1929 			}
1930 			addr += PAGE_SIZE;
1931 			++curr_page_idx;
1932 		}
1933 		pte_unmap_unlock(start_pte, pte_lock);
1934 		pages_to_write_in_pmd -= batch_size;
1935 		remaining_pages_total -= batch_size;
1936 	}
1937 	if (remaining_pages_total)
1938 		goto more;
1939 	ret = 0;
1940 out:
1941 	*num = remaining_pages_total;
1942 	return ret;
1943 }
1944 #endif  /* ifdef pte_index */
1945 
1946 /**
1947  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1948  * @vma: user vma to map to
1949  * @addr: target start user address of these pages
1950  * @pages: source kernel pages
1951  * @num: in: number of pages to map. out: number of pages that were *not*
1952  * mapped. (0 means all pages were successfully mapped).
1953  *
1954  * Preferred over vm_insert_page() when inserting multiple pages.
1955  *
1956  * In case of error, we may have mapped a subset of the provided
1957  * pages. It is the caller's responsibility to account for this case.
1958  *
1959  * The same restrictions apply as in vm_insert_page().
1960  */
1961 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1962 			struct page **pages, unsigned long *num)
1963 {
1964 #ifdef pte_index
1965 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1966 
1967 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1968 		return -EFAULT;
1969 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1970 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1971 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1972 		vm_flags_set(vma, VM_MIXEDMAP);
1973 	}
1974 	/* Defer page refcount checking till we're about to map that page. */
1975 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1976 #else
1977 	unsigned long idx = 0, pgcount = *num;
1978 	int err = -EINVAL;
1979 
1980 	for (; idx < pgcount; ++idx) {
1981 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1982 		if (err)
1983 			break;
1984 	}
1985 	*num = pgcount - idx;
1986 	return err;
1987 #endif  /* ifdef pte_index */
1988 }
1989 EXPORT_SYMBOL(vm_insert_pages);
1990 
1991 /**
1992  * vm_insert_page - insert single page into user vma
1993  * @vma: user vma to map to
1994  * @addr: target user address of this page
1995  * @page: source kernel page
1996  *
1997  * This allows drivers to insert individual pages they've allocated
1998  * into a user vma.
1999  *
2000  * The page has to be a nice clean _individual_ kernel allocation.
2001  * If you allocate a compound page, you need to have marked it as
2002  * such (__GFP_COMP), or manually just split the page up yourself
2003  * (see split_page()).
2004  *
2005  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2006  * took an arbitrary page protection parameter. This doesn't allow
2007  * that. Your vma protection will have to be set up correctly, which
2008  * means that if you want a shared writable mapping, you'd better
2009  * ask for a shared writable mapping!
2010  *
2011  * The page does not need to be reserved.
2012  *
2013  * Usually this function is called from f_op->mmap() handler
2014  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2015  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2016  * function from other places, for example from page-fault handler.
2017  *
2018  * Return: %0 on success, negative error code otherwise.
2019  */
2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 			struct page *page)
2022 {
2023 	if (addr < vma->vm_start || addr >= vma->vm_end)
2024 		return -EFAULT;
2025 	if (!page_count(page))
2026 		return -EINVAL;
2027 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2028 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2029 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2030 		vm_flags_set(vma, VM_MIXEDMAP);
2031 	}
2032 	return insert_page(vma, addr, page, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vm_insert_page);
2035 
2036 /*
2037  * __vm_map_pages - maps range of kernel pages into user vma
2038  * @vma: user vma to map to
2039  * @pages: pointer to array of source kernel pages
2040  * @num: number of pages in page array
2041  * @offset: user's requested vm_pgoff
2042  *
2043  * This allows drivers to map range of kernel pages into a user vma.
2044  *
2045  * Return: 0 on success and error code otherwise.
2046  */
2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 				unsigned long num, unsigned long offset)
2049 {
2050 	unsigned long count = vma_pages(vma);
2051 	unsigned long uaddr = vma->vm_start;
2052 	int ret, i;
2053 
2054 	/* Fail if the user requested offset is beyond the end of the object */
2055 	if (offset >= num)
2056 		return -ENXIO;
2057 
2058 	/* Fail if the user requested size exceeds available object size */
2059 	if (count > num - offset)
2060 		return -ENXIO;
2061 
2062 	for (i = 0; i < count; i++) {
2063 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2064 		if (ret < 0)
2065 			return ret;
2066 		uaddr += PAGE_SIZE;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * vm_map_pages - maps range of kernel pages starts with non zero offset
2074  * @vma: user vma to map to
2075  * @pages: pointer to array of source kernel pages
2076  * @num: number of pages in page array
2077  *
2078  * Maps an object consisting of @num pages, catering for the user's
2079  * requested vm_pgoff
2080  *
2081  * If we fail to insert any page into the vma, the function will return
2082  * immediately leaving any previously inserted pages present.  Callers
2083  * from the mmap handler may immediately return the error as their caller
2084  * will destroy the vma, removing any successfully inserted pages. Other
2085  * callers should make their own arrangements for calling unmap_region().
2086  *
2087  * Context: Process context. Called by mmap handlers.
2088  * Return: 0 on success and error code otherwise.
2089  */
2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 				unsigned long num)
2092 {
2093 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2094 }
2095 EXPORT_SYMBOL(vm_map_pages);
2096 
2097 /**
2098  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2099  * @vma: user vma to map to
2100  * @pages: pointer to array of source kernel pages
2101  * @num: number of pages in page array
2102  *
2103  * Similar to vm_map_pages(), except that it explicitly sets the offset
2104  * to 0. This function is intended for the drivers that did not consider
2105  * vm_pgoff.
2106  *
2107  * Context: Process context. Called by mmap handlers.
2108  * Return: 0 on success and error code otherwise.
2109  */
2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 				unsigned long num)
2112 {
2113 	return __vm_map_pages(vma, pages, num, 0);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages_zero);
2116 
2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2119 {
2120 	struct mm_struct *mm = vma->vm_mm;
2121 	pte_t *pte, entry;
2122 	spinlock_t *ptl;
2123 
2124 	pte = get_locked_pte(mm, addr, &ptl);
2125 	if (!pte)
2126 		return VM_FAULT_OOM;
2127 	entry = ptep_get(pte);
2128 	if (!pte_none(entry)) {
2129 		if (mkwrite) {
2130 			/*
2131 			 * For read faults on private mappings the PFN passed
2132 			 * in may not match the PFN we have mapped if the
2133 			 * mapped PFN is a writeable COW page.  In the mkwrite
2134 			 * case we are creating a writable PTE for a shared
2135 			 * mapping and we expect the PFNs to match. If they
2136 			 * don't match, we are likely racing with block
2137 			 * allocation and mapping invalidation so just skip the
2138 			 * update.
2139 			 */
2140 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2141 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 				goto out_unlock;
2143 			}
2144 			entry = pte_mkyoung(entry);
2145 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2147 				update_mmu_cache(vma, addr, pte);
2148 		}
2149 		goto out_unlock;
2150 	}
2151 
2152 	/* Ok, finally just insert the thing.. */
2153 	if (pfn_t_devmap(pfn))
2154 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2155 	else
2156 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157 
2158 	if (mkwrite) {
2159 		entry = pte_mkyoung(entry);
2160 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 	}
2162 
2163 	set_pte_at(mm, addr, pte, entry);
2164 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165 
2166 out_unlock:
2167 	pte_unmap_unlock(pte, ptl);
2168 	return VM_FAULT_NOPAGE;
2169 }
2170 
2171 /**
2172  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2173  * @vma: user vma to map to
2174  * @addr: target user address of this page
2175  * @pfn: source kernel pfn
2176  * @pgprot: pgprot flags for the inserted page
2177  *
2178  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2179  * to override pgprot on a per-page basis.
2180  *
2181  * This only makes sense for IO mappings, and it makes no sense for
2182  * COW mappings.  In general, using multiple vmas is preferable;
2183  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184  * impractical.
2185  *
2186  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2187  * caching- and encryption bits different than those of @vma->vm_page_prot,
2188  * because the caching- or encryption mode may not be known at mmap() time.
2189  *
2190  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2191  * to set caching and encryption bits for those vmas (except for COW pages).
2192  * This is ensured by core vm only modifying these page table entries using
2193  * functions that don't touch caching- or encryption bits, using pte_modify()
2194  * if needed. (See for example mprotect()).
2195  *
2196  * Also when new page-table entries are created, this is only done using the
2197  * fault() callback, and never using the value of vma->vm_page_prot,
2198  * except for page-table entries that point to anonymous pages as the result
2199  * of COW.
2200  *
2201  * Context: Process context.  May allocate using %GFP_KERNEL.
2202  * Return: vm_fault_t value.
2203  */
2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 			unsigned long pfn, pgprot_t pgprot)
2206 {
2207 	/*
2208 	 * Technically, architectures with pte_special can avoid all these
2209 	 * restrictions (same for remap_pfn_range).  However we would like
2210 	 * consistency in testing and feature parity among all, so we should
2211 	 * try to keep these invariants in place for everybody.
2212 	 */
2213 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 						(VM_PFNMAP|VM_MIXEDMAP));
2216 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218 
2219 	if (addr < vma->vm_start || addr >= vma->vm_end)
2220 		return VM_FAULT_SIGBUS;
2221 
2222 	if (!pfn_modify_allowed(pfn, pgprot))
2223 		return VM_FAULT_SIGBUS;
2224 
2225 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2226 
2227 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 			false);
2229 }
2230 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231 
2232 /**
2233  * vmf_insert_pfn - insert single pfn into user vma
2234  * @vma: user vma to map to
2235  * @addr: target user address of this page
2236  * @pfn: source kernel pfn
2237  *
2238  * Similar to vm_insert_page, this allows drivers to insert individual pages
2239  * they've allocated into a user vma. Same comments apply.
2240  *
2241  * This function should only be called from a vm_ops->fault handler, and
2242  * in that case the handler should return the result of this function.
2243  *
2244  * vma cannot be a COW mapping.
2245  *
2246  * As this is called only for pages that do not currently exist, we
2247  * do not need to flush old virtual caches or the TLB.
2248  *
2249  * Context: Process context.  May allocate using %GFP_KERNEL.
2250  * Return: vm_fault_t value.
2251  */
2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 			unsigned long pfn)
2254 {
2255 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_pfn);
2258 
2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2260 {
2261 	/* these checks mirror the abort conditions in vm_normal_page */
2262 	if (vma->vm_flags & VM_MIXEDMAP)
2263 		return true;
2264 	if (pfn_t_devmap(pfn))
2265 		return true;
2266 	if (pfn_t_special(pfn))
2267 		return true;
2268 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2269 		return true;
2270 	return false;
2271 }
2272 
2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2274 		unsigned long addr, pfn_t pfn, bool mkwrite)
2275 {
2276 	pgprot_t pgprot = vma->vm_page_prot;
2277 	int err;
2278 
2279 	BUG_ON(!vm_mixed_ok(vma, pfn));
2280 
2281 	if (addr < vma->vm_start || addr >= vma->vm_end)
2282 		return VM_FAULT_SIGBUS;
2283 
2284 	track_pfn_insert(vma, &pgprot, pfn);
2285 
2286 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2287 		return VM_FAULT_SIGBUS;
2288 
2289 	/*
2290 	 * If we don't have pte special, then we have to use the pfn_valid()
2291 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2292 	 * refcount the page if pfn_valid is true (hence insert_page rather
2293 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2294 	 * without pte special, it would there be refcounted as a normal page.
2295 	 */
2296 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2297 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2298 		struct page *page;
2299 
2300 		/*
2301 		 * At this point we are committed to insert_page()
2302 		 * regardless of whether the caller specified flags that
2303 		 * result in pfn_t_has_page() == false.
2304 		 */
2305 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2306 		err = insert_page(vma, addr, page, pgprot);
2307 	} else {
2308 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2309 	}
2310 
2311 	if (err == -ENOMEM)
2312 		return VM_FAULT_OOM;
2313 	if (err < 0 && err != -EBUSY)
2314 		return VM_FAULT_SIGBUS;
2315 
2316 	return VM_FAULT_NOPAGE;
2317 }
2318 
2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 		pfn_t pfn)
2321 {
2322 	return __vm_insert_mixed(vma, addr, pfn, false);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed);
2325 
2326 /*
2327  *  If the insertion of PTE failed because someone else already added a
2328  *  different entry in the mean time, we treat that as success as we assume
2329  *  the same entry was actually inserted.
2330  */
2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2332 		unsigned long addr, pfn_t pfn)
2333 {
2334 	return __vm_insert_mixed(vma, addr, pfn, true);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337 
2338 /*
2339  * maps a range of physical memory into the requested pages. the old
2340  * mappings are removed. any references to nonexistent pages results
2341  * in null mappings (currently treated as "copy-on-access")
2342  */
2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2344 			unsigned long addr, unsigned long end,
2345 			unsigned long pfn, pgprot_t prot)
2346 {
2347 	pte_t *pte, *mapped_pte;
2348 	spinlock_t *ptl;
2349 	int err = 0;
2350 
2351 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 	if (!pte)
2353 		return -ENOMEM;
2354 	arch_enter_lazy_mmu_mode();
2355 	do {
2356 		BUG_ON(!pte_none(ptep_get(pte)));
2357 		if (!pfn_modify_allowed(pfn, prot)) {
2358 			err = -EACCES;
2359 			break;
2360 		}
2361 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2362 		pfn++;
2363 	} while (pte++, addr += PAGE_SIZE, addr != end);
2364 	arch_leave_lazy_mmu_mode();
2365 	pte_unmap_unlock(mapped_pte, ptl);
2366 	return err;
2367 }
2368 
2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 			unsigned long addr, unsigned long end,
2371 			unsigned long pfn, pgprot_t prot)
2372 {
2373 	pmd_t *pmd;
2374 	unsigned long next;
2375 	int err;
2376 
2377 	pfn -= addr >> PAGE_SHIFT;
2378 	pmd = pmd_alloc(mm, pud, addr);
2379 	if (!pmd)
2380 		return -ENOMEM;
2381 	VM_BUG_ON(pmd_trans_huge(*pmd));
2382 	do {
2383 		next = pmd_addr_end(addr, end);
2384 		err = remap_pte_range(mm, pmd, addr, next,
2385 				pfn + (addr >> PAGE_SHIFT), prot);
2386 		if (err)
2387 			return err;
2388 	} while (pmd++, addr = next, addr != end);
2389 	return 0;
2390 }
2391 
2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2393 			unsigned long addr, unsigned long end,
2394 			unsigned long pfn, pgprot_t prot)
2395 {
2396 	pud_t *pud;
2397 	unsigned long next;
2398 	int err;
2399 
2400 	pfn -= addr >> PAGE_SHIFT;
2401 	pud = pud_alloc(mm, p4d, addr);
2402 	if (!pud)
2403 		return -ENOMEM;
2404 	do {
2405 		next = pud_addr_end(addr, end);
2406 		err = remap_pmd_range(mm, pud, addr, next,
2407 				pfn + (addr >> PAGE_SHIFT), prot);
2408 		if (err)
2409 			return err;
2410 	} while (pud++, addr = next, addr != end);
2411 	return 0;
2412 }
2413 
2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2415 			unsigned long addr, unsigned long end,
2416 			unsigned long pfn, pgprot_t prot)
2417 {
2418 	p4d_t *p4d;
2419 	unsigned long next;
2420 	int err;
2421 
2422 	pfn -= addr >> PAGE_SHIFT;
2423 	p4d = p4d_alloc(mm, pgd, addr);
2424 	if (!p4d)
2425 		return -ENOMEM;
2426 	do {
2427 		next = p4d_addr_end(addr, end);
2428 		err = remap_pud_range(mm, p4d, addr, next,
2429 				pfn + (addr >> PAGE_SHIFT), prot);
2430 		if (err)
2431 			return err;
2432 	} while (p4d++, addr = next, addr != end);
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2438  * must have pre-validated the caching bits of the pgprot_t.
2439  */
2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2441 		unsigned long pfn, unsigned long size, pgprot_t prot)
2442 {
2443 	pgd_t *pgd;
2444 	unsigned long next;
2445 	unsigned long end = addr + PAGE_ALIGN(size);
2446 	struct mm_struct *mm = vma->vm_mm;
2447 	int err;
2448 
2449 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2450 		return -EINVAL;
2451 
2452 	/*
2453 	 * Physically remapped pages are special. Tell the
2454 	 * rest of the world about it:
2455 	 *   VM_IO tells people not to look at these pages
2456 	 *	(accesses can have side effects).
2457 	 *   VM_PFNMAP tells the core MM that the base pages are just
2458 	 *	raw PFN mappings, and do not have a "struct page" associated
2459 	 *	with them.
2460 	 *   VM_DONTEXPAND
2461 	 *      Disable vma merging and expanding with mremap().
2462 	 *   VM_DONTDUMP
2463 	 *      Omit vma from core dump, even when VM_IO turned off.
2464 	 *
2465 	 * There's a horrible special case to handle copy-on-write
2466 	 * behaviour that some programs depend on. We mark the "original"
2467 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2468 	 * See vm_normal_page() for details.
2469 	 */
2470 	if (is_cow_mapping(vma->vm_flags)) {
2471 		if (addr != vma->vm_start || end != vma->vm_end)
2472 			return -EINVAL;
2473 		vma->vm_pgoff = pfn;
2474 	}
2475 
2476 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2477 
2478 	BUG_ON(addr >= end);
2479 	pfn -= addr >> PAGE_SHIFT;
2480 	pgd = pgd_offset(mm, addr);
2481 	flush_cache_range(vma, addr, end);
2482 	do {
2483 		next = pgd_addr_end(addr, end);
2484 		err = remap_p4d_range(mm, pgd, addr, next,
2485 				pfn + (addr >> PAGE_SHIFT), prot);
2486 		if (err)
2487 			return err;
2488 	} while (pgd++, addr = next, addr != end);
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * remap_pfn_range - remap kernel memory to userspace
2495  * @vma: user vma to map to
2496  * @addr: target page aligned user address to start at
2497  * @pfn: page frame number of kernel physical memory address
2498  * @size: size of mapping area
2499  * @prot: page protection flags for this mapping
2500  *
2501  * Note: this is only safe if the mm semaphore is held when called.
2502  *
2503  * Return: %0 on success, negative error code otherwise.
2504  */
2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2506 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2507 {
2508 	int err;
2509 
2510 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2511 	if (err)
2512 		return -EINVAL;
2513 
2514 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2515 	if (err)
2516 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2517 	return err;
2518 }
2519 EXPORT_SYMBOL(remap_pfn_range);
2520 
2521 /**
2522  * vm_iomap_memory - remap memory to userspace
2523  * @vma: user vma to map to
2524  * @start: start of the physical memory to be mapped
2525  * @len: size of area
2526  *
2527  * This is a simplified io_remap_pfn_range() for common driver use. The
2528  * driver just needs to give us the physical memory range to be mapped,
2529  * we'll figure out the rest from the vma information.
2530  *
2531  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2532  * whatever write-combining details or similar.
2533  *
2534  * Return: %0 on success, negative error code otherwise.
2535  */
2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2537 {
2538 	unsigned long vm_len, pfn, pages;
2539 
2540 	/* Check that the physical memory area passed in looks valid */
2541 	if (start + len < start)
2542 		return -EINVAL;
2543 	/*
2544 	 * You *really* shouldn't map things that aren't page-aligned,
2545 	 * but we've historically allowed it because IO memory might
2546 	 * just have smaller alignment.
2547 	 */
2548 	len += start & ~PAGE_MASK;
2549 	pfn = start >> PAGE_SHIFT;
2550 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2551 	if (pfn + pages < pfn)
2552 		return -EINVAL;
2553 
2554 	/* We start the mapping 'vm_pgoff' pages into the area */
2555 	if (vma->vm_pgoff > pages)
2556 		return -EINVAL;
2557 	pfn += vma->vm_pgoff;
2558 	pages -= vma->vm_pgoff;
2559 
2560 	/* Can we fit all of the mapping? */
2561 	vm_len = vma->vm_end - vma->vm_start;
2562 	if (vm_len >> PAGE_SHIFT > pages)
2563 		return -EINVAL;
2564 
2565 	/* Ok, let it rip */
2566 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2567 }
2568 EXPORT_SYMBOL(vm_iomap_memory);
2569 
2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2571 				     unsigned long addr, unsigned long end,
2572 				     pte_fn_t fn, void *data, bool create,
2573 				     pgtbl_mod_mask *mask)
2574 {
2575 	pte_t *pte, *mapped_pte;
2576 	int err = 0;
2577 	spinlock_t *ptl;
2578 
2579 	if (create) {
2580 		mapped_pte = pte = (mm == &init_mm) ?
2581 			pte_alloc_kernel_track(pmd, addr, mask) :
2582 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2583 		if (!pte)
2584 			return -ENOMEM;
2585 	} else {
2586 		mapped_pte = pte = (mm == &init_mm) ?
2587 			pte_offset_kernel(pmd, addr) :
2588 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2589 		if (!pte)
2590 			return -EINVAL;
2591 	}
2592 
2593 	arch_enter_lazy_mmu_mode();
2594 
2595 	if (fn) {
2596 		do {
2597 			if (create || !pte_none(ptep_get(pte))) {
2598 				err = fn(pte++, addr, data);
2599 				if (err)
2600 					break;
2601 			}
2602 		} while (addr += PAGE_SIZE, addr != end);
2603 	}
2604 	*mask |= PGTBL_PTE_MODIFIED;
2605 
2606 	arch_leave_lazy_mmu_mode();
2607 
2608 	if (mm != &init_mm)
2609 		pte_unmap_unlock(mapped_pte, ptl);
2610 	return err;
2611 }
2612 
2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2614 				     unsigned long addr, unsigned long end,
2615 				     pte_fn_t fn, void *data, bool create,
2616 				     pgtbl_mod_mask *mask)
2617 {
2618 	pmd_t *pmd;
2619 	unsigned long next;
2620 	int err = 0;
2621 
2622 	BUG_ON(pud_huge(*pud));
2623 
2624 	if (create) {
2625 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2626 		if (!pmd)
2627 			return -ENOMEM;
2628 	} else {
2629 		pmd = pmd_offset(pud, addr);
2630 	}
2631 	do {
2632 		next = pmd_addr_end(addr, end);
2633 		if (pmd_none(*pmd) && !create)
2634 			continue;
2635 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2636 			return -EINVAL;
2637 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2638 			if (!create)
2639 				continue;
2640 			pmd_clear_bad(pmd);
2641 		}
2642 		err = apply_to_pte_range(mm, pmd, addr, next,
2643 					 fn, data, create, mask);
2644 		if (err)
2645 			break;
2646 	} while (pmd++, addr = next, addr != end);
2647 
2648 	return err;
2649 }
2650 
2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2652 				     unsigned long addr, unsigned long end,
2653 				     pte_fn_t fn, void *data, bool create,
2654 				     pgtbl_mod_mask *mask)
2655 {
2656 	pud_t *pud;
2657 	unsigned long next;
2658 	int err = 0;
2659 
2660 	if (create) {
2661 		pud = pud_alloc_track(mm, p4d, addr, mask);
2662 		if (!pud)
2663 			return -ENOMEM;
2664 	} else {
2665 		pud = pud_offset(p4d, addr);
2666 	}
2667 	do {
2668 		next = pud_addr_end(addr, end);
2669 		if (pud_none(*pud) && !create)
2670 			continue;
2671 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2672 			return -EINVAL;
2673 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2674 			if (!create)
2675 				continue;
2676 			pud_clear_bad(pud);
2677 		}
2678 		err = apply_to_pmd_range(mm, pud, addr, next,
2679 					 fn, data, create, mask);
2680 		if (err)
2681 			break;
2682 	} while (pud++, addr = next, addr != end);
2683 
2684 	return err;
2685 }
2686 
2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2688 				     unsigned long addr, unsigned long end,
2689 				     pte_fn_t fn, void *data, bool create,
2690 				     pgtbl_mod_mask *mask)
2691 {
2692 	p4d_t *p4d;
2693 	unsigned long next;
2694 	int err = 0;
2695 
2696 	if (create) {
2697 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2698 		if (!p4d)
2699 			return -ENOMEM;
2700 	} else {
2701 		p4d = p4d_offset(pgd, addr);
2702 	}
2703 	do {
2704 		next = p4d_addr_end(addr, end);
2705 		if (p4d_none(*p4d) && !create)
2706 			continue;
2707 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2708 			return -EINVAL;
2709 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2710 			if (!create)
2711 				continue;
2712 			p4d_clear_bad(p4d);
2713 		}
2714 		err = apply_to_pud_range(mm, p4d, addr, next,
2715 					 fn, data, create, mask);
2716 		if (err)
2717 			break;
2718 	} while (p4d++, addr = next, addr != end);
2719 
2720 	return err;
2721 }
2722 
2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2724 				 unsigned long size, pte_fn_t fn,
2725 				 void *data, bool create)
2726 {
2727 	pgd_t *pgd;
2728 	unsigned long start = addr, next;
2729 	unsigned long end = addr + size;
2730 	pgtbl_mod_mask mask = 0;
2731 	int err = 0;
2732 
2733 	if (WARN_ON(addr >= end))
2734 		return -EINVAL;
2735 
2736 	pgd = pgd_offset(mm, addr);
2737 	do {
2738 		next = pgd_addr_end(addr, end);
2739 		if (pgd_none(*pgd) && !create)
2740 			continue;
2741 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2742 			return -EINVAL;
2743 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2744 			if (!create)
2745 				continue;
2746 			pgd_clear_bad(pgd);
2747 		}
2748 		err = apply_to_p4d_range(mm, pgd, addr, next,
2749 					 fn, data, create, &mask);
2750 		if (err)
2751 			break;
2752 	} while (pgd++, addr = next, addr != end);
2753 
2754 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2755 		arch_sync_kernel_mappings(start, start + size);
2756 
2757 	return err;
2758 }
2759 
2760 /*
2761  * Scan a region of virtual memory, filling in page tables as necessary
2762  * and calling a provided function on each leaf page table.
2763  */
2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 			unsigned long size, pte_fn_t fn, void *data)
2766 {
2767 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_page_range);
2770 
2771 /*
2772  * Scan a region of virtual memory, calling a provided function on
2773  * each leaf page table where it exists.
2774  *
2775  * Unlike apply_to_page_range, this does _not_ fill in page tables
2776  * where they are absent.
2777  */
2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2779 				 unsigned long size, pte_fn_t fn, void *data)
2780 {
2781 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2782 }
2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2784 
2785 /*
2786  * handle_pte_fault chooses page fault handler according to an entry which was
2787  * read non-atomically.  Before making any commitment, on those architectures
2788  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2789  * parts, do_swap_page must check under lock before unmapping the pte and
2790  * proceeding (but do_wp_page is only called after already making such a check;
2791  * and do_anonymous_page can safely check later on).
2792  */
2793 static inline int pte_unmap_same(struct vm_fault *vmf)
2794 {
2795 	int same = 1;
2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2797 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2798 		spin_lock(vmf->ptl);
2799 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2800 		spin_unlock(vmf->ptl);
2801 	}
2802 #endif
2803 	pte_unmap(vmf->pte);
2804 	vmf->pte = NULL;
2805 	return same;
2806 }
2807 
2808 /*
2809  * Return:
2810  *	0:		copied succeeded
2811  *	-EHWPOISON:	copy failed due to hwpoison in source page
2812  *	-EAGAIN:	copied failed (some other reason)
2813  */
2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2815 				      struct vm_fault *vmf)
2816 {
2817 	int ret;
2818 	void *kaddr;
2819 	void __user *uaddr;
2820 	struct vm_area_struct *vma = vmf->vma;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	unsigned long addr = vmf->address;
2823 
2824 	if (likely(src)) {
2825 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826 			memory_failure_queue(page_to_pfn(src), 0);
2827 			return -EHWPOISON;
2828 		}
2829 		return 0;
2830 	}
2831 
2832 	/*
2833 	 * If the source page was a PFN mapping, we don't have
2834 	 * a "struct page" for it. We do a best-effort copy by
2835 	 * just copying from the original user address. If that
2836 	 * fails, we just zero-fill it. Live with it.
2837 	 */
2838 	kaddr = kmap_atomic(dst);
2839 	uaddr = (void __user *)(addr & PAGE_MASK);
2840 
2841 	/*
2842 	 * On architectures with software "accessed" bits, we would
2843 	 * take a double page fault, so mark it accessed here.
2844 	 */
2845 	vmf->pte = NULL;
2846 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2847 		pte_t entry;
2848 
2849 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2850 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2851 			/*
2852 			 * Other thread has already handled the fault
2853 			 * and update local tlb only
2854 			 */
2855 			if (vmf->pte)
2856 				update_mmu_tlb(vma, addr, vmf->pte);
2857 			ret = -EAGAIN;
2858 			goto pte_unlock;
2859 		}
2860 
2861 		entry = pte_mkyoung(vmf->orig_pte);
2862 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2863 			update_mmu_cache(vma, addr, vmf->pte);
2864 	}
2865 
2866 	/*
2867 	 * This really shouldn't fail, because the page is there
2868 	 * in the page tables. But it might just be unreadable,
2869 	 * in which case we just give up and fill the result with
2870 	 * zeroes.
2871 	 */
2872 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2873 		if (vmf->pte)
2874 			goto warn;
2875 
2876 		/* Re-validate under PTL if the page is still mapped */
2877 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2878 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2879 			/* The PTE changed under us, update local tlb */
2880 			if (vmf->pte)
2881 				update_mmu_tlb(vma, addr, vmf->pte);
2882 			ret = -EAGAIN;
2883 			goto pte_unlock;
2884 		}
2885 
2886 		/*
2887 		 * The same page can be mapped back since last copy attempt.
2888 		 * Try to copy again under PTL.
2889 		 */
2890 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2891 			/*
2892 			 * Give a warn in case there can be some obscure
2893 			 * use-case
2894 			 */
2895 warn:
2896 			WARN_ON_ONCE(1);
2897 			clear_page(kaddr);
2898 		}
2899 	}
2900 
2901 	ret = 0;
2902 
2903 pte_unlock:
2904 	if (vmf->pte)
2905 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2906 	kunmap_atomic(kaddr);
2907 	flush_dcache_page(dst);
2908 
2909 	return ret;
2910 }
2911 
2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2913 {
2914 	struct file *vm_file = vma->vm_file;
2915 
2916 	if (vm_file)
2917 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2918 
2919 	/*
2920 	 * Special mappings (e.g. VDSO) do not have any file so fake
2921 	 * a default GFP_KERNEL for them.
2922 	 */
2923 	return GFP_KERNEL;
2924 }
2925 
2926 /*
2927  * Notify the address space that the page is about to become writable so that
2928  * it can prohibit this or wait for the page to get into an appropriate state.
2929  *
2930  * We do this without the lock held, so that it can sleep if it needs to.
2931  */
2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2933 {
2934 	vm_fault_t ret;
2935 	struct page *page = vmf->page;
2936 	unsigned int old_flags = vmf->flags;
2937 
2938 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2939 
2940 	if (vmf->vma->vm_file &&
2941 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2942 		return VM_FAULT_SIGBUS;
2943 
2944 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2945 	/* Restore original flags so that caller is not surprised */
2946 	vmf->flags = old_flags;
2947 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2948 		return ret;
2949 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2950 		lock_page(page);
2951 		if (!page->mapping) {
2952 			unlock_page(page);
2953 			return 0; /* retry */
2954 		}
2955 		ret |= VM_FAULT_LOCKED;
2956 	} else
2957 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2958 	return ret;
2959 }
2960 
2961 /*
2962  * Handle dirtying of a page in shared file mapping on a write fault.
2963  *
2964  * The function expects the page to be locked and unlocks it.
2965  */
2966 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2967 {
2968 	struct vm_area_struct *vma = vmf->vma;
2969 	struct address_space *mapping;
2970 	struct folio *folio = page_folio(vmf->page);
2971 	bool dirtied;
2972 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2973 
2974 	dirtied = folio_mark_dirty(folio);
2975 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2976 	/*
2977 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2978 	 * by truncate after folio_unlock().   The address_space itself remains
2979 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2980 	 * release semantics to prevent the compiler from undoing this copying.
2981 	 */
2982 	mapping = folio_raw_mapping(folio);
2983 	folio_unlock(folio);
2984 
2985 	if (!page_mkwrite)
2986 		file_update_time(vma->vm_file);
2987 
2988 	/*
2989 	 * Throttle page dirtying rate down to writeback speed.
2990 	 *
2991 	 * mapping may be NULL here because some device drivers do not
2992 	 * set page.mapping but still dirty their pages
2993 	 *
2994 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2995 	 * is pinning the mapping, as per above.
2996 	 */
2997 	if ((dirtied || page_mkwrite) && mapping) {
2998 		struct file *fpin;
2999 
3000 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3001 		balance_dirty_pages_ratelimited(mapping);
3002 		if (fpin) {
3003 			fput(fpin);
3004 			return VM_FAULT_COMPLETED;
3005 		}
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /*
3012  * Handle write page faults for pages that can be reused in the current vma
3013  *
3014  * This can happen either due to the mapping being with the VM_SHARED flag,
3015  * or due to us being the last reference standing to the page. In either
3016  * case, all we need to do here is to mark the page as writable and update
3017  * any related book-keeping.
3018  */
3019 static inline void wp_page_reuse(struct vm_fault *vmf)
3020 	__releases(vmf->ptl)
3021 {
3022 	struct vm_area_struct *vma = vmf->vma;
3023 	struct page *page = vmf->page;
3024 	pte_t entry;
3025 
3026 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3027 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3028 
3029 	/*
3030 	 * Clear the pages cpupid information as the existing
3031 	 * information potentially belongs to a now completely
3032 	 * unrelated process.
3033 	 */
3034 	if (page)
3035 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3036 
3037 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3038 	entry = pte_mkyoung(vmf->orig_pte);
3039 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3040 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3041 		update_mmu_cache(vma, vmf->address, vmf->pte);
3042 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3043 	count_vm_event(PGREUSE);
3044 }
3045 
3046 /*
3047  * Handle the case of a page which we actually need to copy to a new page,
3048  * either due to COW or unsharing.
3049  *
3050  * Called with mmap_lock locked and the old page referenced, but
3051  * without the ptl held.
3052  *
3053  * High level logic flow:
3054  *
3055  * - Allocate a page, copy the content of the old page to the new one.
3056  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3057  * - Take the PTL. If the pte changed, bail out and release the allocated page
3058  * - If the pte is still the way we remember it, update the page table and all
3059  *   relevant references. This includes dropping the reference the page-table
3060  *   held to the old page, as well as updating the rmap.
3061  * - In any case, unlock the PTL and drop the reference we took to the old page.
3062  */
3063 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3064 {
3065 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3066 	struct vm_area_struct *vma = vmf->vma;
3067 	struct mm_struct *mm = vma->vm_mm;
3068 	struct folio *old_folio = NULL;
3069 	struct folio *new_folio = NULL;
3070 	pte_t entry;
3071 	int page_copied = 0;
3072 	struct mmu_notifier_range range;
3073 	int ret;
3074 
3075 	delayacct_wpcopy_start();
3076 
3077 	if (vmf->page)
3078 		old_folio = page_folio(vmf->page);
3079 	if (unlikely(anon_vma_prepare(vma)))
3080 		goto oom;
3081 
3082 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3083 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3084 		if (!new_folio)
3085 			goto oom;
3086 	} else {
3087 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3088 				vmf->address, false);
3089 		if (!new_folio)
3090 			goto oom;
3091 
3092 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3093 		if (ret) {
3094 			/*
3095 			 * COW failed, if the fault was solved by other,
3096 			 * it's fine. If not, userspace would re-fault on
3097 			 * the same address and we will handle the fault
3098 			 * from the second attempt.
3099 			 * The -EHWPOISON case will not be retried.
3100 			 */
3101 			folio_put(new_folio);
3102 			if (old_folio)
3103 				folio_put(old_folio);
3104 
3105 			delayacct_wpcopy_end();
3106 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3107 		}
3108 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3109 	}
3110 
3111 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3112 		goto oom_free_new;
3113 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3114 
3115 	__folio_mark_uptodate(new_folio);
3116 
3117 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3118 				vmf->address & PAGE_MASK,
3119 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3120 	mmu_notifier_invalidate_range_start(&range);
3121 
3122 	/*
3123 	 * Re-check the pte - we dropped the lock
3124 	 */
3125 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3126 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3127 		if (old_folio) {
3128 			if (!folio_test_anon(old_folio)) {
3129 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3130 				inc_mm_counter(mm, MM_ANONPAGES);
3131 			}
3132 		} else {
3133 			ksm_might_unmap_zero_page(vmf->orig_pte);
3134 			inc_mm_counter(mm, MM_ANONPAGES);
3135 		}
3136 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3137 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3138 		entry = pte_sw_mkyoung(entry);
3139 		if (unlikely(unshare)) {
3140 			if (pte_soft_dirty(vmf->orig_pte))
3141 				entry = pte_mksoft_dirty(entry);
3142 			if (pte_uffd_wp(vmf->orig_pte))
3143 				entry = pte_mkuffd_wp(entry);
3144 		} else {
3145 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3146 		}
3147 
3148 		/*
3149 		 * Clear the pte entry and flush it first, before updating the
3150 		 * pte with the new entry, to keep TLBs on different CPUs in
3151 		 * sync. This code used to set the new PTE then flush TLBs, but
3152 		 * that left a window where the new PTE could be loaded into
3153 		 * some TLBs while the old PTE remains in others.
3154 		 */
3155 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3156 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3157 		folio_add_lru_vma(new_folio, vma);
3158 		/*
3159 		 * We call the notify macro here because, when using secondary
3160 		 * mmu page tables (such as kvm shadow page tables), we want the
3161 		 * new page to be mapped directly into the secondary page table.
3162 		 */
3163 		BUG_ON(unshare && pte_write(entry));
3164 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3165 		update_mmu_cache(vma, vmf->address, vmf->pte);
3166 		if (old_folio) {
3167 			/*
3168 			 * Only after switching the pte to the new page may
3169 			 * we remove the mapcount here. Otherwise another
3170 			 * process may come and find the rmap count decremented
3171 			 * before the pte is switched to the new page, and
3172 			 * "reuse" the old page writing into it while our pte
3173 			 * here still points into it and can be read by other
3174 			 * threads.
3175 			 *
3176 			 * The critical issue is to order this
3177 			 * page_remove_rmap with the ptp_clear_flush above.
3178 			 * Those stores are ordered by (if nothing else,)
3179 			 * the barrier present in the atomic_add_negative
3180 			 * in page_remove_rmap.
3181 			 *
3182 			 * Then the TLB flush in ptep_clear_flush ensures that
3183 			 * no process can access the old page before the
3184 			 * decremented mapcount is visible. And the old page
3185 			 * cannot be reused until after the decremented
3186 			 * mapcount is visible. So transitively, TLBs to
3187 			 * old page will be flushed before it can be reused.
3188 			 */
3189 			page_remove_rmap(vmf->page, vma, false);
3190 		}
3191 
3192 		/* Free the old page.. */
3193 		new_folio = old_folio;
3194 		page_copied = 1;
3195 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 	} else if (vmf->pte) {
3197 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3198 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 	}
3200 
3201 	/*
3202 	 * No need to double call mmu_notifier->invalidate_range() callback as
3203 	 * the above ptep_clear_flush_notify() did already call it.
3204 	 */
3205 	mmu_notifier_invalidate_range_only_end(&range);
3206 
3207 	if (new_folio)
3208 		folio_put(new_folio);
3209 	if (old_folio) {
3210 		if (page_copied)
3211 			free_swap_cache(&old_folio->page);
3212 		folio_put(old_folio);
3213 	}
3214 
3215 	delayacct_wpcopy_end();
3216 	return 0;
3217 oom_free_new:
3218 	folio_put(new_folio);
3219 oom:
3220 	if (old_folio)
3221 		folio_put(old_folio);
3222 
3223 	delayacct_wpcopy_end();
3224 	return VM_FAULT_OOM;
3225 }
3226 
3227 /**
3228  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3229  *			  writeable once the page is prepared
3230  *
3231  * @vmf: structure describing the fault
3232  *
3233  * This function handles all that is needed to finish a write page fault in a
3234  * shared mapping due to PTE being read-only once the mapped page is prepared.
3235  * It handles locking of PTE and modifying it.
3236  *
3237  * The function expects the page to be locked or other protection against
3238  * concurrent faults / writeback (such as DAX radix tree locks).
3239  *
3240  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3241  * we acquired PTE lock.
3242  */
3243 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3244 {
3245 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3246 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3247 				       &vmf->ptl);
3248 	if (!vmf->pte)
3249 		return VM_FAULT_NOPAGE;
3250 	/*
3251 	 * We might have raced with another page fault while we released the
3252 	 * pte_offset_map_lock.
3253 	 */
3254 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3255 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3256 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3257 		return VM_FAULT_NOPAGE;
3258 	}
3259 	wp_page_reuse(vmf);
3260 	return 0;
3261 }
3262 
3263 /*
3264  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3265  * mapping
3266  */
3267 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3268 {
3269 	struct vm_area_struct *vma = vmf->vma;
3270 
3271 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3272 		vm_fault_t ret;
3273 
3274 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275 		vmf->flags |= FAULT_FLAG_MKWRITE;
3276 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3277 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3278 			return ret;
3279 		return finish_mkwrite_fault(vmf);
3280 	}
3281 	wp_page_reuse(vmf);
3282 	return 0;
3283 }
3284 
3285 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3286 	__releases(vmf->ptl)
3287 {
3288 	struct vm_area_struct *vma = vmf->vma;
3289 	vm_fault_t ret = 0;
3290 
3291 	get_page(vmf->page);
3292 
3293 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3294 		vm_fault_t tmp;
3295 
3296 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3297 		tmp = do_page_mkwrite(vmf);
3298 		if (unlikely(!tmp || (tmp &
3299 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3300 			put_page(vmf->page);
3301 			return tmp;
3302 		}
3303 		tmp = finish_mkwrite_fault(vmf);
3304 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3305 			unlock_page(vmf->page);
3306 			put_page(vmf->page);
3307 			return tmp;
3308 		}
3309 	} else {
3310 		wp_page_reuse(vmf);
3311 		lock_page(vmf->page);
3312 	}
3313 	ret |= fault_dirty_shared_page(vmf);
3314 	put_page(vmf->page);
3315 
3316 	return ret;
3317 }
3318 
3319 /*
3320  * This routine handles present pages, when
3321  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3322  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3323  *   (FAULT_FLAG_UNSHARE)
3324  *
3325  * It is done by copying the page to a new address and decrementing the
3326  * shared-page counter for the old page.
3327  *
3328  * Note that this routine assumes that the protection checks have been
3329  * done by the caller (the low-level page fault routine in most cases).
3330  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3331  * done any necessary COW.
3332  *
3333  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3334  * though the page will change only once the write actually happens. This
3335  * avoids a few races, and potentially makes it more efficient.
3336  *
3337  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3338  * but allow concurrent faults), with pte both mapped and locked.
3339  * We return with mmap_lock still held, but pte unmapped and unlocked.
3340  */
3341 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3342 	__releases(vmf->ptl)
3343 {
3344 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3345 	struct vm_area_struct *vma = vmf->vma;
3346 	struct folio *folio = NULL;
3347 
3348 	if (likely(!unshare)) {
3349 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3350 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3351 			return handle_userfault(vmf, VM_UFFD_WP);
3352 		}
3353 
3354 		/*
3355 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3356 		 * is flushed in this case before copying.
3357 		 */
3358 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3359 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3360 			flush_tlb_page(vmf->vma, vmf->address);
3361 	}
3362 
3363 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3364 
3365 	/*
3366 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3367 	 * FAULT_FLAG_WRITE set at this point.
3368 	 */
3369 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3370 		/*
3371 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3372 		 * VM_PFNMAP VMA.
3373 		 *
3374 		 * We should not cow pages in a shared writeable mapping.
3375 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3376 		 */
3377 		if (!vmf->page)
3378 			return wp_pfn_shared(vmf);
3379 		return wp_page_shared(vmf);
3380 	}
3381 
3382 	if (vmf->page)
3383 		folio = page_folio(vmf->page);
3384 
3385 	/*
3386 	 * Private mapping: create an exclusive anonymous page copy if reuse
3387 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3388 	 */
3389 	if (folio && folio_test_anon(folio)) {
3390 		/*
3391 		 * If the page is exclusive to this process we must reuse the
3392 		 * page without further checks.
3393 		 */
3394 		if (PageAnonExclusive(vmf->page))
3395 			goto reuse;
3396 
3397 		/*
3398 		 * We have to verify under folio lock: these early checks are
3399 		 * just an optimization to avoid locking the folio and freeing
3400 		 * the swapcache if there is little hope that we can reuse.
3401 		 *
3402 		 * KSM doesn't necessarily raise the folio refcount.
3403 		 */
3404 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3405 			goto copy;
3406 		if (!folio_test_lru(folio))
3407 			/*
3408 			 * We cannot easily detect+handle references from
3409 			 * remote LRU caches or references to LRU folios.
3410 			 */
3411 			lru_add_drain();
3412 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3413 			goto copy;
3414 		if (!folio_trylock(folio))
3415 			goto copy;
3416 		if (folio_test_swapcache(folio))
3417 			folio_free_swap(folio);
3418 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3419 			folio_unlock(folio);
3420 			goto copy;
3421 		}
3422 		/*
3423 		 * Ok, we've got the only folio reference from our mapping
3424 		 * and the folio is locked, it's dark out, and we're wearing
3425 		 * sunglasses. Hit it.
3426 		 */
3427 		page_move_anon_rmap(vmf->page, vma);
3428 		folio_unlock(folio);
3429 reuse:
3430 		if (unlikely(unshare)) {
3431 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3432 			return 0;
3433 		}
3434 		wp_page_reuse(vmf);
3435 		return 0;
3436 	}
3437 copy:
3438 	/*
3439 	 * Ok, we need to copy. Oh, well..
3440 	 */
3441 	if (folio)
3442 		folio_get(folio);
3443 
3444 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 #ifdef CONFIG_KSM
3446 	if (folio && folio_test_ksm(folio))
3447 		count_vm_event(COW_KSM);
3448 #endif
3449 	return wp_page_copy(vmf);
3450 }
3451 
3452 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3453 		unsigned long start_addr, unsigned long end_addr,
3454 		struct zap_details *details)
3455 {
3456 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3457 }
3458 
3459 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3460 					    pgoff_t first_index,
3461 					    pgoff_t last_index,
3462 					    struct zap_details *details)
3463 {
3464 	struct vm_area_struct *vma;
3465 	pgoff_t vba, vea, zba, zea;
3466 
3467 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3468 		vba = vma->vm_pgoff;
3469 		vea = vba + vma_pages(vma) - 1;
3470 		zba = max(first_index, vba);
3471 		zea = min(last_index, vea);
3472 
3473 		unmap_mapping_range_vma(vma,
3474 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3475 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3476 				details);
3477 	}
3478 }
3479 
3480 /**
3481  * unmap_mapping_folio() - Unmap single folio from processes.
3482  * @folio: The locked folio to be unmapped.
3483  *
3484  * Unmap this folio from any userspace process which still has it mmaped.
3485  * Typically, for efficiency, the range of nearby pages has already been
3486  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3487  * truncation or invalidation holds the lock on a folio, it may find that
3488  * the page has been remapped again: and then uses unmap_mapping_folio()
3489  * to unmap it finally.
3490  */
3491 void unmap_mapping_folio(struct folio *folio)
3492 {
3493 	struct address_space *mapping = folio->mapping;
3494 	struct zap_details details = { };
3495 	pgoff_t	first_index;
3496 	pgoff_t	last_index;
3497 
3498 	VM_BUG_ON(!folio_test_locked(folio));
3499 
3500 	first_index = folio->index;
3501 	last_index = folio_next_index(folio) - 1;
3502 
3503 	details.even_cows = false;
3504 	details.single_folio = folio;
3505 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3506 
3507 	i_mmap_lock_read(mapping);
3508 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3509 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3510 					 last_index, &details);
3511 	i_mmap_unlock_read(mapping);
3512 }
3513 
3514 /**
3515  * unmap_mapping_pages() - Unmap pages from processes.
3516  * @mapping: The address space containing pages to be unmapped.
3517  * @start: Index of first page to be unmapped.
3518  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3519  * @even_cows: Whether to unmap even private COWed pages.
3520  *
3521  * Unmap the pages in this address space from any userspace process which
3522  * has them mmaped.  Generally, you want to remove COWed pages as well when
3523  * a file is being truncated, but not when invalidating pages from the page
3524  * cache.
3525  */
3526 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3527 		pgoff_t nr, bool even_cows)
3528 {
3529 	struct zap_details details = { };
3530 	pgoff_t	first_index = start;
3531 	pgoff_t	last_index = start + nr - 1;
3532 
3533 	details.even_cows = even_cows;
3534 	if (last_index < first_index)
3535 		last_index = ULONG_MAX;
3536 
3537 	i_mmap_lock_read(mapping);
3538 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 					 last_index, &details);
3541 	i_mmap_unlock_read(mapping);
3542 }
3543 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3544 
3545 /**
3546  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3547  * address_space corresponding to the specified byte range in the underlying
3548  * file.
3549  *
3550  * @mapping: the address space containing mmaps to be unmapped.
3551  * @holebegin: byte in first page to unmap, relative to the start of
3552  * the underlying file.  This will be rounded down to a PAGE_SIZE
3553  * boundary.  Note that this is different from truncate_pagecache(), which
3554  * must keep the partial page.  In contrast, we must get rid of
3555  * partial pages.
3556  * @holelen: size of prospective hole in bytes.  This will be rounded
3557  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3558  * end of the file.
3559  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3560  * but 0 when invalidating pagecache, don't throw away private data.
3561  */
3562 void unmap_mapping_range(struct address_space *mapping,
3563 		loff_t const holebegin, loff_t const holelen, int even_cows)
3564 {
3565 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3566 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3567 
3568 	/* Check for overflow. */
3569 	if (sizeof(holelen) > sizeof(hlen)) {
3570 		long long holeend =
3571 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3572 		if (holeend & ~(long long)ULONG_MAX)
3573 			hlen = ULONG_MAX - hba + 1;
3574 	}
3575 
3576 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3577 }
3578 EXPORT_SYMBOL(unmap_mapping_range);
3579 
3580 /*
3581  * Restore a potential device exclusive pte to a working pte entry
3582  */
3583 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3584 {
3585 	struct folio *folio = page_folio(vmf->page);
3586 	struct vm_area_struct *vma = vmf->vma;
3587 	struct mmu_notifier_range range;
3588 
3589 	/*
3590 	 * We need a reference to lock the folio because we don't hold
3591 	 * the PTL so a racing thread can remove the device-exclusive
3592 	 * entry and unmap it. If the folio is free the entry must
3593 	 * have been removed already. If it happens to have already
3594 	 * been re-allocated after being freed all we do is lock and
3595 	 * unlock it.
3596 	 */
3597 	if (!folio_try_get(folio))
3598 		return 0;
3599 
3600 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3601 		folio_put(folio);
3602 		return VM_FAULT_RETRY;
3603 	}
3604 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3605 				vma->vm_mm, vmf->address & PAGE_MASK,
3606 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3607 	mmu_notifier_invalidate_range_start(&range);
3608 
3609 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3610 				&vmf->ptl);
3611 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3612 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3613 
3614 	if (vmf->pte)
3615 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 	folio_unlock(folio);
3617 	folio_put(folio);
3618 
3619 	mmu_notifier_invalidate_range_end(&range);
3620 	return 0;
3621 }
3622 
3623 static inline bool should_try_to_free_swap(struct folio *folio,
3624 					   struct vm_area_struct *vma,
3625 					   unsigned int fault_flags)
3626 {
3627 	if (!folio_test_swapcache(folio))
3628 		return false;
3629 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3630 	    folio_test_mlocked(folio))
3631 		return true;
3632 	/*
3633 	 * If we want to map a page that's in the swapcache writable, we
3634 	 * have to detect via the refcount if we're really the exclusive
3635 	 * user. Try freeing the swapcache to get rid of the swapcache
3636 	 * reference only in case it's likely that we'll be the exlusive user.
3637 	 */
3638 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3639 		folio_ref_count(folio) == 2;
3640 }
3641 
3642 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3643 {
3644 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3645 				       vmf->address, &vmf->ptl);
3646 	if (!vmf->pte)
3647 		return 0;
3648 	/*
3649 	 * Be careful so that we will only recover a special uffd-wp pte into a
3650 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3651 	 *
3652 	 * This should also cover the case where e.g. the pte changed
3653 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3654 	 * So is_pte_marker() check is not enough to safely drop the pte.
3655 	 */
3656 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3657 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3658 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 	return 0;
3660 }
3661 
3662 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3663 {
3664 	if (vma_is_anonymous(vmf->vma))
3665 		return do_anonymous_page(vmf);
3666 	else
3667 		return do_fault(vmf);
3668 }
3669 
3670 /*
3671  * This is actually a page-missing access, but with uffd-wp special pte
3672  * installed.  It means this pte was wr-protected before being unmapped.
3673  */
3674 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3675 {
3676 	/*
3677 	 * Just in case there're leftover special ptes even after the region
3678 	 * got unregistered - we can simply clear them.
3679 	 */
3680 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3681 		return pte_marker_clear(vmf);
3682 
3683 	return do_pte_missing(vmf);
3684 }
3685 
3686 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3687 {
3688 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3689 	unsigned long marker = pte_marker_get(entry);
3690 
3691 	/*
3692 	 * PTE markers should never be empty.  If anything weird happened,
3693 	 * the best thing to do is to kill the process along with its mm.
3694 	 */
3695 	if (WARN_ON_ONCE(!marker))
3696 		return VM_FAULT_SIGBUS;
3697 
3698 	/* Higher priority than uffd-wp when data corrupted */
3699 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3700 		return VM_FAULT_SIGBUS;
3701 
3702 	if (pte_marker_entry_uffd_wp(entry))
3703 		return pte_marker_handle_uffd_wp(vmf);
3704 
3705 	/* This is an unknown pte marker */
3706 	return VM_FAULT_SIGBUS;
3707 }
3708 
3709 /*
3710  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3711  * but allow concurrent faults), and pte mapped but not yet locked.
3712  * We return with pte unmapped and unlocked.
3713  *
3714  * We return with the mmap_lock locked or unlocked in the same cases
3715  * as does filemap_fault().
3716  */
3717 vm_fault_t do_swap_page(struct vm_fault *vmf)
3718 {
3719 	struct vm_area_struct *vma = vmf->vma;
3720 	struct folio *swapcache, *folio = NULL;
3721 	struct page *page;
3722 	struct swap_info_struct *si = NULL;
3723 	rmap_t rmap_flags = RMAP_NONE;
3724 	bool exclusive = false;
3725 	swp_entry_t entry;
3726 	pte_t pte;
3727 	int locked;
3728 	vm_fault_t ret = 0;
3729 	void *shadow = NULL;
3730 
3731 	if (!pte_unmap_same(vmf))
3732 		goto out;
3733 
3734 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3735 		ret = VM_FAULT_RETRY;
3736 		goto out;
3737 	}
3738 
3739 	entry = pte_to_swp_entry(vmf->orig_pte);
3740 	if (unlikely(non_swap_entry(entry))) {
3741 		if (is_migration_entry(entry)) {
3742 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3743 					     vmf->address);
3744 		} else if (is_device_exclusive_entry(entry)) {
3745 			vmf->page = pfn_swap_entry_to_page(entry);
3746 			ret = remove_device_exclusive_entry(vmf);
3747 		} else if (is_device_private_entry(entry)) {
3748 			vmf->page = pfn_swap_entry_to_page(entry);
3749 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3750 					vmf->address, &vmf->ptl);
3751 			if (unlikely(!vmf->pte ||
3752 				     !pte_same(ptep_get(vmf->pte),
3753 							vmf->orig_pte)))
3754 				goto unlock;
3755 
3756 			/*
3757 			 * Get a page reference while we know the page can't be
3758 			 * freed.
3759 			 */
3760 			get_page(vmf->page);
3761 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3762 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3763 			put_page(vmf->page);
3764 		} else if (is_hwpoison_entry(entry)) {
3765 			ret = VM_FAULT_HWPOISON;
3766 		} else if (is_pte_marker_entry(entry)) {
3767 			ret = handle_pte_marker(vmf);
3768 		} else {
3769 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3770 			ret = VM_FAULT_SIGBUS;
3771 		}
3772 		goto out;
3773 	}
3774 
3775 	/* Prevent swapoff from happening to us. */
3776 	si = get_swap_device(entry);
3777 	if (unlikely(!si))
3778 		goto out;
3779 
3780 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3781 	if (folio)
3782 		page = folio_file_page(folio, swp_offset(entry));
3783 	swapcache = folio;
3784 
3785 	if (!folio) {
3786 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3787 		    __swap_count(entry) == 1) {
3788 			/* skip swapcache */
3789 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3790 						vma, vmf->address, false);
3791 			page = &folio->page;
3792 			if (folio) {
3793 				__folio_set_locked(folio);
3794 				__folio_set_swapbacked(folio);
3795 
3796 				if (mem_cgroup_swapin_charge_folio(folio,
3797 							vma->vm_mm, GFP_KERNEL,
3798 							entry)) {
3799 					ret = VM_FAULT_OOM;
3800 					goto out_page;
3801 				}
3802 				mem_cgroup_swapin_uncharge_swap(entry);
3803 
3804 				shadow = get_shadow_from_swap_cache(entry);
3805 				if (shadow)
3806 					workingset_refault(folio, shadow);
3807 
3808 				folio_add_lru(folio);
3809 
3810 				/* To provide entry to swap_readpage() */
3811 				folio_set_swap_entry(folio, entry);
3812 				swap_readpage(page, true, NULL);
3813 				folio->private = NULL;
3814 			}
3815 		} else {
3816 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3817 						vmf);
3818 			if (page)
3819 				folio = page_folio(page);
3820 			swapcache = folio;
3821 		}
3822 
3823 		if (!folio) {
3824 			/*
3825 			 * Back out if somebody else faulted in this pte
3826 			 * while we released the pte lock.
3827 			 */
3828 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3829 					vmf->address, &vmf->ptl);
3830 			if (likely(vmf->pte &&
3831 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3832 				ret = VM_FAULT_OOM;
3833 			goto unlock;
3834 		}
3835 
3836 		/* Had to read the page from swap area: Major fault */
3837 		ret = VM_FAULT_MAJOR;
3838 		count_vm_event(PGMAJFAULT);
3839 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3840 	} else if (PageHWPoison(page)) {
3841 		/*
3842 		 * hwpoisoned dirty swapcache pages are kept for killing
3843 		 * owner processes (which may be unknown at hwpoison time)
3844 		 */
3845 		ret = VM_FAULT_HWPOISON;
3846 		goto out_release;
3847 	}
3848 
3849 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3850 
3851 	if (!locked) {
3852 		ret |= VM_FAULT_RETRY;
3853 		goto out_release;
3854 	}
3855 
3856 	if (swapcache) {
3857 		/*
3858 		 * Make sure folio_free_swap() or swapoff did not release the
3859 		 * swapcache from under us.  The page pin, and pte_same test
3860 		 * below, are not enough to exclude that.  Even if it is still
3861 		 * swapcache, we need to check that the page's swap has not
3862 		 * changed.
3863 		 */
3864 		if (unlikely(!folio_test_swapcache(folio) ||
3865 			     page_private(page) != entry.val))
3866 			goto out_page;
3867 
3868 		/*
3869 		 * KSM sometimes has to copy on read faults, for example, if
3870 		 * page->index of !PageKSM() pages would be nonlinear inside the
3871 		 * anon VMA -- PageKSM() is lost on actual swapout.
3872 		 */
3873 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3874 		if (unlikely(!page)) {
3875 			ret = VM_FAULT_OOM;
3876 			goto out_page;
3877 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3878 			ret = VM_FAULT_HWPOISON;
3879 			goto out_page;
3880 		}
3881 		folio = page_folio(page);
3882 
3883 		/*
3884 		 * If we want to map a page that's in the swapcache writable, we
3885 		 * have to detect via the refcount if we're really the exclusive
3886 		 * owner. Try removing the extra reference from the local LRU
3887 		 * caches if required.
3888 		 */
3889 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3890 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3891 			lru_add_drain();
3892 	}
3893 
3894 	folio_throttle_swaprate(folio, GFP_KERNEL);
3895 
3896 	/*
3897 	 * Back out if somebody else already faulted in this pte.
3898 	 */
3899 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3900 			&vmf->ptl);
3901 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3902 		goto out_nomap;
3903 
3904 	if (unlikely(!folio_test_uptodate(folio))) {
3905 		ret = VM_FAULT_SIGBUS;
3906 		goto out_nomap;
3907 	}
3908 
3909 	/*
3910 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3911 	 * must never point at an anonymous page in the swapcache that is
3912 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3913 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3914 	 * check after taking the PT lock and making sure that nobody
3915 	 * concurrently faulted in this page and set PG_anon_exclusive.
3916 	 */
3917 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3918 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3919 
3920 	/*
3921 	 * Check under PT lock (to protect against concurrent fork() sharing
3922 	 * the swap entry concurrently) for certainly exclusive pages.
3923 	 */
3924 	if (!folio_test_ksm(folio)) {
3925 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3926 		if (folio != swapcache) {
3927 			/*
3928 			 * We have a fresh page that is not exposed to the
3929 			 * swapcache -> certainly exclusive.
3930 			 */
3931 			exclusive = true;
3932 		} else if (exclusive && folio_test_writeback(folio) &&
3933 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3934 			/*
3935 			 * This is tricky: not all swap backends support
3936 			 * concurrent page modifications while under writeback.
3937 			 *
3938 			 * So if we stumble over such a page in the swapcache
3939 			 * we must not set the page exclusive, otherwise we can
3940 			 * map it writable without further checks and modify it
3941 			 * while still under writeback.
3942 			 *
3943 			 * For these problematic swap backends, simply drop the
3944 			 * exclusive marker: this is perfectly fine as we start
3945 			 * writeback only if we fully unmapped the page and
3946 			 * there are no unexpected references on the page after
3947 			 * unmapping succeeded. After fully unmapped, no
3948 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3949 			 * appear, so dropping the exclusive marker and mapping
3950 			 * it only R/O is fine.
3951 			 */
3952 			exclusive = false;
3953 		}
3954 	}
3955 
3956 	/*
3957 	 * Some architectures may have to restore extra metadata to the page
3958 	 * when reading from swap. This metadata may be indexed by swap entry
3959 	 * so this must be called before swap_free().
3960 	 */
3961 	arch_swap_restore(entry, folio);
3962 
3963 	/*
3964 	 * Remove the swap entry and conditionally try to free up the swapcache.
3965 	 * We're already holding a reference on the page but haven't mapped it
3966 	 * yet.
3967 	 */
3968 	swap_free(entry);
3969 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3970 		folio_free_swap(folio);
3971 
3972 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3973 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3974 	pte = mk_pte(page, vma->vm_page_prot);
3975 
3976 	/*
3977 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3978 	 * certainly not shared either because we just allocated them without
3979 	 * exposing them to the swapcache or because the swap entry indicates
3980 	 * exclusivity.
3981 	 */
3982 	if (!folio_test_ksm(folio) &&
3983 	    (exclusive || folio_ref_count(folio) == 1)) {
3984 		if (vmf->flags & FAULT_FLAG_WRITE) {
3985 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3986 			vmf->flags &= ~FAULT_FLAG_WRITE;
3987 		}
3988 		rmap_flags |= RMAP_EXCLUSIVE;
3989 	}
3990 	flush_icache_page(vma, page);
3991 	if (pte_swp_soft_dirty(vmf->orig_pte))
3992 		pte = pte_mksoft_dirty(pte);
3993 	if (pte_swp_uffd_wp(vmf->orig_pte))
3994 		pte = pte_mkuffd_wp(pte);
3995 	vmf->orig_pte = pte;
3996 
3997 	/* ksm created a completely new copy */
3998 	if (unlikely(folio != swapcache && swapcache)) {
3999 		page_add_new_anon_rmap(page, vma, vmf->address);
4000 		folio_add_lru_vma(folio, vma);
4001 	} else {
4002 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4003 	}
4004 
4005 	VM_BUG_ON(!folio_test_anon(folio) ||
4006 			(pte_write(pte) && !PageAnonExclusive(page)));
4007 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4008 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4009 
4010 	folio_unlock(folio);
4011 	if (folio != swapcache && swapcache) {
4012 		/*
4013 		 * Hold the lock to avoid the swap entry to be reused
4014 		 * until we take the PT lock for the pte_same() check
4015 		 * (to avoid false positives from pte_same). For
4016 		 * further safety release the lock after the swap_free
4017 		 * so that the swap count won't change under a
4018 		 * parallel locked swapcache.
4019 		 */
4020 		folio_unlock(swapcache);
4021 		folio_put(swapcache);
4022 	}
4023 
4024 	if (vmf->flags & FAULT_FLAG_WRITE) {
4025 		ret |= do_wp_page(vmf);
4026 		if (ret & VM_FAULT_ERROR)
4027 			ret &= VM_FAULT_ERROR;
4028 		goto out;
4029 	}
4030 
4031 	/* No need to invalidate - it was non-present before */
4032 	update_mmu_cache(vma, vmf->address, vmf->pte);
4033 unlock:
4034 	if (vmf->pte)
4035 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4036 out:
4037 	if (si)
4038 		put_swap_device(si);
4039 	return ret;
4040 out_nomap:
4041 	if (vmf->pte)
4042 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4043 out_page:
4044 	folio_unlock(folio);
4045 out_release:
4046 	folio_put(folio);
4047 	if (folio != swapcache && swapcache) {
4048 		folio_unlock(swapcache);
4049 		folio_put(swapcache);
4050 	}
4051 	if (si)
4052 		put_swap_device(si);
4053 	return ret;
4054 }
4055 
4056 /*
4057  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4058  * but allow concurrent faults), and pte mapped but not yet locked.
4059  * We return with mmap_lock still held, but pte unmapped and unlocked.
4060  */
4061 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4062 {
4063 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4064 	struct vm_area_struct *vma = vmf->vma;
4065 	struct folio *folio;
4066 	vm_fault_t ret = 0;
4067 	pte_t entry;
4068 
4069 	/* File mapping without ->vm_ops ? */
4070 	if (vma->vm_flags & VM_SHARED)
4071 		return VM_FAULT_SIGBUS;
4072 
4073 	/*
4074 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4075 	 * be distinguished from a transient failure of pte_offset_map().
4076 	 */
4077 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4078 		return VM_FAULT_OOM;
4079 
4080 	/* Use the zero-page for reads */
4081 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4082 			!mm_forbids_zeropage(vma->vm_mm)) {
4083 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4084 						vma->vm_page_prot));
4085 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4086 				vmf->address, &vmf->ptl);
4087 		if (!vmf->pte)
4088 			goto unlock;
4089 		if (vmf_pte_changed(vmf)) {
4090 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4091 			goto unlock;
4092 		}
4093 		ret = check_stable_address_space(vma->vm_mm);
4094 		if (ret)
4095 			goto unlock;
4096 		/* Deliver the page fault to userland, check inside PT lock */
4097 		if (userfaultfd_missing(vma)) {
4098 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4099 			return handle_userfault(vmf, VM_UFFD_MISSING);
4100 		}
4101 		goto setpte;
4102 	}
4103 
4104 	/* Allocate our own private page. */
4105 	if (unlikely(anon_vma_prepare(vma)))
4106 		goto oom;
4107 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4108 	if (!folio)
4109 		goto oom;
4110 
4111 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4112 		goto oom_free_page;
4113 	folio_throttle_swaprate(folio, GFP_KERNEL);
4114 
4115 	/*
4116 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4117 	 * preceding stores to the page contents become visible before
4118 	 * the set_pte_at() write.
4119 	 */
4120 	__folio_mark_uptodate(folio);
4121 
4122 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4123 	entry = pte_sw_mkyoung(entry);
4124 	if (vma->vm_flags & VM_WRITE)
4125 		entry = pte_mkwrite(pte_mkdirty(entry));
4126 
4127 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4128 			&vmf->ptl);
4129 	if (!vmf->pte)
4130 		goto release;
4131 	if (vmf_pte_changed(vmf)) {
4132 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4133 		goto release;
4134 	}
4135 
4136 	ret = check_stable_address_space(vma->vm_mm);
4137 	if (ret)
4138 		goto release;
4139 
4140 	/* Deliver the page fault to userland, check inside PT lock */
4141 	if (userfaultfd_missing(vma)) {
4142 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4143 		folio_put(folio);
4144 		return handle_userfault(vmf, VM_UFFD_MISSING);
4145 	}
4146 
4147 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4148 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4149 	folio_add_lru_vma(folio, vma);
4150 setpte:
4151 	if (uffd_wp)
4152 		entry = pte_mkuffd_wp(entry);
4153 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4154 
4155 	/* No need to invalidate - it was non-present before */
4156 	update_mmu_cache(vma, vmf->address, vmf->pte);
4157 unlock:
4158 	if (vmf->pte)
4159 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4160 	return ret;
4161 release:
4162 	folio_put(folio);
4163 	goto unlock;
4164 oom_free_page:
4165 	folio_put(folio);
4166 oom:
4167 	return VM_FAULT_OOM;
4168 }
4169 
4170 /*
4171  * The mmap_lock must have been held on entry, and may have been
4172  * released depending on flags and vma->vm_ops->fault() return value.
4173  * See filemap_fault() and __lock_page_retry().
4174  */
4175 static vm_fault_t __do_fault(struct vm_fault *vmf)
4176 {
4177 	struct vm_area_struct *vma = vmf->vma;
4178 	vm_fault_t ret;
4179 
4180 	/*
4181 	 * Preallocate pte before we take page_lock because this might lead to
4182 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4183 	 *				lock_page(A)
4184 	 *				SetPageWriteback(A)
4185 	 *				unlock_page(A)
4186 	 * lock_page(B)
4187 	 *				lock_page(B)
4188 	 * pte_alloc_one
4189 	 *   shrink_page_list
4190 	 *     wait_on_page_writeback(A)
4191 	 *				SetPageWriteback(B)
4192 	 *				unlock_page(B)
4193 	 *				# flush A, B to clear the writeback
4194 	 */
4195 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4196 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4197 		if (!vmf->prealloc_pte)
4198 			return VM_FAULT_OOM;
4199 	}
4200 
4201 	ret = vma->vm_ops->fault(vmf);
4202 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4203 			    VM_FAULT_DONE_COW)))
4204 		return ret;
4205 
4206 	if (unlikely(PageHWPoison(vmf->page))) {
4207 		struct page *page = vmf->page;
4208 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4209 		if (ret & VM_FAULT_LOCKED) {
4210 			if (page_mapped(page))
4211 				unmap_mapping_pages(page_mapping(page),
4212 						    page->index, 1, false);
4213 			/* Retry if a clean page was removed from the cache. */
4214 			if (invalidate_inode_page(page))
4215 				poisonret = VM_FAULT_NOPAGE;
4216 			unlock_page(page);
4217 		}
4218 		put_page(page);
4219 		vmf->page = NULL;
4220 		return poisonret;
4221 	}
4222 
4223 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4224 		lock_page(vmf->page);
4225 	else
4226 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4227 
4228 	return ret;
4229 }
4230 
4231 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4232 static void deposit_prealloc_pte(struct vm_fault *vmf)
4233 {
4234 	struct vm_area_struct *vma = vmf->vma;
4235 
4236 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4237 	/*
4238 	 * We are going to consume the prealloc table,
4239 	 * count that as nr_ptes.
4240 	 */
4241 	mm_inc_nr_ptes(vma->vm_mm);
4242 	vmf->prealloc_pte = NULL;
4243 }
4244 
4245 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4246 {
4247 	struct vm_area_struct *vma = vmf->vma;
4248 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4249 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4250 	pmd_t entry;
4251 	int i;
4252 	vm_fault_t ret = VM_FAULT_FALLBACK;
4253 
4254 	if (!transhuge_vma_suitable(vma, haddr))
4255 		return ret;
4256 
4257 	page = compound_head(page);
4258 	if (compound_order(page) != HPAGE_PMD_ORDER)
4259 		return ret;
4260 
4261 	/*
4262 	 * Just backoff if any subpage of a THP is corrupted otherwise
4263 	 * the corrupted page may mapped by PMD silently to escape the
4264 	 * check.  This kind of THP just can be PTE mapped.  Access to
4265 	 * the corrupted subpage should trigger SIGBUS as expected.
4266 	 */
4267 	if (unlikely(PageHasHWPoisoned(page)))
4268 		return ret;
4269 
4270 	/*
4271 	 * Archs like ppc64 need additional space to store information
4272 	 * related to pte entry. Use the preallocated table for that.
4273 	 */
4274 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4275 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4276 		if (!vmf->prealloc_pte)
4277 			return VM_FAULT_OOM;
4278 	}
4279 
4280 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4281 	if (unlikely(!pmd_none(*vmf->pmd)))
4282 		goto out;
4283 
4284 	for (i = 0; i < HPAGE_PMD_NR; i++)
4285 		flush_icache_page(vma, page + i);
4286 
4287 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4288 	if (write)
4289 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4290 
4291 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4292 	page_add_file_rmap(page, vma, true);
4293 
4294 	/*
4295 	 * deposit and withdraw with pmd lock held
4296 	 */
4297 	if (arch_needs_pgtable_deposit())
4298 		deposit_prealloc_pte(vmf);
4299 
4300 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4301 
4302 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4303 
4304 	/* fault is handled */
4305 	ret = 0;
4306 	count_vm_event(THP_FILE_MAPPED);
4307 out:
4308 	spin_unlock(vmf->ptl);
4309 	return ret;
4310 }
4311 #else
4312 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4313 {
4314 	return VM_FAULT_FALLBACK;
4315 }
4316 #endif
4317 
4318 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4319 {
4320 	struct vm_area_struct *vma = vmf->vma;
4321 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4322 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4323 	bool prefault = vmf->address != addr;
4324 	pte_t entry;
4325 
4326 	flush_icache_page(vma, page);
4327 	entry = mk_pte(page, vma->vm_page_prot);
4328 
4329 	if (prefault && arch_wants_old_prefaulted_pte())
4330 		entry = pte_mkold(entry);
4331 	else
4332 		entry = pte_sw_mkyoung(entry);
4333 
4334 	if (write)
4335 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4336 	if (unlikely(uffd_wp))
4337 		entry = pte_mkuffd_wp(entry);
4338 	/* copy-on-write page */
4339 	if (write && !(vma->vm_flags & VM_SHARED)) {
4340 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4341 		page_add_new_anon_rmap(page, vma, addr);
4342 		lru_cache_add_inactive_or_unevictable(page, vma);
4343 	} else {
4344 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4345 		page_add_file_rmap(page, vma, false);
4346 	}
4347 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4348 }
4349 
4350 static bool vmf_pte_changed(struct vm_fault *vmf)
4351 {
4352 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4353 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4354 
4355 	return !pte_none(ptep_get(vmf->pte));
4356 }
4357 
4358 /**
4359  * finish_fault - finish page fault once we have prepared the page to fault
4360  *
4361  * @vmf: structure describing the fault
4362  *
4363  * This function handles all that is needed to finish a page fault once the
4364  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4365  * given page, adds reverse page mapping, handles memcg charges and LRU
4366  * addition.
4367  *
4368  * The function expects the page to be locked and on success it consumes a
4369  * reference of a page being mapped (for the PTE which maps it).
4370  *
4371  * Return: %0 on success, %VM_FAULT_ code in case of error.
4372  */
4373 vm_fault_t finish_fault(struct vm_fault *vmf)
4374 {
4375 	struct vm_area_struct *vma = vmf->vma;
4376 	struct page *page;
4377 	vm_fault_t ret;
4378 
4379 	/* Did we COW the page? */
4380 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4381 		page = vmf->cow_page;
4382 	else
4383 		page = vmf->page;
4384 
4385 	/*
4386 	 * check even for read faults because we might have lost our CoWed
4387 	 * page
4388 	 */
4389 	if (!(vma->vm_flags & VM_SHARED)) {
4390 		ret = check_stable_address_space(vma->vm_mm);
4391 		if (ret)
4392 			return ret;
4393 	}
4394 
4395 	if (pmd_none(*vmf->pmd)) {
4396 		if (PageTransCompound(page)) {
4397 			ret = do_set_pmd(vmf, page);
4398 			if (ret != VM_FAULT_FALLBACK)
4399 				return ret;
4400 		}
4401 
4402 		if (vmf->prealloc_pte)
4403 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4404 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4405 			return VM_FAULT_OOM;
4406 	}
4407 
4408 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4409 				      vmf->address, &vmf->ptl);
4410 	if (!vmf->pte)
4411 		return VM_FAULT_NOPAGE;
4412 
4413 	/* Re-check under ptl */
4414 	if (likely(!vmf_pte_changed(vmf))) {
4415 		do_set_pte(vmf, page, vmf->address);
4416 
4417 		/* no need to invalidate: a not-present page won't be cached */
4418 		update_mmu_cache(vma, vmf->address, vmf->pte);
4419 
4420 		ret = 0;
4421 	} else {
4422 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4423 		ret = VM_FAULT_NOPAGE;
4424 	}
4425 
4426 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4427 	return ret;
4428 }
4429 
4430 static unsigned long fault_around_pages __read_mostly =
4431 	65536 >> PAGE_SHIFT;
4432 
4433 #ifdef CONFIG_DEBUG_FS
4434 static int fault_around_bytes_get(void *data, u64 *val)
4435 {
4436 	*val = fault_around_pages << PAGE_SHIFT;
4437 	return 0;
4438 }
4439 
4440 /*
4441  * fault_around_bytes must be rounded down to the nearest page order as it's
4442  * what do_fault_around() expects to see.
4443  */
4444 static int fault_around_bytes_set(void *data, u64 val)
4445 {
4446 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4447 		return -EINVAL;
4448 
4449 	/*
4450 	 * The minimum value is 1 page, however this results in no fault-around
4451 	 * at all. See should_fault_around().
4452 	 */
4453 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4454 
4455 	return 0;
4456 }
4457 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4458 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4459 
4460 static int __init fault_around_debugfs(void)
4461 {
4462 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4463 				   &fault_around_bytes_fops);
4464 	return 0;
4465 }
4466 late_initcall(fault_around_debugfs);
4467 #endif
4468 
4469 /*
4470  * do_fault_around() tries to map few pages around the fault address. The hope
4471  * is that the pages will be needed soon and this will lower the number of
4472  * faults to handle.
4473  *
4474  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4475  * not ready to be mapped: not up-to-date, locked, etc.
4476  *
4477  * This function doesn't cross VMA or page table boundaries, in order to call
4478  * map_pages() and acquire a PTE lock only once.
4479  *
4480  * fault_around_pages defines how many pages we'll try to map.
4481  * do_fault_around() expects it to be set to a power of two less than or equal
4482  * to PTRS_PER_PTE.
4483  *
4484  * The virtual address of the area that we map is naturally aligned to
4485  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4486  * (and therefore to page order).  This way it's easier to guarantee
4487  * that we don't cross page table boundaries.
4488  */
4489 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4490 {
4491 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4492 	pgoff_t pte_off = pte_index(vmf->address);
4493 	/* The page offset of vmf->address within the VMA. */
4494 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4495 	pgoff_t from_pte, to_pte;
4496 	vm_fault_t ret;
4497 
4498 	/* The PTE offset of the start address, clamped to the VMA. */
4499 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4500 		       pte_off - min(pte_off, vma_off));
4501 
4502 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4503 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4504 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4505 
4506 	if (pmd_none(*vmf->pmd)) {
4507 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4508 		if (!vmf->prealloc_pte)
4509 			return VM_FAULT_OOM;
4510 	}
4511 
4512 	rcu_read_lock();
4513 	ret = vmf->vma->vm_ops->map_pages(vmf,
4514 			vmf->pgoff + from_pte - pte_off,
4515 			vmf->pgoff + to_pte - pte_off);
4516 	rcu_read_unlock();
4517 
4518 	return ret;
4519 }
4520 
4521 /* Return true if we should do read fault-around, false otherwise */
4522 static inline bool should_fault_around(struct vm_fault *vmf)
4523 {
4524 	/* No ->map_pages?  No way to fault around... */
4525 	if (!vmf->vma->vm_ops->map_pages)
4526 		return false;
4527 
4528 	if (uffd_disable_fault_around(vmf->vma))
4529 		return false;
4530 
4531 	/* A single page implies no faulting 'around' at all. */
4532 	return fault_around_pages > 1;
4533 }
4534 
4535 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4536 {
4537 	vm_fault_t ret = 0;
4538 
4539 	/*
4540 	 * Let's call ->map_pages() first and use ->fault() as fallback
4541 	 * if page by the offset is not ready to be mapped (cold cache or
4542 	 * something).
4543 	 */
4544 	if (should_fault_around(vmf)) {
4545 		ret = do_fault_around(vmf);
4546 		if (ret)
4547 			return ret;
4548 	}
4549 
4550 	ret = __do_fault(vmf);
4551 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4552 		return ret;
4553 
4554 	ret |= finish_fault(vmf);
4555 	unlock_page(vmf->page);
4556 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 		put_page(vmf->page);
4558 	return ret;
4559 }
4560 
4561 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4562 {
4563 	struct vm_area_struct *vma = vmf->vma;
4564 	vm_fault_t ret;
4565 
4566 	if (unlikely(anon_vma_prepare(vma)))
4567 		return VM_FAULT_OOM;
4568 
4569 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4570 	if (!vmf->cow_page)
4571 		return VM_FAULT_OOM;
4572 
4573 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4574 				GFP_KERNEL)) {
4575 		put_page(vmf->cow_page);
4576 		return VM_FAULT_OOM;
4577 	}
4578 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4579 
4580 	ret = __do_fault(vmf);
4581 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4582 		goto uncharge_out;
4583 	if (ret & VM_FAULT_DONE_COW)
4584 		return ret;
4585 
4586 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4587 	__SetPageUptodate(vmf->cow_page);
4588 
4589 	ret |= finish_fault(vmf);
4590 	unlock_page(vmf->page);
4591 	put_page(vmf->page);
4592 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4593 		goto uncharge_out;
4594 	return ret;
4595 uncharge_out:
4596 	put_page(vmf->cow_page);
4597 	return ret;
4598 }
4599 
4600 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4601 {
4602 	struct vm_area_struct *vma = vmf->vma;
4603 	vm_fault_t ret, tmp;
4604 
4605 	ret = __do_fault(vmf);
4606 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4607 		return ret;
4608 
4609 	/*
4610 	 * Check if the backing address space wants to know that the page is
4611 	 * about to become writable
4612 	 */
4613 	if (vma->vm_ops->page_mkwrite) {
4614 		unlock_page(vmf->page);
4615 		tmp = do_page_mkwrite(vmf);
4616 		if (unlikely(!tmp ||
4617 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4618 			put_page(vmf->page);
4619 			return tmp;
4620 		}
4621 	}
4622 
4623 	ret |= finish_fault(vmf);
4624 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4625 					VM_FAULT_RETRY))) {
4626 		unlock_page(vmf->page);
4627 		put_page(vmf->page);
4628 		return ret;
4629 	}
4630 
4631 	ret |= fault_dirty_shared_page(vmf);
4632 	return ret;
4633 }
4634 
4635 /*
4636  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4637  * but allow concurrent faults).
4638  * The mmap_lock may have been released depending on flags and our
4639  * return value.  See filemap_fault() and __folio_lock_or_retry().
4640  * If mmap_lock is released, vma may become invalid (for example
4641  * by other thread calling munmap()).
4642  */
4643 static vm_fault_t do_fault(struct vm_fault *vmf)
4644 {
4645 	struct vm_area_struct *vma = vmf->vma;
4646 	struct mm_struct *vm_mm = vma->vm_mm;
4647 	vm_fault_t ret;
4648 
4649 	/*
4650 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4651 	 */
4652 	if (!vma->vm_ops->fault) {
4653 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4654 					       vmf->address, &vmf->ptl);
4655 		if (unlikely(!vmf->pte))
4656 			ret = VM_FAULT_SIGBUS;
4657 		else {
4658 			/*
4659 			 * Make sure this is not a temporary clearing of pte
4660 			 * by holding ptl and checking again. A R/M/W update
4661 			 * of pte involves: take ptl, clearing the pte so that
4662 			 * we don't have concurrent modification by hardware
4663 			 * followed by an update.
4664 			 */
4665 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4666 				ret = VM_FAULT_SIGBUS;
4667 			else
4668 				ret = VM_FAULT_NOPAGE;
4669 
4670 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4671 		}
4672 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4673 		ret = do_read_fault(vmf);
4674 	else if (!(vma->vm_flags & VM_SHARED))
4675 		ret = do_cow_fault(vmf);
4676 	else
4677 		ret = do_shared_fault(vmf);
4678 
4679 	/* preallocated pagetable is unused: free it */
4680 	if (vmf->prealloc_pte) {
4681 		pte_free(vm_mm, vmf->prealloc_pte);
4682 		vmf->prealloc_pte = NULL;
4683 	}
4684 	return ret;
4685 }
4686 
4687 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4688 		      unsigned long addr, int page_nid, int *flags)
4689 {
4690 	get_page(page);
4691 
4692 	/* Record the current PID acceesing VMA */
4693 	vma_set_access_pid_bit(vma);
4694 
4695 	count_vm_numa_event(NUMA_HINT_FAULTS);
4696 	if (page_nid == numa_node_id()) {
4697 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4698 		*flags |= TNF_FAULT_LOCAL;
4699 	}
4700 
4701 	return mpol_misplaced(page, vma, addr);
4702 }
4703 
4704 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4705 {
4706 	struct vm_area_struct *vma = vmf->vma;
4707 	struct page *page = NULL;
4708 	int page_nid = NUMA_NO_NODE;
4709 	bool writable = false;
4710 	int last_cpupid;
4711 	int target_nid;
4712 	pte_t pte, old_pte;
4713 	int flags = 0;
4714 
4715 	/*
4716 	 * The "pte" at this point cannot be used safely without
4717 	 * validation through pte_unmap_same(). It's of NUMA type but
4718 	 * the pfn may be screwed if the read is non atomic.
4719 	 */
4720 	spin_lock(vmf->ptl);
4721 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4722 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4723 		goto out;
4724 	}
4725 
4726 	/* Get the normal PTE  */
4727 	old_pte = ptep_get(vmf->pte);
4728 	pte = pte_modify(old_pte, vma->vm_page_prot);
4729 
4730 	/*
4731 	 * Detect now whether the PTE could be writable; this information
4732 	 * is only valid while holding the PT lock.
4733 	 */
4734 	writable = pte_write(pte);
4735 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4736 	    can_change_pte_writable(vma, vmf->address, pte))
4737 		writable = true;
4738 
4739 	page = vm_normal_page(vma, vmf->address, pte);
4740 	if (!page || is_zone_device_page(page))
4741 		goto out_map;
4742 
4743 	/* TODO: handle PTE-mapped THP */
4744 	if (PageCompound(page))
4745 		goto out_map;
4746 
4747 	/*
4748 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4749 	 * much anyway since they can be in shared cache state. This misses
4750 	 * the case where a mapping is writable but the process never writes
4751 	 * to it but pte_write gets cleared during protection updates and
4752 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4753 	 * background writeback, dirty balancing and application behaviour.
4754 	 */
4755 	if (!writable)
4756 		flags |= TNF_NO_GROUP;
4757 
4758 	/*
4759 	 * Flag if the page is shared between multiple address spaces. This
4760 	 * is later used when determining whether to group tasks together
4761 	 */
4762 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4763 		flags |= TNF_SHARED;
4764 
4765 	page_nid = page_to_nid(page);
4766 	/*
4767 	 * For memory tiering mode, cpupid of slow memory page is used
4768 	 * to record page access time.  So use default value.
4769 	 */
4770 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4771 	    !node_is_toptier(page_nid))
4772 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4773 	else
4774 		last_cpupid = page_cpupid_last(page);
4775 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4776 			&flags);
4777 	if (target_nid == NUMA_NO_NODE) {
4778 		put_page(page);
4779 		goto out_map;
4780 	}
4781 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4782 	writable = false;
4783 
4784 	/* Migrate to the requested node */
4785 	if (migrate_misplaced_page(page, vma, target_nid)) {
4786 		page_nid = target_nid;
4787 		flags |= TNF_MIGRATED;
4788 	} else {
4789 		flags |= TNF_MIGRATE_FAIL;
4790 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4791 					       vmf->address, &vmf->ptl);
4792 		if (unlikely(!vmf->pte))
4793 			goto out;
4794 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4795 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4796 			goto out;
4797 		}
4798 		goto out_map;
4799 	}
4800 
4801 out:
4802 	if (page_nid != NUMA_NO_NODE)
4803 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4804 	return 0;
4805 out_map:
4806 	/*
4807 	 * Make it present again, depending on how arch implements
4808 	 * non-accessible ptes, some can allow access by kernel mode.
4809 	 */
4810 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4811 	pte = pte_modify(old_pte, vma->vm_page_prot);
4812 	pte = pte_mkyoung(pte);
4813 	if (writable)
4814 		pte = pte_mkwrite(pte);
4815 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4816 	update_mmu_cache(vma, vmf->address, vmf->pte);
4817 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4818 	goto out;
4819 }
4820 
4821 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4822 {
4823 	if (vma_is_anonymous(vmf->vma))
4824 		return do_huge_pmd_anonymous_page(vmf);
4825 	if (vmf->vma->vm_ops->huge_fault)
4826 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4827 	return VM_FAULT_FALLBACK;
4828 }
4829 
4830 /* `inline' is required to avoid gcc 4.1.2 build error */
4831 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4832 {
4833 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4834 	vm_fault_t ret;
4835 
4836 	if (vma_is_anonymous(vmf->vma)) {
4837 		if (likely(!unshare) &&
4838 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4839 			return handle_userfault(vmf, VM_UFFD_WP);
4840 		return do_huge_pmd_wp_page(vmf);
4841 	}
4842 
4843 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4844 		if (vmf->vma->vm_ops->huge_fault) {
4845 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4846 			if (!(ret & VM_FAULT_FALLBACK))
4847 				return ret;
4848 		}
4849 	}
4850 
4851 	/* COW or write-notify handled on pte level: split pmd. */
4852 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4853 
4854 	return VM_FAULT_FALLBACK;
4855 }
4856 
4857 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4858 {
4859 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4860 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4861 	/* No support for anonymous transparent PUD pages yet */
4862 	if (vma_is_anonymous(vmf->vma))
4863 		return VM_FAULT_FALLBACK;
4864 	if (vmf->vma->vm_ops->huge_fault)
4865 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4866 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4867 	return VM_FAULT_FALLBACK;
4868 }
4869 
4870 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4871 {
4872 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4873 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4874 	vm_fault_t ret;
4875 
4876 	/* No support for anonymous transparent PUD pages yet */
4877 	if (vma_is_anonymous(vmf->vma))
4878 		goto split;
4879 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4880 		if (vmf->vma->vm_ops->huge_fault) {
4881 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4882 			if (!(ret & VM_FAULT_FALLBACK))
4883 				return ret;
4884 		}
4885 	}
4886 split:
4887 	/* COW or write-notify not handled on PUD level: split pud.*/
4888 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4889 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4890 	return VM_FAULT_FALLBACK;
4891 }
4892 
4893 /*
4894  * These routines also need to handle stuff like marking pages dirty
4895  * and/or accessed for architectures that don't do it in hardware (most
4896  * RISC architectures).  The early dirtying is also good on the i386.
4897  *
4898  * There is also a hook called "update_mmu_cache()" that architectures
4899  * with external mmu caches can use to update those (ie the Sparc or
4900  * PowerPC hashed page tables that act as extended TLBs).
4901  *
4902  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4903  * concurrent faults).
4904  *
4905  * The mmap_lock may have been released depending on flags and our return value.
4906  * See filemap_fault() and __folio_lock_or_retry().
4907  */
4908 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4909 {
4910 	pte_t entry;
4911 
4912 	if (unlikely(pmd_none(*vmf->pmd))) {
4913 		/*
4914 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4915 		 * want to allocate huge page, and if we expose page table
4916 		 * for an instant, it will be difficult to retract from
4917 		 * concurrent faults and from rmap lookups.
4918 		 */
4919 		vmf->pte = NULL;
4920 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4921 	} else {
4922 		/*
4923 		 * A regular pmd is established and it can't morph into a huge
4924 		 * pmd by anon khugepaged, since that takes mmap_lock in write
4925 		 * mode; but shmem or file collapse to THP could still morph
4926 		 * it into a huge pmd: just retry later if so.
4927 		 */
4928 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4929 						 vmf->address, &vmf->ptl);
4930 		if (unlikely(!vmf->pte))
4931 			return 0;
4932 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
4933 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4934 
4935 		if (pte_none(vmf->orig_pte)) {
4936 			pte_unmap(vmf->pte);
4937 			vmf->pte = NULL;
4938 		}
4939 	}
4940 
4941 	if (!vmf->pte)
4942 		return do_pte_missing(vmf);
4943 
4944 	if (!pte_present(vmf->orig_pte))
4945 		return do_swap_page(vmf);
4946 
4947 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4948 		return do_numa_page(vmf);
4949 
4950 	spin_lock(vmf->ptl);
4951 	entry = vmf->orig_pte;
4952 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4953 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4954 		goto unlock;
4955 	}
4956 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4957 		if (!pte_write(entry))
4958 			return do_wp_page(vmf);
4959 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4960 			entry = pte_mkdirty(entry);
4961 	}
4962 	entry = pte_mkyoung(entry);
4963 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4964 				vmf->flags & FAULT_FLAG_WRITE)) {
4965 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4966 	} else {
4967 		/* Skip spurious TLB flush for retried page fault */
4968 		if (vmf->flags & FAULT_FLAG_TRIED)
4969 			goto unlock;
4970 		/*
4971 		 * This is needed only for protection faults but the arch code
4972 		 * is not yet telling us if this is a protection fault or not.
4973 		 * This still avoids useless tlb flushes for .text page faults
4974 		 * with threads.
4975 		 */
4976 		if (vmf->flags & FAULT_FLAG_WRITE)
4977 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4978 						     vmf->pte);
4979 	}
4980 unlock:
4981 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4982 	return 0;
4983 }
4984 
4985 /*
4986  * By the time we get here, we already hold the mm semaphore
4987  *
4988  * The mmap_lock may have been released depending on flags and our
4989  * return value.  See filemap_fault() and __folio_lock_or_retry().
4990  */
4991 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4992 		unsigned long address, unsigned int flags)
4993 {
4994 	struct vm_fault vmf = {
4995 		.vma = vma,
4996 		.address = address & PAGE_MASK,
4997 		.real_address = address,
4998 		.flags = flags,
4999 		.pgoff = linear_page_index(vma, address),
5000 		.gfp_mask = __get_fault_gfp_mask(vma),
5001 	};
5002 	struct mm_struct *mm = vma->vm_mm;
5003 	unsigned long vm_flags = vma->vm_flags;
5004 	pgd_t *pgd;
5005 	p4d_t *p4d;
5006 	vm_fault_t ret;
5007 
5008 	pgd = pgd_offset(mm, address);
5009 	p4d = p4d_alloc(mm, pgd, address);
5010 	if (!p4d)
5011 		return VM_FAULT_OOM;
5012 
5013 	vmf.pud = pud_alloc(mm, p4d, address);
5014 	if (!vmf.pud)
5015 		return VM_FAULT_OOM;
5016 retry_pud:
5017 	if (pud_none(*vmf.pud) &&
5018 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5019 		ret = create_huge_pud(&vmf);
5020 		if (!(ret & VM_FAULT_FALLBACK))
5021 			return ret;
5022 	} else {
5023 		pud_t orig_pud = *vmf.pud;
5024 
5025 		barrier();
5026 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5027 
5028 			/*
5029 			 * TODO once we support anonymous PUDs: NUMA case and
5030 			 * FAULT_FLAG_UNSHARE handling.
5031 			 */
5032 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5033 				ret = wp_huge_pud(&vmf, orig_pud);
5034 				if (!(ret & VM_FAULT_FALLBACK))
5035 					return ret;
5036 			} else {
5037 				huge_pud_set_accessed(&vmf, orig_pud);
5038 				return 0;
5039 			}
5040 		}
5041 	}
5042 
5043 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5044 	if (!vmf.pmd)
5045 		return VM_FAULT_OOM;
5046 
5047 	/* Huge pud page fault raced with pmd_alloc? */
5048 	if (pud_trans_unstable(vmf.pud))
5049 		goto retry_pud;
5050 
5051 	if (pmd_none(*vmf.pmd) &&
5052 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5053 		ret = create_huge_pmd(&vmf);
5054 		if (!(ret & VM_FAULT_FALLBACK))
5055 			return ret;
5056 	} else {
5057 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5058 
5059 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5060 			VM_BUG_ON(thp_migration_supported() &&
5061 					  !is_pmd_migration_entry(vmf.orig_pmd));
5062 			if (is_pmd_migration_entry(vmf.orig_pmd))
5063 				pmd_migration_entry_wait(mm, vmf.pmd);
5064 			return 0;
5065 		}
5066 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5067 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5068 				return do_huge_pmd_numa_page(&vmf);
5069 
5070 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5071 			    !pmd_write(vmf.orig_pmd)) {
5072 				ret = wp_huge_pmd(&vmf);
5073 				if (!(ret & VM_FAULT_FALLBACK))
5074 					return ret;
5075 			} else {
5076 				huge_pmd_set_accessed(&vmf);
5077 				return 0;
5078 			}
5079 		}
5080 	}
5081 
5082 	return handle_pte_fault(&vmf);
5083 }
5084 
5085 /**
5086  * mm_account_fault - Do page fault accounting
5087  *
5088  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5089  *        of perf event counters, but we'll still do the per-task accounting to
5090  *        the task who triggered this page fault.
5091  * @address: the faulted address.
5092  * @flags: the fault flags.
5093  * @ret: the fault retcode.
5094  *
5095  * This will take care of most of the page fault accounting.  Meanwhile, it
5096  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5097  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5098  * still be in per-arch page fault handlers at the entry of page fault.
5099  */
5100 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5101 				    unsigned long address, unsigned int flags,
5102 				    vm_fault_t ret)
5103 {
5104 	bool major;
5105 
5106 	/* Incomplete faults will be accounted upon completion. */
5107 	if (ret & VM_FAULT_RETRY)
5108 		return;
5109 
5110 	/*
5111 	 * To preserve the behavior of older kernels, PGFAULT counters record
5112 	 * both successful and failed faults, as opposed to perf counters,
5113 	 * which ignore failed cases.
5114 	 */
5115 	count_vm_event(PGFAULT);
5116 	count_memcg_event_mm(mm, PGFAULT);
5117 
5118 	/*
5119 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5120 	 * valid).  That includes arch_vma_access_permitted() failing before
5121 	 * reaching here. So this is not a "this many hardware page faults"
5122 	 * counter.  We should use the hw profiling for that.
5123 	 */
5124 	if (ret & VM_FAULT_ERROR)
5125 		return;
5126 
5127 	/*
5128 	 * We define the fault as a major fault when the final successful fault
5129 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5130 	 * handle it immediately previously).
5131 	 */
5132 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5133 
5134 	if (major)
5135 		current->maj_flt++;
5136 	else
5137 		current->min_flt++;
5138 
5139 	/*
5140 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5141 	 * accounting for the per thread fault counters who triggered the
5142 	 * fault, and we skip the perf event updates.
5143 	 */
5144 	if (!regs)
5145 		return;
5146 
5147 	if (major)
5148 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5149 	else
5150 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5151 }
5152 
5153 #ifdef CONFIG_LRU_GEN
5154 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5155 {
5156 	/* the LRU algorithm only applies to accesses with recency */
5157 	current->in_lru_fault = vma_has_recency(vma);
5158 }
5159 
5160 static void lru_gen_exit_fault(void)
5161 {
5162 	current->in_lru_fault = false;
5163 }
5164 #else
5165 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5166 {
5167 }
5168 
5169 static void lru_gen_exit_fault(void)
5170 {
5171 }
5172 #endif /* CONFIG_LRU_GEN */
5173 
5174 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5175 				       unsigned int *flags)
5176 {
5177 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5178 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5179 			return VM_FAULT_SIGSEGV;
5180 		/*
5181 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5182 		 * just treat it like an ordinary read-fault otherwise.
5183 		 */
5184 		if (!is_cow_mapping(vma->vm_flags))
5185 			*flags &= ~FAULT_FLAG_UNSHARE;
5186 	} else if (*flags & FAULT_FLAG_WRITE) {
5187 		/* Write faults on read-only mappings are impossible ... */
5188 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5189 			return VM_FAULT_SIGSEGV;
5190 		/* ... and FOLL_FORCE only applies to COW mappings. */
5191 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5192 				 !is_cow_mapping(vma->vm_flags)))
5193 			return VM_FAULT_SIGSEGV;
5194 	}
5195 	return 0;
5196 }
5197 
5198 /*
5199  * By the time we get here, we already hold the mm semaphore
5200  *
5201  * The mmap_lock may have been released depending on flags and our
5202  * return value.  See filemap_fault() and __folio_lock_or_retry().
5203  */
5204 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5205 			   unsigned int flags, struct pt_regs *regs)
5206 {
5207 	/* If the fault handler drops the mmap_lock, vma may be freed */
5208 	struct mm_struct *mm = vma->vm_mm;
5209 	vm_fault_t ret;
5210 
5211 	__set_current_state(TASK_RUNNING);
5212 
5213 	ret = sanitize_fault_flags(vma, &flags);
5214 	if (ret)
5215 		goto out;
5216 
5217 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5218 					    flags & FAULT_FLAG_INSTRUCTION,
5219 					    flags & FAULT_FLAG_REMOTE)) {
5220 		ret = VM_FAULT_SIGSEGV;
5221 		goto out;
5222 	}
5223 
5224 	/*
5225 	 * Enable the memcg OOM handling for faults triggered in user
5226 	 * space.  Kernel faults are handled more gracefully.
5227 	 */
5228 	if (flags & FAULT_FLAG_USER)
5229 		mem_cgroup_enter_user_fault();
5230 
5231 	lru_gen_enter_fault(vma);
5232 
5233 	if (unlikely(is_vm_hugetlb_page(vma)))
5234 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5235 	else
5236 		ret = __handle_mm_fault(vma, address, flags);
5237 
5238 	lru_gen_exit_fault();
5239 
5240 	if (flags & FAULT_FLAG_USER) {
5241 		mem_cgroup_exit_user_fault();
5242 		/*
5243 		 * The task may have entered a memcg OOM situation but
5244 		 * if the allocation error was handled gracefully (no
5245 		 * VM_FAULT_OOM), there is no need to kill anything.
5246 		 * Just clean up the OOM state peacefully.
5247 		 */
5248 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5249 			mem_cgroup_oom_synchronize(false);
5250 	}
5251 out:
5252 	mm_account_fault(mm, regs, address, flags, ret);
5253 
5254 	return ret;
5255 }
5256 EXPORT_SYMBOL_GPL(handle_mm_fault);
5257 
5258 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5259 #include <linux/extable.h>
5260 
5261 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5262 {
5263 	/* Even if this succeeds, make it clear we *might* have slept */
5264 	if (likely(mmap_read_trylock(mm))) {
5265 		might_sleep();
5266 		return true;
5267 	}
5268 
5269 	if (regs && !user_mode(regs)) {
5270 		unsigned long ip = instruction_pointer(regs);
5271 		if (!search_exception_tables(ip))
5272 			return false;
5273 	}
5274 
5275 	return !mmap_read_lock_killable(mm);
5276 }
5277 
5278 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5279 {
5280 	/*
5281 	 * We don't have this operation yet.
5282 	 *
5283 	 * It should be easy enough to do: it's basically a
5284 	 *    atomic_long_try_cmpxchg_acquire()
5285 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5286 	 * it also needs the proper lockdep magic etc.
5287 	 */
5288 	return false;
5289 }
5290 
5291 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5292 {
5293 	mmap_read_unlock(mm);
5294 	if (regs && !user_mode(regs)) {
5295 		unsigned long ip = instruction_pointer(regs);
5296 		if (!search_exception_tables(ip))
5297 			return false;
5298 	}
5299 	return !mmap_write_lock_killable(mm);
5300 }
5301 
5302 /*
5303  * Helper for page fault handling.
5304  *
5305  * This is kind of equivalend to "mmap_read_lock()" followed
5306  * by "find_extend_vma()", except it's a lot more careful about
5307  * the locking (and will drop the lock on failure).
5308  *
5309  * For example, if we have a kernel bug that causes a page
5310  * fault, we don't want to just use mmap_read_lock() to get
5311  * the mm lock, because that would deadlock if the bug were
5312  * to happen while we're holding the mm lock for writing.
5313  *
5314  * So this checks the exception tables on kernel faults in
5315  * order to only do this all for instructions that are actually
5316  * expected to fault.
5317  *
5318  * We can also actually take the mm lock for writing if we
5319  * need to extend the vma, which helps the VM layer a lot.
5320  */
5321 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5322 			unsigned long addr, struct pt_regs *regs)
5323 {
5324 	struct vm_area_struct *vma;
5325 
5326 	if (!get_mmap_lock_carefully(mm, regs))
5327 		return NULL;
5328 
5329 	vma = find_vma(mm, addr);
5330 	if (likely(vma && (vma->vm_start <= addr)))
5331 		return vma;
5332 
5333 	/*
5334 	 * Well, dang. We might still be successful, but only
5335 	 * if we can extend a vma to do so.
5336 	 */
5337 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5338 		mmap_read_unlock(mm);
5339 		return NULL;
5340 	}
5341 
5342 	/*
5343 	 * We can try to upgrade the mmap lock atomically,
5344 	 * in which case we can continue to use the vma
5345 	 * we already looked up.
5346 	 *
5347 	 * Otherwise we'll have to drop the mmap lock and
5348 	 * re-take it, and also look up the vma again,
5349 	 * re-checking it.
5350 	 */
5351 	if (!mmap_upgrade_trylock(mm)) {
5352 		if (!upgrade_mmap_lock_carefully(mm, regs))
5353 			return NULL;
5354 
5355 		vma = find_vma(mm, addr);
5356 		if (!vma)
5357 			goto fail;
5358 		if (vma->vm_start <= addr)
5359 			goto success;
5360 		if (!(vma->vm_flags & VM_GROWSDOWN))
5361 			goto fail;
5362 	}
5363 
5364 	if (expand_stack_locked(vma, addr))
5365 		goto fail;
5366 
5367 success:
5368 	mmap_write_downgrade(mm);
5369 	return vma;
5370 
5371 fail:
5372 	mmap_write_unlock(mm);
5373 	return NULL;
5374 }
5375 #endif
5376 
5377 #ifdef CONFIG_PER_VMA_LOCK
5378 /*
5379  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5380  * stable and not isolated. If the VMA is not found or is being modified the
5381  * function returns NULL.
5382  */
5383 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5384 					  unsigned long address)
5385 {
5386 	MA_STATE(mas, &mm->mm_mt, address, address);
5387 	struct vm_area_struct *vma;
5388 
5389 	rcu_read_lock();
5390 retry:
5391 	vma = mas_walk(&mas);
5392 	if (!vma)
5393 		goto inval;
5394 
5395 	/* Only anonymous and tcp vmas are supported for now */
5396 	if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5397 		goto inval;
5398 
5399 	if (!vma_start_read(vma))
5400 		goto inval;
5401 
5402 	/*
5403 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5404 	 * This check must happen after vma_start_read(); otherwise, a
5405 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5406 	 * from its anon_vma.
5407 	 */
5408 	if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5409 		goto inval_end_read;
5410 
5411 	/*
5412 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5413 	 * it for now and fall back to page fault handling under mmap_lock.
5414 	 */
5415 	if (userfaultfd_armed(vma))
5416 		goto inval_end_read;
5417 
5418 	/* Check since vm_start/vm_end might change before we lock the VMA */
5419 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5420 		goto inval_end_read;
5421 
5422 	/* Check if the VMA got isolated after we found it */
5423 	if (vma->detached) {
5424 		vma_end_read(vma);
5425 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5426 		/* The area was replaced with another one */
5427 		goto retry;
5428 	}
5429 
5430 	rcu_read_unlock();
5431 	return vma;
5432 
5433 inval_end_read:
5434 	vma_end_read(vma);
5435 inval:
5436 	rcu_read_unlock();
5437 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5438 	return NULL;
5439 }
5440 #endif /* CONFIG_PER_VMA_LOCK */
5441 
5442 #ifndef __PAGETABLE_P4D_FOLDED
5443 /*
5444  * Allocate p4d page table.
5445  * We've already handled the fast-path in-line.
5446  */
5447 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5448 {
5449 	p4d_t *new = p4d_alloc_one(mm, address);
5450 	if (!new)
5451 		return -ENOMEM;
5452 
5453 	spin_lock(&mm->page_table_lock);
5454 	if (pgd_present(*pgd)) {	/* Another has populated it */
5455 		p4d_free(mm, new);
5456 	} else {
5457 		smp_wmb(); /* See comment in pmd_install() */
5458 		pgd_populate(mm, pgd, new);
5459 	}
5460 	spin_unlock(&mm->page_table_lock);
5461 	return 0;
5462 }
5463 #endif /* __PAGETABLE_P4D_FOLDED */
5464 
5465 #ifndef __PAGETABLE_PUD_FOLDED
5466 /*
5467  * Allocate page upper directory.
5468  * We've already handled the fast-path in-line.
5469  */
5470 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5471 {
5472 	pud_t *new = pud_alloc_one(mm, address);
5473 	if (!new)
5474 		return -ENOMEM;
5475 
5476 	spin_lock(&mm->page_table_lock);
5477 	if (!p4d_present(*p4d)) {
5478 		mm_inc_nr_puds(mm);
5479 		smp_wmb(); /* See comment in pmd_install() */
5480 		p4d_populate(mm, p4d, new);
5481 	} else	/* Another has populated it */
5482 		pud_free(mm, new);
5483 	spin_unlock(&mm->page_table_lock);
5484 	return 0;
5485 }
5486 #endif /* __PAGETABLE_PUD_FOLDED */
5487 
5488 #ifndef __PAGETABLE_PMD_FOLDED
5489 /*
5490  * Allocate page middle directory.
5491  * We've already handled the fast-path in-line.
5492  */
5493 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5494 {
5495 	spinlock_t *ptl;
5496 	pmd_t *new = pmd_alloc_one(mm, address);
5497 	if (!new)
5498 		return -ENOMEM;
5499 
5500 	ptl = pud_lock(mm, pud);
5501 	if (!pud_present(*pud)) {
5502 		mm_inc_nr_pmds(mm);
5503 		smp_wmb(); /* See comment in pmd_install() */
5504 		pud_populate(mm, pud, new);
5505 	} else {	/* Another has populated it */
5506 		pmd_free(mm, new);
5507 	}
5508 	spin_unlock(ptl);
5509 	return 0;
5510 }
5511 #endif /* __PAGETABLE_PMD_FOLDED */
5512 
5513 /**
5514  * follow_pte - look up PTE at a user virtual address
5515  * @mm: the mm_struct of the target address space
5516  * @address: user virtual address
5517  * @ptepp: location to store found PTE
5518  * @ptlp: location to store the lock for the PTE
5519  *
5520  * On a successful return, the pointer to the PTE is stored in @ptepp;
5521  * the corresponding lock is taken and its location is stored in @ptlp.
5522  * The contents of the PTE are only stable until @ptlp is released;
5523  * any further use, if any, must be protected against invalidation
5524  * with MMU notifiers.
5525  *
5526  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5527  * should be taken for read.
5528  *
5529  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5530  * it is not a good general-purpose API.
5531  *
5532  * Return: zero on success, -ve otherwise.
5533  */
5534 int follow_pte(struct mm_struct *mm, unsigned long address,
5535 	       pte_t **ptepp, spinlock_t **ptlp)
5536 {
5537 	pgd_t *pgd;
5538 	p4d_t *p4d;
5539 	pud_t *pud;
5540 	pmd_t *pmd;
5541 	pte_t *ptep;
5542 
5543 	pgd = pgd_offset(mm, address);
5544 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5545 		goto out;
5546 
5547 	p4d = p4d_offset(pgd, address);
5548 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5549 		goto out;
5550 
5551 	pud = pud_offset(p4d, address);
5552 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5553 		goto out;
5554 
5555 	pmd = pmd_offset(pud, address);
5556 	VM_BUG_ON(pmd_trans_huge(*pmd));
5557 
5558 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5559 	if (!ptep)
5560 		goto out;
5561 	if (!pte_present(ptep_get(ptep)))
5562 		goto unlock;
5563 	*ptepp = ptep;
5564 	return 0;
5565 unlock:
5566 	pte_unmap_unlock(ptep, *ptlp);
5567 out:
5568 	return -EINVAL;
5569 }
5570 EXPORT_SYMBOL_GPL(follow_pte);
5571 
5572 /**
5573  * follow_pfn - look up PFN at a user virtual address
5574  * @vma: memory mapping
5575  * @address: user virtual address
5576  * @pfn: location to store found PFN
5577  *
5578  * Only IO mappings and raw PFN mappings are allowed.
5579  *
5580  * This function does not allow the caller to read the permissions
5581  * of the PTE.  Do not use it.
5582  *
5583  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5584  */
5585 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5586 	unsigned long *pfn)
5587 {
5588 	int ret = -EINVAL;
5589 	spinlock_t *ptl;
5590 	pte_t *ptep;
5591 
5592 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5593 		return ret;
5594 
5595 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5596 	if (ret)
5597 		return ret;
5598 	*pfn = pte_pfn(ptep_get(ptep));
5599 	pte_unmap_unlock(ptep, ptl);
5600 	return 0;
5601 }
5602 EXPORT_SYMBOL(follow_pfn);
5603 
5604 #ifdef CONFIG_HAVE_IOREMAP_PROT
5605 int follow_phys(struct vm_area_struct *vma,
5606 		unsigned long address, unsigned int flags,
5607 		unsigned long *prot, resource_size_t *phys)
5608 {
5609 	int ret = -EINVAL;
5610 	pte_t *ptep, pte;
5611 	spinlock_t *ptl;
5612 
5613 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5614 		goto out;
5615 
5616 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5617 		goto out;
5618 	pte = ptep_get(ptep);
5619 
5620 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5621 		goto unlock;
5622 
5623 	*prot = pgprot_val(pte_pgprot(pte));
5624 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5625 
5626 	ret = 0;
5627 unlock:
5628 	pte_unmap_unlock(ptep, ptl);
5629 out:
5630 	return ret;
5631 }
5632 
5633 /**
5634  * generic_access_phys - generic implementation for iomem mmap access
5635  * @vma: the vma to access
5636  * @addr: userspace address, not relative offset within @vma
5637  * @buf: buffer to read/write
5638  * @len: length of transfer
5639  * @write: set to FOLL_WRITE when writing, otherwise reading
5640  *
5641  * This is a generic implementation for &vm_operations_struct.access for an
5642  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5643  * not page based.
5644  */
5645 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5646 			void *buf, int len, int write)
5647 {
5648 	resource_size_t phys_addr;
5649 	unsigned long prot = 0;
5650 	void __iomem *maddr;
5651 	pte_t *ptep, pte;
5652 	spinlock_t *ptl;
5653 	int offset = offset_in_page(addr);
5654 	int ret = -EINVAL;
5655 
5656 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5657 		return -EINVAL;
5658 
5659 retry:
5660 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5661 		return -EINVAL;
5662 	pte = ptep_get(ptep);
5663 	pte_unmap_unlock(ptep, ptl);
5664 
5665 	prot = pgprot_val(pte_pgprot(pte));
5666 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5667 
5668 	if ((write & FOLL_WRITE) && !pte_write(pte))
5669 		return -EINVAL;
5670 
5671 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5672 	if (!maddr)
5673 		return -ENOMEM;
5674 
5675 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5676 		goto out_unmap;
5677 
5678 	if (!pte_same(pte, ptep_get(ptep))) {
5679 		pte_unmap_unlock(ptep, ptl);
5680 		iounmap(maddr);
5681 
5682 		goto retry;
5683 	}
5684 
5685 	if (write)
5686 		memcpy_toio(maddr + offset, buf, len);
5687 	else
5688 		memcpy_fromio(buf, maddr + offset, len);
5689 	ret = len;
5690 	pte_unmap_unlock(ptep, ptl);
5691 out_unmap:
5692 	iounmap(maddr);
5693 
5694 	return ret;
5695 }
5696 EXPORT_SYMBOL_GPL(generic_access_phys);
5697 #endif
5698 
5699 /*
5700  * Access another process' address space as given in mm.
5701  */
5702 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5703 		       int len, unsigned int gup_flags)
5704 {
5705 	void *old_buf = buf;
5706 	int write = gup_flags & FOLL_WRITE;
5707 
5708 	if (mmap_read_lock_killable(mm))
5709 		return 0;
5710 
5711 	/* Avoid triggering the temporary warning in __get_user_pages */
5712 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5713 		return 0;
5714 
5715 	/* ignore errors, just check how much was successfully transferred */
5716 	while (len) {
5717 		int bytes, offset;
5718 		void *maddr;
5719 		struct vm_area_struct *vma = NULL;
5720 		struct page *page = get_user_page_vma_remote(mm, addr,
5721 							     gup_flags, &vma);
5722 
5723 		if (IS_ERR_OR_NULL(page)) {
5724 			/* We might need to expand the stack to access it */
5725 			vma = vma_lookup(mm, addr);
5726 			if (!vma) {
5727 				vma = expand_stack(mm, addr);
5728 
5729 				/* mmap_lock was dropped on failure */
5730 				if (!vma)
5731 					return buf - old_buf;
5732 
5733 				/* Try again if stack expansion worked */
5734 				continue;
5735 			}
5736 
5737 
5738 			/*
5739 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5740 			 * we can access using slightly different code.
5741 			 */
5742 			bytes = 0;
5743 #ifdef CONFIG_HAVE_IOREMAP_PROT
5744 			if (vma->vm_ops && vma->vm_ops->access)
5745 				bytes = vma->vm_ops->access(vma, addr, buf,
5746 							    len, write);
5747 #endif
5748 			if (bytes <= 0)
5749 				break;
5750 		} else {
5751 			bytes = len;
5752 			offset = addr & (PAGE_SIZE-1);
5753 			if (bytes > PAGE_SIZE-offset)
5754 				bytes = PAGE_SIZE-offset;
5755 
5756 			maddr = kmap(page);
5757 			if (write) {
5758 				copy_to_user_page(vma, page, addr,
5759 						  maddr + offset, buf, bytes);
5760 				set_page_dirty_lock(page);
5761 			} else {
5762 				copy_from_user_page(vma, page, addr,
5763 						    buf, maddr + offset, bytes);
5764 			}
5765 			kunmap(page);
5766 			put_page(page);
5767 		}
5768 		len -= bytes;
5769 		buf += bytes;
5770 		addr += bytes;
5771 	}
5772 	mmap_read_unlock(mm);
5773 
5774 	return buf - old_buf;
5775 }
5776 
5777 /**
5778  * access_remote_vm - access another process' address space
5779  * @mm:		the mm_struct of the target address space
5780  * @addr:	start address to access
5781  * @buf:	source or destination buffer
5782  * @len:	number of bytes to transfer
5783  * @gup_flags:	flags modifying lookup behaviour
5784  *
5785  * The caller must hold a reference on @mm.
5786  *
5787  * Return: number of bytes copied from source to destination.
5788  */
5789 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5790 		void *buf, int len, unsigned int gup_flags)
5791 {
5792 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5793 }
5794 
5795 /*
5796  * Access another process' address space.
5797  * Source/target buffer must be kernel space,
5798  * Do not walk the page table directly, use get_user_pages
5799  */
5800 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5801 		void *buf, int len, unsigned int gup_flags)
5802 {
5803 	struct mm_struct *mm;
5804 	int ret;
5805 
5806 	mm = get_task_mm(tsk);
5807 	if (!mm)
5808 		return 0;
5809 
5810 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5811 
5812 	mmput(mm);
5813 
5814 	return ret;
5815 }
5816 EXPORT_SYMBOL_GPL(access_process_vm);
5817 
5818 /*
5819  * Print the name of a VMA.
5820  */
5821 void print_vma_addr(char *prefix, unsigned long ip)
5822 {
5823 	struct mm_struct *mm = current->mm;
5824 	struct vm_area_struct *vma;
5825 
5826 	/*
5827 	 * we might be running from an atomic context so we cannot sleep
5828 	 */
5829 	if (!mmap_read_trylock(mm))
5830 		return;
5831 
5832 	vma = find_vma(mm, ip);
5833 	if (vma && vma->vm_file) {
5834 		struct file *f = vma->vm_file;
5835 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5836 		if (buf) {
5837 			char *p;
5838 
5839 			p = file_path(f, buf, PAGE_SIZE);
5840 			if (IS_ERR(p))
5841 				p = "?";
5842 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5843 					vma->vm_start,
5844 					vma->vm_end - vma->vm_start);
5845 			free_page((unsigned long)buf);
5846 		}
5847 	}
5848 	mmap_read_unlock(mm);
5849 }
5850 
5851 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5852 void __might_fault(const char *file, int line)
5853 {
5854 	if (pagefault_disabled())
5855 		return;
5856 	__might_sleep(file, line);
5857 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5858 	if (current->mm)
5859 		might_lock_read(&current->mm->mmap_lock);
5860 #endif
5861 }
5862 EXPORT_SYMBOL(__might_fault);
5863 #endif
5864 
5865 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5866 /*
5867  * Process all subpages of the specified huge page with the specified
5868  * operation.  The target subpage will be processed last to keep its
5869  * cache lines hot.
5870  */
5871 static inline int process_huge_page(
5872 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5873 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5874 	void *arg)
5875 {
5876 	int i, n, base, l, ret;
5877 	unsigned long addr = addr_hint &
5878 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5879 
5880 	/* Process target subpage last to keep its cache lines hot */
5881 	might_sleep();
5882 	n = (addr_hint - addr) / PAGE_SIZE;
5883 	if (2 * n <= pages_per_huge_page) {
5884 		/* If target subpage in first half of huge page */
5885 		base = 0;
5886 		l = n;
5887 		/* Process subpages at the end of huge page */
5888 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5889 			cond_resched();
5890 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5891 			if (ret)
5892 				return ret;
5893 		}
5894 	} else {
5895 		/* If target subpage in second half of huge page */
5896 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5897 		l = pages_per_huge_page - n;
5898 		/* Process subpages at the begin of huge page */
5899 		for (i = 0; i < base; i++) {
5900 			cond_resched();
5901 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5902 			if (ret)
5903 				return ret;
5904 		}
5905 	}
5906 	/*
5907 	 * Process remaining subpages in left-right-left-right pattern
5908 	 * towards the target subpage
5909 	 */
5910 	for (i = 0; i < l; i++) {
5911 		int left_idx = base + i;
5912 		int right_idx = base + 2 * l - 1 - i;
5913 
5914 		cond_resched();
5915 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5916 		if (ret)
5917 			return ret;
5918 		cond_resched();
5919 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5920 		if (ret)
5921 			return ret;
5922 	}
5923 	return 0;
5924 }
5925 
5926 static void clear_gigantic_page(struct page *page,
5927 				unsigned long addr,
5928 				unsigned int pages_per_huge_page)
5929 {
5930 	int i;
5931 	struct page *p;
5932 
5933 	might_sleep();
5934 	for (i = 0; i < pages_per_huge_page; i++) {
5935 		p = nth_page(page, i);
5936 		cond_resched();
5937 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5938 	}
5939 }
5940 
5941 static int clear_subpage(unsigned long addr, int idx, void *arg)
5942 {
5943 	struct page *page = arg;
5944 
5945 	clear_user_highpage(page + idx, addr);
5946 	return 0;
5947 }
5948 
5949 void clear_huge_page(struct page *page,
5950 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5951 {
5952 	unsigned long addr = addr_hint &
5953 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5954 
5955 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5956 		clear_gigantic_page(page, addr, pages_per_huge_page);
5957 		return;
5958 	}
5959 
5960 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5961 }
5962 
5963 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5964 				     unsigned long addr,
5965 				     struct vm_area_struct *vma,
5966 				     unsigned int pages_per_huge_page)
5967 {
5968 	int i;
5969 	struct page *dst_page;
5970 	struct page *src_page;
5971 
5972 	for (i = 0; i < pages_per_huge_page; i++) {
5973 		dst_page = folio_page(dst, i);
5974 		src_page = folio_page(src, i);
5975 
5976 		cond_resched();
5977 		if (copy_mc_user_highpage(dst_page, src_page,
5978 					  addr + i*PAGE_SIZE, vma)) {
5979 			memory_failure_queue(page_to_pfn(src_page), 0);
5980 			return -EHWPOISON;
5981 		}
5982 	}
5983 	return 0;
5984 }
5985 
5986 struct copy_subpage_arg {
5987 	struct page *dst;
5988 	struct page *src;
5989 	struct vm_area_struct *vma;
5990 };
5991 
5992 static int copy_subpage(unsigned long addr, int idx, void *arg)
5993 {
5994 	struct copy_subpage_arg *copy_arg = arg;
5995 
5996 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5997 				  addr, copy_arg->vma)) {
5998 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5999 		return -EHWPOISON;
6000 	}
6001 	return 0;
6002 }
6003 
6004 int copy_user_large_folio(struct folio *dst, struct folio *src,
6005 			  unsigned long addr_hint, struct vm_area_struct *vma)
6006 {
6007 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6008 	unsigned long addr = addr_hint &
6009 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6010 	struct copy_subpage_arg arg = {
6011 		.dst = &dst->page,
6012 		.src = &src->page,
6013 		.vma = vma,
6014 	};
6015 
6016 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6017 		return copy_user_gigantic_page(dst, src, addr, vma,
6018 					       pages_per_huge_page);
6019 
6020 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6021 }
6022 
6023 long copy_folio_from_user(struct folio *dst_folio,
6024 			   const void __user *usr_src,
6025 			   bool allow_pagefault)
6026 {
6027 	void *kaddr;
6028 	unsigned long i, rc = 0;
6029 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6030 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6031 	struct page *subpage;
6032 
6033 	for (i = 0; i < nr_pages; i++) {
6034 		subpage = folio_page(dst_folio, i);
6035 		kaddr = kmap_local_page(subpage);
6036 		if (!allow_pagefault)
6037 			pagefault_disable();
6038 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6039 		if (!allow_pagefault)
6040 			pagefault_enable();
6041 		kunmap_local(kaddr);
6042 
6043 		ret_val -= (PAGE_SIZE - rc);
6044 		if (rc)
6045 			break;
6046 
6047 		flush_dcache_page(subpage);
6048 
6049 		cond_resched();
6050 	}
6051 	return ret_val;
6052 }
6053 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6054 
6055 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6056 
6057 static struct kmem_cache *page_ptl_cachep;
6058 
6059 void __init ptlock_cache_init(void)
6060 {
6061 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6062 			SLAB_PANIC, NULL);
6063 }
6064 
6065 bool ptlock_alloc(struct page *page)
6066 {
6067 	spinlock_t *ptl;
6068 
6069 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6070 	if (!ptl)
6071 		return false;
6072 	page->ptl = ptl;
6073 	return true;
6074 }
6075 
6076 void ptlock_free(struct page *page)
6077 {
6078 	kmem_cache_free(page_ptl_cachep, page->ptl);
6079 }
6080 #endif
6081