1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 #include <linux/dax.h> 67 68 #include <asm/io.h> 69 #include <asm/mmu_context.h> 70 #include <asm/pgalloc.h> 71 #include <asm/uaccess.h> 72 #include <asm/tlb.h> 73 #include <asm/tlbflush.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 80 #endif 81 82 #ifndef CONFIG_NEED_MULTIPLE_NODES 83 /* use the per-pgdat data instead for discontigmem - mbligh */ 84 unsigned long max_mapnr; 85 struct page *mem_map; 86 87 EXPORT_SYMBOL(max_mapnr); 88 EXPORT_SYMBOL(mem_map); 89 #endif 90 91 /* 92 * A number of key systems in x86 including ioremap() rely on the assumption 93 * that high_memory defines the upper bound on direct map memory, then end 94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 96 * and ZONE_HIGHMEM. 97 */ 98 void * high_memory; 99 100 EXPORT_SYMBOL(high_memory); 101 102 /* 103 * Randomize the address space (stacks, mmaps, brk, etc.). 104 * 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 106 * as ancient (libc5 based) binaries can segfault. ) 107 */ 108 int randomize_va_space __read_mostly = 109 #ifdef CONFIG_COMPAT_BRK 110 1; 111 #else 112 2; 113 #endif 114 115 static int __init disable_randmaps(char *s) 116 { 117 randomize_va_space = 0; 118 return 1; 119 } 120 __setup("norandmaps", disable_randmaps); 121 122 unsigned long zero_pfn __read_mostly; 123 unsigned long highest_memmap_pfn __read_mostly; 124 125 EXPORT_SYMBOL(zero_pfn); 126 127 /* 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 129 */ 130 static int __init init_zero_pfn(void) 131 { 132 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 133 return 0; 134 } 135 core_initcall(init_zero_pfn); 136 137 138 #if defined(SPLIT_RSS_COUNTING) 139 140 void sync_mm_rss(struct mm_struct *mm) 141 { 142 int i; 143 144 for (i = 0; i < NR_MM_COUNTERS; i++) { 145 if (current->rss_stat.count[i]) { 146 add_mm_counter(mm, i, current->rss_stat.count[i]); 147 current->rss_stat.count[i] = 0; 148 } 149 } 150 current->rss_stat.events = 0; 151 } 152 153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 154 { 155 struct task_struct *task = current; 156 157 if (likely(task->mm == mm)) 158 task->rss_stat.count[member] += val; 159 else 160 add_mm_counter(mm, member, val); 161 } 162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 164 165 /* sync counter once per 64 page faults */ 166 #define TASK_RSS_EVENTS_THRESH (64) 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 if (unlikely(task != current)) 170 return; 171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 172 sync_mm_rss(task->mm); 173 } 174 #else /* SPLIT_RSS_COUNTING */ 175 176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 178 179 static void check_sync_rss_stat(struct task_struct *task) 180 { 181 } 182 183 #endif /* SPLIT_RSS_COUNTING */ 184 185 #ifdef HAVE_GENERIC_MMU_GATHER 186 187 static bool tlb_next_batch(struct mmu_gather *tlb) 188 { 189 struct mmu_gather_batch *batch; 190 191 batch = tlb->active; 192 if (batch->next) { 193 tlb->active = batch->next; 194 return true; 195 } 196 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 198 return false; 199 200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 201 if (!batch) 202 return false; 203 204 tlb->batch_count++; 205 batch->next = NULL; 206 batch->nr = 0; 207 batch->max = MAX_GATHER_BATCH; 208 209 tlb->active->next = batch; 210 tlb->active = batch; 211 212 return true; 213 } 214 215 /* tlb_gather_mmu 216 * Called to initialize an (on-stack) mmu_gather structure for page-table 217 * tear-down from @mm. The @fullmm argument is used when @mm is without 218 * users and we're going to destroy the full address space (exit/execve). 219 */ 220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 276 { 277 struct mmu_gather_batch *batch, *next; 278 279 tlb_flush_mmu(tlb); 280 281 /* keep the page table cache within bounds */ 282 check_pgt_cache(); 283 284 for (batch = tlb->local.next; batch; batch = next) { 285 next = batch->next; 286 free_pages((unsigned long)batch, 0); 287 } 288 tlb->local.next = NULL; 289 } 290 291 /* __tlb_remove_page 292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 293 * handling the additional races in SMP caused by other CPUs caching valid 294 * mappings in their TLBs. Returns the number of free page slots left. 295 * When out of page slots we must call tlb_flush_mmu(). 296 *returns true if the caller should flush. 297 */ 298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 299 { 300 struct mmu_gather_batch *batch; 301 302 VM_BUG_ON(!tlb->end); 303 304 if (!tlb->page_size) 305 tlb->page_size = page_size; 306 else { 307 if (page_size != tlb->page_size) 308 return true; 309 } 310 311 batch = tlb->active; 312 if (batch->nr == batch->max) { 313 if (!tlb_next_batch(tlb)) 314 return true; 315 batch = tlb->active; 316 } 317 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 318 319 batch->pages[batch->nr++] = page; 320 return false; 321 } 322 323 #endif /* HAVE_GENERIC_MMU_GATHER */ 324 325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 326 327 /* 328 * See the comment near struct mmu_table_batch. 329 */ 330 331 static void tlb_remove_table_smp_sync(void *arg) 332 { 333 /* Simply deliver the interrupt */ 334 } 335 336 static void tlb_remove_table_one(void *table) 337 { 338 /* 339 * This isn't an RCU grace period and hence the page-tables cannot be 340 * assumed to be actually RCU-freed. 341 * 342 * It is however sufficient for software page-table walkers that rely on 343 * IRQ disabling. See the comment near struct mmu_table_batch. 344 */ 345 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 346 __tlb_remove_table(table); 347 } 348 349 static void tlb_remove_table_rcu(struct rcu_head *head) 350 { 351 struct mmu_table_batch *batch; 352 int i; 353 354 batch = container_of(head, struct mmu_table_batch, rcu); 355 356 for (i = 0; i < batch->nr; i++) 357 __tlb_remove_table(batch->tables[i]); 358 359 free_page((unsigned long)batch); 360 } 361 362 void tlb_table_flush(struct mmu_gather *tlb) 363 { 364 struct mmu_table_batch **batch = &tlb->batch; 365 366 if (*batch) { 367 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 368 *batch = NULL; 369 } 370 } 371 372 void tlb_remove_table(struct mmu_gather *tlb, void *table) 373 { 374 struct mmu_table_batch **batch = &tlb->batch; 375 376 /* 377 * When there's less then two users of this mm there cannot be a 378 * concurrent page-table walk. 379 */ 380 if (atomic_read(&tlb->mm->mm_users) < 2) { 381 __tlb_remove_table(table); 382 return; 383 } 384 385 if (*batch == NULL) { 386 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 387 if (*batch == NULL) { 388 tlb_remove_table_one(table); 389 return; 390 } 391 (*batch)->nr = 0; 392 } 393 (*batch)->tables[(*batch)->nr++] = table; 394 if ((*batch)->nr == MAX_TABLE_BATCH) 395 tlb_table_flush(tlb); 396 } 397 398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 399 400 /* 401 * Note: this doesn't free the actual pages themselves. That 402 * has been handled earlier when unmapping all the memory regions. 403 */ 404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 405 unsigned long addr) 406 { 407 pgtable_t token = pmd_pgtable(*pmd); 408 pmd_clear(pmd); 409 pte_free_tlb(tlb, token, addr); 410 atomic_long_dec(&tlb->mm->nr_ptes); 411 } 412 413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 414 unsigned long addr, unsigned long end, 415 unsigned long floor, unsigned long ceiling) 416 { 417 pmd_t *pmd; 418 unsigned long next; 419 unsigned long start; 420 421 start = addr; 422 pmd = pmd_offset(pud, addr); 423 do { 424 next = pmd_addr_end(addr, end); 425 if (pmd_none_or_clear_bad(pmd)) 426 continue; 427 free_pte_range(tlb, pmd, addr); 428 } while (pmd++, addr = next, addr != end); 429 430 start &= PUD_MASK; 431 if (start < floor) 432 return; 433 if (ceiling) { 434 ceiling &= PUD_MASK; 435 if (!ceiling) 436 return; 437 } 438 if (end - 1 > ceiling - 1) 439 return; 440 441 pmd = pmd_offset(pud, start); 442 pud_clear(pud); 443 pmd_free_tlb(tlb, pmd, start); 444 mm_dec_nr_pmds(tlb->mm); 445 } 446 447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 448 unsigned long addr, unsigned long end, 449 unsigned long floor, unsigned long ceiling) 450 { 451 pud_t *pud; 452 unsigned long next; 453 unsigned long start; 454 455 start = addr; 456 pud = pud_offset(pgd, addr); 457 do { 458 next = pud_addr_end(addr, end); 459 if (pud_none_or_clear_bad(pud)) 460 continue; 461 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 462 } while (pud++, addr = next, addr != end); 463 464 start &= PGDIR_MASK; 465 if (start < floor) 466 return; 467 if (ceiling) { 468 ceiling &= PGDIR_MASK; 469 if (!ceiling) 470 return; 471 } 472 if (end - 1 > ceiling - 1) 473 return; 474 475 pud = pud_offset(pgd, start); 476 pgd_clear(pgd); 477 pud_free_tlb(tlb, pud, start); 478 } 479 480 /* 481 * This function frees user-level page tables of a process. 482 */ 483 void free_pgd_range(struct mmu_gather *tlb, 484 unsigned long addr, unsigned long end, 485 unsigned long floor, unsigned long ceiling) 486 { 487 pgd_t *pgd; 488 unsigned long next; 489 490 /* 491 * The next few lines have given us lots of grief... 492 * 493 * Why are we testing PMD* at this top level? Because often 494 * there will be no work to do at all, and we'd prefer not to 495 * go all the way down to the bottom just to discover that. 496 * 497 * Why all these "- 1"s? Because 0 represents both the bottom 498 * of the address space and the top of it (using -1 for the 499 * top wouldn't help much: the masks would do the wrong thing). 500 * The rule is that addr 0 and floor 0 refer to the bottom of 501 * the address space, but end 0 and ceiling 0 refer to the top 502 * Comparisons need to use "end - 1" and "ceiling - 1" (though 503 * that end 0 case should be mythical). 504 * 505 * Wherever addr is brought up or ceiling brought down, we must 506 * be careful to reject "the opposite 0" before it confuses the 507 * subsequent tests. But what about where end is brought down 508 * by PMD_SIZE below? no, end can't go down to 0 there. 509 * 510 * Whereas we round start (addr) and ceiling down, by different 511 * masks at different levels, in order to test whether a table 512 * now has no other vmas using it, so can be freed, we don't 513 * bother to round floor or end up - the tests don't need that. 514 */ 515 516 addr &= PMD_MASK; 517 if (addr < floor) { 518 addr += PMD_SIZE; 519 if (!addr) 520 return; 521 } 522 if (ceiling) { 523 ceiling &= PMD_MASK; 524 if (!ceiling) 525 return; 526 } 527 if (end - 1 > ceiling - 1) 528 end -= PMD_SIZE; 529 if (addr > end - 1) 530 return; 531 532 pgd = pgd_offset(tlb->mm, addr); 533 do { 534 next = pgd_addr_end(addr, end); 535 if (pgd_none_or_clear_bad(pgd)) 536 continue; 537 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 538 } while (pgd++, addr = next, addr != end); 539 } 540 541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 542 unsigned long floor, unsigned long ceiling) 543 { 544 while (vma) { 545 struct vm_area_struct *next = vma->vm_next; 546 unsigned long addr = vma->vm_start; 547 548 /* 549 * Hide vma from rmap and truncate_pagecache before freeing 550 * pgtables 551 */ 552 unlink_anon_vmas(vma); 553 unlink_file_vma(vma); 554 555 if (is_vm_hugetlb_page(vma)) { 556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } else { 559 /* 560 * Optimization: gather nearby vmas into one call down 561 */ 562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 563 && !is_vm_hugetlb_page(next)) { 564 vma = next; 565 next = vma->vm_next; 566 unlink_anon_vmas(vma); 567 unlink_file_vma(vma); 568 } 569 free_pgd_range(tlb, addr, vma->vm_end, 570 floor, next? next->vm_start: ceiling); 571 } 572 vma = next; 573 } 574 } 575 576 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 577 { 578 spinlock_t *ptl; 579 pgtable_t new = pte_alloc_one(mm, address); 580 if (!new) 581 return -ENOMEM; 582 583 /* 584 * Ensure all pte setup (eg. pte page lock and page clearing) are 585 * visible before the pte is made visible to other CPUs by being 586 * put into page tables. 587 * 588 * The other side of the story is the pointer chasing in the page 589 * table walking code (when walking the page table without locking; 590 * ie. most of the time). Fortunately, these data accesses consist 591 * of a chain of data-dependent loads, meaning most CPUs (alpha 592 * being the notable exception) will already guarantee loads are 593 * seen in-order. See the alpha page table accessors for the 594 * smp_read_barrier_depends() barriers in page table walking code. 595 */ 596 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 597 598 ptl = pmd_lock(mm, pmd); 599 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 600 atomic_long_inc(&mm->nr_ptes); 601 pmd_populate(mm, pmd, new); 602 new = NULL; 603 } 604 spin_unlock(ptl); 605 if (new) 606 pte_free(mm, new); 607 return 0; 608 } 609 610 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 611 { 612 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 613 if (!new) 614 return -ENOMEM; 615 616 smp_wmb(); /* See comment in __pte_alloc */ 617 618 spin_lock(&init_mm.page_table_lock); 619 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 620 pmd_populate_kernel(&init_mm, pmd, new); 621 new = NULL; 622 } 623 spin_unlock(&init_mm.page_table_lock); 624 if (new) 625 pte_free_kernel(&init_mm, new); 626 return 0; 627 } 628 629 static inline void init_rss_vec(int *rss) 630 { 631 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 632 } 633 634 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 635 { 636 int i; 637 638 if (current->mm == mm) 639 sync_mm_rss(mm); 640 for (i = 0; i < NR_MM_COUNTERS; i++) 641 if (rss[i]) 642 add_mm_counter(mm, i, rss[i]); 643 } 644 645 /* 646 * This function is called to print an error when a bad pte 647 * is found. For example, we might have a PFN-mapped pte in 648 * a region that doesn't allow it. 649 * 650 * The calling function must still handle the error. 651 */ 652 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 653 pte_t pte, struct page *page) 654 { 655 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 656 pud_t *pud = pud_offset(pgd, addr); 657 pmd_t *pmd = pmd_offset(pud, addr); 658 struct address_space *mapping; 659 pgoff_t index; 660 static unsigned long resume; 661 static unsigned long nr_shown; 662 static unsigned long nr_unshown; 663 664 /* 665 * Allow a burst of 60 reports, then keep quiet for that minute; 666 * or allow a steady drip of one report per second. 667 */ 668 if (nr_shown == 60) { 669 if (time_before(jiffies, resume)) { 670 nr_unshown++; 671 return; 672 } 673 if (nr_unshown) { 674 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 675 nr_unshown); 676 nr_unshown = 0; 677 } 678 nr_shown = 0; 679 } 680 if (nr_shown++ == 0) 681 resume = jiffies + 60 * HZ; 682 683 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 684 index = linear_page_index(vma, addr); 685 686 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 687 current->comm, 688 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 689 if (page) 690 dump_page(page, "bad pte"); 691 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 692 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 693 /* 694 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 695 */ 696 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 697 vma->vm_file, 698 vma->vm_ops ? vma->vm_ops->fault : NULL, 699 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 700 mapping ? mapping->a_ops->readpage : NULL); 701 dump_stack(); 702 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 703 } 704 705 /* 706 * vm_normal_page -- This function gets the "struct page" associated with a pte. 707 * 708 * "Special" mappings do not wish to be associated with a "struct page" (either 709 * it doesn't exist, or it exists but they don't want to touch it). In this 710 * case, NULL is returned here. "Normal" mappings do have a struct page. 711 * 712 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 713 * pte bit, in which case this function is trivial. Secondly, an architecture 714 * may not have a spare pte bit, which requires a more complicated scheme, 715 * described below. 716 * 717 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 718 * special mapping (even if there are underlying and valid "struct pages"). 719 * COWed pages of a VM_PFNMAP are always normal. 720 * 721 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 722 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 723 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 724 * mapping will always honor the rule 725 * 726 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 727 * 728 * And for normal mappings this is false. 729 * 730 * This restricts such mappings to be a linear translation from virtual address 731 * to pfn. To get around this restriction, we allow arbitrary mappings so long 732 * as the vma is not a COW mapping; in that case, we know that all ptes are 733 * special (because none can have been COWed). 734 * 735 * 736 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 737 * 738 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 739 * page" backing, however the difference is that _all_ pages with a struct 740 * page (that is, those where pfn_valid is true) are refcounted and considered 741 * normal pages by the VM. The disadvantage is that pages are refcounted 742 * (which can be slower and simply not an option for some PFNMAP users). The 743 * advantage is that we don't have to follow the strict linearity rule of 744 * PFNMAP mappings in order to support COWable mappings. 745 * 746 */ 747 #ifdef __HAVE_ARCH_PTE_SPECIAL 748 # define HAVE_PTE_SPECIAL 1 749 #else 750 # define HAVE_PTE_SPECIAL 0 751 #endif 752 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 753 pte_t pte) 754 { 755 unsigned long pfn = pte_pfn(pte); 756 757 if (HAVE_PTE_SPECIAL) { 758 if (likely(!pte_special(pte))) 759 goto check_pfn; 760 if (vma->vm_ops && vma->vm_ops->find_special_page) 761 return vma->vm_ops->find_special_page(vma, addr); 762 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 763 return NULL; 764 if (!is_zero_pfn(pfn)) 765 print_bad_pte(vma, addr, pte, NULL); 766 return NULL; 767 } 768 769 /* !HAVE_PTE_SPECIAL case follows: */ 770 771 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 772 if (vma->vm_flags & VM_MIXEDMAP) { 773 if (!pfn_valid(pfn)) 774 return NULL; 775 goto out; 776 } else { 777 unsigned long off; 778 off = (addr - vma->vm_start) >> PAGE_SHIFT; 779 if (pfn == vma->vm_pgoff + off) 780 return NULL; 781 if (!is_cow_mapping(vma->vm_flags)) 782 return NULL; 783 } 784 } 785 786 if (is_zero_pfn(pfn)) 787 return NULL; 788 check_pfn: 789 if (unlikely(pfn > highest_memmap_pfn)) { 790 print_bad_pte(vma, addr, pte, NULL); 791 return NULL; 792 } 793 794 /* 795 * NOTE! We still have PageReserved() pages in the page tables. 796 * eg. VDSO mappings can cause them to exist. 797 */ 798 out: 799 return pfn_to_page(pfn); 800 } 801 802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 803 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 804 pmd_t pmd) 805 { 806 unsigned long pfn = pmd_pfn(pmd); 807 808 /* 809 * There is no pmd_special() but there may be special pmds, e.g. 810 * in a direct-access (dax) mapping, so let's just replicate the 811 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 812 */ 813 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 814 if (vma->vm_flags & VM_MIXEDMAP) { 815 if (!pfn_valid(pfn)) 816 return NULL; 817 goto out; 818 } else { 819 unsigned long off; 820 off = (addr - vma->vm_start) >> PAGE_SHIFT; 821 if (pfn == vma->vm_pgoff + off) 822 return NULL; 823 if (!is_cow_mapping(vma->vm_flags)) 824 return NULL; 825 } 826 } 827 828 if (is_zero_pfn(pfn)) 829 return NULL; 830 if (unlikely(pfn > highest_memmap_pfn)) 831 return NULL; 832 833 /* 834 * NOTE! We still have PageReserved() pages in the page tables. 835 * eg. VDSO mappings can cause them to exist. 836 */ 837 out: 838 return pfn_to_page(pfn); 839 } 840 #endif 841 842 /* 843 * copy one vm_area from one task to the other. Assumes the page tables 844 * already present in the new task to be cleared in the whole range 845 * covered by this vma. 846 */ 847 848 static inline unsigned long 849 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 850 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 851 unsigned long addr, int *rss) 852 { 853 unsigned long vm_flags = vma->vm_flags; 854 pte_t pte = *src_pte; 855 struct page *page; 856 857 /* pte contains position in swap or file, so copy. */ 858 if (unlikely(!pte_present(pte))) { 859 swp_entry_t entry = pte_to_swp_entry(pte); 860 861 if (likely(!non_swap_entry(entry))) { 862 if (swap_duplicate(entry) < 0) 863 return entry.val; 864 865 /* make sure dst_mm is on swapoff's mmlist. */ 866 if (unlikely(list_empty(&dst_mm->mmlist))) { 867 spin_lock(&mmlist_lock); 868 if (list_empty(&dst_mm->mmlist)) 869 list_add(&dst_mm->mmlist, 870 &src_mm->mmlist); 871 spin_unlock(&mmlist_lock); 872 } 873 rss[MM_SWAPENTS]++; 874 } else if (is_migration_entry(entry)) { 875 page = migration_entry_to_page(entry); 876 877 rss[mm_counter(page)]++; 878 879 if (is_write_migration_entry(entry) && 880 is_cow_mapping(vm_flags)) { 881 /* 882 * COW mappings require pages in both 883 * parent and child to be set to read. 884 */ 885 make_migration_entry_read(&entry); 886 pte = swp_entry_to_pte(entry); 887 if (pte_swp_soft_dirty(*src_pte)) 888 pte = pte_swp_mksoft_dirty(pte); 889 set_pte_at(src_mm, addr, src_pte, pte); 890 } 891 } 892 goto out_set_pte; 893 } 894 895 /* 896 * If it's a COW mapping, write protect it both 897 * in the parent and the child 898 */ 899 if (is_cow_mapping(vm_flags)) { 900 ptep_set_wrprotect(src_mm, addr, src_pte); 901 pte = pte_wrprotect(pte); 902 } 903 904 /* 905 * If it's a shared mapping, mark it clean in 906 * the child 907 */ 908 if (vm_flags & VM_SHARED) 909 pte = pte_mkclean(pte); 910 pte = pte_mkold(pte); 911 912 page = vm_normal_page(vma, addr, pte); 913 if (page) { 914 get_page(page); 915 page_dup_rmap(page, false); 916 rss[mm_counter(page)]++; 917 } 918 919 out_set_pte: 920 set_pte_at(dst_mm, addr, dst_pte, pte); 921 return 0; 922 } 923 924 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 925 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 926 unsigned long addr, unsigned long end) 927 { 928 pte_t *orig_src_pte, *orig_dst_pte; 929 pte_t *src_pte, *dst_pte; 930 spinlock_t *src_ptl, *dst_ptl; 931 int progress = 0; 932 int rss[NR_MM_COUNTERS]; 933 swp_entry_t entry = (swp_entry_t){0}; 934 935 again: 936 init_rss_vec(rss); 937 938 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 939 if (!dst_pte) 940 return -ENOMEM; 941 src_pte = pte_offset_map(src_pmd, addr); 942 src_ptl = pte_lockptr(src_mm, src_pmd); 943 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 944 orig_src_pte = src_pte; 945 orig_dst_pte = dst_pte; 946 arch_enter_lazy_mmu_mode(); 947 948 do { 949 /* 950 * We are holding two locks at this point - either of them 951 * could generate latencies in another task on another CPU. 952 */ 953 if (progress >= 32) { 954 progress = 0; 955 if (need_resched() || 956 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 957 break; 958 } 959 if (pte_none(*src_pte)) { 960 progress++; 961 continue; 962 } 963 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 964 vma, addr, rss); 965 if (entry.val) 966 break; 967 progress += 8; 968 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 969 970 arch_leave_lazy_mmu_mode(); 971 spin_unlock(src_ptl); 972 pte_unmap(orig_src_pte); 973 add_mm_rss_vec(dst_mm, rss); 974 pte_unmap_unlock(orig_dst_pte, dst_ptl); 975 cond_resched(); 976 977 if (entry.val) { 978 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 979 return -ENOMEM; 980 progress = 0; 981 } 982 if (addr != end) 983 goto again; 984 return 0; 985 } 986 987 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 988 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 989 unsigned long addr, unsigned long end) 990 { 991 pmd_t *src_pmd, *dst_pmd; 992 unsigned long next; 993 994 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 995 if (!dst_pmd) 996 return -ENOMEM; 997 src_pmd = pmd_offset(src_pud, addr); 998 do { 999 next = pmd_addr_end(addr, end); 1000 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1001 int err; 1002 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1003 err = copy_huge_pmd(dst_mm, src_mm, 1004 dst_pmd, src_pmd, addr, vma); 1005 if (err == -ENOMEM) 1006 return -ENOMEM; 1007 if (!err) 1008 continue; 1009 /* fall through */ 1010 } 1011 if (pmd_none_or_clear_bad(src_pmd)) 1012 continue; 1013 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1014 vma, addr, next)) 1015 return -ENOMEM; 1016 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1017 return 0; 1018 } 1019 1020 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1021 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1022 unsigned long addr, unsigned long end) 1023 { 1024 pud_t *src_pud, *dst_pud; 1025 unsigned long next; 1026 1027 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1028 if (!dst_pud) 1029 return -ENOMEM; 1030 src_pud = pud_offset(src_pgd, addr); 1031 do { 1032 next = pud_addr_end(addr, end); 1033 if (pud_none_or_clear_bad(src_pud)) 1034 continue; 1035 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1036 vma, addr, next)) 1037 return -ENOMEM; 1038 } while (dst_pud++, src_pud++, addr = next, addr != end); 1039 return 0; 1040 } 1041 1042 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1043 struct vm_area_struct *vma) 1044 { 1045 pgd_t *src_pgd, *dst_pgd; 1046 unsigned long next; 1047 unsigned long addr = vma->vm_start; 1048 unsigned long end = vma->vm_end; 1049 unsigned long mmun_start; /* For mmu_notifiers */ 1050 unsigned long mmun_end; /* For mmu_notifiers */ 1051 bool is_cow; 1052 int ret; 1053 1054 /* 1055 * Don't copy ptes where a page fault will fill them correctly. 1056 * Fork becomes much lighter when there are big shared or private 1057 * readonly mappings. The tradeoff is that copy_page_range is more 1058 * efficient than faulting. 1059 */ 1060 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1061 !vma->anon_vma) 1062 return 0; 1063 1064 if (is_vm_hugetlb_page(vma)) 1065 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1066 1067 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1068 /* 1069 * We do not free on error cases below as remove_vma 1070 * gets called on error from higher level routine 1071 */ 1072 ret = track_pfn_copy(vma); 1073 if (ret) 1074 return ret; 1075 } 1076 1077 /* 1078 * We need to invalidate the secondary MMU mappings only when 1079 * there could be a permission downgrade on the ptes of the 1080 * parent mm. And a permission downgrade will only happen if 1081 * is_cow_mapping() returns true. 1082 */ 1083 is_cow = is_cow_mapping(vma->vm_flags); 1084 mmun_start = addr; 1085 mmun_end = end; 1086 if (is_cow) 1087 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1088 mmun_end); 1089 1090 ret = 0; 1091 dst_pgd = pgd_offset(dst_mm, addr); 1092 src_pgd = pgd_offset(src_mm, addr); 1093 do { 1094 next = pgd_addr_end(addr, end); 1095 if (pgd_none_or_clear_bad(src_pgd)) 1096 continue; 1097 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1098 vma, addr, next))) { 1099 ret = -ENOMEM; 1100 break; 1101 } 1102 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1103 1104 if (is_cow) 1105 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1106 return ret; 1107 } 1108 1109 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1110 struct vm_area_struct *vma, pmd_t *pmd, 1111 unsigned long addr, unsigned long end, 1112 struct zap_details *details) 1113 { 1114 struct mm_struct *mm = tlb->mm; 1115 int force_flush = 0; 1116 int rss[NR_MM_COUNTERS]; 1117 spinlock_t *ptl; 1118 pte_t *start_pte; 1119 pte_t *pte; 1120 swp_entry_t entry; 1121 struct page *pending_page = NULL; 1122 1123 again: 1124 init_rss_vec(rss); 1125 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1126 pte = start_pte; 1127 arch_enter_lazy_mmu_mode(); 1128 do { 1129 pte_t ptent = *pte; 1130 if (pte_none(ptent)) { 1131 continue; 1132 } 1133 1134 if (pte_present(ptent)) { 1135 struct page *page; 1136 1137 page = vm_normal_page(vma, addr, ptent); 1138 if (unlikely(details) && page) { 1139 /* 1140 * unmap_shared_mapping_pages() wants to 1141 * invalidate cache without truncating: 1142 * unmap shared but keep private pages. 1143 */ 1144 if (details->check_mapping && 1145 details->check_mapping != page_rmapping(page)) 1146 continue; 1147 } 1148 ptent = ptep_get_and_clear_full(mm, addr, pte, 1149 tlb->fullmm); 1150 tlb_remove_tlb_entry(tlb, pte, addr); 1151 if (unlikely(!page)) 1152 continue; 1153 1154 if (!PageAnon(page)) { 1155 if (pte_dirty(ptent)) { 1156 /* 1157 * oom_reaper cannot tear down dirty 1158 * pages 1159 */ 1160 if (unlikely(details && details->ignore_dirty)) 1161 continue; 1162 force_flush = 1; 1163 set_page_dirty(page); 1164 } 1165 if (pte_young(ptent) && 1166 likely(!(vma->vm_flags & VM_SEQ_READ))) 1167 mark_page_accessed(page); 1168 } 1169 rss[mm_counter(page)]--; 1170 page_remove_rmap(page, false); 1171 if (unlikely(page_mapcount(page) < 0)) 1172 print_bad_pte(vma, addr, ptent, page); 1173 if (unlikely(__tlb_remove_page(tlb, page))) { 1174 force_flush = 1; 1175 pending_page = page; 1176 addr += PAGE_SIZE; 1177 break; 1178 } 1179 continue; 1180 } 1181 /* only check swap_entries if explicitly asked for in details */ 1182 if (unlikely(details && !details->check_swap_entries)) 1183 continue; 1184 1185 entry = pte_to_swp_entry(ptent); 1186 if (!non_swap_entry(entry)) 1187 rss[MM_SWAPENTS]--; 1188 else if (is_migration_entry(entry)) { 1189 struct page *page; 1190 1191 page = migration_entry_to_page(entry); 1192 rss[mm_counter(page)]--; 1193 } 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1197 } while (pte++, addr += PAGE_SIZE, addr != end); 1198 1199 add_mm_rss_vec(mm, rss); 1200 arch_leave_lazy_mmu_mode(); 1201 1202 /* Do the actual TLB flush before dropping ptl */ 1203 if (force_flush) 1204 tlb_flush_mmu_tlbonly(tlb); 1205 pte_unmap_unlock(start_pte, ptl); 1206 1207 /* 1208 * If we forced a TLB flush (either due to running out of 1209 * batch buffers or because we needed to flush dirty TLB 1210 * entries before releasing the ptl), free the batched 1211 * memory too. Restart if we didn't do everything. 1212 */ 1213 if (force_flush) { 1214 force_flush = 0; 1215 tlb_flush_mmu_free(tlb); 1216 if (pending_page) { 1217 /* remove the page with new size */ 1218 __tlb_remove_pte_page(tlb, pending_page); 1219 pending_page = NULL; 1220 } 1221 if (addr != end) 1222 goto again; 1223 } 1224 1225 return addr; 1226 } 1227 1228 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1229 struct vm_area_struct *vma, pud_t *pud, 1230 unsigned long addr, unsigned long end, 1231 struct zap_details *details) 1232 { 1233 pmd_t *pmd; 1234 unsigned long next; 1235 1236 pmd = pmd_offset(pud, addr); 1237 do { 1238 next = pmd_addr_end(addr, end); 1239 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1240 if (next - addr != HPAGE_PMD_SIZE) { 1241 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1242 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1243 split_huge_pmd(vma, pmd, addr); 1244 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1245 goto next; 1246 /* fall through */ 1247 } 1248 /* 1249 * Here there can be other concurrent MADV_DONTNEED or 1250 * trans huge page faults running, and if the pmd is 1251 * none or trans huge it can change under us. This is 1252 * because MADV_DONTNEED holds the mmap_sem in read 1253 * mode. 1254 */ 1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1256 goto next; 1257 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1258 next: 1259 cond_resched(); 1260 } while (pmd++, addr = next, addr != end); 1261 1262 return addr; 1263 } 1264 1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1266 struct vm_area_struct *vma, pgd_t *pgd, 1267 unsigned long addr, unsigned long end, 1268 struct zap_details *details) 1269 { 1270 pud_t *pud; 1271 unsigned long next; 1272 1273 pud = pud_offset(pgd, addr); 1274 do { 1275 next = pud_addr_end(addr, end); 1276 if (pud_none_or_clear_bad(pud)) 1277 continue; 1278 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1279 } while (pud++, addr = next, addr != end); 1280 1281 return addr; 1282 } 1283 1284 void unmap_page_range(struct mmu_gather *tlb, 1285 struct vm_area_struct *vma, 1286 unsigned long addr, unsigned long end, 1287 struct zap_details *details) 1288 { 1289 pgd_t *pgd; 1290 unsigned long next; 1291 1292 BUG_ON(addr >= end); 1293 tlb_start_vma(tlb, vma); 1294 pgd = pgd_offset(vma->vm_mm, addr); 1295 do { 1296 next = pgd_addr_end(addr, end); 1297 if (pgd_none_or_clear_bad(pgd)) 1298 continue; 1299 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1300 } while (pgd++, addr = next, addr != end); 1301 tlb_end_vma(tlb, vma); 1302 } 1303 1304 1305 static void unmap_single_vma(struct mmu_gather *tlb, 1306 struct vm_area_struct *vma, unsigned long start_addr, 1307 unsigned long end_addr, 1308 struct zap_details *details) 1309 { 1310 unsigned long start = max(vma->vm_start, start_addr); 1311 unsigned long end; 1312 1313 if (start >= vma->vm_end) 1314 return; 1315 end = min(vma->vm_end, end_addr); 1316 if (end <= vma->vm_start) 1317 return; 1318 1319 if (vma->vm_file) 1320 uprobe_munmap(vma, start, end); 1321 1322 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1323 untrack_pfn(vma, 0, 0); 1324 1325 if (start != end) { 1326 if (unlikely(is_vm_hugetlb_page(vma))) { 1327 /* 1328 * It is undesirable to test vma->vm_file as it 1329 * should be non-null for valid hugetlb area. 1330 * However, vm_file will be NULL in the error 1331 * cleanup path of mmap_region. When 1332 * hugetlbfs ->mmap method fails, 1333 * mmap_region() nullifies vma->vm_file 1334 * before calling this function to clean up. 1335 * Since no pte has actually been setup, it is 1336 * safe to do nothing in this case. 1337 */ 1338 if (vma->vm_file) { 1339 i_mmap_lock_write(vma->vm_file->f_mapping); 1340 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1341 i_mmap_unlock_write(vma->vm_file->f_mapping); 1342 } 1343 } else 1344 unmap_page_range(tlb, vma, start, end, details); 1345 } 1346 } 1347 1348 /** 1349 * unmap_vmas - unmap a range of memory covered by a list of vma's 1350 * @tlb: address of the caller's struct mmu_gather 1351 * @vma: the starting vma 1352 * @start_addr: virtual address at which to start unmapping 1353 * @end_addr: virtual address at which to end unmapping 1354 * 1355 * Unmap all pages in the vma list. 1356 * 1357 * Only addresses between `start' and `end' will be unmapped. 1358 * 1359 * The VMA list must be sorted in ascending virtual address order. 1360 * 1361 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1362 * range after unmap_vmas() returns. So the only responsibility here is to 1363 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1364 * drops the lock and schedules. 1365 */ 1366 void unmap_vmas(struct mmu_gather *tlb, 1367 struct vm_area_struct *vma, unsigned long start_addr, 1368 unsigned long end_addr) 1369 { 1370 struct mm_struct *mm = vma->vm_mm; 1371 1372 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1373 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1374 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1375 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1376 } 1377 1378 /** 1379 * zap_page_range - remove user pages in a given range 1380 * @vma: vm_area_struct holding the applicable pages 1381 * @start: starting address of pages to zap 1382 * @size: number of bytes to zap 1383 * @details: details of shared cache invalidation 1384 * 1385 * Caller must protect the VMA list 1386 */ 1387 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1388 unsigned long size, struct zap_details *details) 1389 { 1390 struct mm_struct *mm = vma->vm_mm; 1391 struct mmu_gather tlb; 1392 unsigned long end = start + size; 1393 1394 lru_add_drain(); 1395 tlb_gather_mmu(&tlb, mm, start, end); 1396 update_hiwater_rss(mm); 1397 mmu_notifier_invalidate_range_start(mm, start, end); 1398 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1399 unmap_single_vma(&tlb, vma, start, end, details); 1400 mmu_notifier_invalidate_range_end(mm, start, end); 1401 tlb_finish_mmu(&tlb, start, end); 1402 } 1403 1404 /** 1405 * zap_page_range_single - remove user pages in a given range 1406 * @vma: vm_area_struct holding the applicable pages 1407 * @address: starting address of pages to zap 1408 * @size: number of bytes to zap 1409 * @details: details of shared cache invalidation 1410 * 1411 * The range must fit into one VMA. 1412 */ 1413 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1414 unsigned long size, struct zap_details *details) 1415 { 1416 struct mm_struct *mm = vma->vm_mm; 1417 struct mmu_gather tlb; 1418 unsigned long end = address + size; 1419 1420 lru_add_drain(); 1421 tlb_gather_mmu(&tlb, mm, address, end); 1422 update_hiwater_rss(mm); 1423 mmu_notifier_invalidate_range_start(mm, address, end); 1424 unmap_single_vma(&tlb, vma, address, end, details); 1425 mmu_notifier_invalidate_range_end(mm, address, end); 1426 tlb_finish_mmu(&tlb, address, end); 1427 } 1428 1429 /** 1430 * zap_vma_ptes - remove ptes mapping the vma 1431 * @vma: vm_area_struct holding ptes to be zapped 1432 * @address: starting address of pages to zap 1433 * @size: number of bytes to zap 1434 * 1435 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1436 * 1437 * The entire address range must be fully contained within the vma. 1438 * 1439 * Returns 0 if successful. 1440 */ 1441 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1442 unsigned long size) 1443 { 1444 if (address < vma->vm_start || address + size > vma->vm_end || 1445 !(vma->vm_flags & VM_PFNMAP)) 1446 return -1; 1447 zap_page_range_single(vma, address, size, NULL); 1448 return 0; 1449 } 1450 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1451 1452 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1453 spinlock_t **ptl) 1454 { 1455 pgd_t * pgd = pgd_offset(mm, addr); 1456 pud_t * pud = pud_alloc(mm, pgd, addr); 1457 if (pud) { 1458 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1459 if (pmd) { 1460 VM_BUG_ON(pmd_trans_huge(*pmd)); 1461 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1462 } 1463 } 1464 return NULL; 1465 } 1466 1467 /* 1468 * This is the old fallback for page remapping. 1469 * 1470 * For historical reasons, it only allows reserved pages. Only 1471 * old drivers should use this, and they needed to mark their 1472 * pages reserved for the old functions anyway. 1473 */ 1474 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1475 struct page *page, pgprot_t prot) 1476 { 1477 struct mm_struct *mm = vma->vm_mm; 1478 int retval; 1479 pte_t *pte; 1480 spinlock_t *ptl; 1481 1482 retval = -EINVAL; 1483 if (PageAnon(page)) 1484 goto out; 1485 retval = -ENOMEM; 1486 flush_dcache_page(page); 1487 pte = get_locked_pte(mm, addr, &ptl); 1488 if (!pte) 1489 goto out; 1490 retval = -EBUSY; 1491 if (!pte_none(*pte)) 1492 goto out_unlock; 1493 1494 /* Ok, finally just insert the thing.. */ 1495 get_page(page); 1496 inc_mm_counter_fast(mm, mm_counter_file(page)); 1497 page_add_file_rmap(page, false); 1498 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1499 1500 retval = 0; 1501 pte_unmap_unlock(pte, ptl); 1502 return retval; 1503 out_unlock: 1504 pte_unmap_unlock(pte, ptl); 1505 out: 1506 return retval; 1507 } 1508 1509 /** 1510 * vm_insert_page - insert single page into user vma 1511 * @vma: user vma to map to 1512 * @addr: target user address of this page 1513 * @page: source kernel page 1514 * 1515 * This allows drivers to insert individual pages they've allocated 1516 * into a user vma. 1517 * 1518 * The page has to be a nice clean _individual_ kernel allocation. 1519 * If you allocate a compound page, you need to have marked it as 1520 * such (__GFP_COMP), or manually just split the page up yourself 1521 * (see split_page()). 1522 * 1523 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1524 * took an arbitrary page protection parameter. This doesn't allow 1525 * that. Your vma protection will have to be set up correctly, which 1526 * means that if you want a shared writable mapping, you'd better 1527 * ask for a shared writable mapping! 1528 * 1529 * The page does not need to be reserved. 1530 * 1531 * Usually this function is called from f_op->mmap() handler 1532 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1533 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1534 * function from other places, for example from page-fault handler. 1535 */ 1536 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1537 struct page *page) 1538 { 1539 if (addr < vma->vm_start || addr >= vma->vm_end) 1540 return -EFAULT; 1541 if (!page_count(page)) 1542 return -EINVAL; 1543 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1544 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1545 BUG_ON(vma->vm_flags & VM_PFNMAP); 1546 vma->vm_flags |= VM_MIXEDMAP; 1547 } 1548 return insert_page(vma, addr, page, vma->vm_page_prot); 1549 } 1550 EXPORT_SYMBOL(vm_insert_page); 1551 1552 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1553 pfn_t pfn, pgprot_t prot) 1554 { 1555 struct mm_struct *mm = vma->vm_mm; 1556 int retval; 1557 pte_t *pte, entry; 1558 spinlock_t *ptl; 1559 1560 retval = -ENOMEM; 1561 pte = get_locked_pte(mm, addr, &ptl); 1562 if (!pte) 1563 goto out; 1564 retval = -EBUSY; 1565 if (!pte_none(*pte)) 1566 goto out_unlock; 1567 1568 /* Ok, finally just insert the thing.. */ 1569 if (pfn_t_devmap(pfn)) 1570 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1571 else 1572 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1573 set_pte_at(mm, addr, pte, entry); 1574 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1575 1576 retval = 0; 1577 out_unlock: 1578 pte_unmap_unlock(pte, ptl); 1579 out: 1580 return retval; 1581 } 1582 1583 /** 1584 * vm_insert_pfn - insert single pfn into user vma 1585 * @vma: user vma to map to 1586 * @addr: target user address of this page 1587 * @pfn: source kernel pfn 1588 * 1589 * Similar to vm_insert_page, this allows drivers to insert individual pages 1590 * they've allocated into a user vma. Same comments apply. 1591 * 1592 * This function should only be called from a vm_ops->fault handler, and 1593 * in that case the handler should return NULL. 1594 * 1595 * vma cannot be a COW mapping. 1596 * 1597 * As this is called only for pages that do not currently exist, we 1598 * do not need to flush old virtual caches or the TLB. 1599 */ 1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1601 unsigned long pfn) 1602 { 1603 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1604 } 1605 EXPORT_SYMBOL(vm_insert_pfn); 1606 1607 /** 1608 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1609 * @vma: user vma to map to 1610 * @addr: target user address of this page 1611 * @pfn: source kernel pfn 1612 * @pgprot: pgprot flags for the inserted page 1613 * 1614 * This is exactly like vm_insert_pfn, except that it allows drivers to 1615 * to override pgprot on a per-page basis. 1616 * 1617 * This only makes sense for IO mappings, and it makes no sense for 1618 * cow mappings. In general, using multiple vmas is preferable; 1619 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1620 * impractical. 1621 */ 1622 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1623 unsigned long pfn, pgprot_t pgprot) 1624 { 1625 int ret; 1626 /* 1627 * Technically, architectures with pte_special can avoid all these 1628 * restrictions (same for remap_pfn_range). However we would like 1629 * consistency in testing and feature parity among all, so we should 1630 * try to keep these invariants in place for everybody. 1631 */ 1632 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1633 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1634 (VM_PFNMAP|VM_MIXEDMAP)); 1635 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1636 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1637 1638 if (addr < vma->vm_start || addr >= vma->vm_end) 1639 return -EFAULT; 1640 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) 1641 return -EINVAL; 1642 1643 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1644 1645 return ret; 1646 } 1647 EXPORT_SYMBOL(vm_insert_pfn_prot); 1648 1649 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1650 pfn_t pfn) 1651 { 1652 pgprot_t pgprot = vma->vm_page_prot; 1653 1654 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1655 1656 if (addr < vma->vm_start || addr >= vma->vm_end) 1657 return -EFAULT; 1658 if (track_pfn_insert(vma, &pgprot, pfn)) 1659 return -EINVAL; 1660 1661 /* 1662 * If we don't have pte special, then we have to use the pfn_valid() 1663 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1664 * refcount the page if pfn_valid is true (hence insert_page rather 1665 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1666 * without pte special, it would there be refcounted as a normal page. 1667 */ 1668 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1669 struct page *page; 1670 1671 /* 1672 * At this point we are committed to insert_page() 1673 * regardless of whether the caller specified flags that 1674 * result in pfn_t_has_page() == false. 1675 */ 1676 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1677 return insert_page(vma, addr, page, pgprot); 1678 } 1679 return insert_pfn(vma, addr, pfn, pgprot); 1680 } 1681 EXPORT_SYMBOL(vm_insert_mixed); 1682 1683 /* 1684 * maps a range of physical memory into the requested pages. the old 1685 * mappings are removed. any references to nonexistent pages results 1686 * in null mappings (currently treated as "copy-on-access") 1687 */ 1688 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1689 unsigned long addr, unsigned long end, 1690 unsigned long pfn, pgprot_t prot) 1691 { 1692 pte_t *pte; 1693 spinlock_t *ptl; 1694 1695 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1696 if (!pte) 1697 return -ENOMEM; 1698 arch_enter_lazy_mmu_mode(); 1699 do { 1700 BUG_ON(!pte_none(*pte)); 1701 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1702 pfn++; 1703 } while (pte++, addr += PAGE_SIZE, addr != end); 1704 arch_leave_lazy_mmu_mode(); 1705 pte_unmap_unlock(pte - 1, ptl); 1706 return 0; 1707 } 1708 1709 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1710 unsigned long addr, unsigned long end, 1711 unsigned long pfn, pgprot_t prot) 1712 { 1713 pmd_t *pmd; 1714 unsigned long next; 1715 1716 pfn -= addr >> PAGE_SHIFT; 1717 pmd = pmd_alloc(mm, pud, addr); 1718 if (!pmd) 1719 return -ENOMEM; 1720 VM_BUG_ON(pmd_trans_huge(*pmd)); 1721 do { 1722 next = pmd_addr_end(addr, end); 1723 if (remap_pte_range(mm, pmd, addr, next, 1724 pfn + (addr >> PAGE_SHIFT), prot)) 1725 return -ENOMEM; 1726 } while (pmd++, addr = next, addr != end); 1727 return 0; 1728 } 1729 1730 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1731 unsigned long addr, unsigned long end, 1732 unsigned long pfn, pgprot_t prot) 1733 { 1734 pud_t *pud; 1735 unsigned long next; 1736 1737 pfn -= addr >> PAGE_SHIFT; 1738 pud = pud_alloc(mm, pgd, addr); 1739 if (!pud) 1740 return -ENOMEM; 1741 do { 1742 next = pud_addr_end(addr, end); 1743 if (remap_pmd_range(mm, pud, addr, next, 1744 pfn + (addr >> PAGE_SHIFT), prot)) 1745 return -ENOMEM; 1746 } while (pud++, addr = next, addr != end); 1747 return 0; 1748 } 1749 1750 /** 1751 * remap_pfn_range - remap kernel memory to userspace 1752 * @vma: user vma to map to 1753 * @addr: target user address to start at 1754 * @pfn: physical address of kernel memory 1755 * @size: size of map area 1756 * @prot: page protection flags for this mapping 1757 * 1758 * Note: this is only safe if the mm semaphore is held when called. 1759 */ 1760 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1761 unsigned long pfn, unsigned long size, pgprot_t prot) 1762 { 1763 pgd_t *pgd; 1764 unsigned long next; 1765 unsigned long end = addr + PAGE_ALIGN(size); 1766 struct mm_struct *mm = vma->vm_mm; 1767 unsigned long remap_pfn = pfn; 1768 int err; 1769 1770 /* 1771 * Physically remapped pages are special. Tell the 1772 * rest of the world about it: 1773 * VM_IO tells people not to look at these pages 1774 * (accesses can have side effects). 1775 * VM_PFNMAP tells the core MM that the base pages are just 1776 * raw PFN mappings, and do not have a "struct page" associated 1777 * with them. 1778 * VM_DONTEXPAND 1779 * Disable vma merging and expanding with mremap(). 1780 * VM_DONTDUMP 1781 * Omit vma from core dump, even when VM_IO turned off. 1782 * 1783 * There's a horrible special case to handle copy-on-write 1784 * behaviour that some programs depend on. We mark the "original" 1785 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1786 * See vm_normal_page() for details. 1787 */ 1788 if (is_cow_mapping(vma->vm_flags)) { 1789 if (addr != vma->vm_start || end != vma->vm_end) 1790 return -EINVAL; 1791 vma->vm_pgoff = pfn; 1792 } 1793 1794 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1795 if (err) 1796 return -EINVAL; 1797 1798 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1799 1800 BUG_ON(addr >= end); 1801 pfn -= addr >> PAGE_SHIFT; 1802 pgd = pgd_offset(mm, addr); 1803 flush_cache_range(vma, addr, end); 1804 do { 1805 next = pgd_addr_end(addr, end); 1806 err = remap_pud_range(mm, pgd, addr, next, 1807 pfn + (addr >> PAGE_SHIFT), prot); 1808 if (err) 1809 break; 1810 } while (pgd++, addr = next, addr != end); 1811 1812 if (err) 1813 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1814 1815 return err; 1816 } 1817 EXPORT_SYMBOL(remap_pfn_range); 1818 1819 /** 1820 * vm_iomap_memory - remap memory to userspace 1821 * @vma: user vma to map to 1822 * @start: start of area 1823 * @len: size of area 1824 * 1825 * This is a simplified io_remap_pfn_range() for common driver use. The 1826 * driver just needs to give us the physical memory range to be mapped, 1827 * we'll figure out the rest from the vma information. 1828 * 1829 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1830 * whatever write-combining details or similar. 1831 */ 1832 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1833 { 1834 unsigned long vm_len, pfn, pages; 1835 1836 /* Check that the physical memory area passed in looks valid */ 1837 if (start + len < start) 1838 return -EINVAL; 1839 /* 1840 * You *really* shouldn't map things that aren't page-aligned, 1841 * but we've historically allowed it because IO memory might 1842 * just have smaller alignment. 1843 */ 1844 len += start & ~PAGE_MASK; 1845 pfn = start >> PAGE_SHIFT; 1846 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1847 if (pfn + pages < pfn) 1848 return -EINVAL; 1849 1850 /* We start the mapping 'vm_pgoff' pages into the area */ 1851 if (vma->vm_pgoff > pages) 1852 return -EINVAL; 1853 pfn += vma->vm_pgoff; 1854 pages -= vma->vm_pgoff; 1855 1856 /* Can we fit all of the mapping? */ 1857 vm_len = vma->vm_end - vma->vm_start; 1858 if (vm_len >> PAGE_SHIFT > pages) 1859 return -EINVAL; 1860 1861 /* Ok, let it rip */ 1862 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1863 } 1864 EXPORT_SYMBOL(vm_iomap_memory); 1865 1866 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1867 unsigned long addr, unsigned long end, 1868 pte_fn_t fn, void *data) 1869 { 1870 pte_t *pte; 1871 int err; 1872 pgtable_t token; 1873 spinlock_t *uninitialized_var(ptl); 1874 1875 pte = (mm == &init_mm) ? 1876 pte_alloc_kernel(pmd, addr) : 1877 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1878 if (!pte) 1879 return -ENOMEM; 1880 1881 BUG_ON(pmd_huge(*pmd)); 1882 1883 arch_enter_lazy_mmu_mode(); 1884 1885 token = pmd_pgtable(*pmd); 1886 1887 do { 1888 err = fn(pte++, token, addr, data); 1889 if (err) 1890 break; 1891 } while (addr += PAGE_SIZE, addr != end); 1892 1893 arch_leave_lazy_mmu_mode(); 1894 1895 if (mm != &init_mm) 1896 pte_unmap_unlock(pte-1, ptl); 1897 return err; 1898 } 1899 1900 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1901 unsigned long addr, unsigned long end, 1902 pte_fn_t fn, void *data) 1903 { 1904 pmd_t *pmd; 1905 unsigned long next; 1906 int err; 1907 1908 BUG_ON(pud_huge(*pud)); 1909 1910 pmd = pmd_alloc(mm, pud, addr); 1911 if (!pmd) 1912 return -ENOMEM; 1913 do { 1914 next = pmd_addr_end(addr, end); 1915 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1916 if (err) 1917 break; 1918 } while (pmd++, addr = next, addr != end); 1919 return err; 1920 } 1921 1922 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1923 unsigned long addr, unsigned long end, 1924 pte_fn_t fn, void *data) 1925 { 1926 pud_t *pud; 1927 unsigned long next; 1928 int err; 1929 1930 pud = pud_alloc(mm, pgd, addr); 1931 if (!pud) 1932 return -ENOMEM; 1933 do { 1934 next = pud_addr_end(addr, end); 1935 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1936 if (err) 1937 break; 1938 } while (pud++, addr = next, addr != end); 1939 return err; 1940 } 1941 1942 /* 1943 * Scan a region of virtual memory, filling in page tables as necessary 1944 * and calling a provided function on each leaf page table. 1945 */ 1946 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1947 unsigned long size, pte_fn_t fn, void *data) 1948 { 1949 pgd_t *pgd; 1950 unsigned long next; 1951 unsigned long end = addr + size; 1952 int err; 1953 1954 if (WARN_ON(addr >= end)) 1955 return -EINVAL; 1956 1957 pgd = pgd_offset(mm, addr); 1958 do { 1959 next = pgd_addr_end(addr, end); 1960 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1961 if (err) 1962 break; 1963 } while (pgd++, addr = next, addr != end); 1964 1965 return err; 1966 } 1967 EXPORT_SYMBOL_GPL(apply_to_page_range); 1968 1969 /* 1970 * handle_pte_fault chooses page fault handler according to an entry which was 1971 * read non-atomically. Before making any commitment, on those architectures 1972 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1973 * parts, do_swap_page must check under lock before unmapping the pte and 1974 * proceeding (but do_wp_page is only called after already making such a check; 1975 * and do_anonymous_page can safely check later on). 1976 */ 1977 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1978 pte_t *page_table, pte_t orig_pte) 1979 { 1980 int same = 1; 1981 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1982 if (sizeof(pte_t) > sizeof(unsigned long)) { 1983 spinlock_t *ptl = pte_lockptr(mm, pmd); 1984 spin_lock(ptl); 1985 same = pte_same(*page_table, orig_pte); 1986 spin_unlock(ptl); 1987 } 1988 #endif 1989 pte_unmap(page_table); 1990 return same; 1991 } 1992 1993 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1994 { 1995 debug_dma_assert_idle(src); 1996 1997 /* 1998 * If the source page was a PFN mapping, we don't have 1999 * a "struct page" for it. We do a best-effort copy by 2000 * just copying from the original user address. If that 2001 * fails, we just zero-fill it. Live with it. 2002 */ 2003 if (unlikely(!src)) { 2004 void *kaddr = kmap_atomic(dst); 2005 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2006 2007 /* 2008 * This really shouldn't fail, because the page is there 2009 * in the page tables. But it might just be unreadable, 2010 * in which case we just give up and fill the result with 2011 * zeroes. 2012 */ 2013 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2014 clear_page(kaddr); 2015 kunmap_atomic(kaddr); 2016 flush_dcache_page(dst); 2017 } else 2018 copy_user_highpage(dst, src, va, vma); 2019 } 2020 2021 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2022 { 2023 struct file *vm_file = vma->vm_file; 2024 2025 if (vm_file) 2026 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2027 2028 /* 2029 * Special mappings (e.g. VDSO) do not have any file so fake 2030 * a default GFP_KERNEL for them. 2031 */ 2032 return GFP_KERNEL; 2033 } 2034 2035 /* 2036 * Notify the address space that the page is about to become writable so that 2037 * it can prohibit this or wait for the page to get into an appropriate state. 2038 * 2039 * We do this without the lock held, so that it can sleep if it needs to. 2040 */ 2041 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2042 unsigned long address) 2043 { 2044 struct vm_fault vmf; 2045 int ret; 2046 2047 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2048 vmf.pgoff = page->index; 2049 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2050 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2051 vmf.page = page; 2052 vmf.cow_page = NULL; 2053 2054 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2055 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2056 return ret; 2057 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2058 lock_page(page); 2059 if (!page->mapping) { 2060 unlock_page(page); 2061 return 0; /* retry */ 2062 } 2063 ret |= VM_FAULT_LOCKED; 2064 } else 2065 VM_BUG_ON_PAGE(!PageLocked(page), page); 2066 return ret; 2067 } 2068 2069 /* 2070 * Handle write page faults for pages that can be reused in the current vma 2071 * 2072 * This can happen either due to the mapping being with the VM_SHARED flag, 2073 * or due to us being the last reference standing to the page. In either 2074 * case, all we need to do here is to mark the page as writable and update 2075 * any related book-keeping. 2076 */ 2077 static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte, 2078 struct page *page, int page_mkwrite, int dirty_shared) 2079 __releases(fe->ptl) 2080 { 2081 struct vm_area_struct *vma = fe->vma; 2082 pte_t entry; 2083 /* 2084 * Clear the pages cpupid information as the existing 2085 * information potentially belongs to a now completely 2086 * unrelated process. 2087 */ 2088 if (page) 2089 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2090 2091 flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); 2092 entry = pte_mkyoung(orig_pte); 2093 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2094 if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1)) 2095 update_mmu_cache(vma, fe->address, fe->pte); 2096 pte_unmap_unlock(fe->pte, fe->ptl); 2097 2098 if (dirty_shared) { 2099 struct address_space *mapping; 2100 int dirtied; 2101 2102 if (!page_mkwrite) 2103 lock_page(page); 2104 2105 dirtied = set_page_dirty(page); 2106 VM_BUG_ON_PAGE(PageAnon(page), page); 2107 mapping = page->mapping; 2108 unlock_page(page); 2109 put_page(page); 2110 2111 if ((dirtied || page_mkwrite) && mapping) { 2112 /* 2113 * Some device drivers do not set page.mapping 2114 * but still dirty their pages 2115 */ 2116 balance_dirty_pages_ratelimited(mapping); 2117 } 2118 2119 if (!page_mkwrite) 2120 file_update_time(vma->vm_file); 2121 } 2122 2123 return VM_FAULT_WRITE; 2124 } 2125 2126 /* 2127 * Handle the case of a page which we actually need to copy to a new page. 2128 * 2129 * Called with mmap_sem locked and the old page referenced, but 2130 * without the ptl held. 2131 * 2132 * High level logic flow: 2133 * 2134 * - Allocate a page, copy the content of the old page to the new one. 2135 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2136 * - Take the PTL. If the pte changed, bail out and release the allocated page 2137 * - If the pte is still the way we remember it, update the page table and all 2138 * relevant references. This includes dropping the reference the page-table 2139 * held to the old page, as well as updating the rmap. 2140 * - In any case, unlock the PTL and drop the reference we took to the old page. 2141 */ 2142 static int wp_page_copy(struct fault_env *fe, pte_t orig_pte, 2143 struct page *old_page) 2144 { 2145 struct vm_area_struct *vma = fe->vma; 2146 struct mm_struct *mm = vma->vm_mm; 2147 struct page *new_page = NULL; 2148 pte_t entry; 2149 int page_copied = 0; 2150 const unsigned long mmun_start = fe->address & PAGE_MASK; 2151 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2152 struct mem_cgroup *memcg; 2153 2154 if (unlikely(anon_vma_prepare(vma))) 2155 goto oom; 2156 2157 if (is_zero_pfn(pte_pfn(orig_pte))) { 2158 new_page = alloc_zeroed_user_highpage_movable(vma, fe->address); 2159 if (!new_page) 2160 goto oom; 2161 } else { 2162 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2163 fe->address); 2164 if (!new_page) 2165 goto oom; 2166 cow_user_page(new_page, old_page, fe->address, vma); 2167 } 2168 2169 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2170 goto oom_free_new; 2171 2172 __SetPageUptodate(new_page); 2173 2174 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2175 2176 /* 2177 * Re-check the pte - we dropped the lock 2178 */ 2179 fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl); 2180 if (likely(pte_same(*fe->pte, orig_pte))) { 2181 if (old_page) { 2182 if (!PageAnon(old_page)) { 2183 dec_mm_counter_fast(mm, 2184 mm_counter_file(old_page)); 2185 inc_mm_counter_fast(mm, MM_ANONPAGES); 2186 } 2187 } else { 2188 inc_mm_counter_fast(mm, MM_ANONPAGES); 2189 } 2190 flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); 2191 entry = mk_pte(new_page, vma->vm_page_prot); 2192 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2193 /* 2194 * Clear the pte entry and flush it first, before updating the 2195 * pte with the new entry. This will avoid a race condition 2196 * seen in the presence of one thread doing SMC and another 2197 * thread doing COW. 2198 */ 2199 ptep_clear_flush_notify(vma, fe->address, fe->pte); 2200 page_add_new_anon_rmap(new_page, vma, fe->address, false); 2201 mem_cgroup_commit_charge(new_page, memcg, false, false); 2202 lru_cache_add_active_or_unevictable(new_page, vma); 2203 /* 2204 * We call the notify macro here because, when using secondary 2205 * mmu page tables (such as kvm shadow page tables), we want the 2206 * new page to be mapped directly into the secondary page table. 2207 */ 2208 set_pte_at_notify(mm, fe->address, fe->pte, entry); 2209 update_mmu_cache(vma, fe->address, fe->pte); 2210 if (old_page) { 2211 /* 2212 * Only after switching the pte to the new page may 2213 * we remove the mapcount here. Otherwise another 2214 * process may come and find the rmap count decremented 2215 * before the pte is switched to the new page, and 2216 * "reuse" the old page writing into it while our pte 2217 * here still points into it and can be read by other 2218 * threads. 2219 * 2220 * The critical issue is to order this 2221 * page_remove_rmap with the ptp_clear_flush above. 2222 * Those stores are ordered by (if nothing else,) 2223 * the barrier present in the atomic_add_negative 2224 * in page_remove_rmap. 2225 * 2226 * Then the TLB flush in ptep_clear_flush ensures that 2227 * no process can access the old page before the 2228 * decremented mapcount is visible. And the old page 2229 * cannot be reused until after the decremented 2230 * mapcount is visible. So transitively, TLBs to 2231 * old page will be flushed before it can be reused. 2232 */ 2233 page_remove_rmap(old_page, false); 2234 } 2235 2236 /* Free the old page.. */ 2237 new_page = old_page; 2238 page_copied = 1; 2239 } else { 2240 mem_cgroup_cancel_charge(new_page, memcg, false); 2241 } 2242 2243 if (new_page) 2244 put_page(new_page); 2245 2246 pte_unmap_unlock(fe->pte, fe->ptl); 2247 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2248 if (old_page) { 2249 /* 2250 * Don't let another task, with possibly unlocked vma, 2251 * keep the mlocked page. 2252 */ 2253 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2254 lock_page(old_page); /* LRU manipulation */ 2255 if (PageMlocked(old_page)) 2256 munlock_vma_page(old_page); 2257 unlock_page(old_page); 2258 } 2259 put_page(old_page); 2260 } 2261 return page_copied ? VM_FAULT_WRITE : 0; 2262 oom_free_new: 2263 put_page(new_page); 2264 oom: 2265 if (old_page) 2266 put_page(old_page); 2267 return VM_FAULT_OOM; 2268 } 2269 2270 /* 2271 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2272 * mapping 2273 */ 2274 static int wp_pfn_shared(struct fault_env *fe, pte_t orig_pte) 2275 { 2276 struct vm_area_struct *vma = fe->vma; 2277 2278 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2279 struct vm_fault vmf = { 2280 .page = NULL, 2281 .pgoff = linear_page_index(vma, fe->address), 2282 .virtual_address = 2283 (void __user *)(fe->address & PAGE_MASK), 2284 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, 2285 }; 2286 int ret; 2287 2288 pte_unmap_unlock(fe->pte, fe->ptl); 2289 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); 2290 if (ret & VM_FAULT_ERROR) 2291 return ret; 2292 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2293 &fe->ptl); 2294 /* 2295 * We might have raced with another page fault while we 2296 * released the pte_offset_map_lock. 2297 */ 2298 if (!pte_same(*fe->pte, orig_pte)) { 2299 pte_unmap_unlock(fe->pte, fe->ptl); 2300 return 0; 2301 } 2302 } 2303 return wp_page_reuse(fe, orig_pte, NULL, 0, 0); 2304 } 2305 2306 static int wp_page_shared(struct fault_env *fe, pte_t orig_pte, 2307 struct page *old_page) 2308 __releases(fe->ptl) 2309 { 2310 struct vm_area_struct *vma = fe->vma; 2311 int page_mkwrite = 0; 2312 2313 get_page(old_page); 2314 2315 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2316 int tmp; 2317 2318 pte_unmap_unlock(fe->pte, fe->ptl); 2319 tmp = do_page_mkwrite(vma, old_page, fe->address); 2320 if (unlikely(!tmp || (tmp & 2321 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2322 put_page(old_page); 2323 return tmp; 2324 } 2325 /* 2326 * Since we dropped the lock we need to revalidate 2327 * the PTE as someone else may have changed it. If 2328 * they did, we just return, as we can count on the 2329 * MMU to tell us if they didn't also make it writable. 2330 */ 2331 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2332 &fe->ptl); 2333 if (!pte_same(*fe->pte, orig_pte)) { 2334 unlock_page(old_page); 2335 pte_unmap_unlock(fe->pte, fe->ptl); 2336 put_page(old_page); 2337 return 0; 2338 } 2339 page_mkwrite = 1; 2340 } 2341 2342 return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1); 2343 } 2344 2345 /* 2346 * This routine handles present pages, when users try to write 2347 * to a shared page. It is done by copying the page to a new address 2348 * and decrementing the shared-page counter for the old page. 2349 * 2350 * Note that this routine assumes that the protection checks have been 2351 * done by the caller (the low-level page fault routine in most cases). 2352 * Thus we can safely just mark it writable once we've done any necessary 2353 * COW. 2354 * 2355 * We also mark the page dirty at this point even though the page will 2356 * change only once the write actually happens. This avoids a few races, 2357 * and potentially makes it more efficient. 2358 * 2359 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2360 * but allow concurrent faults), with pte both mapped and locked. 2361 * We return with mmap_sem still held, but pte unmapped and unlocked. 2362 */ 2363 static int do_wp_page(struct fault_env *fe, pte_t orig_pte) 2364 __releases(fe->ptl) 2365 { 2366 struct vm_area_struct *vma = fe->vma; 2367 struct page *old_page; 2368 2369 old_page = vm_normal_page(vma, fe->address, orig_pte); 2370 if (!old_page) { 2371 /* 2372 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2373 * VM_PFNMAP VMA. 2374 * 2375 * We should not cow pages in a shared writeable mapping. 2376 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2377 */ 2378 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2379 (VM_WRITE|VM_SHARED)) 2380 return wp_pfn_shared(fe, orig_pte); 2381 2382 pte_unmap_unlock(fe->pte, fe->ptl); 2383 return wp_page_copy(fe, orig_pte, old_page); 2384 } 2385 2386 /* 2387 * Take out anonymous pages first, anonymous shared vmas are 2388 * not dirty accountable. 2389 */ 2390 if (PageAnon(old_page) && !PageKsm(old_page)) { 2391 int total_mapcount; 2392 if (!trylock_page(old_page)) { 2393 get_page(old_page); 2394 pte_unmap_unlock(fe->pte, fe->ptl); 2395 lock_page(old_page); 2396 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, 2397 fe->address, &fe->ptl); 2398 if (!pte_same(*fe->pte, orig_pte)) { 2399 unlock_page(old_page); 2400 pte_unmap_unlock(fe->pte, fe->ptl); 2401 put_page(old_page); 2402 return 0; 2403 } 2404 put_page(old_page); 2405 } 2406 if (reuse_swap_page(old_page, &total_mapcount)) { 2407 if (total_mapcount == 1) { 2408 /* 2409 * The page is all ours. Move it to 2410 * our anon_vma so the rmap code will 2411 * not search our parent or siblings. 2412 * Protected against the rmap code by 2413 * the page lock. 2414 */ 2415 page_move_anon_rmap(old_page, vma); 2416 } 2417 unlock_page(old_page); 2418 return wp_page_reuse(fe, orig_pte, old_page, 0, 0); 2419 } 2420 unlock_page(old_page); 2421 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2422 (VM_WRITE|VM_SHARED))) { 2423 return wp_page_shared(fe, orig_pte, old_page); 2424 } 2425 2426 /* 2427 * Ok, we need to copy. Oh, well.. 2428 */ 2429 get_page(old_page); 2430 2431 pte_unmap_unlock(fe->pte, fe->ptl); 2432 return wp_page_copy(fe, orig_pte, old_page); 2433 } 2434 2435 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2436 unsigned long start_addr, unsigned long end_addr, 2437 struct zap_details *details) 2438 { 2439 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2440 } 2441 2442 static inline void unmap_mapping_range_tree(struct rb_root *root, 2443 struct zap_details *details) 2444 { 2445 struct vm_area_struct *vma; 2446 pgoff_t vba, vea, zba, zea; 2447 2448 vma_interval_tree_foreach(vma, root, 2449 details->first_index, details->last_index) { 2450 2451 vba = vma->vm_pgoff; 2452 vea = vba + vma_pages(vma) - 1; 2453 zba = details->first_index; 2454 if (zba < vba) 2455 zba = vba; 2456 zea = details->last_index; 2457 if (zea > vea) 2458 zea = vea; 2459 2460 unmap_mapping_range_vma(vma, 2461 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2462 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2463 details); 2464 } 2465 } 2466 2467 /** 2468 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2469 * address_space corresponding to the specified page range in the underlying 2470 * file. 2471 * 2472 * @mapping: the address space containing mmaps to be unmapped. 2473 * @holebegin: byte in first page to unmap, relative to the start of 2474 * the underlying file. This will be rounded down to a PAGE_SIZE 2475 * boundary. Note that this is different from truncate_pagecache(), which 2476 * must keep the partial page. In contrast, we must get rid of 2477 * partial pages. 2478 * @holelen: size of prospective hole in bytes. This will be rounded 2479 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2480 * end of the file. 2481 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2482 * but 0 when invalidating pagecache, don't throw away private data. 2483 */ 2484 void unmap_mapping_range(struct address_space *mapping, 2485 loff_t const holebegin, loff_t const holelen, int even_cows) 2486 { 2487 struct zap_details details = { }; 2488 pgoff_t hba = holebegin >> PAGE_SHIFT; 2489 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2490 2491 /* Check for overflow. */ 2492 if (sizeof(holelen) > sizeof(hlen)) { 2493 long long holeend = 2494 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2495 if (holeend & ~(long long)ULONG_MAX) 2496 hlen = ULONG_MAX - hba + 1; 2497 } 2498 2499 details.check_mapping = even_cows? NULL: mapping; 2500 details.first_index = hba; 2501 details.last_index = hba + hlen - 1; 2502 if (details.last_index < details.first_index) 2503 details.last_index = ULONG_MAX; 2504 2505 i_mmap_lock_write(mapping); 2506 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2507 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2508 i_mmap_unlock_write(mapping); 2509 } 2510 EXPORT_SYMBOL(unmap_mapping_range); 2511 2512 /* 2513 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2514 * but allow concurrent faults), and pte mapped but not yet locked. 2515 * We return with pte unmapped and unlocked. 2516 * 2517 * We return with the mmap_sem locked or unlocked in the same cases 2518 * as does filemap_fault(). 2519 */ 2520 int do_swap_page(struct fault_env *fe, pte_t orig_pte) 2521 { 2522 struct vm_area_struct *vma = fe->vma; 2523 struct page *page, *swapcache; 2524 struct mem_cgroup *memcg; 2525 swp_entry_t entry; 2526 pte_t pte; 2527 int locked; 2528 int exclusive = 0; 2529 int ret = 0; 2530 2531 if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte)) 2532 goto out; 2533 2534 entry = pte_to_swp_entry(orig_pte); 2535 if (unlikely(non_swap_entry(entry))) { 2536 if (is_migration_entry(entry)) { 2537 migration_entry_wait(vma->vm_mm, fe->pmd, fe->address); 2538 } else if (is_hwpoison_entry(entry)) { 2539 ret = VM_FAULT_HWPOISON; 2540 } else { 2541 print_bad_pte(vma, fe->address, orig_pte, NULL); 2542 ret = VM_FAULT_SIGBUS; 2543 } 2544 goto out; 2545 } 2546 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2547 page = lookup_swap_cache(entry); 2548 if (!page) { 2549 page = swapin_readahead(entry, 2550 GFP_HIGHUSER_MOVABLE, vma, fe->address); 2551 if (!page) { 2552 /* 2553 * Back out if somebody else faulted in this pte 2554 * while we released the pte lock. 2555 */ 2556 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, 2557 fe->address, &fe->ptl); 2558 if (likely(pte_same(*fe->pte, orig_pte))) 2559 ret = VM_FAULT_OOM; 2560 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2561 goto unlock; 2562 } 2563 2564 /* Had to read the page from swap area: Major fault */ 2565 ret = VM_FAULT_MAJOR; 2566 count_vm_event(PGMAJFAULT); 2567 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2568 } else if (PageHWPoison(page)) { 2569 /* 2570 * hwpoisoned dirty swapcache pages are kept for killing 2571 * owner processes (which may be unknown at hwpoison time) 2572 */ 2573 ret = VM_FAULT_HWPOISON; 2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2575 swapcache = page; 2576 goto out_release; 2577 } 2578 2579 swapcache = page; 2580 locked = lock_page_or_retry(page, vma->vm_mm, fe->flags); 2581 2582 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2583 if (!locked) { 2584 ret |= VM_FAULT_RETRY; 2585 goto out_release; 2586 } 2587 2588 /* 2589 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2590 * release the swapcache from under us. The page pin, and pte_same 2591 * test below, are not enough to exclude that. Even if it is still 2592 * swapcache, we need to check that the page's swap has not changed. 2593 */ 2594 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2595 goto out_page; 2596 2597 page = ksm_might_need_to_copy(page, vma, fe->address); 2598 if (unlikely(!page)) { 2599 ret = VM_FAULT_OOM; 2600 page = swapcache; 2601 goto out_page; 2602 } 2603 2604 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2605 &memcg, false)) { 2606 ret = VM_FAULT_OOM; 2607 goto out_page; 2608 } 2609 2610 /* 2611 * Back out if somebody else already faulted in this pte. 2612 */ 2613 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2614 &fe->ptl); 2615 if (unlikely(!pte_same(*fe->pte, orig_pte))) 2616 goto out_nomap; 2617 2618 if (unlikely(!PageUptodate(page))) { 2619 ret = VM_FAULT_SIGBUS; 2620 goto out_nomap; 2621 } 2622 2623 /* 2624 * The page isn't present yet, go ahead with the fault. 2625 * 2626 * Be careful about the sequence of operations here. 2627 * To get its accounting right, reuse_swap_page() must be called 2628 * while the page is counted on swap but not yet in mapcount i.e. 2629 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2630 * must be called after the swap_free(), or it will never succeed. 2631 */ 2632 2633 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2634 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2635 pte = mk_pte(page, vma->vm_page_prot); 2636 if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2637 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2638 fe->flags &= ~FAULT_FLAG_WRITE; 2639 ret |= VM_FAULT_WRITE; 2640 exclusive = RMAP_EXCLUSIVE; 2641 } 2642 flush_icache_page(vma, page); 2643 if (pte_swp_soft_dirty(orig_pte)) 2644 pte = pte_mksoft_dirty(pte); 2645 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); 2646 if (page == swapcache) { 2647 do_page_add_anon_rmap(page, vma, fe->address, exclusive); 2648 mem_cgroup_commit_charge(page, memcg, true, false); 2649 activate_page(page); 2650 } else { /* ksm created a completely new copy */ 2651 page_add_new_anon_rmap(page, vma, fe->address, false); 2652 mem_cgroup_commit_charge(page, memcg, false, false); 2653 lru_cache_add_active_or_unevictable(page, vma); 2654 } 2655 2656 swap_free(entry); 2657 if (mem_cgroup_swap_full(page) || 2658 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2659 try_to_free_swap(page); 2660 unlock_page(page); 2661 if (page != swapcache) { 2662 /* 2663 * Hold the lock to avoid the swap entry to be reused 2664 * until we take the PT lock for the pte_same() check 2665 * (to avoid false positives from pte_same). For 2666 * further safety release the lock after the swap_free 2667 * so that the swap count won't change under a 2668 * parallel locked swapcache. 2669 */ 2670 unlock_page(swapcache); 2671 put_page(swapcache); 2672 } 2673 2674 if (fe->flags & FAULT_FLAG_WRITE) { 2675 ret |= do_wp_page(fe, pte); 2676 if (ret & VM_FAULT_ERROR) 2677 ret &= VM_FAULT_ERROR; 2678 goto out; 2679 } 2680 2681 /* No need to invalidate - it was non-present before */ 2682 update_mmu_cache(vma, fe->address, fe->pte); 2683 unlock: 2684 pte_unmap_unlock(fe->pte, fe->ptl); 2685 out: 2686 return ret; 2687 out_nomap: 2688 mem_cgroup_cancel_charge(page, memcg, false); 2689 pte_unmap_unlock(fe->pte, fe->ptl); 2690 out_page: 2691 unlock_page(page); 2692 out_release: 2693 put_page(page); 2694 if (page != swapcache) { 2695 unlock_page(swapcache); 2696 put_page(swapcache); 2697 } 2698 return ret; 2699 } 2700 2701 /* 2702 * This is like a special single-page "expand_{down|up}wards()", 2703 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2704 * doesn't hit another vma. 2705 */ 2706 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2707 { 2708 address &= PAGE_MASK; 2709 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2710 struct vm_area_struct *prev = vma->vm_prev; 2711 2712 /* 2713 * Is there a mapping abutting this one below? 2714 * 2715 * That's only ok if it's the same stack mapping 2716 * that has gotten split.. 2717 */ 2718 if (prev && prev->vm_end == address) 2719 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2720 2721 return expand_downwards(vma, address - PAGE_SIZE); 2722 } 2723 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2724 struct vm_area_struct *next = vma->vm_next; 2725 2726 /* As VM_GROWSDOWN but s/below/above/ */ 2727 if (next && next->vm_start == address + PAGE_SIZE) 2728 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2729 2730 return expand_upwards(vma, address + PAGE_SIZE); 2731 } 2732 return 0; 2733 } 2734 2735 /* 2736 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2737 * but allow concurrent faults), and pte mapped but not yet locked. 2738 * We return with mmap_sem still held, but pte unmapped and unlocked. 2739 */ 2740 static int do_anonymous_page(struct fault_env *fe) 2741 { 2742 struct vm_area_struct *vma = fe->vma; 2743 struct mem_cgroup *memcg; 2744 struct page *page; 2745 pte_t entry; 2746 2747 /* File mapping without ->vm_ops ? */ 2748 if (vma->vm_flags & VM_SHARED) 2749 return VM_FAULT_SIGBUS; 2750 2751 /* Check if we need to add a guard page to the stack */ 2752 if (check_stack_guard_page(vma, fe->address) < 0) 2753 return VM_FAULT_SIGSEGV; 2754 2755 /* 2756 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2757 * pte_offset_map() on pmds where a huge pmd might be created 2758 * from a different thread. 2759 * 2760 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2761 * parallel threads are excluded by other means. 2762 * 2763 * Here we only have down_read(mmap_sem). 2764 */ 2765 if (pte_alloc(vma->vm_mm, fe->pmd, fe->address)) 2766 return VM_FAULT_OOM; 2767 2768 /* See the comment in pte_alloc_one_map() */ 2769 if (unlikely(pmd_trans_unstable(fe->pmd))) 2770 return 0; 2771 2772 /* Use the zero-page for reads */ 2773 if (!(fe->flags & FAULT_FLAG_WRITE) && 2774 !mm_forbids_zeropage(vma->vm_mm)) { 2775 entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address), 2776 vma->vm_page_prot)); 2777 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2778 &fe->ptl); 2779 if (!pte_none(*fe->pte)) 2780 goto unlock; 2781 /* Deliver the page fault to userland, check inside PT lock */ 2782 if (userfaultfd_missing(vma)) { 2783 pte_unmap_unlock(fe->pte, fe->ptl); 2784 return handle_userfault(fe, VM_UFFD_MISSING); 2785 } 2786 goto setpte; 2787 } 2788 2789 /* Allocate our own private page. */ 2790 if (unlikely(anon_vma_prepare(vma))) 2791 goto oom; 2792 page = alloc_zeroed_user_highpage_movable(vma, fe->address); 2793 if (!page) 2794 goto oom; 2795 2796 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2797 goto oom_free_page; 2798 2799 /* 2800 * The memory barrier inside __SetPageUptodate makes sure that 2801 * preceeding stores to the page contents become visible before 2802 * the set_pte_at() write. 2803 */ 2804 __SetPageUptodate(page); 2805 2806 entry = mk_pte(page, vma->vm_page_prot); 2807 if (vma->vm_flags & VM_WRITE) 2808 entry = pte_mkwrite(pte_mkdirty(entry)); 2809 2810 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2811 &fe->ptl); 2812 if (!pte_none(*fe->pte)) 2813 goto release; 2814 2815 /* Deliver the page fault to userland, check inside PT lock */ 2816 if (userfaultfd_missing(vma)) { 2817 pte_unmap_unlock(fe->pte, fe->ptl); 2818 mem_cgroup_cancel_charge(page, memcg, false); 2819 put_page(page); 2820 return handle_userfault(fe, VM_UFFD_MISSING); 2821 } 2822 2823 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2824 page_add_new_anon_rmap(page, vma, fe->address, false); 2825 mem_cgroup_commit_charge(page, memcg, false, false); 2826 lru_cache_add_active_or_unevictable(page, vma); 2827 setpte: 2828 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); 2829 2830 /* No need to invalidate - it was non-present before */ 2831 update_mmu_cache(vma, fe->address, fe->pte); 2832 unlock: 2833 pte_unmap_unlock(fe->pte, fe->ptl); 2834 return 0; 2835 release: 2836 mem_cgroup_cancel_charge(page, memcg, false); 2837 put_page(page); 2838 goto unlock; 2839 oom_free_page: 2840 put_page(page); 2841 oom: 2842 return VM_FAULT_OOM; 2843 } 2844 2845 /* 2846 * The mmap_sem must have been held on entry, and may have been 2847 * released depending on flags and vma->vm_ops->fault() return value. 2848 * See filemap_fault() and __lock_page_retry(). 2849 */ 2850 static int __do_fault(struct fault_env *fe, pgoff_t pgoff, 2851 struct page *cow_page, struct page **page, void **entry) 2852 { 2853 struct vm_area_struct *vma = fe->vma; 2854 struct vm_fault vmf; 2855 int ret; 2856 2857 vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK); 2858 vmf.pgoff = pgoff; 2859 vmf.flags = fe->flags; 2860 vmf.page = NULL; 2861 vmf.gfp_mask = __get_fault_gfp_mask(vma); 2862 vmf.cow_page = cow_page; 2863 2864 ret = vma->vm_ops->fault(vma, &vmf); 2865 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2866 return ret; 2867 if (ret & VM_FAULT_DAX_LOCKED) { 2868 *entry = vmf.entry; 2869 return ret; 2870 } 2871 2872 if (unlikely(PageHWPoison(vmf.page))) { 2873 if (ret & VM_FAULT_LOCKED) 2874 unlock_page(vmf.page); 2875 put_page(vmf.page); 2876 return VM_FAULT_HWPOISON; 2877 } 2878 2879 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2880 lock_page(vmf.page); 2881 else 2882 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2883 2884 *page = vmf.page; 2885 return ret; 2886 } 2887 2888 static int pte_alloc_one_map(struct fault_env *fe) 2889 { 2890 struct vm_area_struct *vma = fe->vma; 2891 2892 if (!pmd_none(*fe->pmd)) 2893 goto map_pte; 2894 if (fe->prealloc_pte) { 2895 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 2896 if (unlikely(!pmd_none(*fe->pmd))) { 2897 spin_unlock(fe->ptl); 2898 goto map_pte; 2899 } 2900 2901 atomic_long_inc(&vma->vm_mm->nr_ptes); 2902 pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte); 2903 spin_unlock(fe->ptl); 2904 fe->prealloc_pte = 0; 2905 } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) { 2906 return VM_FAULT_OOM; 2907 } 2908 map_pte: 2909 /* 2910 * If a huge pmd materialized under us just retry later. Use 2911 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 2912 * didn't become pmd_trans_huge under us and then back to pmd_none, as 2913 * a result of MADV_DONTNEED running immediately after a huge pmd fault 2914 * in a different thread of this mm, in turn leading to a misleading 2915 * pmd_trans_huge() retval. All we have to ensure is that it is a 2916 * regular pmd that we can walk with pte_offset_map() and we can do that 2917 * through an atomic read in C, which is what pmd_trans_unstable() 2918 * provides. 2919 */ 2920 if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd)) 2921 return VM_FAULT_NOPAGE; 2922 2923 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, 2924 &fe->ptl); 2925 return 0; 2926 } 2927 2928 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 2929 2930 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 2931 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 2932 unsigned long haddr) 2933 { 2934 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 2935 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 2936 return false; 2937 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 2938 return false; 2939 return true; 2940 } 2941 2942 static int do_set_pmd(struct fault_env *fe, struct page *page) 2943 { 2944 struct vm_area_struct *vma = fe->vma; 2945 bool write = fe->flags & FAULT_FLAG_WRITE; 2946 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 2947 pmd_t entry; 2948 int i, ret; 2949 2950 if (!transhuge_vma_suitable(vma, haddr)) 2951 return VM_FAULT_FALLBACK; 2952 2953 ret = VM_FAULT_FALLBACK; 2954 page = compound_head(page); 2955 2956 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 2957 if (unlikely(!pmd_none(*fe->pmd))) 2958 goto out; 2959 2960 for (i = 0; i < HPAGE_PMD_NR; i++) 2961 flush_icache_page(vma, page + i); 2962 2963 entry = mk_huge_pmd(page, vma->vm_page_prot); 2964 if (write) 2965 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2966 2967 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 2968 page_add_file_rmap(page, true); 2969 2970 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 2971 2972 update_mmu_cache_pmd(vma, haddr, fe->pmd); 2973 2974 /* fault is handled */ 2975 ret = 0; 2976 count_vm_event(THP_FILE_MAPPED); 2977 out: 2978 spin_unlock(fe->ptl); 2979 return ret; 2980 } 2981 #else 2982 static int do_set_pmd(struct fault_env *fe, struct page *page) 2983 { 2984 BUILD_BUG(); 2985 return 0; 2986 } 2987 #endif 2988 2989 /** 2990 * alloc_set_pte - setup new PTE entry for given page and add reverse page 2991 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 2992 * 2993 * @fe: fault environment 2994 * @memcg: memcg to charge page (only for private mappings) 2995 * @page: page to map 2996 * 2997 * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return. 2998 * 2999 * Target users are page handler itself and implementations of 3000 * vm_ops->map_pages. 3001 */ 3002 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, 3003 struct page *page) 3004 { 3005 struct vm_area_struct *vma = fe->vma; 3006 bool write = fe->flags & FAULT_FLAG_WRITE; 3007 pte_t entry; 3008 int ret; 3009 3010 if (pmd_none(*fe->pmd) && PageTransCompound(page) && 3011 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3012 /* THP on COW? */ 3013 VM_BUG_ON_PAGE(memcg, page); 3014 3015 ret = do_set_pmd(fe, page); 3016 if (ret != VM_FAULT_FALLBACK) 3017 return ret; 3018 } 3019 3020 if (!fe->pte) { 3021 ret = pte_alloc_one_map(fe); 3022 if (ret) 3023 return ret; 3024 } 3025 3026 /* Re-check under ptl */ 3027 if (unlikely(!pte_none(*fe->pte))) 3028 return VM_FAULT_NOPAGE; 3029 3030 flush_icache_page(vma, page); 3031 entry = mk_pte(page, vma->vm_page_prot); 3032 if (write) 3033 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3034 /* copy-on-write page */ 3035 if (write && !(vma->vm_flags & VM_SHARED)) { 3036 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3037 page_add_new_anon_rmap(page, vma, fe->address, false); 3038 mem_cgroup_commit_charge(page, memcg, false, false); 3039 lru_cache_add_active_or_unevictable(page, vma); 3040 } else { 3041 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3042 page_add_file_rmap(page, false); 3043 } 3044 set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); 3045 3046 /* no need to invalidate: a not-present page won't be cached */ 3047 update_mmu_cache(vma, fe->address, fe->pte); 3048 3049 return 0; 3050 } 3051 3052 static unsigned long fault_around_bytes __read_mostly = 3053 rounddown_pow_of_two(65536); 3054 3055 #ifdef CONFIG_DEBUG_FS 3056 static int fault_around_bytes_get(void *data, u64 *val) 3057 { 3058 *val = fault_around_bytes; 3059 return 0; 3060 } 3061 3062 /* 3063 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3064 * rounded down to nearest page order. It's what do_fault_around() expects to 3065 * see. 3066 */ 3067 static int fault_around_bytes_set(void *data, u64 val) 3068 { 3069 if (val / PAGE_SIZE > PTRS_PER_PTE) 3070 return -EINVAL; 3071 if (val > PAGE_SIZE) 3072 fault_around_bytes = rounddown_pow_of_two(val); 3073 else 3074 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3075 return 0; 3076 } 3077 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 3078 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3079 3080 static int __init fault_around_debugfs(void) 3081 { 3082 void *ret; 3083 3084 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 3085 &fault_around_bytes_fops); 3086 if (!ret) 3087 pr_warn("Failed to create fault_around_bytes in debugfs"); 3088 return 0; 3089 } 3090 late_initcall(fault_around_debugfs); 3091 #endif 3092 3093 /* 3094 * do_fault_around() tries to map few pages around the fault address. The hope 3095 * is that the pages will be needed soon and this will lower the number of 3096 * faults to handle. 3097 * 3098 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3099 * not ready to be mapped: not up-to-date, locked, etc. 3100 * 3101 * This function is called with the page table lock taken. In the split ptlock 3102 * case the page table lock only protects only those entries which belong to 3103 * the page table corresponding to the fault address. 3104 * 3105 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3106 * only once. 3107 * 3108 * fault_around_pages() defines how many pages we'll try to map. 3109 * do_fault_around() expects it to return a power of two less than or equal to 3110 * PTRS_PER_PTE. 3111 * 3112 * The virtual address of the area that we map is naturally aligned to the 3113 * fault_around_pages() value (and therefore to page order). This way it's 3114 * easier to guarantee that we don't cross page table boundaries. 3115 */ 3116 static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff) 3117 { 3118 unsigned long address = fe->address, nr_pages, mask; 3119 pgoff_t end_pgoff; 3120 int off, ret = 0; 3121 3122 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3123 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3124 3125 fe->address = max(address & mask, fe->vma->vm_start); 3126 off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3127 start_pgoff -= off; 3128 3129 /* 3130 * end_pgoff is either end of page table or end of vma 3131 * or fault_around_pages() from start_pgoff, depending what is nearest. 3132 */ 3133 end_pgoff = start_pgoff - 3134 ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3135 PTRS_PER_PTE - 1; 3136 end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1, 3137 start_pgoff + nr_pages - 1); 3138 3139 if (pmd_none(*fe->pmd)) { 3140 fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address); 3141 if (!fe->prealloc_pte) 3142 goto out; 3143 smp_wmb(); /* See comment in __pte_alloc() */ 3144 } 3145 3146 fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff); 3147 3148 /* preallocated pagetable is unused: free it */ 3149 if (fe->prealloc_pte) { 3150 pte_free(fe->vma->vm_mm, fe->prealloc_pte); 3151 fe->prealloc_pte = 0; 3152 } 3153 /* Huge page is mapped? Page fault is solved */ 3154 if (pmd_trans_huge(*fe->pmd)) { 3155 ret = VM_FAULT_NOPAGE; 3156 goto out; 3157 } 3158 3159 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3160 if (!fe->pte) 3161 goto out; 3162 3163 /* check if the page fault is solved */ 3164 fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3165 if (!pte_none(*fe->pte)) 3166 ret = VM_FAULT_NOPAGE; 3167 pte_unmap_unlock(fe->pte, fe->ptl); 3168 out: 3169 fe->address = address; 3170 fe->pte = NULL; 3171 return ret; 3172 } 3173 3174 static int do_read_fault(struct fault_env *fe, pgoff_t pgoff) 3175 { 3176 struct vm_area_struct *vma = fe->vma; 3177 struct page *fault_page; 3178 int ret = 0; 3179 3180 /* 3181 * Let's call ->map_pages() first and use ->fault() as fallback 3182 * if page by the offset is not ready to be mapped (cold cache or 3183 * something). 3184 */ 3185 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3186 ret = do_fault_around(fe, pgoff); 3187 if (ret) 3188 return ret; 3189 } 3190 3191 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); 3192 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3193 return ret; 3194 3195 ret |= alloc_set_pte(fe, NULL, fault_page); 3196 if (fe->pte) 3197 pte_unmap_unlock(fe->pte, fe->ptl); 3198 unlock_page(fault_page); 3199 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3200 put_page(fault_page); 3201 return ret; 3202 } 3203 3204 static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff) 3205 { 3206 struct vm_area_struct *vma = fe->vma; 3207 struct page *fault_page, *new_page; 3208 void *fault_entry; 3209 struct mem_cgroup *memcg; 3210 int ret; 3211 3212 if (unlikely(anon_vma_prepare(vma))) 3213 return VM_FAULT_OOM; 3214 3215 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address); 3216 if (!new_page) 3217 return VM_FAULT_OOM; 3218 3219 if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, 3220 &memcg, false)) { 3221 put_page(new_page); 3222 return VM_FAULT_OOM; 3223 } 3224 3225 ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry); 3226 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3227 goto uncharge_out; 3228 3229 if (!(ret & VM_FAULT_DAX_LOCKED)) 3230 copy_user_highpage(new_page, fault_page, fe->address, vma); 3231 __SetPageUptodate(new_page); 3232 3233 ret |= alloc_set_pte(fe, memcg, new_page); 3234 if (fe->pte) 3235 pte_unmap_unlock(fe->pte, fe->ptl); 3236 if (!(ret & VM_FAULT_DAX_LOCKED)) { 3237 unlock_page(fault_page); 3238 put_page(fault_page); 3239 } else { 3240 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff); 3241 } 3242 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3243 goto uncharge_out; 3244 return ret; 3245 uncharge_out: 3246 mem_cgroup_cancel_charge(new_page, memcg, false); 3247 put_page(new_page); 3248 return ret; 3249 } 3250 3251 static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff) 3252 { 3253 struct vm_area_struct *vma = fe->vma; 3254 struct page *fault_page; 3255 struct address_space *mapping; 3256 int dirtied = 0; 3257 int ret, tmp; 3258 3259 ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); 3260 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3261 return ret; 3262 3263 /* 3264 * Check if the backing address space wants to know that the page is 3265 * about to become writable 3266 */ 3267 if (vma->vm_ops->page_mkwrite) { 3268 unlock_page(fault_page); 3269 tmp = do_page_mkwrite(vma, fault_page, fe->address); 3270 if (unlikely(!tmp || 3271 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3272 put_page(fault_page); 3273 return tmp; 3274 } 3275 } 3276 3277 ret |= alloc_set_pte(fe, NULL, fault_page); 3278 if (fe->pte) 3279 pte_unmap_unlock(fe->pte, fe->ptl); 3280 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3281 VM_FAULT_RETRY))) { 3282 unlock_page(fault_page); 3283 put_page(fault_page); 3284 return ret; 3285 } 3286 3287 if (set_page_dirty(fault_page)) 3288 dirtied = 1; 3289 /* 3290 * Take a local copy of the address_space - page.mapping may be zeroed 3291 * by truncate after unlock_page(). The address_space itself remains 3292 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 3293 * release semantics to prevent the compiler from undoing this copying. 3294 */ 3295 mapping = page_rmapping(fault_page); 3296 unlock_page(fault_page); 3297 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3298 /* 3299 * Some device drivers do not set page.mapping but still 3300 * dirty their pages 3301 */ 3302 balance_dirty_pages_ratelimited(mapping); 3303 } 3304 3305 if (!vma->vm_ops->page_mkwrite) 3306 file_update_time(vma->vm_file); 3307 3308 return ret; 3309 } 3310 3311 /* 3312 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3313 * but allow concurrent faults). 3314 * The mmap_sem may have been released depending on flags and our 3315 * return value. See filemap_fault() and __lock_page_or_retry(). 3316 */ 3317 static int do_fault(struct fault_env *fe) 3318 { 3319 struct vm_area_struct *vma = fe->vma; 3320 pgoff_t pgoff = linear_page_index(vma, fe->address); 3321 3322 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3323 if (!vma->vm_ops->fault) 3324 return VM_FAULT_SIGBUS; 3325 if (!(fe->flags & FAULT_FLAG_WRITE)) 3326 return do_read_fault(fe, pgoff); 3327 if (!(vma->vm_flags & VM_SHARED)) 3328 return do_cow_fault(fe, pgoff); 3329 return do_shared_fault(fe, pgoff); 3330 } 3331 3332 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3333 unsigned long addr, int page_nid, 3334 int *flags) 3335 { 3336 get_page(page); 3337 3338 count_vm_numa_event(NUMA_HINT_FAULTS); 3339 if (page_nid == numa_node_id()) { 3340 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3341 *flags |= TNF_FAULT_LOCAL; 3342 } 3343 3344 return mpol_misplaced(page, vma, addr); 3345 } 3346 3347 static int do_numa_page(struct fault_env *fe, pte_t pte) 3348 { 3349 struct vm_area_struct *vma = fe->vma; 3350 struct page *page = NULL; 3351 int page_nid = -1; 3352 int last_cpupid; 3353 int target_nid; 3354 bool migrated = false; 3355 bool was_writable = pte_write(pte); 3356 int flags = 0; 3357 3358 /* 3359 * The "pte" at this point cannot be used safely without 3360 * validation through pte_unmap_same(). It's of NUMA type but 3361 * the pfn may be screwed if the read is non atomic. 3362 * 3363 * We can safely just do a "set_pte_at()", because the old 3364 * page table entry is not accessible, so there would be no 3365 * concurrent hardware modifications to the PTE. 3366 */ 3367 fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd); 3368 spin_lock(fe->ptl); 3369 if (unlikely(!pte_same(*fe->pte, pte))) { 3370 pte_unmap_unlock(fe->pte, fe->ptl); 3371 goto out; 3372 } 3373 3374 /* Make it present again */ 3375 pte = pte_modify(pte, vma->vm_page_prot); 3376 pte = pte_mkyoung(pte); 3377 if (was_writable) 3378 pte = pte_mkwrite(pte); 3379 set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); 3380 update_mmu_cache(vma, fe->address, fe->pte); 3381 3382 page = vm_normal_page(vma, fe->address, pte); 3383 if (!page) { 3384 pte_unmap_unlock(fe->pte, fe->ptl); 3385 return 0; 3386 } 3387 3388 /* TODO: handle PTE-mapped THP */ 3389 if (PageCompound(page)) { 3390 pte_unmap_unlock(fe->pte, fe->ptl); 3391 return 0; 3392 } 3393 3394 /* 3395 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3396 * much anyway since they can be in shared cache state. This misses 3397 * the case where a mapping is writable but the process never writes 3398 * to it but pte_write gets cleared during protection updates and 3399 * pte_dirty has unpredictable behaviour between PTE scan updates, 3400 * background writeback, dirty balancing and application behaviour. 3401 */ 3402 if (!pte_write(pte)) 3403 flags |= TNF_NO_GROUP; 3404 3405 /* 3406 * Flag if the page is shared between multiple address spaces. This 3407 * is later used when determining whether to group tasks together 3408 */ 3409 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3410 flags |= TNF_SHARED; 3411 3412 last_cpupid = page_cpupid_last(page); 3413 page_nid = page_to_nid(page); 3414 target_nid = numa_migrate_prep(page, vma, fe->address, page_nid, 3415 &flags); 3416 pte_unmap_unlock(fe->pte, fe->ptl); 3417 if (target_nid == -1) { 3418 put_page(page); 3419 goto out; 3420 } 3421 3422 /* Migrate to the requested node */ 3423 migrated = migrate_misplaced_page(page, vma, target_nid); 3424 if (migrated) { 3425 page_nid = target_nid; 3426 flags |= TNF_MIGRATED; 3427 } else 3428 flags |= TNF_MIGRATE_FAIL; 3429 3430 out: 3431 if (page_nid != -1) 3432 task_numa_fault(last_cpupid, page_nid, 1, flags); 3433 return 0; 3434 } 3435 3436 static int create_huge_pmd(struct fault_env *fe) 3437 { 3438 struct vm_area_struct *vma = fe->vma; 3439 if (vma_is_anonymous(vma)) 3440 return do_huge_pmd_anonymous_page(fe); 3441 if (vma->vm_ops->pmd_fault) 3442 return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd, 3443 fe->flags); 3444 return VM_FAULT_FALLBACK; 3445 } 3446 3447 static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd) 3448 { 3449 if (vma_is_anonymous(fe->vma)) 3450 return do_huge_pmd_wp_page(fe, orig_pmd); 3451 if (fe->vma->vm_ops->pmd_fault) 3452 return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd, 3453 fe->flags); 3454 3455 /* COW handled on pte level: split pmd */ 3456 VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma); 3457 split_huge_pmd(fe->vma, fe->pmd, fe->address); 3458 3459 return VM_FAULT_FALLBACK; 3460 } 3461 3462 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3463 { 3464 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3465 } 3466 3467 /* 3468 * These routines also need to handle stuff like marking pages dirty 3469 * and/or accessed for architectures that don't do it in hardware (most 3470 * RISC architectures). The early dirtying is also good on the i386. 3471 * 3472 * There is also a hook called "update_mmu_cache()" that architectures 3473 * with external mmu caches can use to update those (ie the Sparc or 3474 * PowerPC hashed page tables that act as extended TLBs). 3475 * 3476 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3477 * concurrent faults). 3478 * 3479 * The mmap_sem may have been released depending on flags and our return value. 3480 * See filemap_fault() and __lock_page_or_retry(). 3481 */ 3482 static int handle_pte_fault(struct fault_env *fe) 3483 { 3484 pte_t entry; 3485 3486 if (unlikely(pmd_none(*fe->pmd))) { 3487 /* 3488 * Leave __pte_alloc() until later: because vm_ops->fault may 3489 * want to allocate huge page, and if we expose page table 3490 * for an instant, it will be difficult to retract from 3491 * concurrent faults and from rmap lookups. 3492 */ 3493 fe->pte = NULL; 3494 } else { 3495 /* See comment in pte_alloc_one_map() */ 3496 if (pmd_trans_unstable(fe->pmd) || pmd_devmap(*fe->pmd)) 3497 return 0; 3498 /* 3499 * A regular pmd is established and it can't morph into a huge 3500 * pmd from under us anymore at this point because we hold the 3501 * mmap_sem read mode and khugepaged takes it in write mode. 3502 * So now it's safe to run pte_offset_map(). 3503 */ 3504 fe->pte = pte_offset_map(fe->pmd, fe->address); 3505 3506 entry = *fe->pte; 3507 3508 /* 3509 * some architectures can have larger ptes than wordsize, 3510 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3511 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3512 * atomic accesses. The code below just needs a consistent 3513 * view for the ifs and we later double check anyway with the 3514 * ptl lock held. So here a barrier will do. 3515 */ 3516 barrier(); 3517 if (pte_none(entry)) { 3518 pte_unmap(fe->pte); 3519 fe->pte = NULL; 3520 } 3521 } 3522 3523 if (!fe->pte) { 3524 if (vma_is_anonymous(fe->vma)) 3525 return do_anonymous_page(fe); 3526 else 3527 return do_fault(fe); 3528 } 3529 3530 if (!pte_present(entry)) 3531 return do_swap_page(fe, entry); 3532 3533 if (pte_protnone(entry) && vma_is_accessible(fe->vma)) 3534 return do_numa_page(fe, entry); 3535 3536 fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd); 3537 spin_lock(fe->ptl); 3538 if (unlikely(!pte_same(*fe->pte, entry))) 3539 goto unlock; 3540 if (fe->flags & FAULT_FLAG_WRITE) { 3541 if (!pte_write(entry)) 3542 return do_wp_page(fe, entry); 3543 entry = pte_mkdirty(entry); 3544 } 3545 entry = pte_mkyoung(entry); 3546 if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry, 3547 fe->flags & FAULT_FLAG_WRITE)) { 3548 update_mmu_cache(fe->vma, fe->address, fe->pte); 3549 } else { 3550 /* 3551 * This is needed only for protection faults but the arch code 3552 * is not yet telling us if this is a protection fault or not. 3553 * This still avoids useless tlb flushes for .text page faults 3554 * with threads. 3555 */ 3556 if (fe->flags & FAULT_FLAG_WRITE) 3557 flush_tlb_fix_spurious_fault(fe->vma, fe->address); 3558 } 3559 unlock: 3560 pte_unmap_unlock(fe->pte, fe->ptl); 3561 return 0; 3562 } 3563 3564 /* 3565 * By the time we get here, we already hold the mm semaphore 3566 * 3567 * The mmap_sem may have been released depending on flags and our 3568 * return value. See filemap_fault() and __lock_page_or_retry(). 3569 */ 3570 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3571 unsigned int flags) 3572 { 3573 struct fault_env fe = { 3574 .vma = vma, 3575 .address = address, 3576 .flags = flags, 3577 }; 3578 struct mm_struct *mm = vma->vm_mm; 3579 pgd_t *pgd; 3580 pud_t *pud; 3581 3582 pgd = pgd_offset(mm, address); 3583 pud = pud_alloc(mm, pgd, address); 3584 if (!pud) 3585 return VM_FAULT_OOM; 3586 fe.pmd = pmd_alloc(mm, pud, address); 3587 if (!fe.pmd) 3588 return VM_FAULT_OOM; 3589 if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) { 3590 int ret = create_huge_pmd(&fe); 3591 if (!(ret & VM_FAULT_FALLBACK)) 3592 return ret; 3593 } else { 3594 pmd_t orig_pmd = *fe.pmd; 3595 int ret; 3596 3597 barrier(); 3598 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3599 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3600 return do_huge_pmd_numa_page(&fe, orig_pmd); 3601 3602 if ((fe.flags & FAULT_FLAG_WRITE) && 3603 !pmd_write(orig_pmd)) { 3604 ret = wp_huge_pmd(&fe, orig_pmd); 3605 if (!(ret & VM_FAULT_FALLBACK)) 3606 return ret; 3607 } else { 3608 huge_pmd_set_accessed(&fe, orig_pmd); 3609 return 0; 3610 } 3611 } 3612 } 3613 3614 return handle_pte_fault(&fe); 3615 } 3616 3617 /* 3618 * By the time we get here, we already hold the mm semaphore 3619 * 3620 * The mmap_sem may have been released depending on flags and our 3621 * return value. See filemap_fault() and __lock_page_or_retry(). 3622 */ 3623 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3624 unsigned int flags) 3625 { 3626 int ret; 3627 3628 __set_current_state(TASK_RUNNING); 3629 3630 count_vm_event(PGFAULT); 3631 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); 3632 3633 /* do counter updates before entering really critical section. */ 3634 check_sync_rss_stat(current); 3635 3636 /* 3637 * Enable the memcg OOM handling for faults triggered in user 3638 * space. Kernel faults are handled more gracefully. 3639 */ 3640 if (flags & FAULT_FLAG_USER) 3641 mem_cgroup_oom_enable(); 3642 3643 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3644 flags & FAULT_FLAG_INSTRUCTION, 3645 flags & FAULT_FLAG_REMOTE)) 3646 return VM_FAULT_SIGSEGV; 3647 3648 if (unlikely(is_vm_hugetlb_page(vma))) 3649 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3650 else 3651 ret = __handle_mm_fault(vma, address, flags); 3652 3653 if (flags & FAULT_FLAG_USER) { 3654 mem_cgroup_oom_disable(); 3655 /* 3656 * The task may have entered a memcg OOM situation but 3657 * if the allocation error was handled gracefully (no 3658 * VM_FAULT_OOM), there is no need to kill anything. 3659 * Just clean up the OOM state peacefully. 3660 */ 3661 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3662 mem_cgroup_oom_synchronize(false); 3663 } 3664 3665 /* 3666 * This mm has been already reaped by the oom reaper and so the 3667 * refault cannot be trusted in general. Anonymous refaults would 3668 * lose data and give a zero page instead e.g. This is especially 3669 * problem for use_mm() because regular tasks will just die and 3670 * the corrupted data will not be visible anywhere while kthread 3671 * will outlive the oom victim and potentially propagate the date 3672 * further. 3673 */ 3674 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) 3675 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) 3676 ret = VM_FAULT_SIGBUS; 3677 3678 return ret; 3679 } 3680 EXPORT_SYMBOL_GPL(handle_mm_fault); 3681 3682 #ifndef __PAGETABLE_PUD_FOLDED 3683 /* 3684 * Allocate page upper directory. 3685 * We've already handled the fast-path in-line. 3686 */ 3687 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3688 { 3689 pud_t *new = pud_alloc_one(mm, address); 3690 if (!new) 3691 return -ENOMEM; 3692 3693 smp_wmb(); /* See comment in __pte_alloc */ 3694 3695 spin_lock(&mm->page_table_lock); 3696 if (pgd_present(*pgd)) /* Another has populated it */ 3697 pud_free(mm, new); 3698 else 3699 pgd_populate(mm, pgd, new); 3700 spin_unlock(&mm->page_table_lock); 3701 return 0; 3702 } 3703 #endif /* __PAGETABLE_PUD_FOLDED */ 3704 3705 #ifndef __PAGETABLE_PMD_FOLDED 3706 /* 3707 * Allocate page middle directory. 3708 * We've already handled the fast-path in-line. 3709 */ 3710 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3711 { 3712 pmd_t *new = pmd_alloc_one(mm, address); 3713 if (!new) 3714 return -ENOMEM; 3715 3716 smp_wmb(); /* See comment in __pte_alloc */ 3717 3718 spin_lock(&mm->page_table_lock); 3719 #ifndef __ARCH_HAS_4LEVEL_HACK 3720 if (!pud_present(*pud)) { 3721 mm_inc_nr_pmds(mm); 3722 pud_populate(mm, pud, new); 3723 } else /* Another has populated it */ 3724 pmd_free(mm, new); 3725 #else 3726 if (!pgd_present(*pud)) { 3727 mm_inc_nr_pmds(mm); 3728 pgd_populate(mm, pud, new); 3729 } else /* Another has populated it */ 3730 pmd_free(mm, new); 3731 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3732 spin_unlock(&mm->page_table_lock); 3733 return 0; 3734 } 3735 #endif /* __PAGETABLE_PMD_FOLDED */ 3736 3737 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3738 pte_t **ptepp, spinlock_t **ptlp) 3739 { 3740 pgd_t *pgd; 3741 pud_t *pud; 3742 pmd_t *pmd; 3743 pte_t *ptep; 3744 3745 pgd = pgd_offset(mm, address); 3746 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3747 goto out; 3748 3749 pud = pud_offset(pgd, address); 3750 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3751 goto out; 3752 3753 pmd = pmd_offset(pud, address); 3754 VM_BUG_ON(pmd_trans_huge(*pmd)); 3755 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3756 goto out; 3757 3758 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3759 if (pmd_huge(*pmd)) 3760 goto out; 3761 3762 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3763 if (!ptep) 3764 goto out; 3765 if (!pte_present(*ptep)) 3766 goto unlock; 3767 *ptepp = ptep; 3768 return 0; 3769 unlock: 3770 pte_unmap_unlock(ptep, *ptlp); 3771 out: 3772 return -EINVAL; 3773 } 3774 3775 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3776 pte_t **ptepp, spinlock_t **ptlp) 3777 { 3778 int res; 3779 3780 /* (void) is needed to make gcc happy */ 3781 (void) __cond_lock(*ptlp, 3782 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3783 return res; 3784 } 3785 3786 /** 3787 * follow_pfn - look up PFN at a user virtual address 3788 * @vma: memory mapping 3789 * @address: user virtual address 3790 * @pfn: location to store found PFN 3791 * 3792 * Only IO mappings and raw PFN mappings are allowed. 3793 * 3794 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3795 */ 3796 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3797 unsigned long *pfn) 3798 { 3799 int ret = -EINVAL; 3800 spinlock_t *ptl; 3801 pte_t *ptep; 3802 3803 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3804 return ret; 3805 3806 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3807 if (ret) 3808 return ret; 3809 *pfn = pte_pfn(*ptep); 3810 pte_unmap_unlock(ptep, ptl); 3811 return 0; 3812 } 3813 EXPORT_SYMBOL(follow_pfn); 3814 3815 #ifdef CONFIG_HAVE_IOREMAP_PROT 3816 int follow_phys(struct vm_area_struct *vma, 3817 unsigned long address, unsigned int flags, 3818 unsigned long *prot, resource_size_t *phys) 3819 { 3820 int ret = -EINVAL; 3821 pte_t *ptep, pte; 3822 spinlock_t *ptl; 3823 3824 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3825 goto out; 3826 3827 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3828 goto out; 3829 pte = *ptep; 3830 3831 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3832 goto unlock; 3833 3834 *prot = pgprot_val(pte_pgprot(pte)); 3835 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3836 3837 ret = 0; 3838 unlock: 3839 pte_unmap_unlock(ptep, ptl); 3840 out: 3841 return ret; 3842 } 3843 3844 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3845 void *buf, int len, int write) 3846 { 3847 resource_size_t phys_addr; 3848 unsigned long prot = 0; 3849 void __iomem *maddr; 3850 int offset = addr & (PAGE_SIZE-1); 3851 3852 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3853 return -EINVAL; 3854 3855 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3856 if (write) 3857 memcpy_toio(maddr + offset, buf, len); 3858 else 3859 memcpy_fromio(buf, maddr + offset, len); 3860 iounmap(maddr); 3861 3862 return len; 3863 } 3864 EXPORT_SYMBOL_GPL(generic_access_phys); 3865 #endif 3866 3867 /* 3868 * Access another process' address space as given in mm. If non-NULL, use the 3869 * given task for page fault accounting. 3870 */ 3871 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3872 unsigned long addr, void *buf, int len, unsigned int gup_flags) 3873 { 3874 struct vm_area_struct *vma; 3875 void *old_buf = buf; 3876 int write = gup_flags & FOLL_WRITE; 3877 3878 down_read(&mm->mmap_sem); 3879 /* ignore errors, just check how much was successfully transferred */ 3880 while (len) { 3881 int bytes, ret, offset; 3882 void *maddr; 3883 struct page *page = NULL; 3884 3885 ret = get_user_pages_remote(tsk, mm, addr, 1, 3886 gup_flags, &page, &vma); 3887 if (ret <= 0) { 3888 #ifndef CONFIG_HAVE_IOREMAP_PROT 3889 break; 3890 #else 3891 /* 3892 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3893 * we can access using slightly different code. 3894 */ 3895 vma = find_vma(mm, addr); 3896 if (!vma || vma->vm_start > addr) 3897 break; 3898 if (vma->vm_ops && vma->vm_ops->access) 3899 ret = vma->vm_ops->access(vma, addr, buf, 3900 len, write); 3901 if (ret <= 0) 3902 break; 3903 bytes = ret; 3904 #endif 3905 } else { 3906 bytes = len; 3907 offset = addr & (PAGE_SIZE-1); 3908 if (bytes > PAGE_SIZE-offset) 3909 bytes = PAGE_SIZE-offset; 3910 3911 maddr = kmap(page); 3912 if (write) { 3913 copy_to_user_page(vma, page, addr, 3914 maddr + offset, buf, bytes); 3915 set_page_dirty_lock(page); 3916 } else { 3917 copy_from_user_page(vma, page, addr, 3918 buf, maddr + offset, bytes); 3919 } 3920 kunmap(page); 3921 put_page(page); 3922 } 3923 len -= bytes; 3924 buf += bytes; 3925 addr += bytes; 3926 } 3927 up_read(&mm->mmap_sem); 3928 3929 return buf - old_buf; 3930 } 3931 3932 /** 3933 * access_remote_vm - access another process' address space 3934 * @mm: the mm_struct of the target address space 3935 * @addr: start address to access 3936 * @buf: source or destination buffer 3937 * @len: number of bytes to transfer 3938 * @gup_flags: flags modifying lookup behaviour 3939 * 3940 * The caller must hold a reference on @mm. 3941 */ 3942 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3943 void *buf, int len, unsigned int gup_flags) 3944 { 3945 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 3946 } 3947 3948 /* 3949 * Access another process' address space. 3950 * Source/target buffer must be kernel space, 3951 * Do not walk the page table directly, use get_user_pages 3952 */ 3953 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3954 void *buf, int len, unsigned int gup_flags) 3955 { 3956 struct mm_struct *mm; 3957 int ret; 3958 3959 mm = get_task_mm(tsk); 3960 if (!mm) 3961 return 0; 3962 3963 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 3964 3965 mmput(mm); 3966 3967 return ret; 3968 } 3969 3970 /* 3971 * Print the name of a VMA. 3972 */ 3973 void print_vma_addr(char *prefix, unsigned long ip) 3974 { 3975 struct mm_struct *mm = current->mm; 3976 struct vm_area_struct *vma; 3977 3978 /* 3979 * Do not print if we are in atomic 3980 * contexts (in exception stacks, etc.): 3981 */ 3982 if (preempt_count()) 3983 return; 3984 3985 down_read(&mm->mmap_sem); 3986 vma = find_vma(mm, ip); 3987 if (vma && vma->vm_file) { 3988 struct file *f = vma->vm_file; 3989 char *buf = (char *)__get_free_page(GFP_KERNEL); 3990 if (buf) { 3991 char *p; 3992 3993 p = file_path(f, buf, PAGE_SIZE); 3994 if (IS_ERR(p)) 3995 p = "?"; 3996 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3997 vma->vm_start, 3998 vma->vm_end - vma->vm_start); 3999 free_page((unsigned long)buf); 4000 } 4001 } 4002 up_read(&mm->mmap_sem); 4003 } 4004 4005 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4006 void __might_fault(const char *file, int line) 4007 { 4008 /* 4009 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4010 * holding the mmap_sem, this is safe because kernel memory doesn't 4011 * get paged out, therefore we'll never actually fault, and the 4012 * below annotations will generate false positives. 4013 */ 4014 if (segment_eq(get_fs(), KERNEL_DS)) 4015 return; 4016 if (pagefault_disabled()) 4017 return; 4018 __might_sleep(file, line, 0); 4019 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4020 if (current->mm) 4021 might_lock_read(¤t->mm->mmap_sem); 4022 #endif 4023 } 4024 EXPORT_SYMBOL(__might_fault); 4025 #endif 4026 4027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4028 static void clear_gigantic_page(struct page *page, 4029 unsigned long addr, 4030 unsigned int pages_per_huge_page) 4031 { 4032 int i; 4033 struct page *p = page; 4034 4035 might_sleep(); 4036 for (i = 0; i < pages_per_huge_page; 4037 i++, p = mem_map_next(p, page, i)) { 4038 cond_resched(); 4039 clear_user_highpage(p, addr + i * PAGE_SIZE); 4040 } 4041 } 4042 void clear_huge_page(struct page *page, 4043 unsigned long addr, unsigned int pages_per_huge_page) 4044 { 4045 int i; 4046 4047 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4048 clear_gigantic_page(page, addr, pages_per_huge_page); 4049 return; 4050 } 4051 4052 might_sleep(); 4053 for (i = 0; i < pages_per_huge_page; i++) { 4054 cond_resched(); 4055 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4056 } 4057 } 4058 4059 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4060 unsigned long addr, 4061 struct vm_area_struct *vma, 4062 unsigned int pages_per_huge_page) 4063 { 4064 int i; 4065 struct page *dst_base = dst; 4066 struct page *src_base = src; 4067 4068 for (i = 0; i < pages_per_huge_page; ) { 4069 cond_resched(); 4070 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4071 4072 i++; 4073 dst = mem_map_next(dst, dst_base, i); 4074 src = mem_map_next(src, src_base, i); 4075 } 4076 } 4077 4078 void copy_user_huge_page(struct page *dst, struct page *src, 4079 unsigned long addr, struct vm_area_struct *vma, 4080 unsigned int pages_per_huge_page) 4081 { 4082 int i; 4083 4084 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4085 copy_user_gigantic_page(dst, src, addr, vma, 4086 pages_per_huge_page); 4087 return; 4088 } 4089 4090 might_sleep(); 4091 for (i = 0; i < pages_per_huge_page; i++) { 4092 cond_resched(); 4093 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4094 } 4095 } 4096 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4097 4098 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4099 4100 static struct kmem_cache *page_ptl_cachep; 4101 4102 void __init ptlock_cache_init(void) 4103 { 4104 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4105 SLAB_PANIC, NULL); 4106 } 4107 4108 bool ptlock_alloc(struct page *page) 4109 { 4110 spinlock_t *ptl; 4111 4112 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4113 if (!ptl) 4114 return false; 4115 page->ptl = ptl; 4116 return true; 4117 } 4118 4119 void ptlock_free(struct page *page) 4120 { 4121 kmem_cache_free(page_ptl_cachep, page->ptl); 4122 } 4123 #endif 4124