xref: /openbmc/linux/mm/memory.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 core_initcall(init_zero_pfn);
156 
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 	trace_rss_stat(mm, member, count);
160 }
161 
162 #if defined(SPLIT_RSS_COUNTING)
163 
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 	int i;
167 
168 	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 		if (current->rss_stat.count[i]) {
170 			add_mm_counter(mm, i, current->rss_stat.count[i]);
171 			current->rss_stat.count[i] = 0;
172 		}
173 	}
174 	current->rss_stat.events = 0;
175 }
176 
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 	struct task_struct *task = current;
180 
181 	if (likely(task->mm == mm))
182 		task->rss_stat.count[member] += val;
183 	else
184 		add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH	(64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 	if (unlikely(task != current))
194 		return;
195 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 		sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199 
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206 
207 #endif /* SPLIT_RSS_COUNTING */
208 
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 			   unsigned long addr)
215 {
216 	pgtable_t token = pmd_pgtable(*pmd);
217 	pmd_clear(pmd);
218 	pte_free_tlb(tlb, token, addr);
219 	mm_dec_nr_ptes(tlb->mm);
220 }
221 
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 				unsigned long addr, unsigned long end,
224 				unsigned long floor, unsigned long ceiling)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long start;
229 
230 	start = addr;
231 	pmd = pmd_offset(pud, addr);
232 	do {
233 		next = pmd_addr_end(addr, end);
234 		if (pmd_none_or_clear_bad(pmd))
235 			continue;
236 		free_pte_range(tlb, pmd, addr);
237 	} while (pmd++, addr = next, addr != end);
238 
239 	start &= PUD_MASK;
240 	if (start < floor)
241 		return;
242 	if (ceiling) {
243 		ceiling &= PUD_MASK;
244 		if (!ceiling)
245 			return;
246 	}
247 	if (end - 1 > ceiling - 1)
248 		return;
249 
250 	pmd = pmd_offset(pud, start);
251 	pud_clear(pud);
252 	pmd_free_tlb(tlb, pmd, start);
253 	mm_dec_nr_pmds(tlb->mm);
254 }
255 
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 				unsigned long addr, unsigned long end,
258 				unsigned long floor, unsigned long ceiling)
259 {
260 	pud_t *pud;
261 	unsigned long next;
262 	unsigned long start;
263 
264 	start = addr;
265 	pud = pud_offset(p4d, addr);
266 	do {
267 		next = pud_addr_end(addr, end);
268 		if (pud_none_or_clear_bad(pud))
269 			continue;
270 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 	} while (pud++, addr = next, addr != end);
272 
273 	start &= P4D_MASK;
274 	if (start < floor)
275 		return;
276 	if (ceiling) {
277 		ceiling &= P4D_MASK;
278 		if (!ceiling)
279 			return;
280 	}
281 	if (end - 1 > ceiling - 1)
282 		return;
283 
284 	pud = pud_offset(p4d, start);
285 	p4d_clear(p4d);
286 	pud_free_tlb(tlb, pud, start);
287 	mm_dec_nr_puds(tlb->mm);
288 }
289 
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 				unsigned long addr, unsigned long end,
292 				unsigned long floor, unsigned long ceiling)
293 {
294 	p4d_t *p4d;
295 	unsigned long next;
296 	unsigned long start;
297 
298 	start = addr;
299 	p4d = p4d_offset(pgd, addr);
300 	do {
301 		next = p4d_addr_end(addr, end);
302 		if (p4d_none_or_clear_bad(p4d))
303 			continue;
304 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 	} while (p4d++, addr = next, addr != end);
306 
307 	start &= PGDIR_MASK;
308 	if (start < floor)
309 		return;
310 	if (ceiling) {
311 		ceiling &= PGDIR_MASK;
312 		if (!ceiling)
313 			return;
314 	}
315 	if (end - 1 > ceiling - 1)
316 		return;
317 
318 	p4d = p4d_offset(pgd, start);
319 	pgd_clear(pgd);
320 	p4d_free_tlb(tlb, p4d, start);
321 }
322 
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327 			unsigned long addr, unsigned long end,
328 			unsigned long floor, unsigned long ceiling)
329 {
330 	pgd_t *pgd;
331 	unsigned long next;
332 
333 	/*
334 	 * The next few lines have given us lots of grief...
335 	 *
336 	 * Why are we testing PMD* at this top level?  Because often
337 	 * there will be no work to do at all, and we'd prefer not to
338 	 * go all the way down to the bottom just to discover that.
339 	 *
340 	 * Why all these "- 1"s?  Because 0 represents both the bottom
341 	 * of the address space and the top of it (using -1 for the
342 	 * top wouldn't help much: the masks would do the wrong thing).
343 	 * The rule is that addr 0 and floor 0 refer to the bottom of
344 	 * the address space, but end 0 and ceiling 0 refer to the top
345 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 	 * that end 0 case should be mythical).
347 	 *
348 	 * Wherever addr is brought up or ceiling brought down, we must
349 	 * be careful to reject "the opposite 0" before it confuses the
350 	 * subsequent tests.  But what about where end is brought down
351 	 * by PMD_SIZE below? no, end can't go down to 0 there.
352 	 *
353 	 * Whereas we round start (addr) and ceiling down, by different
354 	 * masks at different levels, in order to test whether a table
355 	 * now has no other vmas using it, so can be freed, we don't
356 	 * bother to round floor or end up - the tests don't need that.
357 	 */
358 
359 	addr &= PMD_MASK;
360 	if (addr < floor) {
361 		addr += PMD_SIZE;
362 		if (!addr)
363 			return;
364 	}
365 	if (ceiling) {
366 		ceiling &= PMD_MASK;
367 		if (!ceiling)
368 			return;
369 	}
370 	if (end - 1 > ceiling - 1)
371 		end -= PMD_SIZE;
372 	if (addr > end - 1)
373 		return;
374 	/*
375 	 * We add page table cache pages with PAGE_SIZE,
376 	 * (see pte_free_tlb()), flush the tlb if we need
377 	 */
378 	tlb_change_page_size(tlb, PAGE_SIZE);
379 	pgd = pgd_offset(tlb->mm, addr);
380 	do {
381 		next = pgd_addr_end(addr, end);
382 		if (pgd_none_or_clear_bad(pgd))
383 			continue;
384 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 	} while (pgd++, addr = next, addr != end);
386 }
387 
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 		unsigned long floor, unsigned long ceiling)
390 {
391 	while (vma) {
392 		struct vm_area_struct *next = vma->vm_next;
393 		unsigned long addr = vma->vm_start;
394 
395 		/*
396 		 * Hide vma from rmap and truncate_pagecache before freeing
397 		 * pgtables
398 		 */
399 		unlink_anon_vmas(vma);
400 		unlink_file_vma(vma);
401 
402 		if (is_vm_hugetlb_page(vma)) {
403 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		} else {
406 			/*
407 			 * Optimization: gather nearby vmas into one call down
408 			 */
409 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 			       && !is_vm_hugetlb_page(next)) {
411 				vma = next;
412 				next = vma->vm_next;
413 				unlink_anon_vmas(vma);
414 				unlink_file_vma(vma);
415 			}
416 			free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		}
419 		vma = next;
420 	}
421 }
422 
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 	spinlock_t *ptl;
426 	pgtable_t new = pte_alloc_one(mm);
427 	if (!new)
428 		return -ENOMEM;
429 
430 	/*
431 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 	 * visible before the pte is made visible to other CPUs by being
433 	 * put into page tables.
434 	 *
435 	 * The other side of the story is the pointer chasing in the page
436 	 * table walking code (when walking the page table without locking;
437 	 * ie. most of the time). Fortunately, these data accesses consist
438 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 	 * being the notable exception) will already guarantee loads are
440 	 * seen in-order. See the alpha page table accessors for the
441 	 * smp_read_barrier_depends() barriers in page table walking code.
442 	 */
443 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		mm_inc_nr_ptes(mm);
448 		pmd_populate(mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(ptl);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	smp_wmb(); /* See comment in __pte_alloc */
464 
465 	spin_lock(&init_mm.page_table_lock);
466 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	if (current->mm == mm)
486 		sync_mm_rss(mm);
487 	for (i = 0; i < NR_MM_COUNTERS; i++)
488 		if (rss[i])
489 			add_mm_counter(mm, i, rss[i]);
490 }
491 
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 			  pte_t pte, struct page *page)
501 {
502 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 	p4d_t *p4d = p4d_offset(pgd, addr);
504 	pud_t *pud = pud_offset(p4d, addr);
505 	pmd_t *pmd = pmd_offset(pud, addr);
506 	struct address_space *mapping;
507 	pgoff_t index;
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			return;
520 		}
521 		if (nr_unshown) {
522 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 				 nr_unshown);
524 			nr_unshown = 0;
525 		}
526 		nr_shown = 0;
527 	}
528 	if (nr_shown++ == 0)
529 		resume = jiffies + 60 * HZ;
530 
531 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 	index = linear_page_index(vma, addr);
533 
534 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535 		 current->comm,
536 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 	if (page)
538 		dump_page(page, "bad pte");
539 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 		 vma->vm_file,
543 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 		 mapping ? mapping->a_ops->readpage : NULL);
546 	dump_stack();
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 				pmd_t pmd)
650 {
651 	unsigned long pfn = pmd_pfn(pmd);
652 
653 	/*
654 	 * There is no pmd_special() but there may be special pmds, e.g.
655 	 * in a direct-access (dax) mapping, so let's just replicate the
656 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 	 */
658 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 		if (vma->vm_flags & VM_MIXEDMAP) {
660 			if (!pfn_valid(pfn))
661 				return NULL;
662 			goto out;
663 		} else {
664 			unsigned long off;
665 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 			if (pfn == vma->vm_pgoff + off)
667 				return NULL;
668 			if (!is_cow_mapping(vma->vm_flags))
669 				return NULL;
670 		}
671 	}
672 
673 	if (pmd_devmap(pmd))
674 		return NULL;
675 	if (is_huge_zero_pmd(pmd))
676 		return NULL;
677 	if (unlikely(pfn > highest_memmap_pfn))
678 		return NULL;
679 
680 	/*
681 	 * NOTE! We still have PageReserved() pages in the page tables.
682 	 * eg. VDSO mappings can cause them to exist.
683 	 */
684 out:
685 	return pfn_to_page(pfn);
686 }
687 #endif
688 
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694 
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 		unsigned long addr, int *rss)
699 {
700 	unsigned long vm_flags = vma->vm_flags;
701 	pte_t pte = *src_pte;
702 	struct page *page;
703 
704 	/* pte contains position in swap or file, so copy. */
705 	if (unlikely(!pte_present(pte))) {
706 		swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 		if (likely(!non_swap_entry(entry))) {
709 			if (swap_duplicate(entry) < 0)
710 				return entry.val;
711 
712 			/* make sure dst_mm is on swapoff's mmlist. */
713 			if (unlikely(list_empty(&dst_mm->mmlist))) {
714 				spin_lock(&mmlist_lock);
715 				if (list_empty(&dst_mm->mmlist))
716 					list_add(&dst_mm->mmlist,
717 							&src_mm->mmlist);
718 				spin_unlock(&mmlist_lock);
719 			}
720 			rss[MM_SWAPENTS]++;
721 		} else if (is_migration_entry(entry)) {
722 			page = migration_entry_to_page(entry);
723 
724 			rss[mm_counter(page)]++;
725 
726 			if (is_write_migration_entry(entry) &&
727 					is_cow_mapping(vm_flags)) {
728 				/*
729 				 * COW mappings require pages in both
730 				 * parent and child to be set to read.
731 				 */
732 				make_migration_entry_read(&entry);
733 				pte = swp_entry_to_pte(entry);
734 				if (pte_swp_soft_dirty(*src_pte))
735 					pte = pte_swp_mksoft_dirty(pte);
736 				if (pte_swp_uffd_wp(*src_pte))
737 					pte = pte_swp_mkuffd_wp(pte);
738 				set_pte_at(src_mm, addr, src_pte, pte);
739 			}
740 		} else if (is_device_private_entry(entry)) {
741 			page = device_private_entry_to_page(entry);
742 
743 			/*
744 			 * Update rss count even for unaddressable pages, as
745 			 * they should treated just like normal pages in this
746 			 * respect.
747 			 *
748 			 * We will likely want to have some new rss counters
749 			 * for unaddressable pages, at some point. But for now
750 			 * keep things as they are.
751 			 */
752 			get_page(page);
753 			rss[mm_counter(page)]++;
754 			page_dup_rmap(page, false);
755 
756 			/*
757 			 * We do not preserve soft-dirty information, because so
758 			 * far, checkpoint/restore is the only feature that
759 			 * requires that. And checkpoint/restore does not work
760 			 * when a device driver is involved (you cannot easily
761 			 * save and restore device driver state).
762 			 */
763 			if (is_write_device_private_entry(entry) &&
764 			    is_cow_mapping(vm_flags)) {
765 				make_device_private_entry_read(&entry);
766 				pte = swp_entry_to_pte(entry);
767 				if (pte_swp_uffd_wp(*src_pte))
768 					pte = pte_swp_mkuffd_wp(pte);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	/*
793 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 	 * does not have the VM_UFFD_WP, which means that the uffd
795 	 * fork event is not enabled.
796 	 */
797 	if (!(vm_flags & VM_UFFD_WP))
798 		pte = pte_clear_uffd_wp(pte);
799 
800 	page = vm_normal_page(vma, addr, pte);
801 	if (page) {
802 		get_page(page);
803 		page_dup_rmap(page, false);
804 		rss[mm_counter(page)]++;
805 	} else if (pte_devmap(pte)) {
806 		page = pte_page(pte);
807 	}
808 
809 out_set_pte:
810 	set_pte_at(dst_mm, addr, dst_pte, pte);
811 	return 0;
812 }
813 
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816 		   unsigned long addr, unsigned long end)
817 {
818 	pte_t *orig_src_pte, *orig_dst_pte;
819 	pte_t *src_pte, *dst_pte;
820 	spinlock_t *src_ptl, *dst_ptl;
821 	int progress = 0;
822 	int rss[NR_MM_COUNTERS];
823 	swp_entry_t entry = (swp_entry_t){0};
824 
825 again:
826 	init_rss_vec(rss);
827 
828 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829 	if (!dst_pte)
830 		return -ENOMEM;
831 	src_pte = pte_offset_map(src_pmd, addr);
832 	src_ptl = pte_lockptr(src_mm, src_pmd);
833 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834 	orig_src_pte = src_pte;
835 	orig_dst_pte = dst_pte;
836 	arch_enter_lazy_mmu_mode();
837 
838 	do {
839 		/*
840 		 * We are holding two locks at this point - either of them
841 		 * could generate latencies in another task on another CPU.
842 		 */
843 		if (progress >= 32) {
844 			progress = 0;
845 			if (need_resched() ||
846 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847 				break;
848 		}
849 		if (pte_none(*src_pte)) {
850 			progress++;
851 			continue;
852 		}
853 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854 							vma, addr, rss);
855 		if (entry.val)
856 			break;
857 		progress += 8;
858 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859 
860 	arch_leave_lazy_mmu_mode();
861 	spin_unlock(src_ptl);
862 	pte_unmap(orig_src_pte);
863 	add_mm_rss_vec(dst_mm, rss);
864 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
865 	cond_resched();
866 
867 	if (entry.val) {
868 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869 			return -ENOMEM;
870 		progress = 0;
871 	}
872 	if (addr != end)
873 		goto again;
874 	return 0;
875 }
876 
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879 		unsigned long addr, unsigned long end)
880 {
881 	pmd_t *src_pmd, *dst_pmd;
882 	unsigned long next;
883 
884 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885 	if (!dst_pmd)
886 		return -ENOMEM;
887 	src_pmd = pmd_offset(src_pud, addr);
888 	do {
889 		next = pmd_addr_end(addr, end);
890 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891 			|| pmd_devmap(*src_pmd)) {
892 			int err;
893 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894 			err = copy_huge_pmd(dst_mm, src_mm,
895 					    dst_pmd, src_pmd, addr, vma);
896 			if (err == -ENOMEM)
897 				return -ENOMEM;
898 			if (!err)
899 				continue;
900 			/* fall through */
901 		}
902 		if (pmd_none_or_clear_bad(src_pmd))
903 			continue;
904 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905 						vma, addr, next))
906 			return -ENOMEM;
907 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
908 	return 0;
909 }
910 
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913 		unsigned long addr, unsigned long end)
914 {
915 	pud_t *src_pud, *dst_pud;
916 	unsigned long next;
917 
918 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919 	if (!dst_pud)
920 		return -ENOMEM;
921 	src_pud = pud_offset(src_p4d, addr);
922 	do {
923 		next = pud_addr_end(addr, end);
924 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925 			int err;
926 
927 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928 			err = copy_huge_pud(dst_mm, src_mm,
929 					    dst_pud, src_pud, addr, vma);
930 			if (err == -ENOMEM)
931 				return -ENOMEM;
932 			if (!err)
933 				continue;
934 			/* fall through */
935 		}
936 		if (pud_none_or_clear_bad(src_pud))
937 			continue;
938 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939 						vma, addr, next))
940 			return -ENOMEM;
941 	} while (dst_pud++, src_pud++, addr = next, addr != end);
942 	return 0;
943 }
944 
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947 		unsigned long addr, unsigned long end)
948 {
949 	p4d_t *src_p4d, *dst_p4d;
950 	unsigned long next;
951 
952 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953 	if (!dst_p4d)
954 		return -ENOMEM;
955 	src_p4d = p4d_offset(src_pgd, addr);
956 	do {
957 		next = p4d_addr_end(addr, end);
958 		if (p4d_none_or_clear_bad(src_p4d))
959 			continue;
960 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961 						vma, addr, next))
962 			return -ENOMEM;
963 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
964 	return 0;
965 }
966 
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 		struct vm_area_struct *vma)
969 {
970 	pgd_t *src_pgd, *dst_pgd;
971 	unsigned long next;
972 	unsigned long addr = vma->vm_start;
973 	unsigned long end = vma->vm_end;
974 	struct mmu_notifier_range range;
975 	bool is_cow;
976 	int ret;
977 
978 	/*
979 	 * Don't copy ptes where a page fault will fill them correctly.
980 	 * Fork becomes much lighter when there are big shared or private
981 	 * readonly mappings. The tradeoff is that copy_page_range is more
982 	 * efficient than faulting.
983 	 */
984 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985 			!vma->anon_vma)
986 		return 0;
987 
988 	if (is_vm_hugetlb_page(vma))
989 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990 
991 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992 		/*
993 		 * We do not free on error cases below as remove_vma
994 		 * gets called on error from higher level routine
995 		 */
996 		ret = track_pfn_copy(vma);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	/*
1002 	 * We need to invalidate the secondary MMU mappings only when
1003 	 * there could be a permission downgrade on the ptes of the
1004 	 * parent mm. And a permission downgrade will only happen if
1005 	 * is_cow_mapping() returns true.
1006 	 */
1007 	is_cow = is_cow_mapping(vma->vm_flags);
1008 
1009 	if (is_cow) {
1010 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011 					0, vma, src_mm, addr, end);
1012 		mmu_notifier_invalidate_range_start(&range);
1013 	}
1014 
1015 	ret = 0;
1016 	dst_pgd = pgd_offset(dst_mm, addr);
1017 	src_pgd = pgd_offset(src_mm, addr);
1018 	do {
1019 		next = pgd_addr_end(addr, end);
1020 		if (pgd_none_or_clear_bad(src_pgd))
1021 			continue;
1022 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023 					    vma, addr, next))) {
1024 			ret = -ENOMEM;
1025 			break;
1026 		}
1027 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028 
1029 	if (is_cow)
1030 		mmu_notifier_invalidate_range_end(&range);
1031 	return ret;
1032 }
1033 
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035 				struct vm_area_struct *vma, pmd_t *pmd,
1036 				unsigned long addr, unsigned long end,
1037 				struct zap_details *details)
1038 {
1039 	struct mm_struct *mm = tlb->mm;
1040 	int force_flush = 0;
1041 	int rss[NR_MM_COUNTERS];
1042 	spinlock_t *ptl;
1043 	pte_t *start_pte;
1044 	pte_t *pte;
1045 	swp_entry_t entry;
1046 
1047 	tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049 	init_rss_vec(rss);
1050 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 	pte = start_pte;
1052 	flush_tlb_batched_pending(mm);
1053 	arch_enter_lazy_mmu_mode();
1054 	do {
1055 		pte_t ptent = *pte;
1056 		if (pte_none(ptent))
1057 			continue;
1058 
1059 		if (need_resched())
1060 			break;
1061 
1062 		if (pte_present(ptent)) {
1063 			struct page *page;
1064 
1065 			page = vm_normal_page(vma, addr, ptent);
1066 			if (unlikely(details) && page) {
1067 				/*
1068 				 * unmap_shared_mapping_pages() wants to
1069 				 * invalidate cache without truncating:
1070 				 * unmap shared but keep private pages.
1071 				 */
1072 				if (details->check_mapping &&
1073 				    details->check_mapping != page_rmapping(page))
1074 					continue;
1075 			}
1076 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1077 							tlb->fullmm);
1078 			tlb_remove_tlb_entry(tlb, pte, addr);
1079 			if (unlikely(!page))
1080 				continue;
1081 
1082 			if (!PageAnon(page)) {
1083 				if (pte_dirty(ptent)) {
1084 					force_flush = 1;
1085 					set_page_dirty(page);
1086 				}
1087 				if (pte_young(ptent) &&
1088 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1089 					mark_page_accessed(page);
1090 			}
1091 			rss[mm_counter(page)]--;
1092 			page_remove_rmap(page, false);
1093 			if (unlikely(page_mapcount(page) < 0))
1094 				print_bad_pte(vma, addr, ptent, page);
1095 			if (unlikely(__tlb_remove_page(tlb, page))) {
1096 				force_flush = 1;
1097 				addr += PAGE_SIZE;
1098 				break;
1099 			}
1100 			continue;
1101 		}
1102 
1103 		entry = pte_to_swp_entry(ptent);
1104 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 			struct page *page = device_private_entry_to_page(entry);
1106 
1107 			if (unlikely(details && details->check_mapping)) {
1108 				/*
1109 				 * unmap_shared_mapping_pages() wants to
1110 				 * invalidate cache without truncating:
1111 				 * unmap shared but keep private pages.
1112 				 */
1113 				if (details->check_mapping !=
1114 				    page_rmapping(page))
1115 					continue;
1116 			}
1117 
1118 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 			rss[mm_counter(page)]--;
1120 			page_remove_rmap(page, false);
1121 			put_page(page);
1122 			continue;
1123 		}
1124 
1125 		/* If details->check_mapping, we leave swap entries. */
1126 		if (unlikely(details))
1127 			continue;
1128 
1129 		if (!non_swap_entry(entry))
1130 			rss[MM_SWAPENTS]--;
1131 		else if (is_migration_entry(entry)) {
1132 			struct page *page;
1133 
1134 			page = migration_entry_to_page(entry);
1135 			rss[mm_counter(page)]--;
1136 		}
1137 		if (unlikely(!free_swap_and_cache(entry)))
1138 			print_bad_pte(vma, addr, ptent, NULL);
1139 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 	} while (pte++, addr += PAGE_SIZE, addr != end);
1141 
1142 	add_mm_rss_vec(mm, rss);
1143 	arch_leave_lazy_mmu_mode();
1144 
1145 	/* Do the actual TLB flush before dropping ptl */
1146 	if (force_flush)
1147 		tlb_flush_mmu_tlbonly(tlb);
1148 	pte_unmap_unlock(start_pte, ptl);
1149 
1150 	/*
1151 	 * If we forced a TLB flush (either due to running out of
1152 	 * batch buffers or because we needed to flush dirty TLB
1153 	 * entries before releasing the ptl), free the batched
1154 	 * memory too. Restart if we didn't do everything.
1155 	 */
1156 	if (force_flush) {
1157 		force_flush = 0;
1158 		tlb_flush_mmu(tlb);
1159 	}
1160 
1161 	if (addr != end) {
1162 		cond_resched();
1163 		goto again;
1164 	}
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, pud_t *pud,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pmd_t *pmd;
1175 	unsigned long next;
1176 
1177 	pmd = pmd_offset(pud, addr);
1178 	do {
1179 		next = pmd_addr_end(addr, end);
1180 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 			if (next - addr != HPAGE_PMD_SIZE)
1182 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1183 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184 				goto next;
1185 			/* fall through */
1186 		}
1187 		/*
1188 		 * Here there can be other concurrent MADV_DONTNEED or
1189 		 * trans huge page faults running, and if the pmd is
1190 		 * none or trans huge it can change under us. This is
1191 		 * because MADV_DONTNEED holds the mmap_sem in read
1192 		 * mode.
1193 		 */
1194 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 			goto next;
1196 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198 		cond_resched();
1199 	} while (pmd++, addr = next, addr != end);
1200 
1201 	return addr;
1202 }
1203 
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205 				struct vm_area_struct *vma, p4d_t *p4d,
1206 				unsigned long addr, unsigned long end,
1207 				struct zap_details *details)
1208 {
1209 	pud_t *pud;
1210 	unsigned long next;
1211 
1212 	pud = pud_offset(p4d, addr);
1213 	do {
1214 		next = pud_addr_end(addr, end);
1215 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216 			if (next - addr != HPAGE_PUD_SIZE) {
1217 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218 				split_huge_pud(vma, pud, addr);
1219 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1220 				goto next;
1221 			/* fall through */
1222 		}
1223 		if (pud_none_or_clear_bad(pud))
1224 			continue;
1225 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227 		cond_resched();
1228 	} while (pud++, addr = next, addr != end);
1229 
1230 	return addr;
1231 }
1232 
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234 				struct vm_area_struct *vma, pgd_t *pgd,
1235 				unsigned long addr, unsigned long end,
1236 				struct zap_details *details)
1237 {
1238 	p4d_t *p4d;
1239 	unsigned long next;
1240 
1241 	p4d = p4d_offset(pgd, addr);
1242 	do {
1243 		next = p4d_addr_end(addr, end);
1244 		if (p4d_none_or_clear_bad(p4d))
1245 			continue;
1246 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247 	} while (p4d++, addr = next, addr != end);
1248 
1249 	return addr;
1250 }
1251 
1252 void unmap_page_range(struct mmu_gather *tlb,
1253 			     struct vm_area_struct *vma,
1254 			     unsigned long addr, unsigned long end,
1255 			     struct zap_details *details)
1256 {
1257 	pgd_t *pgd;
1258 	unsigned long next;
1259 
1260 	BUG_ON(addr >= end);
1261 	tlb_start_vma(tlb, vma);
1262 	pgd = pgd_offset(vma->vm_mm, addr);
1263 	do {
1264 		next = pgd_addr_end(addr, end);
1265 		if (pgd_none_or_clear_bad(pgd))
1266 			continue;
1267 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268 	} while (pgd++, addr = next, addr != end);
1269 	tlb_end_vma(tlb, vma);
1270 }
1271 
1272 
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274 		struct vm_area_struct *vma, unsigned long start_addr,
1275 		unsigned long end_addr,
1276 		struct zap_details *details)
1277 {
1278 	unsigned long start = max(vma->vm_start, start_addr);
1279 	unsigned long end;
1280 
1281 	if (start >= vma->vm_end)
1282 		return;
1283 	end = min(vma->vm_end, end_addr);
1284 	if (end <= vma->vm_start)
1285 		return;
1286 
1287 	if (vma->vm_file)
1288 		uprobe_munmap(vma, start, end);
1289 
1290 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1291 		untrack_pfn(vma, 0, 0);
1292 
1293 	if (start != end) {
1294 		if (unlikely(is_vm_hugetlb_page(vma))) {
1295 			/*
1296 			 * It is undesirable to test vma->vm_file as it
1297 			 * should be non-null for valid hugetlb area.
1298 			 * However, vm_file will be NULL in the error
1299 			 * cleanup path of mmap_region. When
1300 			 * hugetlbfs ->mmap method fails,
1301 			 * mmap_region() nullifies vma->vm_file
1302 			 * before calling this function to clean up.
1303 			 * Since no pte has actually been setup, it is
1304 			 * safe to do nothing in this case.
1305 			 */
1306 			if (vma->vm_file) {
1307 				i_mmap_lock_write(vma->vm_file->f_mapping);
1308 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1310 			}
1311 		} else
1312 			unmap_page_range(tlb, vma, start, end, details);
1313 	}
1314 }
1315 
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335 		struct vm_area_struct *vma, unsigned long start_addr,
1336 		unsigned long end_addr)
1337 {
1338 	struct mmu_notifier_range range;
1339 
1340 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341 				start_addr, end_addr);
1342 	mmu_notifier_invalidate_range_start(&range);
1343 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345 	mmu_notifier_invalidate_range_end(&range);
1346 }
1347 
1348 /**
1349  * zap_page_range - remove user pages in a given range
1350  * @vma: vm_area_struct holding the applicable pages
1351  * @start: starting address of pages to zap
1352  * @size: number of bytes to zap
1353  *
1354  * Caller must protect the VMA list
1355  */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357 		unsigned long size)
1358 {
1359 	struct mmu_notifier_range range;
1360 	struct mmu_gather tlb;
1361 
1362 	lru_add_drain();
1363 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364 				start, start + size);
1365 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366 	update_hiwater_rss(vma->vm_mm);
1367 	mmu_notifier_invalidate_range_start(&range);
1368 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370 	mmu_notifier_invalidate_range_end(&range);
1371 	tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373 
1374 /**
1375  * zap_page_range_single - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * The range must fit into one VMA.
1382  */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384 		unsigned long size, struct zap_details *details)
1385 {
1386 	struct mmu_notifier_range range;
1387 	struct mmu_gather tlb;
1388 
1389 	lru_add_drain();
1390 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391 				address, address + size);
1392 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393 	update_hiwater_rss(vma->vm_mm);
1394 	mmu_notifier_invalidate_range_start(&range);
1395 	unmap_single_vma(&tlb, vma, address, range.end, details);
1396 	mmu_notifier_invalidate_range_end(&range);
1397 	tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399 
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412 		unsigned long size)
1413 {
1414 	if (address < vma->vm_start || address + size > vma->vm_end ||
1415 	    		!(vma->vm_flags & VM_PFNMAP))
1416 		return;
1417 
1418 	zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421 
1422 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1423 {
1424 	pgd_t *pgd;
1425 	p4d_t *p4d;
1426 	pud_t *pud;
1427 	pmd_t *pmd;
1428 
1429 	pgd = pgd_offset(mm, addr);
1430 	p4d = p4d_alloc(mm, pgd, addr);
1431 	if (!p4d)
1432 		return NULL;
1433 	pud = pud_alloc(mm, p4d, addr);
1434 	if (!pud)
1435 		return NULL;
1436 	pmd = pmd_alloc(mm, pud, addr);
1437 	if (!pmd)
1438 		return NULL;
1439 
1440 	VM_BUG_ON(pmd_trans_huge(*pmd));
1441 	return pmd;
1442 }
1443 
1444 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1445 			spinlock_t **ptl)
1446 {
1447 	pmd_t *pmd = walk_to_pmd(mm, addr);
1448 
1449 	if (!pmd)
1450 		return NULL;
1451 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1452 }
1453 
1454 static int validate_page_before_insert(struct page *page)
1455 {
1456 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1457 		return -EINVAL;
1458 	flush_dcache_page(page);
1459 	return 0;
1460 }
1461 
1462 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1463 			unsigned long addr, struct page *page, pgprot_t prot)
1464 {
1465 	if (!pte_none(*pte))
1466 		return -EBUSY;
1467 	/* Ok, finally just insert the thing.. */
1468 	get_page(page);
1469 	inc_mm_counter_fast(mm, mm_counter_file(page));
1470 	page_add_file_rmap(page, false);
1471 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1472 	return 0;
1473 }
1474 
1475 /*
1476  * This is the old fallback for page remapping.
1477  *
1478  * For historical reasons, it only allows reserved pages. Only
1479  * old drivers should use this, and they needed to mark their
1480  * pages reserved for the old functions anyway.
1481  */
1482 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1483 			struct page *page, pgprot_t prot)
1484 {
1485 	struct mm_struct *mm = vma->vm_mm;
1486 	int retval;
1487 	pte_t *pte;
1488 	spinlock_t *ptl;
1489 
1490 	retval = validate_page_before_insert(page);
1491 	if (retval)
1492 		goto out;
1493 	retval = -ENOMEM;
1494 	pte = get_locked_pte(mm, addr, &ptl);
1495 	if (!pte)
1496 		goto out;
1497 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1498 	pte_unmap_unlock(pte, ptl);
1499 out:
1500 	return retval;
1501 }
1502 
1503 #ifdef pte_index
1504 static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1505 			unsigned long addr, struct page *page, pgprot_t prot)
1506 {
1507 	int err;
1508 
1509 	if (!page_count(page))
1510 		return -EINVAL;
1511 	err = validate_page_before_insert(page);
1512 	return err ? err : insert_page_into_pte_locked(
1513 		mm, pte_offset_map(pmd, addr), addr, page, prot);
1514 }
1515 
1516 /* insert_pages() amortizes the cost of spinlock operations
1517  * when inserting pages in a loop. Arch *must* define pte_index.
1518  */
1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520 			struct page **pages, unsigned long *num, pgprot_t prot)
1521 {
1522 	pmd_t *pmd = NULL;
1523 	spinlock_t *pte_lock = NULL;
1524 	struct mm_struct *const mm = vma->vm_mm;
1525 	unsigned long curr_page_idx = 0;
1526 	unsigned long remaining_pages_total = *num;
1527 	unsigned long pages_to_write_in_pmd;
1528 	int ret;
1529 more:
1530 	ret = -EFAULT;
1531 	pmd = walk_to_pmd(mm, addr);
1532 	if (!pmd)
1533 		goto out;
1534 
1535 	pages_to_write_in_pmd = min_t(unsigned long,
1536 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1537 
1538 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1539 	ret = -ENOMEM;
1540 	if (pte_alloc(mm, pmd))
1541 		goto out;
1542 	pte_lock = pte_lockptr(mm, pmd);
1543 
1544 	while (pages_to_write_in_pmd) {
1545 		int pte_idx = 0;
1546 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547 
1548 		spin_lock(pte_lock);
1549 		for (; pte_idx < batch_size; ++pte_idx) {
1550 			int err = insert_page_in_batch_locked(mm, pmd,
1551 				addr, pages[curr_page_idx], prot);
1552 			if (unlikely(err)) {
1553 				spin_unlock(pte_lock);
1554 				ret = err;
1555 				remaining_pages_total -= pte_idx;
1556 				goto out;
1557 			}
1558 			addr += PAGE_SIZE;
1559 			++curr_page_idx;
1560 		}
1561 		spin_unlock(pte_lock);
1562 		pages_to_write_in_pmd -= batch_size;
1563 		remaining_pages_total -= batch_size;
1564 	}
1565 	if (remaining_pages_total)
1566 		goto more;
1567 	ret = 0;
1568 out:
1569 	*num = remaining_pages_total;
1570 	return ret;
1571 }
1572 #endif  /* ifdef pte_index */
1573 
1574 /**
1575  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576  * @vma: user vma to map to
1577  * @addr: target start user address of these pages
1578  * @pages: source kernel pages
1579  * @num: in: number of pages to map. out: number of pages that were *not*
1580  * mapped. (0 means all pages were successfully mapped).
1581  *
1582  * Preferred over vm_insert_page() when inserting multiple pages.
1583  *
1584  * In case of error, we may have mapped a subset of the provided
1585  * pages. It is the caller's responsibility to account for this case.
1586  *
1587  * The same restrictions apply as in vm_insert_page().
1588  */
1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590 			struct page **pages, unsigned long *num)
1591 {
1592 #ifdef pte_index
1593 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594 
1595 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596 		return -EFAULT;
1597 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1598 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1599 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1600 		vma->vm_flags |= VM_MIXEDMAP;
1601 	}
1602 	/* Defer page refcount checking till we're about to map that page. */
1603 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604 #else
1605 	unsigned long idx = 0, pgcount = *num;
1606 	int err;
1607 
1608 	for (; idx < pgcount; ++idx) {
1609 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610 		if (err)
1611 			break;
1612 	}
1613 	*num = pgcount - idx;
1614 	return err;
1615 #endif  /* ifdef pte_index */
1616 }
1617 EXPORT_SYMBOL(vm_insert_pages);
1618 
1619 /**
1620  * vm_insert_page - insert single page into user vma
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @page: source kernel page
1624  *
1625  * This allows drivers to insert individual pages they've allocated
1626  * into a user vma.
1627  *
1628  * The page has to be a nice clean _individual_ kernel allocation.
1629  * If you allocate a compound page, you need to have marked it as
1630  * such (__GFP_COMP), or manually just split the page up yourself
1631  * (see split_page()).
1632  *
1633  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634  * took an arbitrary page protection parameter. This doesn't allow
1635  * that. Your vma protection will have to be set up correctly, which
1636  * means that if you want a shared writable mapping, you'd better
1637  * ask for a shared writable mapping!
1638  *
1639  * The page does not need to be reserved.
1640  *
1641  * Usually this function is called from f_op->mmap() handler
1642  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1643  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644  * function from other places, for example from page-fault handler.
1645  *
1646  * Return: %0 on success, negative error code otherwise.
1647  */
1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649 			struct page *page)
1650 {
1651 	if (addr < vma->vm_start || addr >= vma->vm_end)
1652 		return -EFAULT;
1653 	if (!page_count(page))
1654 		return -EINVAL;
1655 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1656 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1657 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1658 		vma->vm_flags |= VM_MIXEDMAP;
1659 	}
1660 	return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663 
1664 /*
1665  * __vm_map_pages - maps range of kernel pages into user vma
1666  * @vma: user vma to map to
1667  * @pages: pointer to array of source kernel pages
1668  * @num: number of pages in page array
1669  * @offset: user's requested vm_pgoff
1670  *
1671  * This allows drivers to map range of kernel pages into a user vma.
1672  *
1673  * Return: 0 on success and error code otherwise.
1674  */
1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676 				unsigned long num, unsigned long offset)
1677 {
1678 	unsigned long count = vma_pages(vma);
1679 	unsigned long uaddr = vma->vm_start;
1680 	int ret, i;
1681 
1682 	/* Fail if the user requested offset is beyond the end of the object */
1683 	if (offset >= num)
1684 		return -ENXIO;
1685 
1686 	/* Fail if the user requested size exceeds available object size */
1687 	if (count > num - offset)
1688 		return -ENXIO;
1689 
1690 	for (i = 0; i < count; i++) {
1691 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692 		if (ret < 0)
1693 			return ret;
1694 		uaddr += PAGE_SIZE;
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 /**
1701  * vm_map_pages - maps range of kernel pages starts with non zero offset
1702  * @vma: user vma to map to
1703  * @pages: pointer to array of source kernel pages
1704  * @num: number of pages in page array
1705  *
1706  * Maps an object consisting of @num pages, catering for the user's
1707  * requested vm_pgoff
1708  *
1709  * If we fail to insert any page into the vma, the function will return
1710  * immediately leaving any previously inserted pages present.  Callers
1711  * from the mmap handler may immediately return the error as their caller
1712  * will destroy the vma, removing any successfully inserted pages. Other
1713  * callers should make their own arrangements for calling unmap_region().
1714  *
1715  * Context: Process context. Called by mmap handlers.
1716  * Return: 0 on success and error code otherwise.
1717  */
1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719 				unsigned long num)
1720 {
1721 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722 }
1723 EXPORT_SYMBOL(vm_map_pages);
1724 
1725 /**
1726  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727  * @vma: user vma to map to
1728  * @pages: pointer to array of source kernel pages
1729  * @num: number of pages in page array
1730  *
1731  * Similar to vm_map_pages(), except that it explicitly sets the offset
1732  * to 0. This function is intended for the drivers that did not consider
1733  * vm_pgoff.
1734  *
1735  * Context: Process context. Called by mmap handlers.
1736  * Return: 0 on success and error code otherwise.
1737  */
1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739 				unsigned long num)
1740 {
1741 	return __vm_map_pages(vma, pages, num, 0);
1742 }
1743 EXPORT_SYMBOL(vm_map_pages_zero);
1744 
1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1746 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1747 {
1748 	struct mm_struct *mm = vma->vm_mm;
1749 	pte_t *pte, entry;
1750 	spinlock_t *ptl;
1751 
1752 	pte = get_locked_pte(mm, addr, &ptl);
1753 	if (!pte)
1754 		return VM_FAULT_OOM;
1755 	if (!pte_none(*pte)) {
1756 		if (mkwrite) {
1757 			/*
1758 			 * For read faults on private mappings the PFN passed
1759 			 * in may not match the PFN we have mapped if the
1760 			 * mapped PFN is a writeable COW page.  In the mkwrite
1761 			 * case we are creating a writable PTE for a shared
1762 			 * mapping and we expect the PFNs to match. If they
1763 			 * don't match, we are likely racing with block
1764 			 * allocation and mapping invalidation so just skip the
1765 			 * update.
1766 			 */
1767 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1769 				goto out_unlock;
1770 			}
1771 			entry = pte_mkyoung(*pte);
1772 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774 				update_mmu_cache(vma, addr, pte);
1775 		}
1776 		goto out_unlock;
1777 	}
1778 
1779 	/* Ok, finally just insert the thing.. */
1780 	if (pfn_t_devmap(pfn))
1781 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782 	else
1783 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1784 
1785 	if (mkwrite) {
1786 		entry = pte_mkyoung(entry);
1787 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 	}
1789 
1790 	set_pte_at(mm, addr, pte, entry);
1791 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1792 
1793 out_unlock:
1794 	pte_unmap_unlock(pte, ptl);
1795 	return VM_FAULT_NOPAGE;
1796 }
1797 
1798 /**
1799  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800  * @vma: user vma to map to
1801  * @addr: target user address of this page
1802  * @pfn: source kernel pfn
1803  * @pgprot: pgprot flags for the inserted page
1804  *
1805  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1806  * to override pgprot on a per-page basis.
1807  *
1808  * This only makes sense for IO mappings, and it makes no sense for
1809  * COW mappings.  In general, using multiple vmas is preferable;
1810  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1811  * impractical.
1812  *
1813  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814  * a value of @pgprot different from that of @vma->vm_page_prot.
1815  *
1816  * Context: Process context.  May allocate using %GFP_KERNEL.
1817  * Return: vm_fault_t value.
1818  */
1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820 			unsigned long pfn, pgprot_t pgprot)
1821 {
1822 	/*
1823 	 * Technically, architectures with pte_special can avoid all these
1824 	 * restrictions (same for remap_pfn_range).  However we would like
1825 	 * consistency in testing and feature parity among all, so we should
1826 	 * try to keep these invariants in place for everybody.
1827 	 */
1828 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830 						(VM_PFNMAP|VM_MIXEDMAP));
1831 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833 
1834 	if (addr < vma->vm_start || addr >= vma->vm_end)
1835 		return VM_FAULT_SIGBUS;
1836 
1837 	if (!pfn_modify_allowed(pfn, pgprot))
1838 		return VM_FAULT_SIGBUS;
1839 
1840 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841 
1842 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1843 			false);
1844 }
1845 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846 
1847 /**
1848  * vmf_insert_pfn - insert single pfn into user vma
1849  * @vma: user vma to map to
1850  * @addr: target user address of this page
1851  * @pfn: source kernel pfn
1852  *
1853  * Similar to vm_insert_page, this allows drivers to insert individual pages
1854  * they've allocated into a user vma. Same comments apply.
1855  *
1856  * This function should only be called from a vm_ops->fault handler, and
1857  * in that case the handler should return the result of this function.
1858  *
1859  * vma cannot be a COW mapping.
1860  *
1861  * As this is called only for pages that do not currently exist, we
1862  * do not need to flush old virtual caches or the TLB.
1863  *
1864  * Context: Process context.  May allocate using %GFP_KERNEL.
1865  * Return: vm_fault_t value.
1866  */
1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868 			unsigned long pfn)
1869 {
1870 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871 }
1872 EXPORT_SYMBOL(vmf_insert_pfn);
1873 
1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875 {
1876 	/* these checks mirror the abort conditions in vm_normal_page */
1877 	if (vma->vm_flags & VM_MIXEDMAP)
1878 		return true;
1879 	if (pfn_t_devmap(pfn))
1880 		return true;
1881 	if (pfn_t_special(pfn))
1882 		return true;
1883 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884 		return true;
1885 	return false;
1886 }
1887 
1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1889 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890 		bool mkwrite)
1891 {
1892 	int err;
1893 
1894 	BUG_ON(!vm_mixed_ok(vma, pfn));
1895 
1896 	if (addr < vma->vm_start || addr >= vma->vm_end)
1897 		return VM_FAULT_SIGBUS;
1898 
1899 	track_pfn_insert(vma, &pgprot, pfn);
1900 
1901 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1902 		return VM_FAULT_SIGBUS;
1903 
1904 	/*
1905 	 * If we don't have pte special, then we have to use the pfn_valid()
1906 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 	 * refcount the page if pfn_valid is true (hence insert_page rather
1908 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1909 	 * without pte special, it would there be refcounted as a normal page.
1910 	 */
1911 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1913 		struct page *page;
1914 
1915 		/*
1916 		 * At this point we are committed to insert_page()
1917 		 * regardless of whether the caller specified flags that
1918 		 * result in pfn_t_has_page() == false.
1919 		 */
1920 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1921 		err = insert_page(vma, addr, page, pgprot);
1922 	} else {
1923 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924 	}
1925 
1926 	if (err == -ENOMEM)
1927 		return VM_FAULT_OOM;
1928 	if (err < 0 && err != -EBUSY)
1929 		return VM_FAULT_SIGBUS;
1930 
1931 	return VM_FAULT_NOPAGE;
1932 }
1933 
1934 /**
1935  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936  * @vma: user vma to map to
1937  * @addr: target user address of this page
1938  * @pfn: source kernel pfn
1939  * @pgprot: pgprot flags for the inserted page
1940  *
1941  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1942  * to override pgprot on a per-page basis.
1943  *
1944  * Typically this function should be used by drivers to set caching- and
1945  * encryption bits different than those of @vma->vm_page_prot, because
1946  * the caching- or encryption mode may not be known at mmap() time.
1947  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948  * to set caching and encryption bits for those vmas (except for COW pages).
1949  * This is ensured by core vm only modifying these page table entries using
1950  * functions that don't touch caching- or encryption bits, using pte_modify()
1951  * if needed. (See for example mprotect()).
1952  * Also when new page-table entries are created, this is only done using the
1953  * fault() callback, and never using the value of vma->vm_page_prot,
1954  * except for page-table entries that point to anonymous pages as the result
1955  * of COW.
1956  *
1957  * Context: Process context.  May allocate using %GFP_KERNEL.
1958  * Return: vm_fault_t value.
1959  */
1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961 				 pfn_t pfn, pgprot_t pgprot)
1962 {
1963 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964 }
1965 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1966 
1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968 		pfn_t pfn)
1969 {
1970 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1971 }
1972 EXPORT_SYMBOL(vmf_insert_mixed);
1973 
1974 /*
1975  *  If the insertion of PTE failed because someone else already added a
1976  *  different entry in the mean time, we treat that as success as we assume
1977  *  the same entry was actually inserted.
1978  */
1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980 		unsigned long addr, pfn_t pfn)
1981 {
1982 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1983 }
1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985 
1986 /*
1987  * maps a range of physical memory into the requested pages. the old
1988  * mappings are removed. any references to nonexistent pages results
1989  * in null mappings (currently treated as "copy-on-access")
1990  */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 			unsigned long addr, unsigned long end,
1993 			unsigned long pfn, pgprot_t prot)
1994 {
1995 	pte_t *pte;
1996 	spinlock_t *ptl;
1997 	int err = 0;
1998 
1999 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2000 	if (!pte)
2001 		return -ENOMEM;
2002 	arch_enter_lazy_mmu_mode();
2003 	do {
2004 		BUG_ON(!pte_none(*pte));
2005 		if (!pfn_modify_allowed(pfn, prot)) {
2006 			err = -EACCES;
2007 			break;
2008 		}
2009 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2010 		pfn++;
2011 	} while (pte++, addr += PAGE_SIZE, addr != end);
2012 	arch_leave_lazy_mmu_mode();
2013 	pte_unmap_unlock(pte - 1, ptl);
2014 	return err;
2015 }
2016 
2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 			unsigned long addr, unsigned long end,
2019 			unsigned long pfn, pgprot_t prot)
2020 {
2021 	pmd_t *pmd;
2022 	unsigned long next;
2023 	int err;
2024 
2025 	pfn -= addr >> PAGE_SHIFT;
2026 	pmd = pmd_alloc(mm, pud, addr);
2027 	if (!pmd)
2028 		return -ENOMEM;
2029 	VM_BUG_ON(pmd_trans_huge(*pmd));
2030 	do {
2031 		next = pmd_addr_end(addr, end);
2032 		err = remap_pte_range(mm, pmd, addr, next,
2033 				pfn + (addr >> PAGE_SHIFT), prot);
2034 		if (err)
2035 			return err;
2036 	} while (pmd++, addr = next, addr != end);
2037 	return 0;
2038 }
2039 
2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2041 			unsigned long addr, unsigned long end,
2042 			unsigned long pfn, pgprot_t prot)
2043 {
2044 	pud_t *pud;
2045 	unsigned long next;
2046 	int err;
2047 
2048 	pfn -= addr >> PAGE_SHIFT;
2049 	pud = pud_alloc(mm, p4d, addr);
2050 	if (!pud)
2051 		return -ENOMEM;
2052 	do {
2053 		next = pud_addr_end(addr, end);
2054 		err = remap_pmd_range(mm, pud, addr, next,
2055 				pfn + (addr >> PAGE_SHIFT), prot);
2056 		if (err)
2057 			return err;
2058 	} while (pud++, addr = next, addr != end);
2059 	return 0;
2060 }
2061 
2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063 			unsigned long addr, unsigned long end,
2064 			unsigned long pfn, pgprot_t prot)
2065 {
2066 	p4d_t *p4d;
2067 	unsigned long next;
2068 	int err;
2069 
2070 	pfn -= addr >> PAGE_SHIFT;
2071 	p4d = p4d_alloc(mm, pgd, addr);
2072 	if (!p4d)
2073 		return -ENOMEM;
2074 	do {
2075 		next = p4d_addr_end(addr, end);
2076 		err = remap_pud_range(mm, p4d, addr, next,
2077 				pfn + (addr >> PAGE_SHIFT), prot);
2078 		if (err)
2079 			return err;
2080 	} while (p4d++, addr = next, addr != end);
2081 	return 0;
2082 }
2083 
2084 /**
2085  * remap_pfn_range - remap kernel memory to userspace
2086  * @vma: user vma to map to
2087  * @addr: target user address to start at
2088  * @pfn: page frame number of kernel physical memory address
2089  * @size: size of mapping area
2090  * @prot: page protection flags for this mapping
2091  *
2092  * Note: this is only safe if the mm semaphore is held when called.
2093  *
2094  * Return: %0 on success, negative error code otherwise.
2095  */
2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2098 {
2099 	pgd_t *pgd;
2100 	unsigned long next;
2101 	unsigned long end = addr + PAGE_ALIGN(size);
2102 	struct mm_struct *mm = vma->vm_mm;
2103 	unsigned long remap_pfn = pfn;
2104 	int err;
2105 
2106 	/*
2107 	 * Physically remapped pages are special. Tell the
2108 	 * rest of the world about it:
2109 	 *   VM_IO tells people not to look at these pages
2110 	 *	(accesses can have side effects).
2111 	 *   VM_PFNMAP tells the core MM that the base pages are just
2112 	 *	raw PFN mappings, and do not have a "struct page" associated
2113 	 *	with them.
2114 	 *   VM_DONTEXPAND
2115 	 *      Disable vma merging and expanding with mremap().
2116 	 *   VM_DONTDUMP
2117 	 *      Omit vma from core dump, even when VM_IO turned off.
2118 	 *
2119 	 * There's a horrible special case to handle copy-on-write
2120 	 * behaviour that some programs depend on. We mark the "original"
2121 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2122 	 * See vm_normal_page() for details.
2123 	 */
2124 	if (is_cow_mapping(vma->vm_flags)) {
2125 		if (addr != vma->vm_start || end != vma->vm_end)
2126 			return -EINVAL;
2127 		vma->vm_pgoff = pfn;
2128 	}
2129 
2130 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2131 	if (err)
2132 		return -EINVAL;
2133 
2134 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2135 
2136 	BUG_ON(addr >= end);
2137 	pfn -= addr >> PAGE_SHIFT;
2138 	pgd = pgd_offset(mm, addr);
2139 	flush_cache_range(vma, addr, end);
2140 	do {
2141 		next = pgd_addr_end(addr, end);
2142 		err = remap_p4d_range(mm, pgd, addr, next,
2143 				pfn + (addr >> PAGE_SHIFT), prot);
2144 		if (err)
2145 			break;
2146 	} while (pgd++, addr = next, addr != end);
2147 
2148 	if (err)
2149 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2150 
2151 	return err;
2152 }
2153 EXPORT_SYMBOL(remap_pfn_range);
2154 
2155 /**
2156  * vm_iomap_memory - remap memory to userspace
2157  * @vma: user vma to map to
2158  * @start: start of the physical memory to be mapped
2159  * @len: size of area
2160  *
2161  * This is a simplified io_remap_pfn_range() for common driver use. The
2162  * driver just needs to give us the physical memory range to be mapped,
2163  * we'll figure out the rest from the vma information.
2164  *
2165  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2166  * whatever write-combining details or similar.
2167  *
2168  * Return: %0 on success, negative error code otherwise.
2169  */
2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171 {
2172 	unsigned long vm_len, pfn, pages;
2173 
2174 	/* Check that the physical memory area passed in looks valid */
2175 	if (start + len < start)
2176 		return -EINVAL;
2177 	/*
2178 	 * You *really* shouldn't map things that aren't page-aligned,
2179 	 * but we've historically allowed it because IO memory might
2180 	 * just have smaller alignment.
2181 	 */
2182 	len += start & ~PAGE_MASK;
2183 	pfn = start >> PAGE_SHIFT;
2184 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2185 	if (pfn + pages < pfn)
2186 		return -EINVAL;
2187 
2188 	/* We start the mapping 'vm_pgoff' pages into the area */
2189 	if (vma->vm_pgoff > pages)
2190 		return -EINVAL;
2191 	pfn += vma->vm_pgoff;
2192 	pages -= vma->vm_pgoff;
2193 
2194 	/* Can we fit all of the mapping? */
2195 	vm_len = vma->vm_end - vma->vm_start;
2196 	if (vm_len >> PAGE_SHIFT > pages)
2197 		return -EINVAL;
2198 
2199 	/* Ok, let it rip */
2200 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vm_iomap_memory);
2203 
2204 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205 				     unsigned long addr, unsigned long end,
2206 				     pte_fn_t fn, void *data, bool create)
2207 {
2208 	pte_t *pte;
2209 	int err = 0;
2210 	spinlock_t *uninitialized_var(ptl);
2211 
2212 	if (create) {
2213 		pte = (mm == &init_mm) ?
2214 			pte_alloc_kernel(pmd, addr) :
2215 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2216 		if (!pte)
2217 			return -ENOMEM;
2218 	} else {
2219 		pte = (mm == &init_mm) ?
2220 			pte_offset_kernel(pmd, addr) :
2221 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2222 	}
2223 
2224 	BUG_ON(pmd_huge(*pmd));
2225 
2226 	arch_enter_lazy_mmu_mode();
2227 
2228 	do {
2229 		if (create || !pte_none(*pte)) {
2230 			err = fn(pte++, addr, data);
2231 			if (err)
2232 				break;
2233 		}
2234 	} while (addr += PAGE_SIZE, addr != end);
2235 
2236 	arch_leave_lazy_mmu_mode();
2237 
2238 	if (mm != &init_mm)
2239 		pte_unmap_unlock(pte-1, ptl);
2240 	return err;
2241 }
2242 
2243 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2244 				     unsigned long addr, unsigned long end,
2245 				     pte_fn_t fn, void *data, bool create)
2246 {
2247 	pmd_t *pmd;
2248 	unsigned long next;
2249 	int err = 0;
2250 
2251 	BUG_ON(pud_huge(*pud));
2252 
2253 	if (create) {
2254 		pmd = pmd_alloc(mm, pud, addr);
2255 		if (!pmd)
2256 			return -ENOMEM;
2257 	} else {
2258 		pmd = pmd_offset(pud, addr);
2259 	}
2260 	do {
2261 		next = pmd_addr_end(addr, end);
2262 		if (create || !pmd_none_or_clear_bad(pmd)) {
2263 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2264 						 create);
2265 			if (err)
2266 				break;
2267 		}
2268 	} while (pmd++, addr = next, addr != end);
2269 	return err;
2270 }
2271 
2272 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2273 				     unsigned long addr, unsigned long end,
2274 				     pte_fn_t fn, void *data, bool create)
2275 {
2276 	pud_t *pud;
2277 	unsigned long next;
2278 	int err = 0;
2279 
2280 	if (create) {
2281 		pud = pud_alloc(mm, p4d, addr);
2282 		if (!pud)
2283 			return -ENOMEM;
2284 	} else {
2285 		pud = pud_offset(p4d, addr);
2286 	}
2287 	do {
2288 		next = pud_addr_end(addr, end);
2289 		if (create || !pud_none_or_clear_bad(pud)) {
2290 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2291 						 create);
2292 			if (err)
2293 				break;
2294 		}
2295 	} while (pud++, addr = next, addr != end);
2296 	return err;
2297 }
2298 
2299 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2300 				     unsigned long addr, unsigned long end,
2301 				     pte_fn_t fn, void *data, bool create)
2302 {
2303 	p4d_t *p4d;
2304 	unsigned long next;
2305 	int err = 0;
2306 
2307 	if (create) {
2308 		p4d = p4d_alloc(mm, pgd, addr);
2309 		if (!p4d)
2310 			return -ENOMEM;
2311 	} else {
2312 		p4d = p4d_offset(pgd, addr);
2313 	}
2314 	do {
2315 		next = p4d_addr_end(addr, end);
2316 		if (create || !p4d_none_or_clear_bad(p4d)) {
2317 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2318 						 create);
2319 			if (err)
2320 				break;
2321 		}
2322 	} while (p4d++, addr = next, addr != end);
2323 	return err;
2324 }
2325 
2326 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2327 				 unsigned long size, pte_fn_t fn,
2328 				 void *data, bool create)
2329 {
2330 	pgd_t *pgd;
2331 	unsigned long next;
2332 	unsigned long end = addr + size;
2333 	int err = 0;
2334 
2335 	if (WARN_ON(addr >= end))
2336 		return -EINVAL;
2337 
2338 	pgd = pgd_offset(mm, addr);
2339 	do {
2340 		next = pgd_addr_end(addr, end);
2341 		if (!create && pgd_none_or_clear_bad(pgd))
2342 			continue;
2343 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2344 		if (err)
2345 			break;
2346 	} while (pgd++, addr = next, addr != end);
2347 
2348 	return err;
2349 }
2350 
2351 /*
2352  * Scan a region of virtual memory, filling in page tables as necessary
2353  * and calling a provided function on each leaf page table.
2354  */
2355 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2356 			unsigned long size, pte_fn_t fn, void *data)
2357 {
2358 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2359 }
2360 EXPORT_SYMBOL_GPL(apply_to_page_range);
2361 
2362 /*
2363  * Scan a region of virtual memory, calling a provided function on
2364  * each leaf page table where it exists.
2365  *
2366  * Unlike apply_to_page_range, this does _not_ fill in page tables
2367  * where they are absent.
2368  */
2369 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2370 				 unsigned long size, pte_fn_t fn, void *data)
2371 {
2372 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2373 }
2374 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2375 
2376 /*
2377  * handle_pte_fault chooses page fault handler according to an entry which was
2378  * read non-atomically.  Before making any commitment, on those architectures
2379  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2380  * parts, do_swap_page must check under lock before unmapping the pte and
2381  * proceeding (but do_wp_page is only called after already making such a check;
2382  * and do_anonymous_page can safely check later on).
2383  */
2384 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2385 				pte_t *page_table, pte_t orig_pte)
2386 {
2387 	int same = 1;
2388 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2389 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2390 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2391 		spin_lock(ptl);
2392 		same = pte_same(*page_table, orig_pte);
2393 		spin_unlock(ptl);
2394 	}
2395 #endif
2396 	pte_unmap(page_table);
2397 	return same;
2398 }
2399 
2400 static inline bool cow_user_page(struct page *dst, struct page *src,
2401 				 struct vm_fault *vmf)
2402 {
2403 	bool ret;
2404 	void *kaddr;
2405 	void __user *uaddr;
2406 	bool locked = false;
2407 	struct vm_area_struct *vma = vmf->vma;
2408 	struct mm_struct *mm = vma->vm_mm;
2409 	unsigned long addr = vmf->address;
2410 
2411 	debug_dma_assert_idle(src);
2412 
2413 	if (likely(src)) {
2414 		copy_user_highpage(dst, src, addr, vma);
2415 		return true;
2416 	}
2417 
2418 	/*
2419 	 * If the source page was a PFN mapping, we don't have
2420 	 * a "struct page" for it. We do a best-effort copy by
2421 	 * just copying from the original user address. If that
2422 	 * fails, we just zero-fill it. Live with it.
2423 	 */
2424 	kaddr = kmap_atomic(dst);
2425 	uaddr = (void __user *)(addr & PAGE_MASK);
2426 
2427 	/*
2428 	 * On architectures with software "accessed" bits, we would
2429 	 * take a double page fault, so mark it accessed here.
2430 	 */
2431 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2432 		pte_t entry;
2433 
2434 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2435 		locked = true;
2436 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2437 			/*
2438 			 * Other thread has already handled the fault
2439 			 * and we don't need to do anything. If it's
2440 			 * not the case, the fault will be triggered
2441 			 * again on the same address.
2442 			 */
2443 			ret = false;
2444 			goto pte_unlock;
2445 		}
2446 
2447 		entry = pte_mkyoung(vmf->orig_pte);
2448 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449 			update_mmu_cache(vma, addr, vmf->pte);
2450 	}
2451 
2452 	/*
2453 	 * This really shouldn't fail, because the page is there
2454 	 * in the page tables. But it might just be unreadable,
2455 	 * in which case we just give up and fill the result with
2456 	 * zeroes.
2457 	 */
2458 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2459 		if (locked)
2460 			goto warn;
2461 
2462 		/* Re-validate under PTL if the page is still mapped */
2463 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464 		locked = true;
2465 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2466 			/* The PTE changed under us. Retry page fault. */
2467 			ret = false;
2468 			goto pte_unlock;
2469 		}
2470 
2471 		/*
2472 		 * The same page can be mapped back since last copy attampt.
2473 		 * Try to copy again under PTL.
2474 		 */
2475 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2476 			/*
2477 			 * Give a warn in case there can be some obscure
2478 			 * use-case
2479 			 */
2480 warn:
2481 			WARN_ON_ONCE(1);
2482 			clear_page(kaddr);
2483 		}
2484 	}
2485 
2486 	ret = true;
2487 
2488 pte_unlock:
2489 	if (locked)
2490 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2491 	kunmap_atomic(kaddr);
2492 	flush_dcache_page(dst);
2493 
2494 	return ret;
2495 }
2496 
2497 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2498 {
2499 	struct file *vm_file = vma->vm_file;
2500 
2501 	if (vm_file)
2502 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2503 
2504 	/*
2505 	 * Special mappings (e.g. VDSO) do not have any file so fake
2506 	 * a default GFP_KERNEL for them.
2507 	 */
2508 	return GFP_KERNEL;
2509 }
2510 
2511 /*
2512  * Notify the address space that the page is about to become writable so that
2513  * it can prohibit this or wait for the page to get into an appropriate state.
2514  *
2515  * We do this without the lock held, so that it can sleep if it needs to.
2516  */
2517 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2518 {
2519 	vm_fault_t ret;
2520 	struct page *page = vmf->page;
2521 	unsigned int old_flags = vmf->flags;
2522 
2523 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2524 
2525 	if (vmf->vma->vm_file &&
2526 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2527 		return VM_FAULT_SIGBUS;
2528 
2529 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2530 	/* Restore original flags so that caller is not surprised */
2531 	vmf->flags = old_flags;
2532 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2533 		return ret;
2534 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2535 		lock_page(page);
2536 		if (!page->mapping) {
2537 			unlock_page(page);
2538 			return 0; /* retry */
2539 		}
2540 		ret |= VM_FAULT_LOCKED;
2541 	} else
2542 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2543 	return ret;
2544 }
2545 
2546 /*
2547  * Handle dirtying of a page in shared file mapping on a write fault.
2548  *
2549  * The function expects the page to be locked and unlocks it.
2550  */
2551 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2552 {
2553 	struct vm_area_struct *vma = vmf->vma;
2554 	struct address_space *mapping;
2555 	struct page *page = vmf->page;
2556 	bool dirtied;
2557 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2558 
2559 	dirtied = set_page_dirty(page);
2560 	VM_BUG_ON_PAGE(PageAnon(page), page);
2561 	/*
2562 	 * Take a local copy of the address_space - page.mapping may be zeroed
2563 	 * by truncate after unlock_page().   The address_space itself remains
2564 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2565 	 * release semantics to prevent the compiler from undoing this copying.
2566 	 */
2567 	mapping = page_rmapping(page);
2568 	unlock_page(page);
2569 
2570 	if (!page_mkwrite)
2571 		file_update_time(vma->vm_file);
2572 
2573 	/*
2574 	 * Throttle page dirtying rate down to writeback speed.
2575 	 *
2576 	 * mapping may be NULL here because some device drivers do not
2577 	 * set page.mapping but still dirty their pages
2578 	 *
2579 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2580 	 * is pinning the mapping, as per above.
2581 	 */
2582 	if ((dirtied || page_mkwrite) && mapping) {
2583 		struct file *fpin;
2584 
2585 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2586 		balance_dirty_pages_ratelimited(mapping);
2587 		if (fpin) {
2588 			fput(fpin);
2589 			return VM_FAULT_RETRY;
2590 		}
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 /*
2597  * Handle write page faults for pages that can be reused in the current vma
2598  *
2599  * This can happen either due to the mapping being with the VM_SHARED flag,
2600  * or due to us being the last reference standing to the page. In either
2601  * case, all we need to do here is to mark the page as writable and update
2602  * any related book-keeping.
2603  */
2604 static inline void wp_page_reuse(struct vm_fault *vmf)
2605 	__releases(vmf->ptl)
2606 {
2607 	struct vm_area_struct *vma = vmf->vma;
2608 	struct page *page = vmf->page;
2609 	pte_t entry;
2610 	/*
2611 	 * Clear the pages cpupid information as the existing
2612 	 * information potentially belongs to a now completely
2613 	 * unrelated process.
2614 	 */
2615 	if (page)
2616 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2617 
2618 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2619 	entry = pte_mkyoung(vmf->orig_pte);
2620 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2621 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2622 		update_mmu_cache(vma, vmf->address, vmf->pte);
2623 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2624 }
2625 
2626 /*
2627  * Handle the case of a page which we actually need to copy to a new page.
2628  *
2629  * Called with mmap_sem locked and the old page referenced, but
2630  * without the ptl held.
2631  *
2632  * High level logic flow:
2633  *
2634  * - Allocate a page, copy the content of the old page to the new one.
2635  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2636  * - Take the PTL. If the pte changed, bail out and release the allocated page
2637  * - If the pte is still the way we remember it, update the page table and all
2638  *   relevant references. This includes dropping the reference the page-table
2639  *   held to the old page, as well as updating the rmap.
2640  * - In any case, unlock the PTL and drop the reference we took to the old page.
2641  */
2642 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2643 {
2644 	struct vm_area_struct *vma = vmf->vma;
2645 	struct mm_struct *mm = vma->vm_mm;
2646 	struct page *old_page = vmf->page;
2647 	struct page *new_page = NULL;
2648 	pte_t entry;
2649 	int page_copied = 0;
2650 	struct mem_cgroup *memcg;
2651 	struct mmu_notifier_range range;
2652 
2653 	if (unlikely(anon_vma_prepare(vma)))
2654 		goto oom;
2655 
2656 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2657 		new_page = alloc_zeroed_user_highpage_movable(vma,
2658 							      vmf->address);
2659 		if (!new_page)
2660 			goto oom;
2661 	} else {
2662 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2663 				vmf->address);
2664 		if (!new_page)
2665 			goto oom;
2666 
2667 		if (!cow_user_page(new_page, old_page, vmf)) {
2668 			/*
2669 			 * COW failed, if the fault was solved by other,
2670 			 * it's fine. If not, userspace would re-fault on
2671 			 * the same address and we will handle the fault
2672 			 * from the second attempt.
2673 			 */
2674 			put_page(new_page);
2675 			if (old_page)
2676 				put_page(old_page);
2677 			return 0;
2678 		}
2679 	}
2680 
2681 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2682 		goto oom_free_new;
2683 
2684 	__SetPageUptodate(new_page);
2685 
2686 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2687 				vmf->address & PAGE_MASK,
2688 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2689 	mmu_notifier_invalidate_range_start(&range);
2690 
2691 	/*
2692 	 * Re-check the pte - we dropped the lock
2693 	 */
2694 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2695 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2696 		if (old_page) {
2697 			if (!PageAnon(old_page)) {
2698 				dec_mm_counter_fast(mm,
2699 						mm_counter_file(old_page));
2700 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2701 			}
2702 		} else {
2703 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2704 		}
2705 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2706 		entry = mk_pte(new_page, vma->vm_page_prot);
2707 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2708 		/*
2709 		 * Clear the pte entry and flush it first, before updating the
2710 		 * pte with the new entry. This will avoid a race condition
2711 		 * seen in the presence of one thread doing SMC and another
2712 		 * thread doing COW.
2713 		 */
2714 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2715 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2716 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2717 		lru_cache_add_active_or_unevictable(new_page, vma);
2718 		/*
2719 		 * We call the notify macro here because, when using secondary
2720 		 * mmu page tables (such as kvm shadow page tables), we want the
2721 		 * new page to be mapped directly into the secondary page table.
2722 		 */
2723 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2724 		update_mmu_cache(vma, vmf->address, vmf->pte);
2725 		if (old_page) {
2726 			/*
2727 			 * Only after switching the pte to the new page may
2728 			 * we remove the mapcount here. Otherwise another
2729 			 * process may come and find the rmap count decremented
2730 			 * before the pte is switched to the new page, and
2731 			 * "reuse" the old page writing into it while our pte
2732 			 * here still points into it and can be read by other
2733 			 * threads.
2734 			 *
2735 			 * The critical issue is to order this
2736 			 * page_remove_rmap with the ptp_clear_flush above.
2737 			 * Those stores are ordered by (if nothing else,)
2738 			 * the barrier present in the atomic_add_negative
2739 			 * in page_remove_rmap.
2740 			 *
2741 			 * Then the TLB flush in ptep_clear_flush ensures that
2742 			 * no process can access the old page before the
2743 			 * decremented mapcount is visible. And the old page
2744 			 * cannot be reused until after the decremented
2745 			 * mapcount is visible. So transitively, TLBs to
2746 			 * old page will be flushed before it can be reused.
2747 			 */
2748 			page_remove_rmap(old_page, false);
2749 		}
2750 
2751 		/* Free the old page.. */
2752 		new_page = old_page;
2753 		page_copied = 1;
2754 	} else {
2755 		mem_cgroup_cancel_charge(new_page, memcg, false);
2756 	}
2757 
2758 	if (new_page)
2759 		put_page(new_page);
2760 
2761 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 	/*
2763 	 * No need to double call mmu_notifier->invalidate_range() callback as
2764 	 * the above ptep_clear_flush_notify() did already call it.
2765 	 */
2766 	mmu_notifier_invalidate_range_only_end(&range);
2767 	if (old_page) {
2768 		/*
2769 		 * Don't let another task, with possibly unlocked vma,
2770 		 * keep the mlocked page.
2771 		 */
2772 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2773 			lock_page(old_page);	/* LRU manipulation */
2774 			if (PageMlocked(old_page))
2775 				munlock_vma_page(old_page);
2776 			unlock_page(old_page);
2777 		}
2778 		put_page(old_page);
2779 	}
2780 	return page_copied ? VM_FAULT_WRITE : 0;
2781 oom_free_new:
2782 	put_page(new_page);
2783 oom:
2784 	if (old_page)
2785 		put_page(old_page);
2786 	return VM_FAULT_OOM;
2787 }
2788 
2789 /**
2790  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2791  *			  writeable once the page is prepared
2792  *
2793  * @vmf: structure describing the fault
2794  *
2795  * This function handles all that is needed to finish a write page fault in a
2796  * shared mapping due to PTE being read-only once the mapped page is prepared.
2797  * It handles locking of PTE and modifying it.
2798  *
2799  * The function expects the page to be locked or other protection against
2800  * concurrent faults / writeback (such as DAX radix tree locks).
2801  *
2802  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2803  * we acquired PTE lock.
2804  */
2805 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2806 {
2807 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2808 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2809 				       &vmf->ptl);
2810 	/*
2811 	 * We might have raced with another page fault while we released the
2812 	 * pte_offset_map_lock.
2813 	 */
2814 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2815 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2816 		return VM_FAULT_NOPAGE;
2817 	}
2818 	wp_page_reuse(vmf);
2819 	return 0;
2820 }
2821 
2822 /*
2823  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2824  * mapping
2825  */
2826 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2827 {
2828 	struct vm_area_struct *vma = vmf->vma;
2829 
2830 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2831 		vm_fault_t ret;
2832 
2833 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2834 		vmf->flags |= FAULT_FLAG_MKWRITE;
2835 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2836 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2837 			return ret;
2838 		return finish_mkwrite_fault(vmf);
2839 	}
2840 	wp_page_reuse(vmf);
2841 	return VM_FAULT_WRITE;
2842 }
2843 
2844 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2845 	__releases(vmf->ptl)
2846 {
2847 	struct vm_area_struct *vma = vmf->vma;
2848 	vm_fault_t ret = VM_FAULT_WRITE;
2849 
2850 	get_page(vmf->page);
2851 
2852 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2853 		vm_fault_t tmp;
2854 
2855 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2856 		tmp = do_page_mkwrite(vmf);
2857 		if (unlikely(!tmp || (tmp &
2858 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2859 			put_page(vmf->page);
2860 			return tmp;
2861 		}
2862 		tmp = finish_mkwrite_fault(vmf);
2863 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2864 			unlock_page(vmf->page);
2865 			put_page(vmf->page);
2866 			return tmp;
2867 		}
2868 	} else {
2869 		wp_page_reuse(vmf);
2870 		lock_page(vmf->page);
2871 	}
2872 	ret |= fault_dirty_shared_page(vmf);
2873 	put_page(vmf->page);
2874 
2875 	return ret;
2876 }
2877 
2878 /*
2879  * This routine handles present pages, when users try to write
2880  * to a shared page. It is done by copying the page to a new address
2881  * and decrementing the shared-page counter for the old page.
2882  *
2883  * Note that this routine assumes that the protection checks have been
2884  * done by the caller (the low-level page fault routine in most cases).
2885  * Thus we can safely just mark it writable once we've done any necessary
2886  * COW.
2887  *
2888  * We also mark the page dirty at this point even though the page will
2889  * change only once the write actually happens. This avoids a few races,
2890  * and potentially makes it more efficient.
2891  *
2892  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2893  * but allow concurrent faults), with pte both mapped and locked.
2894  * We return with mmap_sem still held, but pte unmapped and unlocked.
2895  */
2896 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2897 	__releases(vmf->ptl)
2898 {
2899 	struct vm_area_struct *vma = vmf->vma;
2900 
2901 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2902 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2903 		return handle_userfault(vmf, VM_UFFD_WP);
2904 	}
2905 
2906 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2907 	if (!vmf->page) {
2908 		/*
2909 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2910 		 * VM_PFNMAP VMA.
2911 		 *
2912 		 * We should not cow pages in a shared writeable mapping.
2913 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2914 		 */
2915 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2916 				     (VM_WRITE|VM_SHARED))
2917 			return wp_pfn_shared(vmf);
2918 
2919 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2920 		return wp_page_copy(vmf);
2921 	}
2922 
2923 	/*
2924 	 * Take out anonymous pages first, anonymous shared vmas are
2925 	 * not dirty accountable.
2926 	 */
2927 	if (PageAnon(vmf->page)) {
2928 		int total_map_swapcount;
2929 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2930 					   page_count(vmf->page) != 1))
2931 			goto copy;
2932 		if (!trylock_page(vmf->page)) {
2933 			get_page(vmf->page);
2934 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2935 			lock_page(vmf->page);
2936 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2937 					vmf->address, &vmf->ptl);
2938 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2939 				unlock_page(vmf->page);
2940 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2941 				put_page(vmf->page);
2942 				return 0;
2943 			}
2944 			put_page(vmf->page);
2945 		}
2946 		if (PageKsm(vmf->page)) {
2947 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948 						     vmf->address);
2949 			unlock_page(vmf->page);
2950 			if (!reused)
2951 				goto copy;
2952 			wp_page_reuse(vmf);
2953 			return VM_FAULT_WRITE;
2954 		}
2955 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956 			if (total_map_swapcount == 1) {
2957 				/*
2958 				 * The page is all ours. Move it to
2959 				 * our anon_vma so the rmap code will
2960 				 * not search our parent or siblings.
2961 				 * Protected against the rmap code by
2962 				 * the page lock.
2963 				 */
2964 				page_move_anon_rmap(vmf->page, vma);
2965 			}
2966 			unlock_page(vmf->page);
2967 			wp_page_reuse(vmf);
2968 			return VM_FAULT_WRITE;
2969 		}
2970 		unlock_page(vmf->page);
2971 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2972 					(VM_WRITE|VM_SHARED))) {
2973 		return wp_page_shared(vmf);
2974 	}
2975 copy:
2976 	/*
2977 	 * Ok, we need to copy. Oh, well..
2978 	 */
2979 	get_page(vmf->page);
2980 
2981 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2982 	return wp_page_copy(vmf);
2983 }
2984 
2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2986 		unsigned long start_addr, unsigned long end_addr,
2987 		struct zap_details *details)
2988 {
2989 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2990 }
2991 
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2993 					    struct zap_details *details)
2994 {
2995 	struct vm_area_struct *vma;
2996 	pgoff_t vba, vea, zba, zea;
2997 
2998 	vma_interval_tree_foreach(vma, root,
2999 			details->first_index, details->last_index) {
3000 
3001 		vba = vma->vm_pgoff;
3002 		vea = vba + vma_pages(vma) - 1;
3003 		zba = details->first_index;
3004 		if (zba < vba)
3005 			zba = vba;
3006 		zea = details->last_index;
3007 		if (zea > vea)
3008 			zea = vea;
3009 
3010 		unmap_mapping_range_vma(vma,
3011 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3013 				details);
3014 	}
3015 }
3016 
3017 /**
3018  * unmap_mapping_pages() - Unmap pages from processes.
3019  * @mapping: The address space containing pages to be unmapped.
3020  * @start: Index of first page to be unmapped.
3021  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3022  * @even_cows: Whether to unmap even private COWed pages.
3023  *
3024  * Unmap the pages in this address space from any userspace process which
3025  * has them mmaped.  Generally, you want to remove COWed pages as well when
3026  * a file is being truncated, but not when invalidating pages from the page
3027  * cache.
3028  */
3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030 		pgoff_t nr, bool even_cows)
3031 {
3032 	struct zap_details details = { };
3033 
3034 	details.check_mapping = even_cows ? NULL : mapping;
3035 	details.first_index = start;
3036 	details.last_index = start + nr - 1;
3037 	if (details.last_index < details.first_index)
3038 		details.last_index = ULONG_MAX;
3039 
3040 	i_mmap_lock_write(mapping);
3041 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043 	i_mmap_unlock_write(mapping);
3044 }
3045 
3046 /**
3047  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048  * address_space corresponding to the specified byte range in the underlying
3049  * file.
3050  *
3051  * @mapping: the address space containing mmaps to be unmapped.
3052  * @holebegin: byte in first page to unmap, relative to the start of
3053  * the underlying file.  This will be rounded down to a PAGE_SIZE
3054  * boundary.  Note that this is different from truncate_pagecache(), which
3055  * must keep the partial page.  In contrast, we must get rid of
3056  * partial pages.
3057  * @holelen: size of prospective hole in bytes.  This will be rounded
3058  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3059  * end of the file.
3060  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061  * but 0 when invalidating pagecache, don't throw away private data.
3062  */
3063 void unmap_mapping_range(struct address_space *mapping,
3064 		loff_t const holebegin, loff_t const holelen, int even_cows)
3065 {
3066 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3067 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068 
3069 	/* Check for overflow. */
3070 	if (sizeof(holelen) > sizeof(hlen)) {
3071 		long long holeend =
3072 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073 		if (holeend & ~(long long)ULONG_MAX)
3074 			hlen = ULONG_MAX - hba + 1;
3075 	}
3076 
3077 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3078 }
3079 EXPORT_SYMBOL(unmap_mapping_range);
3080 
3081 /*
3082  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3083  * but allow concurrent faults), and pte mapped but not yet locked.
3084  * We return with pte unmapped and unlocked.
3085  *
3086  * We return with the mmap_sem locked or unlocked in the same cases
3087  * as does filemap_fault().
3088  */
3089 vm_fault_t do_swap_page(struct vm_fault *vmf)
3090 {
3091 	struct vm_area_struct *vma = vmf->vma;
3092 	struct page *page = NULL, *swapcache;
3093 	struct mem_cgroup *memcg;
3094 	swp_entry_t entry;
3095 	pte_t pte;
3096 	int locked;
3097 	int exclusive = 0;
3098 	vm_fault_t ret = 0;
3099 
3100 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3101 		goto out;
3102 
3103 	entry = pte_to_swp_entry(vmf->orig_pte);
3104 	if (unlikely(non_swap_entry(entry))) {
3105 		if (is_migration_entry(entry)) {
3106 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3107 					     vmf->address);
3108 		} else if (is_device_private_entry(entry)) {
3109 			vmf->page = device_private_entry_to_page(entry);
3110 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3111 		} else if (is_hwpoison_entry(entry)) {
3112 			ret = VM_FAULT_HWPOISON;
3113 		} else {
3114 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3115 			ret = VM_FAULT_SIGBUS;
3116 		}
3117 		goto out;
3118 	}
3119 
3120 
3121 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3122 	page = lookup_swap_cache(entry, vma, vmf->address);
3123 	swapcache = page;
3124 
3125 	if (!page) {
3126 		struct swap_info_struct *si = swp_swap_info(entry);
3127 
3128 		if (si->flags & SWP_SYNCHRONOUS_IO &&
3129 				__swap_count(entry) == 1) {
3130 			/* skip swapcache */
3131 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3132 							vmf->address);
3133 			if (page) {
3134 				__SetPageLocked(page);
3135 				__SetPageSwapBacked(page);
3136 				set_page_private(page, entry.val);
3137 				lru_cache_add_anon(page);
3138 				swap_readpage(page, true);
3139 			}
3140 		} else {
3141 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3142 						vmf);
3143 			swapcache = page;
3144 		}
3145 
3146 		if (!page) {
3147 			/*
3148 			 * Back out if somebody else faulted in this pte
3149 			 * while we released the pte lock.
3150 			 */
3151 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3152 					vmf->address, &vmf->ptl);
3153 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3154 				ret = VM_FAULT_OOM;
3155 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3156 			goto unlock;
3157 		}
3158 
3159 		/* Had to read the page from swap area: Major fault */
3160 		ret = VM_FAULT_MAJOR;
3161 		count_vm_event(PGMAJFAULT);
3162 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3163 	} else if (PageHWPoison(page)) {
3164 		/*
3165 		 * hwpoisoned dirty swapcache pages are kept for killing
3166 		 * owner processes (which may be unknown at hwpoison time)
3167 		 */
3168 		ret = VM_FAULT_HWPOISON;
3169 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3170 		goto out_release;
3171 	}
3172 
3173 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3174 
3175 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176 	if (!locked) {
3177 		ret |= VM_FAULT_RETRY;
3178 		goto out_release;
3179 	}
3180 
3181 	/*
3182 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3183 	 * release the swapcache from under us.  The page pin, and pte_same
3184 	 * test below, are not enough to exclude that.  Even if it is still
3185 	 * swapcache, we need to check that the page's swap has not changed.
3186 	 */
3187 	if (unlikely((!PageSwapCache(page) ||
3188 			page_private(page) != entry.val)) && swapcache)
3189 		goto out_page;
3190 
3191 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3192 	if (unlikely(!page)) {
3193 		ret = VM_FAULT_OOM;
3194 		page = swapcache;
3195 		goto out_page;
3196 	}
3197 
3198 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3199 					&memcg, false)) {
3200 		ret = VM_FAULT_OOM;
3201 		goto out_page;
3202 	}
3203 
3204 	/*
3205 	 * Back out if somebody else already faulted in this pte.
3206 	 */
3207 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3208 			&vmf->ptl);
3209 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3210 		goto out_nomap;
3211 
3212 	if (unlikely(!PageUptodate(page))) {
3213 		ret = VM_FAULT_SIGBUS;
3214 		goto out_nomap;
3215 	}
3216 
3217 	/*
3218 	 * The page isn't present yet, go ahead with the fault.
3219 	 *
3220 	 * Be careful about the sequence of operations here.
3221 	 * To get its accounting right, reuse_swap_page() must be called
3222 	 * while the page is counted on swap but not yet in mapcount i.e.
3223 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3224 	 * must be called after the swap_free(), or it will never succeed.
3225 	 */
3226 
3227 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3228 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3229 	pte = mk_pte(page, vma->vm_page_prot);
3230 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3231 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3232 		vmf->flags &= ~FAULT_FLAG_WRITE;
3233 		ret |= VM_FAULT_WRITE;
3234 		exclusive = RMAP_EXCLUSIVE;
3235 	}
3236 	flush_icache_page(vma, page);
3237 	if (pte_swp_soft_dirty(vmf->orig_pte))
3238 		pte = pte_mksoft_dirty(pte);
3239 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3240 		pte = pte_mkuffd_wp(pte);
3241 		pte = pte_wrprotect(pte);
3242 	}
3243 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3244 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3245 	vmf->orig_pte = pte;
3246 
3247 	/* ksm created a completely new copy */
3248 	if (unlikely(page != swapcache && swapcache)) {
3249 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3250 		mem_cgroup_commit_charge(page, memcg, false, false);
3251 		lru_cache_add_active_or_unevictable(page, vma);
3252 	} else {
3253 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3254 		mem_cgroup_commit_charge(page, memcg, true, false);
3255 		activate_page(page);
3256 	}
3257 
3258 	swap_free(entry);
3259 	if (mem_cgroup_swap_full(page) ||
3260 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3261 		try_to_free_swap(page);
3262 	unlock_page(page);
3263 	if (page != swapcache && swapcache) {
3264 		/*
3265 		 * Hold the lock to avoid the swap entry to be reused
3266 		 * until we take the PT lock for the pte_same() check
3267 		 * (to avoid false positives from pte_same). For
3268 		 * further safety release the lock after the swap_free
3269 		 * so that the swap count won't change under a
3270 		 * parallel locked swapcache.
3271 		 */
3272 		unlock_page(swapcache);
3273 		put_page(swapcache);
3274 	}
3275 
3276 	if (vmf->flags & FAULT_FLAG_WRITE) {
3277 		ret |= do_wp_page(vmf);
3278 		if (ret & VM_FAULT_ERROR)
3279 			ret &= VM_FAULT_ERROR;
3280 		goto out;
3281 	}
3282 
3283 	/* No need to invalidate - it was non-present before */
3284 	update_mmu_cache(vma, vmf->address, vmf->pte);
3285 unlock:
3286 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3287 out:
3288 	return ret;
3289 out_nomap:
3290 	mem_cgroup_cancel_charge(page, memcg, false);
3291 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3292 out_page:
3293 	unlock_page(page);
3294 out_release:
3295 	put_page(page);
3296 	if (page != swapcache && swapcache) {
3297 		unlock_page(swapcache);
3298 		put_page(swapcache);
3299 	}
3300 	return ret;
3301 }
3302 
3303 /*
3304  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3305  * but allow concurrent faults), and pte mapped but not yet locked.
3306  * We return with mmap_sem still held, but pte unmapped and unlocked.
3307  */
3308 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3309 {
3310 	struct vm_area_struct *vma = vmf->vma;
3311 	struct mem_cgroup *memcg;
3312 	struct page *page;
3313 	vm_fault_t ret = 0;
3314 	pte_t entry;
3315 
3316 	/* File mapping without ->vm_ops ? */
3317 	if (vma->vm_flags & VM_SHARED)
3318 		return VM_FAULT_SIGBUS;
3319 
3320 	/*
3321 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3322 	 * pte_offset_map() on pmds where a huge pmd might be created
3323 	 * from a different thread.
3324 	 *
3325 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3326 	 * parallel threads are excluded by other means.
3327 	 *
3328 	 * Here we only have down_read(mmap_sem).
3329 	 */
3330 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3331 		return VM_FAULT_OOM;
3332 
3333 	/* See the comment in pte_alloc_one_map() */
3334 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3335 		return 0;
3336 
3337 	/* Use the zero-page for reads */
3338 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3339 			!mm_forbids_zeropage(vma->vm_mm)) {
3340 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3341 						vma->vm_page_prot));
3342 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3343 				vmf->address, &vmf->ptl);
3344 		if (!pte_none(*vmf->pte))
3345 			goto unlock;
3346 		ret = check_stable_address_space(vma->vm_mm);
3347 		if (ret)
3348 			goto unlock;
3349 		/* Deliver the page fault to userland, check inside PT lock */
3350 		if (userfaultfd_missing(vma)) {
3351 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3352 			return handle_userfault(vmf, VM_UFFD_MISSING);
3353 		}
3354 		goto setpte;
3355 	}
3356 
3357 	/* Allocate our own private page. */
3358 	if (unlikely(anon_vma_prepare(vma)))
3359 		goto oom;
3360 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3361 	if (!page)
3362 		goto oom;
3363 
3364 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3365 					false))
3366 		goto oom_free_page;
3367 
3368 	/*
3369 	 * The memory barrier inside __SetPageUptodate makes sure that
3370 	 * preceding stores to the page contents become visible before
3371 	 * the set_pte_at() write.
3372 	 */
3373 	__SetPageUptodate(page);
3374 
3375 	entry = mk_pte(page, vma->vm_page_prot);
3376 	if (vma->vm_flags & VM_WRITE)
3377 		entry = pte_mkwrite(pte_mkdirty(entry));
3378 
3379 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3380 			&vmf->ptl);
3381 	if (!pte_none(*vmf->pte))
3382 		goto release;
3383 
3384 	ret = check_stable_address_space(vma->vm_mm);
3385 	if (ret)
3386 		goto release;
3387 
3388 	/* Deliver the page fault to userland, check inside PT lock */
3389 	if (userfaultfd_missing(vma)) {
3390 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3391 		mem_cgroup_cancel_charge(page, memcg, false);
3392 		put_page(page);
3393 		return handle_userfault(vmf, VM_UFFD_MISSING);
3394 	}
3395 
3396 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3397 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3398 	mem_cgroup_commit_charge(page, memcg, false, false);
3399 	lru_cache_add_active_or_unevictable(page, vma);
3400 setpte:
3401 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3402 
3403 	/* No need to invalidate - it was non-present before */
3404 	update_mmu_cache(vma, vmf->address, vmf->pte);
3405 unlock:
3406 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3407 	return ret;
3408 release:
3409 	mem_cgroup_cancel_charge(page, memcg, false);
3410 	put_page(page);
3411 	goto unlock;
3412 oom_free_page:
3413 	put_page(page);
3414 oom:
3415 	return VM_FAULT_OOM;
3416 }
3417 
3418 /*
3419  * The mmap_sem must have been held on entry, and may have been
3420  * released depending on flags and vma->vm_ops->fault() return value.
3421  * See filemap_fault() and __lock_page_retry().
3422  */
3423 static vm_fault_t __do_fault(struct vm_fault *vmf)
3424 {
3425 	struct vm_area_struct *vma = vmf->vma;
3426 	vm_fault_t ret;
3427 
3428 	/*
3429 	 * Preallocate pte before we take page_lock because this might lead to
3430 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3431 	 *				lock_page(A)
3432 	 *				SetPageWriteback(A)
3433 	 *				unlock_page(A)
3434 	 * lock_page(B)
3435 	 *				lock_page(B)
3436 	 * pte_alloc_pne
3437 	 *   shrink_page_list
3438 	 *     wait_on_page_writeback(A)
3439 	 *				SetPageWriteback(B)
3440 	 *				unlock_page(B)
3441 	 *				# flush A, B to clear the writeback
3442 	 */
3443 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3444 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445 		if (!vmf->prealloc_pte)
3446 			return VM_FAULT_OOM;
3447 		smp_wmb(); /* See comment in __pte_alloc() */
3448 	}
3449 
3450 	ret = vma->vm_ops->fault(vmf);
3451 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3452 			    VM_FAULT_DONE_COW)))
3453 		return ret;
3454 
3455 	if (unlikely(PageHWPoison(vmf->page))) {
3456 		if (ret & VM_FAULT_LOCKED)
3457 			unlock_page(vmf->page);
3458 		put_page(vmf->page);
3459 		vmf->page = NULL;
3460 		return VM_FAULT_HWPOISON;
3461 	}
3462 
3463 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3464 		lock_page(vmf->page);
3465 	else
3466 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3467 
3468 	return ret;
3469 }
3470 
3471 /*
3472  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3473  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3474  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3475  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3476  */
3477 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3478 {
3479 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3480 }
3481 
3482 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3483 {
3484 	struct vm_area_struct *vma = vmf->vma;
3485 
3486 	if (!pmd_none(*vmf->pmd))
3487 		goto map_pte;
3488 	if (vmf->prealloc_pte) {
3489 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3490 		if (unlikely(!pmd_none(*vmf->pmd))) {
3491 			spin_unlock(vmf->ptl);
3492 			goto map_pte;
3493 		}
3494 
3495 		mm_inc_nr_ptes(vma->vm_mm);
3496 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3497 		spin_unlock(vmf->ptl);
3498 		vmf->prealloc_pte = NULL;
3499 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3500 		return VM_FAULT_OOM;
3501 	}
3502 map_pte:
3503 	/*
3504 	 * If a huge pmd materialized under us just retry later.  Use
3505 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3506 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3507 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3508 	 * running immediately after a huge pmd fault in a different thread of
3509 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3510 	 * All we have to ensure is that it is a regular pmd that we can walk
3511 	 * with pte_offset_map() and we can do that through an atomic read in
3512 	 * C, which is what pmd_trans_unstable() provides.
3513 	 */
3514 	if (pmd_devmap_trans_unstable(vmf->pmd))
3515 		return VM_FAULT_NOPAGE;
3516 
3517 	/*
3518 	 * At this point we know that our vmf->pmd points to a page of ptes
3519 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3520 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3521 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3522 	 * be valid and we will re-check to make sure the vmf->pte isn't
3523 	 * pte_none() under vmf->ptl protection when we return to
3524 	 * alloc_set_pte().
3525 	 */
3526 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3527 			&vmf->ptl);
3528 	return 0;
3529 }
3530 
3531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3532 static void deposit_prealloc_pte(struct vm_fault *vmf)
3533 {
3534 	struct vm_area_struct *vma = vmf->vma;
3535 
3536 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3537 	/*
3538 	 * We are going to consume the prealloc table,
3539 	 * count that as nr_ptes.
3540 	 */
3541 	mm_inc_nr_ptes(vma->vm_mm);
3542 	vmf->prealloc_pte = NULL;
3543 }
3544 
3545 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3546 {
3547 	struct vm_area_struct *vma = vmf->vma;
3548 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3549 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3550 	pmd_t entry;
3551 	int i;
3552 	vm_fault_t ret;
3553 
3554 	if (!transhuge_vma_suitable(vma, haddr))
3555 		return VM_FAULT_FALLBACK;
3556 
3557 	ret = VM_FAULT_FALLBACK;
3558 	page = compound_head(page);
3559 
3560 	/*
3561 	 * Archs like ppc64 need additonal space to store information
3562 	 * related to pte entry. Use the preallocated table for that.
3563 	 */
3564 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3565 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3566 		if (!vmf->prealloc_pte)
3567 			return VM_FAULT_OOM;
3568 		smp_wmb(); /* See comment in __pte_alloc() */
3569 	}
3570 
3571 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3572 	if (unlikely(!pmd_none(*vmf->pmd)))
3573 		goto out;
3574 
3575 	for (i = 0; i < HPAGE_PMD_NR; i++)
3576 		flush_icache_page(vma, page + i);
3577 
3578 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3579 	if (write)
3580 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3581 
3582 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3583 	page_add_file_rmap(page, true);
3584 	/*
3585 	 * deposit and withdraw with pmd lock held
3586 	 */
3587 	if (arch_needs_pgtable_deposit())
3588 		deposit_prealloc_pte(vmf);
3589 
3590 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3591 
3592 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3593 
3594 	/* fault is handled */
3595 	ret = 0;
3596 	count_vm_event(THP_FILE_MAPPED);
3597 out:
3598 	spin_unlock(vmf->ptl);
3599 	return ret;
3600 }
3601 #else
3602 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3603 {
3604 	BUILD_BUG();
3605 	return 0;
3606 }
3607 #endif
3608 
3609 /**
3610  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3611  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3612  *
3613  * @vmf: fault environment
3614  * @memcg: memcg to charge page (only for private mappings)
3615  * @page: page to map
3616  *
3617  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3618  * return.
3619  *
3620  * Target users are page handler itself and implementations of
3621  * vm_ops->map_pages.
3622  *
3623  * Return: %0 on success, %VM_FAULT_ code in case of error.
3624  */
3625 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3626 		struct page *page)
3627 {
3628 	struct vm_area_struct *vma = vmf->vma;
3629 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3630 	pte_t entry;
3631 	vm_fault_t ret;
3632 
3633 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3634 		/* THP on COW? */
3635 		VM_BUG_ON_PAGE(memcg, page);
3636 
3637 		ret = do_set_pmd(vmf, page);
3638 		if (ret != VM_FAULT_FALLBACK)
3639 			return ret;
3640 	}
3641 
3642 	if (!vmf->pte) {
3643 		ret = pte_alloc_one_map(vmf);
3644 		if (ret)
3645 			return ret;
3646 	}
3647 
3648 	/* Re-check under ptl */
3649 	if (unlikely(!pte_none(*vmf->pte)))
3650 		return VM_FAULT_NOPAGE;
3651 
3652 	flush_icache_page(vma, page);
3653 	entry = mk_pte(page, vma->vm_page_prot);
3654 	if (write)
3655 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3656 	/* copy-on-write page */
3657 	if (write && !(vma->vm_flags & VM_SHARED)) {
3658 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3659 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3660 		mem_cgroup_commit_charge(page, memcg, false, false);
3661 		lru_cache_add_active_or_unevictable(page, vma);
3662 	} else {
3663 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3664 		page_add_file_rmap(page, false);
3665 	}
3666 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3667 
3668 	/* no need to invalidate: a not-present page won't be cached */
3669 	update_mmu_cache(vma, vmf->address, vmf->pte);
3670 
3671 	return 0;
3672 }
3673 
3674 
3675 /**
3676  * finish_fault - finish page fault once we have prepared the page to fault
3677  *
3678  * @vmf: structure describing the fault
3679  *
3680  * This function handles all that is needed to finish a page fault once the
3681  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682  * given page, adds reverse page mapping, handles memcg charges and LRU
3683  * addition.
3684  *
3685  * The function expects the page to be locked and on success it consumes a
3686  * reference of a page being mapped (for the PTE which maps it).
3687  *
3688  * Return: %0 on success, %VM_FAULT_ code in case of error.
3689  */
3690 vm_fault_t finish_fault(struct vm_fault *vmf)
3691 {
3692 	struct page *page;
3693 	vm_fault_t ret = 0;
3694 
3695 	/* Did we COW the page? */
3696 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697 	    !(vmf->vma->vm_flags & VM_SHARED))
3698 		page = vmf->cow_page;
3699 	else
3700 		page = vmf->page;
3701 
3702 	/*
3703 	 * check even for read faults because we might have lost our CoWed
3704 	 * page
3705 	 */
3706 	if (!(vmf->vma->vm_flags & VM_SHARED))
3707 		ret = check_stable_address_space(vmf->vma->vm_mm);
3708 	if (!ret)
3709 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3710 	if (vmf->pte)
3711 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 	return ret;
3713 }
3714 
3715 static unsigned long fault_around_bytes __read_mostly =
3716 	rounddown_pow_of_two(65536);
3717 
3718 #ifdef CONFIG_DEBUG_FS
3719 static int fault_around_bytes_get(void *data, u64 *val)
3720 {
3721 	*val = fault_around_bytes;
3722 	return 0;
3723 }
3724 
3725 /*
3726  * fault_around_bytes must be rounded down to the nearest page order as it's
3727  * what do_fault_around() expects to see.
3728  */
3729 static int fault_around_bytes_set(void *data, u64 val)
3730 {
3731 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3732 		return -EINVAL;
3733 	if (val > PAGE_SIZE)
3734 		fault_around_bytes = rounddown_pow_of_two(val);
3735 	else
3736 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3737 	return 0;
3738 }
3739 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3740 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3741 
3742 static int __init fault_around_debugfs(void)
3743 {
3744 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745 				   &fault_around_bytes_fops);
3746 	return 0;
3747 }
3748 late_initcall(fault_around_debugfs);
3749 #endif
3750 
3751 /*
3752  * do_fault_around() tries to map few pages around the fault address. The hope
3753  * is that the pages will be needed soon and this will lower the number of
3754  * faults to handle.
3755  *
3756  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757  * not ready to be mapped: not up-to-date, locked, etc.
3758  *
3759  * This function is called with the page table lock taken. In the split ptlock
3760  * case the page table lock only protects only those entries which belong to
3761  * the page table corresponding to the fault address.
3762  *
3763  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764  * only once.
3765  *
3766  * fault_around_bytes defines how many bytes we'll try to map.
3767  * do_fault_around() expects it to be set to a power of two less than or equal
3768  * to PTRS_PER_PTE.
3769  *
3770  * The virtual address of the area that we map is naturally aligned to
3771  * fault_around_bytes rounded down to the machine page size
3772  * (and therefore to page order).  This way it's easier to guarantee
3773  * that we don't cross page table boundaries.
3774  */
3775 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776 {
3777 	unsigned long address = vmf->address, nr_pages, mask;
3778 	pgoff_t start_pgoff = vmf->pgoff;
3779 	pgoff_t end_pgoff;
3780 	int off;
3781 	vm_fault_t ret = 0;
3782 
3783 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785 
3786 	vmf->address = max(address & mask, vmf->vma->vm_start);
3787 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788 	start_pgoff -= off;
3789 
3790 	/*
3791 	 *  end_pgoff is either the end of the page table, the end of
3792 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3793 	 */
3794 	end_pgoff = start_pgoff -
3795 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796 		PTRS_PER_PTE - 1;
3797 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798 			start_pgoff + nr_pages - 1);
3799 
3800 	if (pmd_none(*vmf->pmd)) {
3801 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3802 		if (!vmf->prealloc_pte)
3803 			goto out;
3804 		smp_wmb(); /* See comment in __pte_alloc() */
3805 	}
3806 
3807 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3808 
3809 	/* Huge page is mapped? Page fault is solved */
3810 	if (pmd_trans_huge(*vmf->pmd)) {
3811 		ret = VM_FAULT_NOPAGE;
3812 		goto out;
3813 	}
3814 
3815 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3816 	if (!vmf->pte)
3817 		goto out;
3818 
3819 	/* check if the page fault is solved */
3820 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821 	if (!pte_none(*vmf->pte))
3822 		ret = VM_FAULT_NOPAGE;
3823 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3824 out:
3825 	vmf->address = address;
3826 	vmf->pte = NULL;
3827 	return ret;
3828 }
3829 
3830 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3831 {
3832 	struct vm_area_struct *vma = vmf->vma;
3833 	vm_fault_t ret = 0;
3834 
3835 	/*
3836 	 * Let's call ->map_pages() first and use ->fault() as fallback
3837 	 * if page by the offset is not ready to be mapped (cold cache or
3838 	 * something).
3839 	 */
3840 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3841 		ret = do_fault_around(vmf);
3842 		if (ret)
3843 			return ret;
3844 	}
3845 
3846 	ret = __do_fault(vmf);
3847 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848 		return ret;
3849 
3850 	ret |= finish_fault(vmf);
3851 	unlock_page(vmf->page);
3852 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3853 		put_page(vmf->page);
3854 	return ret;
3855 }
3856 
3857 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3858 {
3859 	struct vm_area_struct *vma = vmf->vma;
3860 	vm_fault_t ret;
3861 
3862 	if (unlikely(anon_vma_prepare(vma)))
3863 		return VM_FAULT_OOM;
3864 
3865 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866 	if (!vmf->cow_page)
3867 		return VM_FAULT_OOM;
3868 
3869 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3870 				&vmf->memcg, false)) {
3871 		put_page(vmf->cow_page);
3872 		return VM_FAULT_OOM;
3873 	}
3874 
3875 	ret = __do_fault(vmf);
3876 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877 		goto uncharge_out;
3878 	if (ret & VM_FAULT_DONE_COW)
3879 		return ret;
3880 
3881 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3882 	__SetPageUptodate(vmf->cow_page);
3883 
3884 	ret |= finish_fault(vmf);
3885 	unlock_page(vmf->page);
3886 	put_page(vmf->page);
3887 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 		goto uncharge_out;
3889 	return ret;
3890 uncharge_out:
3891 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3892 	put_page(vmf->cow_page);
3893 	return ret;
3894 }
3895 
3896 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3897 {
3898 	struct vm_area_struct *vma = vmf->vma;
3899 	vm_fault_t ret, tmp;
3900 
3901 	ret = __do_fault(vmf);
3902 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3903 		return ret;
3904 
3905 	/*
3906 	 * Check if the backing address space wants to know that the page is
3907 	 * about to become writable
3908 	 */
3909 	if (vma->vm_ops->page_mkwrite) {
3910 		unlock_page(vmf->page);
3911 		tmp = do_page_mkwrite(vmf);
3912 		if (unlikely(!tmp ||
3913 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3914 			put_page(vmf->page);
3915 			return tmp;
3916 		}
3917 	}
3918 
3919 	ret |= finish_fault(vmf);
3920 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3921 					VM_FAULT_RETRY))) {
3922 		unlock_page(vmf->page);
3923 		put_page(vmf->page);
3924 		return ret;
3925 	}
3926 
3927 	ret |= fault_dirty_shared_page(vmf);
3928 	return ret;
3929 }
3930 
3931 /*
3932  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3933  * but allow concurrent faults).
3934  * The mmap_sem may have been released depending on flags and our
3935  * return value.  See filemap_fault() and __lock_page_or_retry().
3936  * If mmap_sem is released, vma may become invalid (for example
3937  * by other thread calling munmap()).
3938  */
3939 static vm_fault_t do_fault(struct vm_fault *vmf)
3940 {
3941 	struct vm_area_struct *vma = vmf->vma;
3942 	struct mm_struct *vm_mm = vma->vm_mm;
3943 	vm_fault_t ret;
3944 
3945 	/*
3946 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3947 	 */
3948 	if (!vma->vm_ops->fault) {
3949 		/*
3950 		 * If we find a migration pmd entry or a none pmd entry, which
3951 		 * should never happen, return SIGBUS
3952 		 */
3953 		if (unlikely(!pmd_present(*vmf->pmd)))
3954 			ret = VM_FAULT_SIGBUS;
3955 		else {
3956 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3957 						       vmf->pmd,
3958 						       vmf->address,
3959 						       &vmf->ptl);
3960 			/*
3961 			 * Make sure this is not a temporary clearing of pte
3962 			 * by holding ptl and checking again. A R/M/W update
3963 			 * of pte involves: take ptl, clearing the pte so that
3964 			 * we don't have concurrent modification by hardware
3965 			 * followed by an update.
3966 			 */
3967 			if (unlikely(pte_none(*vmf->pte)))
3968 				ret = VM_FAULT_SIGBUS;
3969 			else
3970 				ret = VM_FAULT_NOPAGE;
3971 
3972 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3973 		}
3974 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3975 		ret = do_read_fault(vmf);
3976 	else if (!(vma->vm_flags & VM_SHARED))
3977 		ret = do_cow_fault(vmf);
3978 	else
3979 		ret = do_shared_fault(vmf);
3980 
3981 	/* preallocated pagetable is unused: free it */
3982 	if (vmf->prealloc_pte) {
3983 		pte_free(vm_mm, vmf->prealloc_pte);
3984 		vmf->prealloc_pte = NULL;
3985 	}
3986 	return ret;
3987 }
3988 
3989 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3990 				unsigned long addr, int page_nid,
3991 				int *flags)
3992 {
3993 	get_page(page);
3994 
3995 	count_vm_numa_event(NUMA_HINT_FAULTS);
3996 	if (page_nid == numa_node_id()) {
3997 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3998 		*flags |= TNF_FAULT_LOCAL;
3999 	}
4000 
4001 	return mpol_misplaced(page, vma, addr);
4002 }
4003 
4004 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4005 {
4006 	struct vm_area_struct *vma = vmf->vma;
4007 	struct page *page = NULL;
4008 	int page_nid = NUMA_NO_NODE;
4009 	int last_cpupid;
4010 	int target_nid;
4011 	bool migrated = false;
4012 	pte_t pte, old_pte;
4013 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4014 	int flags = 0;
4015 
4016 	/*
4017 	 * The "pte" at this point cannot be used safely without
4018 	 * validation through pte_unmap_same(). It's of NUMA type but
4019 	 * the pfn may be screwed if the read is non atomic.
4020 	 */
4021 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4022 	spin_lock(vmf->ptl);
4023 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4024 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4025 		goto out;
4026 	}
4027 
4028 	/*
4029 	 * Make it present again, Depending on how arch implementes non
4030 	 * accessible ptes, some can allow access by kernel mode.
4031 	 */
4032 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4033 	pte = pte_modify(old_pte, vma->vm_page_prot);
4034 	pte = pte_mkyoung(pte);
4035 	if (was_writable)
4036 		pte = pte_mkwrite(pte);
4037 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4038 	update_mmu_cache(vma, vmf->address, vmf->pte);
4039 
4040 	page = vm_normal_page(vma, vmf->address, pte);
4041 	if (!page) {
4042 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4043 		return 0;
4044 	}
4045 
4046 	/* TODO: handle PTE-mapped THP */
4047 	if (PageCompound(page)) {
4048 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4049 		return 0;
4050 	}
4051 
4052 	/*
4053 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4054 	 * much anyway since they can be in shared cache state. This misses
4055 	 * the case where a mapping is writable but the process never writes
4056 	 * to it but pte_write gets cleared during protection updates and
4057 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4058 	 * background writeback, dirty balancing and application behaviour.
4059 	 */
4060 	if (!pte_write(pte))
4061 		flags |= TNF_NO_GROUP;
4062 
4063 	/*
4064 	 * Flag if the page is shared between multiple address spaces. This
4065 	 * is later used when determining whether to group tasks together
4066 	 */
4067 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4068 		flags |= TNF_SHARED;
4069 
4070 	last_cpupid = page_cpupid_last(page);
4071 	page_nid = page_to_nid(page);
4072 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4073 			&flags);
4074 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4075 	if (target_nid == NUMA_NO_NODE) {
4076 		put_page(page);
4077 		goto out;
4078 	}
4079 
4080 	/* Migrate to the requested node */
4081 	migrated = migrate_misplaced_page(page, vma, target_nid);
4082 	if (migrated) {
4083 		page_nid = target_nid;
4084 		flags |= TNF_MIGRATED;
4085 	} else
4086 		flags |= TNF_MIGRATE_FAIL;
4087 
4088 out:
4089 	if (page_nid != NUMA_NO_NODE)
4090 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4091 	return 0;
4092 }
4093 
4094 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4095 {
4096 	if (vma_is_anonymous(vmf->vma))
4097 		return do_huge_pmd_anonymous_page(vmf);
4098 	if (vmf->vma->vm_ops->huge_fault)
4099 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4100 	return VM_FAULT_FALLBACK;
4101 }
4102 
4103 /* `inline' is required to avoid gcc 4.1.2 build error */
4104 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4105 {
4106 	if (vma_is_anonymous(vmf->vma)) {
4107 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4108 			return handle_userfault(vmf, VM_UFFD_WP);
4109 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4110 	}
4111 	if (vmf->vma->vm_ops->huge_fault) {
4112 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4113 
4114 		if (!(ret & VM_FAULT_FALLBACK))
4115 			return ret;
4116 	}
4117 
4118 	/* COW or write-notify handled on pte level: split pmd. */
4119 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4120 
4121 	return VM_FAULT_FALLBACK;
4122 }
4123 
4124 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4125 {
4126 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4127 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4128 	/* No support for anonymous transparent PUD pages yet */
4129 	if (vma_is_anonymous(vmf->vma))
4130 		goto split;
4131 	if (vmf->vma->vm_ops->huge_fault) {
4132 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4133 
4134 		if (!(ret & VM_FAULT_FALLBACK))
4135 			return ret;
4136 	}
4137 split:
4138 	/* COW or write-notify not handled on PUD level: split pud.*/
4139 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4140 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4141 	return VM_FAULT_FALLBACK;
4142 }
4143 
4144 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4145 {
4146 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4147 	/* No support for anonymous transparent PUD pages yet */
4148 	if (vma_is_anonymous(vmf->vma))
4149 		return VM_FAULT_FALLBACK;
4150 	if (vmf->vma->vm_ops->huge_fault)
4151 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4152 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4153 	return VM_FAULT_FALLBACK;
4154 }
4155 
4156 /*
4157  * These routines also need to handle stuff like marking pages dirty
4158  * and/or accessed for architectures that don't do it in hardware (most
4159  * RISC architectures).  The early dirtying is also good on the i386.
4160  *
4161  * There is also a hook called "update_mmu_cache()" that architectures
4162  * with external mmu caches can use to update those (ie the Sparc or
4163  * PowerPC hashed page tables that act as extended TLBs).
4164  *
4165  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4166  * concurrent faults).
4167  *
4168  * The mmap_sem may have been released depending on flags and our return value.
4169  * See filemap_fault() and __lock_page_or_retry().
4170  */
4171 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4172 {
4173 	pte_t entry;
4174 
4175 	if (unlikely(pmd_none(*vmf->pmd))) {
4176 		/*
4177 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4178 		 * want to allocate huge page, and if we expose page table
4179 		 * for an instant, it will be difficult to retract from
4180 		 * concurrent faults and from rmap lookups.
4181 		 */
4182 		vmf->pte = NULL;
4183 	} else {
4184 		/* See comment in pte_alloc_one_map() */
4185 		if (pmd_devmap_trans_unstable(vmf->pmd))
4186 			return 0;
4187 		/*
4188 		 * A regular pmd is established and it can't morph into a huge
4189 		 * pmd from under us anymore at this point because we hold the
4190 		 * mmap_sem read mode and khugepaged takes it in write mode.
4191 		 * So now it's safe to run pte_offset_map().
4192 		 */
4193 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4194 		vmf->orig_pte = *vmf->pte;
4195 
4196 		/*
4197 		 * some architectures can have larger ptes than wordsize,
4198 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4199 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4200 		 * accesses.  The code below just needs a consistent view
4201 		 * for the ifs and we later double check anyway with the
4202 		 * ptl lock held. So here a barrier will do.
4203 		 */
4204 		barrier();
4205 		if (pte_none(vmf->orig_pte)) {
4206 			pte_unmap(vmf->pte);
4207 			vmf->pte = NULL;
4208 		}
4209 	}
4210 
4211 	if (!vmf->pte) {
4212 		if (vma_is_anonymous(vmf->vma))
4213 			return do_anonymous_page(vmf);
4214 		else
4215 			return do_fault(vmf);
4216 	}
4217 
4218 	if (!pte_present(vmf->orig_pte))
4219 		return do_swap_page(vmf);
4220 
4221 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4222 		return do_numa_page(vmf);
4223 
4224 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4225 	spin_lock(vmf->ptl);
4226 	entry = vmf->orig_pte;
4227 	if (unlikely(!pte_same(*vmf->pte, entry)))
4228 		goto unlock;
4229 	if (vmf->flags & FAULT_FLAG_WRITE) {
4230 		if (!pte_write(entry))
4231 			return do_wp_page(vmf);
4232 		entry = pte_mkdirty(entry);
4233 	}
4234 	entry = pte_mkyoung(entry);
4235 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4236 				vmf->flags & FAULT_FLAG_WRITE)) {
4237 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4238 	} else {
4239 		/*
4240 		 * This is needed only for protection faults but the arch code
4241 		 * is not yet telling us if this is a protection fault or not.
4242 		 * This still avoids useless tlb flushes for .text page faults
4243 		 * with threads.
4244 		 */
4245 		if (vmf->flags & FAULT_FLAG_WRITE)
4246 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4247 	}
4248 unlock:
4249 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4250 	return 0;
4251 }
4252 
4253 /*
4254  * By the time we get here, we already hold the mm semaphore
4255  *
4256  * The mmap_sem may have been released depending on flags and our
4257  * return value.  See filemap_fault() and __lock_page_or_retry().
4258  */
4259 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4260 		unsigned long address, unsigned int flags)
4261 {
4262 	struct vm_fault vmf = {
4263 		.vma = vma,
4264 		.address = address & PAGE_MASK,
4265 		.flags = flags,
4266 		.pgoff = linear_page_index(vma, address),
4267 		.gfp_mask = __get_fault_gfp_mask(vma),
4268 	};
4269 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4270 	struct mm_struct *mm = vma->vm_mm;
4271 	pgd_t *pgd;
4272 	p4d_t *p4d;
4273 	vm_fault_t ret;
4274 
4275 	pgd = pgd_offset(mm, address);
4276 	p4d = p4d_alloc(mm, pgd, address);
4277 	if (!p4d)
4278 		return VM_FAULT_OOM;
4279 
4280 	vmf.pud = pud_alloc(mm, p4d, address);
4281 	if (!vmf.pud)
4282 		return VM_FAULT_OOM;
4283 retry_pud:
4284 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4285 		ret = create_huge_pud(&vmf);
4286 		if (!(ret & VM_FAULT_FALLBACK))
4287 			return ret;
4288 	} else {
4289 		pud_t orig_pud = *vmf.pud;
4290 
4291 		barrier();
4292 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4293 
4294 			/* NUMA case for anonymous PUDs would go here */
4295 
4296 			if (dirty && !pud_write(orig_pud)) {
4297 				ret = wp_huge_pud(&vmf, orig_pud);
4298 				if (!(ret & VM_FAULT_FALLBACK))
4299 					return ret;
4300 			} else {
4301 				huge_pud_set_accessed(&vmf, orig_pud);
4302 				return 0;
4303 			}
4304 		}
4305 	}
4306 
4307 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4308 	if (!vmf.pmd)
4309 		return VM_FAULT_OOM;
4310 
4311 	/* Huge pud page fault raced with pmd_alloc? */
4312 	if (pud_trans_unstable(vmf.pud))
4313 		goto retry_pud;
4314 
4315 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4316 		ret = create_huge_pmd(&vmf);
4317 		if (!(ret & VM_FAULT_FALLBACK))
4318 			return ret;
4319 	} else {
4320 		pmd_t orig_pmd = *vmf.pmd;
4321 
4322 		barrier();
4323 		if (unlikely(is_swap_pmd(orig_pmd))) {
4324 			VM_BUG_ON(thp_migration_supported() &&
4325 					  !is_pmd_migration_entry(orig_pmd));
4326 			if (is_pmd_migration_entry(orig_pmd))
4327 				pmd_migration_entry_wait(mm, vmf.pmd);
4328 			return 0;
4329 		}
4330 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4331 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4332 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4333 
4334 			if (dirty && !pmd_write(orig_pmd)) {
4335 				ret = wp_huge_pmd(&vmf, orig_pmd);
4336 				if (!(ret & VM_FAULT_FALLBACK))
4337 					return ret;
4338 			} else {
4339 				huge_pmd_set_accessed(&vmf, orig_pmd);
4340 				return 0;
4341 			}
4342 		}
4343 	}
4344 
4345 	return handle_pte_fault(&vmf);
4346 }
4347 
4348 /*
4349  * By the time we get here, we already hold the mm semaphore
4350  *
4351  * The mmap_sem may have been released depending on flags and our
4352  * return value.  See filemap_fault() and __lock_page_or_retry().
4353  */
4354 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4355 		unsigned int flags)
4356 {
4357 	vm_fault_t ret;
4358 
4359 	__set_current_state(TASK_RUNNING);
4360 
4361 	count_vm_event(PGFAULT);
4362 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4363 
4364 	/* do counter updates before entering really critical section. */
4365 	check_sync_rss_stat(current);
4366 
4367 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4368 					    flags & FAULT_FLAG_INSTRUCTION,
4369 					    flags & FAULT_FLAG_REMOTE))
4370 		return VM_FAULT_SIGSEGV;
4371 
4372 	/*
4373 	 * Enable the memcg OOM handling for faults triggered in user
4374 	 * space.  Kernel faults are handled more gracefully.
4375 	 */
4376 	if (flags & FAULT_FLAG_USER)
4377 		mem_cgroup_enter_user_fault();
4378 
4379 	if (unlikely(is_vm_hugetlb_page(vma)))
4380 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4381 	else
4382 		ret = __handle_mm_fault(vma, address, flags);
4383 
4384 	if (flags & FAULT_FLAG_USER) {
4385 		mem_cgroup_exit_user_fault();
4386 		/*
4387 		 * The task may have entered a memcg OOM situation but
4388 		 * if the allocation error was handled gracefully (no
4389 		 * VM_FAULT_OOM), there is no need to kill anything.
4390 		 * Just clean up the OOM state peacefully.
4391 		 */
4392 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4393 			mem_cgroup_oom_synchronize(false);
4394 	}
4395 
4396 	return ret;
4397 }
4398 EXPORT_SYMBOL_GPL(handle_mm_fault);
4399 
4400 #ifndef __PAGETABLE_P4D_FOLDED
4401 /*
4402  * Allocate p4d page table.
4403  * We've already handled the fast-path in-line.
4404  */
4405 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4406 {
4407 	p4d_t *new = p4d_alloc_one(mm, address);
4408 	if (!new)
4409 		return -ENOMEM;
4410 
4411 	smp_wmb(); /* See comment in __pte_alloc */
4412 
4413 	spin_lock(&mm->page_table_lock);
4414 	if (pgd_present(*pgd))		/* Another has populated it */
4415 		p4d_free(mm, new);
4416 	else
4417 		pgd_populate(mm, pgd, new);
4418 	spin_unlock(&mm->page_table_lock);
4419 	return 0;
4420 }
4421 #endif /* __PAGETABLE_P4D_FOLDED */
4422 
4423 #ifndef __PAGETABLE_PUD_FOLDED
4424 /*
4425  * Allocate page upper directory.
4426  * We've already handled the fast-path in-line.
4427  */
4428 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4429 {
4430 	pud_t *new = pud_alloc_one(mm, address);
4431 	if (!new)
4432 		return -ENOMEM;
4433 
4434 	smp_wmb(); /* See comment in __pte_alloc */
4435 
4436 	spin_lock(&mm->page_table_lock);
4437 #ifndef __ARCH_HAS_5LEVEL_HACK
4438 	if (!p4d_present(*p4d)) {
4439 		mm_inc_nr_puds(mm);
4440 		p4d_populate(mm, p4d, new);
4441 	} else	/* Another has populated it */
4442 		pud_free(mm, new);
4443 #else
4444 	if (!pgd_present(*p4d)) {
4445 		mm_inc_nr_puds(mm);
4446 		pgd_populate(mm, p4d, new);
4447 	} else	/* Another has populated it */
4448 		pud_free(mm, new);
4449 #endif /* __ARCH_HAS_5LEVEL_HACK */
4450 	spin_unlock(&mm->page_table_lock);
4451 	return 0;
4452 }
4453 #endif /* __PAGETABLE_PUD_FOLDED */
4454 
4455 #ifndef __PAGETABLE_PMD_FOLDED
4456 /*
4457  * Allocate page middle directory.
4458  * We've already handled the fast-path in-line.
4459  */
4460 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4461 {
4462 	spinlock_t *ptl;
4463 	pmd_t *new = pmd_alloc_one(mm, address);
4464 	if (!new)
4465 		return -ENOMEM;
4466 
4467 	smp_wmb(); /* See comment in __pte_alloc */
4468 
4469 	ptl = pud_lock(mm, pud);
4470 	if (!pud_present(*pud)) {
4471 		mm_inc_nr_pmds(mm);
4472 		pud_populate(mm, pud, new);
4473 	} else	/* Another has populated it */
4474 		pmd_free(mm, new);
4475 	spin_unlock(ptl);
4476 	return 0;
4477 }
4478 #endif /* __PAGETABLE_PMD_FOLDED */
4479 
4480 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4481 			    struct mmu_notifier_range *range,
4482 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4483 {
4484 	pgd_t *pgd;
4485 	p4d_t *p4d;
4486 	pud_t *pud;
4487 	pmd_t *pmd;
4488 	pte_t *ptep;
4489 
4490 	pgd = pgd_offset(mm, address);
4491 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4492 		goto out;
4493 
4494 	p4d = p4d_offset(pgd, address);
4495 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4496 		goto out;
4497 
4498 	pud = pud_offset(p4d, address);
4499 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4500 		goto out;
4501 
4502 	pmd = pmd_offset(pud, address);
4503 	VM_BUG_ON(pmd_trans_huge(*pmd));
4504 
4505 	if (pmd_huge(*pmd)) {
4506 		if (!pmdpp)
4507 			goto out;
4508 
4509 		if (range) {
4510 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4511 						NULL, mm, address & PMD_MASK,
4512 						(address & PMD_MASK) + PMD_SIZE);
4513 			mmu_notifier_invalidate_range_start(range);
4514 		}
4515 		*ptlp = pmd_lock(mm, pmd);
4516 		if (pmd_huge(*pmd)) {
4517 			*pmdpp = pmd;
4518 			return 0;
4519 		}
4520 		spin_unlock(*ptlp);
4521 		if (range)
4522 			mmu_notifier_invalidate_range_end(range);
4523 	}
4524 
4525 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4526 		goto out;
4527 
4528 	if (range) {
4529 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4530 					address & PAGE_MASK,
4531 					(address & PAGE_MASK) + PAGE_SIZE);
4532 		mmu_notifier_invalidate_range_start(range);
4533 	}
4534 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4535 	if (!pte_present(*ptep))
4536 		goto unlock;
4537 	*ptepp = ptep;
4538 	return 0;
4539 unlock:
4540 	pte_unmap_unlock(ptep, *ptlp);
4541 	if (range)
4542 		mmu_notifier_invalidate_range_end(range);
4543 out:
4544 	return -EINVAL;
4545 }
4546 
4547 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4548 			     pte_t **ptepp, spinlock_t **ptlp)
4549 {
4550 	int res;
4551 
4552 	/* (void) is needed to make gcc happy */
4553 	(void) __cond_lock(*ptlp,
4554 			   !(res = __follow_pte_pmd(mm, address, NULL,
4555 						    ptepp, NULL, ptlp)));
4556 	return res;
4557 }
4558 
4559 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4560 		   struct mmu_notifier_range *range,
4561 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4562 {
4563 	int res;
4564 
4565 	/* (void) is needed to make gcc happy */
4566 	(void) __cond_lock(*ptlp,
4567 			   !(res = __follow_pte_pmd(mm, address, range,
4568 						    ptepp, pmdpp, ptlp)));
4569 	return res;
4570 }
4571 EXPORT_SYMBOL(follow_pte_pmd);
4572 
4573 /**
4574  * follow_pfn - look up PFN at a user virtual address
4575  * @vma: memory mapping
4576  * @address: user virtual address
4577  * @pfn: location to store found PFN
4578  *
4579  * Only IO mappings and raw PFN mappings are allowed.
4580  *
4581  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4582  */
4583 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4584 	unsigned long *pfn)
4585 {
4586 	int ret = -EINVAL;
4587 	spinlock_t *ptl;
4588 	pte_t *ptep;
4589 
4590 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4591 		return ret;
4592 
4593 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4594 	if (ret)
4595 		return ret;
4596 	*pfn = pte_pfn(*ptep);
4597 	pte_unmap_unlock(ptep, ptl);
4598 	return 0;
4599 }
4600 EXPORT_SYMBOL(follow_pfn);
4601 
4602 #ifdef CONFIG_HAVE_IOREMAP_PROT
4603 int follow_phys(struct vm_area_struct *vma,
4604 		unsigned long address, unsigned int flags,
4605 		unsigned long *prot, resource_size_t *phys)
4606 {
4607 	int ret = -EINVAL;
4608 	pte_t *ptep, pte;
4609 	spinlock_t *ptl;
4610 
4611 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4612 		goto out;
4613 
4614 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4615 		goto out;
4616 	pte = *ptep;
4617 
4618 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4619 		goto unlock;
4620 
4621 	*prot = pgprot_val(pte_pgprot(pte));
4622 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4623 
4624 	ret = 0;
4625 unlock:
4626 	pte_unmap_unlock(ptep, ptl);
4627 out:
4628 	return ret;
4629 }
4630 
4631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4632 			void *buf, int len, int write)
4633 {
4634 	resource_size_t phys_addr;
4635 	unsigned long prot = 0;
4636 	void __iomem *maddr;
4637 	int offset = addr & (PAGE_SIZE-1);
4638 
4639 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4640 		return -EINVAL;
4641 
4642 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4643 	if (!maddr)
4644 		return -ENOMEM;
4645 
4646 	if (write)
4647 		memcpy_toio(maddr + offset, buf, len);
4648 	else
4649 		memcpy_fromio(buf, maddr + offset, len);
4650 	iounmap(maddr);
4651 
4652 	return len;
4653 }
4654 EXPORT_SYMBOL_GPL(generic_access_phys);
4655 #endif
4656 
4657 /*
4658  * Access another process' address space as given in mm.  If non-NULL, use the
4659  * given task for page fault accounting.
4660  */
4661 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4662 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4663 {
4664 	struct vm_area_struct *vma;
4665 	void *old_buf = buf;
4666 	int write = gup_flags & FOLL_WRITE;
4667 
4668 	if (down_read_killable(&mm->mmap_sem))
4669 		return 0;
4670 
4671 	/* ignore errors, just check how much was successfully transferred */
4672 	while (len) {
4673 		int bytes, ret, offset;
4674 		void *maddr;
4675 		struct page *page = NULL;
4676 
4677 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4678 				gup_flags, &page, &vma, NULL);
4679 		if (ret <= 0) {
4680 #ifndef CONFIG_HAVE_IOREMAP_PROT
4681 			break;
4682 #else
4683 			/*
4684 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4685 			 * we can access using slightly different code.
4686 			 */
4687 			vma = find_vma(mm, addr);
4688 			if (!vma || vma->vm_start > addr)
4689 				break;
4690 			if (vma->vm_ops && vma->vm_ops->access)
4691 				ret = vma->vm_ops->access(vma, addr, buf,
4692 							  len, write);
4693 			if (ret <= 0)
4694 				break;
4695 			bytes = ret;
4696 #endif
4697 		} else {
4698 			bytes = len;
4699 			offset = addr & (PAGE_SIZE-1);
4700 			if (bytes > PAGE_SIZE-offset)
4701 				bytes = PAGE_SIZE-offset;
4702 
4703 			maddr = kmap(page);
4704 			if (write) {
4705 				copy_to_user_page(vma, page, addr,
4706 						  maddr + offset, buf, bytes);
4707 				set_page_dirty_lock(page);
4708 			} else {
4709 				copy_from_user_page(vma, page, addr,
4710 						    buf, maddr + offset, bytes);
4711 			}
4712 			kunmap(page);
4713 			put_page(page);
4714 		}
4715 		len -= bytes;
4716 		buf += bytes;
4717 		addr += bytes;
4718 	}
4719 	up_read(&mm->mmap_sem);
4720 
4721 	return buf - old_buf;
4722 }
4723 
4724 /**
4725  * access_remote_vm - access another process' address space
4726  * @mm:		the mm_struct of the target address space
4727  * @addr:	start address to access
4728  * @buf:	source or destination buffer
4729  * @len:	number of bytes to transfer
4730  * @gup_flags:	flags modifying lookup behaviour
4731  *
4732  * The caller must hold a reference on @mm.
4733  *
4734  * Return: number of bytes copied from source to destination.
4735  */
4736 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4737 		void *buf, int len, unsigned int gup_flags)
4738 {
4739 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4740 }
4741 
4742 /*
4743  * Access another process' address space.
4744  * Source/target buffer must be kernel space,
4745  * Do not walk the page table directly, use get_user_pages
4746  */
4747 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4748 		void *buf, int len, unsigned int gup_flags)
4749 {
4750 	struct mm_struct *mm;
4751 	int ret;
4752 
4753 	mm = get_task_mm(tsk);
4754 	if (!mm)
4755 		return 0;
4756 
4757 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4758 
4759 	mmput(mm);
4760 
4761 	return ret;
4762 }
4763 EXPORT_SYMBOL_GPL(access_process_vm);
4764 
4765 /*
4766  * Print the name of a VMA.
4767  */
4768 void print_vma_addr(char *prefix, unsigned long ip)
4769 {
4770 	struct mm_struct *mm = current->mm;
4771 	struct vm_area_struct *vma;
4772 
4773 	/*
4774 	 * we might be running from an atomic context so we cannot sleep
4775 	 */
4776 	if (!down_read_trylock(&mm->mmap_sem))
4777 		return;
4778 
4779 	vma = find_vma(mm, ip);
4780 	if (vma && vma->vm_file) {
4781 		struct file *f = vma->vm_file;
4782 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4783 		if (buf) {
4784 			char *p;
4785 
4786 			p = file_path(f, buf, PAGE_SIZE);
4787 			if (IS_ERR(p))
4788 				p = "?";
4789 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4790 					vma->vm_start,
4791 					vma->vm_end - vma->vm_start);
4792 			free_page((unsigned long)buf);
4793 		}
4794 	}
4795 	up_read(&mm->mmap_sem);
4796 }
4797 
4798 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4799 void __might_fault(const char *file, int line)
4800 {
4801 	/*
4802 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4803 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4804 	 * get paged out, therefore we'll never actually fault, and the
4805 	 * below annotations will generate false positives.
4806 	 */
4807 	if (uaccess_kernel())
4808 		return;
4809 	if (pagefault_disabled())
4810 		return;
4811 	__might_sleep(file, line, 0);
4812 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4813 	if (current->mm)
4814 		might_lock_read(&current->mm->mmap_sem);
4815 #endif
4816 }
4817 EXPORT_SYMBOL(__might_fault);
4818 #endif
4819 
4820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4821 /*
4822  * Process all subpages of the specified huge page with the specified
4823  * operation.  The target subpage will be processed last to keep its
4824  * cache lines hot.
4825  */
4826 static inline void process_huge_page(
4827 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4828 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4829 	void *arg)
4830 {
4831 	int i, n, base, l;
4832 	unsigned long addr = addr_hint &
4833 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4834 
4835 	/* Process target subpage last to keep its cache lines hot */
4836 	might_sleep();
4837 	n = (addr_hint - addr) / PAGE_SIZE;
4838 	if (2 * n <= pages_per_huge_page) {
4839 		/* If target subpage in first half of huge page */
4840 		base = 0;
4841 		l = n;
4842 		/* Process subpages at the end of huge page */
4843 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4844 			cond_resched();
4845 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4846 		}
4847 	} else {
4848 		/* If target subpage in second half of huge page */
4849 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4850 		l = pages_per_huge_page - n;
4851 		/* Process subpages at the begin of huge page */
4852 		for (i = 0; i < base; i++) {
4853 			cond_resched();
4854 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4855 		}
4856 	}
4857 	/*
4858 	 * Process remaining subpages in left-right-left-right pattern
4859 	 * towards the target subpage
4860 	 */
4861 	for (i = 0; i < l; i++) {
4862 		int left_idx = base + i;
4863 		int right_idx = base + 2 * l - 1 - i;
4864 
4865 		cond_resched();
4866 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4867 		cond_resched();
4868 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4869 	}
4870 }
4871 
4872 static void clear_gigantic_page(struct page *page,
4873 				unsigned long addr,
4874 				unsigned int pages_per_huge_page)
4875 {
4876 	int i;
4877 	struct page *p = page;
4878 
4879 	might_sleep();
4880 	for (i = 0; i < pages_per_huge_page;
4881 	     i++, p = mem_map_next(p, page, i)) {
4882 		cond_resched();
4883 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4884 	}
4885 }
4886 
4887 static void clear_subpage(unsigned long addr, int idx, void *arg)
4888 {
4889 	struct page *page = arg;
4890 
4891 	clear_user_highpage(page + idx, addr);
4892 }
4893 
4894 void clear_huge_page(struct page *page,
4895 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4896 {
4897 	unsigned long addr = addr_hint &
4898 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4899 
4900 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4901 		clear_gigantic_page(page, addr, pages_per_huge_page);
4902 		return;
4903 	}
4904 
4905 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4906 }
4907 
4908 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4909 				    unsigned long addr,
4910 				    struct vm_area_struct *vma,
4911 				    unsigned int pages_per_huge_page)
4912 {
4913 	int i;
4914 	struct page *dst_base = dst;
4915 	struct page *src_base = src;
4916 
4917 	for (i = 0; i < pages_per_huge_page; ) {
4918 		cond_resched();
4919 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4920 
4921 		i++;
4922 		dst = mem_map_next(dst, dst_base, i);
4923 		src = mem_map_next(src, src_base, i);
4924 	}
4925 }
4926 
4927 struct copy_subpage_arg {
4928 	struct page *dst;
4929 	struct page *src;
4930 	struct vm_area_struct *vma;
4931 };
4932 
4933 static void copy_subpage(unsigned long addr, int idx, void *arg)
4934 {
4935 	struct copy_subpage_arg *copy_arg = arg;
4936 
4937 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4938 			   addr, copy_arg->vma);
4939 }
4940 
4941 void copy_user_huge_page(struct page *dst, struct page *src,
4942 			 unsigned long addr_hint, struct vm_area_struct *vma,
4943 			 unsigned int pages_per_huge_page)
4944 {
4945 	unsigned long addr = addr_hint &
4946 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4947 	struct copy_subpage_arg arg = {
4948 		.dst = dst,
4949 		.src = src,
4950 		.vma = vma,
4951 	};
4952 
4953 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4954 		copy_user_gigantic_page(dst, src, addr, vma,
4955 					pages_per_huge_page);
4956 		return;
4957 	}
4958 
4959 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4960 }
4961 
4962 long copy_huge_page_from_user(struct page *dst_page,
4963 				const void __user *usr_src,
4964 				unsigned int pages_per_huge_page,
4965 				bool allow_pagefault)
4966 {
4967 	void *src = (void *)usr_src;
4968 	void *page_kaddr;
4969 	unsigned long i, rc = 0;
4970 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4971 
4972 	for (i = 0; i < pages_per_huge_page; i++) {
4973 		if (allow_pagefault)
4974 			page_kaddr = kmap(dst_page + i);
4975 		else
4976 			page_kaddr = kmap_atomic(dst_page + i);
4977 		rc = copy_from_user(page_kaddr,
4978 				(const void __user *)(src + i * PAGE_SIZE),
4979 				PAGE_SIZE);
4980 		if (allow_pagefault)
4981 			kunmap(dst_page + i);
4982 		else
4983 			kunmap_atomic(page_kaddr);
4984 
4985 		ret_val -= (PAGE_SIZE - rc);
4986 		if (rc)
4987 			break;
4988 
4989 		cond_resched();
4990 	}
4991 	return ret_val;
4992 }
4993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4994 
4995 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4996 
4997 static struct kmem_cache *page_ptl_cachep;
4998 
4999 void __init ptlock_cache_init(void)
5000 {
5001 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5002 			SLAB_PANIC, NULL);
5003 }
5004 
5005 bool ptlock_alloc(struct page *page)
5006 {
5007 	spinlock_t *ptl;
5008 
5009 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5010 	if (!ptl)
5011 		return false;
5012 	page->ptl = ptl;
5013 	return true;
5014 }
5015 
5016 void ptlock_free(struct page *page)
5017 {
5018 	kmem_cache_free(page_ptl_cachep, page->ptl);
5019 }
5020 #endif
5021