xref: /openbmc/linux/mm/memory.c (revision dea54fba)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80 
81 #include "internal.h"
82 
83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86 
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91 
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95 
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105 
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 					1;
115 #else
116 					2;
117 #endif
118 
119 static int __init disable_randmaps(char *s)
120 {
121 	randomize_va_space = 0;
122 	return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125 
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128 
129 unsigned long highest_memmap_pfn __read_mostly;
130 
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 	return 0;
138 }
139 core_initcall(init_zero_pfn);
140 
141 
142 #if defined(SPLIT_RSS_COUNTING)
143 
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 	int i;
147 
148 	for (i = 0; i < NR_MM_COUNTERS; i++) {
149 		if (current->rss_stat.count[i]) {
150 			add_mm_counter(mm, i, current->rss_stat.count[i]);
151 			current->rss_stat.count[i] = 0;
152 		}
153 	}
154 	current->rss_stat.events = 0;
155 }
156 
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 	struct task_struct *task = current;
160 
161 	if (likely(task->mm == mm))
162 		task->rss_stat.count[member] += val;
163 	else
164 		add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168 
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH	(64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 	if (unlikely(task != current))
174 		return;
175 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 		sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179 
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182 
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186 
187 #endif /* SPLIT_RSS_COUNTING */
188 
189 #ifdef HAVE_GENERIC_MMU_GATHER
190 
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 	struct mmu_gather_batch *batch;
194 
195 	batch = tlb->active;
196 	if (batch->next) {
197 		tlb->active = batch->next;
198 		return true;
199 	}
200 
201 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 		return false;
203 
204 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 	if (!batch)
206 		return false;
207 
208 	tlb->batch_count++;
209 	batch->next = NULL;
210 	batch->nr   = 0;
211 	batch->max  = MAX_GATHER_BATCH;
212 
213 	tlb->active->next = batch;
214 	tlb->active = batch;
215 
216 	return true;
217 }
218 
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 				unsigned long start, unsigned long end)
221 {
222 	tlb->mm = mm;
223 
224 	/* Is it from 0 to ~0? */
225 	tlb->fullmm     = !(start | (end+1));
226 	tlb->need_flush_all = 0;
227 	tlb->local.next = NULL;
228 	tlb->local.nr   = 0;
229 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230 	tlb->active     = &tlb->local;
231 	tlb->batch_count = 0;
232 
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb->batch = NULL;
235 #endif
236 	tlb->page_size = 0;
237 
238 	__tlb_reset_range(tlb);
239 }
240 
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 	if (!tlb->end)
244 		return;
245 
246 	tlb_flush(tlb);
247 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 	tlb_table_flush(tlb);
250 #endif
251 	__tlb_reset_range(tlb);
252 }
253 
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 	struct mmu_gather_batch *batch;
257 
258 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 		free_pages_and_swap_cache(batch->pages, batch->nr);
260 		batch->nr = 0;
261 	}
262 	tlb->active = &tlb->local;
263 }
264 
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 	tlb_flush_mmu_tlbonly(tlb);
268 	tlb_flush_mmu_free(tlb);
269 }
270 
271 /* tlb_finish_mmu
272  *	Called at the end of the shootdown operation to free up any resources
273  *	that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 		unsigned long start, unsigned long end, bool force)
277 {
278 	struct mmu_gather_batch *batch, *next;
279 
280 	if (force)
281 		__tlb_adjust_range(tlb, start, end - start);
282 
283 	tlb_flush_mmu(tlb);
284 
285 	/* keep the page table cache within bounds */
286 	check_pgt_cache();
287 
288 	for (batch = tlb->local.next; batch; batch = next) {
289 		next = batch->next;
290 		free_pages((unsigned long)batch, 0);
291 	}
292 	tlb->local.next = NULL;
293 }
294 
295 /* __tlb_remove_page
296  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *	handling the additional races in SMP caused by other CPUs caching valid
298  *	mappings in their TLBs. Returns the number of free page slots left.
299  *	When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 	struct mmu_gather_batch *batch;
305 
306 	VM_BUG_ON(!tlb->end);
307 	VM_WARN_ON(tlb->page_size != page_size);
308 
309 	batch = tlb->active;
310 	/*
311 	 * Add the page and check if we are full. If so
312 	 * force a flush.
313 	 */
314 	batch->pages[batch->nr++] = page;
315 	if (batch->nr == batch->max) {
316 		if (!tlb_next_batch(tlb))
317 			return true;
318 		batch = tlb->active;
319 	}
320 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321 
322 	return false;
323 }
324 
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326 
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328 
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332 
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335 	/* Simply deliver the interrupt */
336 }
337 
338 static void tlb_remove_table_one(void *table)
339 {
340 	/*
341 	 * This isn't an RCU grace period and hence the page-tables cannot be
342 	 * assumed to be actually RCU-freed.
343 	 *
344 	 * It is however sufficient for software page-table walkers that rely on
345 	 * IRQ disabling. See the comment near struct mmu_table_batch.
346 	 */
347 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 	__tlb_remove_table(table);
349 }
350 
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353 	struct mmu_table_batch *batch;
354 	int i;
355 
356 	batch = container_of(head, struct mmu_table_batch, rcu);
357 
358 	for (i = 0; i < batch->nr; i++)
359 		__tlb_remove_table(batch->tables[i]);
360 
361 	free_page((unsigned long)batch);
362 }
363 
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366 	struct mmu_table_batch **batch = &tlb->batch;
367 
368 	if (*batch) {
369 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 		*batch = NULL;
371 	}
372 }
373 
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376 	struct mmu_table_batch **batch = &tlb->batch;
377 
378 	/*
379 	 * When there's less then two users of this mm there cannot be a
380 	 * concurrent page-table walk.
381 	 */
382 	if (atomic_read(&tlb->mm->mm_users) < 2) {
383 		__tlb_remove_table(table);
384 		return;
385 	}
386 
387 	if (*batch == NULL) {
388 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 		if (*batch == NULL) {
390 			tlb_remove_table_one(table);
391 			return;
392 		}
393 		(*batch)->nr = 0;
394 	}
395 	(*batch)->tables[(*batch)->nr++] = table;
396 	if ((*batch)->nr == MAX_TABLE_BATCH)
397 		tlb_table_flush(tlb);
398 }
399 
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401 
402 /* tlb_gather_mmu
403  *	Called to initialize an (on-stack) mmu_gather structure for page-table
404  *	tear-down from @mm. The @fullmm argument is used when @mm is without
405  *	users and we're going to destroy the full address space (exit/execve).
406  */
407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 			unsigned long start, unsigned long end)
409 {
410 	arch_tlb_gather_mmu(tlb, mm, start, end);
411 	inc_tlb_flush_pending(tlb->mm);
412 }
413 
414 void tlb_finish_mmu(struct mmu_gather *tlb,
415 		unsigned long start, unsigned long end)
416 {
417 	/*
418 	 * If there are parallel threads are doing PTE changes on same range
419 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 	 * flush by batching, a thread has stable TLB entry can fail to flush
421 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 	 * forcefully if we detect parallel PTE batching threads.
423 	 */
424 	bool force = mm_tlb_flush_nested(tlb->mm);
425 
426 	arch_tlb_finish_mmu(tlb, start, end, force);
427 	dec_tlb_flush_pending(tlb->mm);
428 }
429 
430 /*
431  * Note: this doesn't free the actual pages themselves. That
432  * has been handled earlier when unmapping all the memory regions.
433  */
434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 			   unsigned long addr)
436 {
437 	pgtable_t token = pmd_pgtable(*pmd);
438 	pmd_clear(pmd);
439 	pte_free_tlb(tlb, token, addr);
440 	atomic_long_dec(&tlb->mm->nr_ptes);
441 }
442 
443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 				unsigned long addr, unsigned long end,
445 				unsigned long floor, unsigned long ceiling)
446 {
447 	pmd_t *pmd;
448 	unsigned long next;
449 	unsigned long start;
450 
451 	start = addr;
452 	pmd = pmd_offset(pud, addr);
453 	do {
454 		next = pmd_addr_end(addr, end);
455 		if (pmd_none_or_clear_bad(pmd))
456 			continue;
457 		free_pte_range(tlb, pmd, addr);
458 	} while (pmd++, addr = next, addr != end);
459 
460 	start &= PUD_MASK;
461 	if (start < floor)
462 		return;
463 	if (ceiling) {
464 		ceiling &= PUD_MASK;
465 		if (!ceiling)
466 			return;
467 	}
468 	if (end - 1 > ceiling - 1)
469 		return;
470 
471 	pmd = pmd_offset(pud, start);
472 	pud_clear(pud);
473 	pmd_free_tlb(tlb, pmd, start);
474 	mm_dec_nr_pmds(tlb->mm);
475 }
476 
477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
478 				unsigned long addr, unsigned long end,
479 				unsigned long floor, unsigned long ceiling)
480 {
481 	pud_t *pud;
482 	unsigned long next;
483 	unsigned long start;
484 
485 	start = addr;
486 	pud = pud_offset(p4d, addr);
487 	do {
488 		next = pud_addr_end(addr, end);
489 		if (pud_none_or_clear_bad(pud))
490 			continue;
491 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
492 	} while (pud++, addr = next, addr != end);
493 
494 	start &= P4D_MASK;
495 	if (start < floor)
496 		return;
497 	if (ceiling) {
498 		ceiling &= P4D_MASK;
499 		if (!ceiling)
500 			return;
501 	}
502 	if (end - 1 > ceiling - 1)
503 		return;
504 
505 	pud = pud_offset(p4d, start);
506 	p4d_clear(p4d);
507 	pud_free_tlb(tlb, pud, start);
508 }
509 
510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 				unsigned long addr, unsigned long end,
512 				unsigned long floor, unsigned long ceiling)
513 {
514 	p4d_t *p4d;
515 	unsigned long next;
516 	unsigned long start;
517 
518 	start = addr;
519 	p4d = p4d_offset(pgd, addr);
520 	do {
521 		next = p4d_addr_end(addr, end);
522 		if (p4d_none_or_clear_bad(p4d))
523 			continue;
524 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 	} while (p4d++, addr = next, addr != end);
526 
527 	start &= PGDIR_MASK;
528 	if (start < floor)
529 		return;
530 	if (ceiling) {
531 		ceiling &= PGDIR_MASK;
532 		if (!ceiling)
533 			return;
534 	}
535 	if (end - 1 > ceiling - 1)
536 		return;
537 
538 	p4d = p4d_offset(pgd, start);
539 	pgd_clear(pgd);
540 	p4d_free_tlb(tlb, p4d, start);
541 }
542 
543 /*
544  * This function frees user-level page tables of a process.
545  */
546 void free_pgd_range(struct mmu_gather *tlb,
547 			unsigned long addr, unsigned long end,
548 			unsigned long floor, unsigned long ceiling)
549 {
550 	pgd_t *pgd;
551 	unsigned long next;
552 
553 	/*
554 	 * The next few lines have given us lots of grief...
555 	 *
556 	 * Why are we testing PMD* at this top level?  Because often
557 	 * there will be no work to do at all, and we'd prefer not to
558 	 * go all the way down to the bottom just to discover that.
559 	 *
560 	 * Why all these "- 1"s?  Because 0 represents both the bottom
561 	 * of the address space and the top of it (using -1 for the
562 	 * top wouldn't help much: the masks would do the wrong thing).
563 	 * The rule is that addr 0 and floor 0 refer to the bottom of
564 	 * the address space, but end 0 and ceiling 0 refer to the top
565 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 	 * that end 0 case should be mythical).
567 	 *
568 	 * Wherever addr is brought up or ceiling brought down, we must
569 	 * be careful to reject "the opposite 0" before it confuses the
570 	 * subsequent tests.  But what about where end is brought down
571 	 * by PMD_SIZE below? no, end can't go down to 0 there.
572 	 *
573 	 * Whereas we round start (addr) and ceiling down, by different
574 	 * masks at different levels, in order to test whether a table
575 	 * now has no other vmas using it, so can be freed, we don't
576 	 * bother to round floor or end up - the tests don't need that.
577 	 */
578 
579 	addr &= PMD_MASK;
580 	if (addr < floor) {
581 		addr += PMD_SIZE;
582 		if (!addr)
583 			return;
584 	}
585 	if (ceiling) {
586 		ceiling &= PMD_MASK;
587 		if (!ceiling)
588 			return;
589 	}
590 	if (end - 1 > ceiling - 1)
591 		end -= PMD_SIZE;
592 	if (addr > end - 1)
593 		return;
594 	/*
595 	 * We add page table cache pages with PAGE_SIZE,
596 	 * (see pte_free_tlb()), flush the tlb if we need
597 	 */
598 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
599 	pgd = pgd_offset(tlb->mm, addr);
600 	do {
601 		next = pgd_addr_end(addr, end);
602 		if (pgd_none_or_clear_bad(pgd))
603 			continue;
604 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
605 	} while (pgd++, addr = next, addr != end);
606 }
607 
608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
609 		unsigned long floor, unsigned long ceiling)
610 {
611 	while (vma) {
612 		struct vm_area_struct *next = vma->vm_next;
613 		unsigned long addr = vma->vm_start;
614 
615 		/*
616 		 * Hide vma from rmap and truncate_pagecache before freeing
617 		 * pgtables
618 		 */
619 		unlink_anon_vmas(vma);
620 		unlink_file_vma(vma);
621 
622 		if (is_vm_hugetlb_page(vma)) {
623 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
624 				floor, next ? next->vm_start : ceiling);
625 		} else {
626 			/*
627 			 * Optimization: gather nearby vmas into one call down
628 			 */
629 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
630 			       && !is_vm_hugetlb_page(next)) {
631 				vma = next;
632 				next = vma->vm_next;
633 				unlink_anon_vmas(vma);
634 				unlink_file_vma(vma);
635 			}
636 			free_pgd_range(tlb, addr, vma->vm_end,
637 				floor, next ? next->vm_start : ceiling);
638 		}
639 		vma = next;
640 	}
641 }
642 
643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
644 {
645 	spinlock_t *ptl;
646 	pgtable_t new = pte_alloc_one(mm, address);
647 	if (!new)
648 		return -ENOMEM;
649 
650 	/*
651 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 	 * visible before the pte is made visible to other CPUs by being
653 	 * put into page tables.
654 	 *
655 	 * The other side of the story is the pointer chasing in the page
656 	 * table walking code (when walking the page table without locking;
657 	 * ie. most of the time). Fortunately, these data accesses consist
658 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 	 * being the notable exception) will already guarantee loads are
660 	 * seen in-order. See the alpha page table accessors for the
661 	 * smp_read_barrier_depends() barriers in page table walking code.
662 	 */
663 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664 
665 	ptl = pmd_lock(mm, pmd);
666 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
667 		atomic_long_inc(&mm->nr_ptes);
668 		pmd_populate(mm, pmd, new);
669 		new = NULL;
670 	}
671 	spin_unlock(ptl);
672 	if (new)
673 		pte_free(mm, new);
674 	return 0;
675 }
676 
677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
678 {
679 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 	if (!new)
681 		return -ENOMEM;
682 
683 	smp_wmb(); /* See comment in __pte_alloc */
684 
685 	spin_lock(&init_mm.page_table_lock);
686 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
687 		pmd_populate_kernel(&init_mm, pmd, new);
688 		new = NULL;
689 	}
690 	spin_unlock(&init_mm.page_table_lock);
691 	if (new)
692 		pte_free_kernel(&init_mm, new);
693 	return 0;
694 }
695 
696 static inline void init_rss_vec(int *rss)
697 {
698 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699 }
700 
701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
702 {
703 	int i;
704 
705 	if (current->mm == mm)
706 		sync_mm_rss(mm);
707 	for (i = 0; i < NR_MM_COUNTERS; i++)
708 		if (rss[i])
709 			add_mm_counter(mm, i, rss[i]);
710 }
711 
712 /*
713  * This function is called to print an error when a bad pte
714  * is found. For example, we might have a PFN-mapped pte in
715  * a region that doesn't allow it.
716  *
717  * The calling function must still handle the error.
718  */
719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 			  pte_t pte, struct page *page)
721 {
722 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
723 	p4d_t *p4d = p4d_offset(pgd, addr);
724 	pud_t *pud = pud_offset(p4d, addr);
725 	pmd_t *pmd = pmd_offset(pud, addr);
726 	struct address_space *mapping;
727 	pgoff_t index;
728 	static unsigned long resume;
729 	static unsigned long nr_shown;
730 	static unsigned long nr_unshown;
731 
732 	/*
733 	 * Allow a burst of 60 reports, then keep quiet for that minute;
734 	 * or allow a steady drip of one report per second.
735 	 */
736 	if (nr_shown == 60) {
737 		if (time_before(jiffies, resume)) {
738 			nr_unshown++;
739 			return;
740 		}
741 		if (nr_unshown) {
742 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 				 nr_unshown);
744 			nr_unshown = 0;
745 		}
746 		nr_shown = 0;
747 	}
748 	if (nr_shown++ == 0)
749 		resume = jiffies + 60 * HZ;
750 
751 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 	index = linear_page_index(vma, addr);
753 
754 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
755 		 current->comm,
756 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
757 	if (page)
758 		dump_page(page, "bad pte");
759 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
761 	/*
762 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 	 */
764 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 		 vma->vm_file,
766 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 		 mapping ? mapping->a_ops->readpage : NULL);
769 	dump_stack();
770 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
771 }
772 
773 /*
774  * vm_normal_page -- This function gets the "struct page" associated with a pte.
775  *
776  * "Special" mappings do not wish to be associated with a "struct page" (either
777  * it doesn't exist, or it exists but they don't want to touch it). In this
778  * case, NULL is returned here. "Normal" mappings do have a struct page.
779  *
780  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781  * pte bit, in which case this function is trivial. Secondly, an architecture
782  * may not have a spare pte bit, which requires a more complicated scheme,
783  * described below.
784  *
785  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786  * special mapping (even if there are underlying and valid "struct pages").
787  * COWed pages of a VM_PFNMAP are always normal.
788  *
789  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
791  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792  * mapping will always honor the rule
793  *
794  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795  *
796  * And for normal mappings this is false.
797  *
798  * This restricts such mappings to be a linear translation from virtual address
799  * to pfn. To get around this restriction, we allow arbitrary mappings so long
800  * as the vma is not a COW mapping; in that case, we know that all ptes are
801  * special (because none can have been COWed).
802  *
803  *
804  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
805  *
806  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807  * page" backing, however the difference is that _all_ pages with a struct
808  * page (that is, those where pfn_valid is true) are refcounted and considered
809  * normal pages by the VM. The disadvantage is that pages are refcounted
810  * (which can be slower and simply not an option for some PFNMAP users). The
811  * advantage is that we don't have to follow the strict linearity rule of
812  * PFNMAP mappings in order to support COWable mappings.
813  *
814  */
815 #ifdef __HAVE_ARCH_PTE_SPECIAL
816 # define HAVE_PTE_SPECIAL 1
817 #else
818 # define HAVE_PTE_SPECIAL 0
819 #endif
820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 				pte_t pte)
822 {
823 	unsigned long pfn = pte_pfn(pte);
824 
825 	if (HAVE_PTE_SPECIAL) {
826 		if (likely(!pte_special(pte)))
827 			goto check_pfn;
828 		if (vma->vm_ops && vma->vm_ops->find_special_page)
829 			return vma->vm_ops->find_special_page(vma, addr);
830 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 			return NULL;
832 		if (!is_zero_pfn(pfn))
833 			print_bad_pte(vma, addr, pte, NULL);
834 		return NULL;
835 	}
836 
837 	/* !HAVE_PTE_SPECIAL case follows: */
838 
839 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 		if (vma->vm_flags & VM_MIXEDMAP) {
841 			if (!pfn_valid(pfn))
842 				return NULL;
843 			goto out;
844 		} else {
845 			unsigned long off;
846 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
847 			if (pfn == vma->vm_pgoff + off)
848 				return NULL;
849 			if (!is_cow_mapping(vma->vm_flags))
850 				return NULL;
851 		}
852 	}
853 
854 	if (is_zero_pfn(pfn))
855 		return NULL;
856 check_pfn:
857 	if (unlikely(pfn > highest_memmap_pfn)) {
858 		print_bad_pte(vma, addr, pte, NULL);
859 		return NULL;
860 	}
861 
862 	/*
863 	 * NOTE! We still have PageReserved() pages in the page tables.
864 	 * eg. VDSO mappings can cause them to exist.
865 	 */
866 out:
867 	return pfn_to_page(pfn);
868 }
869 
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 				pmd_t pmd)
873 {
874 	unsigned long pfn = pmd_pfn(pmd);
875 
876 	/*
877 	 * There is no pmd_special() but there may be special pmds, e.g.
878 	 * in a direct-access (dax) mapping, so let's just replicate the
879 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 	 */
881 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 		if (vma->vm_flags & VM_MIXEDMAP) {
883 			if (!pfn_valid(pfn))
884 				return NULL;
885 			goto out;
886 		} else {
887 			unsigned long off;
888 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 			if (pfn == vma->vm_pgoff + off)
890 				return NULL;
891 			if (!is_cow_mapping(vma->vm_flags))
892 				return NULL;
893 		}
894 	}
895 
896 	if (is_zero_pfn(pfn))
897 		return NULL;
898 	if (unlikely(pfn > highest_memmap_pfn))
899 		return NULL;
900 
901 	/*
902 	 * NOTE! We still have PageReserved() pages in the page tables.
903 	 * eg. VDSO mappings can cause them to exist.
904 	 */
905 out:
906 	return pfn_to_page(pfn);
907 }
908 #endif
909 
910 /*
911  * copy one vm_area from one task to the other. Assumes the page tables
912  * already present in the new task to be cleared in the whole range
913  * covered by this vma.
914  */
915 
916 static inline unsigned long
917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
919 		unsigned long addr, int *rss)
920 {
921 	unsigned long vm_flags = vma->vm_flags;
922 	pte_t pte = *src_pte;
923 	struct page *page;
924 
925 	/* pte contains position in swap or file, so copy. */
926 	if (unlikely(!pte_present(pte))) {
927 		swp_entry_t entry = pte_to_swp_entry(pte);
928 
929 		if (likely(!non_swap_entry(entry))) {
930 			if (swap_duplicate(entry) < 0)
931 				return entry.val;
932 
933 			/* make sure dst_mm is on swapoff's mmlist. */
934 			if (unlikely(list_empty(&dst_mm->mmlist))) {
935 				spin_lock(&mmlist_lock);
936 				if (list_empty(&dst_mm->mmlist))
937 					list_add(&dst_mm->mmlist,
938 							&src_mm->mmlist);
939 				spin_unlock(&mmlist_lock);
940 			}
941 			rss[MM_SWAPENTS]++;
942 		} else if (is_migration_entry(entry)) {
943 			page = migration_entry_to_page(entry);
944 
945 			rss[mm_counter(page)]++;
946 
947 			if (is_write_migration_entry(entry) &&
948 					is_cow_mapping(vm_flags)) {
949 				/*
950 				 * COW mappings require pages in both
951 				 * parent and child to be set to read.
952 				 */
953 				make_migration_entry_read(&entry);
954 				pte = swp_entry_to_pte(entry);
955 				if (pte_swp_soft_dirty(*src_pte))
956 					pte = pte_swp_mksoft_dirty(pte);
957 				set_pte_at(src_mm, addr, src_pte, pte);
958 			}
959 		}
960 		goto out_set_pte;
961 	}
962 
963 	/*
964 	 * If it's a COW mapping, write protect it both
965 	 * in the parent and the child
966 	 */
967 	if (is_cow_mapping(vm_flags)) {
968 		ptep_set_wrprotect(src_mm, addr, src_pte);
969 		pte = pte_wrprotect(pte);
970 	}
971 
972 	/*
973 	 * If it's a shared mapping, mark it clean in
974 	 * the child
975 	 */
976 	if (vm_flags & VM_SHARED)
977 		pte = pte_mkclean(pte);
978 	pte = pte_mkold(pte);
979 
980 	page = vm_normal_page(vma, addr, pte);
981 	if (page) {
982 		get_page(page);
983 		page_dup_rmap(page, false);
984 		rss[mm_counter(page)]++;
985 	}
986 
987 out_set_pte:
988 	set_pte_at(dst_mm, addr, dst_pte, pte);
989 	return 0;
990 }
991 
992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 		   unsigned long addr, unsigned long end)
995 {
996 	pte_t *orig_src_pte, *orig_dst_pte;
997 	pte_t *src_pte, *dst_pte;
998 	spinlock_t *src_ptl, *dst_ptl;
999 	int progress = 0;
1000 	int rss[NR_MM_COUNTERS];
1001 	swp_entry_t entry = (swp_entry_t){0};
1002 
1003 again:
1004 	init_rss_vec(rss);
1005 
1006 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1007 	if (!dst_pte)
1008 		return -ENOMEM;
1009 	src_pte = pte_offset_map(src_pmd, addr);
1010 	src_ptl = pte_lockptr(src_mm, src_pmd);
1011 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1012 	orig_src_pte = src_pte;
1013 	orig_dst_pte = dst_pte;
1014 	arch_enter_lazy_mmu_mode();
1015 
1016 	do {
1017 		/*
1018 		 * We are holding two locks at this point - either of them
1019 		 * could generate latencies in another task on another CPU.
1020 		 */
1021 		if (progress >= 32) {
1022 			progress = 0;
1023 			if (need_resched() ||
1024 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1025 				break;
1026 		}
1027 		if (pte_none(*src_pte)) {
1028 			progress++;
1029 			continue;
1030 		}
1031 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 							vma, addr, rss);
1033 		if (entry.val)
1034 			break;
1035 		progress += 8;
1036 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1037 
1038 	arch_leave_lazy_mmu_mode();
1039 	spin_unlock(src_ptl);
1040 	pte_unmap(orig_src_pte);
1041 	add_mm_rss_vec(dst_mm, rss);
1042 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1043 	cond_resched();
1044 
1045 	if (entry.val) {
1046 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 			return -ENOMEM;
1048 		progress = 0;
1049 	}
1050 	if (addr != end)
1051 		goto again;
1052 	return 0;
1053 }
1054 
1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 		unsigned long addr, unsigned long end)
1058 {
1059 	pmd_t *src_pmd, *dst_pmd;
1060 	unsigned long next;
1061 
1062 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 	if (!dst_pmd)
1064 		return -ENOMEM;
1065 	src_pmd = pmd_offset(src_pud, addr);
1066 	do {
1067 		next = pmd_addr_end(addr, end);
1068 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1069 			int err;
1070 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1071 			err = copy_huge_pmd(dst_mm, src_mm,
1072 					    dst_pmd, src_pmd, addr, vma);
1073 			if (err == -ENOMEM)
1074 				return -ENOMEM;
1075 			if (!err)
1076 				continue;
1077 			/* fall through */
1078 		}
1079 		if (pmd_none_or_clear_bad(src_pmd))
1080 			continue;
1081 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 						vma, addr, next))
1083 			return -ENOMEM;
1084 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 	return 0;
1086 }
1087 
1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1089 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1090 		unsigned long addr, unsigned long end)
1091 {
1092 	pud_t *src_pud, *dst_pud;
1093 	unsigned long next;
1094 
1095 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1096 	if (!dst_pud)
1097 		return -ENOMEM;
1098 	src_pud = pud_offset(src_p4d, addr);
1099 	do {
1100 		next = pud_addr_end(addr, end);
1101 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 			int err;
1103 
1104 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 			err = copy_huge_pud(dst_mm, src_mm,
1106 					    dst_pud, src_pud, addr, vma);
1107 			if (err == -ENOMEM)
1108 				return -ENOMEM;
1109 			if (!err)
1110 				continue;
1111 			/* fall through */
1112 		}
1113 		if (pud_none_or_clear_bad(src_pud))
1114 			continue;
1115 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 						vma, addr, next))
1117 			return -ENOMEM;
1118 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1119 	return 0;
1120 }
1121 
1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 		unsigned long addr, unsigned long end)
1125 {
1126 	p4d_t *src_p4d, *dst_p4d;
1127 	unsigned long next;
1128 
1129 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 	if (!dst_p4d)
1131 		return -ENOMEM;
1132 	src_p4d = p4d_offset(src_pgd, addr);
1133 	do {
1134 		next = p4d_addr_end(addr, end);
1135 		if (p4d_none_or_clear_bad(src_p4d))
1136 			continue;
1137 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 						vma, addr, next))
1139 			return -ENOMEM;
1140 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 	return 0;
1142 }
1143 
1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 		struct vm_area_struct *vma)
1146 {
1147 	pgd_t *src_pgd, *dst_pgd;
1148 	unsigned long next;
1149 	unsigned long addr = vma->vm_start;
1150 	unsigned long end = vma->vm_end;
1151 	unsigned long mmun_start;	/* For mmu_notifiers */
1152 	unsigned long mmun_end;		/* For mmu_notifiers */
1153 	bool is_cow;
1154 	int ret;
1155 
1156 	/*
1157 	 * Don't copy ptes where a page fault will fill them correctly.
1158 	 * Fork becomes much lighter when there are big shared or private
1159 	 * readonly mappings. The tradeoff is that copy_page_range is more
1160 	 * efficient than faulting.
1161 	 */
1162 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 			!vma->anon_vma)
1164 		return 0;
1165 
1166 	if (is_vm_hugetlb_page(vma))
1167 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168 
1169 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1170 		/*
1171 		 * We do not free on error cases below as remove_vma
1172 		 * gets called on error from higher level routine
1173 		 */
1174 		ret = track_pfn_copy(vma);
1175 		if (ret)
1176 			return ret;
1177 	}
1178 
1179 	/*
1180 	 * We need to invalidate the secondary MMU mappings only when
1181 	 * there could be a permission downgrade on the ptes of the
1182 	 * parent mm. And a permission downgrade will only happen if
1183 	 * is_cow_mapping() returns true.
1184 	 */
1185 	is_cow = is_cow_mapping(vma->vm_flags);
1186 	mmun_start = addr;
1187 	mmun_end   = end;
1188 	if (is_cow)
1189 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 						    mmun_end);
1191 
1192 	ret = 0;
1193 	dst_pgd = pgd_offset(dst_mm, addr);
1194 	src_pgd = pgd_offset(src_mm, addr);
1195 	do {
1196 		next = pgd_addr_end(addr, end);
1197 		if (pgd_none_or_clear_bad(src_pgd))
1198 			continue;
1199 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1200 					    vma, addr, next))) {
1201 			ret = -ENOMEM;
1202 			break;
1203 		}
1204 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1205 
1206 	if (is_cow)
1207 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1208 	return ret;
1209 }
1210 
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212 				struct vm_area_struct *vma, pmd_t *pmd,
1213 				unsigned long addr, unsigned long end,
1214 				struct zap_details *details)
1215 {
1216 	struct mm_struct *mm = tlb->mm;
1217 	int force_flush = 0;
1218 	int rss[NR_MM_COUNTERS];
1219 	spinlock_t *ptl;
1220 	pte_t *start_pte;
1221 	pte_t *pte;
1222 	swp_entry_t entry;
1223 
1224 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1225 again:
1226 	init_rss_vec(rss);
1227 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 	pte = start_pte;
1229 	flush_tlb_batched_pending(mm);
1230 	arch_enter_lazy_mmu_mode();
1231 	do {
1232 		pte_t ptent = *pte;
1233 		if (pte_none(ptent))
1234 			continue;
1235 
1236 		if (pte_present(ptent)) {
1237 			struct page *page;
1238 
1239 			page = vm_normal_page(vma, addr, ptent);
1240 			if (unlikely(details) && page) {
1241 				/*
1242 				 * unmap_shared_mapping_pages() wants to
1243 				 * invalidate cache without truncating:
1244 				 * unmap shared but keep private pages.
1245 				 */
1246 				if (details->check_mapping &&
1247 				    details->check_mapping != page_rmapping(page))
1248 					continue;
1249 			}
1250 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1251 							tlb->fullmm);
1252 			tlb_remove_tlb_entry(tlb, pte, addr);
1253 			if (unlikely(!page))
1254 				continue;
1255 
1256 			if (!PageAnon(page)) {
1257 				if (pte_dirty(ptent)) {
1258 					force_flush = 1;
1259 					set_page_dirty(page);
1260 				}
1261 				if (pte_young(ptent) &&
1262 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1263 					mark_page_accessed(page);
1264 			}
1265 			rss[mm_counter(page)]--;
1266 			page_remove_rmap(page, false);
1267 			if (unlikely(page_mapcount(page) < 0))
1268 				print_bad_pte(vma, addr, ptent, page);
1269 			if (unlikely(__tlb_remove_page(tlb, page))) {
1270 				force_flush = 1;
1271 				addr += PAGE_SIZE;
1272 				break;
1273 			}
1274 			continue;
1275 		}
1276 		/* If details->check_mapping, we leave swap entries. */
1277 		if (unlikely(details))
1278 			continue;
1279 
1280 		entry = pte_to_swp_entry(ptent);
1281 		if (!non_swap_entry(entry))
1282 			rss[MM_SWAPENTS]--;
1283 		else if (is_migration_entry(entry)) {
1284 			struct page *page;
1285 
1286 			page = migration_entry_to_page(entry);
1287 			rss[mm_counter(page)]--;
1288 		}
1289 		if (unlikely(!free_swap_and_cache(entry)))
1290 			print_bad_pte(vma, addr, ptent, NULL);
1291 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292 	} while (pte++, addr += PAGE_SIZE, addr != end);
1293 
1294 	add_mm_rss_vec(mm, rss);
1295 	arch_leave_lazy_mmu_mode();
1296 
1297 	/* Do the actual TLB flush before dropping ptl */
1298 	if (force_flush)
1299 		tlb_flush_mmu_tlbonly(tlb);
1300 	pte_unmap_unlock(start_pte, ptl);
1301 
1302 	/*
1303 	 * If we forced a TLB flush (either due to running out of
1304 	 * batch buffers or because we needed to flush dirty TLB
1305 	 * entries before releasing the ptl), free the batched
1306 	 * memory too. Restart if we didn't do everything.
1307 	 */
1308 	if (force_flush) {
1309 		force_flush = 0;
1310 		tlb_flush_mmu_free(tlb);
1311 		if (addr != end)
1312 			goto again;
1313 	}
1314 
1315 	return addr;
1316 }
1317 
1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1319 				struct vm_area_struct *vma, pud_t *pud,
1320 				unsigned long addr, unsigned long end,
1321 				struct zap_details *details)
1322 {
1323 	pmd_t *pmd;
1324 	unsigned long next;
1325 
1326 	pmd = pmd_offset(pud, addr);
1327 	do {
1328 		next = pmd_addr_end(addr, end);
1329 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1330 			if (next - addr != HPAGE_PMD_SIZE) {
1331 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1333 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1334 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1335 				goto next;
1336 			/* fall through */
1337 		}
1338 		/*
1339 		 * Here there can be other concurrent MADV_DONTNEED or
1340 		 * trans huge page faults running, and if the pmd is
1341 		 * none or trans huge it can change under us. This is
1342 		 * because MADV_DONTNEED holds the mmap_sem in read
1343 		 * mode.
1344 		 */
1345 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 			goto next;
1347 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1348 next:
1349 		cond_resched();
1350 	} while (pmd++, addr = next, addr != end);
1351 
1352 	return addr;
1353 }
1354 
1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1356 				struct vm_area_struct *vma, p4d_t *p4d,
1357 				unsigned long addr, unsigned long end,
1358 				struct zap_details *details)
1359 {
1360 	pud_t *pud;
1361 	unsigned long next;
1362 
1363 	pud = pud_offset(p4d, addr);
1364 	do {
1365 		next = pud_addr_end(addr, end);
1366 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 			if (next - addr != HPAGE_PUD_SIZE) {
1368 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 				split_huge_pud(vma, pud, addr);
1370 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1371 				goto next;
1372 			/* fall through */
1373 		}
1374 		if (pud_none_or_clear_bad(pud))
1375 			continue;
1376 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1377 next:
1378 		cond_resched();
1379 	} while (pud++, addr = next, addr != end);
1380 
1381 	return addr;
1382 }
1383 
1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 				struct vm_area_struct *vma, pgd_t *pgd,
1386 				unsigned long addr, unsigned long end,
1387 				struct zap_details *details)
1388 {
1389 	p4d_t *p4d;
1390 	unsigned long next;
1391 
1392 	p4d = p4d_offset(pgd, addr);
1393 	do {
1394 		next = p4d_addr_end(addr, end);
1395 		if (p4d_none_or_clear_bad(p4d))
1396 			continue;
1397 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 	} while (p4d++, addr = next, addr != end);
1399 
1400 	return addr;
1401 }
1402 
1403 void unmap_page_range(struct mmu_gather *tlb,
1404 			     struct vm_area_struct *vma,
1405 			     unsigned long addr, unsigned long end,
1406 			     struct zap_details *details)
1407 {
1408 	pgd_t *pgd;
1409 	unsigned long next;
1410 
1411 	BUG_ON(addr >= end);
1412 	tlb_start_vma(tlb, vma);
1413 	pgd = pgd_offset(vma->vm_mm, addr);
1414 	do {
1415 		next = pgd_addr_end(addr, end);
1416 		if (pgd_none_or_clear_bad(pgd))
1417 			continue;
1418 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1419 	} while (pgd++, addr = next, addr != end);
1420 	tlb_end_vma(tlb, vma);
1421 }
1422 
1423 
1424 static void unmap_single_vma(struct mmu_gather *tlb,
1425 		struct vm_area_struct *vma, unsigned long start_addr,
1426 		unsigned long end_addr,
1427 		struct zap_details *details)
1428 {
1429 	unsigned long start = max(vma->vm_start, start_addr);
1430 	unsigned long end;
1431 
1432 	if (start >= vma->vm_end)
1433 		return;
1434 	end = min(vma->vm_end, end_addr);
1435 	if (end <= vma->vm_start)
1436 		return;
1437 
1438 	if (vma->vm_file)
1439 		uprobe_munmap(vma, start, end);
1440 
1441 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1442 		untrack_pfn(vma, 0, 0);
1443 
1444 	if (start != end) {
1445 		if (unlikely(is_vm_hugetlb_page(vma))) {
1446 			/*
1447 			 * It is undesirable to test vma->vm_file as it
1448 			 * should be non-null for valid hugetlb area.
1449 			 * However, vm_file will be NULL in the error
1450 			 * cleanup path of mmap_region. When
1451 			 * hugetlbfs ->mmap method fails,
1452 			 * mmap_region() nullifies vma->vm_file
1453 			 * before calling this function to clean up.
1454 			 * Since no pte has actually been setup, it is
1455 			 * safe to do nothing in this case.
1456 			 */
1457 			if (vma->vm_file) {
1458 				i_mmap_lock_write(vma->vm_file->f_mapping);
1459 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1460 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1461 			}
1462 		} else
1463 			unmap_page_range(tlb, vma, start, end, details);
1464 	}
1465 }
1466 
1467 /**
1468  * unmap_vmas - unmap a range of memory covered by a list of vma's
1469  * @tlb: address of the caller's struct mmu_gather
1470  * @vma: the starting vma
1471  * @start_addr: virtual address at which to start unmapping
1472  * @end_addr: virtual address at which to end unmapping
1473  *
1474  * Unmap all pages in the vma list.
1475  *
1476  * Only addresses between `start' and `end' will be unmapped.
1477  *
1478  * The VMA list must be sorted in ascending virtual address order.
1479  *
1480  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481  * range after unmap_vmas() returns.  So the only responsibility here is to
1482  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483  * drops the lock and schedules.
1484  */
1485 void unmap_vmas(struct mmu_gather *tlb,
1486 		struct vm_area_struct *vma, unsigned long start_addr,
1487 		unsigned long end_addr)
1488 {
1489 	struct mm_struct *mm = vma->vm_mm;
1490 
1491 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1492 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1493 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1494 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1495 }
1496 
1497 /**
1498  * zap_page_range - remove user pages in a given range
1499  * @vma: vm_area_struct holding the applicable pages
1500  * @start: starting address of pages to zap
1501  * @size: number of bytes to zap
1502  *
1503  * Caller must protect the VMA list
1504  */
1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1506 		unsigned long size)
1507 {
1508 	struct mm_struct *mm = vma->vm_mm;
1509 	struct mmu_gather tlb;
1510 	unsigned long end = start + size;
1511 
1512 	lru_add_drain();
1513 	tlb_gather_mmu(&tlb, mm, start, end);
1514 	update_hiwater_rss(mm);
1515 	mmu_notifier_invalidate_range_start(mm, start, end);
1516 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1517 		unmap_single_vma(&tlb, vma, start, end, NULL);
1518 	mmu_notifier_invalidate_range_end(mm, start, end);
1519 	tlb_finish_mmu(&tlb, start, end);
1520 }
1521 
1522 /**
1523  * zap_page_range_single - remove user pages in a given range
1524  * @vma: vm_area_struct holding the applicable pages
1525  * @address: starting address of pages to zap
1526  * @size: number of bytes to zap
1527  * @details: details of shared cache invalidation
1528  *
1529  * The range must fit into one VMA.
1530  */
1531 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1532 		unsigned long size, struct zap_details *details)
1533 {
1534 	struct mm_struct *mm = vma->vm_mm;
1535 	struct mmu_gather tlb;
1536 	unsigned long end = address + size;
1537 
1538 	lru_add_drain();
1539 	tlb_gather_mmu(&tlb, mm, address, end);
1540 	update_hiwater_rss(mm);
1541 	mmu_notifier_invalidate_range_start(mm, address, end);
1542 	unmap_single_vma(&tlb, vma, address, end, details);
1543 	mmu_notifier_invalidate_range_end(mm, address, end);
1544 	tlb_finish_mmu(&tlb, address, end);
1545 }
1546 
1547 /**
1548  * zap_vma_ptes - remove ptes mapping the vma
1549  * @vma: vm_area_struct holding ptes to be zapped
1550  * @address: starting address of pages to zap
1551  * @size: number of bytes to zap
1552  *
1553  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554  *
1555  * The entire address range must be fully contained within the vma.
1556  *
1557  * Returns 0 if successful.
1558  */
1559 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560 		unsigned long size)
1561 {
1562 	if (address < vma->vm_start || address + size > vma->vm_end ||
1563 	    		!(vma->vm_flags & VM_PFNMAP))
1564 		return -1;
1565 	zap_page_range_single(vma, address, size, NULL);
1566 	return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569 
1570 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1571 			spinlock_t **ptl)
1572 {
1573 	pgd_t *pgd;
1574 	p4d_t *p4d;
1575 	pud_t *pud;
1576 	pmd_t *pmd;
1577 
1578 	pgd = pgd_offset(mm, addr);
1579 	p4d = p4d_alloc(mm, pgd, addr);
1580 	if (!p4d)
1581 		return NULL;
1582 	pud = pud_alloc(mm, p4d, addr);
1583 	if (!pud)
1584 		return NULL;
1585 	pmd = pmd_alloc(mm, pud, addr);
1586 	if (!pmd)
1587 		return NULL;
1588 
1589 	VM_BUG_ON(pmd_trans_huge(*pmd));
1590 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1591 }
1592 
1593 /*
1594  * This is the old fallback for page remapping.
1595  *
1596  * For historical reasons, it only allows reserved pages. Only
1597  * old drivers should use this, and they needed to mark their
1598  * pages reserved for the old functions anyway.
1599  */
1600 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601 			struct page *page, pgprot_t prot)
1602 {
1603 	struct mm_struct *mm = vma->vm_mm;
1604 	int retval;
1605 	pte_t *pte;
1606 	spinlock_t *ptl;
1607 
1608 	retval = -EINVAL;
1609 	if (PageAnon(page))
1610 		goto out;
1611 	retval = -ENOMEM;
1612 	flush_dcache_page(page);
1613 	pte = get_locked_pte(mm, addr, &ptl);
1614 	if (!pte)
1615 		goto out;
1616 	retval = -EBUSY;
1617 	if (!pte_none(*pte))
1618 		goto out_unlock;
1619 
1620 	/* Ok, finally just insert the thing.. */
1621 	get_page(page);
1622 	inc_mm_counter_fast(mm, mm_counter_file(page));
1623 	page_add_file_rmap(page, false);
1624 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625 
1626 	retval = 0;
1627 	pte_unmap_unlock(pte, ptl);
1628 	return retval;
1629 out_unlock:
1630 	pte_unmap_unlock(pte, ptl);
1631 out:
1632 	return retval;
1633 }
1634 
1635 /**
1636  * vm_insert_page - insert single page into user vma
1637  * @vma: user vma to map to
1638  * @addr: target user address of this page
1639  * @page: source kernel page
1640  *
1641  * This allows drivers to insert individual pages they've allocated
1642  * into a user vma.
1643  *
1644  * The page has to be a nice clean _individual_ kernel allocation.
1645  * If you allocate a compound page, you need to have marked it as
1646  * such (__GFP_COMP), or manually just split the page up yourself
1647  * (see split_page()).
1648  *
1649  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650  * took an arbitrary page protection parameter. This doesn't allow
1651  * that. Your vma protection will have to be set up correctly, which
1652  * means that if you want a shared writable mapping, you'd better
1653  * ask for a shared writable mapping!
1654  *
1655  * The page does not need to be reserved.
1656  *
1657  * Usually this function is called from f_op->mmap() handler
1658  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660  * function from other places, for example from page-fault handler.
1661  */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 			struct page *page)
1664 {
1665 	if (addr < vma->vm_start || addr >= vma->vm_end)
1666 		return -EFAULT;
1667 	if (!page_count(page))
1668 		return -EINVAL;
1669 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 		vma->vm_flags |= VM_MIXEDMAP;
1673 	}
1674 	return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677 
1678 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1679 			pfn_t pfn, pgprot_t prot)
1680 {
1681 	struct mm_struct *mm = vma->vm_mm;
1682 	int retval;
1683 	pte_t *pte, entry;
1684 	spinlock_t *ptl;
1685 
1686 	retval = -ENOMEM;
1687 	pte = get_locked_pte(mm, addr, &ptl);
1688 	if (!pte)
1689 		goto out;
1690 	retval = -EBUSY;
1691 	if (!pte_none(*pte))
1692 		goto out_unlock;
1693 
1694 	/* Ok, finally just insert the thing.. */
1695 	if (pfn_t_devmap(pfn))
1696 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1697 	else
1698 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1699 	set_pte_at(mm, addr, pte, entry);
1700 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1701 
1702 	retval = 0;
1703 out_unlock:
1704 	pte_unmap_unlock(pte, ptl);
1705 out:
1706 	return retval;
1707 }
1708 
1709 /**
1710  * vm_insert_pfn - insert single pfn into user vma
1711  * @vma: user vma to map to
1712  * @addr: target user address of this page
1713  * @pfn: source kernel pfn
1714  *
1715  * Similar to vm_insert_page, this allows drivers to insert individual pages
1716  * they've allocated into a user vma. Same comments apply.
1717  *
1718  * This function should only be called from a vm_ops->fault handler, and
1719  * in that case the handler should return NULL.
1720  *
1721  * vma cannot be a COW mapping.
1722  *
1723  * As this is called only for pages that do not currently exist, we
1724  * do not need to flush old virtual caches or the TLB.
1725  */
1726 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1727 			unsigned long pfn)
1728 {
1729 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1730 }
1731 EXPORT_SYMBOL(vm_insert_pfn);
1732 
1733 /**
1734  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1735  * @vma: user vma to map to
1736  * @addr: target user address of this page
1737  * @pfn: source kernel pfn
1738  * @pgprot: pgprot flags for the inserted page
1739  *
1740  * This is exactly like vm_insert_pfn, except that it allows drivers to
1741  * to override pgprot on a per-page basis.
1742  *
1743  * This only makes sense for IO mappings, and it makes no sense for
1744  * cow mappings.  In general, using multiple vmas is preferable;
1745  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1746  * impractical.
1747  */
1748 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1749 			unsigned long pfn, pgprot_t pgprot)
1750 {
1751 	int ret;
1752 	/*
1753 	 * Technically, architectures with pte_special can avoid all these
1754 	 * restrictions (same for remap_pfn_range).  However we would like
1755 	 * consistency in testing and feature parity among all, so we should
1756 	 * try to keep these invariants in place for everybody.
1757 	 */
1758 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1759 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1760 						(VM_PFNMAP|VM_MIXEDMAP));
1761 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1762 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1763 
1764 	if (addr < vma->vm_start || addr >= vma->vm_end)
1765 		return -EFAULT;
1766 
1767 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1768 
1769 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1770 
1771 	return ret;
1772 }
1773 EXPORT_SYMBOL(vm_insert_pfn_prot);
1774 
1775 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1776 			pfn_t pfn)
1777 {
1778 	pgprot_t pgprot = vma->vm_page_prot;
1779 
1780 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1781 
1782 	if (addr < vma->vm_start || addr >= vma->vm_end)
1783 		return -EFAULT;
1784 
1785 	track_pfn_insert(vma, &pgprot, pfn);
1786 
1787 	/*
1788 	 * If we don't have pte special, then we have to use the pfn_valid()
1789 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1790 	 * refcount the page if pfn_valid is true (hence insert_page rather
1791 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1792 	 * without pte special, it would there be refcounted as a normal page.
1793 	 */
1794 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1795 		struct page *page;
1796 
1797 		/*
1798 		 * At this point we are committed to insert_page()
1799 		 * regardless of whether the caller specified flags that
1800 		 * result in pfn_t_has_page() == false.
1801 		 */
1802 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1803 		return insert_page(vma, addr, page, pgprot);
1804 	}
1805 	return insert_pfn(vma, addr, pfn, pgprot);
1806 }
1807 EXPORT_SYMBOL(vm_insert_mixed);
1808 
1809 /*
1810  * maps a range of physical memory into the requested pages. the old
1811  * mappings are removed. any references to nonexistent pages results
1812  * in null mappings (currently treated as "copy-on-access")
1813  */
1814 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815 			unsigned long addr, unsigned long end,
1816 			unsigned long pfn, pgprot_t prot)
1817 {
1818 	pte_t *pte;
1819 	spinlock_t *ptl;
1820 
1821 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1822 	if (!pte)
1823 		return -ENOMEM;
1824 	arch_enter_lazy_mmu_mode();
1825 	do {
1826 		BUG_ON(!pte_none(*pte));
1827 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828 		pfn++;
1829 	} while (pte++, addr += PAGE_SIZE, addr != end);
1830 	arch_leave_lazy_mmu_mode();
1831 	pte_unmap_unlock(pte - 1, ptl);
1832 	return 0;
1833 }
1834 
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836 			unsigned long addr, unsigned long end,
1837 			unsigned long pfn, pgprot_t prot)
1838 {
1839 	pmd_t *pmd;
1840 	unsigned long next;
1841 
1842 	pfn -= addr >> PAGE_SHIFT;
1843 	pmd = pmd_alloc(mm, pud, addr);
1844 	if (!pmd)
1845 		return -ENOMEM;
1846 	VM_BUG_ON(pmd_trans_huge(*pmd));
1847 	do {
1848 		next = pmd_addr_end(addr, end);
1849 		if (remap_pte_range(mm, pmd, addr, next,
1850 				pfn + (addr >> PAGE_SHIFT), prot))
1851 			return -ENOMEM;
1852 	} while (pmd++, addr = next, addr != end);
1853 	return 0;
1854 }
1855 
1856 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1857 			unsigned long addr, unsigned long end,
1858 			unsigned long pfn, pgprot_t prot)
1859 {
1860 	pud_t *pud;
1861 	unsigned long next;
1862 
1863 	pfn -= addr >> PAGE_SHIFT;
1864 	pud = pud_alloc(mm, p4d, addr);
1865 	if (!pud)
1866 		return -ENOMEM;
1867 	do {
1868 		next = pud_addr_end(addr, end);
1869 		if (remap_pmd_range(mm, pud, addr, next,
1870 				pfn + (addr >> PAGE_SHIFT), prot))
1871 			return -ENOMEM;
1872 	} while (pud++, addr = next, addr != end);
1873 	return 0;
1874 }
1875 
1876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1877 			unsigned long addr, unsigned long end,
1878 			unsigned long pfn, pgprot_t prot)
1879 {
1880 	p4d_t *p4d;
1881 	unsigned long next;
1882 
1883 	pfn -= addr >> PAGE_SHIFT;
1884 	p4d = p4d_alloc(mm, pgd, addr);
1885 	if (!p4d)
1886 		return -ENOMEM;
1887 	do {
1888 		next = p4d_addr_end(addr, end);
1889 		if (remap_pud_range(mm, p4d, addr, next,
1890 				pfn + (addr >> PAGE_SHIFT), prot))
1891 			return -ENOMEM;
1892 	} while (p4d++, addr = next, addr != end);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * remap_pfn_range - remap kernel memory to userspace
1898  * @vma: user vma to map to
1899  * @addr: target user address to start at
1900  * @pfn: physical address of kernel memory
1901  * @size: size of map area
1902  * @prot: page protection flags for this mapping
1903  *
1904  *  Note: this is only safe if the mm semaphore is held when called.
1905  */
1906 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1907 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1908 {
1909 	pgd_t *pgd;
1910 	unsigned long next;
1911 	unsigned long end = addr + PAGE_ALIGN(size);
1912 	struct mm_struct *mm = vma->vm_mm;
1913 	unsigned long remap_pfn = pfn;
1914 	int err;
1915 
1916 	/*
1917 	 * Physically remapped pages are special. Tell the
1918 	 * rest of the world about it:
1919 	 *   VM_IO tells people not to look at these pages
1920 	 *	(accesses can have side effects).
1921 	 *   VM_PFNMAP tells the core MM that the base pages are just
1922 	 *	raw PFN mappings, and do not have a "struct page" associated
1923 	 *	with them.
1924 	 *   VM_DONTEXPAND
1925 	 *      Disable vma merging and expanding with mremap().
1926 	 *   VM_DONTDUMP
1927 	 *      Omit vma from core dump, even when VM_IO turned off.
1928 	 *
1929 	 * There's a horrible special case to handle copy-on-write
1930 	 * behaviour that some programs depend on. We mark the "original"
1931 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1932 	 * See vm_normal_page() for details.
1933 	 */
1934 	if (is_cow_mapping(vma->vm_flags)) {
1935 		if (addr != vma->vm_start || end != vma->vm_end)
1936 			return -EINVAL;
1937 		vma->vm_pgoff = pfn;
1938 	}
1939 
1940 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1941 	if (err)
1942 		return -EINVAL;
1943 
1944 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1945 
1946 	BUG_ON(addr >= end);
1947 	pfn -= addr >> PAGE_SHIFT;
1948 	pgd = pgd_offset(mm, addr);
1949 	flush_cache_range(vma, addr, end);
1950 	do {
1951 		next = pgd_addr_end(addr, end);
1952 		err = remap_p4d_range(mm, pgd, addr, next,
1953 				pfn + (addr >> PAGE_SHIFT), prot);
1954 		if (err)
1955 			break;
1956 	} while (pgd++, addr = next, addr != end);
1957 
1958 	if (err)
1959 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1960 
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(remap_pfn_range);
1964 
1965 /**
1966  * vm_iomap_memory - remap memory to userspace
1967  * @vma: user vma to map to
1968  * @start: start of area
1969  * @len: size of area
1970  *
1971  * This is a simplified io_remap_pfn_range() for common driver use. The
1972  * driver just needs to give us the physical memory range to be mapped,
1973  * we'll figure out the rest from the vma information.
1974  *
1975  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1976  * whatever write-combining details or similar.
1977  */
1978 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1979 {
1980 	unsigned long vm_len, pfn, pages;
1981 
1982 	/* Check that the physical memory area passed in looks valid */
1983 	if (start + len < start)
1984 		return -EINVAL;
1985 	/*
1986 	 * You *really* shouldn't map things that aren't page-aligned,
1987 	 * but we've historically allowed it because IO memory might
1988 	 * just have smaller alignment.
1989 	 */
1990 	len += start & ~PAGE_MASK;
1991 	pfn = start >> PAGE_SHIFT;
1992 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1993 	if (pfn + pages < pfn)
1994 		return -EINVAL;
1995 
1996 	/* We start the mapping 'vm_pgoff' pages into the area */
1997 	if (vma->vm_pgoff > pages)
1998 		return -EINVAL;
1999 	pfn += vma->vm_pgoff;
2000 	pages -= vma->vm_pgoff;
2001 
2002 	/* Can we fit all of the mapping? */
2003 	vm_len = vma->vm_end - vma->vm_start;
2004 	if (vm_len >> PAGE_SHIFT > pages)
2005 		return -EINVAL;
2006 
2007 	/* Ok, let it rip */
2008 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2009 }
2010 EXPORT_SYMBOL(vm_iomap_memory);
2011 
2012 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2013 				     unsigned long addr, unsigned long end,
2014 				     pte_fn_t fn, void *data)
2015 {
2016 	pte_t *pte;
2017 	int err;
2018 	pgtable_t token;
2019 	spinlock_t *uninitialized_var(ptl);
2020 
2021 	pte = (mm == &init_mm) ?
2022 		pte_alloc_kernel(pmd, addr) :
2023 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2024 	if (!pte)
2025 		return -ENOMEM;
2026 
2027 	BUG_ON(pmd_huge(*pmd));
2028 
2029 	arch_enter_lazy_mmu_mode();
2030 
2031 	token = pmd_pgtable(*pmd);
2032 
2033 	do {
2034 		err = fn(pte++, token, addr, data);
2035 		if (err)
2036 			break;
2037 	} while (addr += PAGE_SIZE, addr != end);
2038 
2039 	arch_leave_lazy_mmu_mode();
2040 
2041 	if (mm != &init_mm)
2042 		pte_unmap_unlock(pte-1, ptl);
2043 	return err;
2044 }
2045 
2046 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2047 				     unsigned long addr, unsigned long end,
2048 				     pte_fn_t fn, void *data)
2049 {
2050 	pmd_t *pmd;
2051 	unsigned long next;
2052 	int err;
2053 
2054 	BUG_ON(pud_huge(*pud));
2055 
2056 	pmd = pmd_alloc(mm, pud, addr);
2057 	if (!pmd)
2058 		return -ENOMEM;
2059 	do {
2060 		next = pmd_addr_end(addr, end);
2061 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2062 		if (err)
2063 			break;
2064 	} while (pmd++, addr = next, addr != end);
2065 	return err;
2066 }
2067 
2068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2069 				     unsigned long addr, unsigned long end,
2070 				     pte_fn_t fn, void *data)
2071 {
2072 	pud_t *pud;
2073 	unsigned long next;
2074 	int err;
2075 
2076 	pud = pud_alloc(mm, p4d, addr);
2077 	if (!pud)
2078 		return -ENOMEM;
2079 	do {
2080 		next = pud_addr_end(addr, end);
2081 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2082 		if (err)
2083 			break;
2084 	} while (pud++, addr = next, addr != end);
2085 	return err;
2086 }
2087 
2088 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2089 				     unsigned long addr, unsigned long end,
2090 				     pte_fn_t fn, void *data)
2091 {
2092 	p4d_t *p4d;
2093 	unsigned long next;
2094 	int err;
2095 
2096 	p4d = p4d_alloc(mm, pgd, addr);
2097 	if (!p4d)
2098 		return -ENOMEM;
2099 	do {
2100 		next = p4d_addr_end(addr, end);
2101 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2102 		if (err)
2103 			break;
2104 	} while (p4d++, addr = next, addr != end);
2105 	return err;
2106 }
2107 
2108 /*
2109  * Scan a region of virtual memory, filling in page tables as necessary
2110  * and calling a provided function on each leaf page table.
2111  */
2112 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2113 			unsigned long size, pte_fn_t fn, void *data)
2114 {
2115 	pgd_t *pgd;
2116 	unsigned long next;
2117 	unsigned long end = addr + size;
2118 	int err;
2119 
2120 	if (WARN_ON(addr >= end))
2121 		return -EINVAL;
2122 
2123 	pgd = pgd_offset(mm, addr);
2124 	do {
2125 		next = pgd_addr_end(addr, end);
2126 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2127 		if (err)
2128 			break;
2129 	} while (pgd++, addr = next, addr != end);
2130 
2131 	return err;
2132 }
2133 EXPORT_SYMBOL_GPL(apply_to_page_range);
2134 
2135 /*
2136  * handle_pte_fault chooses page fault handler according to an entry which was
2137  * read non-atomically.  Before making any commitment, on those architectures
2138  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2139  * parts, do_swap_page must check under lock before unmapping the pte and
2140  * proceeding (but do_wp_page is only called after already making such a check;
2141  * and do_anonymous_page can safely check later on).
2142  */
2143 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2144 				pte_t *page_table, pte_t orig_pte)
2145 {
2146 	int same = 1;
2147 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2148 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2149 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2150 		spin_lock(ptl);
2151 		same = pte_same(*page_table, orig_pte);
2152 		spin_unlock(ptl);
2153 	}
2154 #endif
2155 	pte_unmap(page_table);
2156 	return same;
2157 }
2158 
2159 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2160 {
2161 	debug_dma_assert_idle(src);
2162 
2163 	/*
2164 	 * If the source page was a PFN mapping, we don't have
2165 	 * a "struct page" for it. We do a best-effort copy by
2166 	 * just copying from the original user address. If that
2167 	 * fails, we just zero-fill it. Live with it.
2168 	 */
2169 	if (unlikely(!src)) {
2170 		void *kaddr = kmap_atomic(dst);
2171 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2172 
2173 		/*
2174 		 * This really shouldn't fail, because the page is there
2175 		 * in the page tables. But it might just be unreadable,
2176 		 * in which case we just give up and fill the result with
2177 		 * zeroes.
2178 		 */
2179 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2180 			clear_page(kaddr);
2181 		kunmap_atomic(kaddr);
2182 		flush_dcache_page(dst);
2183 	} else
2184 		copy_user_highpage(dst, src, va, vma);
2185 }
2186 
2187 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2188 {
2189 	struct file *vm_file = vma->vm_file;
2190 
2191 	if (vm_file)
2192 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2193 
2194 	/*
2195 	 * Special mappings (e.g. VDSO) do not have any file so fake
2196 	 * a default GFP_KERNEL for them.
2197 	 */
2198 	return GFP_KERNEL;
2199 }
2200 
2201 /*
2202  * Notify the address space that the page is about to become writable so that
2203  * it can prohibit this or wait for the page to get into an appropriate state.
2204  *
2205  * We do this without the lock held, so that it can sleep if it needs to.
2206  */
2207 static int do_page_mkwrite(struct vm_fault *vmf)
2208 {
2209 	int ret;
2210 	struct page *page = vmf->page;
2211 	unsigned int old_flags = vmf->flags;
2212 
2213 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2214 
2215 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2216 	/* Restore original flags so that caller is not surprised */
2217 	vmf->flags = old_flags;
2218 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2219 		return ret;
2220 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2221 		lock_page(page);
2222 		if (!page->mapping) {
2223 			unlock_page(page);
2224 			return 0; /* retry */
2225 		}
2226 		ret |= VM_FAULT_LOCKED;
2227 	} else
2228 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2229 	return ret;
2230 }
2231 
2232 /*
2233  * Handle dirtying of a page in shared file mapping on a write fault.
2234  *
2235  * The function expects the page to be locked and unlocks it.
2236  */
2237 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2238 				    struct page *page)
2239 {
2240 	struct address_space *mapping;
2241 	bool dirtied;
2242 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2243 
2244 	dirtied = set_page_dirty(page);
2245 	VM_BUG_ON_PAGE(PageAnon(page), page);
2246 	/*
2247 	 * Take a local copy of the address_space - page.mapping may be zeroed
2248 	 * by truncate after unlock_page().   The address_space itself remains
2249 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2250 	 * release semantics to prevent the compiler from undoing this copying.
2251 	 */
2252 	mapping = page_rmapping(page);
2253 	unlock_page(page);
2254 
2255 	if ((dirtied || page_mkwrite) && mapping) {
2256 		/*
2257 		 * Some device drivers do not set page.mapping
2258 		 * but still dirty their pages
2259 		 */
2260 		balance_dirty_pages_ratelimited(mapping);
2261 	}
2262 
2263 	if (!page_mkwrite)
2264 		file_update_time(vma->vm_file);
2265 }
2266 
2267 /*
2268  * Handle write page faults for pages that can be reused in the current vma
2269  *
2270  * This can happen either due to the mapping being with the VM_SHARED flag,
2271  * or due to us being the last reference standing to the page. In either
2272  * case, all we need to do here is to mark the page as writable and update
2273  * any related book-keeping.
2274  */
2275 static inline void wp_page_reuse(struct vm_fault *vmf)
2276 	__releases(vmf->ptl)
2277 {
2278 	struct vm_area_struct *vma = vmf->vma;
2279 	struct page *page = vmf->page;
2280 	pte_t entry;
2281 	/*
2282 	 * Clear the pages cpupid information as the existing
2283 	 * information potentially belongs to a now completely
2284 	 * unrelated process.
2285 	 */
2286 	if (page)
2287 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2288 
2289 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2290 	entry = pte_mkyoung(vmf->orig_pte);
2291 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2292 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2293 		update_mmu_cache(vma, vmf->address, vmf->pte);
2294 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2295 }
2296 
2297 /*
2298  * Handle the case of a page which we actually need to copy to a new page.
2299  *
2300  * Called with mmap_sem locked and the old page referenced, but
2301  * without the ptl held.
2302  *
2303  * High level logic flow:
2304  *
2305  * - Allocate a page, copy the content of the old page to the new one.
2306  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2307  * - Take the PTL. If the pte changed, bail out and release the allocated page
2308  * - If the pte is still the way we remember it, update the page table and all
2309  *   relevant references. This includes dropping the reference the page-table
2310  *   held to the old page, as well as updating the rmap.
2311  * - In any case, unlock the PTL and drop the reference we took to the old page.
2312  */
2313 static int wp_page_copy(struct vm_fault *vmf)
2314 {
2315 	struct vm_area_struct *vma = vmf->vma;
2316 	struct mm_struct *mm = vma->vm_mm;
2317 	struct page *old_page = vmf->page;
2318 	struct page *new_page = NULL;
2319 	pte_t entry;
2320 	int page_copied = 0;
2321 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2322 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2323 	struct mem_cgroup *memcg;
2324 
2325 	if (unlikely(anon_vma_prepare(vma)))
2326 		goto oom;
2327 
2328 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2329 		new_page = alloc_zeroed_user_highpage_movable(vma,
2330 							      vmf->address);
2331 		if (!new_page)
2332 			goto oom;
2333 	} else {
2334 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2335 				vmf->address);
2336 		if (!new_page)
2337 			goto oom;
2338 		cow_user_page(new_page, old_page, vmf->address, vma);
2339 	}
2340 
2341 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2342 		goto oom_free_new;
2343 
2344 	__SetPageUptodate(new_page);
2345 
2346 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2347 
2348 	/*
2349 	 * Re-check the pte - we dropped the lock
2350 	 */
2351 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2352 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2353 		if (old_page) {
2354 			if (!PageAnon(old_page)) {
2355 				dec_mm_counter_fast(mm,
2356 						mm_counter_file(old_page));
2357 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2358 			}
2359 		} else {
2360 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2361 		}
2362 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2363 		entry = mk_pte(new_page, vma->vm_page_prot);
2364 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2365 		/*
2366 		 * Clear the pte entry and flush it first, before updating the
2367 		 * pte with the new entry. This will avoid a race condition
2368 		 * seen in the presence of one thread doing SMC and another
2369 		 * thread doing COW.
2370 		 */
2371 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2372 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2373 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2374 		lru_cache_add_active_or_unevictable(new_page, vma);
2375 		/*
2376 		 * We call the notify macro here because, when using secondary
2377 		 * mmu page tables (such as kvm shadow page tables), we want the
2378 		 * new page to be mapped directly into the secondary page table.
2379 		 */
2380 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2381 		update_mmu_cache(vma, vmf->address, vmf->pte);
2382 		if (old_page) {
2383 			/*
2384 			 * Only after switching the pte to the new page may
2385 			 * we remove the mapcount here. Otherwise another
2386 			 * process may come and find the rmap count decremented
2387 			 * before the pte is switched to the new page, and
2388 			 * "reuse" the old page writing into it while our pte
2389 			 * here still points into it and can be read by other
2390 			 * threads.
2391 			 *
2392 			 * The critical issue is to order this
2393 			 * page_remove_rmap with the ptp_clear_flush above.
2394 			 * Those stores are ordered by (if nothing else,)
2395 			 * the barrier present in the atomic_add_negative
2396 			 * in page_remove_rmap.
2397 			 *
2398 			 * Then the TLB flush in ptep_clear_flush ensures that
2399 			 * no process can access the old page before the
2400 			 * decremented mapcount is visible. And the old page
2401 			 * cannot be reused until after the decremented
2402 			 * mapcount is visible. So transitively, TLBs to
2403 			 * old page will be flushed before it can be reused.
2404 			 */
2405 			page_remove_rmap(old_page, false);
2406 		}
2407 
2408 		/* Free the old page.. */
2409 		new_page = old_page;
2410 		page_copied = 1;
2411 	} else {
2412 		mem_cgroup_cancel_charge(new_page, memcg, false);
2413 	}
2414 
2415 	if (new_page)
2416 		put_page(new_page);
2417 
2418 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2419 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2420 	if (old_page) {
2421 		/*
2422 		 * Don't let another task, with possibly unlocked vma,
2423 		 * keep the mlocked page.
2424 		 */
2425 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2426 			lock_page(old_page);	/* LRU manipulation */
2427 			if (PageMlocked(old_page))
2428 				munlock_vma_page(old_page);
2429 			unlock_page(old_page);
2430 		}
2431 		put_page(old_page);
2432 	}
2433 	return page_copied ? VM_FAULT_WRITE : 0;
2434 oom_free_new:
2435 	put_page(new_page);
2436 oom:
2437 	if (old_page)
2438 		put_page(old_page);
2439 	return VM_FAULT_OOM;
2440 }
2441 
2442 /**
2443  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2444  *			  writeable once the page is prepared
2445  *
2446  * @vmf: structure describing the fault
2447  *
2448  * This function handles all that is needed to finish a write page fault in a
2449  * shared mapping due to PTE being read-only once the mapped page is prepared.
2450  * It handles locking of PTE and modifying it. The function returns
2451  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2452  * lock.
2453  *
2454  * The function expects the page to be locked or other protection against
2455  * concurrent faults / writeback (such as DAX radix tree locks).
2456  */
2457 int finish_mkwrite_fault(struct vm_fault *vmf)
2458 {
2459 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 				       &vmf->ptl);
2462 	/*
2463 	 * We might have raced with another page fault while we released the
2464 	 * pte_offset_map_lock.
2465 	 */
2466 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2468 		return VM_FAULT_NOPAGE;
2469 	}
2470 	wp_page_reuse(vmf);
2471 	return 0;
2472 }
2473 
2474 /*
2475  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476  * mapping
2477  */
2478 static int wp_pfn_shared(struct vm_fault *vmf)
2479 {
2480 	struct vm_area_struct *vma = vmf->vma;
2481 
2482 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483 		int ret;
2484 
2485 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2486 		vmf->flags |= FAULT_FLAG_MKWRITE;
2487 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2488 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489 			return ret;
2490 		return finish_mkwrite_fault(vmf);
2491 	}
2492 	wp_page_reuse(vmf);
2493 	return VM_FAULT_WRITE;
2494 }
2495 
2496 static int wp_page_shared(struct vm_fault *vmf)
2497 	__releases(vmf->ptl)
2498 {
2499 	struct vm_area_struct *vma = vmf->vma;
2500 
2501 	get_page(vmf->page);
2502 
2503 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504 		int tmp;
2505 
2506 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2507 		tmp = do_page_mkwrite(vmf);
2508 		if (unlikely(!tmp || (tmp &
2509 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510 			put_page(vmf->page);
2511 			return tmp;
2512 		}
2513 		tmp = finish_mkwrite_fault(vmf);
2514 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515 			unlock_page(vmf->page);
2516 			put_page(vmf->page);
2517 			return tmp;
2518 		}
2519 	} else {
2520 		wp_page_reuse(vmf);
2521 		lock_page(vmf->page);
2522 	}
2523 	fault_dirty_shared_page(vma, vmf->page);
2524 	put_page(vmf->page);
2525 
2526 	return VM_FAULT_WRITE;
2527 }
2528 
2529 /*
2530  * This routine handles present pages, when users try to write
2531  * to a shared page. It is done by copying the page to a new address
2532  * and decrementing the shared-page counter for the old page.
2533  *
2534  * Note that this routine assumes that the protection checks have been
2535  * done by the caller (the low-level page fault routine in most cases).
2536  * Thus we can safely just mark it writable once we've done any necessary
2537  * COW.
2538  *
2539  * We also mark the page dirty at this point even though the page will
2540  * change only once the write actually happens. This avoids a few races,
2541  * and potentially makes it more efficient.
2542  *
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), with pte both mapped and locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static int do_wp_page(struct vm_fault *vmf)
2548 	__releases(vmf->ptl)
2549 {
2550 	struct vm_area_struct *vma = vmf->vma;
2551 
2552 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 	if (!vmf->page) {
2554 		/*
2555 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 		 * VM_PFNMAP VMA.
2557 		 *
2558 		 * We should not cow pages in a shared writeable mapping.
2559 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560 		 */
2561 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 				     (VM_WRITE|VM_SHARED))
2563 			return wp_pfn_shared(vmf);
2564 
2565 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2566 		return wp_page_copy(vmf);
2567 	}
2568 
2569 	/*
2570 	 * Take out anonymous pages first, anonymous shared vmas are
2571 	 * not dirty accountable.
2572 	 */
2573 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2574 		int total_mapcount;
2575 		if (!trylock_page(vmf->page)) {
2576 			get_page(vmf->page);
2577 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2578 			lock_page(vmf->page);
2579 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2580 					vmf->address, &vmf->ptl);
2581 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2582 				unlock_page(vmf->page);
2583 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2584 				put_page(vmf->page);
2585 				return 0;
2586 			}
2587 			put_page(vmf->page);
2588 		}
2589 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2590 			if (total_mapcount == 1) {
2591 				/*
2592 				 * The page is all ours. Move it to
2593 				 * our anon_vma so the rmap code will
2594 				 * not search our parent or siblings.
2595 				 * Protected against the rmap code by
2596 				 * the page lock.
2597 				 */
2598 				page_move_anon_rmap(vmf->page, vma);
2599 			}
2600 			unlock_page(vmf->page);
2601 			wp_page_reuse(vmf);
2602 			return VM_FAULT_WRITE;
2603 		}
2604 		unlock_page(vmf->page);
2605 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2606 					(VM_WRITE|VM_SHARED))) {
2607 		return wp_page_shared(vmf);
2608 	}
2609 
2610 	/*
2611 	 * Ok, we need to copy. Oh, well..
2612 	 */
2613 	get_page(vmf->page);
2614 
2615 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 	return wp_page_copy(vmf);
2617 }
2618 
2619 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2620 		unsigned long start_addr, unsigned long end_addr,
2621 		struct zap_details *details)
2622 {
2623 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2624 }
2625 
2626 static inline void unmap_mapping_range_tree(struct rb_root *root,
2627 					    struct zap_details *details)
2628 {
2629 	struct vm_area_struct *vma;
2630 	pgoff_t vba, vea, zba, zea;
2631 
2632 	vma_interval_tree_foreach(vma, root,
2633 			details->first_index, details->last_index) {
2634 
2635 		vba = vma->vm_pgoff;
2636 		vea = vba + vma_pages(vma) - 1;
2637 		zba = details->first_index;
2638 		if (zba < vba)
2639 			zba = vba;
2640 		zea = details->last_index;
2641 		if (zea > vea)
2642 			zea = vea;
2643 
2644 		unmap_mapping_range_vma(vma,
2645 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2646 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2647 				details);
2648 	}
2649 }
2650 
2651 /**
2652  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2653  * address_space corresponding to the specified page range in the underlying
2654  * file.
2655  *
2656  * @mapping: the address space containing mmaps to be unmapped.
2657  * @holebegin: byte in first page to unmap, relative to the start of
2658  * the underlying file.  This will be rounded down to a PAGE_SIZE
2659  * boundary.  Note that this is different from truncate_pagecache(), which
2660  * must keep the partial page.  In contrast, we must get rid of
2661  * partial pages.
2662  * @holelen: size of prospective hole in bytes.  This will be rounded
2663  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2664  * end of the file.
2665  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2666  * but 0 when invalidating pagecache, don't throw away private data.
2667  */
2668 void unmap_mapping_range(struct address_space *mapping,
2669 		loff_t const holebegin, loff_t const holelen, int even_cows)
2670 {
2671 	struct zap_details details = { };
2672 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2673 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2674 
2675 	/* Check for overflow. */
2676 	if (sizeof(holelen) > sizeof(hlen)) {
2677 		long long holeend =
2678 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679 		if (holeend & ~(long long)ULONG_MAX)
2680 			hlen = ULONG_MAX - hba + 1;
2681 	}
2682 
2683 	details.check_mapping = even_cows ? NULL : mapping;
2684 	details.first_index = hba;
2685 	details.last_index = hba + hlen - 1;
2686 	if (details.last_index < details.first_index)
2687 		details.last_index = ULONG_MAX;
2688 
2689 	i_mmap_lock_write(mapping);
2690 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2691 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2692 	i_mmap_unlock_write(mapping);
2693 }
2694 EXPORT_SYMBOL(unmap_mapping_range);
2695 
2696 /*
2697  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698  * but allow concurrent faults), and pte mapped but not yet locked.
2699  * We return with pte unmapped and unlocked.
2700  *
2701  * We return with the mmap_sem locked or unlocked in the same cases
2702  * as does filemap_fault().
2703  */
2704 int do_swap_page(struct vm_fault *vmf)
2705 {
2706 	struct vm_area_struct *vma = vmf->vma;
2707 	struct page *page, *swapcache;
2708 	struct mem_cgroup *memcg;
2709 	swp_entry_t entry;
2710 	pte_t pte;
2711 	int locked;
2712 	int exclusive = 0;
2713 	int ret = 0;
2714 
2715 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2716 		goto out;
2717 
2718 	entry = pte_to_swp_entry(vmf->orig_pte);
2719 	if (unlikely(non_swap_entry(entry))) {
2720 		if (is_migration_entry(entry)) {
2721 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2722 					     vmf->address);
2723 		} else if (is_hwpoison_entry(entry)) {
2724 			ret = VM_FAULT_HWPOISON;
2725 		} else {
2726 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2727 			ret = VM_FAULT_SIGBUS;
2728 		}
2729 		goto out;
2730 	}
2731 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2732 	page = lookup_swap_cache(entry);
2733 	if (!page) {
2734 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2735 					vmf->address);
2736 		if (!page) {
2737 			/*
2738 			 * Back out if somebody else faulted in this pte
2739 			 * while we released the pte lock.
2740 			 */
2741 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2742 					vmf->address, &vmf->ptl);
2743 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2744 				ret = VM_FAULT_OOM;
2745 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2746 			goto unlock;
2747 		}
2748 
2749 		/* Had to read the page from swap area: Major fault */
2750 		ret = VM_FAULT_MAJOR;
2751 		count_vm_event(PGMAJFAULT);
2752 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2753 	} else if (PageHWPoison(page)) {
2754 		/*
2755 		 * hwpoisoned dirty swapcache pages are kept for killing
2756 		 * owner processes (which may be unknown at hwpoison time)
2757 		 */
2758 		ret = VM_FAULT_HWPOISON;
2759 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2760 		swapcache = page;
2761 		goto out_release;
2762 	}
2763 
2764 	swapcache = page;
2765 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2766 
2767 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2768 	if (!locked) {
2769 		ret |= VM_FAULT_RETRY;
2770 		goto out_release;
2771 	}
2772 
2773 	/*
2774 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2775 	 * release the swapcache from under us.  The page pin, and pte_same
2776 	 * test below, are not enough to exclude that.  Even if it is still
2777 	 * swapcache, we need to check that the page's swap has not changed.
2778 	 */
2779 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2780 		goto out_page;
2781 
2782 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2783 	if (unlikely(!page)) {
2784 		ret = VM_FAULT_OOM;
2785 		page = swapcache;
2786 		goto out_page;
2787 	}
2788 
2789 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2790 				&memcg, false)) {
2791 		ret = VM_FAULT_OOM;
2792 		goto out_page;
2793 	}
2794 
2795 	/*
2796 	 * Back out if somebody else already faulted in this pte.
2797 	 */
2798 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2799 			&vmf->ptl);
2800 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2801 		goto out_nomap;
2802 
2803 	if (unlikely(!PageUptodate(page))) {
2804 		ret = VM_FAULT_SIGBUS;
2805 		goto out_nomap;
2806 	}
2807 
2808 	/*
2809 	 * The page isn't present yet, go ahead with the fault.
2810 	 *
2811 	 * Be careful about the sequence of operations here.
2812 	 * To get its accounting right, reuse_swap_page() must be called
2813 	 * while the page is counted on swap but not yet in mapcount i.e.
2814 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2815 	 * must be called after the swap_free(), or it will never succeed.
2816 	 */
2817 
2818 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2819 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2820 	pte = mk_pte(page, vma->vm_page_prot);
2821 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2822 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2823 		vmf->flags &= ~FAULT_FLAG_WRITE;
2824 		ret |= VM_FAULT_WRITE;
2825 		exclusive = RMAP_EXCLUSIVE;
2826 	}
2827 	flush_icache_page(vma, page);
2828 	if (pte_swp_soft_dirty(vmf->orig_pte))
2829 		pte = pte_mksoft_dirty(pte);
2830 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2831 	vmf->orig_pte = pte;
2832 	if (page == swapcache) {
2833 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2834 		mem_cgroup_commit_charge(page, memcg, true, false);
2835 		activate_page(page);
2836 	} else { /* ksm created a completely new copy */
2837 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2838 		mem_cgroup_commit_charge(page, memcg, false, false);
2839 		lru_cache_add_active_or_unevictable(page, vma);
2840 	}
2841 
2842 	swap_free(entry);
2843 	if (mem_cgroup_swap_full(page) ||
2844 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2845 		try_to_free_swap(page);
2846 	unlock_page(page);
2847 	if (page != swapcache) {
2848 		/*
2849 		 * Hold the lock to avoid the swap entry to be reused
2850 		 * until we take the PT lock for the pte_same() check
2851 		 * (to avoid false positives from pte_same). For
2852 		 * further safety release the lock after the swap_free
2853 		 * so that the swap count won't change under a
2854 		 * parallel locked swapcache.
2855 		 */
2856 		unlock_page(swapcache);
2857 		put_page(swapcache);
2858 	}
2859 
2860 	if (vmf->flags & FAULT_FLAG_WRITE) {
2861 		ret |= do_wp_page(vmf);
2862 		if (ret & VM_FAULT_ERROR)
2863 			ret &= VM_FAULT_ERROR;
2864 		goto out;
2865 	}
2866 
2867 	/* No need to invalidate - it was non-present before */
2868 	update_mmu_cache(vma, vmf->address, vmf->pte);
2869 unlock:
2870 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2871 out:
2872 	return ret;
2873 out_nomap:
2874 	mem_cgroup_cancel_charge(page, memcg, false);
2875 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2876 out_page:
2877 	unlock_page(page);
2878 out_release:
2879 	put_page(page);
2880 	if (page != swapcache) {
2881 		unlock_page(swapcache);
2882 		put_page(swapcache);
2883 	}
2884 	return ret;
2885 }
2886 
2887 /*
2888  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2889  * but allow concurrent faults), and pte mapped but not yet locked.
2890  * We return with mmap_sem still held, but pte unmapped and unlocked.
2891  */
2892 static int do_anonymous_page(struct vm_fault *vmf)
2893 {
2894 	struct vm_area_struct *vma = vmf->vma;
2895 	struct mem_cgroup *memcg;
2896 	struct page *page;
2897 	int ret = 0;
2898 	pte_t entry;
2899 
2900 	/* File mapping without ->vm_ops ? */
2901 	if (vma->vm_flags & VM_SHARED)
2902 		return VM_FAULT_SIGBUS;
2903 
2904 	/*
2905 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2906 	 * pte_offset_map() on pmds where a huge pmd might be created
2907 	 * from a different thread.
2908 	 *
2909 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2910 	 * parallel threads are excluded by other means.
2911 	 *
2912 	 * Here we only have down_read(mmap_sem).
2913 	 */
2914 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2915 		return VM_FAULT_OOM;
2916 
2917 	/* See the comment in pte_alloc_one_map() */
2918 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2919 		return 0;
2920 
2921 	/* Use the zero-page for reads */
2922 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2923 			!mm_forbids_zeropage(vma->vm_mm)) {
2924 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2925 						vma->vm_page_prot));
2926 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2927 				vmf->address, &vmf->ptl);
2928 		if (!pte_none(*vmf->pte))
2929 			goto unlock;
2930 		ret = check_stable_address_space(vma->vm_mm);
2931 		if (ret)
2932 			goto unlock;
2933 		/* Deliver the page fault to userland, check inside PT lock */
2934 		if (userfaultfd_missing(vma)) {
2935 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 			return handle_userfault(vmf, VM_UFFD_MISSING);
2937 		}
2938 		goto setpte;
2939 	}
2940 
2941 	/* Allocate our own private page. */
2942 	if (unlikely(anon_vma_prepare(vma)))
2943 		goto oom;
2944 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2945 	if (!page)
2946 		goto oom;
2947 
2948 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2949 		goto oom_free_page;
2950 
2951 	/*
2952 	 * The memory barrier inside __SetPageUptodate makes sure that
2953 	 * preceeding stores to the page contents become visible before
2954 	 * the set_pte_at() write.
2955 	 */
2956 	__SetPageUptodate(page);
2957 
2958 	entry = mk_pte(page, vma->vm_page_prot);
2959 	if (vma->vm_flags & VM_WRITE)
2960 		entry = pte_mkwrite(pte_mkdirty(entry));
2961 
2962 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2963 			&vmf->ptl);
2964 	if (!pte_none(*vmf->pte))
2965 		goto release;
2966 
2967 	ret = check_stable_address_space(vma->vm_mm);
2968 	if (ret)
2969 		goto release;
2970 
2971 	/* Deliver the page fault to userland, check inside PT lock */
2972 	if (userfaultfd_missing(vma)) {
2973 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2974 		mem_cgroup_cancel_charge(page, memcg, false);
2975 		put_page(page);
2976 		return handle_userfault(vmf, VM_UFFD_MISSING);
2977 	}
2978 
2979 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2980 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2981 	mem_cgroup_commit_charge(page, memcg, false, false);
2982 	lru_cache_add_active_or_unevictable(page, vma);
2983 setpte:
2984 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2985 
2986 	/* No need to invalidate - it was non-present before */
2987 	update_mmu_cache(vma, vmf->address, vmf->pte);
2988 unlock:
2989 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2990 	return ret;
2991 release:
2992 	mem_cgroup_cancel_charge(page, memcg, false);
2993 	put_page(page);
2994 	goto unlock;
2995 oom_free_page:
2996 	put_page(page);
2997 oom:
2998 	return VM_FAULT_OOM;
2999 }
3000 
3001 /*
3002  * The mmap_sem must have been held on entry, and may have been
3003  * released depending on flags and vma->vm_ops->fault() return value.
3004  * See filemap_fault() and __lock_page_retry().
3005  */
3006 static int __do_fault(struct vm_fault *vmf)
3007 {
3008 	struct vm_area_struct *vma = vmf->vma;
3009 	int ret;
3010 
3011 	ret = vma->vm_ops->fault(vmf);
3012 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3013 			    VM_FAULT_DONE_COW)))
3014 		return ret;
3015 
3016 	if (unlikely(PageHWPoison(vmf->page))) {
3017 		if (ret & VM_FAULT_LOCKED)
3018 			unlock_page(vmf->page);
3019 		put_page(vmf->page);
3020 		vmf->page = NULL;
3021 		return VM_FAULT_HWPOISON;
3022 	}
3023 
3024 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3025 		lock_page(vmf->page);
3026 	else
3027 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3028 
3029 	return ret;
3030 }
3031 
3032 /*
3033  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3034  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3035  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3036  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3037  */
3038 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3039 {
3040 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3041 }
3042 
3043 static int pte_alloc_one_map(struct vm_fault *vmf)
3044 {
3045 	struct vm_area_struct *vma = vmf->vma;
3046 
3047 	if (!pmd_none(*vmf->pmd))
3048 		goto map_pte;
3049 	if (vmf->prealloc_pte) {
3050 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3051 		if (unlikely(!pmd_none(*vmf->pmd))) {
3052 			spin_unlock(vmf->ptl);
3053 			goto map_pte;
3054 		}
3055 
3056 		atomic_long_inc(&vma->vm_mm->nr_ptes);
3057 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3058 		spin_unlock(vmf->ptl);
3059 		vmf->prealloc_pte = NULL;
3060 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3061 		return VM_FAULT_OOM;
3062 	}
3063 map_pte:
3064 	/*
3065 	 * If a huge pmd materialized under us just retry later.  Use
3066 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3067 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3068 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3069 	 * running immediately after a huge pmd fault in a different thread of
3070 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3071 	 * All we have to ensure is that it is a regular pmd that we can walk
3072 	 * with pte_offset_map() and we can do that through an atomic read in
3073 	 * C, which is what pmd_trans_unstable() provides.
3074 	 */
3075 	if (pmd_devmap_trans_unstable(vmf->pmd))
3076 		return VM_FAULT_NOPAGE;
3077 
3078 	/*
3079 	 * At this point we know that our vmf->pmd points to a page of ptes
3080 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3081 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3082 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3083 	 * be valid and we will re-check to make sure the vmf->pte isn't
3084 	 * pte_none() under vmf->ptl protection when we return to
3085 	 * alloc_set_pte().
3086 	 */
3087 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3088 			&vmf->ptl);
3089 	return 0;
3090 }
3091 
3092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3093 
3094 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3095 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3096 		unsigned long haddr)
3097 {
3098 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3099 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3100 		return false;
3101 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3102 		return false;
3103 	return true;
3104 }
3105 
3106 static void deposit_prealloc_pte(struct vm_fault *vmf)
3107 {
3108 	struct vm_area_struct *vma = vmf->vma;
3109 
3110 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3111 	/*
3112 	 * We are going to consume the prealloc table,
3113 	 * count that as nr_ptes.
3114 	 */
3115 	atomic_long_inc(&vma->vm_mm->nr_ptes);
3116 	vmf->prealloc_pte = NULL;
3117 }
3118 
3119 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3120 {
3121 	struct vm_area_struct *vma = vmf->vma;
3122 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3123 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3124 	pmd_t entry;
3125 	int i, ret;
3126 
3127 	if (!transhuge_vma_suitable(vma, haddr))
3128 		return VM_FAULT_FALLBACK;
3129 
3130 	ret = VM_FAULT_FALLBACK;
3131 	page = compound_head(page);
3132 
3133 	/*
3134 	 * Archs like ppc64 need additonal space to store information
3135 	 * related to pte entry. Use the preallocated table for that.
3136 	 */
3137 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3138 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3139 		if (!vmf->prealloc_pte)
3140 			return VM_FAULT_OOM;
3141 		smp_wmb(); /* See comment in __pte_alloc() */
3142 	}
3143 
3144 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3145 	if (unlikely(!pmd_none(*vmf->pmd)))
3146 		goto out;
3147 
3148 	for (i = 0; i < HPAGE_PMD_NR; i++)
3149 		flush_icache_page(vma, page + i);
3150 
3151 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3152 	if (write)
3153 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3154 
3155 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3156 	page_add_file_rmap(page, true);
3157 	/*
3158 	 * deposit and withdraw with pmd lock held
3159 	 */
3160 	if (arch_needs_pgtable_deposit())
3161 		deposit_prealloc_pte(vmf);
3162 
3163 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3164 
3165 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3166 
3167 	/* fault is handled */
3168 	ret = 0;
3169 	count_vm_event(THP_FILE_MAPPED);
3170 out:
3171 	spin_unlock(vmf->ptl);
3172 	return ret;
3173 }
3174 #else
3175 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3176 {
3177 	BUILD_BUG();
3178 	return 0;
3179 }
3180 #endif
3181 
3182 /**
3183  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3184  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3185  *
3186  * @vmf: fault environment
3187  * @memcg: memcg to charge page (only for private mappings)
3188  * @page: page to map
3189  *
3190  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3191  * return.
3192  *
3193  * Target users are page handler itself and implementations of
3194  * vm_ops->map_pages.
3195  */
3196 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3197 		struct page *page)
3198 {
3199 	struct vm_area_struct *vma = vmf->vma;
3200 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3201 	pte_t entry;
3202 	int ret;
3203 
3204 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3205 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3206 		/* THP on COW? */
3207 		VM_BUG_ON_PAGE(memcg, page);
3208 
3209 		ret = do_set_pmd(vmf, page);
3210 		if (ret != VM_FAULT_FALLBACK)
3211 			return ret;
3212 	}
3213 
3214 	if (!vmf->pte) {
3215 		ret = pte_alloc_one_map(vmf);
3216 		if (ret)
3217 			return ret;
3218 	}
3219 
3220 	/* Re-check under ptl */
3221 	if (unlikely(!pte_none(*vmf->pte)))
3222 		return VM_FAULT_NOPAGE;
3223 
3224 	flush_icache_page(vma, page);
3225 	entry = mk_pte(page, vma->vm_page_prot);
3226 	if (write)
3227 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3228 	/* copy-on-write page */
3229 	if (write && !(vma->vm_flags & VM_SHARED)) {
3230 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3231 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3232 		mem_cgroup_commit_charge(page, memcg, false, false);
3233 		lru_cache_add_active_or_unevictable(page, vma);
3234 	} else {
3235 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3236 		page_add_file_rmap(page, false);
3237 	}
3238 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3239 
3240 	/* no need to invalidate: a not-present page won't be cached */
3241 	update_mmu_cache(vma, vmf->address, vmf->pte);
3242 
3243 	return 0;
3244 }
3245 
3246 
3247 /**
3248  * finish_fault - finish page fault once we have prepared the page to fault
3249  *
3250  * @vmf: structure describing the fault
3251  *
3252  * This function handles all that is needed to finish a page fault once the
3253  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3254  * given page, adds reverse page mapping, handles memcg charges and LRU
3255  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3256  * error.
3257  *
3258  * The function expects the page to be locked and on success it consumes a
3259  * reference of a page being mapped (for the PTE which maps it).
3260  */
3261 int finish_fault(struct vm_fault *vmf)
3262 {
3263 	struct page *page;
3264 	int ret = 0;
3265 
3266 	/* Did we COW the page? */
3267 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3268 	    !(vmf->vma->vm_flags & VM_SHARED))
3269 		page = vmf->cow_page;
3270 	else
3271 		page = vmf->page;
3272 
3273 	/*
3274 	 * check even for read faults because we might have lost our CoWed
3275 	 * page
3276 	 */
3277 	if (!(vmf->vma->vm_flags & VM_SHARED))
3278 		ret = check_stable_address_space(vmf->vma->vm_mm);
3279 	if (!ret)
3280 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3281 	if (vmf->pte)
3282 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 	return ret;
3284 }
3285 
3286 static unsigned long fault_around_bytes __read_mostly =
3287 	rounddown_pow_of_two(65536);
3288 
3289 #ifdef CONFIG_DEBUG_FS
3290 static int fault_around_bytes_get(void *data, u64 *val)
3291 {
3292 	*val = fault_around_bytes;
3293 	return 0;
3294 }
3295 
3296 /*
3297  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3298  * rounded down to nearest page order. It's what do_fault_around() expects to
3299  * see.
3300  */
3301 static int fault_around_bytes_set(void *data, u64 val)
3302 {
3303 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3304 		return -EINVAL;
3305 	if (val > PAGE_SIZE)
3306 		fault_around_bytes = rounddown_pow_of_two(val);
3307 	else
3308 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3309 	return 0;
3310 }
3311 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3312 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3313 
3314 static int __init fault_around_debugfs(void)
3315 {
3316 	void *ret;
3317 
3318 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3319 			&fault_around_bytes_fops);
3320 	if (!ret)
3321 		pr_warn("Failed to create fault_around_bytes in debugfs");
3322 	return 0;
3323 }
3324 late_initcall(fault_around_debugfs);
3325 #endif
3326 
3327 /*
3328  * do_fault_around() tries to map few pages around the fault address. The hope
3329  * is that the pages will be needed soon and this will lower the number of
3330  * faults to handle.
3331  *
3332  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3333  * not ready to be mapped: not up-to-date, locked, etc.
3334  *
3335  * This function is called with the page table lock taken. In the split ptlock
3336  * case the page table lock only protects only those entries which belong to
3337  * the page table corresponding to the fault address.
3338  *
3339  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3340  * only once.
3341  *
3342  * fault_around_pages() defines how many pages we'll try to map.
3343  * do_fault_around() expects it to return a power of two less than or equal to
3344  * PTRS_PER_PTE.
3345  *
3346  * The virtual address of the area that we map is naturally aligned to the
3347  * fault_around_pages() value (and therefore to page order).  This way it's
3348  * easier to guarantee that we don't cross page table boundaries.
3349  */
3350 static int do_fault_around(struct vm_fault *vmf)
3351 {
3352 	unsigned long address = vmf->address, nr_pages, mask;
3353 	pgoff_t start_pgoff = vmf->pgoff;
3354 	pgoff_t end_pgoff;
3355 	int off, ret = 0;
3356 
3357 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3358 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3359 
3360 	vmf->address = max(address & mask, vmf->vma->vm_start);
3361 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3362 	start_pgoff -= off;
3363 
3364 	/*
3365 	 *  end_pgoff is either end of page table or end of vma
3366 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3367 	 */
3368 	end_pgoff = start_pgoff -
3369 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3370 		PTRS_PER_PTE - 1;
3371 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3372 			start_pgoff + nr_pages - 1);
3373 
3374 	if (pmd_none(*vmf->pmd)) {
3375 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3376 						  vmf->address);
3377 		if (!vmf->prealloc_pte)
3378 			goto out;
3379 		smp_wmb(); /* See comment in __pte_alloc() */
3380 	}
3381 
3382 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3383 
3384 	/* Huge page is mapped? Page fault is solved */
3385 	if (pmd_trans_huge(*vmf->pmd)) {
3386 		ret = VM_FAULT_NOPAGE;
3387 		goto out;
3388 	}
3389 
3390 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3391 	if (!vmf->pte)
3392 		goto out;
3393 
3394 	/* check if the page fault is solved */
3395 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3396 	if (!pte_none(*vmf->pte))
3397 		ret = VM_FAULT_NOPAGE;
3398 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3399 out:
3400 	vmf->address = address;
3401 	vmf->pte = NULL;
3402 	return ret;
3403 }
3404 
3405 static int do_read_fault(struct vm_fault *vmf)
3406 {
3407 	struct vm_area_struct *vma = vmf->vma;
3408 	int ret = 0;
3409 
3410 	/*
3411 	 * Let's call ->map_pages() first and use ->fault() as fallback
3412 	 * if page by the offset is not ready to be mapped (cold cache or
3413 	 * something).
3414 	 */
3415 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3416 		ret = do_fault_around(vmf);
3417 		if (ret)
3418 			return ret;
3419 	}
3420 
3421 	ret = __do_fault(vmf);
3422 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3423 		return ret;
3424 
3425 	ret |= finish_fault(vmf);
3426 	unlock_page(vmf->page);
3427 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3428 		put_page(vmf->page);
3429 	return ret;
3430 }
3431 
3432 static int do_cow_fault(struct vm_fault *vmf)
3433 {
3434 	struct vm_area_struct *vma = vmf->vma;
3435 	int ret;
3436 
3437 	if (unlikely(anon_vma_prepare(vma)))
3438 		return VM_FAULT_OOM;
3439 
3440 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3441 	if (!vmf->cow_page)
3442 		return VM_FAULT_OOM;
3443 
3444 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3445 				&vmf->memcg, false)) {
3446 		put_page(vmf->cow_page);
3447 		return VM_FAULT_OOM;
3448 	}
3449 
3450 	ret = __do_fault(vmf);
3451 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3452 		goto uncharge_out;
3453 	if (ret & VM_FAULT_DONE_COW)
3454 		return ret;
3455 
3456 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3457 	__SetPageUptodate(vmf->cow_page);
3458 
3459 	ret |= finish_fault(vmf);
3460 	unlock_page(vmf->page);
3461 	put_page(vmf->page);
3462 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3463 		goto uncharge_out;
3464 	return ret;
3465 uncharge_out:
3466 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3467 	put_page(vmf->cow_page);
3468 	return ret;
3469 }
3470 
3471 static int do_shared_fault(struct vm_fault *vmf)
3472 {
3473 	struct vm_area_struct *vma = vmf->vma;
3474 	int ret, tmp;
3475 
3476 	ret = __do_fault(vmf);
3477 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3478 		return ret;
3479 
3480 	/*
3481 	 * Check if the backing address space wants to know that the page is
3482 	 * about to become writable
3483 	 */
3484 	if (vma->vm_ops->page_mkwrite) {
3485 		unlock_page(vmf->page);
3486 		tmp = do_page_mkwrite(vmf);
3487 		if (unlikely(!tmp ||
3488 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3489 			put_page(vmf->page);
3490 			return tmp;
3491 		}
3492 	}
3493 
3494 	ret |= finish_fault(vmf);
3495 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3496 					VM_FAULT_RETRY))) {
3497 		unlock_page(vmf->page);
3498 		put_page(vmf->page);
3499 		return ret;
3500 	}
3501 
3502 	fault_dirty_shared_page(vma, vmf->page);
3503 	return ret;
3504 }
3505 
3506 /*
3507  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3508  * but allow concurrent faults).
3509  * The mmap_sem may have been released depending on flags and our
3510  * return value.  See filemap_fault() and __lock_page_or_retry().
3511  */
3512 static int do_fault(struct vm_fault *vmf)
3513 {
3514 	struct vm_area_struct *vma = vmf->vma;
3515 	int ret;
3516 
3517 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3518 	if (!vma->vm_ops->fault)
3519 		ret = VM_FAULT_SIGBUS;
3520 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3521 		ret = do_read_fault(vmf);
3522 	else if (!(vma->vm_flags & VM_SHARED))
3523 		ret = do_cow_fault(vmf);
3524 	else
3525 		ret = do_shared_fault(vmf);
3526 
3527 	/* preallocated pagetable is unused: free it */
3528 	if (vmf->prealloc_pte) {
3529 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3530 		vmf->prealloc_pte = NULL;
3531 	}
3532 	return ret;
3533 }
3534 
3535 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3536 				unsigned long addr, int page_nid,
3537 				int *flags)
3538 {
3539 	get_page(page);
3540 
3541 	count_vm_numa_event(NUMA_HINT_FAULTS);
3542 	if (page_nid == numa_node_id()) {
3543 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3544 		*flags |= TNF_FAULT_LOCAL;
3545 	}
3546 
3547 	return mpol_misplaced(page, vma, addr);
3548 }
3549 
3550 static int do_numa_page(struct vm_fault *vmf)
3551 {
3552 	struct vm_area_struct *vma = vmf->vma;
3553 	struct page *page = NULL;
3554 	int page_nid = -1;
3555 	int last_cpupid;
3556 	int target_nid;
3557 	bool migrated = false;
3558 	pte_t pte;
3559 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3560 	int flags = 0;
3561 
3562 	/*
3563 	 * The "pte" at this point cannot be used safely without
3564 	 * validation through pte_unmap_same(). It's of NUMA type but
3565 	 * the pfn may be screwed if the read is non atomic.
3566 	 */
3567 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3568 	spin_lock(vmf->ptl);
3569 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3570 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 		goto out;
3572 	}
3573 
3574 	/*
3575 	 * Make it present again, Depending on how arch implementes non
3576 	 * accessible ptes, some can allow access by kernel mode.
3577 	 */
3578 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3579 	pte = pte_modify(pte, vma->vm_page_prot);
3580 	pte = pte_mkyoung(pte);
3581 	if (was_writable)
3582 		pte = pte_mkwrite(pte);
3583 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3584 	update_mmu_cache(vma, vmf->address, vmf->pte);
3585 
3586 	page = vm_normal_page(vma, vmf->address, pte);
3587 	if (!page) {
3588 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3589 		return 0;
3590 	}
3591 
3592 	/* TODO: handle PTE-mapped THP */
3593 	if (PageCompound(page)) {
3594 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 		return 0;
3596 	}
3597 
3598 	/*
3599 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3600 	 * much anyway since they can be in shared cache state. This misses
3601 	 * the case where a mapping is writable but the process never writes
3602 	 * to it but pte_write gets cleared during protection updates and
3603 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3604 	 * background writeback, dirty balancing and application behaviour.
3605 	 */
3606 	if (!pte_write(pte))
3607 		flags |= TNF_NO_GROUP;
3608 
3609 	/*
3610 	 * Flag if the page is shared between multiple address spaces. This
3611 	 * is later used when determining whether to group tasks together
3612 	 */
3613 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3614 		flags |= TNF_SHARED;
3615 
3616 	last_cpupid = page_cpupid_last(page);
3617 	page_nid = page_to_nid(page);
3618 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3619 			&flags);
3620 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3621 	if (target_nid == -1) {
3622 		put_page(page);
3623 		goto out;
3624 	}
3625 
3626 	/* Migrate to the requested node */
3627 	migrated = migrate_misplaced_page(page, vma, target_nid);
3628 	if (migrated) {
3629 		page_nid = target_nid;
3630 		flags |= TNF_MIGRATED;
3631 	} else
3632 		flags |= TNF_MIGRATE_FAIL;
3633 
3634 out:
3635 	if (page_nid != -1)
3636 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3637 	return 0;
3638 }
3639 
3640 static inline int create_huge_pmd(struct vm_fault *vmf)
3641 {
3642 	if (vma_is_anonymous(vmf->vma))
3643 		return do_huge_pmd_anonymous_page(vmf);
3644 	if (vmf->vma->vm_ops->huge_fault)
3645 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3646 	return VM_FAULT_FALLBACK;
3647 }
3648 
3649 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3650 {
3651 	if (vma_is_anonymous(vmf->vma))
3652 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3653 	if (vmf->vma->vm_ops->huge_fault)
3654 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3655 
3656 	/* COW handled on pte level: split pmd */
3657 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3658 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3659 
3660 	return VM_FAULT_FALLBACK;
3661 }
3662 
3663 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3664 {
3665 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3666 }
3667 
3668 static int create_huge_pud(struct vm_fault *vmf)
3669 {
3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3671 	/* No support for anonymous transparent PUD pages yet */
3672 	if (vma_is_anonymous(vmf->vma))
3673 		return VM_FAULT_FALLBACK;
3674 	if (vmf->vma->vm_ops->huge_fault)
3675 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3677 	return VM_FAULT_FALLBACK;
3678 }
3679 
3680 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3681 {
3682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3683 	/* No support for anonymous transparent PUD pages yet */
3684 	if (vma_is_anonymous(vmf->vma))
3685 		return VM_FAULT_FALLBACK;
3686 	if (vmf->vma->vm_ops->huge_fault)
3687 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3688 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3689 	return VM_FAULT_FALLBACK;
3690 }
3691 
3692 /*
3693  * These routines also need to handle stuff like marking pages dirty
3694  * and/or accessed for architectures that don't do it in hardware (most
3695  * RISC architectures).  The early dirtying is also good on the i386.
3696  *
3697  * There is also a hook called "update_mmu_cache()" that architectures
3698  * with external mmu caches can use to update those (ie the Sparc or
3699  * PowerPC hashed page tables that act as extended TLBs).
3700  *
3701  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3702  * concurrent faults).
3703  *
3704  * The mmap_sem may have been released depending on flags and our return value.
3705  * See filemap_fault() and __lock_page_or_retry().
3706  */
3707 static int handle_pte_fault(struct vm_fault *vmf)
3708 {
3709 	pte_t entry;
3710 
3711 	if (unlikely(pmd_none(*vmf->pmd))) {
3712 		/*
3713 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3714 		 * want to allocate huge page, and if we expose page table
3715 		 * for an instant, it will be difficult to retract from
3716 		 * concurrent faults and from rmap lookups.
3717 		 */
3718 		vmf->pte = NULL;
3719 	} else {
3720 		/* See comment in pte_alloc_one_map() */
3721 		if (pmd_devmap_trans_unstable(vmf->pmd))
3722 			return 0;
3723 		/*
3724 		 * A regular pmd is established and it can't morph into a huge
3725 		 * pmd from under us anymore at this point because we hold the
3726 		 * mmap_sem read mode and khugepaged takes it in write mode.
3727 		 * So now it's safe to run pte_offset_map().
3728 		 */
3729 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3730 		vmf->orig_pte = *vmf->pte;
3731 
3732 		/*
3733 		 * some architectures can have larger ptes than wordsize,
3734 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3735 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3736 		 * atomic accesses.  The code below just needs a consistent
3737 		 * view for the ifs and we later double check anyway with the
3738 		 * ptl lock held. So here a barrier will do.
3739 		 */
3740 		barrier();
3741 		if (pte_none(vmf->orig_pte)) {
3742 			pte_unmap(vmf->pte);
3743 			vmf->pte = NULL;
3744 		}
3745 	}
3746 
3747 	if (!vmf->pte) {
3748 		if (vma_is_anonymous(vmf->vma))
3749 			return do_anonymous_page(vmf);
3750 		else
3751 			return do_fault(vmf);
3752 	}
3753 
3754 	if (!pte_present(vmf->orig_pte))
3755 		return do_swap_page(vmf);
3756 
3757 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3758 		return do_numa_page(vmf);
3759 
3760 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3761 	spin_lock(vmf->ptl);
3762 	entry = vmf->orig_pte;
3763 	if (unlikely(!pte_same(*vmf->pte, entry)))
3764 		goto unlock;
3765 	if (vmf->flags & FAULT_FLAG_WRITE) {
3766 		if (!pte_write(entry))
3767 			return do_wp_page(vmf);
3768 		entry = pte_mkdirty(entry);
3769 	}
3770 	entry = pte_mkyoung(entry);
3771 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3772 				vmf->flags & FAULT_FLAG_WRITE)) {
3773 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3774 	} else {
3775 		/*
3776 		 * This is needed only for protection faults but the arch code
3777 		 * is not yet telling us if this is a protection fault or not.
3778 		 * This still avoids useless tlb flushes for .text page faults
3779 		 * with threads.
3780 		 */
3781 		if (vmf->flags & FAULT_FLAG_WRITE)
3782 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3783 	}
3784 unlock:
3785 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3786 	return 0;
3787 }
3788 
3789 /*
3790  * By the time we get here, we already hold the mm semaphore
3791  *
3792  * The mmap_sem may have been released depending on flags and our
3793  * return value.  See filemap_fault() and __lock_page_or_retry().
3794  */
3795 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3796 		unsigned int flags)
3797 {
3798 	struct vm_fault vmf = {
3799 		.vma = vma,
3800 		.address = address & PAGE_MASK,
3801 		.flags = flags,
3802 		.pgoff = linear_page_index(vma, address),
3803 		.gfp_mask = __get_fault_gfp_mask(vma),
3804 	};
3805 	struct mm_struct *mm = vma->vm_mm;
3806 	pgd_t *pgd;
3807 	p4d_t *p4d;
3808 	int ret;
3809 
3810 	pgd = pgd_offset(mm, address);
3811 	p4d = p4d_alloc(mm, pgd, address);
3812 	if (!p4d)
3813 		return VM_FAULT_OOM;
3814 
3815 	vmf.pud = pud_alloc(mm, p4d, address);
3816 	if (!vmf.pud)
3817 		return VM_FAULT_OOM;
3818 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3819 		ret = create_huge_pud(&vmf);
3820 		if (!(ret & VM_FAULT_FALLBACK))
3821 			return ret;
3822 	} else {
3823 		pud_t orig_pud = *vmf.pud;
3824 
3825 		barrier();
3826 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3827 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3828 
3829 			/* NUMA case for anonymous PUDs would go here */
3830 
3831 			if (dirty && !pud_write(orig_pud)) {
3832 				ret = wp_huge_pud(&vmf, orig_pud);
3833 				if (!(ret & VM_FAULT_FALLBACK))
3834 					return ret;
3835 			} else {
3836 				huge_pud_set_accessed(&vmf, orig_pud);
3837 				return 0;
3838 			}
3839 		}
3840 	}
3841 
3842 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3843 	if (!vmf.pmd)
3844 		return VM_FAULT_OOM;
3845 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3846 		ret = create_huge_pmd(&vmf);
3847 		if (!(ret & VM_FAULT_FALLBACK))
3848 			return ret;
3849 	} else {
3850 		pmd_t orig_pmd = *vmf.pmd;
3851 
3852 		barrier();
3853 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3854 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3855 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3856 
3857 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3858 					!pmd_write(orig_pmd)) {
3859 				ret = wp_huge_pmd(&vmf, orig_pmd);
3860 				if (!(ret & VM_FAULT_FALLBACK))
3861 					return ret;
3862 			} else {
3863 				huge_pmd_set_accessed(&vmf, orig_pmd);
3864 				return 0;
3865 			}
3866 		}
3867 	}
3868 
3869 	return handle_pte_fault(&vmf);
3870 }
3871 
3872 /*
3873  * By the time we get here, we already hold the mm semaphore
3874  *
3875  * The mmap_sem may have been released depending on flags and our
3876  * return value.  See filemap_fault() and __lock_page_or_retry().
3877  */
3878 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3879 		unsigned int flags)
3880 {
3881 	int ret;
3882 
3883 	__set_current_state(TASK_RUNNING);
3884 
3885 	count_vm_event(PGFAULT);
3886 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
3887 
3888 	/* do counter updates before entering really critical section. */
3889 	check_sync_rss_stat(current);
3890 
3891 	/*
3892 	 * Enable the memcg OOM handling for faults triggered in user
3893 	 * space.  Kernel faults are handled more gracefully.
3894 	 */
3895 	if (flags & FAULT_FLAG_USER)
3896 		mem_cgroup_oom_enable();
3897 
3898 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3899 					    flags & FAULT_FLAG_INSTRUCTION,
3900 					    flags & FAULT_FLAG_REMOTE))
3901 		return VM_FAULT_SIGSEGV;
3902 
3903 	if (unlikely(is_vm_hugetlb_page(vma)))
3904 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3905 	else
3906 		ret = __handle_mm_fault(vma, address, flags);
3907 
3908 	if (flags & FAULT_FLAG_USER) {
3909 		mem_cgroup_oom_disable();
3910 		/*
3911 		 * The task may have entered a memcg OOM situation but
3912 		 * if the allocation error was handled gracefully (no
3913 		 * VM_FAULT_OOM), there is no need to kill anything.
3914 		 * Just clean up the OOM state peacefully.
3915 		 */
3916 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3917 			mem_cgroup_oom_synchronize(false);
3918 	}
3919 
3920 	return ret;
3921 }
3922 EXPORT_SYMBOL_GPL(handle_mm_fault);
3923 
3924 #ifndef __PAGETABLE_P4D_FOLDED
3925 /*
3926  * Allocate p4d page table.
3927  * We've already handled the fast-path in-line.
3928  */
3929 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3930 {
3931 	p4d_t *new = p4d_alloc_one(mm, address);
3932 	if (!new)
3933 		return -ENOMEM;
3934 
3935 	smp_wmb(); /* See comment in __pte_alloc */
3936 
3937 	spin_lock(&mm->page_table_lock);
3938 	if (pgd_present(*pgd))		/* Another has populated it */
3939 		p4d_free(mm, new);
3940 	else
3941 		pgd_populate(mm, pgd, new);
3942 	spin_unlock(&mm->page_table_lock);
3943 	return 0;
3944 }
3945 #endif /* __PAGETABLE_P4D_FOLDED */
3946 
3947 #ifndef __PAGETABLE_PUD_FOLDED
3948 /*
3949  * Allocate page upper directory.
3950  * We've already handled the fast-path in-line.
3951  */
3952 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3953 {
3954 	pud_t *new = pud_alloc_one(mm, address);
3955 	if (!new)
3956 		return -ENOMEM;
3957 
3958 	smp_wmb(); /* See comment in __pte_alloc */
3959 
3960 	spin_lock(&mm->page_table_lock);
3961 #ifndef __ARCH_HAS_5LEVEL_HACK
3962 	if (p4d_present(*p4d))		/* Another has populated it */
3963 		pud_free(mm, new);
3964 	else
3965 		p4d_populate(mm, p4d, new);
3966 #else
3967 	if (pgd_present(*p4d))		/* Another has populated it */
3968 		pud_free(mm, new);
3969 	else
3970 		pgd_populate(mm, p4d, new);
3971 #endif /* __ARCH_HAS_5LEVEL_HACK */
3972 	spin_unlock(&mm->page_table_lock);
3973 	return 0;
3974 }
3975 #endif /* __PAGETABLE_PUD_FOLDED */
3976 
3977 #ifndef __PAGETABLE_PMD_FOLDED
3978 /*
3979  * Allocate page middle directory.
3980  * We've already handled the fast-path in-line.
3981  */
3982 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3983 {
3984 	spinlock_t *ptl;
3985 	pmd_t *new = pmd_alloc_one(mm, address);
3986 	if (!new)
3987 		return -ENOMEM;
3988 
3989 	smp_wmb(); /* See comment in __pte_alloc */
3990 
3991 	ptl = pud_lock(mm, pud);
3992 #ifndef __ARCH_HAS_4LEVEL_HACK
3993 	if (!pud_present(*pud)) {
3994 		mm_inc_nr_pmds(mm);
3995 		pud_populate(mm, pud, new);
3996 	} else	/* Another has populated it */
3997 		pmd_free(mm, new);
3998 #else
3999 	if (!pgd_present(*pud)) {
4000 		mm_inc_nr_pmds(mm);
4001 		pgd_populate(mm, pud, new);
4002 	} else /* Another has populated it */
4003 		pmd_free(mm, new);
4004 #endif /* __ARCH_HAS_4LEVEL_HACK */
4005 	spin_unlock(ptl);
4006 	return 0;
4007 }
4008 #endif /* __PAGETABLE_PMD_FOLDED */
4009 
4010 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4011 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4012 {
4013 	pgd_t *pgd;
4014 	p4d_t *p4d;
4015 	pud_t *pud;
4016 	pmd_t *pmd;
4017 	pte_t *ptep;
4018 
4019 	pgd = pgd_offset(mm, address);
4020 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4021 		goto out;
4022 
4023 	p4d = p4d_offset(pgd, address);
4024 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4025 		goto out;
4026 
4027 	pud = pud_offset(p4d, address);
4028 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029 		goto out;
4030 
4031 	pmd = pmd_offset(pud, address);
4032 	VM_BUG_ON(pmd_trans_huge(*pmd));
4033 
4034 	if (pmd_huge(*pmd)) {
4035 		if (!pmdpp)
4036 			goto out;
4037 
4038 		*ptlp = pmd_lock(mm, pmd);
4039 		if (pmd_huge(*pmd)) {
4040 			*pmdpp = pmd;
4041 			return 0;
4042 		}
4043 		spin_unlock(*ptlp);
4044 	}
4045 
4046 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4047 		goto out;
4048 
4049 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4050 	if (!pte_present(*ptep))
4051 		goto unlock;
4052 	*ptepp = ptep;
4053 	return 0;
4054 unlock:
4055 	pte_unmap_unlock(ptep, *ptlp);
4056 out:
4057 	return -EINVAL;
4058 }
4059 
4060 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4061 			     pte_t **ptepp, spinlock_t **ptlp)
4062 {
4063 	int res;
4064 
4065 	/* (void) is needed to make gcc happy */
4066 	(void) __cond_lock(*ptlp,
4067 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4068 					   ptlp)));
4069 	return res;
4070 }
4071 
4072 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4073 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4074 {
4075 	int res;
4076 
4077 	/* (void) is needed to make gcc happy */
4078 	(void) __cond_lock(*ptlp,
4079 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4080 					   ptlp)));
4081 	return res;
4082 }
4083 EXPORT_SYMBOL(follow_pte_pmd);
4084 
4085 /**
4086  * follow_pfn - look up PFN at a user virtual address
4087  * @vma: memory mapping
4088  * @address: user virtual address
4089  * @pfn: location to store found PFN
4090  *
4091  * Only IO mappings and raw PFN mappings are allowed.
4092  *
4093  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4094  */
4095 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4096 	unsigned long *pfn)
4097 {
4098 	int ret = -EINVAL;
4099 	spinlock_t *ptl;
4100 	pte_t *ptep;
4101 
4102 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4103 		return ret;
4104 
4105 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4106 	if (ret)
4107 		return ret;
4108 	*pfn = pte_pfn(*ptep);
4109 	pte_unmap_unlock(ptep, ptl);
4110 	return 0;
4111 }
4112 EXPORT_SYMBOL(follow_pfn);
4113 
4114 #ifdef CONFIG_HAVE_IOREMAP_PROT
4115 int follow_phys(struct vm_area_struct *vma,
4116 		unsigned long address, unsigned int flags,
4117 		unsigned long *prot, resource_size_t *phys)
4118 {
4119 	int ret = -EINVAL;
4120 	pte_t *ptep, pte;
4121 	spinlock_t *ptl;
4122 
4123 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4124 		goto out;
4125 
4126 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4127 		goto out;
4128 	pte = *ptep;
4129 
4130 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4131 		goto unlock;
4132 
4133 	*prot = pgprot_val(pte_pgprot(pte));
4134 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4135 
4136 	ret = 0;
4137 unlock:
4138 	pte_unmap_unlock(ptep, ptl);
4139 out:
4140 	return ret;
4141 }
4142 
4143 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4144 			void *buf, int len, int write)
4145 {
4146 	resource_size_t phys_addr;
4147 	unsigned long prot = 0;
4148 	void __iomem *maddr;
4149 	int offset = addr & (PAGE_SIZE-1);
4150 
4151 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4152 		return -EINVAL;
4153 
4154 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4155 	if (write)
4156 		memcpy_toio(maddr + offset, buf, len);
4157 	else
4158 		memcpy_fromio(buf, maddr + offset, len);
4159 	iounmap(maddr);
4160 
4161 	return len;
4162 }
4163 EXPORT_SYMBOL_GPL(generic_access_phys);
4164 #endif
4165 
4166 /*
4167  * Access another process' address space as given in mm.  If non-NULL, use the
4168  * given task for page fault accounting.
4169  */
4170 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4171 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4172 {
4173 	struct vm_area_struct *vma;
4174 	void *old_buf = buf;
4175 	int write = gup_flags & FOLL_WRITE;
4176 
4177 	down_read(&mm->mmap_sem);
4178 	/* ignore errors, just check how much was successfully transferred */
4179 	while (len) {
4180 		int bytes, ret, offset;
4181 		void *maddr;
4182 		struct page *page = NULL;
4183 
4184 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4185 				gup_flags, &page, &vma, NULL);
4186 		if (ret <= 0) {
4187 #ifndef CONFIG_HAVE_IOREMAP_PROT
4188 			break;
4189 #else
4190 			/*
4191 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4192 			 * we can access using slightly different code.
4193 			 */
4194 			vma = find_vma(mm, addr);
4195 			if (!vma || vma->vm_start > addr)
4196 				break;
4197 			if (vma->vm_ops && vma->vm_ops->access)
4198 				ret = vma->vm_ops->access(vma, addr, buf,
4199 							  len, write);
4200 			if (ret <= 0)
4201 				break;
4202 			bytes = ret;
4203 #endif
4204 		} else {
4205 			bytes = len;
4206 			offset = addr & (PAGE_SIZE-1);
4207 			if (bytes > PAGE_SIZE-offset)
4208 				bytes = PAGE_SIZE-offset;
4209 
4210 			maddr = kmap(page);
4211 			if (write) {
4212 				copy_to_user_page(vma, page, addr,
4213 						  maddr + offset, buf, bytes);
4214 				set_page_dirty_lock(page);
4215 			} else {
4216 				copy_from_user_page(vma, page, addr,
4217 						    buf, maddr + offset, bytes);
4218 			}
4219 			kunmap(page);
4220 			put_page(page);
4221 		}
4222 		len -= bytes;
4223 		buf += bytes;
4224 		addr += bytes;
4225 	}
4226 	up_read(&mm->mmap_sem);
4227 
4228 	return buf - old_buf;
4229 }
4230 
4231 /**
4232  * access_remote_vm - access another process' address space
4233  * @mm:		the mm_struct of the target address space
4234  * @addr:	start address to access
4235  * @buf:	source or destination buffer
4236  * @len:	number of bytes to transfer
4237  * @gup_flags:	flags modifying lookup behaviour
4238  *
4239  * The caller must hold a reference on @mm.
4240  */
4241 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4242 		void *buf, int len, unsigned int gup_flags)
4243 {
4244 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4245 }
4246 
4247 /*
4248  * Access another process' address space.
4249  * Source/target buffer must be kernel space,
4250  * Do not walk the page table directly, use get_user_pages
4251  */
4252 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4253 		void *buf, int len, unsigned int gup_flags)
4254 {
4255 	struct mm_struct *mm;
4256 	int ret;
4257 
4258 	mm = get_task_mm(tsk);
4259 	if (!mm)
4260 		return 0;
4261 
4262 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4263 
4264 	mmput(mm);
4265 
4266 	return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(access_process_vm);
4269 
4270 /*
4271  * Print the name of a VMA.
4272  */
4273 void print_vma_addr(char *prefix, unsigned long ip)
4274 {
4275 	struct mm_struct *mm = current->mm;
4276 	struct vm_area_struct *vma;
4277 
4278 	/*
4279 	 * Do not print if we are in atomic
4280 	 * contexts (in exception stacks, etc.):
4281 	 */
4282 	if (preempt_count())
4283 		return;
4284 
4285 	down_read(&mm->mmap_sem);
4286 	vma = find_vma(mm, ip);
4287 	if (vma && vma->vm_file) {
4288 		struct file *f = vma->vm_file;
4289 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4290 		if (buf) {
4291 			char *p;
4292 
4293 			p = file_path(f, buf, PAGE_SIZE);
4294 			if (IS_ERR(p))
4295 				p = "?";
4296 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4297 					vma->vm_start,
4298 					vma->vm_end - vma->vm_start);
4299 			free_page((unsigned long)buf);
4300 		}
4301 	}
4302 	up_read(&mm->mmap_sem);
4303 }
4304 
4305 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4306 void __might_fault(const char *file, int line)
4307 {
4308 	/*
4309 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4310 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4311 	 * get paged out, therefore we'll never actually fault, and the
4312 	 * below annotations will generate false positives.
4313 	 */
4314 	if (uaccess_kernel())
4315 		return;
4316 	if (pagefault_disabled())
4317 		return;
4318 	__might_sleep(file, line, 0);
4319 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4320 	if (current->mm)
4321 		might_lock_read(&current->mm->mmap_sem);
4322 #endif
4323 }
4324 EXPORT_SYMBOL(__might_fault);
4325 #endif
4326 
4327 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4328 static void clear_gigantic_page(struct page *page,
4329 				unsigned long addr,
4330 				unsigned int pages_per_huge_page)
4331 {
4332 	int i;
4333 	struct page *p = page;
4334 
4335 	might_sleep();
4336 	for (i = 0; i < pages_per_huge_page;
4337 	     i++, p = mem_map_next(p, page, i)) {
4338 		cond_resched();
4339 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4340 	}
4341 }
4342 void clear_huge_page(struct page *page,
4343 		     unsigned long addr, unsigned int pages_per_huge_page)
4344 {
4345 	int i;
4346 
4347 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4348 		clear_gigantic_page(page, addr, pages_per_huge_page);
4349 		return;
4350 	}
4351 
4352 	might_sleep();
4353 	for (i = 0; i < pages_per_huge_page; i++) {
4354 		cond_resched();
4355 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4356 	}
4357 }
4358 
4359 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4360 				    unsigned long addr,
4361 				    struct vm_area_struct *vma,
4362 				    unsigned int pages_per_huge_page)
4363 {
4364 	int i;
4365 	struct page *dst_base = dst;
4366 	struct page *src_base = src;
4367 
4368 	for (i = 0; i < pages_per_huge_page; ) {
4369 		cond_resched();
4370 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4371 
4372 		i++;
4373 		dst = mem_map_next(dst, dst_base, i);
4374 		src = mem_map_next(src, src_base, i);
4375 	}
4376 }
4377 
4378 void copy_user_huge_page(struct page *dst, struct page *src,
4379 			 unsigned long addr, struct vm_area_struct *vma,
4380 			 unsigned int pages_per_huge_page)
4381 {
4382 	int i;
4383 
4384 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4385 		copy_user_gigantic_page(dst, src, addr, vma,
4386 					pages_per_huge_page);
4387 		return;
4388 	}
4389 
4390 	might_sleep();
4391 	for (i = 0; i < pages_per_huge_page; i++) {
4392 		cond_resched();
4393 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4394 	}
4395 }
4396 
4397 long copy_huge_page_from_user(struct page *dst_page,
4398 				const void __user *usr_src,
4399 				unsigned int pages_per_huge_page,
4400 				bool allow_pagefault)
4401 {
4402 	void *src = (void *)usr_src;
4403 	void *page_kaddr;
4404 	unsigned long i, rc = 0;
4405 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4406 
4407 	for (i = 0; i < pages_per_huge_page; i++) {
4408 		if (allow_pagefault)
4409 			page_kaddr = kmap(dst_page + i);
4410 		else
4411 			page_kaddr = kmap_atomic(dst_page + i);
4412 		rc = copy_from_user(page_kaddr,
4413 				(const void __user *)(src + i * PAGE_SIZE),
4414 				PAGE_SIZE);
4415 		if (allow_pagefault)
4416 			kunmap(dst_page + i);
4417 		else
4418 			kunmap_atomic(page_kaddr);
4419 
4420 		ret_val -= (PAGE_SIZE - rc);
4421 		if (rc)
4422 			break;
4423 
4424 		cond_resched();
4425 	}
4426 	return ret_val;
4427 }
4428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4429 
4430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4431 
4432 static struct kmem_cache *page_ptl_cachep;
4433 
4434 void __init ptlock_cache_init(void)
4435 {
4436 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4437 			SLAB_PANIC, NULL);
4438 }
4439 
4440 bool ptlock_alloc(struct page *page)
4441 {
4442 	spinlock_t *ptl;
4443 
4444 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4445 	if (!ptl)
4446 		return false;
4447 	page->ptl = ptl;
4448 	return true;
4449 }
4450 
4451 void ptlock_free(struct page *page)
4452 {
4453 	kmem_cache_free(page_ptl_cachep, page->ptl);
4454 }
4455 #endif
4456