xref: /openbmc/linux/mm/memory.c (revision e1f7c9ee)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->start	= start;
224 	tlb->end	= end;
225 	tlb->need_flush = 0;
226 	tlb->local.next = NULL;
227 	tlb->local.nr   = 0;
228 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229 	tlb->active     = &tlb->local;
230 	tlb->batch_count = 0;
231 
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 	tlb->batch = NULL;
234 #endif
235 }
236 
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 	tlb->need_flush = 0;
240 	tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 	tlb_table_flush(tlb);
243 #endif
244 }
245 
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247 {
248 	struct mmu_gather_batch *batch;
249 
250 	for (batch = &tlb->local; batch; batch = batch->next) {
251 		free_pages_and_swap_cache(batch->pages, batch->nr);
252 		batch->nr = 0;
253 	}
254 	tlb->active = &tlb->local;
255 }
256 
257 void tlb_flush_mmu(struct mmu_gather *tlb)
258 {
259 	if (!tlb->need_flush)
260 		return;
261 	tlb_flush_mmu_tlbonly(tlb);
262 	tlb_flush_mmu_free(tlb);
263 }
264 
265 /* tlb_finish_mmu
266  *	Called at the end of the shootdown operation to free up any resources
267  *	that were required.
268  */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 	struct mmu_gather_batch *batch, *next;
272 
273 	tlb_flush_mmu(tlb);
274 
275 	/* keep the page table cache within bounds */
276 	check_pgt_cache();
277 
278 	for (batch = tlb->local.next; batch; batch = next) {
279 		next = batch->next;
280 		free_pages((unsigned long)batch, 0);
281 	}
282 	tlb->local.next = NULL;
283 }
284 
285 /* __tlb_remove_page
286  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *	handling the additional races in SMP caused by other CPUs caching valid
288  *	mappings in their TLBs. Returns the number of free page slots left.
289  *	When out of page slots we must call tlb_flush_mmu().
290  */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 	struct mmu_gather_batch *batch;
294 
295 	VM_BUG_ON(!tlb->need_flush);
296 
297 	batch = tlb->active;
298 	batch->pages[batch->nr++] = page;
299 	if (batch->nr == batch->max) {
300 		if (!tlb_next_batch(tlb))
301 			return 0;
302 		batch = tlb->active;
303 	}
304 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305 
306 	return batch->max - batch->nr;
307 }
308 
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310 
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 
313 /*
314  * See the comment near struct mmu_table_batch.
315  */
316 
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 	/* Simply deliver the interrupt */
320 }
321 
322 static void tlb_remove_table_one(void *table)
323 {
324 	/*
325 	 * This isn't an RCU grace period and hence the page-tables cannot be
326 	 * assumed to be actually RCU-freed.
327 	 *
328 	 * It is however sufficient for software page-table walkers that rely on
329 	 * IRQ disabling. See the comment near struct mmu_table_batch.
330 	 */
331 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 	__tlb_remove_table(table);
333 }
334 
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 	struct mmu_table_batch *batch;
338 	int i;
339 
340 	batch = container_of(head, struct mmu_table_batch, rcu);
341 
342 	for (i = 0; i < batch->nr; i++)
343 		__tlb_remove_table(batch->tables[i]);
344 
345 	free_page((unsigned long)batch);
346 }
347 
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 	struct mmu_table_batch **batch = &tlb->batch;
351 
352 	if (*batch) {
353 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 		*batch = NULL;
355 	}
356 }
357 
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 	struct mmu_table_batch **batch = &tlb->batch;
361 
362 	tlb->need_flush = 1;
363 
364 	/*
365 	 * When there's less then two users of this mm there cannot be a
366 	 * concurrent page-table walk.
367 	 */
368 	if (atomic_read(&tlb->mm->mm_users) < 2) {
369 		__tlb_remove_table(table);
370 		return;
371 	}
372 
373 	if (*batch == NULL) {
374 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 		if (*batch == NULL) {
376 			tlb_remove_table_one(table);
377 			return;
378 		}
379 		(*batch)->nr = 0;
380 	}
381 	(*batch)->tables[(*batch)->nr++] = table;
382 	if ((*batch)->nr == MAX_TABLE_BATCH)
383 		tlb_table_flush(tlb);
384 }
385 
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 			   unsigned long addr)
394 {
395 	pgtable_t token = pmd_pgtable(*pmd);
396 	pmd_clear(pmd);
397 	pte_free_tlb(tlb, token, addr);
398 	atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400 
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 				unsigned long addr, unsigned long end,
403 				unsigned long floor, unsigned long ceiling)
404 {
405 	pmd_t *pmd;
406 	unsigned long next;
407 	unsigned long start;
408 
409 	start = addr;
410 	pmd = pmd_offset(pud, addr);
411 	do {
412 		next = pmd_addr_end(addr, end);
413 		if (pmd_none_or_clear_bad(pmd))
414 			continue;
415 		free_pte_range(tlb, pmd, addr);
416 	} while (pmd++, addr = next, addr != end);
417 
418 	start &= PUD_MASK;
419 	if (start < floor)
420 		return;
421 	if (ceiling) {
422 		ceiling &= PUD_MASK;
423 		if (!ceiling)
424 			return;
425 	}
426 	if (end - 1 > ceiling - 1)
427 		return;
428 
429 	pmd = pmd_offset(pud, start);
430 	pud_clear(pud);
431 	pmd_free_tlb(tlb, pmd, start);
432 }
433 
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 				unsigned long addr, unsigned long end,
436 				unsigned long floor, unsigned long ceiling)
437 {
438 	pud_t *pud;
439 	unsigned long next;
440 	unsigned long start;
441 
442 	start = addr;
443 	pud = pud_offset(pgd, addr);
444 	do {
445 		next = pud_addr_end(addr, end);
446 		if (pud_none_or_clear_bad(pud))
447 			continue;
448 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 	} while (pud++, addr = next, addr != end);
450 
451 	start &= PGDIR_MASK;
452 	if (start < floor)
453 		return;
454 	if (ceiling) {
455 		ceiling &= PGDIR_MASK;
456 		if (!ceiling)
457 			return;
458 	}
459 	if (end - 1 > ceiling - 1)
460 		return;
461 
462 	pud = pud_offset(pgd, start);
463 	pgd_clear(pgd);
464 	pud_free_tlb(tlb, pud, start);
465 }
466 
467 /*
468  * This function frees user-level page tables of a process.
469  */
470 void free_pgd_range(struct mmu_gather *tlb,
471 			unsigned long addr, unsigned long end,
472 			unsigned long floor, unsigned long ceiling)
473 {
474 	pgd_t *pgd;
475 	unsigned long next;
476 
477 	/*
478 	 * The next few lines have given us lots of grief...
479 	 *
480 	 * Why are we testing PMD* at this top level?  Because often
481 	 * there will be no work to do at all, and we'd prefer not to
482 	 * go all the way down to the bottom just to discover that.
483 	 *
484 	 * Why all these "- 1"s?  Because 0 represents both the bottom
485 	 * of the address space and the top of it (using -1 for the
486 	 * top wouldn't help much: the masks would do the wrong thing).
487 	 * The rule is that addr 0 and floor 0 refer to the bottom of
488 	 * the address space, but end 0 and ceiling 0 refer to the top
489 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 	 * that end 0 case should be mythical).
491 	 *
492 	 * Wherever addr is brought up or ceiling brought down, we must
493 	 * be careful to reject "the opposite 0" before it confuses the
494 	 * subsequent tests.  But what about where end is brought down
495 	 * by PMD_SIZE below? no, end can't go down to 0 there.
496 	 *
497 	 * Whereas we round start (addr) and ceiling down, by different
498 	 * masks at different levels, in order to test whether a table
499 	 * now has no other vmas using it, so can be freed, we don't
500 	 * bother to round floor or end up - the tests don't need that.
501 	 */
502 
503 	addr &= PMD_MASK;
504 	if (addr < floor) {
505 		addr += PMD_SIZE;
506 		if (!addr)
507 			return;
508 	}
509 	if (ceiling) {
510 		ceiling &= PMD_MASK;
511 		if (!ceiling)
512 			return;
513 	}
514 	if (end - 1 > ceiling - 1)
515 		end -= PMD_SIZE;
516 	if (addr > end - 1)
517 		return;
518 
519 	pgd = pgd_offset(tlb->mm, addr);
520 	do {
521 		next = pgd_addr_end(addr, end);
522 		if (pgd_none_or_clear_bad(pgd))
523 			continue;
524 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 	} while (pgd++, addr = next, addr != end);
526 }
527 
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 		unsigned long floor, unsigned long ceiling)
530 {
531 	while (vma) {
532 		struct vm_area_struct *next = vma->vm_next;
533 		unsigned long addr = vma->vm_start;
534 
535 		/*
536 		 * Hide vma from rmap and truncate_pagecache before freeing
537 		 * pgtables
538 		 */
539 		unlink_anon_vmas(vma);
540 		unlink_file_vma(vma);
541 
542 		if (is_vm_hugetlb_page(vma)) {
543 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 				floor, next? next->vm_start: ceiling);
545 		} else {
546 			/*
547 			 * Optimization: gather nearby vmas into one call down
548 			 */
549 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 			       && !is_vm_hugetlb_page(next)) {
551 				vma = next;
552 				next = vma->vm_next;
553 				unlink_anon_vmas(vma);
554 				unlink_file_vma(vma);
555 			}
556 			free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		}
559 		vma = next;
560 	}
561 }
562 
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 		pmd_t *pmd, unsigned long address)
565 {
566 	spinlock_t *ptl;
567 	pgtable_t new = pte_alloc_one(mm, address);
568 	int wait_split_huge_page;
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	wait_split_huge_page = 0;
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	} else if (unlikely(pmd_trans_splitting(*pmd)))
594 		wait_split_huge_page = 1;
595 	spin_unlock(ptl);
596 	if (new)
597 		pte_free(mm, new);
598 	if (wait_split_huge_page)
599 		wait_split_huge_page(vma->anon_vma, pmd);
600 	return 0;
601 }
602 
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 	if (!new)
607 		return -ENOMEM;
608 
609 	smp_wmb(); /* See comment in __pte_alloc */
610 
611 	spin_lock(&init_mm.page_table_lock);
612 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613 		pmd_populate_kernel(&init_mm, pmd, new);
614 		new = NULL;
615 	} else
616 		VM_BUG_ON(pmd_trans_splitting(*pmd));
617 	spin_unlock(&init_mm.page_table_lock);
618 	if (new)
619 		pte_free_kernel(&init_mm, new);
620 	return 0;
621 }
622 
623 static inline void init_rss_vec(int *rss)
624 {
625 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627 
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 	int i;
631 
632 	if (current->mm == mm)
633 		sync_mm_rss(mm);
634 	for (i = 0; i < NR_MM_COUNTERS; i++)
635 		if (rss[i])
636 			add_mm_counter(mm, i, rss[i]);
637 }
638 
639 /*
640  * This function is called to print an error when a bad pte
641  * is found. For example, we might have a PFN-mapped pte in
642  * a region that doesn't allow it.
643  *
644  * The calling function must still handle the error.
645  */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 			  pte_t pte, struct page *page)
648 {
649 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 	pud_t *pud = pud_offset(pgd, addr);
651 	pmd_t *pmd = pmd_offset(pud, addr);
652 	struct address_space *mapping;
653 	pgoff_t index;
654 	static unsigned long resume;
655 	static unsigned long nr_shown;
656 	static unsigned long nr_unshown;
657 
658 	/*
659 	 * Allow a burst of 60 reports, then keep quiet for that minute;
660 	 * or allow a steady drip of one report per second.
661 	 */
662 	if (nr_shown == 60) {
663 		if (time_before(jiffies, resume)) {
664 			nr_unshown++;
665 			return;
666 		}
667 		if (nr_unshown) {
668 			printk(KERN_ALERT
669 				"BUG: Bad page map: %lu messages suppressed\n",
670 				nr_unshown);
671 			nr_unshown = 0;
672 		}
673 		nr_shown = 0;
674 	}
675 	if (nr_shown++ == 0)
676 		resume = jiffies + 60 * HZ;
677 
678 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 	index = linear_page_index(vma, addr);
680 
681 	printk(KERN_ALERT
682 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683 		current->comm,
684 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685 	if (page)
686 		dump_page(page, "bad pte");
687 	printk(KERN_ALERT
688 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 	/*
691 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 	 */
693 	if (vma->vm_ops)
694 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 		       vma->vm_ops->fault);
696 	if (vma->vm_file)
697 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 		       vma->vm_file->f_op->mmap);
699 	dump_stack();
700 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702 
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 				pte_t pte)
752 {
753 	unsigned long pfn = pte_pfn(pte);
754 
755 	if (HAVE_PTE_SPECIAL) {
756 		if (likely(!pte_special(pte)))
757 			goto check_pfn;
758 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
759 			return NULL;
760 		if (!is_zero_pfn(pfn))
761 			print_bad_pte(vma, addr, pte, NULL);
762 		return NULL;
763 	}
764 
765 	/* !HAVE_PTE_SPECIAL case follows: */
766 
767 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
768 		if (vma->vm_flags & VM_MIXEDMAP) {
769 			if (!pfn_valid(pfn))
770 				return NULL;
771 			goto out;
772 		} else {
773 			unsigned long off;
774 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
775 			if (pfn == vma->vm_pgoff + off)
776 				return NULL;
777 			if (!is_cow_mapping(vma->vm_flags))
778 				return NULL;
779 		}
780 	}
781 
782 	if (is_zero_pfn(pfn))
783 		return NULL;
784 check_pfn:
785 	if (unlikely(pfn > highest_memmap_pfn)) {
786 		print_bad_pte(vma, addr, pte, NULL);
787 		return NULL;
788 	}
789 
790 	/*
791 	 * NOTE! We still have PageReserved() pages in the page tables.
792 	 * eg. VDSO mappings can cause them to exist.
793 	 */
794 out:
795 	return pfn_to_page(pfn);
796 }
797 
798 /*
799  * copy one vm_area from one task to the other. Assumes the page tables
800  * already present in the new task to be cleared in the whole range
801  * covered by this vma.
802  */
803 
804 static inline unsigned long
805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
807 		unsigned long addr, int *rss)
808 {
809 	unsigned long vm_flags = vma->vm_flags;
810 	pte_t pte = *src_pte;
811 	struct page *page;
812 
813 	/* pte contains position in swap or file, so copy. */
814 	if (unlikely(!pte_present(pte))) {
815 		if (!pte_file(pte)) {
816 			swp_entry_t entry = pte_to_swp_entry(pte);
817 
818 			if (swap_duplicate(entry) < 0)
819 				return entry.val;
820 
821 			/* make sure dst_mm is on swapoff's mmlist. */
822 			if (unlikely(list_empty(&dst_mm->mmlist))) {
823 				spin_lock(&mmlist_lock);
824 				if (list_empty(&dst_mm->mmlist))
825 					list_add(&dst_mm->mmlist,
826 						 &src_mm->mmlist);
827 				spin_unlock(&mmlist_lock);
828 			}
829 			if (likely(!non_swap_entry(entry)))
830 				rss[MM_SWAPENTS]++;
831 			else if (is_migration_entry(entry)) {
832 				page = migration_entry_to_page(entry);
833 
834 				if (PageAnon(page))
835 					rss[MM_ANONPAGES]++;
836 				else
837 					rss[MM_FILEPAGES]++;
838 
839 				if (is_write_migration_entry(entry) &&
840 				    is_cow_mapping(vm_flags)) {
841 					/*
842 					 * COW mappings require pages in both
843 					 * parent and child to be set to read.
844 					 */
845 					make_migration_entry_read(&entry);
846 					pte = swp_entry_to_pte(entry);
847 					if (pte_swp_soft_dirty(*src_pte))
848 						pte = pte_swp_mksoft_dirty(pte);
849 					set_pte_at(src_mm, addr, src_pte, pte);
850 				}
851 			}
852 		}
853 		goto out_set_pte;
854 	}
855 
856 	/*
857 	 * If it's a COW mapping, write protect it both
858 	 * in the parent and the child
859 	 */
860 	if (is_cow_mapping(vm_flags)) {
861 		ptep_set_wrprotect(src_mm, addr, src_pte);
862 		pte = pte_wrprotect(pte);
863 	}
864 
865 	/*
866 	 * If it's a shared mapping, mark it clean in
867 	 * the child
868 	 */
869 	if (vm_flags & VM_SHARED)
870 		pte = pte_mkclean(pte);
871 	pte = pte_mkold(pte);
872 
873 	page = vm_normal_page(vma, addr, pte);
874 	if (page) {
875 		get_page(page);
876 		page_dup_rmap(page);
877 		if (PageAnon(page))
878 			rss[MM_ANONPAGES]++;
879 		else
880 			rss[MM_FILEPAGES]++;
881 	}
882 
883 out_set_pte:
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 		   unsigned long addr, unsigned long end)
891 {
892 	pte_t *orig_src_pte, *orig_dst_pte;
893 	pte_t *src_pte, *dst_pte;
894 	spinlock_t *src_ptl, *dst_ptl;
895 	int progress = 0;
896 	int rss[NR_MM_COUNTERS];
897 	swp_entry_t entry = (swp_entry_t){0};
898 
899 again:
900 	init_rss_vec(rss);
901 
902 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 	if (!dst_pte)
904 		return -ENOMEM;
905 	src_pte = pte_offset_map(src_pmd, addr);
906 	src_ptl = pte_lockptr(src_mm, src_pmd);
907 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 	orig_src_pte = src_pte;
909 	orig_dst_pte = dst_pte;
910 	arch_enter_lazy_mmu_mode();
911 
912 	do {
913 		/*
914 		 * We are holding two locks at this point - either of them
915 		 * could generate latencies in another task on another CPU.
916 		 */
917 		if (progress >= 32) {
918 			progress = 0;
919 			if (need_resched() ||
920 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 				break;
922 		}
923 		if (pte_none(*src_pte)) {
924 			progress++;
925 			continue;
926 		}
927 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 							vma, addr, rss);
929 		if (entry.val)
930 			break;
931 		progress += 8;
932 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933 
934 	arch_leave_lazy_mmu_mode();
935 	spin_unlock(src_ptl);
936 	pte_unmap(orig_src_pte);
937 	add_mm_rss_vec(dst_mm, rss);
938 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 	cond_resched();
940 
941 	if (entry.val) {
942 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 			return -ENOMEM;
944 		progress = 0;
945 	}
946 	if (addr != end)
947 		goto again;
948 	return 0;
949 }
950 
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 		unsigned long addr, unsigned long end)
954 {
955 	pmd_t *src_pmd, *dst_pmd;
956 	unsigned long next;
957 
958 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 	if (!dst_pmd)
960 		return -ENOMEM;
961 	src_pmd = pmd_offset(src_pud, addr);
962 	do {
963 		next = pmd_addr_end(addr, end);
964 		if (pmd_trans_huge(*src_pmd)) {
965 			int err;
966 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 			err = copy_huge_pmd(dst_mm, src_mm,
968 					    dst_pmd, src_pmd, addr, vma);
969 			if (err == -ENOMEM)
970 				return -ENOMEM;
971 			if (!err)
972 				continue;
973 			/* fall through */
974 		}
975 		if (pmd_none_or_clear_bad(src_pmd))
976 			continue;
977 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 						vma, addr, next))
979 			return -ENOMEM;
980 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 	return 0;
982 }
983 
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 		unsigned long addr, unsigned long end)
987 {
988 	pud_t *src_pud, *dst_pud;
989 	unsigned long next;
990 
991 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 	if (!dst_pud)
993 		return -ENOMEM;
994 	src_pud = pud_offset(src_pgd, addr);
995 	do {
996 		next = pud_addr_end(addr, end);
997 		if (pud_none_or_clear_bad(src_pud))
998 			continue;
999 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 						vma, addr, next))
1001 			return -ENOMEM;
1002 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1003 	return 0;
1004 }
1005 
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 		struct vm_area_struct *vma)
1008 {
1009 	pgd_t *src_pgd, *dst_pgd;
1010 	unsigned long next;
1011 	unsigned long addr = vma->vm_start;
1012 	unsigned long end = vma->vm_end;
1013 	unsigned long mmun_start;	/* For mmu_notifiers */
1014 	unsigned long mmun_end;		/* For mmu_notifiers */
1015 	bool is_cow;
1016 	int ret;
1017 
1018 	/*
1019 	 * Don't copy ptes where a page fault will fill them correctly.
1020 	 * Fork becomes much lighter when there are big shared or private
1021 	 * readonly mappings. The tradeoff is that copy_page_range is more
1022 	 * efficient than faulting.
1023 	 */
1024 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1025 			       VM_PFNMAP | VM_MIXEDMAP))) {
1026 		if (!vma->anon_vma)
1027 			return 0;
1028 	}
1029 
1030 	if (is_vm_hugetlb_page(vma))
1031 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032 
1033 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 		/*
1035 		 * We do not free on error cases below as remove_vma
1036 		 * gets called on error from higher level routine
1037 		 */
1038 		ret = track_pfn_copy(vma);
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	/*
1044 	 * We need to invalidate the secondary MMU mappings only when
1045 	 * there could be a permission downgrade on the ptes of the
1046 	 * parent mm. And a permission downgrade will only happen if
1047 	 * is_cow_mapping() returns true.
1048 	 */
1049 	is_cow = is_cow_mapping(vma->vm_flags);
1050 	mmun_start = addr;
1051 	mmun_end   = end;
1052 	if (is_cow)
1053 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1054 						    mmun_end);
1055 
1056 	ret = 0;
1057 	dst_pgd = pgd_offset(dst_mm, addr);
1058 	src_pgd = pgd_offset(src_mm, addr);
1059 	do {
1060 		next = pgd_addr_end(addr, end);
1061 		if (pgd_none_or_clear_bad(src_pgd))
1062 			continue;
1063 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1064 					    vma, addr, next))) {
1065 			ret = -ENOMEM;
1066 			break;
1067 		}
1068 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069 
1070 	if (is_cow)
1071 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1072 	return ret;
1073 }
1074 
1075 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1076 				struct vm_area_struct *vma, pmd_t *pmd,
1077 				unsigned long addr, unsigned long end,
1078 				struct zap_details *details)
1079 {
1080 	struct mm_struct *mm = tlb->mm;
1081 	int force_flush = 0;
1082 	int rss[NR_MM_COUNTERS];
1083 	spinlock_t *ptl;
1084 	pte_t *start_pte;
1085 	pte_t *pte;
1086 
1087 again:
1088 	init_rss_vec(rss);
1089 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 	pte = start_pte;
1091 	arch_enter_lazy_mmu_mode();
1092 	do {
1093 		pte_t ptent = *pte;
1094 		if (pte_none(ptent)) {
1095 			continue;
1096 		}
1097 
1098 		if (pte_present(ptent)) {
1099 			struct page *page;
1100 
1101 			page = vm_normal_page(vma, addr, ptent);
1102 			if (unlikely(details) && page) {
1103 				/*
1104 				 * unmap_shared_mapping_pages() wants to
1105 				 * invalidate cache without truncating:
1106 				 * unmap shared but keep private pages.
1107 				 */
1108 				if (details->check_mapping &&
1109 				    details->check_mapping != page->mapping)
1110 					continue;
1111 				/*
1112 				 * Each page->index must be checked when
1113 				 * invalidating or truncating nonlinear.
1114 				 */
1115 				if (details->nonlinear_vma &&
1116 				    (page->index < details->first_index ||
1117 				     page->index > details->last_index))
1118 					continue;
1119 			}
1120 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1121 							tlb->fullmm);
1122 			tlb_remove_tlb_entry(tlb, pte, addr);
1123 			if (unlikely(!page))
1124 				continue;
1125 			if (unlikely(details) && details->nonlinear_vma
1126 			    && linear_page_index(details->nonlinear_vma,
1127 						addr) != page->index) {
1128 				pte_t ptfile = pgoff_to_pte(page->index);
1129 				if (pte_soft_dirty(ptent))
1130 					ptfile = pte_file_mksoft_dirty(ptfile);
1131 				set_pte_at(mm, addr, pte, ptfile);
1132 			}
1133 			if (PageAnon(page))
1134 				rss[MM_ANONPAGES]--;
1135 			else {
1136 				if (pte_dirty(ptent)) {
1137 					force_flush = 1;
1138 					set_page_dirty(page);
1139 				}
1140 				if (pte_young(ptent) &&
1141 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1142 					mark_page_accessed(page);
1143 				rss[MM_FILEPAGES]--;
1144 			}
1145 			page_remove_rmap(page);
1146 			if (unlikely(page_mapcount(page) < 0))
1147 				print_bad_pte(vma, addr, ptent, page);
1148 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1149 				force_flush = 1;
1150 				addr += PAGE_SIZE;
1151 				break;
1152 			}
1153 			continue;
1154 		}
1155 		/*
1156 		 * If details->check_mapping, we leave swap entries;
1157 		 * if details->nonlinear_vma, we leave file entries.
1158 		 */
1159 		if (unlikely(details))
1160 			continue;
1161 		if (pte_file(ptent)) {
1162 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1163 				print_bad_pte(vma, addr, ptent, NULL);
1164 		} else {
1165 			swp_entry_t entry = pte_to_swp_entry(ptent);
1166 
1167 			if (!non_swap_entry(entry))
1168 				rss[MM_SWAPENTS]--;
1169 			else if (is_migration_entry(entry)) {
1170 				struct page *page;
1171 
1172 				page = migration_entry_to_page(entry);
1173 
1174 				if (PageAnon(page))
1175 					rss[MM_ANONPAGES]--;
1176 				else
1177 					rss[MM_FILEPAGES]--;
1178 			}
1179 			if (unlikely(!free_swap_and_cache(entry)))
1180 				print_bad_pte(vma, addr, ptent, NULL);
1181 		}
1182 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1183 	} while (pte++, addr += PAGE_SIZE, addr != end);
1184 
1185 	add_mm_rss_vec(mm, rss);
1186 	arch_leave_lazy_mmu_mode();
1187 
1188 	/* Do the actual TLB flush before dropping ptl */
1189 	if (force_flush) {
1190 		unsigned long old_end;
1191 
1192 		/*
1193 		 * Flush the TLB just for the previous segment,
1194 		 * then update the range to be the remaining
1195 		 * TLB range.
1196 		 */
1197 		old_end = tlb->end;
1198 		tlb->end = addr;
1199 		tlb_flush_mmu_tlbonly(tlb);
1200 		tlb->start = addr;
1201 		tlb->end = old_end;
1202 	}
1203 	pte_unmap_unlock(start_pte, ptl);
1204 
1205 	/*
1206 	 * If we forced a TLB flush (either due to running out of
1207 	 * batch buffers or because we needed to flush dirty TLB
1208 	 * entries before releasing the ptl), free the batched
1209 	 * memory too. Restart if we didn't do everything.
1210 	 */
1211 	if (force_flush) {
1212 		force_flush = 0;
1213 		tlb_flush_mmu_free(tlb);
1214 
1215 		if (addr != end)
1216 			goto again;
1217 	}
1218 
1219 	return addr;
1220 }
1221 
1222 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1223 				struct vm_area_struct *vma, pud_t *pud,
1224 				unsigned long addr, unsigned long end,
1225 				struct zap_details *details)
1226 {
1227 	pmd_t *pmd;
1228 	unsigned long next;
1229 
1230 	pmd = pmd_offset(pud, addr);
1231 	do {
1232 		next = pmd_addr_end(addr, end);
1233 		if (pmd_trans_huge(*pmd)) {
1234 			if (next - addr != HPAGE_PMD_SIZE) {
1235 #ifdef CONFIG_DEBUG_VM
1236 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1237 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1238 						__func__, addr, end,
1239 						vma->vm_start,
1240 						vma->vm_end);
1241 					BUG();
1242 				}
1243 #endif
1244 				split_huge_page_pmd(vma, addr, pmd);
1245 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1246 				goto next;
1247 			/* fall through */
1248 		}
1249 		/*
1250 		 * Here there can be other concurrent MADV_DONTNEED or
1251 		 * trans huge page faults running, and if the pmd is
1252 		 * none or trans huge it can change under us. This is
1253 		 * because MADV_DONTNEED holds the mmap_sem in read
1254 		 * mode.
1255 		 */
1256 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1257 			goto next;
1258 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1259 next:
1260 		cond_resched();
1261 	} while (pmd++, addr = next, addr != end);
1262 
1263 	return addr;
1264 }
1265 
1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1267 				struct vm_area_struct *vma, pgd_t *pgd,
1268 				unsigned long addr, unsigned long end,
1269 				struct zap_details *details)
1270 {
1271 	pud_t *pud;
1272 	unsigned long next;
1273 
1274 	pud = pud_offset(pgd, addr);
1275 	do {
1276 		next = pud_addr_end(addr, end);
1277 		if (pud_none_or_clear_bad(pud))
1278 			continue;
1279 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 	} while (pud++, addr = next, addr != end);
1281 
1282 	return addr;
1283 }
1284 
1285 static void unmap_page_range(struct mmu_gather *tlb,
1286 			     struct vm_area_struct *vma,
1287 			     unsigned long addr, unsigned long end,
1288 			     struct zap_details *details)
1289 {
1290 	pgd_t *pgd;
1291 	unsigned long next;
1292 
1293 	if (details && !details->check_mapping && !details->nonlinear_vma)
1294 		details = NULL;
1295 
1296 	BUG_ON(addr >= end);
1297 	tlb_start_vma(tlb, vma);
1298 	pgd = pgd_offset(vma->vm_mm, addr);
1299 	do {
1300 		next = pgd_addr_end(addr, end);
1301 		if (pgd_none_or_clear_bad(pgd))
1302 			continue;
1303 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1304 	} while (pgd++, addr = next, addr != end);
1305 	tlb_end_vma(tlb, vma);
1306 }
1307 
1308 
1309 static void unmap_single_vma(struct mmu_gather *tlb,
1310 		struct vm_area_struct *vma, unsigned long start_addr,
1311 		unsigned long end_addr,
1312 		struct zap_details *details)
1313 {
1314 	unsigned long start = max(vma->vm_start, start_addr);
1315 	unsigned long end;
1316 
1317 	if (start >= vma->vm_end)
1318 		return;
1319 	end = min(vma->vm_end, end_addr);
1320 	if (end <= vma->vm_start)
1321 		return;
1322 
1323 	if (vma->vm_file)
1324 		uprobe_munmap(vma, start, end);
1325 
1326 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1327 		untrack_pfn(vma, 0, 0);
1328 
1329 	if (start != end) {
1330 		if (unlikely(is_vm_hugetlb_page(vma))) {
1331 			/*
1332 			 * It is undesirable to test vma->vm_file as it
1333 			 * should be non-null for valid hugetlb area.
1334 			 * However, vm_file will be NULL in the error
1335 			 * cleanup path of mmap_region. When
1336 			 * hugetlbfs ->mmap method fails,
1337 			 * mmap_region() nullifies vma->vm_file
1338 			 * before calling this function to clean up.
1339 			 * Since no pte has actually been setup, it is
1340 			 * safe to do nothing in this case.
1341 			 */
1342 			if (vma->vm_file) {
1343 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1345 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 			}
1347 		} else
1348 			unmap_page_range(tlb, vma, start, end, details);
1349 	}
1350 }
1351 
1352 /**
1353  * unmap_vmas - unmap a range of memory covered by a list of vma's
1354  * @tlb: address of the caller's struct mmu_gather
1355  * @vma: the starting vma
1356  * @start_addr: virtual address at which to start unmapping
1357  * @end_addr: virtual address at which to end unmapping
1358  *
1359  * Unmap all pages in the vma list.
1360  *
1361  * Only addresses between `start' and `end' will be unmapped.
1362  *
1363  * The VMA list must be sorted in ascending virtual address order.
1364  *
1365  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366  * range after unmap_vmas() returns.  So the only responsibility here is to
1367  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368  * drops the lock and schedules.
1369  */
1370 void unmap_vmas(struct mmu_gather *tlb,
1371 		struct vm_area_struct *vma, unsigned long start_addr,
1372 		unsigned long end_addr)
1373 {
1374 	struct mm_struct *mm = vma->vm_mm;
1375 
1376 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1377 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1378 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1379 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1380 }
1381 
1382 /**
1383  * zap_page_range - remove user pages in a given range
1384  * @vma: vm_area_struct holding the applicable pages
1385  * @start: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  * @details: details of nonlinear truncation or shared cache invalidation
1388  *
1389  * Caller must protect the VMA list
1390  */
1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1392 		unsigned long size, struct zap_details *details)
1393 {
1394 	struct mm_struct *mm = vma->vm_mm;
1395 	struct mmu_gather tlb;
1396 	unsigned long end = start + size;
1397 
1398 	lru_add_drain();
1399 	tlb_gather_mmu(&tlb, mm, start, end);
1400 	update_hiwater_rss(mm);
1401 	mmu_notifier_invalidate_range_start(mm, start, end);
1402 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1403 		unmap_single_vma(&tlb, vma, start, end, details);
1404 	mmu_notifier_invalidate_range_end(mm, start, end);
1405 	tlb_finish_mmu(&tlb, start, end);
1406 }
1407 
1408 /**
1409  * zap_page_range_single - remove user pages in a given range
1410  * @vma: vm_area_struct holding the applicable pages
1411  * @address: starting address of pages to zap
1412  * @size: number of bytes to zap
1413  * @details: details of nonlinear truncation or shared cache invalidation
1414  *
1415  * The range must fit into one VMA.
1416  */
1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1418 		unsigned long size, struct zap_details *details)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	struct mmu_gather tlb;
1422 	unsigned long end = address + size;
1423 
1424 	lru_add_drain();
1425 	tlb_gather_mmu(&tlb, mm, address, end);
1426 	update_hiwater_rss(mm);
1427 	mmu_notifier_invalidate_range_start(mm, address, end);
1428 	unmap_single_vma(&tlb, vma, address, end, details);
1429 	mmu_notifier_invalidate_range_end(mm, address, end);
1430 	tlb_finish_mmu(&tlb, address, end);
1431 }
1432 
1433 /**
1434  * zap_vma_ptes - remove ptes mapping the vma
1435  * @vma: vm_area_struct holding ptes to be zapped
1436  * @address: starting address of pages to zap
1437  * @size: number of bytes to zap
1438  *
1439  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440  *
1441  * The entire address range must be fully contained within the vma.
1442  *
1443  * Returns 0 if successful.
1444  */
1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 		unsigned long size)
1447 {
1448 	if (address < vma->vm_start || address + size > vma->vm_end ||
1449 	    		!(vma->vm_flags & VM_PFNMAP))
1450 		return -1;
1451 	zap_page_range_single(vma, address, size, NULL);
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455 
1456 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1457 			spinlock_t **ptl)
1458 {
1459 	pgd_t * pgd = pgd_offset(mm, addr);
1460 	pud_t * pud = pud_alloc(mm, pgd, addr);
1461 	if (pud) {
1462 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1463 		if (pmd) {
1464 			VM_BUG_ON(pmd_trans_huge(*pmd));
1465 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1466 		}
1467 	}
1468 	return NULL;
1469 }
1470 
1471 /*
1472  * This is the old fallback for page remapping.
1473  *
1474  * For historical reasons, it only allows reserved pages. Only
1475  * old drivers should use this, and they needed to mark their
1476  * pages reserved for the old functions anyway.
1477  */
1478 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1479 			struct page *page, pgprot_t prot)
1480 {
1481 	struct mm_struct *mm = vma->vm_mm;
1482 	int retval;
1483 	pte_t *pte;
1484 	spinlock_t *ptl;
1485 
1486 	retval = -EINVAL;
1487 	if (PageAnon(page))
1488 		goto out;
1489 	retval = -ENOMEM;
1490 	flush_dcache_page(page);
1491 	pte = get_locked_pte(mm, addr, &ptl);
1492 	if (!pte)
1493 		goto out;
1494 	retval = -EBUSY;
1495 	if (!pte_none(*pte))
1496 		goto out_unlock;
1497 
1498 	/* Ok, finally just insert the thing.. */
1499 	get_page(page);
1500 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1501 	page_add_file_rmap(page);
1502 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1503 
1504 	retval = 0;
1505 	pte_unmap_unlock(pte, ptl);
1506 	return retval;
1507 out_unlock:
1508 	pte_unmap_unlock(pte, ptl);
1509 out:
1510 	return retval;
1511 }
1512 
1513 /**
1514  * vm_insert_page - insert single page into user vma
1515  * @vma: user vma to map to
1516  * @addr: target user address of this page
1517  * @page: source kernel page
1518  *
1519  * This allows drivers to insert individual pages they've allocated
1520  * into a user vma.
1521  *
1522  * The page has to be a nice clean _individual_ kernel allocation.
1523  * If you allocate a compound page, you need to have marked it as
1524  * such (__GFP_COMP), or manually just split the page up yourself
1525  * (see split_page()).
1526  *
1527  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1528  * took an arbitrary page protection parameter. This doesn't allow
1529  * that. Your vma protection will have to be set up correctly, which
1530  * means that if you want a shared writable mapping, you'd better
1531  * ask for a shared writable mapping!
1532  *
1533  * The page does not need to be reserved.
1534  *
1535  * Usually this function is called from f_op->mmap() handler
1536  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1537  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1538  * function from other places, for example from page-fault handler.
1539  */
1540 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1541 			struct page *page)
1542 {
1543 	if (addr < vma->vm_start || addr >= vma->vm_end)
1544 		return -EFAULT;
1545 	if (!page_count(page))
1546 		return -EINVAL;
1547 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1548 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1549 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1550 		vma->vm_flags |= VM_MIXEDMAP;
1551 	}
1552 	return insert_page(vma, addr, page, vma->vm_page_prot);
1553 }
1554 EXPORT_SYMBOL(vm_insert_page);
1555 
1556 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557 			unsigned long pfn, pgprot_t prot)
1558 {
1559 	struct mm_struct *mm = vma->vm_mm;
1560 	int retval;
1561 	pte_t *pte, entry;
1562 	spinlock_t *ptl;
1563 
1564 	retval = -ENOMEM;
1565 	pte = get_locked_pte(mm, addr, &ptl);
1566 	if (!pte)
1567 		goto out;
1568 	retval = -EBUSY;
1569 	if (!pte_none(*pte))
1570 		goto out_unlock;
1571 
1572 	/* Ok, finally just insert the thing.. */
1573 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1574 	set_pte_at(mm, addr, pte, entry);
1575 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1576 
1577 	retval = 0;
1578 out_unlock:
1579 	pte_unmap_unlock(pte, ptl);
1580 out:
1581 	return retval;
1582 }
1583 
1584 /**
1585  * vm_insert_pfn - insert single pfn into user vma
1586  * @vma: user vma to map to
1587  * @addr: target user address of this page
1588  * @pfn: source kernel pfn
1589  *
1590  * Similar to vm_insert_page, this allows drivers to insert individual pages
1591  * they've allocated into a user vma. Same comments apply.
1592  *
1593  * This function should only be called from a vm_ops->fault handler, and
1594  * in that case the handler should return NULL.
1595  *
1596  * vma cannot be a COW mapping.
1597  *
1598  * As this is called only for pages that do not currently exist, we
1599  * do not need to flush old virtual caches or the TLB.
1600  */
1601 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1602 			unsigned long pfn)
1603 {
1604 	int ret;
1605 	pgprot_t pgprot = vma->vm_page_prot;
1606 	/*
1607 	 * Technically, architectures with pte_special can avoid all these
1608 	 * restrictions (same for remap_pfn_range).  However we would like
1609 	 * consistency in testing and feature parity among all, so we should
1610 	 * try to keep these invariants in place for everybody.
1611 	 */
1612 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614 						(VM_PFNMAP|VM_MIXEDMAP));
1615 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1617 
1618 	if (addr < vma->vm_start || addr >= vma->vm_end)
1619 		return -EFAULT;
1620 	if (track_pfn_insert(vma, &pgprot, pfn))
1621 		return -EINVAL;
1622 
1623 	ret = insert_pfn(vma, addr, pfn, pgprot);
1624 
1625 	return ret;
1626 }
1627 EXPORT_SYMBOL(vm_insert_pfn);
1628 
1629 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1630 			unsigned long pfn)
1631 {
1632 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1633 
1634 	if (addr < vma->vm_start || addr >= vma->vm_end)
1635 		return -EFAULT;
1636 
1637 	/*
1638 	 * If we don't have pte special, then we have to use the pfn_valid()
1639 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1640 	 * refcount the page if pfn_valid is true (hence insert_page rather
1641 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1642 	 * without pte special, it would there be refcounted as a normal page.
1643 	 */
1644 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1645 		struct page *page;
1646 
1647 		page = pfn_to_page(pfn);
1648 		return insert_page(vma, addr, page, vma->vm_page_prot);
1649 	}
1650 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1651 }
1652 EXPORT_SYMBOL(vm_insert_mixed);
1653 
1654 /*
1655  * maps a range of physical memory into the requested pages. the old
1656  * mappings are removed. any references to nonexistent pages results
1657  * in null mappings (currently treated as "copy-on-access")
1658  */
1659 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1660 			unsigned long addr, unsigned long end,
1661 			unsigned long pfn, pgprot_t prot)
1662 {
1663 	pte_t *pte;
1664 	spinlock_t *ptl;
1665 
1666 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1667 	if (!pte)
1668 		return -ENOMEM;
1669 	arch_enter_lazy_mmu_mode();
1670 	do {
1671 		BUG_ON(!pte_none(*pte));
1672 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1673 		pfn++;
1674 	} while (pte++, addr += PAGE_SIZE, addr != end);
1675 	arch_leave_lazy_mmu_mode();
1676 	pte_unmap_unlock(pte - 1, ptl);
1677 	return 0;
1678 }
1679 
1680 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1681 			unsigned long addr, unsigned long end,
1682 			unsigned long pfn, pgprot_t prot)
1683 {
1684 	pmd_t *pmd;
1685 	unsigned long next;
1686 
1687 	pfn -= addr >> PAGE_SHIFT;
1688 	pmd = pmd_alloc(mm, pud, addr);
1689 	if (!pmd)
1690 		return -ENOMEM;
1691 	VM_BUG_ON(pmd_trans_huge(*pmd));
1692 	do {
1693 		next = pmd_addr_end(addr, end);
1694 		if (remap_pte_range(mm, pmd, addr, next,
1695 				pfn + (addr >> PAGE_SHIFT), prot))
1696 			return -ENOMEM;
1697 	} while (pmd++, addr = next, addr != end);
1698 	return 0;
1699 }
1700 
1701 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1702 			unsigned long addr, unsigned long end,
1703 			unsigned long pfn, pgprot_t prot)
1704 {
1705 	pud_t *pud;
1706 	unsigned long next;
1707 
1708 	pfn -= addr >> PAGE_SHIFT;
1709 	pud = pud_alloc(mm, pgd, addr);
1710 	if (!pud)
1711 		return -ENOMEM;
1712 	do {
1713 		next = pud_addr_end(addr, end);
1714 		if (remap_pmd_range(mm, pud, addr, next,
1715 				pfn + (addr >> PAGE_SHIFT), prot))
1716 			return -ENOMEM;
1717 	} while (pud++, addr = next, addr != end);
1718 	return 0;
1719 }
1720 
1721 /**
1722  * remap_pfn_range - remap kernel memory to userspace
1723  * @vma: user vma to map to
1724  * @addr: target user address to start at
1725  * @pfn: physical address of kernel memory
1726  * @size: size of map area
1727  * @prot: page protection flags for this mapping
1728  *
1729  *  Note: this is only safe if the mm semaphore is held when called.
1730  */
1731 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1732 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1733 {
1734 	pgd_t *pgd;
1735 	unsigned long next;
1736 	unsigned long end = addr + PAGE_ALIGN(size);
1737 	struct mm_struct *mm = vma->vm_mm;
1738 	int err;
1739 
1740 	/*
1741 	 * Physically remapped pages are special. Tell the
1742 	 * rest of the world about it:
1743 	 *   VM_IO tells people not to look at these pages
1744 	 *	(accesses can have side effects).
1745 	 *   VM_PFNMAP tells the core MM that the base pages are just
1746 	 *	raw PFN mappings, and do not have a "struct page" associated
1747 	 *	with them.
1748 	 *   VM_DONTEXPAND
1749 	 *      Disable vma merging and expanding with mremap().
1750 	 *   VM_DONTDUMP
1751 	 *      Omit vma from core dump, even when VM_IO turned off.
1752 	 *
1753 	 * There's a horrible special case to handle copy-on-write
1754 	 * behaviour that some programs depend on. We mark the "original"
1755 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1756 	 * See vm_normal_page() for details.
1757 	 */
1758 	if (is_cow_mapping(vma->vm_flags)) {
1759 		if (addr != vma->vm_start || end != vma->vm_end)
1760 			return -EINVAL;
1761 		vma->vm_pgoff = pfn;
1762 	}
1763 
1764 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1765 	if (err)
1766 		return -EINVAL;
1767 
1768 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1769 
1770 	BUG_ON(addr >= end);
1771 	pfn -= addr >> PAGE_SHIFT;
1772 	pgd = pgd_offset(mm, addr);
1773 	flush_cache_range(vma, addr, end);
1774 	do {
1775 		next = pgd_addr_end(addr, end);
1776 		err = remap_pud_range(mm, pgd, addr, next,
1777 				pfn + (addr >> PAGE_SHIFT), prot);
1778 		if (err)
1779 			break;
1780 	} while (pgd++, addr = next, addr != end);
1781 
1782 	if (err)
1783 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1784 
1785 	return err;
1786 }
1787 EXPORT_SYMBOL(remap_pfn_range);
1788 
1789 /**
1790  * vm_iomap_memory - remap memory to userspace
1791  * @vma: user vma to map to
1792  * @start: start of area
1793  * @len: size of area
1794  *
1795  * This is a simplified io_remap_pfn_range() for common driver use. The
1796  * driver just needs to give us the physical memory range to be mapped,
1797  * we'll figure out the rest from the vma information.
1798  *
1799  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1800  * whatever write-combining details or similar.
1801  */
1802 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1803 {
1804 	unsigned long vm_len, pfn, pages;
1805 
1806 	/* Check that the physical memory area passed in looks valid */
1807 	if (start + len < start)
1808 		return -EINVAL;
1809 	/*
1810 	 * You *really* shouldn't map things that aren't page-aligned,
1811 	 * but we've historically allowed it because IO memory might
1812 	 * just have smaller alignment.
1813 	 */
1814 	len += start & ~PAGE_MASK;
1815 	pfn = start >> PAGE_SHIFT;
1816 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1817 	if (pfn + pages < pfn)
1818 		return -EINVAL;
1819 
1820 	/* We start the mapping 'vm_pgoff' pages into the area */
1821 	if (vma->vm_pgoff > pages)
1822 		return -EINVAL;
1823 	pfn += vma->vm_pgoff;
1824 	pages -= vma->vm_pgoff;
1825 
1826 	/* Can we fit all of the mapping? */
1827 	vm_len = vma->vm_end - vma->vm_start;
1828 	if (vm_len >> PAGE_SHIFT > pages)
1829 		return -EINVAL;
1830 
1831 	/* Ok, let it rip */
1832 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1833 }
1834 EXPORT_SYMBOL(vm_iomap_memory);
1835 
1836 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1837 				     unsigned long addr, unsigned long end,
1838 				     pte_fn_t fn, void *data)
1839 {
1840 	pte_t *pte;
1841 	int err;
1842 	pgtable_t token;
1843 	spinlock_t *uninitialized_var(ptl);
1844 
1845 	pte = (mm == &init_mm) ?
1846 		pte_alloc_kernel(pmd, addr) :
1847 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1848 	if (!pte)
1849 		return -ENOMEM;
1850 
1851 	BUG_ON(pmd_huge(*pmd));
1852 
1853 	arch_enter_lazy_mmu_mode();
1854 
1855 	token = pmd_pgtable(*pmd);
1856 
1857 	do {
1858 		err = fn(pte++, token, addr, data);
1859 		if (err)
1860 			break;
1861 	} while (addr += PAGE_SIZE, addr != end);
1862 
1863 	arch_leave_lazy_mmu_mode();
1864 
1865 	if (mm != &init_mm)
1866 		pte_unmap_unlock(pte-1, ptl);
1867 	return err;
1868 }
1869 
1870 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1871 				     unsigned long addr, unsigned long end,
1872 				     pte_fn_t fn, void *data)
1873 {
1874 	pmd_t *pmd;
1875 	unsigned long next;
1876 	int err;
1877 
1878 	BUG_ON(pud_huge(*pud));
1879 
1880 	pmd = pmd_alloc(mm, pud, addr);
1881 	if (!pmd)
1882 		return -ENOMEM;
1883 	do {
1884 		next = pmd_addr_end(addr, end);
1885 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1886 		if (err)
1887 			break;
1888 	} while (pmd++, addr = next, addr != end);
1889 	return err;
1890 }
1891 
1892 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1893 				     unsigned long addr, unsigned long end,
1894 				     pte_fn_t fn, void *data)
1895 {
1896 	pud_t *pud;
1897 	unsigned long next;
1898 	int err;
1899 
1900 	pud = pud_alloc(mm, pgd, addr);
1901 	if (!pud)
1902 		return -ENOMEM;
1903 	do {
1904 		next = pud_addr_end(addr, end);
1905 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1906 		if (err)
1907 			break;
1908 	} while (pud++, addr = next, addr != end);
1909 	return err;
1910 }
1911 
1912 /*
1913  * Scan a region of virtual memory, filling in page tables as necessary
1914  * and calling a provided function on each leaf page table.
1915  */
1916 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1917 			unsigned long size, pte_fn_t fn, void *data)
1918 {
1919 	pgd_t *pgd;
1920 	unsigned long next;
1921 	unsigned long end = addr + size;
1922 	int err;
1923 
1924 	BUG_ON(addr >= end);
1925 	pgd = pgd_offset(mm, addr);
1926 	do {
1927 		next = pgd_addr_end(addr, end);
1928 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1929 		if (err)
1930 			break;
1931 	} while (pgd++, addr = next, addr != end);
1932 
1933 	return err;
1934 }
1935 EXPORT_SYMBOL_GPL(apply_to_page_range);
1936 
1937 /*
1938  * handle_pte_fault chooses page fault handler according to an entry
1939  * which was read non-atomically.  Before making any commitment, on
1940  * those architectures or configurations (e.g. i386 with PAE) which
1941  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1942  * must check under lock before unmapping the pte and proceeding
1943  * (but do_wp_page is only called after already making such a check;
1944  * and do_anonymous_page can safely check later on).
1945  */
1946 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1947 				pte_t *page_table, pte_t orig_pte)
1948 {
1949 	int same = 1;
1950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1951 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1952 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1953 		spin_lock(ptl);
1954 		same = pte_same(*page_table, orig_pte);
1955 		spin_unlock(ptl);
1956 	}
1957 #endif
1958 	pte_unmap(page_table);
1959 	return same;
1960 }
1961 
1962 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1963 {
1964 	debug_dma_assert_idle(src);
1965 
1966 	/*
1967 	 * If the source page was a PFN mapping, we don't have
1968 	 * a "struct page" for it. We do a best-effort copy by
1969 	 * just copying from the original user address. If that
1970 	 * fails, we just zero-fill it. Live with it.
1971 	 */
1972 	if (unlikely(!src)) {
1973 		void *kaddr = kmap_atomic(dst);
1974 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1975 
1976 		/*
1977 		 * This really shouldn't fail, because the page is there
1978 		 * in the page tables. But it might just be unreadable,
1979 		 * in which case we just give up and fill the result with
1980 		 * zeroes.
1981 		 */
1982 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1983 			clear_page(kaddr);
1984 		kunmap_atomic(kaddr);
1985 		flush_dcache_page(dst);
1986 	} else
1987 		copy_user_highpage(dst, src, va, vma);
1988 }
1989 
1990 /*
1991  * Notify the address space that the page is about to become writable so that
1992  * it can prohibit this or wait for the page to get into an appropriate state.
1993  *
1994  * We do this without the lock held, so that it can sleep if it needs to.
1995  */
1996 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1997 	       unsigned long address)
1998 {
1999 	struct vm_fault vmf;
2000 	int ret;
2001 
2002 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2003 	vmf.pgoff = page->index;
2004 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2005 	vmf.page = page;
2006 
2007 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2008 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2009 		return ret;
2010 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2011 		lock_page(page);
2012 		if (!page->mapping) {
2013 			unlock_page(page);
2014 			return 0; /* retry */
2015 		}
2016 		ret |= VM_FAULT_LOCKED;
2017 	} else
2018 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * This routine handles present pages, when users try to write
2024  * to a shared page. It is done by copying the page to a new address
2025  * and decrementing the shared-page counter for the old page.
2026  *
2027  * Note that this routine assumes that the protection checks have been
2028  * done by the caller (the low-level page fault routine in most cases).
2029  * Thus we can safely just mark it writable once we've done any necessary
2030  * COW.
2031  *
2032  * We also mark the page dirty at this point even though the page will
2033  * change only once the write actually happens. This avoids a few races,
2034  * and potentially makes it more efficient.
2035  *
2036  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2037  * but allow concurrent faults), with pte both mapped and locked.
2038  * We return with mmap_sem still held, but pte unmapped and unlocked.
2039  */
2040 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2042 		spinlock_t *ptl, pte_t orig_pte)
2043 	__releases(ptl)
2044 {
2045 	struct page *old_page, *new_page = NULL;
2046 	pte_t entry;
2047 	int ret = 0;
2048 	int page_mkwrite = 0;
2049 	struct page *dirty_page = NULL;
2050 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2051 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2052 	struct mem_cgroup *memcg;
2053 
2054 	old_page = vm_normal_page(vma, address, orig_pte);
2055 	if (!old_page) {
2056 		/*
2057 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2058 		 * VM_PFNMAP VMA.
2059 		 *
2060 		 * We should not cow pages in a shared writeable mapping.
2061 		 * Just mark the pages writable as we can't do any dirty
2062 		 * accounting on raw pfn maps.
2063 		 */
2064 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2065 				     (VM_WRITE|VM_SHARED))
2066 			goto reuse;
2067 		goto gotten;
2068 	}
2069 
2070 	/*
2071 	 * Take out anonymous pages first, anonymous shared vmas are
2072 	 * not dirty accountable.
2073 	 */
2074 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2075 		if (!trylock_page(old_page)) {
2076 			page_cache_get(old_page);
2077 			pte_unmap_unlock(page_table, ptl);
2078 			lock_page(old_page);
2079 			page_table = pte_offset_map_lock(mm, pmd, address,
2080 							 &ptl);
2081 			if (!pte_same(*page_table, orig_pte)) {
2082 				unlock_page(old_page);
2083 				goto unlock;
2084 			}
2085 			page_cache_release(old_page);
2086 		}
2087 		if (reuse_swap_page(old_page)) {
2088 			/*
2089 			 * The page is all ours.  Move it to our anon_vma so
2090 			 * the rmap code will not search our parent or siblings.
2091 			 * Protected against the rmap code by the page lock.
2092 			 */
2093 			page_move_anon_rmap(old_page, vma, address);
2094 			unlock_page(old_page);
2095 			goto reuse;
2096 		}
2097 		unlock_page(old_page);
2098 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2099 					(VM_WRITE|VM_SHARED))) {
2100 		/*
2101 		 * Only catch write-faults on shared writable pages,
2102 		 * read-only shared pages can get COWed by
2103 		 * get_user_pages(.write=1, .force=1).
2104 		 */
2105 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2106 			int tmp;
2107 			page_cache_get(old_page);
2108 			pte_unmap_unlock(page_table, ptl);
2109 			tmp = do_page_mkwrite(vma, old_page, address);
2110 			if (unlikely(!tmp || (tmp &
2111 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2112 				page_cache_release(old_page);
2113 				return tmp;
2114 			}
2115 			/*
2116 			 * Since we dropped the lock we need to revalidate
2117 			 * the PTE as someone else may have changed it.  If
2118 			 * they did, we just return, as we can count on the
2119 			 * MMU to tell us if they didn't also make it writable.
2120 			 */
2121 			page_table = pte_offset_map_lock(mm, pmd, address,
2122 							 &ptl);
2123 			if (!pte_same(*page_table, orig_pte)) {
2124 				unlock_page(old_page);
2125 				goto unlock;
2126 			}
2127 
2128 			page_mkwrite = 1;
2129 		}
2130 		dirty_page = old_page;
2131 		get_page(dirty_page);
2132 
2133 reuse:
2134 		/*
2135 		 * Clear the pages cpupid information as the existing
2136 		 * information potentially belongs to a now completely
2137 		 * unrelated process.
2138 		 */
2139 		if (old_page)
2140 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2141 
2142 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2143 		entry = pte_mkyoung(orig_pte);
2144 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2145 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2146 			update_mmu_cache(vma, address, page_table);
2147 		pte_unmap_unlock(page_table, ptl);
2148 		ret |= VM_FAULT_WRITE;
2149 
2150 		if (!dirty_page)
2151 			return ret;
2152 
2153 		/*
2154 		 * Yes, Virginia, this is actually required to prevent a race
2155 		 * with clear_page_dirty_for_io() from clearing the page dirty
2156 		 * bit after it clear all dirty ptes, but before a racing
2157 		 * do_wp_page installs a dirty pte.
2158 		 *
2159 		 * do_shared_fault is protected similarly.
2160 		 */
2161 		if (!page_mkwrite) {
2162 			wait_on_page_locked(dirty_page);
2163 			set_page_dirty_balance(dirty_page);
2164 			/* file_update_time outside page_lock */
2165 			if (vma->vm_file)
2166 				file_update_time(vma->vm_file);
2167 		}
2168 		put_page(dirty_page);
2169 		if (page_mkwrite) {
2170 			struct address_space *mapping = dirty_page->mapping;
2171 
2172 			set_page_dirty(dirty_page);
2173 			unlock_page(dirty_page);
2174 			page_cache_release(dirty_page);
2175 			if (mapping)	{
2176 				/*
2177 				 * Some device drivers do not set page.mapping
2178 				 * but still dirty their pages
2179 				 */
2180 				balance_dirty_pages_ratelimited(mapping);
2181 			}
2182 		}
2183 
2184 		return ret;
2185 	}
2186 
2187 	/*
2188 	 * Ok, we need to copy. Oh, well..
2189 	 */
2190 	page_cache_get(old_page);
2191 gotten:
2192 	pte_unmap_unlock(page_table, ptl);
2193 
2194 	if (unlikely(anon_vma_prepare(vma)))
2195 		goto oom;
2196 
2197 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2198 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2199 		if (!new_page)
2200 			goto oom;
2201 	} else {
2202 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2203 		if (!new_page)
2204 			goto oom;
2205 		cow_user_page(new_page, old_page, address, vma);
2206 	}
2207 	__SetPageUptodate(new_page);
2208 
2209 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2210 		goto oom_free_new;
2211 
2212 	mmun_start  = address & PAGE_MASK;
2213 	mmun_end    = mmun_start + PAGE_SIZE;
2214 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2215 
2216 	/*
2217 	 * Re-check the pte - we dropped the lock
2218 	 */
2219 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2220 	if (likely(pte_same(*page_table, orig_pte))) {
2221 		if (old_page) {
2222 			if (!PageAnon(old_page)) {
2223 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2224 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2225 			}
2226 		} else
2227 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2228 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2229 		entry = mk_pte(new_page, vma->vm_page_prot);
2230 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2231 		/*
2232 		 * Clear the pte entry and flush it first, before updating the
2233 		 * pte with the new entry. This will avoid a race condition
2234 		 * seen in the presence of one thread doing SMC and another
2235 		 * thread doing COW.
2236 		 */
2237 		ptep_clear_flush(vma, address, page_table);
2238 		page_add_new_anon_rmap(new_page, vma, address);
2239 		mem_cgroup_commit_charge(new_page, memcg, false);
2240 		lru_cache_add_active_or_unevictable(new_page, vma);
2241 		/*
2242 		 * We call the notify macro here because, when using secondary
2243 		 * mmu page tables (such as kvm shadow page tables), we want the
2244 		 * new page to be mapped directly into the secondary page table.
2245 		 */
2246 		set_pte_at_notify(mm, address, page_table, entry);
2247 		update_mmu_cache(vma, address, page_table);
2248 		if (old_page) {
2249 			/*
2250 			 * Only after switching the pte to the new page may
2251 			 * we remove the mapcount here. Otherwise another
2252 			 * process may come and find the rmap count decremented
2253 			 * before the pte is switched to the new page, and
2254 			 * "reuse" the old page writing into it while our pte
2255 			 * here still points into it and can be read by other
2256 			 * threads.
2257 			 *
2258 			 * The critical issue is to order this
2259 			 * page_remove_rmap with the ptp_clear_flush above.
2260 			 * Those stores are ordered by (if nothing else,)
2261 			 * the barrier present in the atomic_add_negative
2262 			 * in page_remove_rmap.
2263 			 *
2264 			 * Then the TLB flush in ptep_clear_flush ensures that
2265 			 * no process can access the old page before the
2266 			 * decremented mapcount is visible. And the old page
2267 			 * cannot be reused until after the decremented
2268 			 * mapcount is visible. So transitively, TLBs to
2269 			 * old page will be flushed before it can be reused.
2270 			 */
2271 			page_remove_rmap(old_page);
2272 		}
2273 
2274 		/* Free the old page.. */
2275 		new_page = old_page;
2276 		ret |= VM_FAULT_WRITE;
2277 	} else
2278 		mem_cgroup_cancel_charge(new_page, memcg);
2279 
2280 	if (new_page)
2281 		page_cache_release(new_page);
2282 unlock:
2283 	pte_unmap_unlock(page_table, ptl);
2284 	if (mmun_end > mmun_start)
2285 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2286 	if (old_page) {
2287 		/*
2288 		 * Don't let another task, with possibly unlocked vma,
2289 		 * keep the mlocked page.
2290 		 */
2291 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2292 			lock_page(old_page);	/* LRU manipulation */
2293 			munlock_vma_page(old_page);
2294 			unlock_page(old_page);
2295 		}
2296 		page_cache_release(old_page);
2297 	}
2298 	return ret;
2299 oom_free_new:
2300 	page_cache_release(new_page);
2301 oom:
2302 	if (old_page)
2303 		page_cache_release(old_page);
2304 	return VM_FAULT_OOM;
2305 }
2306 
2307 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2308 		unsigned long start_addr, unsigned long end_addr,
2309 		struct zap_details *details)
2310 {
2311 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2312 }
2313 
2314 static inline void unmap_mapping_range_tree(struct rb_root *root,
2315 					    struct zap_details *details)
2316 {
2317 	struct vm_area_struct *vma;
2318 	pgoff_t vba, vea, zba, zea;
2319 
2320 	vma_interval_tree_foreach(vma, root,
2321 			details->first_index, details->last_index) {
2322 
2323 		vba = vma->vm_pgoff;
2324 		vea = vba + vma_pages(vma) - 1;
2325 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2326 		zba = details->first_index;
2327 		if (zba < vba)
2328 			zba = vba;
2329 		zea = details->last_index;
2330 		if (zea > vea)
2331 			zea = vea;
2332 
2333 		unmap_mapping_range_vma(vma,
2334 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2335 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2336 				details);
2337 	}
2338 }
2339 
2340 static inline void unmap_mapping_range_list(struct list_head *head,
2341 					    struct zap_details *details)
2342 {
2343 	struct vm_area_struct *vma;
2344 
2345 	/*
2346 	 * In nonlinear VMAs there is no correspondence between virtual address
2347 	 * offset and file offset.  So we must perform an exhaustive search
2348 	 * across *all* the pages in each nonlinear VMA, not just the pages
2349 	 * whose virtual address lies outside the file truncation point.
2350 	 */
2351 	list_for_each_entry(vma, head, shared.nonlinear) {
2352 		details->nonlinear_vma = vma;
2353 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2354 	}
2355 }
2356 
2357 /**
2358  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2359  * @mapping: the address space containing mmaps to be unmapped.
2360  * @holebegin: byte in first page to unmap, relative to the start of
2361  * the underlying file.  This will be rounded down to a PAGE_SIZE
2362  * boundary.  Note that this is different from truncate_pagecache(), which
2363  * must keep the partial page.  In contrast, we must get rid of
2364  * partial pages.
2365  * @holelen: size of prospective hole in bytes.  This will be rounded
2366  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2367  * end of the file.
2368  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2369  * but 0 when invalidating pagecache, don't throw away private data.
2370  */
2371 void unmap_mapping_range(struct address_space *mapping,
2372 		loff_t const holebegin, loff_t const holelen, int even_cows)
2373 {
2374 	struct zap_details details;
2375 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2376 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2377 
2378 	/* Check for overflow. */
2379 	if (sizeof(holelen) > sizeof(hlen)) {
2380 		long long holeend =
2381 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2382 		if (holeend & ~(long long)ULONG_MAX)
2383 			hlen = ULONG_MAX - hba + 1;
2384 	}
2385 
2386 	details.check_mapping = even_cows? NULL: mapping;
2387 	details.nonlinear_vma = NULL;
2388 	details.first_index = hba;
2389 	details.last_index = hba + hlen - 1;
2390 	if (details.last_index < details.first_index)
2391 		details.last_index = ULONG_MAX;
2392 
2393 
2394 	mutex_lock(&mapping->i_mmap_mutex);
2395 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2396 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2397 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2398 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2399 	mutex_unlock(&mapping->i_mmap_mutex);
2400 }
2401 EXPORT_SYMBOL(unmap_mapping_range);
2402 
2403 /*
2404  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2405  * but allow concurrent faults), and pte mapped but not yet locked.
2406  * We return with pte unmapped and unlocked.
2407  *
2408  * We return with the mmap_sem locked or unlocked in the same cases
2409  * as does filemap_fault().
2410  */
2411 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2412 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2413 		unsigned int flags, pte_t orig_pte)
2414 {
2415 	spinlock_t *ptl;
2416 	struct page *page, *swapcache;
2417 	struct mem_cgroup *memcg;
2418 	swp_entry_t entry;
2419 	pte_t pte;
2420 	int locked;
2421 	int exclusive = 0;
2422 	int ret = 0;
2423 
2424 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2425 		goto out;
2426 
2427 	entry = pte_to_swp_entry(orig_pte);
2428 	if (unlikely(non_swap_entry(entry))) {
2429 		if (is_migration_entry(entry)) {
2430 			migration_entry_wait(mm, pmd, address);
2431 		} else if (is_hwpoison_entry(entry)) {
2432 			ret = VM_FAULT_HWPOISON;
2433 		} else {
2434 			print_bad_pte(vma, address, orig_pte, NULL);
2435 			ret = VM_FAULT_SIGBUS;
2436 		}
2437 		goto out;
2438 	}
2439 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2440 	page = lookup_swap_cache(entry);
2441 	if (!page) {
2442 		page = swapin_readahead(entry,
2443 					GFP_HIGHUSER_MOVABLE, vma, address);
2444 		if (!page) {
2445 			/*
2446 			 * Back out if somebody else faulted in this pte
2447 			 * while we released the pte lock.
2448 			 */
2449 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2450 			if (likely(pte_same(*page_table, orig_pte)))
2451 				ret = VM_FAULT_OOM;
2452 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2453 			goto unlock;
2454 		}
2455 
2456 		/* Had to read the page from swap area: Major fault */
2457 		ret = VM_FAULT_MAJOR;
2458 		count_vm_event(PGMAJFAULT);
2459 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2460 	} else if (PageHWPoison(page)) {
2461 		/*
2462 		 * hwpoisoned dirty swapcache pages are kept for killing
2463 		 * owner processes (which may be unknown at hwpoison time)
2464 		 */
2465 		ret = VM_FAULT_HWPOISON;
2466 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2467 		swapcache = page;
2468 		goto out_release;
2469 	}
2470 
2471 	swapcache = page;
2472 	locked = lock_page_or_retry(page, mm, flags);
2473 
2474 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2475 	if (!locked) {
2476 		ret |= VM_FAULT_RETRY;
2477 		goto out_release;
2478 	}
2479 
2480 	/*
2481 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2482 	 * release the swapcache from under us.  The page pin, and pte_same
2483 	 * test below, are not enough to exclude that.  Even if it is still
2484 	 * swapcache, we need to check that the page's swap has not changed.
2485 	 */
2486 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2487 		goto out_page;
2488 
2489 	page = ksm_might_need_to_copy(page, vma, address);
2490 	if (unlikely(!page)) {
2491 		ret = VM_FAULT_OOM;
2492 		page = swapcache;
2493 		goto out_page;
2494 	}
2495 
2496 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2497 		ret = VM_FAULT_OOM;
2498 		goto out_page;
2499 	}
2500 
2501 	/*
2502 	 * Back out if somebody else already faulted in this pte.
2503 	 */
2504 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2505 	if (unlikely(!pte_same(*page_table, orig_pte)))
2506 		goto out_nomap;
2507 
2508 	if (unlikely(!PageUptodate(page))) {
2509 		ret = VM_FAULT_SIGBUS;
2510 		goto out_nomap;
2511 	}
2512 
2513 	/*
2514 	 * The page isn't present yet, go ahead with the fault.
2515 	 *
2516 	 * Be careful about the sequence of operations here.
2517 	 * To get its accounting right, reuse_swap_page() must be called
2518 	 * while the page is counted on swap but not yet in mapcount i.e.
2519 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2520 	 * must be called after the swap_free(), or it will never succeed.
2521 	 */
2522 
2523 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2524 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2525 	pte = mk_pte(page, vma->vm_page_prot);
2526 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2527 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2528 		flags &= ~FAULT_FLAG_WRITE;
2529 		ret |= VM_FAULT_WRITE;
2530 		exclusive = 1;
2531 	}
2532 	flush_icache_page(vma, page);
2533 	if (pte_swp_soft_dirty(orig_pte))
2534 		pte = pte_mksoft_dirty(pte);
2535 	set_pte_at(mm, address, page_table, pte);
2536 	if (page == swapcache) {
2537 		do_page_add_anon_rmap(page, vma, address, exclusive);
2538 		mem_cgroup_commit_charge(page, memcg, true);
2539 	} else { /* ksm created a completely new copy */
2540 		page_add_new_anon_rmap(page, vma, address);
2541 		mem_cgroup_commit_charge(page, memcg, false);
2542 		lru_cache_add_active_or_unevictable(page, vma);
2543 	}
2544 
2545 	swap_free(entry);
2546 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2547 		try_to_free_swap(page);
2548 	unlock_page(page);
2549 	if (page != swapcache) {
2550 		/*
2551 		 * Hold the lock to avoid the swap entry to be reused
2552 		 * until we take the PT lock for the pte_same() check
2553 		 * (to avoid false positives from pte_same). For
2554 		 * further safety release the lock after the swap_free
2555 		 * so that the swap count won't change under a
2556 		 * parallel locked swapcache.
2557 		 */
2558 		unlock_page(swapcache);
2559 		page_cache_release(swapcache);
2560 	}
2561 
2562 	if (flags & FAULT_FLAG_WRITE) {
2563 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2564 		if (ret & VM_FAULT_ERROR)
2565 			ret &= VM_FAULT_ERROR;
2566 		goto out;
2567 	}
2568 
2569 	/* No need to invalidate - it was non-present before */
2570 	update_mmu_cache(vma, address, page_table);
2571 unlock:
2572 	pte_unmap_unlock(page_table, ptl);
2573 out:
2574 	return ret;
2575 out_nomap:
2576 	mem_cgroup_cancel_charge(page, memcg);
2577 	pte_unmap_unlock(page_table, ptl);
2578 out_page:
2579 	unlock_page(page);
2580 out_release:
2581 	page_cache_release(page);
2582 	if (page != swapcache) {
2583 		unlock_page(swapcache);
2584 		page_cache_release(swapcache);
2585 	}
2586 	return ret;
2587 }
2588 
2589 /*
2590  * This is like a special single-page "expand_{down|up}wards()",
2591  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2592  * doesn't hit another vma.
2593  */
2594 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2595 {
2596 	address &= PAGE_MASK;
2597 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2598 		struct vm_area_struct *prev = vma->vm_prev;
2599 
2600 		/*
2601 		 * Is there a mapping abutting this one below?
2602 		 *
2603 		 * That's only ok if it's the same stack mapping
2604 		 * that has gotten split..
2605 		 */
2606 		if (prev && prev->vm_end == address)
2607 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2608 
2609 		expand_downwards(vma, address - PAGE_SIZE);
2610 	}
2611 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2612 		struct vm_area_struct *next = vma->vm_next;
2613 
2614 		/* As VM_GROWSDOWN but s/below/above/ */
2615 		if (next && next->vm_start == address + PAGE_SIZE)
2616 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2617 
2618 		expand_upwards(vma, address + PAGE_SIZE);
2619 	}
2620 	return 0;
2621 }
2622 
2623 /*
2624  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2625  * but allow concurrent faults), and pte mapped but not yet locked.
2626  * We return with mmap_sem still held, but pte unmapped and unlocked.
2627  */
2628 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2629 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2630 		unsigned int flags)
2631 {
2632 	struct mem_cgroup *memcg;
2633 	struct page *page;
2634 	spinlock_t *ptl;
2635 	pte_t entry;
2636 
2637 	pte_unmap(page_table);
2638 
2639 	/* Check if we need to add a guard page to the stack */
2640 	if (check_stack_guard_page(vma, address) < 0)
2641 		return VM_FAULT_SIGBUS;
2642 
2643 	/* Use the zero-page for reads */
2644 	if (!(flags & FAULT_FLAG_WRITE)) {
2645 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2646 						vma->vm_page_prot));
2647 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2648 		if (!pte_none(*page_table))
2649 			goto unlock;
2650 		goto setpte;
2651 	}
2652 
2653 	/* Allocate our own private page. */
2654 	if (unlikely(anon_vma_prepare(vma)))
2655 		goto oom;
2656 	page = alloc_zeroed_user_highpage_movable(vma, address);
2657 	if (!page)
2658 		goto oom;
2659 	/*
2660 	 * The memory barrier inside __SetPageUptodate makes sure that
2661 	 * preceeding stores to the page contents become visible before
2662 	 * the set_pte_at() write.
2663 	 */
2664 	__SetPageUptodate(page);
2665 
2666 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2667 		goto oom_free_page;
2668 
2669 	entry = mk_pte(page, vma->vm_page_prot);
2670 	if (vma->vm_flags & VM_WRITE)
2671 		entry = pte_mkwrite(pte_mkdirty(entry));
2672 
2673 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2674 	if (!pte_none(*page_table))
2675 		goto release;
2676 
2677 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2678 	page_add_new_anon_rmap(page, vma, address);
2679 	mem_cgroup_commit_charge(page, memcg, false);
2680 	lru_cache_add_active_or_unevictable(page, vma);
2681 setpte:
2682 	set_pte_at(mm, address, page_table, entry);
2683 
2684 	/* No need to invalidate - it was non-present before */
2685 	update_mmu_cache(vma, address, page_table);
2686 unlock:
2687 	pte_unmap_unlock(page_table, ptl);
2688 	return 0;
2689 release:
2690 	mem_cgroup_cancel_charge(page, memcg);
2691 	page_cache_release(page);
2692 	goto unlock;
2693 oom_free_page:
2694 	page_cache_release(page);
2695 oom:
2696 	return VM_FAULT_OOM;
2697 }
2698 
2699 /*
2700  * The mmap_sem must have been held on entry, and may have been
2701  * released depending on flags and vma->vm_ops->fault() return value.
2702  * See filemap_fault() and __lock_page_retry().
2703  */
2704 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2705 		pgoff_t pgoff, unsigned int flags, struct page **page)
2706 {
2707 	struct vm_fault vmf;
2708 	int ret;
2709 
2710 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2711 	vmf.pgoff = pgoff;
2712 	vmf.flags = flags;
2713 	vmf.page = NULL;
2714 
2715 	ret = vma->vm_ops->fault(vma, &vmf);
2716 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2717 		return ret;
2718 
2719 	if (unlikely(PageHWPoison(vmf.page))) {
2720 		if (ret & VM_FAULT_LOCKED)
2721 			unlock_page(vmf.page);
2722 		page_cache_release(vmf.page);
2723 		return VM_FAULT_HWPOISON;
2724 	}
2725 
2726 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2727 		lock_page(vmf.page);
2728 	else
2729 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2730 
2731 	*page = vmf.page;
2732 	return ret;
2733 }
2734 
2735 /**
2736  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2737  *
2738  * @vma: virtual memory area
2739  * @address: user virtual address
2740  * @page: page to map
2741  * @pte: pointer to target page table entry
2742  * @write: true, if new entry is writable
2743  * @anon: true, if it's anonymous page
2744  *
2745  * Caller must hold page table lock relevant for @pte.
2746  *
2747  * Target users are page handler itself and implementations of
2748  * vm_ops->map_pages.
2749  */
2750 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2751 		struct page *page, pte_t *pte, bool write, bool anon)
2752 {
2753 	pte_t entry;
2754 
2755 	flush_icache_page(vma, page);
2756 	entry = mk_pte(page, vma->vm_page_prot);
2757 	if (write)
2758 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2759 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2760 		entry = pte_mksoft_dirty(entry);
2761 	if (anon) {
2762 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2763 		page_add_new_anon_rmap(page, vma, address);
2764 	} else {
2765 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2766 		page_add_file_rmap(page);
2767 	}
2768 	set_pte_at(vma->vm_mm, address, pte, entry);
2769 
2770 	/* no need to invalidate: a not-present page won't be cached */
2771 	update_mmu_cache(vma, address, pte);
2772 }
2773 
2774 static unsigned long fault_around_bytes __read_mostly =
2775 	rounddown_pow_of_two(65536);
2776 
2777 #ifdef CONFIG_DEBUG_FS
2778 static int fault_around_bytes_get(void *data, u64 *val)
2779 {
2780 	*val = fault_around_bytes;
2781 	return 0;
2782 }
2783 
2784 /*
2785  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2786  * rounded down to nearest page order. It's what do_fault_around() expects to
2787  * see.
2788  */
2789 static int fault_around_bytes_set(void *data, u64 val)
2790 {
2791 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2792 		return -EINVAL;
2793 	if (val > PAGE_SIZE)
2794 		fault_around_bytes = rounddown_pow_of_two(val);
2795 	else
2796 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2797 	return 0;
2798 }
2799 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2800 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2801 
2802 static int __init fault_around_debugfs(void)
2803 {
2804 	void *ret;
2805 
2806 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2807 			&fault_around_bytes_fops);
2808 	if (!ret)
2809 		pr_warn("Failed to create fault_around_bytes in debugfs");
2810 	return 0;
2811 }
2812 late_initcall(fault_around_debugfs);
2813 #endif
2814 
2815 /*
2816  * do_fault_around() tries to map few pages around the fault address. The hope
2817  * is that the pages will be needed soon and this will lower the number of
2818  * faults to handle.
2819  *
2820  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2821  * not ready to be mapped: not up-to-date, locked, etc.
2822  *
2823  * This function is called with the page table lock taken. In the split ptlock
2824  * case the page table lock only protects only those entries which belong to
2825  * the page table corresponding to the fault address.
2826  *
2827  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2828  * only once.
2829  *
2830  * fault_around_pages() defines how many pages we'll try to map.
2831  * do_fault_around() expects it to return a power of two less than or equal to
2832  * PTRS_PER_PTE.
2833  *
2834  * The virtual address of the area that we map is naturally aligned to the
2835  * fault_around_pages() value (and therefore to page order).  This way it's
2836  * easier to guarantee that we don't cross page table boundaries.
2837  */
2838 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2839 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2840 {
2841 	unsigned long start_addr, nr_pages, mask;
2842 	pgoff_t max_pgoff;
2843 	struct vm_fault vmf;
2844 	int off;
2845 
2846 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2847 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2848 
2849 	start_addr = max(address & mask, vma->vm_start);
2850 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2851 	pte -= off;
2852 	pgoff -= off;
2853 
2854 	/*
2855 	 *  max_pgoff is either end of page table or end of vma
2856 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2857 	 */
2858 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2859 		PTRS_PER_PTE - 1;
2860 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2861 			pgoff + nr_pages - 1);
2862 
2863 	/* Check if it makes any sense to call ->map_pages */
2864 	while (!pte_none(*pte)) {
2865 		if (++pgoff > max_pgoff)
2866 			return;
2867 		start_addr += PAGE_SIZE;
2868 		if (start_addr >= vma->vm_end)
2869 			return;
2870 		pte++;
2871 	}
2872 
2873 	vmf.virtual_address = (void __user *) start_addr;
2874 	vmf.pte = pte;
2875 	vmf.pgoff = pgoff;
2876 	vmf.max_pgoff = max_pgoff;
2877 	vmf.flags = flags;
2878 	vma->vm_ops->map_pages(vma, &vmf);
2879 }
2880 
2881 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2882 		unsigned long address, pmd_t *pmd,
2883 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2884 {
2885 	struct page *fault_page;
2886 	spinlock_t *ptl;
2887 	pte_t *pte;
2888 	int ret = 0;
2889 
2890 	/*
2891 	 * Let's call ->map_pages() first and use ->fault() as fallback
2892 	 * if page by the offset is not ready to be mapped (cold cache or
2893 	 * something).
2894 	 */
2895 	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2896 	    fault_around_bytes >> PAGE_SHIFT > 1) {
2897 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2898 		do_fault_around(vma, address, pte, pgoff, flags);
2899 		if (!pte_same(*pte, orig_pte))
2900 			goto unlock_out;
2901 		pte_unmap_unlock(pte, ptl);
2902 	}
2903 
2904 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2905 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2906 		return ret;
2907 
2908 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2909 	if (unlikely(!pte_same(*pte, orig_pte))) {
2910 		pte_unmap_unlock(pte, ptl);
2911 		unlock_page(fault_page);
2912 		page_cache_release(fault_page);
2913 		return ret;
2914 	}
2915 	do_set_pte(vma, address, fault_page, pte, false, false);
2916 	unlock_page(fault_page);
2917 unlock_out:
2918 	pte_unmap_unlock(pte, ptl);
2919 	return ret;
2920 }
2921 
2922 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2923 		unsigned long address, pmd_t *pmd,
2924 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2925 {
2926 	struct page *fault_page, *new_page;
2927 	struct mem_cgroup *memcg;
2928 	spinlock_t *ptl;
2929 	pte_t *pte;
2930 	int ret;
2931 
2932 	if (unlikely(anon_vma_prepare(vma)))
2933 		return VM_FAULT_OOM;
2934 
2935 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2936 	if (!new_page)
2937 		return VM_FAULT_OOM;
2938 
2939 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2940 		page_cache_release(new_page);
2941 		return VM_FAULT_OOM;
2942 	}
2943 
2944 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2945 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2946 		goto uncharge_out;
2947 
2948 	copy_user_highpage(new_page, fault_page, address, vma);
2949 	__SetPageUptodate(new_page);
2950 
2951 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2952 	if (unlikely(!pte_same(*pte, orig_pte))) {
2953 		pte_unmap_unlock(pte, ptl);
2954 		unlock_page(fault_page);
2955 		page_cache_release(fault_page);
2956 		goto uncharge_out;
2957 	}
2958 	do_set_pte(vma, address, new_page, pte, true, true);
2959 	mem_cgroup_commit_charge(new_page, memcg, false);
2960 	lru_cache_add_active_or_unevictable(new_page, vma);
2961 	pte_unmap_unlock(pte, ptl);
2962 	unlock_page(fault_page);
2963 	page_cache_release(fault_page);
2964 	return ret;
2965 uncharge_out:
2966 	mem_cgroup_cancel_charge(new_page, memcg);
2967 	page_cache_release(new_page);
2968 	return ret;
2969 }
2970 
2971 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2972 		unsigned long address, pmd_t *pmd,
2973 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2974 {
2975 	struct page *fault_page;
2976 	struct address_space *mapping;
2977 	spinlock_t *ptl;
2978 	pte_t *pte;
2979 	int dirtied = 0;
2980 	int ret, tmp;
2981 
2982 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2983 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2984 		return ret;
2985 
2986 	/*
2987 	 * Check if the backing address space wants to know that the page is
2988 	 * about to become writable
2989 	 */
2990 	if (vma->vm_ops->page_mkwrite) {
2991 		unlock_page(fault_page);
2992 		tmp = do_page_mkwrite(vma, fault_page, address);
2993 		if (unlikely(!tmp ||
2994 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2995 			page_cache_release(fault_page);
2996 			return tmp;
2997 		}
2998 	}
2999 
3000 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3001 	if (unlikely(!pte_same(*pte, orig_pte))) {
3002 		pte_unmap_unlock(pte, ptl);
3003 		unlock_page(fault_page);
3004 		page_cache_release(fault_page);
3005 		return ret;
3006 	}
3007 	do_set_pte(vma, address, fault_page, pte, true, false);
3008 	pte_unmap_unlock(pte, ptl);
3009 
3010 	if (set_page_dirty(fault_page))
3011 		dirtied = 1;
3012 	mapping = fault_page->mapping;
3013 	unlock_page(fault_page);
3014 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3015 		/*
3016 		 * Some device drivers do not set page.mapping but still
3017 		 * dirty their pages
3018 		 */
3019 		balance_dirty_pages_ratelimited(mapping);
3020 	}
3021 
3022 	/* file_update_time outside page_lock */
3023 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3024 		file_update_time(vma->vm_file);
3025 
3026 	return ret;
3027 }
3028 
3029 /*
3030  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3031  * but allow concurrent faults).
3032  * The mmap_sem may have been released depending on flags and our
3033  * return value.  See filemap_fault() and __lock_page_or_retry().
3034  */
3035 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3036 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3037 		unsigned int flags, pte_t orig_pte)
3038 {
3039 	pgoff_t pgoff = (((address & PAGE_MASK)
3040 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3041 
3042 	pte_unmap(page_table);
3043 	if (!(flags & FAULT_FLAG_WRITE))
3044 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3045 				orig_pte);
3046 	if (!(vma->vm_flags & VM_SHARED))
3047 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3048 				orig_pte);
3049 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3050 }
3051 
3052 /*
3053  * Fault of a previously existing named mapping. Repopulate the pte
3054  * from the encoded file_pte if possible. This enables swappable
3055  * nonlinear vmas.
3056  *
3057  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3058  * but allow concurrent faults), and pte mapped but not yet locked.
3059  * We return with pte unmapped and unlocked.
3060  * The mmap_sem may have been released depending on flags and our
3061  * return value.  See filemap_fault() and __lock_page_or_retry().
3062  */
3063 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3064 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3065 		unsigned int flags, pte_t orig_pte)
3066 {
3067 	pgoff_t pgoff;
3068 
3069 	flags |= FAULT_FLAG_NONLINEAR;
3070 
3071 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3072 		return 0;
3073 
3074 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3075 		/*
3076 		 * Page table corrupted: show pte and kill process.
3077 		 */
3078 		print_bad_pte(vma, address, orig_pte, NULL);
3079 		return VM_FAULT_SIGBUS;
3080 	}
3081 
3082 	pgoff = pte_to_pgoff(orig_pte);
3083 	if (!(flags & FAULT_FLAG_WRITE))
3084 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3085 				orig_pte);
3086 	if (!(vma->vm_flags & VM_SHARED))
3087 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3088 				orig_pte);
3089 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3090 }
3091 
3092 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3093 				unsigned long addr, int page_nid,
3094 				int *flags)
3095 {
3096 	get_page(page);
3097 
3098 	count_vm_numa_event(NUMA_HINT_FAULTS);
3099 	if (page_nid == numa_node_id()) {
3100 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3101 		*flags |= TNF_FAULT_LOCAL;
3102 	}
3103 
3104 	return mpol_misplaced(page, vma, addr);
3105 }
3106 
3107 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3108 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3109 {
3110 	struct page *page = NULL;
3111 	spinlock_t *ptl;
3112 	int page_nid = -1;
3113 	int last_cpupid;
3114 	int target_nid;
3115 	bool migrated = false;
3116 	int flags = 0;
3117 
3118 	/*
3119 	* The "pte" at this point cannot be used safely without
3120 	* validation through pte_unmap_same(). It's of NUMA type but
3121 	* the pfn may be screwed if the read is non atomic.
3122 	*
3123 	* ptep_modify_prot_start is not called as this is clearing
3124 	* the _PAGE_NUMA bit and it is not really expected that there
3125 	* would be concurrent hardware modifications to the PTE.
3126 	*/
3127 	ptl = pte_lockptr(mm, pmd);
3128 	spin_lock(ptl);
3129 	if (unlikely(!pte_same(*ptep, pte))) {
3130 		pte_unmap_unlock(ptep, ptl);
3131 		goto out;
3132 	}
3133 
3134 	pte = pte_mknonnuma(pte);
3135 	set_pte_at(mm, addr, ptep, pte);
3136 	update_mmu_cache(vma, addr, ptep);
3137 
3138 	page = vm_normal_page(vma, addr, pte);
3139 	if (!page) {
3140 		pte_unmap_unlock(ptep, ptl);
3141 		return 0;
3142 	}
3143 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3144 
3145 	/*
3146 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3147 	 * in general, RO pages shouldn't hurt as much anyway since
3148 	 * they can be in shared cache state.
3149 	 */
3150 	if (!pte_write(pte))
3151 		flags |= TNF_NO_GROUP;
3152 
3153 	/*
3154 	 * Flag if the page is shared between multiple address spaces. This
3155 	 * is later used when determining whether to group tasks together
3156 	 */
3157 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3158 		flags |= TNF_SHARED;
3159 
3160 	last_cpupid = page_cpupid_last(page);
3161 	page_nid = page_to_nid(page);
3162 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3163 	pte_unmap_unlock(ptep, ptl);
3164 	if (target_nid == -1) {
3165 		put_page(page);
3166 		goto out;
3167 	}
3168 
3169 	/* Migrate to the requested node */
3170 	migrated = migrate_misplaced_page(page, vma, target_nid);
3171 	if (migrated) {
3172 		page_nid = target_nid;
3173 		flags |= TNF_MIGRATED;
3174 	}
3175 
3176 out:
3177 	if (page_nid != -1)
3178 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3179 	return 0;
3180 }
3181 
3182 /*
3183  * These routines also need to handle stuff like marking pages dirty
3184  * and/or accessed for architectures that don't do it in hardware (most
3185  * RISC architectures).  The early dirtying is also good on the i386.
3186  *
3187  * There is also a hook called "update_mmu_cache()" that architectures
3188  * with external mmu caches can use to update those (ie the Sparc or
3189  * PowerPC hashed page tables that act as extended TLBs).
3190  *
3191  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3192  * but allow concurrent faults), and pte mapped but not yet locked.
3193  * We return with pte unmapped and unlocked.
3194  *
3195  * The mmap_sem may have been released depending on flags and our
3196  * return value.  See filemap_fault() and __lock_page_or_retry().
3197  */
3198 static int handle_pte_fault(struct mm_struct *mm,
3199 		     struct vm_area_struct *vma, unsigned long address,
3200 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3201 {
3202 	pte_t entry;
3203 	spinlock_t *ptl;
3204 
3205 	entry = ACCESS_ONCE(*pte);
3206 	if (!pte_present(entry)) {
3207 		if (pte_none(entry)) {
3208 			if (vma->vm_ops) {
3209 				if (likely(vma->vm_ops->fault))
3210 					return do_linear_fault(mm, vma, address,
3211 						pte, pmd, flags, entry);
3212 			}
3213 			return do_anonymous_page(mm, vma, address,
3214 						 pte, pmd, flags);
3215 		}
3216 		if (pte_file(entry))
3217 			return do_nonlinear_fault(mm, vma, address,
3218 					pte, pmd, flags, entry);
3219 		return do_swap_page(mm, vma, address,
3220 					pte, pmd, flags, entry);
3221 	}
3222 
3223 	if (pte_numa(entry))
3224 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3225 
3226 	ptl = pte_lockptr(mm, pmd);
3227 	spin_lock(ptl);
3228 	if (unlikely(!pte_same(*pte, entry)))
3229 		goto unlock;
3230 	if (flags & FAULT_FLAG_WRITE) {
3231 		if (!pte_write(entry))
3232 			return do_wp_page(mm, vma, address,
3233 					pte, pmd, ptl, entry);
3234 		entry = pte_mkdirty(entry);
3235 	}
3236 	entry = pte_mkyoung(entry);
3237 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3238 		update_mmu_cache(vma, address, pte);
3239 	} else {
3240 		/*
3241 		 * This is needed only for protection faults but the arch code
3242 		 * is not yet telling us if this is a protection fault or not.
3243 		 * This still avoids useless tlb flushes for .text page faults
3244 		 * with threads.
3245 		 */
3246 		if (flags & FAULT_FLAG_WRITE)
3247 			flush_tlb_fix_spurious_fault(vma, address);
3248 	}
3249 unlock:
3250 	pte_unmap_unlock(pte, ptl);
3251 	return 0;
3252 }
3253 
3254 /*
3255  * By the time we get here, we already hold the mm semaphore
3256  *
3257  * The mmap_sem may have been released depending on flags and our
3258  * return value.  See filemap_fault() and __lock_page_or_retry().
3259  */
3260 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3261 			     unsigned long address, unsigned int flags)
3262 {
3263 	pgd_t *pgd;
3264 	pud_t *pud;
3265 	pmd_t *pmd;
3266 	pte_t *pte;
3267 
3268 	if (unlikely(is_vm_hugetlb_page(vma)))
3269 		return hugetlb_fault(mm, vma, address, flags);
3270 
3271 	pgd = pgd_offset(mm, address);
3272 	pud = pud_alloc(mm, pgd, address);
3273 	if (!pud)
3274 		return VM_FAULT_OOM;
3275 	pmd = pmd_alloc(mm, pud, address);
3276 	if (!pmd)
3277 		return VM_FAULT_OOM;
3278 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3279 		int ret = VM_FAULT_FALLBACK;
3280 		if (!vma->vm_ops)
3281 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3282 					pmd, flags);
3283 		if (!(ret & VM_FAULT_FALLBACK))
3284 			return ret;
3285 	} else {
3286 		pmd_t orig_pmd = *pmd;
3287 		int ret;
3288 
3289 		barrier();
3290 		if (pmd_trans_huge(orig_pmd)) {
3291 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3292 
3293 			/*
3294 			 * If the pmd is splitting, return and retry the
3295 			 * the fault.  Alternative: wait until the split
3296 			 * is done, and goto retry.
3297 			 */
3298 			if (pmd_trans_splitting(orig_pmd))
3299 				return 0;
3300 
3301 			if (pmd_numa(orig_pmd))
3302 				return do_huge_pmd_numa_page(mm, vma, address,
3303 							     orig_pmd, pmd);
3304 
3305 			if (dirty && !pmd_write(orig_pmd)) {
3306 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3307 							  orig_pmd);
3308 				if (!(ret & VM_FAULT_FALLBACK))
3309 					return ret;
3310 			} else {
3311 				huge_pmd_set_accessed(mm, vma, address, pmd,
3312 						      orig_pmd, dirty);
3313 				return 0;
3314 			}
3315 		}
3316 	}
3317 
3318 	/*
3319 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3320 	 * run pte_offset_map on the pmd, if an huge pmd could
3321 	 * materialize from under us from a different thread.
3322 	 */
3323 	if (unlikely(pmd_none(*pmd)) &&
3324 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3325 		return VM_FAULT_OOM;
3326 	/* if an huge pmd materialized from under us just retry later */
3327 	if (unlikely(pmd_trans_huge(*pmd)))
3328 		return 0;
3329 	/*
3330 	 * A regular pmd is established and it can't morph into a huge pmd
3331 	 * from under us anymore at this point because we hold the mmap_sem
3332 	 * read mode and khugepaged takes it in write mode. So now it's
3333 	 * safe to run pte_offset_map().
3334 	 */
3335 	pte = pte_offset_map(pmd, address);
3336 
3337 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3338 }
3339 
3340 /*
3341  * By the time we get here, we already hold the mm semaphore
3342  *
3343  * The mmap_sem may have been released depending on flags and our
3344  * return value.  See filemap_fault() and __lock_page_or_retry().
3345  */
3346 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3347 		    unsigned long address, unsigned int flags)
3348 {
3349 	int ret;
3350 
3351 	__set_current_state(TASK_RUNNING);
3352 
3353 	count_vm_event(PGFAULT);
3354 	mem_cgroup_count_vm_event(mm, PGFAULT);
3355 
3356 	/* do counter updates before entering really critical section. */
3357 	check_sync_rss_stat(current);
3358 
3359 	/*
3360 	 * Enable the memcg OOM handling for faults triggered in user
3361 	 * space.  Kernel faults are handled more gracefully.
3362 	 */
3363 	if (flags & FAULT_FLAG_USER)
3364 		mem_cgroup_oom_enable();
3365 
3366 	ret = __handle_mm_fault(mm, vma, address, flags);
3367 
3368 	if (flags & FAULT_FLAG_USER) {
3369 		mem_cgroup_oom_disable();
3370                 /*
3371                  * The task may have entered a memcg OOM situation but
3372                  * if the allocation error was handled gracefully (no
3373                  * VM_FAULT_OOM), there is no need to kill anything.
3374                  * Just clean up the OOM state peacefully.
3375                  */
3376                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3377                         mem_cgroup_oom_synchronize(false);
3378 	}
3379 
3380 	return ret;
3381 }
3382 
3383 #ifndef __PAGETABLE_PUD_FOLDED
3384 /*
3385  * Allocate page upper directory.
3386  * We've already handled the fast-path in-line.
3387  */
3388 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3389 {
3390 	pud_t *new = pud_alloc_one(mm, address);
3391 	if (!new)
3392 		return -ENOMEM;
3393 
3394 	smp_wmb(); /* See comment in __pte_alloc */
3395 
3396 	spin_lock(&mm->page_table_lock);
3397 	if (pgd_present(*pgd))		/* Another has populated it */
3398 		pud_free(mm, new);
3399 	else
3400 		pgd_populate(mm, pgd, new);
3401 	spin_unlock(&mm->page_table_lock);
3402 	return 0;
3403 }
3404 #endif /* __PAGETABLE_PUD_FOLDED */
3405 
3406 #ifndef __PAGETABLE_PMD_FOLDED
3407 /*
3408  * Allocate page middle directory.
3409  * We've already handled the fast-path in-line.
3410  */
3411 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3412 {
3413 	pmd_t *new = pmd_alloc_one(mm, address);
3414 	if (!new)
3415 		return -ENOMEM;
3416 
3417 	smp_wmb(); /* See comment in __pte_alloc */
3418 
3419 	spin_lock(&mm->page_table_lock);
3420 #ifndef __ARCH_HAS_4LEVEL_HACK
3421 	if (pud_present(*pud))		/* Another has populated it */
3422 		pmd_free(mm, new);
3423 	else
3424 		pud_populate(mm, pud, new);
3425 #else
3426 	if (pgd_present(*pud))		/* Another has populated it */
3427 		pmd_free(mm, new);
3428 	else
3429 		pgd_populate(mm, pud, new);
3430 #endif /* __ARCH_HAS_4LEVEL_HACK */
3431 	spin_unlock(&mm->page_table_lock);
3432 	return 0;
3433 }
3434 #endif /* __PAGETABLE_PMD_FOLDED */
3435 
3436 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3437 		pte_t **ptepp, spinlock_t **ptlp)
3438 {
3439 	pgd_t *pgd;
3440 	pud_t *pud;
3441 	pmd_t *pmd;
3442 	pte_t *ptep;
3443 
3444 	pgd = pgd_offset(mm, address);
3445 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3446 		goto out;
3447 
3448 	pud = pud_offset(pgd, address);
3449 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3450 		goto out;
3451 
3452 	pmd = pmd_offset(pud, address);
3453 	VM_BUG_ON(pmd_trans_huge(*pmd));
3454 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3455 		goto out;
3456 
3457 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3458 	if (pmd_huge(*pmd))
3459 		goto out;
3460 
3461 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3462 	if (!ptep)
3463 		goto out;
3464 	if (!pte_present(*ptep))
3465 		goto unlock;
3466 	*ptepp = ptep;
3467 	return 0;
3468 unlock:
3469 	pte_unmap_unlock(ptep, *ptlp);
3470 out:
3471 	return -EINVAL;
3472 }
3473 
3474 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3475 			     pte_t **ptepp, spinlock_t **ptlp)
3476 {
3477 	int res;
3478 
3479 	/* (void) is needed to make gcc happy */
3480 	(void) __cond_lock(*ptlp,
3481 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3482 	return res;
3483 }
3484 
3485 /**
3486  * follow_pfn - look up PFN at a user virtual address
3487  * @vma: memory mapping
3488  * @address: user virtual address
3489  * @pfn: location to store found PFN
3490  *
3491  * Only IO mappings and raw PFN mappings are allowed.
3492  *
3493  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3494  */
3495 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3496 	unsigned long *pfn)
3497 {
3498 	int ret = -EINVAL;
3499 	spinlock_t *ptl;
3500 	pte_t *ptep;
3501 
3502 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3503 		return ret;
3504 
3505 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3506 	if (ret)
3507 		return ret;
3508 	*pfn = pte_pfn(*ptep);
3509 	pte_unmap_unlock(ptep, ptl);
3510 	return 0;
3511 }
3512 EXPORT_SYMBOL(follow_pfn);
3513 
3514 #ifdef CONFIG_HAVE_IOREMAP_PROT
3515 int follow_phys(struct vm_area_struct *vma,
3516 		unsigned long address, unsigned int flags,
3517 		unsigned long *prot, resource_size_t *phys)
3518 {
3519 	int ret = -EINVAL;
3520 	pte_t *ptep, pte;
3521 	spinlock_t *ptl;
3522 
3523 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3524 		goto out;
3525 
3526 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3527 		goto out;
3528 	pte = *ptep;
3529 
3530 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3531 		goto unlock;
3532 
3533 	*prot = pgprot_val(pte_pgprot(pte));
3534 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3535 
3536 	ret = 0;
3537 unlock:
3538 	pte_unmap_unlock(ptep, ptl);
3539 out:
3540 	return ret;
3541 }
3542 
3543 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3544 			void *buf, int len, int write)
3545 {
3546 	resource_size_t phys_addr;
3547 	unsigned long prot = 0;
3548 	void __iomem *maddr;
3549 	int offset = addr & (PAGE_SIZE-1);
3550 
3551 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3552 		return -EINVAL;
3553 
3554 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3555 	if (write)
3556 		memcpy_toio(maddr + offset, buf, len);
3557 	else
3558 		memcpy_fromio(buf, maddr + offset, len);
3559 	iounmap(maddr);
3560 
3561 	return len;
3562 }
3563 EXPORT_SYMBOL_GPL(generic_access_phys);
3564 #endif
3565 
3566 /*
3567  * Access another process' address space as given in mm.  If non-NULL, use the
3568  * given task for page fault accounting.
3569  */
3570 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3571 		unsigned long addr, void *buf, int len, int write)
3572 {
3573 	struct vm_area_struct *vma;
3574 	void *old_buf = buf;
3575 
3576 	down_read(&mm->mmap_sem);
3577 	/* ignore errors, just check how much was successfully transferred */
3578 	while (len) {
3579 		int bytes, ret, offset;
3580 		void *maddr;
3581 		struct page *page = NULL;
3582 
3583 		ret = get_user_pages(tsk, mm, addr, 1,
3584 				write, 1, &page, &vma);
3585 		if (ret <= 0) {
3586 #ifndef CONFIG_HAVE_IOREMAP_PROT
3587 			break;
3588 #else
3589 			/*
3590 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3591 			 * we can access using slightly different code.
3592 			 */
3593 			vma = find_vma(mm, addr);
3594 			if (!vma || vma->vm_start > addr)
3595 				break;
3596 			if (vma->vm_ops && vma->vm_ops->access)
3597 				ret = vma->vm_ops->access(vma, addr, buf,
3598 							  len, write);
3599 			if (ret <= 0)
3600 				break;
3601 			bytes = ret;
3602 #endif
3603 		} else {
3604 			bytes = len;
3605 			offset = addr & (PAGE_SIZE-1);
3606 			if (bytes > PAGE_SIZE-offset)
3607 				bytes = PAGE_SIZE-offset;
3608 
3609 			maddr = kmap(page);
3610 			if (write) {
3611 				copy_to_user_page(vma, page, addr,
3612 						  maddr + offset, buf, bytes);
3613 				set_page_dirty_lock(page);
3614 			} else {
3615 				copy_from_user_page(vma, page, addr,
3616 						    buf, maddr + offset, bytes);
3617 			}
3618 			kunmap(page);
3619 			page_cache_release(page);
3620 		}
3621 		len -= bytes;
3622 		buf += bytes;
3623 		addr += bytes;
3624 	}
3625 	up_read(&mm->mmap_sem);
3626 
3627 	return buf - old_buf;
3628 }
3629 
3630 /**
3631  * access_remote_vm - access another process' address space
3632  * @mm:		the mm_struct of the target address space
3633  * @addr:	start address to access
3634  * @buf:	source or destination buffer
3635  * @len:	number of bytes to transfer
3636  * @write:	whether the access is a write
3637  *
3638  * The caller must hold a reference on @mm.
3639  */
3640 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3641 		void *buf, int len, int write)
3642 {
3643 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3644 }
3645 
3646 /*
3647  * Access another process' address space.
3648  * Source/target buffer must be kernel space,
3649  * Do not walk the page table directly, use get_user_pages
3650  */
3651 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3652 		void *buf, int len, int write)
3653 {
3654 	struct mm_struct *mm;
3655 	int ret;
3656 
3657 	mm = get_task_mm(tsk);
3658 	if (!mm)
3659 		return 0;
3660 
3661 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3662 	mmput(mm);
3663 
3664 	return ret;
3665 }
3666 
3667 /*
3668  * Print the name of a VMA.
3669  */
3670 void print_vma_addr(char *prefix, unsigned long ip)
3671 {
3672 	struct mm_struct *mm = current->mm;
3673 	struct vm_area_struct *vma;
3674 
3675 	/*
3676 	 * Do not print if we are in atomic
3677 	 * contexts (in exception stacks, etc.):
3678 	 */
3679 	if (preempt_count())
3680 		return;
3681 
3682 	down_read(&mm->mmap_sem);
3683 	vma = find_vma(mm, ip);
3684 	if (vma && vma->vm_file) {
3685 		struct file *f = vma->vm_file;
3686 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3687 		if (buf) {
3688 			char *p;
3689 
3690 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3691 			if (IS_ERR(p))
3692 				p = "?";
3693 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3694 					vma->vm_start,
3695 					vma->vm_end - vma->vm_start);
3696 			free_page((unsigned long)buf);
3697 		}
3698 	}
3699 	up_read(&mm->mmap_sem);
3700 }
3701 
3702 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3703 void might_fault(void)
3704 {
3705 	/*
3706 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3707 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3708 	 * get paged out, therefore we'll never actually fault, and the
3709 	 * below annotations will generate false positives.
3710 	 */
3711 	if (segment_eq(get_fs(), KERNEL_DS))
3712 		return;
3713 
3714 	/*
3715 	 * it would be nicer only to annotate paths which are not under
3716 	 * pagefault_disable, however that requires a larger audit and
3717 	 * providing helpers like get_user_atomic.
3718 	 */
3719 	if (in_atomic())
3720 		return;
3721 
3722 	__might_sleep(__FILE__, __LINE__, 0);
3723 
3724 	if (current->mm)
3725 		might_lock_read(&current->mm->mmap_sem);
3726 }
3727 EXPORT_SYMBOL(might_fault);
3728 #endif
3729 
3730 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3731 static void clear_gigantic_page(struct page *page,
3732 				unsigned long addr,
3733 				unsigned int pages_per_huge_page)
3734 {
3735 	int i;
3736 	struct page *p = page;
3737 
3738 	might_sleep();
3739 	for (i = 0; i < pages_per_huge_page;
3740 	     i++, p = mem_map_next(p, page, i)) {
3741 		cond_resched();
3742 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3743 	}
3744 }
3745 void clear_huge_page(struct page *page,
3746 		     unsigned long addr, unsigned int pages_per_huge_page)
3747 {
3748 	int i;
3749 
3750 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3751 		clear_gigantic_page(page, addr, pages_per_huge_page);
3752 		return;
3753 	}
3754 
3755 	might_sleep();
3756 	for (i = 0; i < pages_per_huge_page; i++) {
3757 		cond_resched();
3758 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3759 	}
3760 }
3761 
3762 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3763 				    unsigned long addr,
3764 				    struct vm_area_struct *vma,
3765 				    unsigned int pages_per_huge_page)
3766 {
3767 	int i;
3768 	struct page *dst_base = dst;
3769 	struct page *src_base = src;
3770 
3771 	for (i = 0; i < pages_per_huge_page; ) {
3772 		cond_resched();
3773 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3774 
3775 		i++;
3776 		dst = mem_map_next(dst, dst_base, i);
3777 		src = mem_map_next(src, src_base, i);
3778 	}
3779 }
3780 
3781 void copy_user_huge_page(struct page *dst, struct page *src,
3782 			 unsigned long addr, struct vm_area_struct *vma,
3783 			 unsigned int pages_per_huge_page)
3784 {
3785 	int i;
3786 
3787 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3788 		copy_user_gigantic_page(dst, src, addr, vma,
3789 					pages_per_huge_page);
3790 		return;
3791 	}
3792 
3793 	might_sleep();
3794 	for (i = 0; i < pages_per_huge_page; i++) {
3795 		cond_resched();
3796 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3797 	}
3798 }
3799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3800 
3801 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3802 
3803 static struct kmem_cache *page_ptl_cachep;
3804 
3805 void __init ptlock_cache_init(void)
3806 {
3807 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3808 			SLAB_PANIC, NULL);
3809 }
3810 
3811 bool ptlock_alloc(struct page *page)
3812 {
3813 	spinlock_t *ptl;
3814 
3815 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3816 	if (!ptl)
3817 		return false;
3818 	page->ptl = ptl;
3819 	return true;
3820 }
3821 
3822 void ptlock_free(struct page *page)
3823 {
3824 	kmem_cache_free(page_ptl_cachep, page->ptl);
3825 }
3826 #endif
3827