1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/export.h> 55 #include <linux/delayacct.h> 56 #include <linux/init.h> 57 #include <linux/pfn_t.h> 58 #include <linux/writeback.h> 59 #include <linux/memcontrol.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/kallsyms.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 /* 330 * See the comment near struct mmu_table_batch. 331 */ 332 333 static void tlb_remove_table_smp_sync(void *arg) 334 { 335 /* Simply deliver the interrupt */ 336 } 337 338 static void tlb_remove_table_one(void *table) 339 { 340 /* 341 * This isn't an RCU grace period and hence the page-tables cannot be 342 * assumed to be actually RCU-freed. 343 * 344 * It is however sufficient for software page-table walkers that rely on 345 * IRQ disabling. See the comment near struct mmu_table_batch. 346 */ 347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 348 __tlb_remove_table(table); 349 } 350 351 static void tlb_remove_table_rcu(struct rcu_head *head) 352 { 353 struct mmu_table_batch *batch; 354 int i; 355 356 batch = container_of(head, struct mmu_table_batch, rcu); 357 358 for (i = 0; i < batch->nr; i++) 359 __tlb_remove_table(batch->tables[i]); 360 361 free_page((unsigned long)batch); 362 } 363 364 void tlb_table_flush(struct mmu_gather *tlb) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 if (*batch) { 369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 370 *batch = NULL; 371 } 372 } 373 374 void tlb_remove_table(struct mmu_gather *tlb, void *table) 375 { 376 struct mmu_table_batch **batch = &tlb->batch; 377 378 /* 379 * When there's less then two users of this mm there cannot be a 380 * concurrent page-table walk. 381 */ 382 if (atomic_read(&tlb->mm->mm_users) < 2) { 383 __tlb_remove_table(table); 384 return; 385 } 386 387 if (*batch == NULL) { 388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 389 if (*batch == NULL) { 390 tlb_remove_table_one(table); 391 return; 392 } 393 (*batch)->nr = 0; 394 } 395 (*batch)->tables[(*batch)->nr++] = table; 396 if ((*batch)->nr == MAX_TABLE_BATCH) 397 tlb_table_flush(tlb); 398 } 399 400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 401 402 /* tlb_gather_mmu 403 * Called to initialize an (on-stack) mmu_gather structure for page-table 404 * tear-down from @mm. The @fullmm argument is used when @mm is without 405 * users and we're going to destroy the full address space (exit/execve). 406 */ 407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 408 unsigned long start, unsigned long end) 409 { 410 arch_tlb_gather_mmu(tlb, mm, start, end); 411 inc_tlb_flush_pending(tlb->mm); 412 } 413 414 void tlb_finish_mmu(struct mmu_gather *tlb, 415 unsigned long start, unsigned long end) 416 { 417 /* 418 * If there are parallel threads are doing PTE changes on same range 419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 420 * flush by batching, a thread has stable TLB entry can fail to flush 421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 422 * forcefully if we detect parallel PTE batching threads. 423 */ 424 bool force = mm_tlb_flush_nested(tlb->mm); 425 426 arch_tlb_finish_mmu(tlb, start, end, force); 427 dec_tlb_flush_pending(tlb->mm); 428 } 429 430 /* 431 * Note: this doesn't free the actual pages themselves. That 432 * has been handled earlier when unmapping all the memory regions. 433 */ 434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 435 unsigned long addr) 436 { 437 pgtable_t token = pmd_pgtable(*pmd); 438 pmd_clear(pmd); 439 pte_free_tlb(tlb, token, addr); 440 atomic_long_dec(&tlb->mm->nr_ptes); 441 } 442 443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 444 unsigned long addr, unsigned long end, 445 unsigned long floor, unsigned long ceiling) 446 { 447 pmd_t *pmd; 448 unsigned long next; 449 unsigned long start; 450 451 start = addr; 452 pmd = pmd_offset(pud, addr); 453 do { 454 next = pmd_addr_end(addr, end); 455 if (pmd_none_or_clear_bad(pmd)) 456 continue; 457 free_pte_range(tlb, pmd, addr); 458 } while (pmd++, addr = next, addr != end); 459 460 start &= PUD_MASK; 461 if (start < floor) 462 return; 463 if (ceiling) { 464 ceiling &= PUD_MASK; 465 if (!ceiling) 466 return; 467 } 468 if (end - 1 > ceiling - 1) 469 return; 470 471 pmd = pmd_offset(pud, start); 472 pud_clear(pud); 473 pmd_free_tlb(tlb, pmd, start); 474 mm_dec_nr_pmds(tlb->mm); 475 } 476 477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 478 unsigned long addr, unsigned long end, 479 unsigned long floor, unsigned long ceiling) 480 { 481 pud_t *pud; 482 unsigned long next; 483 unsigned long start; 484 485 start = addr; 486 pud = pud_offset(p4d, addr); 487 do { 488 next = pud_addr_end(addr, end); 489 if (pud_none_or_clear_bad(pud)) 490 continue; 491 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 492 } while (pud++, addr = next, addr != end); 493 494 start &= P4D_MASK; 495 if (start < floor) 496 return; 497 if (ceiling) { 498 ceiling &= P4D_MASK; 499 if (!ceiling) 500 return; 501 } 502 if (end - 1 > ceiling - 1) 503 return; 504 505 pud = pud_offset(p4d, start); 506 p4d_clear(p4d); 507 pud_free_tlb(tlb, pud, start); 508 } 509 510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 511 unsigned long addr, unsigned long end, 512 unsigned long floor, unsigned long ceiling) 513 { 514 p4d_t *p4d; 515 unsigned long next; 516 unsigned long start; 517 518 start = addr; 519 p4d = p4d_offset(pgd, addr); 520 do { 521 next = p4d_addr_end(addr, end); 522 if (p4d_none_or_clear_bad(p4d)) 523 continue; 524 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 525 } while (p4d++, addr = next, addr != end); 526 527 start &= PGDIR_MASK; 528 if (start < floor) 529 return; 530 if (ceiling) { 531 ceiling &= PGDIR_MASK; 532 if (!ceiling) 533 return; 534 } 535 if (end - 1 > ceiling - 1) 536 return; 537 538 p4d = p4d_offset(pgd, start); 539 pgd_clear(pgd); 540 p4d_free_tlb(tlb, p4d, start); 541 } 542 543 /* 544 * This function frees user-level page tables of a process. 545 */ 546 void free_pgd_range(struct mmu_gather *tlb, 547 unsigned long addr, unsigned long end, 548 unsigned long floor, unsigned long ceiling) 549 { 550 pgd_t *pgd; 551 unsigned long next; 552 553 /* 554 * The next few lines have given us lots of grief... 555 * 556 * Why are we testing PMD* at this top level? Because often 557 * there will be no work to do at all, and we'd prefer not to 558 * go all the way down to the bottom just to discover that. 559 * 560 * Why all these "- 1"s? Because 0 represents both the bottom 561 * of the address space and the top of it (using -1 for the 562 * top wouldn't help much: the masks would do the wrong thing). 563 * The rule is that addr 0 and floor 0 refer to the bottom of 564 * the address space, but end 0 and ceiling 0 refer to the top 565 * Comparisons need to use "end - 1" and "ceiling - 1" (though 566 * that end 0 case should be mythical). 567 * 568 * Wherever addr is brought up or ceiling brought down, we must 569 * be careful to reject "the opposite 0" before it confuses the 570 * subsequent tests. But what about where end is brought down 571 * by PMD_SIZE below? no, end can't go down to 0 there. 572 * 573 * Whereas we round start (addr) and ceiling down, by different 574 * masks at different levels, in order to test whether a table 575 * now has no other vmas using it, so can be freed, we don't 576 * bother to round floor or end up - the tests don't need that. 577 */ 578 579 addr &= PMD_MASK; 580 if (addr < floor) { 581 addr += PMD_SIZE; 582 if (!addr) 583 return; 584 } 585 if (ceiling) { 586 ceiling &= PMD_MASK; 587 if (!ceiling) 588 return; 589 } 590 if (end - 1 > ceiling - 1) 591 end -= PMD_SIZE; 592 if (addr > end - 1) 593 return; 594 /* 595 * We add page table cache pages with PAGE_SIZE, 596 * (see pte_free_tlb()), flush the tlb if we need 597 */ 598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 599 pgd = pgd_offset(tlb->mm, addr); 600 do { 601 next = pgd_addr_end(addr, end); 602 if (pgd_none_or_clear_bad(pgd)) 603 continue; 604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 605 } while (pgd++, addr = next, addr != end); 606 } 607 608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 609 unsigned long floor, unsigned long ceiling) 610 { 611 while (vma) { 612 struct vm_area_struct *next = vma->vm_next; 613 unsigned long addr = vma->vm_start; 614 615 /* 616 * Hide vma from rmap and truncate_pagecache before freeing 617 * pgtables 618 */ 619 unlink_anon_vmas(vma); 620 unlink_file_vma(vma); 621 622 if (is_vm_hugetlb_page(vma)) { 623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 624 floor, next ? next->vm_start : ceiling); 625 } else { 626 /* 627 * Optimization: gather nearby vmas into one call down 628 */ 629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 630 && !is_vm_hugetlb_page(next)) { 631 vma = next; 632 next = vma->vm_next; 633 unlink_anon_vmas(vma); 634 unlink_file_vma(vma); 635 } 636 free_pgd_range(tlb, addr, vma->vm_end, 637 floor, next ? next->vm_start : ceiling); 638 } 639 vma = next; 640 } 641 } 642 643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 644 { 645 spinlock_t *ptl; 646 pgtable_t new = pte_alloc_one(mm, address); 647 if (!new) 648 return -ENOMEM; 649 650 /* 651 * Ensure all pte setup (eg. pte page lock and page clearing) are 652 * visible before the pte is made visible to other CPUs by being 653 * put into page tables. 654 * 655 * The other side of the story is the pointer chasing in the page 656 * table walking code (when walking the page table without locking; 657 * ie. most of the time). Fortunately, these data accesses consist 658 * of a chain of data-dependent loads, meaning most CPUs (alpha 659 * being the notable exception) will already guarantee loads are 660 * seen in-order. See the alpha page table accessors for the 661 * smp_read_barrier_depends() barriers in page table walking code. 662 */ 663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 664 665 ptl = pmd_lock(mm, pmd); 666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 667 atomic_long_inc(&mm->nr_ptes); 668 pmd_populate(mm, pmd, new); 669 new = NULL; 670 } 671 spin_unlock(ptl); 672 if (new) 673 pte_free(mm, new); 674 return 0; 675 } 676 677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 678 { 679 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 680 if (!new) 681 return -ENOMEM; 682 683 smp_wmb(); /* See comment in __pte_alloc */ 684 685 spin_lock(&init_mm.page_table_lock); 686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 687 pmd_populate_kernel(&init_mm, pmd, new); 688 new = NULL; 689 } 690 spin_unlock(&init_mm.page_table_lock); 691 if (new) 692 pte_free_kernel(&init_mm, new); 693 return 0; 694 } 695 696 static inline void init_rss_vec(int *rss) 697 { 698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 699 } 700 701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 702 { 703 int i; 704 705 if (current->mm == mm) 706 sync_mm_rss(mm); 707 for (i = 0; i < NR_MM_COUNTERS; i++) 708 if (rss[i]) 709 add_mm_counter(mm, i, rss[i]); 710 } 711 712 /* 713 * This function is called to print an error when a bad pte 714 * is found. For example, we might have a PFN-mapped pte in 715 * a region that doesn't allow it. 716 * 717 * The calling function must still handle the error. 718 */ 719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 720 pte_t pte, struct page *page) 721 { 722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 723 p4d_t *p4d = p4d_offset(pgd, addr); 724 pud_t *pud = pud_offset(p4d, addr); 725 pmd_t *pmd = pmd_offset(pud, addr); 726 struct address_space *mapping; 727 pgoff_t index; 728 static unsigned long resume; 729 static unsigned long nr_shown; 730 static unsigned long nr_unshown; 731 732 /* 733 * Allow a burst of 60 reports, then keep quiet for that minute; 734 * or allow a steady drip of one report per second. 735 */ 736 if (nr_shown == 60) { 737 if (time_before(jiffies, resume)) { 738 nr_unshown++; 739 return; 740 } 741 if (nr_unshown) { 742 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 743 nr_unshown); 744 nr_unshown = 0; 745 } 746 nr_shown = 0; 747 } 748 if (nr_shown++ == 0) 749 resume = jiffies + 60 * HZ; 750 751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 752 index = linear_page_index(vma, addr); 753 754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 755 current->comm, 756 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 757 if (page) 758 dump_page(page, "bad pte"); 759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 761 /* 762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 763 */ 764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 765 vma->vm_file, 766 vma->vm_ops ? vma->vm_ops->fault : NULL, 767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 768 mapping ? mapping->a_ops->readpage : NULL); 769 dump_stack(); 770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 771 } 772 773 /* 774 * vm_normal_page -- This function gets the "struct page" associated with a pte. 775 * 776 * "Special" mappings do not wish to be associated with a "struct page" (either 777 * it doesn't exist, or it exists but they don't want to touch it). In this 778 * case, NULL is returned here. "Normal" mappings do have a struct page. 779 * 780 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 781 * pte bit, in which case this function is trivial. Secondly, an architecture 782 * may not have a spare pte bit, which requires a more complicated scheme, 783 * described below. 784 * 785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 786 * special mapping (even if there are underlying and valid "struct pages"). 787 * COWed pages of a VM_PFNMAP are always normal. 788 * 789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 792 * mapping will always honor the rule 793 * 794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 795 * 796 * And for normal mappings this is false. 797 * 798 * This restricts such mappings to be a linear translation from virtual address 799 * to pfn. To get around this restriction, we allow arbitrary mappings so long 800 * as the vma is not a COW mapping; in that case, we know that all ptes are 801 * special (because none can have been COWed). 802 * 803 * 804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 805 * 806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 807 * page" backing, however the difference is that _all_ pages with a struct 808 * page (that is, those where pfn_valid is true) are refcounted and considered 809 * normal pages by the VM. The disadvantage is that pages are refcounted 810 * (which can be slower and simply not an option for some PFNMAP users). The 811 * advantage is that we don't have to follow the strict linearity rule of 812 * PFNMAP mappings in order to support COWable mappings. 813 * 814 */ 815 #ifdef __HAVE_ARCH_PTE_SPECIAL 816 # define HAVE_PTE_SPECIAL 1 817 #else 818 # define HAVE_PTE_SPECIAL 0 819 #endif 820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 821 pte_t pte) 822 { 823 unsigned long pfn = pte_pfn(pte); 824 825 if (HAVE_PTE_SPECIAL) { 826 if (likely(!pte_special(pte))) 827 goto check_pfn; 828 if (vma->vm_ops && vma->vm_ops->find_special_page) 829 return vma->vm_ops->find_special_page(vma, addr); 830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 831 return NULL; 832 if (!is_zero_pfn(pfn)) 833 print_bad_pte(vma, addr, pte, NULL); 834 return NULL; 835 } 836 837 /* !HAVE_PTE_SPECIAL case follows: */ 838 839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 840 if (vma->vm_flags & VM_MIXEDMAP) { 841 if (!pfn_valid(pfn)) 842 return NULL; 843 goto out; 844 } else { 845 unsigned long off; 846 off = (addr - vma->vm_start) >> PAGE_SHIFT; 847 if (pfn == vma->vm_pgoff + off) 848 return NULL; 849 if (!is_cow_mapping(vma->vm_flags)) 850 return NULL; 851 } 852 } 853 854 if (is_zero_pfn(pfn)) 855 return NULL; 856 check_pfn: 857 if (unlikely(pfn > highest_memmap_pfn)) { 858 print_bad_pte(vma, addr, pte, NULL); 859 return NULL; 860 } 861 862 /* 863 * NOTE! We still have PageReserved() pages in the page tables. 864 * eg. VDSO mappings can cause them to exist. 865 */ 866 out: 867 return pfn_to_page(pfn); 868 } 869 870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 872 pmd_t pmd) 873 { 874 unsigned long pfn = pmd_pfn(pmd); 875 876 /* 877 * There is no pmd_special() but there may be special pmds, e.g. 878 * in a direct-access (dax) mapping, so let's just replicate the 879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 880 */ 881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 882 if (vma->vm_flags & VM_MIXEDMAP) { 883 if (!pfn_valid(pfn)) 884 return NULL; 885 goto out; 886 } else { 887 unsigned long off; 888 off = (addr - vma->vm_start) >> PAGE_SHIFT; 889 if (pfn == vma->vm_pgoff + off) 890 return NULL; 891 if (!is_cow_mapping(vma->vm_flags)) 892 return NULL; 893 } 894 } 895 896 if (is_zero_pfn(pfn)) 897 return NULL; 898 if (unlikely(pfn > highest_memmap_pfn)) 899 return NULL; 900 901 /* 902 * NOTE! We still have PageReserved() pages in the page tables. 903 * eg. VDSO mappings can cause them to exist. 904 */ 905 out: 906 return pfn_to_page(pfn); 907 } 908 #endif 909 910 /* 911 * copy one vm_area from one task to the other. Assumes the page tables 912 * already present in the new task to be cleared in the whole range 913 * covered by this vma. 914 */ 915 916 static inline unsigned long 917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 919 unsigned long addr, int *rss) 920 { 921 unsigned long vm_flags = vma->vm_flags; 922 pte_t pte = *src_pte; 923 struct page *page; 924 925 /* pte contains position in swap or file, so copy. */ 926 if (unlikely(!pte_present(pte))) { 927 swp_entry_t entry = pte_to_swp_entry(pte); 928 929 if (likely(!non_swap_entry(entry))) { 930 if (swap_duplicate(entry) < 0) 931 return entry.val; 932 933 /* make sure dst_mm is on swapoff's mmlist. */ 934 if (unlikely(list_empty(&dst_mm->mmlist))) { 935 spin_lock(&mmlist_lock); 936 if (list_empty(&dst_mm->mmlist)) 937 list_add(&dst_mm->mmlist, 938 &src_mm->mmlist); 939 spin_unlock(&mmlist_lock); 940 } 941 rss[MM_SWAPENTS]++; 942 } else if (is_migration_entry(entry)) { 943 page = migration_entry_to_page(entry); 944 945 rss[mm_counter(page)]++; 946 947 if (is_write_migration_entry(entry) && 948 is_cow_mapping(vm_flags)) { 949 /* 950 * COW mappings require pages in both 951 * parent and child to be set to read. 952 */ 953 make_migration_entry_read(&entry); 954 pte = swp_entry_to_pte(entry); 955 if (pte_swp_soft_dirty(*src_pte)) 956 pte = pte_swp_mksoft_dirty(pte); 957 set_pte_at(src_mm, addr, src_pte, pte); 958 } 959 } 960 goto out_set_pte; 961 } 962 963 /* 964 * If it's a COW mapping, write protect it both 965 * in the parent and the child 966 */ 967 if (is_cow_mapping(vm_flags)) { 968 ptep_set_wrprotect(src_mm, addr, src_pte); 969 pte = pte_wrprotect(pte); 970 } 971 972 /* 973 * If it's a shared mapping, mark it clean in 974 * the child 975 */ 976 if (vm_flags & VM_SHARED) 977 pte = pte_mkclean(pte); 978 pte = pte_mkold(pte); 979 980 page = vm_normal_page(vma, addr, pte); 981 if (page) { 982 get_page(page); 983 page_dup_rmap(page, false); 984 rss[mm_counter(page)]++; 985 } 986 987 out_set_pte: 988 set_pte_at(dst_mm, addr, dst_pte, pte); 989 return 0; 990 } 991 992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 994 unsigned long addr, unsigned long end) 995 { 996 pte_t *orig_src_pte, *orig_dst_pte; 997 pte_t *src_pte, *dst_pte; 998 spinlock_t *src_ptl, *dst_ptl; 999 int progress = 0; 1000 int rss[NR_MM_COUNTERS]; 1001 swp_entry_t entry = (swp_entry_t){0}; 1002 1003 again: 1004 init_rss_vec(rss); 1005 1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1007 if (!dst_pte) 1008 return -ENOMEM; 1009 src_pte = pte_offset_map(src_pmd, addr); 1010 src_ptl = pte_lockptr(src_mm, src_pmd); 1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1012 orig_src_pte = src_pte; 1013 orig_dst_pte = dst_pte; 1014 arch_enter_lazy_mmu_mode(); 1015 1016 do { 1017 /* 1018 * We are holding two locks at this point - either of them 1019 * could generate latencies in another task on another CPU. 1020 */ 1021 if (progress >= 32) { 1022 progress = 0; 1023 if (need_resched() || 1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1025 break; 1026 } 1027 if (pte_none(*src_pte)) { 1028 progress++; 1029 continue; 1030 } 1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1032 vma, addr, rss); 1033 if (entry.val) 1034 break; 1035 progress += 8; 1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1037 1038 arch_leave_lazy_mmu_mode(); 1039 spin_unlock(src_ptl); 1040 pte_unmap(orig_src_pte); 1041 add_mm_rss_vec(dst_mm, rss); 1042 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1043 cond_resched(); 1044 1045 if (entry.val) { 1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1047 return -ENOMEM; 1048 progress = 0; 1049 } 1050 if (addr != end) 1051 goto again; 1052 return 0; 1053 } 1054 1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1057 unsigned long addr, unsigned long end) 1058 { 1059 pmd_t *src_pmd, *dst_pmd; 1060 unsigned long next; 1061 1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1063 if (!dst_pmd) 1064 return -ENOMEM; 1065 src_pmd = pmd_offset(src_pud, addr); 1066 do { 1067 next = pmd_addr_end(addr, end); 1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1069 int err; 1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1071 err = copy_huge_pmd(dst_mm, src_mm, 1072 dst_pmd, src_pmd, addr, vma); 1073 if (err == -ENOMEM) 1074 return -ENOMEM; 1075 if (!err) 1076 continue; 1077 /* fall through */ 1078 } 1079 if (pmd_none_or_clear_bad(src_pmd)) 1080 continue; 1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1082 vma, addr, next)) 1083 return -ENOMEM; 1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1085 return 0; 1086 } 1087 1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1090 unsigned long addr, unsigned long end) 1091 { 1092 pud_t *src_pud, *dst_pud; 1093 unsigned long next; 1094 1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1096 if (!dst_pud) 1097 return -ENOMEM; 1098 src_pud = pud_offset(src_p4d, addr); 1099 do { 1100 next = pud_addr_end(addr, end); 1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1102 int err; 1103 1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1105 err = copy_huge_pud(dst_mm, src_mm, 1106 dst_pud, src_pud, addr, vma); 1107 if (err == -ENOMEM) 1108 return -ENOMEM; 1109 if (!err) 1110 continue; 1111 /* fall through */ 1112 } 1113 if (pud_none_or_clear_bad(src_pud)) 1114 continue; 1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1116 vma, addr, next)) 1117 return -ENOMEM; 1118 } while (dst_pud++, src_pud++, addr = next, addr != end); 1119 return 0; 1120 } 1121 1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1124 unsigned long addr, unsigned long end) 1125 { 1126 p4d_t *src_p4d, *dst_p4d; 1127 unsigned long next; 1128 1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1130 if (!dst_p4d) 1131 return -ENOMEM; 1132 src_p4d = p4d_offset(src_pgd, addr); 1133 do { 1134 next = p4d_addr_end(addr, end); 1135 if (p4d_none_or_clear_bad(src_p4d)) 1136 continue; 1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1138 vma, addr, next)) 1139 return -ENOMEM; 1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1141 return 0; 1142 } 1143 1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1145 struct vm_area_struct *vma) 1146 { 1147 pgd_t *src_pgd, *dst_pgd; 1148 unsigned long next; 1149 unsigned long addr = vma->vm_start; 1150 unsigned long end = vma->vm_end; 1151 unsigned long mmun_start; /* For mmu_notifiers */ 1152 unsigned long mmun_end; /* For mmu_notifiers */ 1153 bool is_cow; 1154 int ret; 1155 1156 /* 1157 * Don't copy ptes where a page fault will fill them correctly. 1158 * Fork becomes much lighter when there are big shared or private 1159 * readonly mappings. The tradeoff is that copy_page_range is more 1160 * efficient than faulting. 1161 */ 1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1163 !vma->anon_vma) 1164 return 0; 1165 1166 if (is_vm_hugetlb_page(vma)) 1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1168 1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1170 /* 1171 * We do not free on error cases below as remove_vma 1172 * gets called on error from higher level routine 1173 */ 1174 ret = track_pfn_copy(vma); 1175 if (ret) 1176 return ret; 1177 } 1178 1179 /* 1180 * We need to invalidate the secondary MMU mappings only when 1181 * there could be a permission downgrade on the ptes of the 1182 * parent mm. And a permission downgrade will only happen if 1183 * is_cow_mapping() returns true. 1184 */ 1185 is_cow = is_cow_mapping(vma->vm_flags); 1186 mmun_start = addr; 1187 mmun_end = end; 1188 if (is_cow) 1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1190 mmun_end); 1191 1192 ret = 0; 1193 dst_pgd = pgd_offset(dst_mm, addr); 1194 src_pgd = pgd_offset(src_mm, addr); 1195 do { 1196 next = pgd_addr_end(addr, end); 1197 if (pgd_none_or_clear_bad(src_pgd)) 1198 continue; 1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1200 vma, addr, next))) { 1201 ret = -ENOMEM; 1202 break; 1203 } 1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1205 1206 if (is_cow) 1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1208 return ret; 1209 } 1210 1211 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1212 struct vm_area_struct *vma, pmd_t *pmd, 1213 unsigned long addr, unsigned long end, 1214 struct zap_details *details) 1215 { 1216 struct mm_struct *mm = tlb->mm; 1217 int force_flush = 0; 1218 int rss[NR_MM_COUNTERS]; 1219 spinlock_t *ptl; 1220 pte_t *start_pte; 1221 pte_t *pte; 1222 swp_entry_t entry; 1223 1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1225 again: 1226 init_rss_vec(rss); 1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1228 pte = start_pte; 1229 flush_tlb_batched_pending(mm); 1230 arch_enter_lazy_mmu_mode(); 1231 do { 1232 pte_t ptent = *pte; 1233 if (pte_none(ptent)) 1234 continue; 1235 1236 if (pte_present(ptent)) { 1237 struct page *page; 1238 1239 page = vm_normal_page(vma, addr, ptent); 1240 if (unlikely(details) && page) { 1241 /* 1242 * unmap_shared_mapping_pages() wants to 1243 * invalidate cache without truncating: 1244 * unmap shared but keep private pages. 1245 */ 1246 if (details->check_mapping && 1247 details->check_mapping != page_rmapping(page)) 1248 continue; 1249 } 1250 ptent = ptep_get_and_clear_full(mm, addr, pte, 1251 tlb->fullmm); 1252 tlb_remove_tlb_entry(tlb, pte, addr); 1253 if (unlikely(!page)) 1254 continue; 1255 1256 if (!PageAnon(page)) { 1257 if (pte_dirty(ptent)) { 1258 force_flush = 1; 1259 set_page_dirty(page); 1260 } 1261 if (pte_young(ptent) && 1262 likely(!(vma->vm_flags & VM_SEQ_READ))) 1263 mark_page_accessed(page); 1264 } 1265 rss[mm_counter(page)]--; 1266 page_remove_rmap(page, false); 1267 if (unlikely(page_mapcount(page) < 0)) 1268 print_bad_pte(vma, addr, ptent, page); 1269 if (unlikely(__tlb_remove_page(tlb, page))) { 1270 force_flush = 1; 1271 addr += PAGE_SIZE; 1272 break; 1273 } 1274 continue; 1275 } 1276 /* If details->check_mapping, we leave swap entries. */ 1277 if (unlikely(details)) 1278 continue; 1279 1280 entry = pte_to_swp_entry(ptent); 1281 if (!non_swap_entry(entry)) 1282 rss[MM_SWAPENTS]--; 1283 else if (is_migration_entry(entry)) { 1284 struct page *page; 1285 1286 page = migration_entry_to_page(entry); 1287 rss[mm_counter(page)]--; 1288 } 1289 if (unlikely(!free_swap_and_cache(entry))) 1290 print_bad_pte(vma, addr, ptent, NULL); 1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1292 } while (pte++, addr += PAGE_SIZE, addr != end); 1293 1294 add_mm_rss_vec(mm, rss); 1295 arch_leave_lazy_mmu_mode(); 1296 1297 /* Do the actual TLB flush before dropping ptl */ 1298 if (force_flush) 1299 tlb_flush_mmu_tlbonly(tlb); 1300 pte_unmap_unlock(start_pte, ptl); 1301 1302 /* 1303 * If we forced a TLB flush (either due to running out of 1304 * batch buffers or because we needed to flush dirty TLB 1305 * entries before releasing the ptl), free the batched 1306 * memory too. Restart if we didn't do everything. 1307 */ 1308 if (force_flush) { 1309 force_flush = 0; 1310 tlb_flush_mmu_free(tlb); 1311 if (addr != end) 1312 goto again; 1313 } 1314 1315 return addr; 1316 } 1317 1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1319 struct vm_area_struct *vma, pud_t *pud, 1320 unsigned long addr, unsigned long end, 1321 struct zap_details *details) 1322 { 1323 pmd_t *pmd; 1324 unsigned long next; 1325 1326 pmd = pmd_offset(pud, addr); 1327 do { 1328 next = pmd_addr_end(addr, end); 1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1330 if (next - addr != HPAGE_PMD_SIZE) { 1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1333 __split_huge_pmd(vma, pmd, addr, false, NULL); 1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1335 goto next; 1336 /* fall through */ 1337 } 1338 /* 1339 * Here there can be other concurrent MADV_DONTNEED or 1340 * trans huge page faults running, and if the pmd is 1341 * none or trans huge it can change under us. This is 1342 * because MADV_DONTNEED holds the mmap_sem in read 1343 * mode. 1344 */ 1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1346 goto next; 1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1348 next: 1349 cond_resched(); 1350 } while (pmd++, addr = next, addr != end); 1351 1352 return addr; 1353 } 1354 1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1356 struct vm_area_struct *vma, p4d_t *p4d, 1357 unsigned long addr, unsigned long end, 1358 struct zap_details *details) 1359 { 1360 pud_t *pud; 1361 unsigned long next; 1362 1363 pud = pud_offset(p4d, addr); 1364 do { 1365 next = pud_addr_end(addr, end); 1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1367 if (next - addr != HPAGE_PUD_SIZE) { 1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1369 split_huge_pud(vma, pud, addr); 1370 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1371 goto next; 1372 /* fall through */ 1373 } 1374 if (pud_none_or_clear_bad(pud)) 1375 continue; 1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1377 next: 1378 cond_resched(); 1379 } while (pud++, addr = next, addr != end); 1380 1381 return addr; 1382 } 1383 1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1385 struct vm_area_struct *vma, pgd_t *pgd, 1386 unsigned long addr, unsigned long end, 1387 struct zap_details *details) 1388 { 1389 p4d_t *p4d; 1390 unsigned long next; 1391 1392 p4d = p4d_offset(pgd, addr); 1393 do { 1394 next = p4d_addr_end(addr, end); 1395 if (p4d_none_or_clear_bad(p4d)) 1396 continue; 1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1398 } while (p4d++, addr = next, addr != end); 1399 1400 return addr; 1401 } 1402 1403 void unmap_page_range(struct mmu_gather *tlb, 1404 struct vm_area_struct *vma, 1405 unsigned long addr, unsigned long end, 1406 struct zap_details *details) 1407 { 1408 pgd_t *pgd; 1409 unsigned long next; 1410 1411 BUG_ON(addr >= end); 1412 tlb_start_vma(tlb, vma); 1413 pgd = pgd_offset(vma->vm_mm, addr); 1414 do { 1415 next = pgd_addr_end(addr, end); 1416 if (pgd_none_or_clear_bad(pgd)) 1417 continue; 1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1419 } while (pgd++, addr = next, addr != end); 1420 tlb_end_vma(tlb, vma); 1421 } 1422 1423 1424 static void unmap_single_vma(struct mmu_gather *tlb, 1425 struct vm_area_struct *vma, unsigned long start_addr, 1426 unsigned long end_addr, 1427 struct zap_details *details) 1428 { 1429 unsigned long start = max(vma->vm_start, start_addr); 1430 unsigned long end; 1431 1432 if (start >= vma->vm_end) 1433 return; 1434 end = min(vma->vm_end, end_addr); 1435 if (end <= vma->vm_start) 1436 return; 1437 1438 if (vma->vm_file) 1439 uprobe_munmap(vma, start, end); 1440 1441 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1442 untrack_pfn(vma, 0, 0); 1443 1444 if (start != end) { 1445 if (unlikely(is_vm_hugetlb_page(vma))) { 1446 /* 1447 * It is undesirable to test vma->vm_file as it 1448 * should be non-null for valid hugetlb area. 1449 * However, vm_file will be NULL in the error 1450 * cleanup path of mmap_region. When 1451 * hugetlbfs ->mmap method fails, 1452 * mmap_region() nullifies vma->vm_file 1453 * before calling this function to clean up. 1454 * Since no pte has actually been setup, it is 1455 * safe to do nothing in this case. 1456 */ 1457 if (vma->vm_file) { 1458 i_mmap_lock_write(vma->vm_file->f_mapping); 1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1460 i_mmap_unlock_write(vma->vm_file->f_mapping); 1461 } 1462 } else 1463 unmap_page_range(tlb, vma, start, end, details); 1464 } 1465 } 1466 1467 /** 1468 * unmap_vmas - unmap a range of memory covered by a list of vma's 1469 * @tlb: address of the caller's struct mmu_gather 1470 * @vma: the starting vma 1471 * @start_addr: virtual address at which to start unmapping 1472 * @end_addr: virtual address at which to end unmapping 1473 * 1474 * Unmap all pages in the vma list. 1475 * 1476 * Only addresses between `start' and `end' will be unmapped. 1477 * 1478 * The VMA list must be sorted in ascending virtual address order. 1479 * 1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1481 * range after unmap_vmas() returns. So the only responsibility here is to 1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1483 * drops the lock and schedules. 1484 */ 1485 void unmap_vmas(struct mmu_gather *tlb, 1486 struct vm_area_struct *vma, unsigned long start_addr, 1487 unsigned long end_addr) 1488 { 1489 struct mm_struct *mm = vma->vm_mm; 1490 1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1495 } 1496 1497 /** 1498 * zap_page_range - remove user pages in a given range 1499 * @vma: vm_area_struct holding the applicable pages 1500 * @start: starting address of pages to zap 1501 * @size: number of bytes to zap 1502 * 1503 * Caller must protect the VMA list 1504 */ 1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1506 unsigned long size) 1507 { 1508 struct mm_struct *mm = vma->vm_mm; 1509 struct mmu_gather tlb; 1510 unsigned long end = start + size; 1511 1512 lru_add_drain(); 1513 tlb_gather_mmu(&tlb, mm, start, end); 1514 update_hiwater_rss(mm); 1515 mmu_notifier_invalidate_range_start(mm, start, end); 1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1517 unmap_single_vma(&tlb, vma, start, end, NULL); 1518 mmu_notifier_invalidate_range_end(mm, start, end); 1519 tlb_finish_mmu(&tlb, start, end); 1520 } 1521 1522 /** 1523 * zap_page_range_single - remove user pages in a given range 1524 * @vma: vm_area_struct holding the applicable pages 1525 * @address: starting address of pages to zap 1526 * @size: number of bytes to zap 1527 * @details: details of shared cache invalidation 1528 * 1529 * The range must fit into one VMA. 1530 */ 1531 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1532 unsigned long size, struct zap_details *details) 1533 { 1534 struct mm_struct *mm = vma->vm_mm; 1535 struct mmu_gather tlb; 1536 unsigned long end = address + size; 1537 1538 lru_add_drain(); 1539 tlb_gather_mmu(&tlb, mm, address, end); 1540 update_hiwater_rss(mm); 1541 mmu_notifier_invalidate_range_start(mm, address, end); 1542 unmap_single_vma(&tlb, vma, address, end, details); 1543 mmu_notifier_invalidate_range_end(mm, address, end); 1544 tlb_finish_mmu(&tlb, address, end); 1545 } 1546 1547 /** 1548 * zap_vma_ptes - remove ptes mapping the vma 1549 * @vma: vm_area_struct holding ptes to be zapped 1550 * @address: starting address of pages to zap 1551 * @size: number of bytes to zap 1552 * 1553 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1554 * 1555 * The entire address range must be fully contained within the vma. 1556 * 1557 * Returns 0 if successful. 1558 */ 1559 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1560 unsigned long size) 1561 { 1562 if (address < vma->vm_start || address + size > vma->vm_end || 1563 !(vma->vm_flags & VM_PFNMAP)) 1564 return -1; 1565 zap_page_range_single(vma, address, size, NULL); 1566 return 0; 1567 } 1568 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1569 1570 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1571 spinlock_t **ptl) 1572 { 1573 pgd_t *pgd; 1574 p4d_t *p4d; 1575 pud_t *pud; 1576 pmd_t *pmd; 1577 1578 pgd = pgd_offset(mm, addr); 1579 p4d = p4d_alloc(mm, pgd, addr); 1580 if (!p4d) 1581 return NULL; 1582 pud = pud_alloc(mm, p4d, addr); 1583 if (!pud) 1584 return NULL; 1585 pmd = pmd_alloc(mm, pud, addr); 1586 if (!pmd) 1587 return NULL; 1588 1589 VM_BUG_ON(pmd_trans_huge(*pmd)); 1590 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1591 } 1592 1593 /* 1594 * This is the old fallback for page remapping. 1595 * 1596 * For historical reasons, it only allows reserved pages. Only 1597 * old drivers should use this, and they needed to mark their 1598 * pages reserved for the old functions anyway. 1599 */ 1600 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1601 struct page *page, pgprot_t prot) 1602 { 1603 struct mm_struct *mm = vma->vm_mm; 1604 int retval; 1605 pte_t *pte; 1606 spinlock_t *ptl; 1607 1608 retval = -EINVAL; 1609 if (PageAnon(page)) 1610 goto out; 1611 retval = -ENOMEM; 1612 flush_dcache_page(page); 1613 pte = get_locked_pte(mm, addr, &ptl); 1614 if (!pte) 1615 goto out; 1616 retval = -EBUSY; 1617 if (!pte_none(*pte)) 1618 goto out_unlock; 1619 1620 /* Ok, finally just insert the thing.. */ 1621 get_page(page); 1622 inc_mm_counter_fast(mm, mm_counter_file(page)); 1623 page_add_file_rmap(page, false); 1624 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1625 1626 retval = 0; 1627 pte_unmap_unlock(pte, ptl); 1628 return retval; 1629 out_unlock: 1630 pte_unmap_unlock(pte, ptl); 1631 out: 1632 return retval; 1633 } 1634 1635 /** 1636 * vm_insert_page - insert single page into user vma 1637 * @vma: user vma to map to 1638 * @addr: target user address of this page 1639 * @page: source kernel page 1640 * 1641 * This allows drivers to insert individual pages they've allocated 1642 * into a user vma. 1643 * 1644 * The page has to be a nice clean _individual_ kernel allocation. 1645 * If you allocate a compound page, you need to have marked it as 1646 * such (__GFP_COMP), or manually just split the page up yourself 1647 * (see split_page()). 1648 * 1649 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1650 * took an arbitrary page protection parameter. This doesn't allow 1651 * that. Your vma protection will have to be set up correctly, which 1652 * means that if you want a shared writable mapping, you'd better 1653 * ask for a shared writable mapping! 1654 * 1655 * The page does not need to be reserved. 1656 * 1657 * Usually this function is called from f_op->mmap() handler 1658 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1659 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1660 * function from other places, for example from page-fault handler. 1661 */ 1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1663 struct page *page) 1664 { 1665 if (addr < vma->vm_start || addr >= vma->vm_end) 1666 return -EFAULT; 1667 if (!page_count(page)) 1668 return -EINVAL; 1669 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1670 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1671 BUG_ON(vma->vm_flags & VM_PFNMAP); 1672 vma->vm_flags |= VM_MIXEDMAP; 1673 } 1674 return insert_page(vma, addr, page, vma->vm_page_prot); 1675 } 1676 EXPORT_SYMBOL(vm_insert_page); 1677 1678 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1679 pfn_t pfn, pgprot_t prot) 1680 { 1681 struct mm_struct *mm = vma->vm_mm; 1682 int retval; 1683 pte_t *pte, entry; 1684 spinlock_t *ptl; 1685 1686 retval = -ENOMEM; 1687 pte = get_locked_pte(mm, addr, &ptl); 1688 if (!pte) 1689 goto out; 1690 retval = -EBUSY; 1691 if (!pte_none(*pte)) 1692 goto out_unlock; 1693 1694 /* Ok, finally just insert the thing.. */ 1695 if (pfn_t_devmap(pfn)) 1696 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1697 else 1698 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1699 set_pte_at(mm, addr, pte, entry); 1700 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1701 1702 retval = 0; 1703 out_unlock: 1704 pte_unmap_unlock(pte, ptl); 1705 out: 1706 return retval; 1707 } 1708 1709 /** 1710 * vm_insert_pfn - insert single pfn into user vma 1711 * @vma: user vma to map to 1712 * @addr: target user address of this page 1713 * @pfn: source kernel pfn 1714 * 1715 * Similar to vm_insert_page, this allows drivers to insert individual pages 1716 * they've allocated into a user vma. Same comments apply. 1717 * 1718 * This function should only be called from a vm_ops->fault handler, and 1719 * in that case the handler should return NULL. 1720 * 1721 * vma cannot be a COW mapping. 1722 * 1723 * As this is called only for pages that do not currently exist, we 1724 * do not need to flush old virtual caches or the TLB. 1725 */ 1726 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1727 unsigned long pfn) 1728 { 1729 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1730 } 1731 EXPORT_SYMBOL(vm_insert_pfn); 1732 1733 /** 1734 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1735 * @vma: user vma to map to 1736 * @addr: target user address of this page 1737 * @pfn: source kernel pfn 1738 * @pgprot: pgprot flags for the inserted page 1739 * 1740 * This is exactly like vm_insert_pfn, except that it allows drivers to 1741 * to override pgprot on a per-page basis. 1742 * 1743 * This only makes sense for IO mappings, and it makes no sense for 1744 * cow mappings. In general, using multiple vmas is preferable; 1745 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1746 * impractical. 1747 */ 1748 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1749 unsigned long pfn, pgprot_t pgprot) 1750 { 1751 int ret; 1752 /* 1753 * Technically, architectures with pte_special can avoid all these 1754 * restrictions (same for remap_pfn_range). However we would like 1755 * consistency in testing and feature parity among all, so we should 1756 * try to keep these invariants in place for everybody. 1757 */ 1758 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1759 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1760 (VM_PFNMAP|VM_MIXEDMAP)); 1761 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1762 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1763 1764 if (addr < vma->vm_start || addr >= vma->vm_end) 1765 return -EFAULT; 1766 1767 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1768 1769 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1770 1771 return ret; 1772 } 1773 EXPORT_SYMBOL(vm_insert_pfn_prot); 1774 1775 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1776 pfn_t pfn) 1777 { 1778 pgprot_t pgprot = vma->vm_page_prot; 1779 1780 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1781 1782 if (addr < vma->vm_start || addr >= vma->vm_end) 1783 return -EFAULT; 1784 1785 track_pfn_insert(vma, &pgprot, pfn); 1786 1787 /* 1788 * If we don't have pte special, then we have to use the pfn_valid() 1789 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1790 * refcount the page if pfn_valid is true (hence insert_page rather 1791 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1792 * without pte special, it would there be refcounted as a normal page. 1793 */ 1794 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1795 struct page *page; 1796 1797 /* 1798 * At this point we are committed to insert_page() 1799 * regardless of whether the caller specified flags that 1800 * result in pfn_t_has_page() == false. 1801 */ 1802 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1803 return insert_page(vma, addr, page, pgprot); 1804 } 1805 return insert_pfn(vma, addr, pfn, pgprot); 1806 } 1807 EXPORT_SYMBOL(vm_insert_mixed); 1808 1809 /* 1810 * maps a range of physical memory into the requested pages. the old 1811 * mappings are removed. any references to nonexistent pages results 1812 * in null mappings (currently treated as "copy-on-access") 1813 */ 1814 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1815 unsigned long addr, unsigned long end, 1816 unsigned long pfn, pgprot_t prot) 1817 { 1818 pte_t *pte; 1819 spinlock_t *ptl; 1820 1821 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1822 if (!pte) 1823 return -ENOMEM; 1824 arch_enter_lazy_mmu_mode(); 1825 do { 1826 BUG_ON(!pte_none(*pte)); 1827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1828 pfn++; 1829 } while (pte++, addr += PAGE_SIZE, addr != end); 1830 arch_leave_lazy_mmu_mode(); 1831 pte_unmap_unlock(pte - 1, ptl); 1832 return 0; 1833 } 1834 1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1836 unsigned long addr, unsigned long end, 1837 unsigned long pfn, pgprot_t prot) 1838 { 1839 pmd_t *pmd; 1840 unsigned long next; 1841 1842 pfn -= addr >> PAGE_SHIFT; 1843 pmd = pmd_alloc(mm, pud, addr); 1844 if (!pmd) 1845 return -ENOMEM; 1846 VM_BUG_ON(pmd_trans_huge(*pmd)); 1847 do { 1848 next = pmd_addr_end(addr, end); 1849 if (remap_pte_range(mm, pmd, addr, next, 1850 pfn + (addr >> PAGE_SHIFT), prot)) 1851 return -ENOMEM; 1852 } while (pmd++, addr = next, addr != end); 1853 return 0; 1854 } 1855 1856 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1857 unsigned long addr, unsigned long end, 1858 unsigned long pfn, pgprot_t prot) 1859 { 1860 pud_t *pud; 1861 unsigned long next; 1862 1863 pfn -= addr >> PAGE_SHIFT; 1864 pud = pud_alloc(mm, p4d, addr); 1865 if (!pud) 1866 return -ENOMEM; 1867 do { 1868 next = pud_addr_end(addr, end); 1869 if (remap_pmd_range(mm, pud, addr, next, 1870 pfn + (addr >> PAGE_SHIFT), prot)) 1871 return -ENOMEM; 1872 } while (pud++, addr = next, addr != end); 1873 return 0; 1874 } 1875 1876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1877 unsigned long addr, unsigned long end, 1878 unsigned long pfn, pgprot_t prot) 1879 { 1880 p4d_t *p4d; 1881 unsigned long next; 1882 1883 pfn -= addr >> PAGE_SHIFT; 1884 p4d = p4d_alloc(mm, pgd, addr); 1885 if (!p4d) 1886 return -ENOMEM; 1887 do { 1888 next = p4d_addr_end(addr, end); 1889 if (remap_pud_range(mm, p4d, addr, next, 1890 pfn + (addr >> PAGE_SHIFT), prot)) 1891 return -ENOMEM; 1892 } while (p4d++, addr = next, addr != end); 1893 return 0; 1894 } 1895 1896 /** 1897 * remap_pfn_range - remap kernel memory to userspace 1898 * @vma: user vma to map to 1899 * @addr: target user address to start at 1900 * @pfn: physical address of kernel memory 1901 * @size: size of map area 1902 * @prot: page protection flags for this mapping 1903 * 1904 * Note: this is only safe if the mm semaphore is held when called. 1905 */ 1906 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1907 unsigned long pfn, unsigned long size, pgprot_t prot) 1908 { 1909 pgd_t *pgd; 1910 unsigned long next; 1911 unsigned long end = addr + PAGE_ALIGN(size); 1912 struct mm_struct *mm = vma->vm_mm; 1913 unsigned long remap_pfn = pfn; 1914 int err; 1915 1916 /* 1917 * Physically remapped pages are special. Tell the 1918 * rest of the world about it: 1919 * VM_IO tells people not to look at these pages 1920 * (accesses can have side effects). 1921 * VM_PFNMAP tells the core MM that the base pages are just 1922 * raw PFN mappings, and do not have a "struct page" associated 1923 * with them. 1924 * VM_DONTEXPAND 1925 * Disable vma merging and expanding with mremap(). 1926 * VM_DONTDUMP 1927 * Omit vma from core dump, even when VM_IO turned off. 1928 * 1929 * There's a horrible special case to handle copy-on-write 1930 * behaviour that some programs depend on. We mark the "original" 1931 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1932 * See vm_normal_page() for details. 1933 */ 1934 if (is_cow_mapping(vma->vm_flags)) { 1935 if (addr != vma->vm_start || end != vma->vm_end) 1936 return -EINVAL; 1937 vma->vm_pgoff = pfn; 1938 } 1939 1940 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1941 if (err) 1942 return -EINVAL; 1943 1944 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1945 1946 BUG_ON(addr >= end); 1947 pfn -= addr >> PAGE_SHIFT; 1948 pgd = pgd_offset(mm, addr); 1949 flush_cache_range(vma, addr, end); 1950 do { 1951 next = pgd_addr_end(addr, end); 1952 err = remap_p4d_range(mm, pgd, addr, next, 1953 pfn + (addr >> PAGE_SHIFT), prot); 1954 if (err) 1955 break; 1956 } while (pgd++, addr = next, addr != end); 1957 1958 if (err) 1959 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1960 1961 return err; 1962 } 1963 EXPORT_SYMBOL(remap_pfn_range); 1964 1965 /** 1966 * vm_iomap_memory - remap memory to userspace 1967 * @vma: user vma to map to 1968 * @start: start of area 1969 * @len: size of area 1970 * 1971 * This is a simplified io_remap_pfn_range() for common driver use. The 1972 * driver just needs to give us the physical memory range to be mapped, 1973 * we'll figure out the rest from the vma information. 1974 * 1975 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1976 * whatever write-combining details or similar. 1977 */ 1978 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1979 { 1980 unsigned long vm_len, pfn, pages; 1981 1982 /* Check that the physical memory area passed in looks valid */ 1983 if (start + len < start) 1984 return -EINVAL; 1985 /* 1986 * You *really* shouldn't map things that aren't page-aligned, 1987 * but we've historically allowed it because IO memory might 1988 * just have smaller alignment. 1989 */ 1990 len += start & ~PAGE_MASK; 1991 pfn = start >> PAGE_SHIFT; 1992 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1993 if (pfn + pages < pfn) 1994 return -EINVAL; 1995 1996 /* We start the mapping 'vm_pgoff' pages into the area */ 1997 if (vma->vm_pgoff > pages) 1998 return -EINVAL; 1999 pfn += vma->vm_pgoff; 2000 pages -= vma->vm_pgoff; 2001 2002 /* Can we fit all of the mapping? */ 2003 vm_len = vma->vm_end - vma->vm_start; 2004 if (vm_len >> PAGE_SHIFT > pages) 2005 return -EINVAL; 2006 2007 /* Ok, let it rip */ 2008 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2009 } 2010 EXPORT_SYMBOL(vm_iomap_memory); 2011 2012 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2013 unsigned long addr, unsigned long end, 2014 pte_fn_t fn, void *data) 2015 { 2016 pte_t *pte; 2017 int err; 2018 pgtable_t token; 2019 spinlock_t *uninitialized_var(ptl); 2020 2021 pte = (mm == &init_mm) ? 2022 pte_alloc_kernel(pmd, addr) : 2023 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2024 if (!pte) 2025 return -ENOMEM; 2026 2027 BUG_ON(pmd_huge(*pmd)); 2028 2029 arch_enter_lazy_mmu_mode(); 2030 2031 token = pmd_pgtable(*pmd); 2032 2033 do { 2034 err = fn(pte++, token, addr, data); 2035 if (err) 2036 break; 2037 } while (addr += PAGE_SIZE, addr != end); 2038 2039 arch_leave_lazy_mmu_mode(); 2040 2041 if (mm != &init_mm) 2042 pte_unmap_unlock(pte-1, ptl); 2043 return err; 2044 } 2045 2046 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2047 unsigned long addr, unsigned long end, 2048 pte_fn_t fn, void *data) 2049 { 2050 pmd_t *pmd; 2051 unsigned long next; 2052 int err; 2053 2054 BUG_ON(pud_huge(*pud)); 2055 2056 pmd = pmd_alloc(mm, pud, addr); 2057 if (!pmd) 2058 return -ENOMEM; 2059 do { 2060 next = pmd_addr_end(addr, end); 2061 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2062 if (err) 2063 break; 2064 } while (pmd++, addr = next, addr != end); 2065 return err; 2066 } 2067 2068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2069 unsigned long addr, unsigned long end, 2070 pte_fn_t fn, void *data) 2071 { 2072 pud_t *pud; 2073 unsigned long next; 2074 int err; 2075 2076 pud = pud_alloc(mm, p4d, addr); 2077 if (!pud) 2078 return -ENOMEM; 2079 do { 2080 next = pud_addr_end(addr, end); 2081 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2082 if (err) 2083 break; 2084 } while (pud++, addr = next, addr != end); 2085 return err; 2086 } 2087 2088 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2089 unsigned long addr, unsigned long end, 2090 pte_fn_t fn, void *data) 2091 { 2092 p4d_t *p4d; 2093 unsigned long next; 2094 int err; 2095 2096 p4d = p4d_alloc(mm, pgd, addr); 2097 if (!p4d) 2098 return -ENOMEM; 2099 do { 2100 next = p4d_addr_end(addr, end); 2101 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2102 if (err) 2103 break; 2104 } while (p4d++, addr = next, addr != end); 2105 return err; 2106 } 2107 2108 /* 2109 * Scan a region of virtual memory, filling in page tables as necessary 2110 * and calling a provided function on each leaf page table. 2111 */ 2112 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2113 unsigned long size, pte_fn_t fn, void *data) 2114 { 2115 pgd_t *pgd; 2116 unsigned long next; 2117 unsigned long end = addr + size; 2118 int err; 2119 2120 if (WARN_ON(addr >= end)) 2121 return -EINVAL; 2122 2123 pgd = pgd_offset(mm, addr); 2124 do { 2125 next = pgd_addr_end(addr, end); 2126 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2127 if (err) 2128 break; 2129 } while (pgd++, addr = next, addr != end); 2130 2131 return err; 2132 } 2133 EXPORT_SYMBOL_GPL(apply_to_page_range); 2134 2135 /* 2136 * handle_pte_fault chooses page fault handler according to an entry which was 2137 * read non-atomically. Before making any commitment, on those architectures 2138 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2139 * parts, do_swap_page must check under lock before unmapping the pte and 2140 * proceeding (but do_wp_page is only called after already making such a check; 2141 * and do_anonymous_page can safely check later on). 2142 */ 2143 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2144 pte_t *page_table, pte_t orig_pte) 2145 { 2146 int same = 1; 2147 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2148 if (sizeof(pte_t) > sizeof(unsigned long)) { 2149 spinlock_t *ptl = pte_lockptr(mm, pmd); 2150 spin_lock(ptl); 2151 same = pte_same(*page_table, orig_pte); 2152 spin_unlock(ptl); 2153 } 2154 #endif 2155 pte_unmap(page_table); 2156 return same; 2157 } 2158 2159 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2160 { 2161 debug_dma_assert_idle(src); 2162 2163 /* 2164 * If the source page was a PFN mapping, we don't have 2165 * a "struct page" for it. We do a best-effort copy by 2166 * just copying from the original user address. If that 2167 * fails, we just zero-fill it. Live with it. 2168 */ 2169 if (unlikely(!src)) { 2170 void *kaddr = kmap_atomic(dst); 2171 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2172 2173 /* 2174 * This really shouldn't fail, because the page is there 2175 * in the page tables. But it might just be unreadable, 2176 * in which case we just give up and fill the result with 2177 * zeroes. 2178 */ 2179 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2180 clear_page(kaddr); 2181 kunmap_atomic(kaddr); 2182 flush_dcache_page(dst); 2183 } else 2184 copy_user_highpage(dst, src, va, vma); 2185 } 2186 2187 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2188 { 2189 struct file *vm_file = vma->vm_file; 2190 2191 if (vm_file) 2192 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2193 2194 /* 2195 * Special mappings (e.g. VDSO) do not have any file so fake 2196 * a default GFP_KERNEL for them. 2197 */ 2198 return GFP_KERNEL; 2199 } 2200 2201 /* 2202 * Notify the address space that the page is about to become writable so that 2203 * it can prohibit this or wait for the page to get into an appropriate state. 2204 * 2205 * We do this without the lock held, so that it can sleep if it needs to. 2206 */ 2207 static int do_page_mkwrite(struct vm_fault *vmf) 2208 { 2209 int ret; 2210 struct page *page = vmf->page; 2211 unsigned int old_flags = vmf->flags; 2212 2213 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2214 2215 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2216 /* Restore original flags so that caller is not surprised */ 2217 vmf->flags = old_flags; 2218 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2219 return ret; 2220 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2221 lock_page(page); 2222 if (!page->mapping) { 2223 unlock_page(page); 2224 return 0; /* retry */ 2225 } 2226 ret |= VM_FAULT_LOCKED; 2227 } else 2228 VM_BUG_ON_PAGE(!PageLocked(page), page); 2229 return ret; 2230 } 2231 2232 /* 2233 * Handle dirtying of a page in shared file mapping on a write fault. 2234 * 2235 * The function expects the page to be locked and unlocks it. 2236 */ 2237 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2238 struct page *page) 2239 { 2240 struct address_space *mapping; 2241 bool dirtied; 2242 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2243 2244 dirtied = set_page_dirty(page); 2245 VM_BUG_ON_PAGE(PageAnon(page), page); 2246 /* 2247 * Take a local copy of the address_space - page.mapping may be zeroed 2248 * by truncate after unlock_page(). The address_space itself remains 2249 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2250 * release semantics to prevent the compiler from undoing this copying. 2251 */ 2252 mapping = page_rmapping(page); 2253 unlock_page(page); 2254 2255 if ((dirtied || page_mkwrite) && mapping) { 2256 /* 2257 * Some device drivers do not set page.mapping 2258 * but still dirty their pages 2259 */ 2260 balance_dirty_pages_ratelimited(mapping); 2261 } 2262 2263 if (!page_mkwrite) 2264 file_update_time(vma->vm_file); 2265 } 2266 2267 /* 2268 * Handle write page faults for pages that can be reused in the current vma 2269 * 2270 * This can happen either due to the mapping being with the VM_SHARED flag, 2271 * or due to us being the last reference standing to the page. In either 2272 * case, all we need to do here is to mark the page as writable and update 2273 * any related book-keeping. 2274 */ 2275 static inline void wp_page_reuse(struct vm_fault *vmf) 2276 __releases(vmf->ptl) 2277 { 2278 struct vm_area_struct *vma = vmf->vma; 2279 struct page *page = vmf->page; 2280 pte_t entry; 2281 /* 2282 * Clear the pages cpupid information as the existing 2283 * information potentially belongs to a now completely 2284 * unrelated process. 2285 */ 2286 if (page) 2287 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2288 2289 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2290 entry = pte_mkyoung(vmf->orig_pte); 2291 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2292 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2293 update_mmu_cache(vma, vmf->address, vmf->pte); 2294 pte_unmap_unlock(vmf->pte, vmf->ptl); 2295 } 2296 2297 /* 2298 * Handle the case of a page which we actually need to copy to a new page. 2299 * 2300 * Called with mmap_sem locked and the old page referenced, but 2301 * without the ptl held. 2302 * 2303 * High level logic flow: 2304 * 2305 * - Allocate a page, copy the content of the old page to the new one. 2306 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2307 * - Take the PTL. If the pte changed, bail out and release the allocated page 2308 * - If the pte is still the way we remember it, update the page table and all 2309 * relevant references. This includes dropping the reference the page-table 2310 * held to the old page, as well as updating the rmap. 2311 * - In any case, unlock the PTL and drop the reference we took to the old page. 2312 */ 2313 static int wp_page_copy(struct vm_fault *vmf) 2314 { 2315 struct vm_area_struct *vma = vmf->vma; 2316 struct mm_struct *mm = vma->vm_mm; 2317 struct page *old_page = vmf->page; 2318 struct page *new_page = NULL; 2319 pte_t entry; 2320 int page_copied = 0; 2321 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2322 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2323 struct mem_cgroup *memcg; 2324 2325 if (unlikely(anon_vma_prepare(vma))) 2326 goto oom; 2327 2328 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2329 new_page = alloc_zeroed_user_highpage_movable(vma, 2330 vmf->address); 2331 if (!new_page) 2332 goto oom; 2333 } else { 2334 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2335 vmf->address); 2336 if (!new_page) 2337 goto oom; 2338 cow_user_page(new_page, old_page, vmf->address, vma); 2339 } 2340 2341 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2342 goto oom_free_new; 2343 2344 __SetPageUptodate(new_page); 2345 2346 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2347 2348 /* 2349 * Re-check the pte - we dropped the lock 2350 */ 2351 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2352 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2353 if (old_page) { 2354 if (!PageAnon(old_page)) { 2355 dec_mm_counter_fast(mm, 2356 mm_counter_file(old_page)); 2357 inc_mm_counter_fast(mm, MM_ANONPAGES); 2358 } 2359 } else { 2360 inc_mm_counter_fast(mm, MM_ANONPAGES); 2361 } 2362 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2363 entry = mk_pte(new_page, vma->vm_page_prot); 2364 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2365 /* 2366 * Clear the pte entry and flush it first, before updating the 2367 * pte with the new entry. This will avoid a race condition 2368 * seen in the presence of one thread doing SMC and another 2369 * thread doing COW. 2370 */ 2371 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2372 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2373 mem_cgroup_commit_charge(new_page, memcg, false, false); 2374 lru_cache_add_active_or_unevictable(new_page, vma); 2375 /* 2376 * We call the notify macro here because, when using secondary 2377 * mmu page tables (such as kvm shadow page tables), we want the 2378 * new page to be mapped directly into the secondary page table. 2379 */ 2380 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2381 update_mmu_cache(vma, vmf->address, vmf->pte); 2382 if (old_page) { 2383 /* 2384 * Only after switching the pte to the new page may 2385 * we remove the mapcount here. Otherwise another 2386 * process may come and find the rmap count decremented 2387 * before the pte is switched to the new page, and 2388 * "reuse" the old page writing into it while our pte 2389 * here still points into it and can be read by other 2390 * threads. 2391 * 2392 * The critical issue is to order this 2393 * page_remove_rmap with the ptp_clear_flush above. 2394 * Those stores are ordered by (if nothing else,) 2395 * the barrier present in the atomic_add_negative 2396 * in page_remove_rmap. 2397 * 2398 * Then the TLB flush in ptep_clear_flush ensures that 2399 * no process can access the old page before the 2400 * decremented mapcount is visible. And the old page 2401 * cannot be reused until after the decremented 2402 * mapcount is visible. So transitively, TLBs to 2403 * old page will be flushed before it can be reused. 2404 */ 2405 page_remove_rmap(old_page, false); 2406 } 2407 2408 /* Free the old page.. */ 2409 new_page = old_page; 2410 page_copied = 1; 2411 } else { 2412 mem_cgroup_cancel_charge(new_page, memcg, false); 2413 } 2414 2415 if (new_page) 2416 put_page(new_page); 2417 2418 pte_unmap_unlock(vmf->pte, vmf->ptl); 2419 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2420 if (old_page) { 2421 /* 2422 * Don't let another task, with possibly unlocked vma, 2423 * keep the mlocked page. 2424 */ 2425 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2426 lock_page(old_page); /* LRU manipulation */ 2427 if (PageMlocked(old_page)) 2428 munlock_vma_page(old_page); 2429 unlock_page(old_page); 2430 } 2431 put_page(old_page); 2432 } 2433 return page_copied ? VM_FAULT_WRITE : 0; 2434 oom_free_new: 2435 put_page(new_page); 2436 oom: 2437 if (old_page) 2438 put_page(old_page); 2439 return VM_FAULT_OOM; 2440 } 2441 2442 /** 2443 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2444 * writeable once the page is prepared 2445 * 2446 * @vmf: structure describing the fault 2447 * 2448 * This function handles all that is needed to finish a write page fault in a 2449 * shared mapping due to PTE being read-only once the mapped page is prepared. 2450 * It handles locking of PTE and modifying it. The function returns 2451 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2452 * lock. 2453 * 2454 * The function expects the page to be locked or other protection against 2455 * concurrent faults / writeback (such as DAX radix tree locks). 2456 */ 2457 int finish_mkwrite_fault(struct vm_fault *vmf) 2458 { 2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2461 &vmf->ptl); 2462 /* 2463 * We might have raced with another page fault while we released the 2464 * pte_offset_map_lock. 2465 */ 2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2467 pte_unmap_unlock(vmf->pte, vmf->ptl); 2468 return VM_FAULT_NOPAGE; 2469 } 2470 wp_page_reuse(vmf); 2471 return 0; 2472 } 2473 2474 /* 2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2476 * mapping 2477 */ 2478 static int wp_pfn_shared(struct vm_fault *vmf) 2479 { 2480 struct vm_area_struct *vma = vmf->vma; 2481 2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2483 int ret; 2484 2485 pte_unmap_unlock(vmf->pte, vmf->ptl); 2486 vmf->flags |= FAULT_FLAG_MKWRITE; 2487 ret = vma->vm_ops->pfn_mkwrite(vmf); 2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2489 return ret; 2490 return finish_mkwrite_fault(vmf); 2491 } 2492 wp_page_reuse(vmf); 2493 return VM_FAULT_WRITE; 2494 } 2495 2496 static int wp_page_shared(struct vm_fault *vmf) 2497 __releases(vmf->ptl) 2498 { 2499 struct vm_area_struct *vma = vmf->vma; 2500 2501 get_page(vmf->page); 2502 2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2504 int tmp; 2505 2506 pte_unmap_unlock(vmf->pte, vmf->ptl); 2507 tmp = do_page_mkwrite(vmf); 2508 if (unlikely(!tmp || (tmp & 2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2510 put_page(vmf->page); 2511 return tmp; 2512 } 2513 tmp = finish_mkwrite_fault(vmf); 2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2515 unlock_page(vmf->page); 2516 put_page(vmf->page); 2517 return tmp; 2518 } 2519 } else { 2520 wp_page_reuse(vmf); 2521 lock_page(vmf->page); 2522 } 2523 fault_dirty_shared_page(vma, vmf->page); 2524 put_page(vmf->page); 2525 2526 return VM_FAULT_WRITE; 2527 } 2528 2529 /* 2530 * This routine handles present pages, when users try to write 2531 * to a shared page. It is done by copying the page to a new address 2532 * and decrementing the shared-page counter for the old page. 2533 * 2534 * Note that this routine assumes that the protection checks have been 2535 * done by the caller (the low-level page fault routine in most cases). 2536 * Thus we can safely just mark it writable once we've done any necessary 2537 * COW. 2538 * 2539 * We also mark the page dirty at this point even though the page will 2540 * change only once the write actually happens. This avoids a few races, 2541 * and potentially makes it more efficient. 2542 * 2543 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2544 * but allow concurrent faults), with pte both mapped and locked. 2545 * We return with mmap_sem still held, but pte unmapped and unlocked. 2546 */ 2547 static int do_wp_page(struct vm_fault *vmf) 2548 __releases(vmf->ptl) 2549 { 2550 struct vm_area_struct *vma = vmf->vma; 2551 2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2553 if (!vmf->page) { 2554 /* 2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2556 * VM_PFNMAP VMA. 2557 * 2558 * We should not cow pages in a shared writeable mapping. 2559 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2560 */ 2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2562 (VM_WRITE|VM_SHARED)) 2563 return wp_pfn_shared(vmf); 2564 2565 pte_unmap_unlock(vmf->pte, vmf->ptl); 2566 return wp_page_copy(vmf); 2567 } 2568 2569 /* 2570 * Take out anonymous pages first, anonymous shared vmas are 2571 * not dirty accountable. 2572 */ 2573 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2574 int total_mapcount; 2575 if (!trylock_page(vmf->page)) { 2576 get_page(vmf->page); 2577 pte_unmap_unlock(vmf->pte, vmf->ptl); 2578 lock_page(vmf->page); 2579 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2580 vmf->address, &vmf->ptl); 2581 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2582 unlock_page(vmf->page); 2583 pte_unmap_unlock(vmf->pte, vmf->ptl); 2584 put_page(vmf->page); 2585 return 0; 2586 } 2587 put_page(vmf->page); 2588 } 2589 if (reuse_swap_page(vmf->page, &total_mapcount)) { 2590 if (total_mapcount == 1) { 2591 /* 2592 * The page is all ours. Move it to 2593 * our anon_vma so the rmap code will 2594 * not search our parent or siblings. 2595 * Protected against the rmap code by 2596 * the page lock. 2597 */ 2598 page_move_anon_rmap(vmf->page, vma); 2599 } 2600 unlock_page(vmf->page); 2601 wp_page_reuse(vmf); 2602 return VM_FAULT_WRITE; 2603 } 2604 unlock_page(vmf->page); 2605 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2606 (VM_WRITE|VM_SHARED))) { 2607 return wp_page_shared(vmf); 2608 } 2609 2610 /* 2611 * Ok, we need to copy. Oh, well.. 2612 */ 2613 get_page(vmf->page); 2614 2615 pte_unmap_unlock(vmf->pte, vmf->ptl); 2616 return wp_page_copy(vmf); 2617 } 2618 2619 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2620 unsigned long start_addr, unsigned long end_addr, 2621 struct zap_details *details) 2622 { 2623 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2624 } 2625 2626 static inline void unmap_mapping_range_tree(struct rb_root *root, 2627 struct zap_details *details) 2628 { 2629 struct vm_area_struct *vma; 2630 pgoff_t vba, vea, zba, zea; 2631 2632 vma_interval_tree_foreach(vma, root, 2633 details->first_index, details->last_index) { 2634 2635 vba = vma->vm_pgoff; 2636 vea = vba + vma_pages(vma) - 1; 2637 zba = details->first_index; 2638 if (zba < vba) 2639 zba = vba; 2640 zea = details->last_index; 2641 if (zea > vea) 2642 zea = vea; 2643 2644 unmap_mapping_range_vma(vma, 2645 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2646 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2647 details); 2648 } 2649 } 2650 2651 /** 2652 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2653 * address_space corresponding to the specified page range in the underlying 2654 * file. 2655 * 2656 * @mapping: the address space containing mmaps to be unmapped. 2657 * @holebegin: byte in first page to unmap, relative to the start of 2658 * the underlying file. This will be rounded down to a PAGE_SIZE 2659 * boundary. Note that this is different from truncate_pagecache(), which 2660 * must keep the partial page. In contrast, we must get rid of 2661 * partial pages. 2662 * @holelen: size of prospective hole in bytes. This will be rounded 2663 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2664 * end of the file. 2665 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2666 * but 0 when invalidating pagecache, don't throw away private data. 2667 */ 2668 void unmap_mapping_range(struct address_space *mapping, 2669 loff_t const holebegin, loff_t const holelen, int even_cows) 2670 { 2671 struct zap_details details = { }; 2672 pgoff_t hba = holebegin >> PAGE_SHIFT; 2673 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2674 2675 /* Check for overflow. */ 2676 if (sizeof(holelen) > sizeof(hlen)) { 2677 long long holeend = 2678 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2679 if (holeend & ~(long long)ULONG_MAX) 2680 hlen = ULONG_MAX - hba + 1; 2681 } 2682 2683 details.check_mapping = even_cows ? NULL : mapping; 2684 details.first_index = hba; 2685 details.last_index = hba + hlen - 1; 2686 if (details.last_index < details.first_index) 2687 details.last_index = ULONG_MAX; 2688 2689 i_mmap_lock_write(mapping); 2690 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2691 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2692 i_mmap_unlock_write(mapping); 2693 } 2694 EXPORT_SYMBOL(unmap_mapping_range); 2695 2696 /* 2697 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2698 * but allow concurrent faults), and pte mapped but not yet locked. 2699 * We return with pte unmapped and unlocked. 2700 * 2701 * We return with the mmap_sem locked or unlocked in the same cases 2702 * as does filemap_fault(). 2703 */ 2704 int do_swap_page(struct vm_fault *vmf) 2705 { 2706 struct vm_area_struct *vma = vmf->vma; 2707 struct page *page, *swapcache; 2708 struct mem_cgroup *memcg; 2709 swp_entry_t entry; 2710 pte_t pte; 2711 int locked; 2712 int exclusive = 0; 2713 int ret = 0; 2714 2715 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2716 goto out; 2717 2718 entry = pte_to_swp_entry(vmf->orig_pte); 2719 if (unlikely(non_swap_entry(entry))) { 2720 if (is_migration_entry(entry)) { 2721 migration_entry_wait(vma->vm_mm, vmf->pmd, 2722 vmf->address); 2723 } else if (is_hwpoison_entry(entry)) { 2724 ret = VM_FAULT_HWPOISON; 2725 } else { 2726 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2727 ret = VM_FAULT_SIGBUS; 2728 } 2729 goto out; 2730 } 2731 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2732 page = lookup_swap_cache(entry); 2733 if (!page) { 2734 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, 2735 vmf->address); 2736 if (!page) { 2737 /* 2738 * Back out if somebody else faulted in this pte 2739 * while we released the pte lock. 2740 */ 2741 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2742 vmf->address, &vmf->ptl); 2743 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2744 ret = VM_FAULT_OOM; 2745 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2746 goto unlock; 2747 } 2748 2749 /* Had to read the page from swap area: Major fault */ 2750 ret = VM_FAULT_MAJOR; 2751 count_vm_event(PGMAJFAULT); 2752 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2753 } else if (PageHWPoison(page)) { 2754 /* 2755 * hwpoisoned dirty swapcache pages are kept for killing 2756 * owner processes (which may be unknown at hwpoison time) 2757 */ 2758 ret = VM_FAULT_HWPOISON; 2759 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2760 swapcache = page; 2761 goto out_release; 2762 } 2763 2764 swapcache = page; 2765 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2766 2767 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2768 if (!locked) { 2769 ret |= VM_FAULT_RETRY; 2770 goto out_release; 2771 } 2772 2773 /* 2774 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2775 * release the swapcache from under us. The page pin, and pte_same 2776 * test below, are not enough to exclude that. Even if it is still 2777 * swapcache, we need to check that the page's swap has not changed. 2778 */ 2779 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2780 goto out_page; 2781 2782 page = ksm_might_need_to_copy(page, vma, vmf->address); 2783 if (unlikely(!page)) { 2784 ret = VM_FAULT_OOM; 2785 page = swapcache; 2786 goto out_page; 2787 } 2788 2789 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2790 &memcg, false)) { 2791 ret = VM_FAULT_OOM; 2792 goto out_page; 2793 } 2794 2795 /* 2796 * Back out if somebody else already faulted in this pte. 2797 */ 2798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2799 &vmf->ptl); 2800 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2801 goto out_nomap; 2802 2803 if (unlikely(!PageUptodate(page))) { 2804 ret = VM_FAULT_SIGBUS; 2805 goto out_nomap; 2806 } 2807 2808 /* 2809 * The page isn't present yet, go ahead with the fault. 2810 * 2811 * Be careful about the sequence of operations here. 2812 * To get its accounting right, reuse_swap_page() must be called 2813 * while the page is counted on swap but not yet in mapcount i.e. 2814 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2815 * must be called after the swap_free(), or it will never succeed. 2816 */ 2817 2818 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2819 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2820 pte = mk_pte(page, vma->vm_page_prot); 2821 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2822 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2823 vmf->flags &= ~FAULT_FLAG_WRITE; 2824 ret |= VM_FAULT_WRITE; 2825 exclusive = RMAP_EXCLUSIVE; 2826 } 2827 flush_icache_page(vma, page); 2828 if (pte_swp_soft_dirty(vmf->orig_pte)) 2829 pte = pte_mksoft_dirty(pte); 2830 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2831 vmf->orig_pte = pte; 2832 if (page == swapcache) { 2833 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2834 mem_cgroup_commit_charge(page, memcg, true, false); 2835 activate_page(page); 2836 } else { /* ksm created a completely new copy */ 2837 page_add_new_anon_rmap(page, vma, vmf->address, false); 2838 mem_cgroup_commit_charge(page, memcg, false, false); 2839 lru_cache_add_active_or_unevictable(page, vma); 2840 } 2841 2842 swap_free(entry); 2843 if (mem_cgroup_swap_full(page) || 2844 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2845 try_to_free_swap(page); 2846 unlock_page(page); 2847 if (page != swapcache) { 2848 /* 2849 * Hold the lock to avoid the swap entry to be reused 2850 * until we take the PT lock for the pte_same() check 2851 * (to avoid false positives from pte_same). For 2852 * further safety release the lock after the swap_free 2853 * so that the swap count won't change under a 2854 * parallel locked swapcache. 2855 */ 2856 unlock_page(swapcache); 2857 put_page(swapcache); 2858 } 2859 2860 if (vmf->flags & FAULT_FLAG_WRITE) { 2861 ret |= do_wp_page(vmf); 2862 if (ret & VM_FAULT_ERROR) 2863 ret &= VM_FAULT_ERROR; 2864 goto out; 2865 } 2866 2867 /* No need to invalidate - it was non-present before */ 2868 update_mmu_cache(vma, vmf->address, vmf->pte); 2869 unlock: 2870 pte_unmap_unlock(vmf->pte, vmf->ptl); 2871 out: 2872 return ret; 2873 out_nomap: 2874 mem_cgroup_cancel_charge(page, memcg, false); 2875 pte_unmap_unlock(vmf->pte, vmf->ptl); 2876 out_page: 2877 unlock_page(page); 2878 out_release: 2879 put_page(page); 2880 if (page != swapcache) { 2881 unlock_page(swapcache); 2882 put_page(swapcache); 2883 } 2884 return ret; 2885 } 2886 2887 /* 2888 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2889 * but allow concurrent faults), and pte mapped but not yet locked. 2890 * We return with mmap_sem still held, but pte unmapped and unlocked. 2891 */ 2892 static int do_anonymous_page(struct vm_fault *vmf) 2893 { 2894 struct vm_area_struct *vma = vmf->vma; 2895 struct mem_cgroup *memcg; 2896 struct page *page; 2897 int ret = 0; 2898 pte_t entry; 2899 2900 /* File mapping without ->vm_ops ? */ 2901 if (vma->vm_flags & VM_SHARED) 2902 return VM_FAULT_SIGBUS; 2903 2904 /* 2905 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2906 * pte_offset_map() on pmds where a huge pmd might be created 2907 * from a different thread. 2908 * 2909 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2910 * parallel threads are excluded by other means. 2911 * 2912 * Here we only have down_read(mmap_sem). 2913 */ 2914 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2915 return VM_FAULT_OOM; 2916 2917 /* See the comment in pte_alloc_one_map() */ 2918 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2919 return 0; 2920 2921 /* Use the zero-page for reads */ 2922 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2923 !mm_forbids_zeropage(vma->vm_mm)) { 2924 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2925 vma->vm_page_prot)); 2926 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2927 vmf->address, &vmf->ptl); 2928 if (!pte_none(*vmf->pte)) 2929 goto unlock; 2930 ret = check_stable_address_space(vma->vm_mm); 2931 if (ret) 2932 goto unlock; 2933 /* Deliver the page fault to userland, check inside PT lock */ 2934 if (userfaultfd_missing(vma)) { 2935 pte_unmap_unlock(vmf->pte, vmf->ptl); 2936 return handle_userfault(vmf, VM_UFFD_MISSING); 2937 } 2938 goto setpte; 2939 } 2940 2941 /* Allocate our own private page. */ 2942 if (unlikely(anon_vma_prepare(vma))) 2943 goto oom; 2944 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2945 if (!page) 2946 goto oom; 2947 2948 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2949 goto oom_free_page; 2950 2951 /* 2952 * The memory barrier inside __SetPageUptodate makes sure that 2953 * preceeding stores to the page contents become visible before 2954 * the set_pte_at() write. 2955 */ 2956 __SetPageUptodate(page); 2957 2958 entry = mk_pte(page, vma->vm_page_prot); 2959 if (vma->vm_flags & VM_WRITE) 2960 entry = pte_mkwrite(pte_mkdirty(entry)); 2961 2962 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2963 &vmf->ptl); 2964 if (!pte_none(*vmf->pte)) 2965 goto release; 2966 2967 ret = check_stable_address_space(vma->vm_mm); 2968 if (ret) 2969 goto release; 2970 2971 /* Deliver the page fault to userland, check inside PT lock */ 2972 if (userfaultfd_missing(vma)) { 2973 pte_unmap_unlock(vmf->pte, vmf->ptl); 2974 mem_cgroup_cancel_charge(page, memcg, false); 2975 put_page(page); 2976 return handle_userfault(vmf, VM_UFFD_MISSING); 2977 } 2978 2979 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2980 page_add_new_anon_rmap(page, vma, vmf->address, false); 2981 mem_cgroup_commit_charge(page, memcg, false, false); 2982 lru_cache_add_active_or_unevictable(page, vma); 2983 setpte: 2984 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2985 2986 /* No need to invalidate - it was non-present before */ 2987 update_mmu_cache(vma, vmf->address, vmf->pte); 2988 unlock: 2989 pte_unmap_unlock(vmf->pte, vmf->ptl); 2990 return ret; 2991 release: 2992 mem_cgroup_cancel_charge(page, memcg, false); 2993 put_page(page); 2994 goto unlock; 2995 oom_free_page: 2996 put_page(page); 2997 oom: 2998 return VM_FAULT_OOM; 2999 } 3000 3001 /* 3002 * The mmap_sem must have been held on entry, and may have been 3003 * released depending on flags and vma->vm_ops->fault() return value. 3004 * See filemap_fault() and __lock_page_retry(). 3005 */ 3006 static int __do_fault(struct vm_fault *vmf) 3007 { 3008 struct vm_area_struct *vma = vmf->vma; 3009 int ret; 3010 3011 ret = vma->vm_ops->fault(vmf); 3012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3013 VM_FAULT_DONE_COW))) 3014 return ret; 3015 3016 if (unlikely(PageHWPoison(vmf->page))) { 3017 if (ret & VM_FAULT_LOCKED) 3018 unlock_page(vmf->page); 3019 put_page(vmf->page); 3020 vmf->page = NULL; 3021 return VM_FAULT_HWPOISON; 3022 } 3023 3024 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3025 lock_page(vmf->page); 3026 else 3027 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3028 3029 return ret; 3030 } 3031 3032 /* 3033 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3034 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3035 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3036 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3037 */ 3038 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3039 { 3040 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3041 } 3042 3043 static int pte_alloc_one_map(struct vm_fault *vmf) 3044 { 3045 struct vm_area_struct *vma = vmf->vma; 3046 3047 if (!pmd_none(*vmf->pmd)) 3048 goto map_pte; 3049 if (vmf->prealloc_pte) { 3050 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3051 if (unlikely(!pmd_none(*vmf->pmd))) { 3052 spin_unlock(vmf->ptl); 3053 goto map_pte; 3054 } 3055 3056 atomic_long_inc(&vma->vm_mm->nr_ptes); 3057 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3058 spin_unlock(vmf->ptl); 3059 vmf->prealloc_pte = NULL; 3060 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3061 return VM_FAULT_OOM; 3062 } 3063 map_pte: 3064 /* 3065 * If a huge pmd materialized under us just retry later. Use 3066 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3067 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3068 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3069 * running immediately after a huge pmd fault in a different thread of 3070 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3071 * All we have to ensure is that it is a regular pmd that we can walk 3072 * with pte_offset_map() and we can do that through an atomic read in 3073 * C, which is what pmd_trans_unstable() provides. 3074 */ 3075 if (pmd_devmap_trans_unstable(vmf->pmd)) 3076 return VM_FAULT_NOPAGE; 3077 3078 /* 3079 * At this point we know that our vmf->pmd points to a page of ptes 3080 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3081 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3082 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3083 * be valid and we will re-check to make sure the vmf->pte isn't 3084 * pte_none() under vmf->ptl protection when we return to 3085 * alloc_set_pte(). 3086 */ 3087 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3088 &vmf->ptl); 3089 return 0; 3090 } 3091 3092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3093 3094 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3095 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3096 unsigned long haddr) 3097 { 3098 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3099 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3100 return false; 3101 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3102 return false; 3103 return true; 3104 } 3105 3106 static void deposit_prealloc_pte(struct vm_fault *vmf) 3107 { 3108 struct vm_area_struct *vma = vmf->vma; 3109 3110 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3111 /* 3112 * We are going to consume the prealloc table, 3113 * count that as nr_ptes. 3114 */ 3115 atomic_long_inc(&vma->vm_mm->nr_ptes); 3116 vmf->prealloc_pte = NULL; 3117 } 3118 3119 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3120 { 3121 struct vm_area_struct *vma = vmf->vma; 3122 bool write = vmf->flags & FAULT_FLAG_WRITE; 3123 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3124 pmd_t entry; 3125 int i, ret; 3126 3127 if (!transhuge_vma_suitable(vma, haddr)) 3128 return VM_FAULT_FALLBACK; 3129 3130 ret = VM_FAULT_FALLBACK; 3131 page = compound_head(page); 3132 3133 /* 3134 * Archs like ppc64 need additonal space to store information 3135 * related to pte entry. Use the preallocated table for that. 3136 */ 3137 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3138 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3139 if (!vmf->prealloc_pte) 3140 return VM_FAULT_OOM; 3141 smp_wmb(); /* See comment in __pte_alloc() */ 3142 } 3143 3144 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3145 if (unlikely(!pmd_none(*vmf->pmd))) 3146 goto out; 3147 3148 for (i = 0; i < HPAGE_PMD_NR; i++) 3149 flush_icache_page(vma, page + i); 3150 3151 entry = mk_huge_pmd(page, vma->vm_page_prot); 3152 if (write) 3153 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3154 3155 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3156 page_add_file_rmap(page, true); 3157 /* 3158 * deposit and withdraw with pmd lock held 3159 */ 3160 if (arch_needs_pgtable_deposit()) 3161 deposit_prealloc_pte(vmf); 3162 3163 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3164 3165 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3166 3167 /* fault is handled */ 3168 ret = 0; 3169 count_vm_event(THP_FILE_MAPPED); 3170 out: 3171 spin_unlock(vmf->ptl); 3172 return ret; 3173 } 3174 #else 3175 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3176 { 3177 BUILD_BUG(); 3178 return 0; 3179 } 3180 #endif 3181 3182 /** 3183 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3184 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3185 * 3186 * @vmf: fault environment 3187 * @memcg: memcg to charge page (only for private mappings) 3188 * @page: page to map 3189 * 3190 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3191 * return. 3192 * 3193 * Target users are page handler itself and implementations of 3194 * vm_ops->map_pages. 3195 */ 3196 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3197 struct page *page) 3198 { 3199 struct vm_area_struct *vma = vmf->vma; 3200 bool write = vmf->flags & FAULT_FLAG_WRITE; 3201 pte_t entry; 3202 int ret; 3203 3204 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3205 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3206 /* THP on COW? */ 3207 VM_BUG_ON_PAGE(memcg, page); 3208 3209 ret = do_set_pmd(vmf, page); 3210 if (ret != VM_FAULT_FALLBACK) 3211 return ret; 3212 } 3213 3214 if (!vmf->pte) { 3215 ret = pte_alloc_one_map(vmf); 3216 if (ret) 3217 return ret; 3218 } 3219 3220 /* Re-check under ptl */ 3221 if (unlikely(!pte_none(*vmf->pte))) 3222 return VM_FAULT_NOPAGE; 3223 3224 flush_icache_page(vma, page); 3225 entry = mk_pte(page, vma->vm_page_prot); 3226 if (write) 3227 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3228 /* copy-on-write page */ 3229 if (write && !(vma->vm_flags & VM_SHARED)) { 3230 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3231 page_add_new_anon_rmap(page, vma, vmf->address, false); 3232 mem_cgroup_commit_charge(page, memcg, false, false); 3233 lru_cache_add_active_or_unevictable(page, vma); 3234 } else { 3235 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3236 page_add_file_rmap(page, false); 3237 } 3238 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3239 3240 /* no need to invalidate: a not-present page won't be cached */ 3241 update_mmu_cache(vma, vmf->address, vmf->pte); 3242 3243 return 0; 3244 } 3245 3246 3247 /** 3248 * finish_fault - finish page fault once we have prepared the page to fault 3249 * 3250 * @vmf: structure describing the fault 3251 * 3252 * This function handles all that is needed to finish a page fault once the 3253 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3254 * given page, adds reverse page mapping, handles memcg charges and LRU 3255 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3256 * error. 3257 * 3258 * The function expects the page to be locked and on success it consumes a 3259 * reference of a page being mapped (for the PTE which maps it). 3260 */ 3261 int finish_fault(struct vm_fault *vmf) 3262 { 3263 struct page *page; 3264 int ret = 0; 3265 3266 /* Did we COW the page? */ 3267 if ((vmf->flags & FAULT_FLAG_WRITE) && 3268 !(vmf->vma->vm_flags & VM_SHARED)) 3269 page = vmf->cow_page; 3270 else 3271 page = vmf->page; 3272 3273 /* 3274 * check even for read faults because we might have lost our CoWed 3275 * page 3276 */ 3277 if (!(vmf->vma->vm_flags & VM_SHARED)) 3278 ret = check_stable_address_space(vmf->vma->vm_mm); 3279 if (!ret) 3280 ret = alloc_set_pte(vmf, vmf->memcg, page); 3281 if (vmf->pte) 3282 pte_unmap_unlock(vmf->pte, vmf->ptl); 3283 return ret; 3284 } 3285 3286 static unsigned long fault_around_bytes __read_mostly = 3287 rounddown_pow_of_two(65536); 3288 3289 #ifdef CONFIG_DEBUG_FS 3290 static int fault_around_bytes_get(void *data, u64 *val) 3291 { 3292 *val = fault_around_bytes; 3293 return 0; 3294 } 3295 3296 /* 3297 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3298 * rounded down to nearest page order. It's what do_fault_around() expects to 3299 * see. 3300 */ 3301 static int fault_around_bytes_set(void *data, u64 val) 3302 { 3303 if (val / PAGE_SIZE > PTRS_PER_PTE) 3304 return -EINVAL; 3305 if (val > PAGE_SIZE) 3306 fault_around_bytes = rounddown_pow_of_two(val); 3307 else 3308 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3309 return 0; 3310 } 3311 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3312 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3313 3314 static int __init fault_around_debugfs(void) 3315 { 3316 void *ret; 3317 3318 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3319 &fault_around_bytes_fops); 3320 if (!ret) 3321 pr_warn("Failed to create fault_around_bytes in debugfs"); 3322 return 0; 3323 } 3324 late_initcall(fault_around_debugfs); 3325 #endif 3326 3327 /* 3328 * do_fault_around() tries to map few pages around the fault address. The hope 3329 * is that the pages will be needed soon and this will lower the number of 3330 * faults to handle. 3331 * 3332 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3333 * not ready to be mapped: not up-to-date, locked, etc. 3334 * 3335 * This function is called with the page table lock taken. In the split ptlock 3336 * case the page table lock only protects only those entries which belong to 3337 * the page table corresponding to the fault address. 3338 * 3339 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3340 * only once. 3341 * 3342 * fault_around_pages() defines how many pages we'll try to map. 3343 * do_fault_around() expects it to return a power of two less than or equal to 3344 * PTRS_PER_PTE. 3345 * 3346 * The virtual address of the area that we map is naturally aligned to the 3347 * fault_around_pages() value (and therefore to page order). This way it's 3348 * easier to guarantee that we don't cross page table boundaries. 3349 */ 3350 static int do_fault_around(struct vm_fault *vmf) 3351 { 3352 unsigned long address = vmf->address, nr_pages, mask; 3353 pgoff_t start_pgoff = vmf->pgoff; 3354 pgoff_t end_pgoff; 3355 int off, ret = 0; 3356 3357 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3358 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3359 3360 vmf->address = max(address & mask, vmf->vma->vm_start); 3361 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3362 start_pgoff -= off; 3363 3364 /* 3365 * end_pgoff is either end of page table or end of vma 3366 * or fault_around_pages() from start_pgoff, depending what is nearest. 3367 */ 3368 end_pgoff = start_pgoff - 3369 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3370 PTRS_PER_PTE - 1; 3371 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3372 start_pgoff + nr_pages - 1); 3373 3374 if (pmd_none(*vmf->pmd)) { 3375 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3376 vmf->address); 3377 if (!vmf->prealloc_pte) 3378 goto out; 3379 smp_wmb(); /* See comment in __pte_alloc() */ 3380 } 3381 3382 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3383 3384 /* Huge page is mapped? Page fault is solved */ 3385 if (pmd_trans_huge(*vmf->pmd)) { 3386 ret = VM_FAULT_NOPAGE; 3387 goto out; 3388 } 3389 3390 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3391 if (!vmf->pte) 3392 goto out; 3393 3394 /* check if the page fault is solved */ 3395 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3396 if (!pte_none(*vmf->pte)) 3397 ret = VM_FAULT_NOPAGE; 3398 pte_unmap_unlock(vmf->pte, vmf->ptl); 3399 out: 3400 vmf->address = address; 3401 vmf->pte = NULL; 3402 return ret; 3403 } 3404 3405 static int do_read_fault(struct vm_fault *vmf) 3406 { 3407 struct vm_area_struct *vma = vmf->vma; 3408 int ret = 0; 3409 3410 /* 3411 * Let's call ->map_pages() first and use ->fault() as fallback 3412 * if page by the offset is not ready to be mapped (cold cache or 3413 * something). 3414 */ 3415 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3416 ret = do_fault_around(vmf); 3417 if (ret) 3418 return ret; 3419 } 3420 3421 ret = __do_fault(vmf); 3422 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3423 return ret; 3424 3425 ret |= finish_fault(vmf); 3426 unlock_page(vmf->page); 3427 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3428 put_page(vmf->page); 3429 return ret; 3430 } 3431 3432 static int do_cow_fault(struct vm_fault *vmf) 3433 { 3434 struct vm_area_struct *vma = vmf->vma; 3435 int ret; 3436 3437 if (unlikely(anon_vma_prepare(vma))) 3438 return VM_FAULT_OOM; 3439 3440 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3441 if (!vmf->cow_page) 3442 return VM_FAULT_OOM; 3443 3444 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3445 &vmf->memcg, false)) { 3446 put_page(vmf->cow_page); 3447 return VM_FAULT_OOM; 3448 } 3449 3450 ret = __do_fault(vmf); 3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3452 goto uncharge_out; 3453 if (ret & VM_FAULT_DONE_COW) 3454 return ret; 3455 3456 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3457 __SetPageUptodate(vmf->cow_page); 3458 3459 ret |= finish_fault(vmf); 3460 unlock_page(vmf->page); 3461 put_page(vmf->page); 3462 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3463 goto uncharge_out; 3464 return ret; 3465 uncharge_out: 3466 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3467 put_page(vmf->cow_page); 3468 return ret; 3469 } 3470 3471 static int do_shared_fault(struct vm_fault *vmf) 3472 { 3473 struct vm_area_struct *vma = vmf->vma; 3474 int ret, tmp; 3475 3476 ret = __do_fault(vmf); 3477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3478 return ret; 3479 3480 /* 3481 * Check if the backing address space wants to know that the page is 3482 * about to become writable 3483 */ 3484 if (vma->vm_ops->page_mkwrite) { 3485 unlock_page(vmf->page); 3486 tmp = do_page_mkwrite(vmf); 3487 if (unlikely(!tmp || 3488 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3489 put_page(vmf->page); 3490 return tmp; 3491 } 3492 } 3493 3494 ret |= finish_fault(vmf); 3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3496 VM_FAULT_RETRY))) { 3497 unlock_page(vmf->page); 3498 put_page(vmf->page); 3499 return ret; 3500 } 3501 3502 fault_dirty_shared_page(vma, vmf->page); 3503 return ret; 3504 } 3505 3506 /* 3507 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3508 * but allow concurrent faults). 3509 * The mmap_sem may have been released depending on flags and our 3510 * return value. See filemap_fault() and __lock_page_or_retry(). 3511 */ 3512 static int do_fault(struct vm_fault *vmf) 3513 { 3514 struct vm_area_struct *vma = vmf->vma; 3515 int ret; 3516 3517 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3518 if (!vma->vm_ops->fault) 3519 ret = VM_FAULT_SIGBUS; 3520 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3521 ret = do_read_fault(vmf); 3522 else if (!(vma->vm_flags & VM_SHARED)) 3523 ret = do_cow_fault(vmf); 3524 else 3525 ret = do_shared_fault(vmf); 3526 3527 /* preallocated pagetable is unused: free it */ 3528 if (vmf->prealloc_pte) { 3529 pte_free(vma->vm_mm, vmf->prealloc_pte); 3530 vmf->prealloc_pte = NULL; 3531 } 3532 return ret; 3533 } 3534 3535 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3536 unsigned long addr, int page_nid, 3537 int *flags) 3538 { 3539 get_page(page); 3540 3541 count_vm_numa_event(NUMA_HINT_FAULTS); 3542 if (page_nid == numa_node_id()) { 3543 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3544 *flags |= TNF_FAULT_LOCAL; 3545 } 3546 3547 return mpol_misplaced(page, vma, addr); 3548 } 3549 3550 static int do_numa_page(struct vm_fault *vmf) 3551 { 3552 struct vm_area_struct *vma = vmf->vma; 3553 struct page *page = NULL; 3554 int page_nid = -1; 3555 int last_cpupid; 3556 int target_nid; 3557 bool migrated = false; 3558 pte_t pte; 3559 bool was_writable = pte_savedwrite(vmf->orig_pte); 3560 int flags = 0; 3561 3562 /* 3563 * The "pte" at this point cannot be used safely without 3564 * validation through pte_unmap_same(). It's of NUMA type but 3565 * the pfn may be screwed if the read is non atomic. 3566 */ 3567 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3568 spin_lock(vmf->ptl); 3569 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3570 pte_unmap_unlock(vmf->pte, vmf->ptl); 3571 goto out; 3572 } 3573 3574 /* 3575 * Make it present again, Depending on how arch implementes non 3576 * accessible ptes, some can allow access by kernel mode. 3577 */ 3578 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3579 pte = pte_modify(pte, vma->vm_page_prot); 3580 pte = pte_mkyoung(pte); 3581 if (was_writable) 3582 pte = pte_mkwrite(pte); 3583 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3584 update_mmu_cache(vma, vmf->address, vmf->pte); 3585 3586 page = vm_normal_page(vma, vmf->address, pte); 3587 if (!page) { 3588 pte_unmap_unlock(vmf->pte, vmf->ptl); 3589 return 0; 3590 } 3591 3592 /* TODO: handle PTE-mapped THP */ 3593 if (PageCompound(page)) { 3594 pte_unmap_unlock(vmf->pte, vmf->ptl); 3595 return 0; 3596 } 3597 3598 /* 3599 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3600 * much anyway since they can be in shared cache state. This misses 3601 * the case where a mapping is writable but the process never writes 3602 * to it but pte_write gets cleared during protection updates and 3603 * pte_dirty has unpredictable behaviour between PTE scan updates, 3604 * background writeback, dirty balancing and application behaviour. 3605 */ 3606 if (!pte_write(pte)) 3607 flags |= TNF_NO_GROUP; 3608 3609 /* 3610 * Flag if the page is shared between multiple address spaces. This 3611 * is later used when determining whether to group tasks together 3612 */ 3613 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3614 flags |= TNF_SHARED; 3615 3616 last_cpupid = page_cpupid_last(page); 3617 page_nid = page_to_nid(page); 3618 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3619 &flags); 3620 pte_unmap_unlock(vmf->pte, vmf->ptl); 3621 if (target_nid == -1) { 3622 put_page(page); 3623 goto out; 3624 } 3625 3626 /* Migrate to the requested node */ 3627 migrated = migrate_misplaced_page(page, vma, target_nid); 3628 if (migrated) { 3629 page_nid = target_nid; 3630 flags |= TNF_MIGRATED; 3631 } else 3632 flags |= TNF_MIGRATE_FAIL; 3633 3634 out: 3635 if (page_nid != -1) 3636 task_numa_fault(last_cpupid, page_nid, 1, flags); 3637 return 0; 3638 } 3639 3640 static inline int create_huge_pmd(struct vm_fault *vmf) 3641 { 3642 if (vma_is_anonymous(vmf->vma)) 3643 return do_huge_pmd_anonymous_page(vmf); 3644 if (vmf->vma->vm_ops->huge_fault) 3645 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3646 return VM_FAULT_FALLBACK; 3647 } 3648 3649 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3650 { 3651 if (vma_is_anonymous(vmf->vma)) 3652 return do_huge_pmd_wp_page(vmf, orig_pmd); 3653 if (vmf->vma->vm_ops->huge_fault) 3654 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3655 3656 /* COW handled on pte level: split pmd */ 3657 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3658 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3659 3660 return VM_FAULT_FALLBACK; 3661 } 3662 3663 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3664 { 3665 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3666 } 3667 3668 static int create_huge_pud(struct vm_fault *vmf) 3669 { 3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3671 /* No support for anonymous transparent PUD pages yet */ 3672 if (vma_is_anonymous(vmf->vma)) 3673 return VM_FAULT_FALLBACK; 3674 if (vmf->vma->vm_ops->huge_fault) 3675 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3677 return VM_FAULT_FALLBACK; 3678 } 3679 3680 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3681 { 3682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3683 /* No support for anonymous transparent PUD pages yet */ 3684 if (vma_is_anonymous(vmf->vma)) 3685 return VM_FAULT_FALLBACK; 3686 if (vmf->vma->vm_ops->huge_fault) 3687 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3688 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3689 return VM_FAULT_FALLBACK; 3690 } 3691 3692 /* 3693 * These routines also need to handle stuff like marking pages dirty 3694 * and/or accessed for architectures that don't do it in hardware (most 3695 * RISC architectures). The early dirtying is also good on the i386. 3696 * 3697 * There is also a hook called "update_mmu_cache()" that architectures 3698 * with external mmu caches can use to update those (ie the Sparc or 3699 * PowerPC hashed page tables that act as extended TLBs). 3700 * 3701 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3702 * concurrent faults). 3703 * 3704 * The mmap_sem may have been released depending on flags and our return value. 3705 * See filemap_fault() and __lock_page_or_retry(). 3706 */ 3707 static int handle_pte_fault(struct vm_fault *vmf) 3708 { 3709 pte_t entry; 3710 3711 if (unlikely(pmd_none(*vmf->pmd))) { 3712 /* 3713 * Leave __pte_alloc() until later: because vm_ops->fault may 3714 * want to allocate huge page, and if we expose page table 3715 * for an instant, it will be difficult to retract from 3716 * concurrent faults and from rmap lookups. 3717 */ 3718 vmf->pte = NULL; 3719 } else { 3720 /* See comment in pte_alloc_one_map() */ 3721 if (pmd_devmap_trans_unstable(vmf->pmd)) 3722 return 0; 3723 /* 3724 * A regular pmd is established and it can't morph into a huge 3725 * pmd from under us anymore at this point because we hold the 3726 * mmap_sem read mode and khugepaged takes it in write mode. 3727 * So now it's safe to run pte_offset_map(). 3728 */ 3729 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3730 vmf->orig_pte = *vmf->pte; 3731 3732 /* 3733 * some architectures can have larger ptes than wordsize, 3734 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3735 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3736 * atomic accesses. The code below just needs a consistent 3737 * view for the ifs and we later double check anyway with the 3738 * ptl lock held. So here a barrier will do. 3739 */ 3740 barrier(); 3741 if (pte_none(vmf->orig_pte)) { 3742 pte_unmap(vmf->pte); 3743 vmf->pte = NULL; 3744 } 3745 } 3746 3747 if (!vmf->pte) { 3748 if (vma_is_anonymous(vmf->vma)) 3749 return do_anonymous_page(vmf); 3750 else 3751 return do_fault(vmf); 3752 } 3753 3754 if (!pte_present(vmf->orig_pte)) 3755 return do_swap_page(vmf); 3756 3757 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3758 return do_numa_page(vmf); 3759 3760 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3761 spin_lock(vmf->ptl); 3762 entry = vmf->orig_pte; 3763 if (unlikely(!pte_same(*vmf->pte, entry))) 3764 goto unlock; 3765 if (vmf->flags & FAULT_FLAG_WRITE) { 3766 if (!pte_write(entry)) 3767 return do_wp_page(vmf); 3768 entry = pte_mkdirty(entry); 3769 } 3770 entry = pte_mkyoung(entry); 3771 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3772 vmf->flags & FAULT_FLAG_WRITE)) { 3773 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3774 } else { 3775 /* 3776 * This is needed only for protection faults but the arch code 3777 * is not yet telling us if this is a protection fault or not. 3778 * This still avoids useless tlb flushes for .text page faults 3779 * with threads. 3780 */ 3781 if (vmf->flags & FAULT_FLAG_WRITE) 3782 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3783 } 3784 unlock: 3785 pte_unmap_unlock(vmf->pte, vmf->ptl); 3786 return 0; 3787 } 3788 3789 /* 3790 * By the time we get here, we already hold the mm semaphore 3791 * 3792 * The mmap_sem may have been released depending on flags and our 3793 * return value. See filemap_fault() and __lock_page_or_retry(). 3794 */ 3795 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3796 unsigned int flags) 3797 { 3798 struct vm_fault vmf = { 3799 .vma = vma, 3800 .address = address & PAGE_MASK, 3801 .flags = flags, 3802 .pgoff = linear_page_index(vma, address), 3803 .gfp_mask = __get_fault_gfp_mask(vma), 3804 }; 3805 struct mm_struct *mm = vma->vm_mm; 3806 pgd_t *pgd; 3807 p4d_t *p4d; 3808 int ret; 3809 3810 pgd = pgd_offset(mm, address); 3811 p4d = p4d_alloc(mm, pgd, address); 3812 if (!p4d) 3813 return VM_FAULT_OOM; 3814 3815 vmf.pud = pud_alloc(mm, p4d, address); 3816 if (!vmf.pud) 3817 return VM_FAULT_OOM; 3818 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3819 ret = create_huge_pud(&vmf); 3820 if (!(ret & VM_FAULT_FALLBACK)) 3821 return ret; 3822 } else { 3823 pud_t orig_pud = *vmf.pud; 3824 3825 barrier(); 3826 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3827 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3828 3829 /* NUMA case for anonymous PUDs would go here */ 3830 3831 if (dirty && !pud_write(orig_pud)) { 3832 ret = wp_huge_pud(&vmf, orig_pud); 3833 if (!(ret & VM_FAULT_FALLBACK)) 3834 return ret; 3835 } else { 3836 huge_pud_set_accessed(&vmf, orig_pud); 3837 return 0; 3838 } 3839 } 3840 } 3841 3842 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3843 if (!vmf.pmd) 3844 return VM_FAULT_OOM; 3845 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3846 ret = create_huge_pmd(&vmf); 3847 if (!(ret & VM_FAULT_FALLBACK)) 3848 return ret; 3849 } else { 3850 pmd_t orig_pmd = *vmf.pmd; 3851 3852 barrier(); 3853 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3854 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3855 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3856 3857 if ((vmf.flags & FAULT_FLAG_WRITE) && 3858 !pmd_write(orig_pmd)) { 3859 ret = wp_huge_pmd(&vmf, orig_pmd); 3860 if (!(ret & VM_FAULT_FALLBACK)) 3861 return ret; 3862 } else { 3863 huge_pmd_set_accessed(&vmf, orig_pmd); 3864 return 0; 3865 } 3866 } 3867 } 3868 3869 return handle_pte_fault(&vmf); 3870 } 3871 3872 /* 3873 * By the time we get here, we already hold the mm semaphore 3874 * 3875 * The mmap_sem may have been released depending on flags and our 3876 * return value. See filemap_fault() and __lock_page_or_retry(). 3877 */ 3878 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3879 unsigned int flags) 3880 { 3881 int ret; 3882 3883 __set_current_state(TASK_RUNNING); 3884 3885 count_vm_event(PGFAULT); 3886 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3887 3888 /* do counter updates before entering really critical section. */ 3889 check_sync_rss_stat(current); 3890 3891 /* 3892 * Enable the memcg OOM handling for faults triggered in user 3893 * space. Kernel faults are handled more gracefully. 3894 */ 3895 if (flags & FAULT_FLAG_USER) 3896 mem_cgroup_oom_enable(); 3897 3898 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3899 flags & FAULT_FLAG_INSTRUCTION, 3900 flags & FAULT_FLAG_REMOTE)) 3901 return VM_FAULT_SIGSEGV; 3902 3903 if (unlikely(is_vm_hugetlb_page(vma))) 3904 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3905 else 3906 ret = __handle_mm_fault(vma, address, flags); 3907 3908 if (flags & FAULT_FLAG_USER) { 3909 mem_cgroup_oom_disable(); 3910 /* 3911 * The task may have entered a memcg OOM situation but 3912 * if the allocation error was handled gracefully (no 3913 * VM_FAULT_OOM), there is no need to kill anything. 3914 * Just clean up the OOM state peacefully. 3915 */ 3916 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3917 mem_cgroup_oom_synchronize(false); 3918 } 3919 3920 return ret; 3921 } 3922 EXPORT_SYMBOL_GPL(handle_mm_fault); 3923 3924 #ifndef __PAGETABLE_P4D_FOLDED 3925 /* 3926 * Allocate p4d page table. 3927 * We've already handled the fast-path in-line. 3928 */ 3929 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3930 { 3931 p4d_t *new = p4d_alloc_one(mm, address); 3932 if (!new) 3933 return -ENOMEM; 3934 3935 smp_wmb(); /* See comment in __pte_alloc */ 3936 3937 spin_lock(&mm->page_table_lock); 3938 if (pgd_present(*pgd)) /* Another has populated it */ 3939 p4d_free(mm, new); 3940 else 3941 pgd_populate(mm, pgd, new); 3942 spin_unlock(&mm->page_table_lock); 3943 return 0; 3944 } 3945 #endif /* __PAGETABLE_P4D_FOLDED */ 3946 3947 #ifndef __PAGETABLE_PUD_FOLDED 3948 /* 3949 * Allocate page upper directory. 3950 * We've already handled the fast-path in-line. 3951 */ 3952 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3953 { 3954 pud_t *new = pud_alloc_one(mm, address); 3955 if (!new) 3956 return -ENOMEM; 3957 3958 smp_wmb(); /* See comment in __pte_alloc */ 3959 3960 spin_lock(&mm->page_table_lock); 3961 #ifndef __ARCH_HAS_5LEVEL_HACK 3962 if (p4d_present(*p4d)) /* Another has populated it */ 3963 pud_free(mm, new); 3964 else 3965 p4d_populate(mm, p4d, new); 3966 #else 3967 if (pgd_present(*p4d)) /* Another has populated it */ 3968 pud_free(mm, new); 3969 else 3970 pgd_populate(mm, p4d, new); 3971 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3972 spin_unlock(&mm->page_table_lock); 3973 return 0; 3974 } 3975 #endif /* __PAGETABLE_PUD_FOLDED */ 3976 3977 #ifndef __PAGETABLE_PMD_FOLDED 3978 /* 3979 * Allocate page middle directory. 3980 * We've already handled the fast-path in-line. 3981 */ 3982 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3983 { 3984 spinlock_t *ptl; 3985 pmd_t *new = pmd_alloc_one(mm, address); 3986 if (!new) 3987 return -ENOMEM; 3988 3989 smp_wmb(); /* See comment in __pte_alloc */ 3990 3991 ptl = pud_lock(mm, pud); 3992 #ifndef __ARCH_HAS_4LEVEL_HACK 3993 if (!pud_present(*pud)) { 3994 mm_inc_nr_pmds(mm); 3995 pud_populate(mm, pud, new); 3996 } else /* Another has populated it */ 3997 pmd_free(mm, new); 3998 #else 3999 if (!pgd_present(*pud)) { 4000 mm_inc_nr_pmds(mm); 4001 pgd_populate(mm, pud, new); 4002 } else /* Another has populated it */ 4003 pmd_free(mm, new); 4004 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4005 spin_unlock(ptl); 4006 return 0; 4007 } 4008 #endif /* __PAGETABLE_PMD_FOLDED */ 4009 4010 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4011 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4012 { 4013 pgd_t *pgd; 4014 p4d_t *p4d; 4015 pud_t *pud; 4016 pmd_t *pmd; 4017 pte_t *ptep; 4018 4019 pgd = pgd_offset(mm, address); 4020 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4021 goto out; 4022 4023 p4d = p4d_offset(pgd, address); 4024 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4025 goto out; 4026 4027 pud = pud_offset(p4d, address); 4028 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4029 goto out; 4030 4031 pmd = pmd_offset(pud, address); 4032 VM_BUG_ON(pmd_trans_huge(*pmd)); 4033 4034 if (pmd_huge(*pmd)) { 4035 if (!pmdpp) 4036 goto out; 4037 4038 *ptlp = pmd_lock(mm, pmd); 4039 if (pmd_huge(*pmd)) { 4040 *pmdpp = pmd; 4041 return 0; 4042 } 4043 spin_unlock(*ptlp); 4044 } 4045 4046 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4047 goto out; 4048 4049 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4050 if (!pte_present(*ptep)) 4051 goto unlock; 4052 *ptepp = ptep; 4053 return 0; 4054 unlock: 4055 pte_unmap_unlock(ptep, *ptlp); 4056 out: 4057 return -EINVAL; 4058 } 4059 4060 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4061 pte_t **ptepp, spinlock_t **ptlp) 4062 { 4063 int res; 4064 4065 /* (void) is needed to make gcc happy */ 4066 (void) __cond_lock(*ptlp, 4067 !(res = __follow_pte_pmd(mm, address, ptepp, NULL, 4068 ptlp))); 4069 return res; 4070 } 4071 4072 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4073 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4074 { 4075 int res; 4076 4077 /* (void) is needed to make gcc happy */ 4078 (void) __cond_lock(*ptlp, 4079 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, 4080 ptlp))); 4081 return res; 4082 } 4083 EXPORT_SYMBOL(follow_pte_pmd); 4084 4085 /** 4086 * follow_pfn - look up PFN at a user virtual address 4087 * @vma: memory mapping 4088 * @address: user virtual address 4089 * @pfn: location to store found PFN 4090 * 4091 * Only IO mappings and raw PFN mappings are allowed. 4092 * 4093 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4094 */ 4095 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4096 unsigned long *pfn) 4097 { 4098 int ret = -EINVAL; 4099 spinlock_t *ptl; 4100 pte_t *ptep; 4101 4102 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4103 return ret; 4104 4105 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4106 if (ret) 4107 return ret; 4108 *pfn = pte_pfn(*ptep); 4109 pte_unmap_unlock(ptep, ptl); 4110 return 0; 4111 } 4112 EXPORT_SYMBOL(follow_pfn); 4113 4114 #ifdef CONFIG_HAVE_IOREMAP_PROT 4115 int follow_phys(struct vm_area_struct *vma, 4116 unsigned long address, unsigned int flags, 4117 unsigned long *prot, resource_size_t *phys) 4118 { 4119 int ret = -EINVAL; 4120 pte_t *ptep, pte; 4121 spinlock_t *ptl; 4122 4123 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4124 goto out; 4125 4126 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4127 goto out; 4128 pte = *ptep; 4129 4130 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4131 goto unlock; 4132 4133 *prot = pgprot_val(pte_pgprot(pte)); 4134 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4135 4136 ret = 0; 4137 unlock: 4138 pte_unmap_unlock(ptep, ptl); 4139 out: 4140 return ret; 4141 } 4142 4143 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4144 void *buf, int len, int write) 4145 { 4146 resource_size_t phys_addr; 4147 unsigned long prot = 0; 4148 void __iomem *maddr; 4149 int offset = addr & (PAGE_SIZE-1); 4150 4151 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4152 return -EINVAL; 4153 4154 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4155 if (write) 4156 memcpy_toio(maddr + offset, buf, len); 4157 else 4158 memcpy_fromio(buf, maddr + offset, len); 4159 iounmap(maddr); 4160 4161 return len; 4162 } 4163 EXPORT_SYMBOL_GPL(generic_access_phys); 4164 #endif 4165 4166 /* 4167 * Access another process' address space as given in mm. If non-NULL, use the 4168 * given task for page fault accounting. 4169 */ 4170 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4171 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4172 { 4173 struct vm_area_struct *vma; 4174 void *old_buf = buf; 4175 int write = gup_flags & FOLL_WRITE; 4176 4177 down_read(&mm->mmap_sem); 4178 /* ignore errors, just check how much was successfully transferred */ 4179 while (len) { 4180 int bytes, ret, offset; 4181 void *maddr; 4182 struct page *page = NULL; 4183 4184 ret = get_user_pages_remote(tsk, mm, addr, 1, 4185 gup_flags, &page, &vma, NULL); 4186 if (ret <= 0) { 4187 #ifndef CONFIG_HAVE_IOREMAP_PROT 4188 break; 4189 #else 4190 /* 4191 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4192 * we can access using slightly different code. 4193 */ 4194 vma = find_vma(mm, addr); 4195 if (!vma || vma->vm_start > addr) 4196 break; 4197 if (vma->vm_ops && vma->vm_ops->access) 4198 ret = vma->vm_ops->access(vma, addr, buf, 4199 len, write); 4200 if (ret <= 0) 4201 break; 4202 bytes = ret; 4203 #endif 4204 } else { 4205 bytes = len; 4206 offset = addr & (PAGE_SIZE-1); 4207 if (bytes > PAGE_SIZE-offset) 4208 bytes = PAGE_SIZE-offset; 4209 4210 maddr = kmap(page); 4211 if (write) { 4212 copy_to_user_page(vma, page, addr, 4213 maddr + offset, buf, bytes); 4214 set_page_dirty_lock(page); 4215 } else { 4216 copy_from_user_page(vma, page, addr, 4217 buf, maddr + offset, bytes); 4218 } 4219 kunmap(page); 4220 put_page(page); 4221 } 4222 len -= bytes; 4223 buf += bytes; 4224 addr += bytes; 4225 } 4226 up_read(&mm->mmap_sem); 4227 4228 return buf - old_buf; 4229 } 4230 4231 /** 4232 * access_remote_vm - access another process' address space 4233 * @mm: the mm_struct of the target address space 4234 * @addr: start address to access 4235 * @buf: source or destination buffer 4236 * @len: number of bytes to transfer 4237 * @gup_flags: flags modifying lookup behaviour 4238 * 4239 * The caller must hold a reference on @mm. 4240 */ 4241 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4242 void *buf, int len, unsigned int gup_flags) 4243 { 4244 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4245 } 4246 4247 /* 4248 * Access another process' address space. 4249 * Source/target buffer must be kernel space, 4250 * Do not walk the page table directly, use get_user_pages 4251 */ 4252 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4253 void *buf, int len, unsigned int gup_flags) 4254 { 4255 struct mm_struct *mm; 4256 int ret; 4257 4258 mm = get_task_mm(tsk); 4259 if (!mm) 4260 return 0; 4261 4262 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4263 4264 mmput(mm); 4265 4266 return ret; 4267 } 4268 EXPORT_SYMBOL_GPL(access_process_vm); 4269 4270 /* 4271 * Print the name of a VMA. 4272 */ 4273 void print_vma_addr(char *prefix, unsigned long ip) 4274 { 4275 struct mm_struct *mm = current->mm; 4276 struct vm_area_struct *vma; 4277 4278 /* 4279 * Do not print if we are in atomic 4280 * contexts (in exception stacks, etc.): 4281 */ 4282 if (preempt_count()) 4283 return; 4284 4285 down_read(&mm->mmap_sem); 4286 vma = find_vma(mm, ip); 4287 if (vma && vma->vm_file) { 4288 struct file *f = vma->vm_file; 4289 char *buf = (char *)__get_free_page(GFP_KERNEL); 4290 if (buf) { 4291 char *p; 4292 4293 p = file_path(f, buf, PAGE_SIZE); 4294 if (IS_ERR(p)) 4295 p = "?"; 4296 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4297 vma->vm_start, 4298 vma->vm_end - vma->vm_start); 4299 free_page((unsigned long)buf); 4300 } 4301 } 4302 up_read(&mm->mmap_sem); 4303 } 4304 4305 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4306 void __might_fault(const char *file, int line) 4307 { 4308 /* 4309 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4310 * holding the mmap_sem, this is safe because kernel memory doesn't 4311 * get paged out, therefore we'll never actually fault, and the 4312 * below annotations will generate false positives. 4313 */ 4314 if (uaccess_kernel()) 4315 return; 4316 if (pagefault_disabled()) 4317 return; 4318 __might_sleep(file, line, 0); 4319 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4320 if (current->mm) 4321 might_lock_read(¤t->mm->mmap_sem); 4322 #endif 4323 } 4324 EXPORT_SYMBOL(__might_fault); 4325 #endif 4326 4327 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4328 static void clear_gigantic_page(struct page *page, 4329 unsigned long addr, 4330 unsigned int pages_per_huge_page) 4331 { 4332 int i; 4333 struct page *p = page; 4334 4335 might_sleep(); 4336 for (i = 0; i < pages_per_huge_page; 4337 i++, p = mem_map_next(p, page, i)) { 4338 cond_resched(); 4339 clear_user_highpage(p, addr + i * PAGE_SIZE); 4340 } 4341 } 4342 void clear_huge_page(struct page *page, 4343 unsigned long addr, unsigned int pages_per_huge_page) 4344 { 4345 int i; 4346 4347 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4348 clear_gigantic_page(page, addr, pages_per_huge_page); 4349 return; 4350 } 4351 4352 might_sleep(); 4353 for (i = 0; i < pages_per_huge_page; i++) { 4354 cond_resched(); 4355 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4356 } 4357 } 4358 4359 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4360 unsigned long addr, 4361 struct vm_area_struct *vma, 4362 unsigned int pages_per_huge_page) 4363 { 4364 int i; 4365 struct page *dst_base = dst; 4366 struct page *src_base = src; 4367 4368 for (i = 0; i < pages_per_huge_page; ) { 4369 cond_resched(); 4370 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4371 4372 i++; 4373 dst = mem_map_next(dst, dst_base, i); 4374 src = mem_map_next(src, src_base, i); 4375 } 4376 } 4377 4378 void copy_user_huge_page(struct page *dst, struct page *src, 4379 unsigned long addr, struct vm_area_struct *vma, 4380 unsigned int pages_per_huge_page) 4381 { 4382 int i; 4383 4384 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4385 copy_user_gigantic_page(dst, src, addr, vma, 4386 pages_per_huge_page); 4387 return; 4388 } 4389 4390 might_sleep(); 4391 for (i = 0; i < pages_per_huge_page; i++) { 4392 cond_resched(); 4393 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4394 } 4395 } 4396 4397 long copy_huge_page_from_user(struct page *dst_page, 4398 const void __user *usr_src, 4399 unsigned int pages_per_huge_page, 4400 bool allow_pagefault) 4401 { 4402 void *src = (void *)usr_src; 4403 void *page_kaddr; 4404 unsigned long i, rc = 0; 4405 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4406 4407 for (i = 0; i < pages_per_huge_page; i++) { 4408 if (allow_pagefault) 4409 page_kaddr = kmap(dst_page + i); 4410 else 4411 page_kaddr = kmap_atomic(dst_page + i); 4412 rc = copy_from_user(page_kaddr, 4413 (const void __user *)(src + i * PAGE_SIZE), 4414 PAGE_SIZE); 4415 if (allow_pagefault) 4416 kunmap(dst_page + i); 4417 else 4418 kunmap_atomic(page_kaddr); 4419 4420 ret_val -= (PAGE_SIZE - rc); 4421 if (rc) 4422 break; 4423 4424 cond_resched(); 4425 } 4426 return ret_val; 4427 } 4428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4429 4430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4431 4432 static struct kmem_cache *page_ptl_cachep; 4433 4434 void __init ptlock_cache_init(void) 4435 { 4436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4437 SLAB_PANIC, NULL); 4438 } 4439 4440 bool ptlock_alloc(struct page *page) 4441 { 4442 spinlock_t *ptl; 4443 4444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4445 if (!ptl) 4446 return false; 4447 page->ptl = ptl; 4448 return true; 4449 } 4450 4451 void ptlock_free(struct page *page) 4452 { 4453 kmem_cache_free(page_ptl_cachep, page->ptl); 4454 } 4455 #endif 4456