xref: /openbmc/linux/mm/memory.c (revision e0f6d1a5)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332 
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 	/* Simply deliver the interrupt */
336 }
337 
338 static void tlb_remove_table_one(void *table)
339 {
340 	/*
341 	 * This isn't an RCU grace period and hence the page-tables cannot be
342 	 * assumed to be actually RCU-freed.
343 	 *
344 	 * It is however sufficient for software page-table walkers that rely on
345 	 * IRQ disabling. See the comment near struct mmu_table_batch.
346 	 */
347 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 	__tlb_remove_table(table);
349 }
350 
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 	struct mmu_table_batch *batch;
354 	int i;
355 
356 	batch = container_of(head, struct mmu_table_batch, rcu);
357 
358 	for (i = 0; i < batch->nr; i++)
359 		__tlb_remove_table(batch->tables[i]);
360 
361 	free_page((unsigned long)batch);
362 }
363 
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	if (*batch) {
369 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 		*batch = NULL;
371 	}
372 }
373 
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 	struct mmu_table_batch **batch = &tlb->batch;
377 
378 	/*
379 	 * When there's less then two users of this mm there cannot be a
380 	 * concurrent page-table walk.
381 	 */
382 	if (atomic_read(&tlb->mm->mm_users) < 2) {
383 		__tlb_remove_table(table);
384 		return;
385 	}
386 
387 	if (*batch == NULL) {
388 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 		if (*batch == NULL) {
390 			tlb_remove_table_one(table);
391 			return;
392 		}
393 		(*batch)->nr = 0;
394 	}
395 	(*batch)->tables[(*batch)->nr++] = table;
396 	if ((*batch)->nr == MAX_TABLE_BATCH)
397 		tlb_table_flush(tlb);
398 }
399 
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 			unsigned long start, unsigned long end)
416 {
417 	arch_tlb_gather_mmu(tlb, mm, start, end);
418 	inc_tlb_flush_pending(tlb->mm);
419 }
420 
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422 		unsigned long start, unsigned long end)
423 {
424 	/*
425 	 * If there are parallel threads are doing PTE changes on same range
426 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 	 * flush by batching, a thread has stable TLB entry can fail to flush
428 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 	 * forcefully if we detect parallel PTE batching threads.
430 	 */
431 	bool force = mm_tlb_flush_nested(tlb->mm);
432 
433 	arch_tlb_finish_mmu(tlb, start, end, force);
434 	dec_tlb_flush_pending(tlb->mm);
435 }
436 
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 			   unsigned long addr)
443 {
444 	pgtable_t token = pmd_pgtable(*pmd);
445 	pmd_clear(pmd);
446 	pte_free_tlb(tlb, token, addr);
447 	mm_dec_nr_ptes(tlb->mm);
448 }
449 
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 				unsigned long addr, unsigned long end,
452 				unsigned long floor, unsigned long ceiling)
453 {
454 	pmd_t *pmd;
455 	unsigned long next;
456 	unsigned long start;
457 
458 	start = addr;
459 	pmd = pmd_offset(pud, addr);
460 	do {
461 		next = pmd_addr_end(addr, end);
462 		if (pmd_none_or_clear_bad(pmd))
463 			continue;
464 		free_pte_range(tlb, pmd, addr);
465 	} while (pmd++, addr = next, addr != end);
466 
467 	start &= PUD_MASK;
468 	if (start < floor)
469 		return;
470 	if (ceiling) {
471 		ceiling &= PUD_MASK;
472 		if (!ceiling)
473 			return;
474 	}
475 	if (end - 1 > ceiling - 1)
476 		return;
477 
478 	pmd = pmd_offset(pud, start);
479 	pud_clear(pud);
480 	pmd_free_tlb(tlb, pmd, start);
481 	mm_dec_nr_pmds(tlb->mm);
482 }
483 
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485 				unsigned long addr, unsigned long end,
486 				unsigned long floor, unsigned long ceiling)
487 {
488 	pud_t *pud;
489 	unsigned long next;
490 	unsigned long start;
491 
492 	start = addr;
493 	pud = pud_offset(p4d, addr);
494 	do {
495 		next = pud_addr_end(addr, end);
496 		if (pud_none_or_clear_bad(pud))
497 			continue;
498 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499 	} while (pud++, addr = next, addr != end);
500 
501 	start &= P4D_MASK;
502 	if (start < floor)
503 		return;
504 	if (ceiling) {
505 		ceiling &= P4D_MASK;
506 		if (!ceiling)
507 			return;
508 	}
509 	if (end - 1 > ceiling - 1)
510 		return;
511 
512 	pud = pud_offset(p4d, start);
513 	p4d_clear(p4d);
514 	pud_free_tlb(tlb, pud, start);
515 	mm_dec_nr_puds(tlb->mm);
516 }
517 
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 				unsigned long addr, unsigned long end,
520 				unsigned long floor, unsigned long ceiling)
521 {
522 	p4d_t *p4d;
523 	unsigned long next;
524 	unsigned long start;
525 
526 	start = addr;
527 	p4d = p4d_offset(pgd, addr);
528 	do {
529 		next = p4d_addr_end(addr, end);
530 		if (p4d_none_or_clear_bad(p4d))
531 			continue;
532 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 	} while (p4d++, addr = next, addr != end);
534 
535 	start &= PGDIR_MASK;
536 	if (start < floor)
537 		return;
538 	if (ceiling) {
539 		ceiling &= PGDIR_MASK;
540 		if (!ceiling)
541 			return;
542 	}
543 	if (end - 1 > ceiling - 1)
544 		return;
545 
546 	p4d = p4d_offset(pgd, start);
547 	pgd_clear(pgd);
548 	p4d_free_tlb(tlb, p4d, start);
549 }
550 
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555 			unsigned long addr, unsigned long end,
556 			unsigned long floor, unsigned long ceiling)
557 {
558 	pgd_t *pgd;
559 	unsigned long next;
560 
561 	/*
562 	 * The next few lines have given us lots of grief...
563 	 *
564 	 * Why are we testing PMD* at this top level?  Because often
565 	 * there will be no work to do at all, and we'd prefer not to
566 	 * go all the way down to the bottom just to discover that.
567 	 *
568 	 * Why all these "- 1"s?  Because 0 represents both the bottom
569 	 * of the address space and the top of it (using -1 for the
570 	 * top wouldn't help much: the masks would do the wrong thing).
571 	 * The rule is that addr 0 and floor 0 refer to the bottom of
572 	 * the address space, but end 0 and ceiling 0 refer to the top
573 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 	 * that end 0 case should be mythical).
575 	 *
576 	 * Wherever addr is brought up or ceiling brought down, we must
577 	 * be careful to reject "the opposite 0" before it confuses the
578 	 * subsequent tests.  But what about where end is brought down
579 	 * by PMD_SIZE below? no, end can't go down to 0 there.
580 	 *
581 	 * Whereas we round start (addr) and ceiling down, by different
582 	 * masks at different levels, in order to test whether a table
583 	 * now has no other vmas using it, so can be freed, we don't
584 	 * bother to round floor or end up - the tests don't need that.
585 	 */
586 
587 	addr &= PMD_MASK;
588 	if (addr < floor) {
589 		addr += PMD_SIZE;
590 		if (!addr)
591 			return;
592 	}
593 	if (ceiling) {
594 		ceiling &= PMD_MASK;
595 		if (!ceiling)
596 			return;
597 	}
598 	if (end - 1 > ceiling - 1)
599 		end -= PMD_SIZE;
600 	if (addr > end - 1)
601 		return;
602 	/*
603 	 * We add page table cache pages with PAGE_SIZE,
604 	 * (see pte_free_tlb()), flush the tlb if we need
605 	 */
606 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607 	pgd = pgd_offset(tlb->mm, addr);
608 	do {
609 		next = pgd_addr_end(addr, end);
610 		if (pgd_none_or_clear_bad(pgd))
611 			continue;
612 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613 	} while (pgd++, addr = next, addr != end);
614 }
615 
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617 		unsigned long floor, unsigned long ceiling)
618 {
619 	while (vma) {
620 		struct vm_area_struct *next = vma->vm_next;
621 		unsigned long addr = vma->vm_start;
622 
623 		/*
624 		 * Hide vma from rmap and truncate_pagecache before freeing
625 		 * pgtables
626 		 */
627 		unlink_anon_vmas(vma);
628 		unlink_file_vma(vma);
629 
630 		if (is_vm_hugetlb_page(vma)) {
631 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632 				floor, next ? next->vm_start : ceiling);
633 		} else {
634 			/*
635 			 * Optimization: gather nearby vmas into one call down
636 			 */
637 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638 			       && !is_vm_hugetlb_page(next)) {
639 				vma = next;
640 				next = vma->vm_next;
641 				unlink_anon_vmas(vma);
642 				unlink_file_vma(vma);
643 			}
644 			free_pgd_range(tlb, addr, vma->vm_end,
645 				floor, next ? next->vm_start : ceiling);
646 		}
647 		vma = next;
648 	}
649 }
650 
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653 	spinlock_t *ptl;
654 	pgtable_t new = pte_alloc_one(mm, address);
655 	if (!new)
656 		return -ENOMEM;
657 
658 	/*
659 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 	 * visible before the pte is made visible to other CPUs by being
661 	 * put into page tables.
662 	 *
663 	 * The other side of the story is the pointer chasing in the page
664 	 * table walking code (when walking the page table without locking;
665 	 * ie. most of the time). Fortunately, these data accesses consist
666 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 	 * being the notable exception) will already guarantee loads are
668 	 * seen in-order. See the alpha page table accessors for the
669 	 * smp_read_barrier_depends() barriers in page table walking code.
670 	 */
671 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 
673 	ptl = pmd_lock(mm, pmd);
674 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
675 		mm_inc_nr_ptes(mm);
676 		pmd_populate(mm, pmd, new);
677 		new = NULL;
678 	}
679 	spin_unlock(ptl);
680 	if (new)
681 		pte_free(mm, new);
682 	return 0;
683 }
684 
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 	if (!new)
689 		return -ENOMEM;
690 
691 	smp_wmb(); /* See comment in __pte_alloc */
692 
693 	spin_lock(&init_mm.page_table_lock);
694 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
695 		pmd_populate_kernel(&init_mm, pmd, new);
696 		new = NULL;
697 	}
698 	spin_unlock(&init_mm.page_table_lock);
699 	if (new)
700 		pte_free_kernel(&init_mm, new);
701 	return 0;
702 }
703 
704 static inline void init_rss_vec(int *rss)
705 {
706 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708 
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711 	int i;
712 
713 	if (current->mm == mm)
714 		sync_mm_rss(mm);
715 	for (i = 0; i < NR_MM_COUNTERS; i++)
716 		if (rss[i])
717 			add_mm_counter(mm, i, rss[i]);
718 }
719 
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 			  pte_t pte, struct page *page)
729 {
730 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731 	p4d_t *p4d = p4d_offset(pgd, addr);
732 	pud_t *pud = pud_offset(p4d, addr);
733 	pmd_t *pmd = pmd_offset(pud, addr);
734 	struct address_space *mapping;
735 	pgoff_t index;
736 	static unsigned long resume;
737 	static unsigned long nr_shown;
738 	static unsigned long nr_unshown;
739 
740 	/*
741 	 * Allow a burst of 60 reports, then keep quiet for that minute;
742 	 * or allow a steady drip of one report per second.
743 	 */
744 	if (nr_shown == 60) {
745 		if (time_before(jiffies, resume)) {
746 			nr_unshown++;
747 			return;
748 		}
749 		if (nr_unshown) {
750 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 				 nr_unshown);
752 			nr_unshown = 0;
753 		}
754 		nr_shown = 0;
755 	}
756 	if (nr_shown++ == 0)
757 		resume = jiffies + 60 * HZ;
758 
759 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 	index = linear_page_index(vma, addr);
761 
762 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763 		 current->comm,
764 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
765 	if (page)
766 		dump_page(page, "bad pte");
767 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 		 vma->vm_file,
771 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 		 mapping ? mapping->a_ops->readpage : NULL);
774 	dump_stack();
775 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777 
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 #ifdef __HAVE_ARCH_PTE_SPECIAL
821 # define HAVE_PTE_SPECIAL 1
822 #else
823 # define HAVE_PTE_SPECIAL 0
824 #endif
825 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
826 			     pte_t pte, bool with_public_device)
827 {
828 	unsigned long pfn = pte_pfn(pte);
829 
830 	if (HAVE_PTE_SPECIAL) {
831 		if (likely(!pte_special(pte)))
832 			goto check_pfn;
833 		if (vma->vm_ops && vma->vm_ops->find_special_page)
834 			return vma->vm_ops->find_special_page(vma, addr);
835 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
836 			return NULL;
837 		if (is_zero_pfn(pfn))
838 			return NULL;
839 
840 		/*
841 		 * Device public pages are special pages (they are ZONE_DEVICE
842 		 * pages but different from persistent memory). They behave
843 		 * allmost like normal pages. The difference is that they are
844 		 * not on the lru and thus should never be involve with any-
845 		 * thing that involve lru manipulation (mlock, numa balancing,
846 		 * ...).
847 		 *
848 		 * This is why we still want to return NULL for such page from
849 		 * vm_normal_page() so that we do not have to special case all
850 		 * call site of vm_normal_page().
851 		 */
852 		if (likely(pfn <= highest_memmap_pfn)) {
853 			struct page *page = pfn_to_page(pfn);
854 
855 			if (is_device_public_page(page)) {
856 				if (with_public_device)
857 					return page;
858 				return NULL;
859 			}
860 		}
861 		print_bad_pte(vma, addr, pte, NULL);
862 		return NULL;
863 	}
864 
865 	/* !HAVE_PTE_SPECIAL case follows: */
866 
867 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
868 		if (vma->vm_flags & VM_MIXEDMAP) {
869 			if (!pfn_valid(pfn))
870 				return NULL;
871 			goto out;
872 		} else {
873 			unsigned long off;
874 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
875 			if (pfn == vma->vm_pgoff + off)
876 				return NULL;
877 			if (!is_cow_mapping(vma->vm_flags))
878 				return NULL;
879 		}
880 	}
881 
882 	if (is_zero_pfn(pfn))
883 		return NULL;
884 check_pfn:
885 	if (unlikely(pfn > highest_memmap_pfn)) {
886 		print_bad_pte(vma, addr, pte, NULL);
887 		return NULL;
888 	}
889 
890 	/*
891 	 * NOTE! We still have PageReserved() pages in the page tables.
892 	 * eg. VDSO mappings can cause them to exist.
893 	 */
894 out:
895 	return pfn_to_page(pfn);
896 }
897 
898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
899 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900 				pmd_t pmd)
901 {
902 	unsigned long pfn = pmd_pfn(pmd);
903 
904 	/*
905 	 * There is no pmd_special() but there may be special pmds, e.g.
906 	 * in a direct-access (dax) mapping, so let's just replicate the
907 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
908 	 */
909 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910 		if (vma->vm_flags & VM_MIXEDMAP) {
911 			if (!pfn_valid(pfn))
912 				return NULL;
913 			goto out;
914 		} else {
915 			unsigned long off;
916 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
917 			if (pfn == vma->vm_pgoff + off)
918 				return NULL;
919 			if (!is_cow_mapping(vma->vm_flags))
920 				return NULL;
921 		}
922 	}
923 
924 	if (is_zero_pfn(pfn))
925 		return NULL;
926 	if (unlikely(pfn > highest_memmap_pfn))
927 		return NULL;
928 
929 	/*
930 	 * NOTE! We still have PageReserved() pages in the page tables.
931 	 * eg. VDSO mappings can cause them to exist.
932 	 */
933 out:
934 	return pfn_to_page(pfn);
935 }
936 #endif
937 
938 /*
939  * copy one vm_area from one task to the other. Assumes the page tables
940  * already present in the new task to be cleared in the whole range
941  * covered by this vma.
942  */
943 
944 static inline unsigned long
945 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
947 		unsigned long addr, int *rss)
948 {
949 	unsigned long vm_flags = vma->vm_flags;
950 	pte_t pte = *src_pte;
951 	struct page *page;
952 
953 	/* pte contains position in swap or file, so copy. */
954 	if (unlikely(!pte_present(pte))) {
955 		swp_entry_t entry = pte_to_swp_entry(pte);
956 
957 		if (likely(!non_swap_entry(entry))) {
958 			if (swap_duplicate(entry) < 0)
959 				return entry.val;
960 
961 			/* make sure dst_mm is on swapoff's mmlist. */
962 			if (unlikely(list_empty(&dst_mm->mmlist))) {
963 				spin_lock(&mmlist_lock);
964 				if (list_empty(&dst_mm->mmlist))
965 					list_add(&dst_mm->mmlist,
966 							&src_mm->mmlist);
967 				spin_unlock(&mmlist_lock);
968 			}
969 			rss[MM_SWAPENTS]++;
970 		} else if (is_migration_entry(entry)) {
971 			page = migration_entry_to_page(entry);
972 
973 			rss[mm_counter(page)]++;
974 
975 			if (is_write_migration_entry(entry) &&
976 					is_cow_mapping(vm_flags)) {
977 				/*
978 				 * COW mappings require pages in both
979 				 * parent and child to be set to read.
980 				 */
981 				make_migration_entry_read(&entry);
982 				pte = swp_entry_to_pte(entry);
983 				if (pte_swp_soft_dirty(*src_pte))
984 					pte = pte_swp_mksoft_dirty(pte);
985 				set_pte_at(src_mm, addr, src_pte, pte);
986 			}
987 		} else if (is_device_private_entry(entry)) {
988 			page = device_private_entry_to_page(entry);
989 
990 			/*
991 			 * Update rss count even for unaddressable pages, as
992 			 * they should treated just like normal pages in this
993 			 * respect.
994 			 *
995 			 * We will likely want to have some new rss counters
996 			 * for unaddressable pages, at some point. But for now
997 			 * keep things as they are.
998 			 */
999 			get_page(page);
1000 			rss[mm_counter(page)]++;
1001 			page_dup_rmap(page, false);
1002 
1003 			/*
1004 			 * We do not preserve soft-dirty information, because so
1005 			 * far, checkpoint/restore is the only feature that
1006 			 * requires that. And checkpoint/restore does not work
1007 			 * when a device driver is involved (you cannot easily
1008 			 * save and restore device driver state).
1009 			 */
1010 			if (is_write_device_private_entry(entry) &&
1011 			    is_cow_mapping(vm_flags)) {
1012 				make_device_private_entry_read(&entry);
1013 				pte = swp_entry_to_pte(entry);
1014 				set_pte_at(src_mm, addr, src_pte, pte);
1015 			}
1016 		}
1017 		goto out_set_pte;
1018 	}
1019 
1020 	/*
1021 	 * If it's a COW mapping, write protect it both
1022 	 * in the parent and the child
1023 	 */
1024 	if (is_cow_mapping(vm_flags)) {
1025 		ptep_set_wrprotect(src_mm, addr, src_pte);
1026 		pte = pte_wrprotect(pte);
1027 	}
1028 
1029 	/*
1030 	 * If it's a shared mapping, mark it clean in
1031 	 * the child
1032 	 */
1033 	if (vm_flags & VM_SHARED)
1034 		pte = pte_mkclean(pte);
1035 	pte = pte_mkold(pte);
1036 
1037 	page = vm_normal_page(vma, addr, pte);
1038 	if (page) {
1039 		get_page(page);
1040 		page_dup_rmap(page, false);
1041 		rss[mm_counter(page)]++;
1042 	} else if (pte_devmap(pte)) {
1043 		page = pte_page(pte);
1044 
1045 		/*
1046 		 * Cache coherent device memory behave like regular page and
1047 		 * not like persistent memory page. For more informations see
1048 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049 		 */
1050 		if (is_device_public_page(page)) {
1051 			get_page(page);
1052 			page_dup_rmap(page, false);
1053 			rss[mm_counter(page)]++;
1054 		}
1055 	}
1056 
1057 out_set_pte:
1058 	set_pte_at(dst_mm, addr, dst_pte, pte);
1059 	return 0;
1060 }
1061 
1062 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064 		   unsigned long addr, unsigned long end)
1065 {
1066 	pte_t *orig_src_pte, *orig_dst_pte;
1067 	pte_t *src_pte, *dst_pte;
1068 	spinlock_t *src_ptl, *dst_ptl;
1069 	int progress = 0;
1070 	int rss[NR_MM_COUNTERS];
1071 	swp_entry_t entry = (swp_entry_t){0};
1072 
1073 again:
1074 	init_rss_vec(rss);
1075 
1076 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1077 	if (!dst_pte)
1078 		return -ENOMEM;
1079 	src_pte = pte_offset_map(src_pmd, addr);
1080 	src_ptl = pte_lockptr(src_mm, src_pmd);
1081 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1082 	orig_src_pte = src_pte;
1083 	orig_dst_pte = dst_pte;
1084 	arch_enter_lazy_mmu_mode();
1085 
1086 	do {
1087 		/*
1088 		 * We are holding two locks at this point - either of them
1089 		 * could generate latencies in another task on another CPU.
1090 		 */
1091 		if (progress >= 32) {
1092 			progress = 0;
1093 			if (need_resched() ||
1094 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1095 				break;
1096 		}
1097 		if (pte_none(*src_pte)) {
1098 			progress++;
1099 			continue;
1100 		}
1101 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102 							vma, addr, rss);
1103 		if (entry.val)
1104 			break;
1105 		progress += 8;
1106 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1107 
1108 	arch_leave_lazy_mmu_mode();
1109 	spin_unlock(src_ptl);
1110 	pte_unmap(orig_src_pte);
1111 	add_mm_rss_vec(dst_mm, rss);
1112 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1113 	cond_resched();
1114 
1115 	if (entry.val) {
1116 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117 			return -ENOMEM;
1118 		progress = 0;
1119 	}
1120 	if (addr != end)
1121 		goto again;
1122 	return 0;
1123 }
1124 
1125 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127 		unsigned long addr, unsigned long end)
1128 {
1129 	pmd_t *src_pmd, *dst_pmd;
1130 	unsigned long next;
1131 
1132 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 	if (!dst_pmd)
1134 		return -ENOMEM;
1135 	src_pmd = pmd_offset(src_pud, addr);
1136 	do {
1137 		next = pmd_addr_end(addr, end);
1138 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139 			|| pmd_devmap(*src_pmd)) {
1140 			int err;
1141 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1142 			err = copy_huge_pmd(dst_mm, src_mm,
1143 					    dst_pmd, src_pmd, addr, vma);
1144 			if (err == -ENOMEM)
1145 				return -ENOMEM;
1146 			if (!err)
1147 				continue;
1148 			/* fall through */
1149 		}
1150 		if (pmd_none_or_clear_bad(src_pmd))
1151 			continue;
1152 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153 						vma, addr, next))
1154 			return -ENOMEM;
1155 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156 	return 0;
1157 }
1158 
1159 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1160 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1161 		unsigned long addr, unsigned long end)
1162 {
1163 	pud_t *src_pud, *dst_pud;
1164 	unsigned long next;
1165 
1166 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1167 	if (!dst_pud)
1168 		return -ENOMEM;
1169 	src_pud = pud_offset(src_p4d, addr);
1170 	do {
1171 		next = pud_addr_end(addr, end);
1172 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173 			int err;
1174 
1175 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176 			err = copy_huge_pud(dst_mm, src_mm,
1177 					    dst_pud, src_pud, addr, vma);
1178 			if (err == -ENOMEM)
1179 				return -ENOMEM;
1180 			if (!err)
1181 				continue;
1182 			/* fall through */
1183 		}
1184 		if (pud_none_or_clear_bad(src_pud))
1185 			continue;
1186 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187 						vma, addr, next))
1188 			return -ENOMEM;
1189 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1190 	return 0;
1191 }
1192 
1193 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195 		unsigned long addr, unsigned long end)
1196 {
1197 	p4d_t *src_p4d, *dst_p4d;
1198 	unsigned long next;
1199 
1200 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201 	if (!dst_p4d)
1202 		return -ENOMEM;
1203 	src_p4d = p4d_offset(src_pgd, addr);
1204 	do {
1205 		next = p4d_addr_end(addr, end);
1206 		if (p4d_none_or_clear_bad(src_p4d))
1207 			continue;
1208 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209 						vma, addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 		struct vm_area_struct *vma)
1217 {
1218 	pgd_t *src_pgd, *dst_pgd;
1219 	unsigned long next;
1220 	unsigned long addr = vma->vm_start;
1221 	unsigned long end = vma->vm_end;
1222 	unsigned long mmun_start;	/* For mmu_notifiers */
1223 	unsigned long mmun_end;		/* For mmu_notifiers */
1224 	bool is_cow;
1225 	int ret;
1226 
1227 	/*
1228 	 * Don't copy ptes where a page fault will fill them correctly.
1229 	 * Fork becomes much lighter when there are big shared or private
1230 	 * readonly mappings. The tradeoff is that copy_page_range is more
1231 	 * efficient than faulting.
1232 	 */
1233 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234 			!vma->anon_vma)
1235 		return 0;
1236 
1237 	if (is_vm_hugetlb_page(vma))
1238 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239 
1240 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1241 		/*
1242 		 * We do not free on error cases below as remove_vma
1243 		 * gets called on error from higher level routine
1244 		 */
1245 		ret = track_pfn_copy(vma);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	/*
1251 	 * We need to invalidate the secondary MMU mappings only when
1252 	 * there could be a permission downgrade on the ptes of the
1253 	 * parent mm. And a permission downgrade will only happen if
1254 	 * is_cow_mapping() returns true.
1255 	 */
1256 	is_cow = is_cow_mapping(vma->vm_flags);
1257 	mmun_start = addr;
1258 	mmun_end   = end;
1259 	if (is_cow)
1260 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261 						    mmun_end);
1262 
1263 	ret = 0;
1264 	dst_pgd = pgd_offset(dst_mm, addr);
1265 	src_pgd = pgd_offset(src_mm, addr);
1266 	do {
1267 		next = pgd_addr_end(addr, end);
1268 		if (pgd_none_or_clear_bad(src_pgd))
1269 			continue;
1270 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1271 					    vma, addr, next))) {
1272 			ret = -ENOMEM;
1273 			break;
1274 		}
1275 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1276 
1277 	if (is_cow)
1278 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1279 	return ret;
1280 }
1281 
1282 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1283 				struct vm_area_struct *vma, pmd_t *pmd,
1284 				unsigned long addr, unsigned long end,
1285 				struct zap_details *details)
1286 {
1287 	struct mm_struct *mm = tlb->mm;
1288 	int force_flush = 0;
1289 	int rss[NR_MM_COUNTERS];
1290 	spinlock_t *ptl;
1291 	pte_t *start_pte;
1292 	pte_t *pte;
1293 	swp_entry_t entry;
1294 
1295 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1296 again:
1297 	init_rss_vec(rss);
1298 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299 	pte = start_pte;
1300 	flush_tlb_batched_pending(mm);
1301 	arch_enter_lazy_mmu_mode();
1302 	do {
1303 		pte_t ptent = *pte;
1304 		if (pte_none(ptent))
1305 			continue;
1306 
1307 		if (pte_present(ptent)) {
1308 			struct page *page;
1309 
1310 			page = _vm_normal_page(vma, addr, ptent, true);
1311 			if (unlikely(details) && page) {
1312 				/*
1313 				 * unmap_shared_mapping_pages() wants to
1314 				 * invalidate cache without truncating:
1315 				 * unmap shared but keep private pages.
1316 				 */
1317 				if (details->check_mapping &&
1318 				    details->check_mapping != page_rmapping(page))
1319 					continue;
1320 			}
1321 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1322 							tlb->fullmm);
1323 			tlb_remove_tlb_entry(tlb, pte, addr);
1324 			if (unlikely(!page))
1325 				continue;
1326 
1327 			if (!PageAnon(page)) {
1328 				if (pte_dirty(ptent)) {
1329 					force_flush = 1;
1330 					set_page_dirty(page);
1331 				}
1332 				if (pte_young(ptent) &&
1333 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1334 					mark_page_accessed(page);
1335 			}
1336 			rss[mm_counter(page)]--;
1337 			page_remove_rmap(page, false);
1338 			if (unlikely(page_mapcount(page) < 0))
1339 				print_bad_pte(vma, addr, ptent, page);
1340 			if (unlikely(__tlb_remove_page(tlb, page))) {
1341 				force_flush = 1;
1342 				addr += PAGE_SIZE;
1343 				break;
1344 			}
1345 			continue;
1346 		}
1347 
1348 		entry = pte_to_swp_entry(ptent);
1349 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350 			struct page *page = device_private_entry_to_page(entry);
1351 
1352 			if (unlikely(details && details->check_mapping)) {
1353 				/*
1354 				 * unmap_shared_mapping_pages() wants to
1355 				 * invalidate cache without truncating:
1356 				 * unmap shared but keep private pages.
1357 				 */
1358 				if (details->check_mapping !=
1359 				    page_rmapping(page))
1360 					continue;
1361 			}
1362 
1363 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 			rss[mm_counter(page)]--;
1365 			page_remove_rmap(page, false);
1366 			put_page(page);
1367 			continue;
1368 		}
1369 
1370 		/* If details->check_mapping, we leave swap entries. */
1371 		if (unlikely(details))
1372 			continue;
1373 
1374 		entry = pte_to_swp_entry(ptent);
1375 		if (!non_swap_entry(entry))
1376 			rss[MM_SWAPENTS]--;
1377 		else if (is_migration_entry(entry)) {
1378 			struct page *page;
1379 
1380 			page = migration_entry_to_page(entry);
1381 			rss[mm_counter(page)]--;
1382 		}
1383 		if (unlikely(!free_swap_and_cache(entry)))
1384 			print_bad_pte(vma, addr, ptent, NULL);
1385 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1386 	} while (pte++, addr += PAGE_SIZE, addr != end);
1387 
1388 	add_mm_rss_vec(mm, rss);
1389 	arch_leave_lazy_mmu_mode();
1390 
1391 	/* Do the actual TLB flush before dropping ptl */
1392 	if (force_flush)
1393 		tlb_flush_mmu_tlbonly(tlb);
1394 	pte_unmap_unlock(start_pte, ptl);
1395 
1396 	/*
1397 	 * If we forced a TLB flush (either due to running out of
1398 	 * batch buffers or because we needed to flush dirty TLB
1399 	 * entries before releasing the ptl), free the batched
1400 	 * memory too. Restart if we didn't do everything.
1401 	 */
1402 	if (force_flush) {
1403 		force_flush = 0;
1404 		tlb_flush_mmu_free(tlb);
1405 		if (addr != end)
1406 			goto again;
1407 	}
1408 
1409 	return addr;
1410 }
1411 
1412 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1413 				struct vm_area_struct *vma, pud_t *pud,
1414 				unsigned long addr, unsigned long end,
1415 				struct zap_details *details)
1416 {
1417 	pmd_t *pmd;
1418 	unsigned long next;
1419 
1420 	pmd = pmd_offset(pud, addr);
1421 	do {
1422 		next = pmd_addr_end(addr, end);
1423 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1424 			if (next - addr != HPAGE_PMD_SIZE) {
1425 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1427 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1428 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1429 				goto next;
1430 			/* fall through */
1431 		}
1432 		/*
1433 		 * Here there can be other concurrent MADV_DONTNEED or
1434 		 * trans huge page faults running, and if the pmd is
1435 		 * none or trans huge it can change under us. This is
1436 		 * because MADV_DONTNEED holds the mmap_sem in read
1437 		 * mode.
1438 		 */
1439 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 			goto next;
1441 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1442 next:
1443 		cond_resched();
1444 	} while (pmd++, addr = next, addr != end);
1445 
1446 	return addr;
1447 }
1448 
1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1450 				struct vm_area_struct *vma, p4d_t *p4d,
1451 				unsigned long addr, unsigned long end,
1452 				struct zap_details *details)
1453 {
1454 	pud_t *pud;
1455 	unsigned long next;
1456 
1457 	pud = pud_offset(p4d, addr);
1458 	do {
1459 		next = pud_addr_end(addr, end);
1460 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 			if (next - addr != HPAGE_PUD_SIZE) {
1462 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 				split_huge_pud(vma, pud, addr);
1464 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1465 				goto next;
1466 			/* fall through */
1467 		}
1468 		if (pud_none_or_clear_bad(pud))
1469 			continue;
1470 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1471 next:
1472 		cond_resched();
1473 	} while (pud++, addr = next, addr != end);
1474 
1475 	return addr;
1476 }
1477 
1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 				struct vm_area_struct *vma, pgd_t *pgd,
1480 				unsigned long addr, unsigned long end,
1481 				struct zap_details *details)
1482 {
1483 	p4d_t *p4d;
1484 	unsigned long next;
1485 
1486 	p4d = p4d_offset(pgd, addr);
1487 	do {
1488 		next = p4d_addr_end(addr, end);
1489 		if (p4d_none_or_clear_bad(p4d))
1490 			continue;
1491 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 	} while (p4d++, addr = next, addr != end);
1493 
1494 	return addr;
1495 }
1496 
1497 void unmap_page_range(struct mmu_gather *tlb,
1498 			     struct vm_area_struct *vma,
1499 			     unsigned long addr, unsigned long end,
1500 			     struct zap_details *details)
1501 {
1502 	pgd_t *pgd;
1503 	unsigned long next;
1504 
1505 	BUG_ON(addr >= end);
1506 	tlb_start_vma(tlb, vma);
1507 	pgd = pgd_offset(vma->vm_mm, addr);
1508 	do {
1509 		next = pgd_addr_end(addr, end);
1510 		if (pgd_none_or_clear_bad(pgd))
1511 			continue;
1512 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1513 	} while (pgd++, addr = next, addr != end);
1514 	tlb_end_vma(tlb, vma);
1515 }
1516 
1517 
1518 static void unmap_single_vma(struct mmu_gather *tlb,
1519 		struct vm_area_struct *vma, unsigned long start_addr,
1520 		unsigned long end_addr,
1521 		struct zap_details *details)
1522 {
1523 	unsigned long start = max(vma->vm_start, start_addr);
1524 	unsigned long end;
1525 
1526 	if (start >= vma->vm_end)
1527 		return;
1528 	end = min(vma->vm_end, end_addr);
1529 	if (end <= vma->vm_start)
1530 		return;
1531 
1532 	if (vma->vm_file)
1533 		uprobe_munmap(vma, start, end);
1534 
1535 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1536 		untrack_pfn(vma, 0, 0);
1537 
1538 	if (start != end) {
1539 		if (unlikely(is_vm_hugetlb_page(vma))) {
1540 			/*
1541 			 * It is undesirable to test vma->vm_file as it
1542 			 * should be non-null for valid hugetlb area.
1543 			 * However, vm_file will be NULL in the error
1544 			 * cleanup path of mmap_region. When
1545 			 * hugetlbfs ->mmap method fails,
1546 			 * mmap_region() nullifies vma->vm_file
1547 			 * before calling this function to clean up.
1548 			 * Since no pte has actually been setup, it is
1549 			 * safe to do nothing in this case.
1550 			 */
1551 			if (vma->vm_file) {
1552 				i_mmap_lock_write(vma->vm_file->f_mapping);
1553 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1554 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1555 			}
1556 		} else
1557 			unmap_page_range(tlb, vma, start, end, details);
1558 	}
1559 }
1560 
1561 /**
1562  * unmap_vmas - unmap a range of memory covered by a list of vma's
1563  * @tlb: address of the caller's struct mmu_gather
1564  * @vma: the starting vma
1565  * @start_addr: virtual address at which to start unmapping
1566  * @end_addr: virtual address at which to end unmapping
1567  *
1568  * Unmap all pages in the vma list.
1569  *
1570  * Only addresses between `start' and `end' will be unmapped.
1571  *
1572  * The VMA list must be sorted in ascending virtual address order.
1573  *
1574  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575  * range after unmap_vmas() returns.  So the only responsibility here is to
1576  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577  * drops the lock and schedules.
1578  */
1579 void unmap_vmas(struct mmu_gather *tlb,
1580 		struct vm_area_struct *vma, unsigned long start_addr,
1581 		unsigned long end_addr)
1582 {
1583 	struct mm_struct *mm = vma->vm_mm;
1584 
1585 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1586 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1587 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1588 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 }
1590 
1591 /**
1592  * zap_page_range - remove user pages in a given range
1593  * @vma: vm_area_struct holding the applicable pages
1594  * @start: starting address of pages to zap
1595  * @size: number of bytes to zap
1596  *
1597  * Caller must protect the VMA list
1598  */
1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1600 		unsigned long size)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	struct mmu_gather tlb;
1604 	unsigned long end = start + size;
1605 
1606 	lru_add_drain();
1607 	tlb_gather_mmu(&tlb, mm, start, end);
1608 	update_hiwater_rss(mm);
1609 	mmu_notifier_invalidate_range_start(mm, start, end);
1610 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1611 		unmap_single_vma(&tlb, vma, start, end, NULL);
1612 
1613 		/*
1614 		 * zap_page_range does not specify whether mmap_sem should be
1615 		 * held for read or write. That allows parallel zap_page_range
1616 		 * operations to unmap a PTE and defer a flush meaning that
1617 		 * this call observes pte_none and fails to flush the TLB.
1618 		 * Rather than adding a complex API, ensure that no stale
1619 		 * TLB entries exist when this call returns.
1620 		 */
1621 		flush_tlb_range(vma, start, end);
1622 	}
1623 
1624 	mmu_notifier_invalidate_range_end(mm, start, end);
1625 	tlb_finish_mmu(&tlb, start, end);
1626 }
1627 
1628 /**
1629  * zap_page_range_single - remove user pages in a given range
1630  * @vma: vm_area_struct holding the applicable pages
1631  * @address: starting address of pages to zap
1632  * @size: number of bytes to zap
1633  * @details: details of shared cache invalidation
1634  *
1635  * The range must fit into one VMA.
1636  */
1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1638 		unsigned long size, struct zap_details *details)
1639 {
1640 	struct mm_struct *mm = vma->vm_mm;
1641 	struct mmu_gather tlb;
1642 	unsigned long end = address + size;
1643 
1644 	lru_add_drain();
1645 	tlb_gather_mmu(&tlb, mm, address, end);
1646 	update_hiwater_rss(mm);
1647 	mmu_notifier_invalidate_range_start(mm, address, end);
1648 	unmap_single_vma(&tlb, vma, address, end, details);
1649 	mmu_notifier_invalidate_range_end(mm, address, end);
1650 	tlb_finish_mmu(&tlb, address, end);
1651 }
1652 
1653 /**
1654  * zap_vma_ptes - remove ptes mapping the vma
1655  * @vma: vm_area_struct holding ptes to be zapped
1656  * @address: starting address of pages to zap
1657  * @size: number of bytes to zap
1658  *
1659  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660  *
1661  * The entire address range must be fully contained within the vma.
1662  *
1663  * Returns 0 if successful.
1664  */
1665 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1666 		unsigned long size)
1667 {
1668 	if (address < vma->vm_start || address + size > vma->vm_end ||
1669 	    		!(vma->vm_flags & VM_PFNMAP))
1670 		return -1;
1671 	zap_page_range_single(vma, address, size, NULL);
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1675 
1676 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1677 			spinlock_t **ptl)
1678 {
1679 	pgd_t *pgd;
1680 	p4d_t *p4d;
1681 	pud_t *pud;
1682 	pmd_t *pmd;
1683 
1684 	pgd = pgd_offset(mm, addr);
1685 	p4d = p4d_alloc(mm, pgd, addr);
1686 	if (!p4d)
1687 		return NULL;
1688 	pud = pud_alloc(mm, p4d, addr);
1689 	if (!pud)
1690 		return NULL;
1691 	pmd = pmd_alloc(mm, pud, addr);
1692 	if (!pmd)
1693 		return NULL;
1694 
1695 	VM_BUG_ON(pmd_trans_huge(*pmd));
1696 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697 }
1698 
1699 /*
1700  * This is the old fallback for page remapping.
1701  *
1702  * For historical reasons, it only allows reserved pages. Only
1703  * old drivers should use this, and they needed to mark their
1704  * pages reserved for the old functions anyway.
1705  */
1706 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 			struct page *page, pgprot_t prot)
1708 {
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	int retval;
1711 	pte_t *pte;
1712 	spinlock_t *ptl;
1713 
1714 	retval = -EINVAL;
1715 	if (PageAnon(page))
1716 		goto out;
1717 	retval = -ENOMEM;
1718 	flush_dcache_page(page);
1719 	pte = get_locked_pte(mm, addr, &ptl);
1720 	if (!pte)
1721 		goto out;
1722 	retval = -EBUSY;
1723 	if (!pte_none(*pte))
1724 		goto out_unlock;
1725 
1726 	/* Ok, finally just insert the thing.. */
1727 	get_page(page);
1728 	inc_mm_counter_fast(mm, mm_counter_file(page));
1729 	page_add_file_rmap(page, false);
1730 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1731 
1732 	retval = 0;
1733 	pte_unmap_unlock(pte, ptl);
1734 	return retval;
1735 out_unlock:
1736 	pte_unmap_unlock(pte, ptl);
1737 out:
1738 	return retval;
1739 }
1740 
1741 /**
1742  * vm_insert_page - insert single page into user vma
1743  * @vma: user vma to map to
1744  * @addr: target user address of this page
1745  * @page: source kernel page
1746  *
1747  * This allows drivers to insert individual pages they've allocated
1748  * into a user vma.
1749  *
1750  * The page has to be a nice clean _individual_ kernel allocation.
1751  * If you allocate a compound page, you need to have marked it as
1752  * such (__GFP_COMP), or manually just split the page up yourself
1753  * (see split_page()).
1754  *
1755  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1756  * took an arbitrary page protection parameter. This doesn't allow
1757  * that. Your vma protection will have to be set up correctly, which
1758  * means that if you want a shared writable mapping, you'd better
1759  * ask for a shared writable mapping!
1760  *
1761  * The page does not need to be reserved.
1762  *
1763  * Usually this function is called from f_op->mmap() handler
1764  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1765  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1766  * function from other places, for example from page-fault handler.
1767  */
1768 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 			struct page *page)
1770 {
1771 	if (addr < vma->vm_start || addr >= vma->vm_end)
1772 		return -EFAULT;
1773 	if (!page_count(page))
1774 		return -EINVAL;
1775 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1776 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1777 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1778 		vma->vm_flags |= VM_MIXEDMAP;
1779 	}
1780 	return insert_page(vma, addr, page, vma->vm_page_prot);
1781 }
1782 EXPORT_SYMBOL(vm_insert_page);
1783 
1784 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1785 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1786 {
1787 	struct mm_struct *mm = vma->vm_mm;
1788 	int retval;
1789 	pte_t *pte, entry;
1790 	spinlock_t *ptl;
1791 
1792 	retval = -ENOMEM;
1793 	pte = get_locked_pte(mm, addr, &ptl);
1794 	if (!pte)
1795 		goto out;
1796 	retval = -EBUSY;
1797 	if (!pte_none(*pte)) {
1798 		if (mkwrite) {
1799 			/*
1800 			 * For read faults on private mappings the PFN passed
1801 			 * in may not match the PFN we have mapped if the
1802 			 * mapped PFN is a writeable COW page.  In the mkwrite
1803 			 * case we are creating a writable PTE for a shared
1804 			 * mapping and we expect the PFNs to match.
1805 			 */
1806 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1807 				goto out_unlock;
1808 			entry = *pte;
1809 			goto out_mkwrite;
1810 		} else
1811 			goto out_unlock;
1812 	}
1813 
1814 	/* Ok, finally just insert the thing.. */
1815 	if (pfn_t_devmap(pfn))
1816 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1817 	else
1818 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1819 
1820 out_mkwrite:
1821 	if (mkwrite) {
1822 		entry = pte_mkyoung(entry);
1823 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 	}
1825 
1826 	set_pte_at(mm, addr, pte, entry);
1827 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1828 
1829 	retval = 0;
1830 out_unlock:
1831 	pte_unmap_unlock(pte, ptl);
1832 out:
1833 	return retval;
1834 }
1835 
1836 /**
1837  * vm_insert_pfn - insert single pfn into user vma
1838  * @vma: user vma to map to
1839  * @addr: target user address of this page
1840  * @pfn: source kernel pfn
1841  *
1842  * Similar to vm_insert_page, this allows drivers to insert individual pages
1843  * they've allocated into a user vma. Same comments apply.
1844  *
1845  * This function should only be called from a vm_ops->fault handler, and
1846  * in that case the handler should return NULL.
1847  *
1848  * vma cannot be a COW mapping.
1849  *
1850  * As this is called only for pages that do not currently exist, we
1851  * do not need to flush old virtual caches or the TLB.
1852  */
1853 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1854 			unsigned long pfn)
1855 {
1856 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1857 }
1858 EXPORT_SYMBOL(vm_insert_pfn);
1859 
1860 /**
1861  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1862  * @vma: user vma to map to
1863  * @addr: target user address of this page
1864  * @pfn: source kernel pfn
1865  * @pgprot: pgprot flags for the inserted page
1866  *
1867  * This is exactly like vm_insert_pfn, except that it allows drivers to
1868  * to override pgprot on a per-page basis.
1869  *
1870  * This only makes sense for IO mappings, and it makes no sense for
1871  * cow mappings.  In general, using multiple vmas is preferable;
1872  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1873  * impractical.
1874  */
1875 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1876 			unsigned long pfn, pgprot_t pgprot)
1877 {
1878 	int ret;
1879 	/*
1880 	 * Technically, architectures with pte_special can avoid all these
1881 	 * restrictions (same for remap_pfn_range).  However we would like
1882 	 * consistency in testing and feature parity among all, so we should
1883 	 * try to keep these invariants in place for everybody.
1884 	 */
1885 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1886 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1887 						(VM_PFNMAP|VM_MIXEDMAP));
1888 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1889 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1890 
1891 	if (addr < vma->vm_start || addr >= vma->vm_end)
1892 		return -EFAULT;
1893 
1894 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1895 
1896 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1897 			false);
1898 
1899 	return ret;
1900 }
1901 EXPORT_SYMBOL(vm_insert_pfn_prot);
1902 
1903 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1904 {
1905 	/* these checks mirror the abort conditions in vm_normal_page */
1906 	if (vma->vm_flags & VM_MIXEDMAP)
1907 		return true;
1908 	if (pfn_t_devmap(pfn))
1909 		return true;
1910 	if (pfn_t_special(pfn))
1911 		return true;
1912 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1913 		return true;
1914 	return false;
1915 }
1916 
1917 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1918 			pfn_t pfn, bool mkwrite)
1919 {
1920 	pgprot_t pgprot = vma->vm_page_prot;
1921 
1922 	BUG_ON(!vm_mixed_ok(vma, pfn));
1923 
1924 	if (addr < vma->vm_start || addr >= vma->vm_end)
1925 		return -EFAULT;
1926 
1927 	track_pfn_insert(vma, &pgprot, pfn);
1928 
1929 	/*
1930 	 * If we don't have pte special, then we have to use the pfn_valid()
1931 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1932 	 * refcount the page if pfn_valid is true (hence insert_page rather
1933 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1934 	 * without pte special, it would there be refcounted as a normal page.
1935 	 */
1936 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 		struct page *page;
1938 
1939 		/*
1940 		 * At this point we are committed to insert_page()
1941 		 * regardless of whether the caller specified flags that
1942 		 * result in pfn_t_has_page() == false.
1943 		 */
1944 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 		return insert_page(vma, addr, page, pgprot);
1946 	}
1947 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949 
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 			pfn_t pfn)
1952 {
1953 	return __vm_insert_mixed(vma, addr, pfn, false);
1954 
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957 
1958 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1959 			pfn_t pfn)
1960 {
1961 	return __vm_insert_mixed(vma, addr, pfn, true);
1962 }
1963 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1964 
1965 /*
1966  * maps a range of physical memory into the requested pages. the old
1967  * mappings are removed. any references to nonexistent pages results
1968  * in null mappings (currently treated as "copy-on-access")
1969  */
1970 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1971 			unsigned long addr, unsigned long end,
1972 			unsigned long pfn, pgprot_t prot)
1973 {
1974 	pte_t *pte;
1975 	spinlock_t *ptl;
1976 
1977 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1978 	if (!pte)
1979 		return -ENOMEM;
1980 	arch_enter_lazy_mmu_mode();
1981 	do {
1982 		BUG_ON(!pte_none(*pte));
1983 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1984 		pfn++;
1985 	} while (pte++, addr += PAGE_SIZE, addr != end);
1986 	arch_leave_lazy_mmu_mode();
1987 	pte_unmap_unlock(pte - 1, ptl);
1988 	return 0;
1989 }
1990 
1991 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1992 			unsigned long addr, unsigned long end,
1993 			unsigned long pfn, pgprot_t prot)
1994 {
1995 	pmd_t *pmd;
1996 	unsigned long next;
1997 
1998 	pfn -= addr >> PAGE_SHIFT;
1999 	pmd = pmd_alloc(mm, pud, addr);
2000 	if (!pmd)
2001 		return -ENOMEM;
2002 	VM_BUG_ON(pmd_trans_huge(*pmd));
2003 	do {
2004 		next = pmd_addr_end(addr, end);
2005 		if (remap_pte_range(mm, pmd, addr, next,
2006 				pfn + (addr >> PAGE_SHIFT), prot))
2007 			return -ENOMEM;
2008 	} while (pmd++, addr = next, addr != end);
2009 	return 0;
2010 }
2011 
2012 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2013 			unsigned long addr, unsigned long end,
2014 			unsigned long pfn, pgprot_t prot)
2015 {
2016 	pud_t *pud;
2017 	unsigned long next;
2018 
2019 	pfn -= addr >> PAGE_SHIFT;
2020 	pud = pud_alloc(mm, p4d, addr);
2021 	if (!pud)
2022 		return -ENOMEM;
2023 	do {
2024 		next = pud_addr_end(addr, end);
2025 		if (remap_pmd_range(mm, pud, addr, next,
2026 				pfn + (addr >> PAGE_SHIFT), prot))
2027 			return -ENOMEM;
2028 	} while (pud++, addr = next, addr != end);
2029 	return 0;
2030 }
2031 
2032 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2033 			unsigned long addr, unsigned long end,
2034 			unsigned long pfn, pgprot_t prot)
2035 {
2036 	p4d_t *p4d;
2037 	unsigned long next;
2038 
2039 	pfn -= addr >> PAGE_SHIFT;
2040 	p4d = p4d_alloc(mm, pgd, addr);
2041 	if (!p4d)
2042 		return -ENOMEM;
2043 	do {
2044 		next = p4d_addr_end(addr, end);
2045 		if (remap_pud_range(mm, p4d, addr, next,
2046 				pfn + (addr >> PAGE_SHIFT), prot))
2047 			return -ENOMEM;
2048 	} while (p4d++, addr = next, addr != end);
2049 	return 0;
2050 }
2051 
2052 /**
2053  * remap_pfn_range - remap kernel memory to userspace
2054  * @vma: user vma to map to
2055  * @addr: target user address to start at
2056  * @pfn: physical address of kernel memory
2057  * @size: size of map area
2058  * @prot: page protection flags for this mapping
2059  *
2060  *  Note: this is only safe if the mm semaphore is held when called.
2061  */
2062 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2063 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2064 {
2065 	pgd_t *pgd;
2066 	unsigned long next;
2067 	unsigned long end = addr + PAGE_ALIGN(size);
2068 	struct mm_struct *mm = vma->vm_mm;
2069 	unsigned long remap_pfn = pfn;
2070 	int err;
2071 
2072 	/*
2073 	 * Physically remapped pages are special. Tell the
2074 	 * rest of the world about it:
2075 	 *   VM_IO tells people not to look at these pages
2076 	 *	(accesses can have side effects).
2077 	 *   VM_PFNMAP tells the core MM that the base pages are just
2078 	 *	raw PFN mappings, and do not have a "struct page" associated
2079 	 *	with them.
2080 	 *   VM_DONTEXPAND
2081 	 *      Disable vma merging and expanding with mremap().
2082 	 *   VM_DONTDUMP
2083 	 *      Omit vma from core dump, even when VM_IO turned off.
2084 	 *
2085 	 * There's a horrible special case to handle copy-on-write
2086 	 * behaviour that some programs depend on. We mark the "original"
2087 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2088 	 * See vm_normal_page() for details.
2089 	 */
2090 	if (is_cow_mapping(vma->vm_flags)) {
2091 		if (addr != vma->vm_start || end != vma->vm_end)
2092 			return -EINVAL;
2093 		vma->vm_pgoff = pfn;
2094 	}
2095 
2096 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2097 	if (err)
2098 		return -EINVAL;
2099 
2100 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2101 
2102 	BUG_ON(addr >= end);
2103 	pfn -= addr >> PAGE_SHIFT;
2104 	pgd = pgd_offset(mm, addr);
2105 	flush_cache_range(vma, addr, end);
2106 	do {
2107 		next = pgd_addr_end(addr, end);
2108 		err = remap_p4d_range(mm, pgd, addr, next,
2109 				pfn + (addr >> PAGE_SHIFT), prot);
2110 		if (err)
2111 			break;
2112 	} while (pgd++, addr = next, addr != end);
2113 
2114 	if (err)
2115 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2116 
2117 	return err;
2118 }
2119 EXPORT_SYMBOL(remap_pfn_range);
2120 
2121 /**
2122  * vm_iomap_memory - remap memory to userspace
2123  * @vma: user vma to map to
2124  * @start: start of area
2125  * @len: size of area
2126  *
2127  * This is a simplified io_remap_pfn_range() for common driver use. The
2128  * driver just needs to give us the physical memory range to be mapped,
2129  * we'll figure out the rest from the vma information.
2130  *
2131  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2132  * whatever write-combining details or similar.
2133  */
2134 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2135 {
2136 	unsigned long vm_len, pfn, pages;
2137 
2138 	/* Check that the physical memory area passed in looks valid */
2139 	if (start + len < start)
2140 		return -EINVAL;
2141 	/*
2142 	 * You *really* shouldn't map things that aren't page-aligned,
2143 	 * but we've historically allowed it because IO memory might
2144 	 * just have smaller alignment.
2145 	 */
2146 	len += start & ~PAGE_MASK;
2147 	pfn = start >> PAGE_SHIFT;
2148 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2149 	if (pfn + pages < pfn)
2150 		return -EINVAL;
2151 
2152 	/* We start the mapping 'vm_pgoff' pages into the area */
2153 	if (vma->vm_pgoff > pages)
2154 		return -EINVAL;
2155 	pfn += vma->vm_pgoff;
2156 	pages -= vma->vm_pgoff;
2157 
2158 	/* Can we fit all of the mapping? */
2159 	vm_len = vma->vm_end - vma->vm_start;
2160 	if (vm_len >> PAGE_SHIFT > pages)
2161 		return -EINVAL;
2162 
2163 	/* Ok, let it rip */
2164 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2165 }
2166 EXPORT_SYMBOL(vm_iomap_memory);
2167 
2168 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2169 				     unsigned long addr, unsigned long end,
2170 				     pte_fn_t fn, void *data)
2171 {
2172 	pte_t *pte;
2173 	int err;
2174 	pgtable_t token;
2175 	spinlock_t *uninitialized_var(ptl);
2176 
2177 	pte = (mm == &init_mm) ?
2178 		pte_alloc_kernel(pmd, addr) :
2179 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2180 	if (!pte)
2181 		return -ENOMEM;
2182 
2183 	BUG_ON(pmd_huge(*pmd));
2184 
2185 	arch_enter_lazy_mmu_mode();
2186 
2187 	token = pmd_pgtable(*pmd);
2188 
2189 	do {
2190 		err = fn(pte++, token, addr, data);
2191 		if (err)
2192 			break;
2193 	} while (addr += PAGE_SIZE, addr != end);
2194 
2195 	arch_leave_lazy_mmu_mode();
2196 
2197 	if (mm != &init_mm)
2198 		pte_unmap_unlock(pte-1, ptl);
2199 	return err;
2200 }
2201 
2202 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2203 				     unsigned long addr, unsigned long end,
2204 				     pte_fn_t fn, void *data)
2205 {
2206 	pmd_t *pmd;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	BUG_ON(pud_huge(*pud));
2211 
2212 	pmd = pmd_alloc(mm, pud, addr);
2213 	if (!pmd)
2214 		return -ENOMEM;
2215 	do {
2216 		next = pmd_addr_end(addr, end);
2217 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2218 		if (err)
2219 			break;
2220 	} while (pmd++, addr = next, addr != end);
2221 	return err;
2222 }
2223 
2224 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2225 				     unsigned long addr, unsigned long end,
2226 				     pte_fn_t fn, void *data)
2227 {
2228 	pud_t *pud;
2229 	unsigned long next;
2230 	int err;
2231 
2232 	pud = pud_alloc(mm, p4d, addr);
2233 	if (!pud)
2234 		return -ENOMEM;
2235 	do {
2236 		next = pud_addr_end(addr, end);
2237 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2238 		if (err)
2239 			break;
2240 	} while (pud++, addr = next, addr != end);
2241 	return err;
2242 }
2243 
2244 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2245 				     unsigned long addr, unsigned long end,
2246 				     pte_fn_t fn, void *data)
2247 {
2248 	p4d_t *p4d;
2249 	unsigned long next;
2250 	int err;
2251 
2252 	p4d = p4d_alloc(mm, pgd, addr);
2253 	if (!p4d)
2254 		return -ENOMEM;
2255 	do {
2256 		next = p4d_addr_end(addr, end);
2257 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2258 		if (err)
2259 			break;
2260 	} while (p4d++, addr = next, addr != end);
2261 	return err;
2262 }
2263 
2264 /*
2265  * Scan a region of virtual memory, filling in page tables as necessary
2266  * and calling a provided function on each leaf page table.
2267  */
2268 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2269 			unsigned long size, pte_fn_t fn, void *data)
2270 {
2271 	pgd_t *pgd;
2272 	unsigned long next;
2273 	unsigned long end = addr + size;
2274 	int err;
2275 
2276 	if (WARN_ON(addr >= end))
2277 		return -EINVAL;
2278 
2279 	pgd = pgd_offset(mm, addr);
2280 	do {
2281 		next = pgd_addr_end(addr, end);
2282 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2283 		if (err)
2284 			break;
2285 	} while (pgd++, addr = next, addr != end);
2286 
2287 	return err;
2288 }
2289 EXPORT_SYMBOL_GPL(apply_to_page_range);
2290 
2291 /*
2292  * handle_pte_fault chooses page fault handler according to an entry which was
2293  * read non-atomically.  Before making any commitment, on those architectures
2294  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2295  * parts, do_swap_page must check under lock before unmapping the pte and
2296  * proceeding (but do_wp_page is only called after already making such a check;
2297  * and do_anonymous_page can safely check later on).
2298  */
2299 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2300 				pte_t *page_table, pte_t orig_pte)
2301 {
2302 	int same = 1;
2303 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2304 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2305 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2306 		spin_lock(ptl);
2307 		same = pte_same(*page_table, orig_pte);
2308 		spin_unlock(ptl);
2309 	}
2310 #endif
2311 	pte_unmap(page_table);
2312 	return same;
2313 }
2314 
2315 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2316 {
2317 	debug_dma_assert_idle(src);
2318 
2319 	/*
2320 	 * If the source page was a PFN mapping, we don't have
2321 	 * a "struct page" for it. We do a best-effort copy by
2322 	 * just copying from the original user address. If that
2323 	 * fails, we just zero-fill it. Live with it.
2324 	 */
2325 	if (unlikely(!src)) {
2326 		void *kaddr = kmap_atomic(dst);
2327 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2328 
2329 		/*
2330 		 * This really shouldn't fail, because the page is there
2331 		 * in the page tables. But it might just be unreadable,
2332 		 * in which case we just give up and fill the result with
2333 		 * zeroes.
2334 		 */
2335 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2336 			clear_page(kaddr);
2337 		kunmap_atomic(kaddr);
2338 		flush_dcache_page(dst);
2339 	} else
2340 		copy_user_highpage(dst, src, va, vma);
2341 }
2342 
2343 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2344 {
2345 	struct file *vm_file = vma->vm_file;
2346 
2347 	if (vm_file)
2348 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2349 
2350 	/*
2351 	 * Special mappings (e.g. VDSO) do not have any file so fake
2352 	 * a default GFP_KERNEL for them.
2353 	 */
2354 	return GFP_KERNEL;
2355 }
2356 
2357 /*
2358  * Notify the address space that the page is about to become writable so that
2359  * it can prohibit this or wait for the page to get into an appropriate state.
2360  *
2361  * We do this without the lock held, so that it can sleep if it needs to.
2362  */
2363 static int do_page_mkwrite(struct vm_fault *vmf)
2364 {
2365 	int ret;
2366 	struct page *page = vmf->page;
2367 	unsigned int old_flags = vmf->flags;
2368 
2369 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2370 
2371 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2372 	/* Restore original flags so that caller is not surprised */
2373 	vmf->flags = old_flags;
2374 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2375 		return ret;
2376 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2377 		lock_page(page);
2378 		if (!page->mapping) {
2379 			unlock_page(page);
2380 			return 0; /* retry */
2381 		}
2382 		ret |= VM_FAULT_LOCKED;
2383 	} else
2384 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2385 	return ret;
2386 }
2387 
2388 /*
2389  * Handle dirtying of a page in shared file mapping on a write fault.
2390  *
2391  * The function expects the page to be locked and unlocks it.
2392  */
2393 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2394 				    struct page *page)
2395 {
2396 	struct address_space *mapping;
2397 	bool dirtied;
2398 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2399 
2400 	dirtied = set_page_dirty(page);
2401 	VM_BUG_ON_PAGE(PageAnon(page), page);
2402 	/*
2403 	 * Take a local copy of the address_space - page.mapping may be zeroed
2404 	 * by truncate after unlock_page().   The address_space itself remains
2405 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2406 	 * release semantics to prevent the compiler from undoing this copying.
2407 	 */
2408 	mapping = page_rmapping(page);
2409 	unlock_page(page);
2410 
2411 	if ((dirtied || page_mkwrite) && mapping) {
2412 		/*
2413 		 * Some device drivers do not set page.mapping
2414 		 * but still dirty their pages
2415 		 */
2416 		balance_dirty_pages_ratelimited(mapping);
2417 	}
2418 
2419 	if (!page_mkwrite)
2420 		file_update_time(vma->vm_file);
2421 }
2422 
2423 /*
2424  * Handle write page faults for pages that can be reused in the current vma
2425  *
2426  * This can happen either due to the mapping being with the VM_SHARED flag,
2427  * or due to us being the last reference standing to the page. In either
2428  * case, all we need to do here is to mark the page as writable and update
2429  * any related book-keeping.
2430  */
2431 static inline void wp_page_reuse(struct vm_fault *vmf)
2432 	__releases(vmf->ptl)
2433 {
2434 	struct vm_area_struct *vma = vmf->vma;
2435 	struct page *page = vmf->page;
2436 	pte_t entry;
2437 	/*
2438 	 * Clear the pages cpupid information as the existing
2439 	 * information potentially belongs to a now completely
2440 	 * unrelated process.
2441 	 */
2442 	if (page)
2443 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2444 
2445 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2446 	entry = pte_mkyoung(vmf->orig_pte);
2447 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2448 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2449 		update_mmu_cache(vma, vmf->address, vmf->pte);
2450 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2451 }
2452 
2453 /*
2454  * Handle the case of a page which we actually need to copy to a new page.
2455  *
2456  * Called with mmap_sem locked and the old page referenced, but
2457  * without the ptl held.
2458  *
2459  * High level logic flow:
2460  *
2461  * - Allocate a page, copy the content of the old page to the new one.
2462  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2463  * - Take the PTL. If the pte changed, bail out and release the allocated page
2464  * - If the pte is still the way we remember it, update the page table and all
2465  *   relevant references. This includes dropping the reference the page-table
2466  *   held to the old page, as well as updating the rmap.
2467  * - In any case, unlock the PTL and drop the reference we took to the old page.
2468  */
2469 static int wp_page_copy(struct vm_fault *vmf)
2470 {
2471 	struct vm_area_struct *vma = vmf->vma;
2472 	struct mm_struct *mm = vma->vm_mm;
2473 	struct page *old_page = vmf->page;
2474 	struct page *new_page = NULL;
2475 	pte_t entry;
2476 	int page_copied = 0;
2477 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2478 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2479 	struct mem_cgroup *memcg;
2480 
2481 	if (unlikely(anon_vma_prepare(vma)))
2482 		goto oom;
2483 
2484 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2485 		new_page = alloc_zeroed_user_highpage_movable(vma,
2486 							      vmf->address);
2487 		if (!new_page)
2488 			goto oom;
2489 	} else {
2490 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2491 				vmf->address);
2492 		if (!new_page)
2493 			goto oom;
2494 		cow_user_page(new_page, old_page, vmf->address, vma);
2495 	}
2496 
2497 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2498 		goto oom_free_new;
2499 
2500 	__SetPageUptodate(new_page);
2501 
2502 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2503 
2504 	/*
2505 	 * Re-check the pte - we dropped the lock
2506 	 */
2507 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2508 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2509 		if (old_page) {
2510 			if (!PageAnon(old_page)) {
2511 				dec_mm_counter_fast(mm,
2512 						mm_counter_file(old_page));
2513 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2514 			}
2515 		} else {
2516 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2517 		}
2518 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2519 		entry = mk_pte(new_page, vma->vm_page_prot);
2520 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2521 		/*
2522 		 * Clear the pte entry and flush it first, before updating the
2523 		 * pte with the new entry. This will avoid a race condition
2524 		 * seen in the presence of one thread doing SMC and another
2525 		 * thread doing COW.
2526 		 */
2527 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2528 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2529 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2530 		lru_cache_add_active_or_unevictable(new_page, vma);
2531 		/*
2532 		 * We call the notify macro here because, when using secondary
2533 		 * mmu page tables (such as kvm shadow page tables), we want the
2534 		 * new page to be mapped directly into the secondary page table.
2535 		 */
2536 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2537 		update_mmu_cache(vma, vmf->address, vmf->pte);
2538 		if (old_page) {
2539 			/*
2540 			 * Only after switching the pte to the new page may
2541 			 * we remove the mapcount here. Otherwise another
2542 			 * process may come and find the rmap count decremented
2543 			 * before the pte is switched to the new page, and
2544 			 * "reuse" the old page writing into it while our pte
2545 			 * here still points into it and can be read by other
2546 			 * threads.
2547 			 *
2548 			 * The critical issue is to order this
2549 			 * page_remove_rmap with the ptp_clear_flush above.
2550 			 * Those stores are ordered by (if nothing else,)
2551 			 * the barrier present in the atomic_add_negative
2552 			 * in page_remove_rmap.
2553 			 *
2554 			 * Then the TLB flush in ptep_clear_flush ensures that
2555 			 * no process can access the old page before the
2556 			 * decremented mapcount is visible. And the old page
2557 			 * cannot be reused until after the decremented
2558 			 * mapcount is visible. So transitively, TLBs to
2559 			 * old page will be flushed before it can be reused.
2560 			 */
2561 			page_remove_rmap(old_page, false);
2562 		}
2563 
2564 		/* Free the old page.. */
2565 		new_page = old_page;
2566 		page_copied = 1;
2567 	} else {
2568 		mem_cgroup_cancel_charge(new_page, memcg, false);
2569 	}
2570 
2571 	if (new_page)
2572 		put_page(new_page);
2573 
2574 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2575 	/*
2576 	 * No need to double call mmu_notifier->invalidate_range() callback as
2577 	 * the above ptep_clear_flush_notify() did already call it.
2578 	 */
2579 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2580 	if (old_page) {
2581 		/*
2582 		 * Don't let another task, with possibly unlocked vma,
2583 		 * keep the mlocked page.
2584 		 */
2585 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2586 			lock_page(old_page);	/* LRU manipulation */
2587 			if (PageMlocked(old_page))
2588 				munlock_vma_page(old_page);
2589 			unlock_page(old_page);
2590 		}
2591 		put_page(old_page);
2592 	}
2593 	return page_copied ? VM_FAULT_WRITE : 0;
2594 oom_free_new:
2595 	put_page(new_page);
2596 oom:
2597 	if (old_page)
2598 		put_page(old_page);
2599 	return VM_FAULT_OOM;
2600 }
2601 
2602 /**
2603  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2604  *			  writeable once the page is prepared
2605  *
2606  * @vmf: structure describing the fault
2607  *
2608  * This function handles all that is needed to finish a write page fault in a
2609  * shared mapping due to PTE being read-only once the mapped page is prepared.
2610  * It handles locking of PTE and modifying it. The function returns
2611  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2612  * lock.
2613  *
2614  * The function expects the page to be locked or other protection against
2615  * concurrent faults / writeback (such as DAX radix tree locks).
2616  */
2617 int finish_mkwrite_fault(struct vm_fault *vmf)
2618 {
2619 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2620 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2621 				       &vmf->ptl);
2622 	/*
2623 	 * We might have raced with another page fault while we released the
2624 	 * pte_offset_map_lock.
2625 	 */
2626 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2627 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 		return VM_FAULT_NOPAGE;
2629 	}
2630 	wp_page_reuse(vmf);
2631 	return 0;
2632 }
2633 
2634 /*
2635  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2636  * mapping
2637  */
2638 static int wp_pfn_shared(struct vm_fault *vmf)
2639 {
2640 	struct vm_area_struct *vma = vmf->vma;
2641 
2642 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2643 		int ret;
2644 
2645 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2646 		vmf->flags |= FAULT_FLAG_MKWRITE;
2647 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2648 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2649 			return ret;
2650 		return finish_mkwrite_fault(vmf);
2651 	}
2652 	wp_page_reuse(vmf);
2653 	return VM_FAULT_WRITE;
2654 }
2655 
2656 static int wp_page_shared(struct vm_fault *vmf)
2657 	__releases(vmf->ptl)
2658 {
2659 	struct vm_area_struct *vma = vmf->vma;
2660 
2661 	get_page(vmf->page);
2662 
2663 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2664 		int tmp;
2665 
2666 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2667 		tmp = do_page_mkwrite(vmf);
2668 		if (unlikely(!tmp || (tmp &
2669 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2670 			put_page(vmf->page);
2671 			return tmp;
2672 		}
2673 		tmp = finish_mkwrite_fault(vmf);
2674 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2675 			unlock_page(vmf->page);
2676 			put_page(vmf->page);
2677 			return tmp;
2678 		}
2679 	} else {
2680 		wp_page_reuse(vmf);
2681 		lock_page(vmf->page);
2682 	}
2683 	fault_dirty_shared_page(vma, vmf->page);
2684 	put_page(vmf->page);
2685 
2686 	return VM_FAULT_WRITE;
2687 }
2688 
2689 /*
2690  * This routine handles present pages, when users try to write
2691  * to a shared page. It is done by copying the page to a new address
2692  * and decrementing the shared-page counter for the old page.
2693  *
2694  * Note that this routine assumes that the protection checks have been
2695  * done by the caller (the low-level page fault routine in most cases).
2696  * Thus we can safely just mark it writable once we've done any necessary
2697  * COW.
2698  *
2699  * We also mark the page dirty at this point even though the page will
2700  * change only once the write actually happens. This avoids a few races,
2701  * and potentially makes it more efficient.
2702  *
2703  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2704  * but allow concurrent faults), with pte both mapped and locked.
2705  * We return with mmap_sem still held, but pte unmapped and unlocked.
2706  */
2707 static int do_wp_page(struct vm_fault *vmf)
2708 	__releases(vmf->ptl)
2709 {
2710 	struct vm_area_struct *vma = vmf->vma;
2711 
2712 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2713 	if (!vmf->page) {
2714 		/*
2715 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2716 		 * VM_PFNMAP VMA.
2717 		 *
2718 		 * We should not cow pages in a shared writeable mapping.
2719 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2720 		 */
2721 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2722 				     (VM_WRITE|VM_SHARED))
2723 			return wp_pfn_shared(vmf);
2724 
2725 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2726 		return wp_page_copy(vmf);
2727 	}
2728 
2729 	/*
2730 	 * Take out anonymous pages first, anonymous shared vmas are
2731 	 * not dirty accountable.
2732 	 */
2733 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2734 		int total_map_swapcount;
2735 		if (!trylock_page(vmf->page)) {
2736 			get_page(vmf->page);
2737 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2738 			lock_page(vmf->page);
2739 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2740 					vmf->address, &vmf->ptl);
2741 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2742 				unlock_page(vmf->page);
2743 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 				put_page(vmf->page);
2745 				return 0;
2746 			}
2747 			put_page(vmf->page);
2748 		}
2749 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2750 			if (total_map_swapcount == 1) {
2751 				/*
2752 				 * The page is all ours. Move it to
2753 				 * our anon_vma so the rmap code will
2754 				 * not search our parent or siblings.
2755 				 * Protected against the rmap code by
2756 				 * the page lock.
2757 				 */
2758 				page_move_anon_rmap(vmf->page, vma);
2759 			}
2760 			unlock_page(vmf->page);
2761 			wp_page_reuse(vmf);
2762 			return VM_FAULT_WRITE;
2763 		}
2764 		unlock_page(vmf->page);
2765 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2766 					(VM_WRITE|VM_SHARED))) {
2767 		return wp_page_shared(vmf);
2768 	}
2769 
2770 	/*
2771 	 * Ok, we need to copy. Oh, well..
2772 	 */
2773 	get_page(vmf->page);
2774 
2775 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2776 	return wp_page_copy(vmf);
2777 }
2778 
2779 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2780 		unsigned long start_addr, unsigned long end_addr,
2781 		struct zap_details *details)
2782 {
2783 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2784 }
2785 
2786 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2787 					    struct zap_details *details)
2788 {
2789 	struct vm_area_struct *vma;
2790 	pgoff_t vba, vea, zba, zea;
2791 
2792 	vma_interval_tree_foreach(vma, root,
2793 			details->first_index, details->last_index) {
2794 
2795 		vba = vma->vm_pgoff;
2796 		vea = vba + vma_pages(vma) - 1;
2797 		zba = details->first_index;
2798 		if (zba < vba)
2799 			zba = vba;
2800 		zea = details->last_index;
2801 		if (zea > vea)
2802 			zea = vea;
2803 
2804 		unmap_mapping_range_vma(vma,
2805 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2806 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2807 				details);
2808 	}
2809 }
2810 
2811 /**
2812  * unmap_mapping_pages() - Unmap pages from processes.
2813  * @mapping: The address space containing pages to be unmapped.
2814  * @start: Index of first page to be unmapped.
2815  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2816  * @even_cows: Whether to unmap even private COWed pages.
2817  *
2818  * Unmap the pages in this address space from any userspace process which
2819  * has them mmaped.  Generally, you want to remove COWed pages as well when
2820  * a file is being truncated, but not when invalidating pages from the page
2821  * cache.
2822  */
2823 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2824 		pgoff_t nr, bool even_cows)
2825 {
2826 	struct zap_details details = { };
2827 
2828 	details.check_mapping = even_cows ? NULL : mapping;
2829 	details.first_index = start;
2830 	details.last_index = start + nr - 1;
2831 	if (details.last_index < details.first_index)
2832 		details.last_index = ULONG_MAX;
2833 
2834 	i_mmap_lock_write(mapping);
2835 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2836 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2837 	i_mmap_unlock_write(mapping);
2838 }
2839 
2840 /**
2841  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2842  * address_space corresponding to the specified byte range in the underlying
2843  * file.
2844  *
2845  * @mapping: the address space containing mmaps to be unmapped.
2846  * @holebegin: byte in first page to unmap, relative to the start of
2847  * the underlying file.  This will be rounded down to a PAGE_SIZE
2848  * boundary.  Note that this is different from truncate_pagecache(), which
2849  * must keep the partial page.  In contrast, we must get rid of
2850  * partial pages.
2851  * @holelen: size of prospective hole in bytes.  This will be rounded
2852  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2853  * end of the file.
2854  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2855  * but 0 when invalidating pagecache, don't throw away private data.
2856  */
2857 void unmap_mapping_range(struct address_space *mapping,
2858 		loff_t const holebegin, loff_t const holelen, int even_cows)
2859 {
2860 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2861 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 
2863 	/* Check for overflow. */
2864 	if (sizeof(holelen) > sizeof(hlen)) {
2865 		long long holeend =
2866 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867 		if (holeend & ~(long long)ULONG_MAX)
2868 			hlen = ULONG_MAX - hba + 1;
2869 	}
2870 
2871 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874 
2875 /*
2876  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877  * but allow concurrent faults), and pte mapped but not yet locked.
2878  * We return with pte unmapped and unlocked.
2879  *
2880  * We return with the mmap_sem locked or unlocked in the same cases
2881  * as does filemap_fault().
2882  */
2883 int do_swap_page(struct vm_fault *vmf)
2884 {
2885 	struct vm_area_struct *vma = vmf->vma;
2886 	struct page *page = NULL, *swapcache;
2887 	struct mem_cgroup *memcg;
2888 	swp_entry_t entry;
2889 	pte_t pte;
2890 	int locked;
2891 	int exclusive = 0;
2892 	int ret = 0;
2893 
2894 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2895 		goto out;
2896 
2897 	entry = pte_to_swp_entry(vmf->orig_pte);
2898 	if (unlikely(non_swap_entry(entry))) {
2899 		if (is_migration_entry(entry)) {
2900 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2901 					     vmf->address);
2902 		} else if (is_device_private_entry(entry)) {
2903 			/*
2904 			 * For un-addressable device memory we call the pgmap
2905 			 * fault handler callback. The callback must migrate
2906 			 * the page back to some CPU accessible page.
2907 			 */
2908 			ret = device_private_entry_fault(vma, vmf->address, entry,
2909 						 vmf->flags, vmf->pmd);
2910 		} else if (is_hwpoison_entry(entry)) {
2911 			ret = VM_FAULT_HWPOISON;
2912 		} else {
2913 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914 			ret = VM_FAULT_SIGBUS;
2915 		}
2916 		goto out;
2917 	}
2918 
2919 
2920 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921 	page = lookup_swap_cache(entry, vma, vmf->address);
2922 	swapcache = page;
2923 
2924 	if (!page) {
2925 		struct swap_info_struct *si = swp_swap_info(entry);
2926 
2927 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2928 				__swap_count(si, entry) == 1) {
2929 			/* skip swapcache */
2930 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2931 							vmf->address);
2932 			if (page) {
2933 				__SetPageLocked(page);
2934 				__SetPageSwapBacked(page);
2935 				set_page_private(page, entry.val);
2936 				lru_cache_add_anon(page);
2937 				swap_readpage(page, true);
2938 			}
2939 		} else {
2940 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2941 						vmf);
2942 			swapcache = page;
2943 		}
2944 
2945 		if (!page) {
2946 			/*
2947 			 * Back out if somebody else faulted in this pte
2948 			 * while we released the pte lock.
2949 			 */
2950 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2951 					vmf->address, &vmf->ptl);
2952 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2953 				ret = VM_FAULT_OOM;
2954 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955 			goto unlock;
2956 		}
2957 
2958 		/* Had to read the page from swap area: Major fault */
2959 		ret = VM_FAULT_MAJOR;
2960 		count_vm_event(PGMAJFAULT);
2961 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2962 	} else if (PageHWPoison(page)) {
2963 		/*
2964 		 * hwpoisoned dirty swapcache pages are kept for killing
2965 		 * owner processes (which may be unknown at hwpoison time)
2966 		 */
2967 		ret = VM_FAULT_HWPOISON;
2968 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2969 		goto out_release;
2970 	}
2971 
2972 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2973 
2974 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975 	if (!locked) {
2976 		ret |= VM_FAULT_RETRY;
2977 		goto out_release;
2978 	}
2979 
2980 	/*
2981 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2982 	 * release the swapcache from under us.  The page pin, and pte_same
2983 	 * test below, are not enough to exclude that.  Even if it is still
2984 	 * swapcache, we need to check that the page's swap has not changed.
2985 	 */
2986 	if (unlikely((!PageSwapCache(page) ||
2987 			page_private(page) != entry.val)) && swapcache)
2988 		goto out_page;
2989 
2990 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2991 	if (unlikely(!page)) {
2992 		ret = VM_FAULT_OOM;
2993 		page = swapcache;
2994 		goto out_page;
2995 	}
2996 
2997 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2998 				&memcg, false)) {
2999 		ret = VM_FAULT_OOM;
3000 		goto out_page;
3001 	}
3002 
3003 	/*
3004 	 * Back out if somebody else already faulted in this pte.
3005 	 */
3006 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3007 			&vmf->ptl);
3008 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3009 		goto out_nomap;
3010 
3011 	if (unlikely(!PageUptodate(page))) {
3012 		ret = VM_FAULT_SIGBUS;
3013 		goto out_nomap;
3014 	}
3015 
3016 	/*
3017 	 * The page isn't present yet, go ahead with the fault.
3018 	 *
3019 	 * Be careful about the sequence of operations here.
3020 	 * To get its accounting right, reuse_swap_page() must be called
3021 	 * while the page is counted on swap but not yet in mapcount i.e.
3022 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023 	 * must be called after the swap_free(), or it will never succeed.
3024 	 */
3025 
3026 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3027 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3028 	pte = mk_pte(page, vma->vm_page_prot);
3029 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3030 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3031 		vmf->flags &= ~FAULT_FLAG_WRITE;
3032 		ret |= VM_FAULT_WRITE;
3033 		exclusive = RMAP_EXCLUSIVE;
3034 	}
3035 	flush_icache_page(vma, page);
3036 	if (pte_swp_soft_dirty(vmf->orig_pte))
3037 		pte = pte_mksoft_dirty(pte);
3038 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3039 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3040 	vmf->orig_pte = pte;
3041 
3042 	/* ksm created a completely new copy */
3043 	if (unlikely(page != swapcache && swapcache)) {
3044 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3045 		mem_cgroup_commit_charge(page, memcg, false, false);
3046 		lru_cache_add_active_or_unevictable(page, vma);
3047 	} else {
3048 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3049 		mem_cgroup_commit_charge(page, memcg, true, false);
3050 		activate_page(page);
3051 	}
3052 
3053 	swap_free(entry);
3054 	if (mem_cgroup_swap_full(page) ||
3055 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3056 		try_to_free_swap(page);
3057 	unlock_page(page);
3058 	if (page != swapcache && swapcache) {
3059 		/*
3060 		 * Hold the lock to avoid the swap entry to be reused
3061 		 * until we take the PT lock for the pte_same() check
3062 		 * (to avoid false positives from pte_same). For
3063 		 * further safety release the lock after the swap_free
3064 		 * so that the swap count won't change under a
3065 		 * parallel locked swapcache.
3066 		 */
3067 		unlock_page(swapcache);
3068 		put_page(swapcache);
3069 	}
3070 
3071 	if (vmf->flags & FAULT_FLAG_WRITE) {
3072 		ret |= do_wp_page(vmf);
3073 		if (ret & VM_FAULT_ERROR)
3074 			ret &= VM_FAULT_ERROR;
3075 		goto out;
3076 	}
3077 
3078 	/* No need to invalidate - it was non-present before */
3079 	update_mmu_cache(vma, vmf->address, vmf->pte);
3080 unlock:
3081 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3082 out:
3083 	return ret;
3084 out_nomap:
3085 	mem_cgroup_cancel_charge(page, memcg, false);
3086 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3087 out_page:
3088 	unlock_page(page);
3089 out_release:
3090 	put_page(page);
3091 	if (page != swapcache && swapcache) {
3092 		unlock_page(swapcache);
3093 		put_page(swapcache);
3094 	}
3095 	return ret;
3096 }
3097 
3098 /*
3099  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3100  * but allow concurrent faults), and pte mapped but not yet locked.
3101  * We return with mmap_sem still held, but pte unmapped and unlocked.
3102  */
3103 static int do_anonymous_page(struct vm_fault *vmf)
3104 {
3105 	struct vm_area_struct *vma = vmf->vma;
3106 	struct mem_cgroup *memcg;
3107 	struct page *page;
3108 	int ret = 0;
3109 	pte_t entry;
3110 
3111 	/* File mapping without ->vm_ops ? */
3112 	if (vma->vm_flags & VM_SHARED)
3113 		return VM_FAULT_SIGBUS;
3114 
3115 	/*
3116 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3117 	 * pte_offset_map() on pmds where a huge pmd might be created
3118 	 * from a different thread.
3119 	 *
3120 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3121 	 * parallel threads are excluded by other means.
3122 	 *
3123 	 * Here we only have down_read(mmap_sem).
3124 	 */
3125 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3126 		return VM_FAULT_OOM;
3127 
3128 	/* See the comment in pte_alloc_one_map() */
3129 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3130 		return 0;
3131 
3132 	/* Use the zero-page for reads */
3133 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3134 			!mm_forbids_zeropage(vma->vm_mm)) {
3135 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3136 						vma->vm_page_prot));
3137 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3138 				vmf->address, &vmf->ptl);
3139 		if (!pte_none(*vmf->pte))
3140 			goto unlock;
3141 		ret = check_stable_address_space(vma->vm_mm);
3142 		if (ret)
3143 			goto unlock;
3144 		/* Deliver the page fault to userland, check inside PT lock */
3145 		if (userfaultfd_missing(vma)) {
3146 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3147 			return handle_userfault(vmf, VM_UFFD_MISSING);
3148 		}
3149 		goto setpte;
3150 	}
3151 
3152 	/* Allocate our own private page. */
3153 	if (unlikely(anon_vma_prepare(vma)))
3154 		goto oom;
3155 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3156 	if (!page)
3157 		goto oom;
3158 
3159 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3160 		goto oom_free_page;
3161 
3162 	/*
3163 	 * The memory barrier inside __SetPageUptodate makes sure that
3164 	 * preceeding stores to the page contents become visible before
3165 	 * the set_pte_at() write.
3166 	 */
3167 	__SetPageUptodate(page);
3168 
3169 	entry = mk_pte(page, vma->vm_page_prot);
3170 	if (vma->vm_flags & VM_WRITE)
3171 		entry = pte_mkwrite(pte_mkdirty(entry));
3172 
3173 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3174 			&vmf->ptl);
3175 	if (!pte_none(*vmf->pte))
3176 		goto release;
3177 
3178 	ret = check_stable_address_space(vma->vm_mm);
3179 	if (ret)
3180 		goto release;
3181 
3182 	/* Deliver the page fault to userland, check inside PT lock */
3183 	if (userfaultfd_missing(vma)) {
3184 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3185 		mem_cgroup_cancel_charge(page, memcg, false);
3186 		put_page(page);
3187 		return handle_userfault(vmf, VM_UFFD_MISSING);
3188 	}
3189 
3190 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3191 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3192 	mem_cgroup_commit_charge(page, memcg, false, false);
3193 	lru_cache_add_active_or_unevictable(page, vma);
3194 setpte:
3195 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3196 
3197 	/* No need to invalidate - it was non-present before */
3198 	update_mmu_cache(vma, vmf->address, vmf->pte);
3199 unlock:
3200 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3201 	return ret;
3202 release:
3203 	mem_cgroup_cancel_charge(page, memcg, false);
3204 	put_page(page);
3205 	goto unlock;
3206 oom_free_page:
3207 	put_page(page);
3208 oom:
3209 	return VM_FAULT_OOM;
3210 }
3211 
3212 /*
3213  * The mmap_sem must have been held on entry, and may have been
3214  * released depending on flags and vma->vm_ops->fault() return value.
3215  * See filemap_fault() and __lock_page_retry().
3216  */
3217 static int __do_fault(struct vm_fault *vmf)
3218 {
3219 	struct vm_area_struct *vma = vmf->vma;
3220 	int ret;
3221 
3222 	ret = vma->vm_ops->fault(vmf);
3223 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3224 			    VM_FAULT_DONE_COW)))
3225 		return ret;
3226 
3227 	if (unlikely(PageHWPoison(vmf->page))) {
3228 		if (ret & VM_FAULT_LOCKED)
3229 			unlock_page(vmf->page);
3230 		put_page(vmf->page);
3231 		vmf->page = NULL;
3232 		return VM_FAULT_HWPOISON;
3233 	}
3234 
3235 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3236 		lock_page(vmf->page);
3237 	else
3238 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3239 
3240 	return ret;
3241 }
3242 
3243 /*
3244  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3245  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3246  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3247  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3248  */
3249 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3250 {
3251 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3252 }
3253 
3254 static int pte_alloc_one_map(struct vm_fault *vmf)
3255 {
3256 	struct vm_area_struct *vma = vmf->vma;
3257 
3258 	if (!pmd_none(*vmf->pmd))
3259 		goto map_pte;
3260 	if (vmf->prealloc_pte) {
3261 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262 		if (unlikely(!pmd_none(*vmf->pmd))) {
3263 			spin_unlock(vmf->ptl);
3264 			goto map_pte;
3265 		}
3266 
3267 		mm_inc_nr_ptes(vma->vm_mm);
3268 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3269 		spin_unlock(vmf->ptl);
3270 		vmf->prealloc_pte = NULL;
3271 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3272 		return VM_FAULT_OOM;
3273 	}
3274 map_pte:
3275 	/*
3276 	 * If a huge pmd materialized under us just retry later.  Use
3277 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3278 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3279 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3280 	 * running immediately after a huge pmd fault in a different thread of
3281 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3282 	 * All we have to ensure is that it is a regular pmd that we can walk
3283 	 * with pte_offset_map() and we can do that through an atomic read in
3284 	 * C, which is what pmd_trans_unstable() provides.
3285 	 */
3286 	if (pmd_devmap_trans_unstable(vmf->pmd))
3287 		return VM_FAULT_NOPAGE;
3288 
3289 	/*
3290 	 * At this point we know that our vmf->pmd points to a page of ptes
3291 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3292 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3293 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3294 	 * be valid and we will re-check to make sure the vmf->pte isn't
3295 	 * pte_none() under vmf->ptl protection when we return to
3296 	 * alloc_set_pte().
3297 	 */
3298 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3299 			&vmf->ptl);
3300 	return 0;
3301 }
3302 
3303 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3304 
3305 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3306 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3307 		unsigned long haddr)
3308 {
3309 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3310 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3311 		return false;
3312 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3313 		return false;
3314 	return true;
3315 }
3316 
3317 static void deposit_prealloc_pte(struct vm_fault *vmf)
3318 {
3319 	struct vm_area_struct *vma = vmf->vma;
3320 
3321 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3322 	/*
3323 	 * We are going to consume the prealloc table,
3324 	 * count that as nr_ptes.
3325 	 */
3326 	mm_inc_nr_ptes(vma->vm_mm);
3327 	vmf->prealloc_pte = NULL;
3328 }
3329 
3330 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3331 {
3332 	struct vm_area_struct *vma = vmf->vma;
3333 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3334 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3335 	pmd_t entry;
3336 	int i, ret;
3337 
3338 	if (!transhuge_vma_suitable(vma, haddr))
3339 		return VM_FAULT_FALLBACK;
3340 
3341 	ret = VM_FAULT_FALLBACK;
3342 	page = compound_head(page);
3343 
3344 	/*
3345 	 * Archs like ppc64 need additonal space to store information
3346 	 * related to pte entry. Use the preallocated table for that.
3347 	 */
3348 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3349 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3350 		if (!vmf->prealloc_pte)
3351 			return VM_FAULT_OOM;
3352 		smp_wmb(); /* See comment in __pte_alloc() */
3353 	}
3354 
3355 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 	if (unlikely(!pmd_none(*vmf->pmd)))
3357 		goto out;
3358 
3359 	for (i = 0; i < HPAGE_PMD_NR; i++)
3360 		flush_icache_page(vma, page + i);
3361 
3362 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3363 	if (write)
3364 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3365 
3366 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3367 	page_add_file_rmap(page, true);
3368 	/*
3369 	 * deposit and withdraw with pmd lock held
3370 	 */
3371 	if (arch_needs_pgtable_deposit())
3372 		deposit_prealloc_pte(vmf);
3373 
3374 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3375 
3376 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3377 
3378 	/* fault is handled */
3379 	ret = 0;
3380 	count_vm_event(THP_FILE_MAPPED);
3381 out:
3382 	spin_unlock(vmf->ptl);
3383 	return ret;
3384 }
3385 #else
3386 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3387 {
3388 	BUILD_BUG();
3389 	return 0;
3390 }
3391 #endif
3392 
3393 /**
3394  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3395  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3396  *
3397  * @vmf: fault environment
3398  * @memcg: memcg to charge page (only for private mappings)
3399  * @page: page to map
3400  *
3401  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3402  * return.
3403  *
3404  * Target users are page handler itself and implementations of
3405  * vm_ops->map_pages.
3406  */
3407 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3408 		struct page *page)
3409 {
3410 	struct vm_area_struct *vma = vmf->vma;
3411 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3412 	pte_t entry;
3413 	int ret;
3414 
3415 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3416 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3417 		/* THP on COW? */
3418 		VM_BUG_ON_PAGE(memcg, page);
3419 
3420 		ret = do_set_pmd(vmf, page);
3421 		if (ret != VM_FAULT_FALLBACK)
3422 			return ret;
3423 	}
3424 
3425 	if (!vmf->pte) {
3426 		ret = pte_alloc_one_map(vmf);
3427 		if (ret)
3428 			return ret;
3429 	}
3430 
3431 	/* Re-check under ptl */
3432 	if (unlikely(!pte_none(*vmf->pte)))
3433 		return VM_FAULT_NOPAGE;
3434 
3435 	flush_icache_page(vma, page);
3436 	entry = mk_pte(page, vma->vm_page_prot);
3437 	if (write)
3438 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3439 	/* copy-on-write page */
3440 	if (write && !(vma->vm_flags & VM_SHARED)) {
3441 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3442 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3443 		mem_cgroup_commit_charge(page, memcg, false, false);
3444 		lru_cache_add_active_or_unevictable(page, vma);
3445 	} else {
3446 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3447 		page_add_file_rmap(page, false);
3448 	}
3449 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3450 
3451 	/* no need to invalidate: a not-present page won't be cached */
3452 	update_mmu_cache(vma, vmf->address, vmf->pte);
3453 
3454 	return 0;
3455 }
3456 
3457 
3458 /**
3459  * finish_fault - finish page fault once we have prepared the page to fault
3460  *
3461  * @vmf: structure describing the fault
3462  *
3463  * This function handles all that is needed to finish a page fault once the
3464  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3465  * given page, adds reverse page mapping, handles memcg charges and LRU
3466  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3467  * error.
3468  *
3469  * The function expects the page to be locked and on success it consumes a
3470  * reference of a page being mapped (for the PTE which maps it).
3471  */
3472 int finish_fault(struct vm_fault *vmf)
3473 {
3474 	struct page *page;
3475 	int ret = 0;
3476 
3477 	/* Did we COW the page? */
3478 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3479 	    !(vmf->vma->vm_flags & VM_SHARED))
3480 		page = vmf->cow_page;
3481 	else
3482 		page = vmf->page;
3483 
3484 	/*
3485 	 * check even for read faults because we might have lost our CoWed
3486 	 * page
3487 	 */
3488 	if (!(vmf->vma->vm_flags & VM_SHARED))
3489 		ret = check_stable_address_space(vmf->vma->vm_mm);
3490 	if (!ret)
3491 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3492 	if (vmf->pte)
3493 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3494 	return ret;
3495 }
3496 
3497 static unsigned long fault_around_bytes __read_mostly =
3498 	rounddown_pow_of_two(65536);
3499 
3500 #ifdef CONFIG_DEBUG_FS
3501 static int fault_around_bytes_get(void *data, u64 *val)
3502 {
3503 	*val = fault_around_bytes;
3504 	return 0;
3505 }
3506 
3507 /*
3508  * fault_around_bytes must be rounded down to the nearest page order as it's
3509  * what do_fault_around() expects to see.
3510  */
3511 static int fault_around_bytes_set(void *data, u64 val)
3512 {
3513 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3514 		return -EINVAL;
3515 	if (val > PAGE_SIZE)
3516 		fault_around_bytes = rounddown_pow_of_two(val);
3517 	else
3518 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3519 	return 0;
3520 }
3521 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3522 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3523 
3524 static int __init fault_around_debugfs(void)
3525 {
3526 	void *ret;
3527 
3528 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3529 			&fault_around_bytes_fops);
3530 	if (!ret)
3531 		pr_warn("Failed to create fault_around_bytes in debugfs");
3532 	return 0;
3533 }
3534 late_initcall(fault_around_debugfs);
3535 #endif
3536 
3537 /*
3538  * do_fault_around() tries to map few pages around the fault address. The hope
3539  * is that the pages will be needed soon and this will lower the number of
3540  * faults to handle.
3541  *
3542  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3543  * not ready to be mapped: not up-to-date, locked, etc.
3544  *
3545  * This function is called with the page table lock taken. In the split ptlock
3546  * case the page table lock only protects only those entries which belong to
3547  * the page table corresponding to the fault address.
3548  *
3549  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3550  * only once.
3551  *
3552  * fault_around_bytes defines how many bytes we'll try to map.
3553  * do_fault_around() expects it to be set to a power of two less than or equal
3554  * to PTRS_PER_PTE.
3555  *
3556  * The virtual address of the area that we map is naturally aligned to
3557  * fault_around_bytes rounded down to the machine page size
3558  * (and therefore to page order).  This way it's easier to guarantee
3559  * that we don't cross page table boundaries.
3560  */
3561 static int do_fault_around(struct vm_fault *vmf)
3562 {
3563 	unsigned long address = vmf->address, nr_pages, mask;
3564 	pgoff_t start_pgoff = vmf->pgoff;
3565 	pgoff_t end_pgoff;
3566 	int off, ret = 0;
3567 
3568 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3569 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3570 
3571 	vmf->address = max(address & mask, vmf->vma->vm_start);
3572 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3573 	start_pgoff -= off;
3574 
3575 	/*
3576 	 *  end_pgoff is either the end of the page table, the end of
3577 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3578 	 */
3579 	end_pgoff = start_pgoff -
3580 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3581 		PTRS_PER_PTE - 1;
3582 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3583 			start_pgoff + nr_pages - 1);
3584 
3585 	if (pmd_none(*vmf->pmd)) {
3586 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3587 						  vmf->address);
3588 		if (!vmf->prealloc_pte)
3589 			goto out;
3590 		smp_wmb(); /* See comment in __pte_alloc() */
3591 	}
3592 
3593 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3594 
3595 	/* Huge page is mapped? Page fault is solved */
3596 	if (pmd_trans_huge(*vmf->pmd)) {
3597 		ret = VM_FAULT_NOPAGE;
3598 		goto out;
3599 	}
3600 
3601 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3602 	if (!vmf->pte)
3603 		goto out;
3604 
3605 	/* check if the page fault is solved */
3606 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3607 	if (!pte_none(*vmf->pte))
3608 		ret = VM_FAULT_NOPAGE;
3609 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3610 out:
3611 	vmf->address = address;
3612 	vmf->pte = NULL;
3613 	return ret;
3614 }
3615 
3616 static int do_read_fault(struct vm_fault *vmf)
3617 {
3618 	struct vm_area_struct *vma = vmf->vma;
3619 	int ret = 0;
3620 
3621 	/*
3622 	 * Let's call ->map_pages() first and use ->fault() as fallback
3623 	 * if page by the offset is not ready to be mapped (cold cache or
3624 	 * something).
3625 	 */
3626 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3627 		ret = do_fault_around(vmf);
3628 		if (ret)
3629 			return ret;
3630 	}
3631 
3632 	ret = __do_fault(vmf);
3633 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3634 		return ret;
3635 
3636 	ret |= finish_fault(vmf);
3637 	unlock_page(vmf->page);
3638 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3639 		put_page(vmf->page);
3640 	return ret;
3641 }
3642 
3643 static int do_cow_fault(struct vm_fault *vmf)
3644 {
3645 	struct vm_area_struct *vma = vmf->vma;
3646 	int ret;
3647 
3648 	if (unlikely(anon_vma_prepare(vma)))
3649 		return VM_FAULT_OOM;
3650 
3651 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3652 	if (!vmf->cow_page)
3653 		return VM_FAULT_OOM;
3654 
3655 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3656 				&vmf->memcg, false)) {
3657 		put_page(vmf->cow_page);
3658 		return VM_FAULT_OOM;
3659 	}
3660 
3661 	ret = __do_fault(vmf);
3662 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 		goto uncharge_out;
3664 	if (ret & VM_FAULT_DONE_COW)
3665 		return ret;
3666 
3667 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3668 	__SetPageUptodate(vmf->cow_page);
3669 
3670 	ret |= finish_fault(vmf);
3671 	unlock_page(vmf->page);
3672 	put_page(vmf->page);
3673 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3674 		goto uncharge_out;
3675 	return ret;
3676 uncharge_out:
3677 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3678 	put_page(vmf->cow_page);
3679 	return ret;
3680 }
3681 
3682 static int do_shared_fault(struct vm_fault *vmf)
3683 {
3684 	struct vm_area_struct *vma = vmf->vma;
3685 	int ret, tmp;
3686 
3687 	ret = __do_fault(vmf);
3688 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3689 		return ret;
3690 
3691 	/*
3692 	 * Check if the backing address space wants to know that the page is
3693 	 * about to become writable
3694 	 */
3695 	if (vma->vm_ops->page_mkwrite) {
3696 		unlock_page(vmf->page);
3697 		tmp = do_page_mkwrite(vmf);
3698 		if (unlikely(!tmp ||
3699 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3700 			put_page(vmf->page);
3701 			return tmp;
3702 		}
3703 	}
3704 
3705 	ret |= finish_fault(vmf);
3706 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3707 					VM_FAULT_RETRY))) {
3708 		unlock_page(vmf->page);
3709 		put_page(vmf->page);
3710 		return ret;
3711 	}
3712 
3713 	fault_dirty_shared_page(vma, vmf->page);
3714 	return ret;
3715 }
3716 
3717 /*
3718  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3719  * but allow concurrent faults).
3720  * The mmap_sem may have been released depending on flags and our
3721  * return value.  See filemap_fault() and __lock_page_or_retry().
3722  */
3723 static int do_fault(struct vm_fault *vmf)
3724 {
3725 	struct vm_area_struct *vma = vmf->vma;
3726 	int ret;
3727 
3728 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3729 	if (!vma->vm_ops->fault)
3730 		ret = VM_FAULT_SIGBUS;
3731 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3732 		ret = do_read_fault(vmf);
3733 	else if (!(vma->vm_flags & VM_SHARED))
3734 		ret = do_cow_fault(vmf);
3735 	else
3736 		ret = do_shared_fault(vmf);
3737 
3738 	/* preallocated pagetable is unused: free it */
3739 	if (vmf->prealloc_pte) {
3740 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3741 		vmf->prealloc_pte = NULL;
3742 	}
3743 	return ret;
3744 }
3745 
3746 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3747 				unsigned long addr, int page_nid,
3748 				int *flags)
3749 {
3750 	get_page(page);
3751 
3752 	count_vm_numa_event(NUMA_HINT_FAULTS);
3753 	if (page_nid == numa_node_id()) {
3754 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3755 		*flags |= TNF_FAULT_LOCAL;
3756 	}
3757 
3758 	return mpol_misplaced(page, vma, addr);
3759 }
3760 
3761 static int do_numa_page(struct vm_fault *vmf)
3762 {
3763 	struct vm_area_struct *vma = vmf->vma;
3764 	struct page *page = NULL;
3765 	int page_nid = -1;
3766 	int last_cpupid;
3767 	int target_nid;
3768 	bool migrated = false;
3769 	pte_t pte;
3770 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3771 	int flags = 0;
3772 
3773 	/*
3774 	 * The "pte" at this point cannot be used safely without
3775 	 * validation through pte_unmap_same(). It's of NUMA type but
3776 	 * the pfn may be screwed if the read is non atomic.
3777 	 */
3778 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3779 	spin_lock(vmf->ptl);
3780 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3781 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3782 		goto out;
3783 	}
3784 
3785 	/*
3786 	 * Make it present again, Depending on how arch implementes non
3787 	 * accessible ptes, some can allow access by kernel mode.
3788 	 */
3789 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3790 	pte = pte_modify(pte, vma->vm_page_prot);
3791 	pte = pte_mkyoung(pte);
3792 	if (was_writable)
3793 		pte = pte_mkwrite(pte);
3794 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3795 	update_mmu_cache(vma, vmf->address, vmf->pte);
3796 
3797 	page = vm_normal_page(vma, vmf->address, pte);
3798 	if (!page) {
3799 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3800 		return 0;
3801 	}
3802 
3803 	/* TODO: handle PTE-mapped THP */
3804 	if (PageCompound(page)) {
3805 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 		return 0;
3807 	}
3808 
3809 	/*
3810 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3811 	 * much anyway since they can be in shared cache state. This misses
3812 	 * the case where a mapping is writable but the process never writes
3813 	 * to it but pte_write gets cleared during protection updates and
3814 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3815 	 * background writeback, dirty balancing and application behaviour.
3816 	 */
3817 	if (!pte_write(pte))
3818 		flags |= TNF_NO_GROUP;
3819 
3820 	/*
3821 	 * Flag if the page is shared between multiple address spaces. This
3822 	 * is later used when determining whether to group tasks together
3823 	 */
3824 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3825 		flags |= TNF_SHARED;
3826 
3827 	last_cpupid = page_cpupid_last(page);
3828 	page_nid = page_to_nid(page);
3829 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3830 			&flags);
3831 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3832 	if (target_nid == -1) {
3833 		put_page(page);
3834 		goto out;
3835 	}
3836 
3837 	/* Migrate to the requested node */
3838 	migrated = migrate_misplaced_page(page, vma, target_nid);
3839 	if (migrated) {
3840 		page_nid = target_nid;
3841 		flags |= TNF_MIGRATED;
3842 	} else
3843 		flags |= TNF_MIGRATE_FAIL;
3844 
3845 out:
3846 	if (page_nid != -1)
3847 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3848 	return 0;
3849 }
3850 
3851 static inline int create_huge_pmd(struct vm_fault *vmf)
3852 {
3853 	if (vma_is_anonymous(vmf->vma))
3854 		return do_huge_pmd_anonymous_page(vmf);
3855 	if (vmf->vma->vm_ops->huge_fault)
3856 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3857 	return VM_FAULT_FALLBACK;
3858 }
3859 
3860 /* `inline' is required to avoid gcc 4.1.2 build error */
3861 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3862 {
3863 	if (vma_is_anonymous(vmf->vma))
3864 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3865 	if (vmf->vma->vm_ops->huge_fault)
3866 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3867 
3868 	/* COW handled on pte level: split pmd */
3869 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3870 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3871 
3872 	return VM_FAULT_FALLBACK;
3873 }
3874 
3875 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3876 {
3877 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3878 }
3879 
3880 static int create_huge_pud(struct vm_fault *vmf)
3881 {
3882 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3883 	/* No support for anonymous transparent PUD pages yet */
3884 	if (vma_is_anonymous(vmf->vma))
3885 		return VM_FAULT_FALLBACK;
3886 	if (vmf->vma->vm_ops->huge_fault)
3887 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3889 	return VM_FAULT_FALLBACK;
3890 }
3891 
3892 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3893 {
3894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3895 	/* No support for anonymous transparent PUD pages yet */
3896 	if (vma_is_anonymous(vmf->vma))
3897 		return VM_FAULT_FALLBACK;
3898 	if (vmf->vma->vm_ops->huge_fault)
3899 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3900 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3901 	return VM_FAULT_FALLBACK;
3902 }
3903 
3904 /*
3905  * These routines also need to handle stuff like marking pages dirty
3906  * and/or accessed for architectures that don't do it in hardware (most
3907  * RISC architectures).  The early dirtying is also good on the i386.
3908  *
3909  * There is also a hook called "update_mmu_cache()" that architectures
3910  * with external mmu caches can use to update those (ie the Sparc or
3911  * PowerPC hashed page tables that act as extended TLBs).
3912  *
3913  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3914  * concurrent faults).
3915  *
3916  * The mmap_sem may have been released depending on flags and our return value.
3917  * See filemap_fault() and __lock_page_or_retry().
3918  */
3919 static int handle_pte_fault(struct vm_fault *vmf)
3920 {
3921 	pte_t entry;
3922 
3923 	if (unlikely(pmd_none(*vmf->pmd))) {
3924 		/*
3925 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3926 		 * want to allocate huge page, and if we expose page table
3927 		 * for an instant, it will be difficult to retract from
3928 		 * concurrent faults and from rmap lookups.
3929 		 */
3930 		vmf->pte = NULL;
3931 	} else {
3932 		/* See comment in pte_alloc_one_map() */
3933 		if (pmd_devmap_trans_unstable(vmf->pmd))
3934 			return 0;
3935 		/*
3936 		 * A regular pmd is established and it can't morph into a huge
3937 		 * pmd from under us anymore at this point because we hold the
3938 		 * mmap_sem read mode and khugepaged takes it in write mode.
3939 		 * So now it's safe to run pte_offset_map().
3940 		 */
3941 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3942 		vmf->orig_pte = *vmf->pte;
3943 
3944 		/*
3945 		 * some architectures can have larger ptes than wordsize,
3946 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3947 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3948 		 * accesses.  The code below just needs a consistent view
3949 		 * for the ifs and we later double check anyway with the
3950 		 * ptl lock held. So here a barrier will do.
3951 		 */
3952 		barrier();
3953 		if (pte_none(vmf->orig_pte)) {
3954 			pte_unmap(vmf->pte);
3955 			vmf->pte = NULL;
3956 		}
3957 	}
3958 
3959 	if (!vmf->pte) {
3960 		if (vma_is_anonymous(vmf->vma))
3961 			return do_anonymous_page(vmf);
3962 		else
3963 			return do_fault(vmf);
3964 	}
3965 
3966 	if (!pte_present(vmf->orig_pte))
3967 		return do_swap_page(vmf);
3968 
3969 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3970 		return do_numa_page(vmf);
3971 
3972 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3973 	spin_lock(vmf->ptl);
3974 	entry = vmf->orig_pte;
3975 	if (unlikely(!pte_same(*vmf->pte, entry)))
3976 		goto unlock;
3977 	if (vmf->flags & FAULT_FLAG_WRITE) {
3978 		if (!pte_write(entry))
3979 			return do_wp_page(vmf);
3980 		entry = pte_mkdirty(entry);
3981 	}
3982 	entry = pte_mkyoung(entry);
3983 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3984 				vmf->flags & FAULT_FLAG_WRITE)) {
3985 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3986 	} else {
3987 		/*
3988 		 * This is needed only for protection faults but the arch code
3989 		 * is not yet telling us if this is a protection fault or not.
3990 		 * This still avoids useless tlb flushes for .text page faults
3991 		 * with threads.
3992 		 */
3993 		if (vmf->flags & FAULT_FLAG_WRITE)
3994 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3995 	}
3996 unlock:
3997 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3998 	return 0;
3999 }
4000 
4001 /*
4002  * By the time we get here, we already hold the mm semaphore
4003  *
4004  * The mmap_sem may have been released depending on flags and our
4005  * return value.  See filemap_fault() and __lock_page_or_retry().
4006  */
4007 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4008 		unsigned int flags)
4009 {
4010 	struct vm_fault vmf = {
4011 		.vma = vma,
4012 		.address = address & PAGE_MASK,
4013 		.flags = flags,
4014 		.pgoff = linear_page_index(vma, address),
4015 		.gfp_mask = __get_fault_gfp_mask(vma),
4016 	};
4017 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4018 	struct mm_struct *mm = vma->vm_mm;
4019 	pgd_t *pgd;
4020 	p4d_t *p4d;
4021 	int ret;
4022 
4023 	pgd = pgd_offset(mm, address);
4024 	p4d = p4d_alloc(mm, pgd, address);
4025 	if (!p4d)
4026 		return VM_FAULT_OOM;
4027 
4028 	vmf.pud = pud_alloc(mm, p4d, address);
4029 	if (!vmf.pud)
4030 		return VM_FAULT_OOM;
4031 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4032 		ret = create_huge_pud(&vmf);
4033 		if (!(ret & VM_FAULT_FALLBACK))
4034 			return ret;
4035 	} else {
4036 		pud_t orig_pud = *vmf.pud;
4037 
4038 		barrier();
4039 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4040 
4041 			/* NUMA case for anonymous PUDs would go here */
4042 
4043 			if (dirty && !pud_write(orig_pud)) {
4044 				ret = wp_huge_pud(&vmf, orig_pud);
4045 				if (!(ret & VM_FAULT_FALLBACK))
4046 					return ret;
4047 			} else {
4048 				huge_pud_set_accessed(&vmf, orig_pud);
4049 				return 0;
4050 			}
4051 		}
4052 	}
4053 
4054 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4055 	if (!vmf.pmd)
4056 		return VM_FAULT_OOM;
4057 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4058 		ret = create_huge_pmd(&vmf);
4059 		if (!(ret & VM_FAULT_FALLBACK))
4060 			return ret;
4061 	} else {
4062 		pmd_t orig_pmd = *vmf.pmd;
4063 
4064 		barrier();
4065 		if (unlikely(is_swap_pmd(orig_pmd))) {
4066 			VM_BUG_ON(thp_migration_supported() &&
4067 					  !is_pmd_migration_entry(orig_pmd));
4068 			if (is_pmd_migration_entry(orig_pmd))
4069 				pmd_migration_entry_wait(mm, vmf.pmd);
4070 			return 0;
4071 		}
4072 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4073 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4074 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4075 
4076 			if (dirty && !pmd_write(orig_pmd)) {
4077 				ret = wp_huge_pmd(&vmf, orig_pmd);
4078 				if (!(ret & VM_FAULT_FALLBACK))
4079 					return ret;
4080 			} else {
4081 				huge_pmd_set_accessed(&vmf, orig_pmd);
4082 				return 0;
4083 			}
4084 		}
4085 	}
4086 
4087 	return handle_pte_fault(&vmf);
4088 }
4089 
4090 /*
4091  * By the time we get here, we already hold the mm semaphore
4092  *
4093  * The mmap_sem may have been released depending on flags and our
4094  * return value.  See filemap_fault() and __lock_page_or_retry().
4095  */
4096 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4097 		unsigned int flags)
4098 {
4099 	int ret;
4100 
4101 	__set_current_state(TASK_RUNNING);
4102 
4103 	count_vm_event(PGFAULT);
4104 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4105 
4106 	/* do counter updates before entering really critical section. */
4107 	check_sync_rss_stat(current);
4108 
4109 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4110 					    flags & FAULT_FLAG_INSTRUCTION,
4111 					    flags & FAULT_FLAG_REMOTE))
4112 		return VM_FAULT_SIGSEGV;
4113 
4114 	/*
4115 	 * Enable the memcg OOM handling for faults triggered in user
4116 	 * space.  Kernel faults are handled more gracefully.
4117 	 */
4118 	if (flags & FAULT_FLAG_USER)
4119 		mem_cgroup_oom_enable();
4120 
4121 	if (unlikely(is_vm_hugetlb_page(vma)))
4122 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4123 	else
4124 		ret = __handle_mm_fault(vma, address, flags);
4125 
4126 	if (flags & FAULT_FLAG_USER) {
4127 		mem_cgroup_oom_disable();
4128 		/*
4129 		 * The task may have entered a memcg OOM situation but
4130 		 * if the allocation error was handled gracefully (no
4131 		 * VM_FAULT_OOM), there is no need to kill anything.
4132 		 * Just clean up the OOM state peacefully.
4133 		 */
4134 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4135 			mem_cgroup_oom_synchronize(false);
4136 	}
4137 
4138 	return ret;
4139 }
4140 EXPORT_SYMBOL_GPL(handle_mm_fault);
4141 
4142 #ifndef __PAGETABLE_P4D_FOLDED
4143 /*
4144  * Allocate p4d page table.
4145  * We've already handled the fast-path in-line.
4146  */
4147 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4148 {
4149 	p4d_t *new = p4d_alloc_one(mm, address);
4150 	if (!new)
4151 		return -ENOMEM;
4152 
4153 	smp_wmb(); /* See comment in __pte_alloc */
4154 
4155 	spin_lock(&mm->page_table_lock);
4156 	if (pgd_present(*pgd))		/* Another has populated it */
4157 		p4d_free(mm, new);
4158 	else
4159 		pgd_populate(mm, pgd, new);
4160 	spin_unlock(&mm->page_table_lock);
4161 	return 0;
4162 }
4163 #endif /* __PAGETABLE_P4D_FOLDED */
4164 
4165 #ifndef __PAGETABLE_PUD_FOLDED
4166 /*
4167  * Allocate page upper directory.
4168  * We've already handled the fast-path in-line.
4169  */
4170 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4171 {
4172 	pud_t *new = pud_alloc_one(mm, address);
4173 	if (!new)
4174 		return -ENOMEM;
4175 
4176 	smp_wmb(); /* See comment in __pte_alloc */
4177 
4178 	spin_lock(&mm->page_table_lock);
4179 #ifndef __ARCH_HAS_5LEVEL_HACK
4180 	if (!p4d_present(*p4d)) {
4181 		mm_inc_nr_puds(mm);
4182 		p4d_populate(mm, p4d, new);
4183 	} else	/* Another has populated it */
4184 		pud_free(mm, new);
4185 #else
4186 	if (!pgd_present(*p4d)) {
4187 		mm_inc_nr_puds(mm);
4188 		pgd_populate(mm, p4d, new);
4189 	} else	/* Another has populated it */
4190 		pud_free(mm, new);
4191 #endif /* __ARCH_HAS_5LEVEL_HACK */
4192 	spin_unlock(&mm->page_table_lock);
4193 	return 0;
4194 }
4195 #endif /* __PAGETABLE_PUD_FOLDED */
4196 
4197 #ifndef __PAGETABLE_PMD_FOLDED
4198 /*
4199  * Allocate page middle directory.
4200  * We've already handled the fast-path in-line.
4201  */
4202 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4203 {
4204 	spinlock_t *ptl;
4205 	pmd_t *new = pmd_alloc_one(mm, address);
4206 	if (!new)
4207 		return -ENOMEM;
4208 
4209 	smp_wmb(); /* See comment in __pte_alloc */
4210 
4211 	ptl = pud_lock(mm, pud);
4212 #ifndef __ARCH_HAS_4LEVEL_HACK
4213 	if (!pud_present(*pud)) {
4214 		mm_inc_nr_pmds(mm);
4215 		pud_populate(mm, pud, new);
4216 	} else	/* Another has populated it */
4217 		pmd_free(mm, new);
4218 #else
4219 	if (!pgd_present(*pud)) {
4220 		mm_inc_nr_pmds(mm);
4221 		pgd_populate(mm, pud, new);
4222 	} else /* Another has populated it */
4223 		pmd_free(mm, new);
4224 #endif /* __ARCH_HAS_4LEVEL_HACK */
4225 	spin_unlock(ptl);
4226 	return 0;
4227 }
4228 #endif /* __PAGETABLE_PMD_FOLDED */
4229 
4230 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4231 			    unsigned long *start, unsigned long *end,
4232 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4233 {
4234 	pgd_t *pgd;
4235 	p4d_t *p4d;
4236 	pud_t *pud;
4237 	pmd_t *pmd;
4238 	pte_t *ptep;
4239 
4240 	pgd = pgd_offset(mm, address);
4241 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4242 		goto out;
4243 
4244 	p4d = p4d_offset(pgd, address);
4245 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4246 		goto out;
4247 
4248 	pud = pud_offset(p4d, address);
4249 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4250 		goto out;
4251 
4252 	pmd = pmd_offset(pud, address);
4253 	VM_BUG_ON(pmd_trans_huge(*pmd));
4254 
4255 	if (pmd_huge(*pmd)) {
4256 		if (!pmdpp)
4257 			goto out;
4258 
4259 		if (start && end) {
4260 			*start = address & PMD_MASK;
4261 			*end = *start + PMD_SIZE;
4262 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4263 		}
4264 		*ptlp = pmd_lock(mm, pmd);
4265 		if (pmd_huge(*pmd)) {
4266 			*pmdpp = pmd;
4267 			return 0;
4268 		}
4269 		spin_unlock(*ptlp);
4270 		if (start && end)
4271 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4272 	}
4273 
4274 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4275 		goto out;
4276 
4277 	if (start && end) {
4278 		*start = address & PAGE_MASK;
4279 		*end = *start + PAGE_SIZE;
4280 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4281 	}
4282 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4283 	if (!pte_present(*ptep))
4284 		goto unlock;
4285 	*ptepp = ptep;
4286 	return 0;
4287 unlock:
4288 	pte_unmap_unlock(ptep, *ptlp);
4289 	if (start && end)
4290 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4291 out:
4292 	return -EINVAL;
4293 }
4294 
4295 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4296 			     pte_t **ptepp, spinlock_t **ptlp)
4297 {
4298 	int res;
4299 
4300 	/* (void) is needed to make gcc happy */
4301 	(void) __cond_lock(*ptlp,
4302 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4303 						    ptepp, NULL, ptlp)));
4304 	return res;
4305 }
4306 
4307 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4308 			     unsigned long *start, unsigned long *end,
4309 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4310 {
4311 	int res;
4312 
4313 	/* (void) is needed to make gcc happy */
4314 	(void) __cond_lock(*ptlp,
4315 			   !(res = __follow_pte_pmd(mm, address, start, end,
4316 						    ptepp, pmdpp, ptlp)));
4317 	return res;
4318 }
4319 EXPORT_SYMBOL(follow_pte_pmd);
4320 
4321 /**
4322  * follow_pfn - look up PFN at a user virtual address
4323  * @vma: memory mapping
4324  * @address: user virtual address
4325  * @pfn: location to store found PFN
4326  *
4327  * Only IO mappings and raw PFN mappings are allowed.
4328  *
4329  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4330  */
4331 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4332 	unsigned long *pfn)
4333 {
4334 	int ret = -EINVAL;
4335 	spinlock_t *ptl;
4336 	pte_t *ptep;
4337 
4338 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4339 		return ret;
4340 
4341 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4342 	if (ret)
4343 		return ret;
4344 	*pfn = pte_pfn(*ptep);
4345 	pte_unmap_unlock(ptep, ptl);
4346 	return 0;
4347 }
4348 EXPORT_SYMBOL(follow_pfn);
4349 
4350 #ifdef CONFIG_HAVE_IOREMAP_PROT
4351 int follow_phys(struct vm_area_struct *vma,
4352 		unsigned long address, unsigned int flags,
4353 		unsigned long *prot, resource_size_t *phys)
4354 {
4355 	int ret = -EINVAL;
4356 	pte_t *ptep, pte;
4357 	spinlock_t *ptl;
4358 
4359 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4360 		goto out;
4361 
4362 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4363 		goto out;
4364 	pte = *ptep;
4365 
4366 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4367 		goto unlock;
4368 
4369 	*prot = pgprot_val(pte_pgprot(pte));
4370 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4371 
4372 	ret = 0;
4373 unlock:
4374 	pte_unmap_unlock(ptep, ptl);
4375 out:
4376 	return ret;
4377 }
4378 
4379 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4380 			void *buf, int len, int write)
4381 {
4382 	resource_size_t phys_addr;
4383 	unsigned long prot = 0;
4384 	void __iomem *maddr;
4385 	int offset = addr & (PAGE_SIZE-1);
4386 
4387 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4388 		return -EINVAL;
4389 
4390 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4391 	if (write)
4392 		memcpy_toio(maddr + offset, buf, len);
4393 	else
4394 		memcpy_fromio(buf, maddr + offset, len);
4395 	iounmap(maddr);
4396 
4397 	return len;
4398 }
4399 EXPORT_SYMBOL_GPL(generic_access_phys);
4400 #endif
4401 
4402 /*
4403  * Access another process' address space as given in mm.  If non-NULL, use the
4404  * given task for page fault accounting.
4405  */
4406 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4407 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4408 {
4409 	struct vm_area_struct *vma;
4410 	void *old_buf = buf;
4411 	int write = gup_flags & FOLL_WRITE;
4412 
4413 	down_read(&mm->mmap_sem);
4414 	/* ignore errors, just check how much was successfully transferred */
4415 	while (len) {
4416 		int bytes, ret, offset;
4417 		void *maddr;
4418 		struct page *page = NULL;
4419 
4420 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4421 				gup_flags, &page, &vma, NULL);
4422 		if (ret <= 0) {
4423 #ifndef CONFIG_HAVE_IOREMAP_PROT
4424 			break;
4425 #else
4426 			/*
4427 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4428 			 * we can access using slightly different code.
4429 			 */
4430 			vma = find_vma(mm, addr);
4431 			if (!vma || vma->vm_start > addr)
4432 				break;
4433 			if (vma->vm_ops && vma->vm_ops->access)
4434 				ret = vma->vm_ops->access(vma, addr, buf,
4435 							  len, write);
4436 			if (ret <= 0)
4437 				break;
4438 			bytes = ret;
4439 #endif
4440 		} else {
4441 			bytes = len;
4442 			offset = addr & (PAGE_SIZE-1);
4443 			if (bytes > PAGE_SIZE-offset)
4444 				bytes = PAGE_SIZE-offset;
4445 
4446 			maddr = kmap(page);
4447 			if (write) {
4448 				copy_to_user_page(vma, page, addr,
4449 						  maddr + offset, buf, bytes);
4450 				set_page_dirty_lock(page);
4451 			} else {
4452 				copy_from_user_page(vma, page, addr,
4453 						    buf, maddr + offset, bytes);
4454 			}
4455 			kunmap(page);
4456 			put_page(page);
4457 		}
4458 		len -= bytes;
4459 		buf += bytes;
4460 		addr += bytes;
4461 	}
4462 	up_read(&mm->mmap_sem);
4463 
4464 	return buf - old_buf;
4465 }
4466 
4467 /**
4468  * access_remote_vm - access another process' address space
4469  * @mm:		the mm_struct of the target address space
4470  * @addr:	start address to access
4471  * @buf:	source or destination buffer
4472  * @len:	number of bytes to transfer
4473  * @gup_flags:	flags modifying lookup behaviour
4474  *
4475  * The caller must hold a reference on @mm.
4476  */
4477 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4478 		void *buf, int len, unsigned int gup_flags)
4479 {
4480 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4481 }
4482 
4483 /*
4484  * Access another process' address space.
4485  * Source/target buffer must be kernel space,
4486  * Do not walk the page table directly, use get_user_pages
4487  */
4488 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4489 		void *buf, int len, unsigned int gup_flags)
4490 {
4491 	struct mm_struct *mm;
4492 	int ret;
4493 
4494 	mm = get_task_mm(tsk);
4495 	if (!mm)
4496 		return 0;
4497 
4498 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4499 
4500 	mmput(mm);
4501 
4502 	return ret;
4503 }
4504 EXPORT_SYMBOL_GPL(access_process_vm);
4505 
4506 /*
4507  * Print the name of a VMA.
4508  */
4509 void print_vma_addr(char *prefix, unsigned long ip)
4510 {
4511 	struct mm_struct *mm = current->mm;
4512 	struct vm_area_struct *vma;
4513 
4514 	/*
4515 	 * we might be running from an atomic context so we cannot sleep
4516 	 */
4517 	if (!down_read_trylock(&mm->mmap_sem))
4518 		return;
4519 
4520 	vma = find_vma(mm, ip);
4521 	if (vma && vma->vm_file) {
4522 		struct file *f = vma->vm_file;
4523 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4524 		if (buf) {
4525 			char *p;
4526 
4527 			p = file_path(f, buf, PAGE_SIZE);
4528 			if (IS_ERR(p))
4529 				p = "?";
4530 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4531 					vma->vm_start,
4532 					vma->vm_end - vma->vm_start);
4533 			free_page((unsigned long)buf);
4534 		}
4535 	}
4536 	up_read(&mm->mmap_sem);
4537 }
4538 
4539 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4540 void __might_fault(const char *file, int line)
4541 {
4542 	/*
4543 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4544 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4545 	 * get paged out, therefore we'll never actually fault, and the
4546 	 * below annotations will generate false positives.
4547 	 */
4548 	if (uaccess_kernel())
4549 		return;
4550 	if (pagefault_disabled())
4551 		return;
4552 	__might_sleep(file, line, 0);
4553 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554 	if (current->mm)
4555 		might_lock_read(&current->mm->mmap_sem);
4556 #endif
4557 }
4558 EXPORT_SYMBOL(__might_fault);
4559 #endif
4560 
4561 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4562 static void clear_gigantic_page(struct page *page,
4563 				unsigned long addr,
4564 				unsigned int pages_per_huge_page)
4565 {
4566 	int i;
4567 	struct page *p = page;
4568 
4569 	might_sleep();
4570 	for (i = 0; i < pages_per_huge_page;
4571 	     i++, p = mem_map_next(p, page, i)) {
4572 		cond_resched();
4573 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4574 	}
4575 }
4576 void clear_huge_page(struct page *page,
4577 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4578 {
4579 	int i, n, base, l;
4580 	unsigned long addr = addr_hint &
4581 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4582 
4583 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4584 		clear_gigantic_page(page, addr, pages_per_huge_page);
4585 		return;
4586 	}
4587 
4588 	/* Clear sub-page to access last to keep its cache lines hot */
4589 	might_sleep();
4590 	n = (addr_hint - addr) / PAGE_SIZE;
4591 	if (2 * n <= pages_per_huge_page) {
4592 		/* If sub-page to access in first half of huge page */
4593 		base = 0;
4594 		l = n;
4595 		/* Clear sub-pages at the end of huge page */
4596 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4597 			cond_resched();
4598 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4599 		}
4600 	} else {
4601 		/* If sub-page to access in second half of huge page */
4602 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4603 		l = pages_per_huge_page - n;
4604 		/* Clear sub-pages at the begin of huge page */
4605 		for (i = 0; i < base; i++) {
4606 			cond_resched();
4607 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4608 		}
4609 	}
4610 	/*
4611 	 * Clear remaining sub-pages in left-right-left-right pattern
4612 	 * towards the sub-page to access
4613 	 */
4614 	for (i = 0; i < l; i++) {
4615 		int left_idx = base + i;
4616 		int right_idx = base + 2 * l - 1 - i;
4617 
4618 		cond_resched();
4619 		clear_user_highpage(page + left_idx,
4620 				    addr + left_idx * PAGE_SIZE);
4621 		cond_resched();
4622 		clear_user_highpage(page + right_idx,
4623 				    addr + right_idx * PAGE_SIZE);
4624 	}
4625 }
4626 
4627 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4628 				    unsigned long addr,
4629 				    struct vm_area_struct *vma,
4630 				    unsigned int pages_per_huge_page)
4631 {
4632 	int i;
4633 	struct page *dst_base = dst;
4634 	struct page *src_base = src;
4635 
4636 	for (i = 0; i < pages_per_huge_page; ) {
4637 		cond_resched();
4638 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4639 
4640 		i++;
4641 		dst = mem_map_next(dst, dst_base, i);
4642 		src = mem_map_next(src, src_base, i);
4643 	}
4644 }
4645 
4646 void copy_user_huge_page(struct page *dst, struct page *src,
4647 			 unsigned long addr, struct vm_area_struct *vma,
4648 			 unsigned int pages_per_huge_page)
4649 {
4650 	int i;
4651 
4652 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4653 		copy_user_gigantic_page(dst, src, addr, vma,
4654 					pages_per_huge_page);
4655 		return;
4656 	}
4657 
4658 	might_sleep();
4659 	for (i = 0; i < pages_per_huge_page; i++) {
4660 		cond_resched();
4661 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4662 	}
4663 }
4664 
4665 long copy_huge_page_from_user(struct page *dst_page,
4666 				const void __user *usr_src,
4667 				unsigned int pages_per_huge_page,
4668 				bool allow_pagefault)
4669 {
4670 	void *src = (void *)usr_src;
4671 	void *page_kaddr;
4672 	unsigned long i, rc = 0;
4673 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4674 
4675 	for (i = 0; i < pages_per_huge_page; i++) {
4676 		if (allow_pagefault)
4677 			page_kaddr = kmap(dst_page + i);
4678 		else
4679 			page_kaddr = kmap_atomic(dst_page + i);
4680 		rc = copy_from_user(page_kaddr,
4681 				(const void __user *)(src + i * PAGE_SIZE),
4682 				PAGE_SIZE);
4683 		if (allow_pagefault)
4684 			kunmap(dst_page + i);
4685 		else
4686 			kunmap_atomic(page_kaddr);
4687 
4688 		ret_val -= (PAGE_SIZE - rc);
4689 		if (rc)
4690 			break;
4691 
4692 		cond_resched();
4693 	}
4694 	return ret_val;
4695 }
4696 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4697 
4698 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4699 
4700 static struct kmem_cache *page_ptl_cachep;
4701 
4702 void __init ptlock_cache_init(void)
4703 {
4704 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4705 			SLAB_PANIC, NULL);
4706 }
4707 
4708 bool ptlock_alloc(struct page *page)
4709 {
4710 	spinlock_t *ptl;
4711 
4712 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4713 	if (!ptl)
4714 		return false;
4715 	page->ptl = ptl;
4716 	return true;
4717 }
4718 
4719 void ptlock_free(struct page *page)
4720 {
4721 	kmem_cache_free(page_ptl_cachep, page->ptl);
4722 }
4723 #endif
4724