xref: /openbmc/linux/mm/memory.c (revision dbf563ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93 
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112 
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 					1;
122 #else
123 					2;
124 #endif
125 
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 	/*
130 	 * Those arches which don't have hw access flag feature need to
131 	 * implement their own helper. By default, "true" means pagefault
132 	 * will be hit on old pte.
133 	 */
134 	return true;
135 }
136 #endif
137 
138 static int __init disable_randmaps(char *s)
139 {
140 	randomize_va_space = 0;
141 	return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144 
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147 
148 unsigned long highest_memmap_pfn __read_mostly;
149 
150 /*
151  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152  */
153 static int __init init_zero_pfn(void)
154 {
155 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 	return 0;
157 }
158 core_initcall(init_zero_pfn);
159 
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 	trace_rss_stat(mm, member, count);
163 }
164 
165 #if defined(SPLIT_RSS_COUNTING)
166 
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 	int i;
170 
171 	for (i = 0; i < NR_MM_COUNTERS; i++) {
172 		if (current->rss_stat.count[i]) {
173 			add_mm_counter(mm, i, current->rss_stat.count[i]);
174 			current->rss_stat.count[i] = 0;
175 		}
176 	}
177 	current->rss_stat.events = 0;
178 }
179 
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 	struct task_struct *task = current;
183 
184 	if (likely(task->mm == mm))
185 		task->rss_stat.count[member] += val;
186 	else
187 		add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191 
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH	(64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 	if (unlikely(task != current))
197 		return;
198 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 		sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202 
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205 
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209 
210 #endif /* SPLIT_RSS_COUNTING */
211 
212 /*
213  * Note: this doesn't free the actual pages themselves. That
214  * has been handled earlier when unmapping all the memory regions.
215  */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 			   unsigned long addr)
218 {
219 	pgtable_t token = pmd_pgtable(*pmd);
220 	pmd_clear(pmd);
221 	pte_free_tlb(tlb, token, addr);
222 	mm_dec_nr_ptes(tlb->mm);
223 }
224 
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 				unsigned long addr, unsigned long end,
227 				unsigned long floor, unsigned long ceiling)
228 {
229 	pmd_t *pmd;
230 	unsigned long next;
231 	unsigned long start;
232 
233 	start = addr;
234 	pmd = pmd_offset(pud, addr);
235 	do {
236 		next = pmd_addr_end(addr, end);
237 		if (pmd_none_or_clear_bad(pmd))
238 			continue;
239 		free_pte_range(tlb, pmd, addr);
240 	} while (pmd++, addr = next, addr != end);
241 
242 	start &= PUD_MASK;
243 	if (start < floor)
244 		return;
245 	if (ceiling) {
246 		ceiling &= PUD_MASK;
247 		if (!ceiling)
248 			return;
249 	}
250 	if (end - 1 > ceiling - 1)
251 		return;
252 
253 	pmd = pmd_offset(pud, start);
254 	pud_clear(pud);
255 	pmd_free_tlb(tlb, pmd, start);
256 	mm_dec_nr_pmds(tlb->mm);
257 }
258 
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 				unsigned long addr, unsigned long end,
261 				unsigned long floor, unsigned long ceiling)
262 {
263 	pud_t *pud;
264 	unsigned long next;
265 	unsigned long start;
266 
267 	start = addr;
268 	pud = pud_offset(p4d, addr);
269 	do {
270 		next = pud_addr_end(addr, end);
271 		if (pud_none_or_clear_bad(pud))
272 			continue;
273 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 	} while (pud++, addr = next, addr != end);
275 
276 	start &= P4D_MASK;
277 	if (start < floor)
278 		return;
279 	if (ceiling) {
280 		ceiling &= P4D_MASK;
281 		if (!ceiling)
282 			return;
283 	}
284 	if (end - 1 > ceiling - 1)
285 		return;
286 
287 	pud = pud_offset(p4d, start);
288 	p4d_clear(p4d);
289 	pud_free_tlb(tlb, pud, start);
290 	mm_dec_nr_puds(tlb->mm);
291 }
292 
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 				unsigned long addr, unsigned long end,
295 				unsigned long floor, unsigned long ceiling)
296 {
297 	p4d_t *p4d;
298 	unsigned long next;
299 	unsigned long start;
300 
301 	start = addr;
302 	p4d = p4d_offset(pgd, addr);
303 	do {
304 		next = p4d_addr_end(addr, end);
305 		if (p4d_none_or_clear_bad(p4d))
306 			continue;
307 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 	} while (p4d++, addr = next, addr != end);
309 
310 	start &= PGDIR_MASK;
311 	if (start < floor)
312 		return;
313 	if (ceiling) {
314 		ceiling &= PGDIR_MASK;
315 		if (!ceiling)
316 			return;
317 	}
318 	if (end - 1 > ceiling - 1)
319 		return;
320 
321 	p4d = p4d_offset(pgd, start);
322 	pgd_clear(pgd);
323 	p4d_free_tlb(tlb, p4d, start);
324 }
325 
326 /*
327  * This function frees user-level page tables of a process.
328  */
329 void free_pgd_range(struct mmu_gather *tlb,
330 			unsigned long addr, unsigned long end,
331 			unsigned long floor, unsigned long ceiling)
332 {
333 	pgd_t *pgd;
334 	unsigned long next;
335 
336 	/*
337 	 * The next few lines have given us lots of grief...
338 	 *
339 	 * Why are we testing PMD* at this top level?  Because often
340 	 * there will be no work to do at all, and we'd prefer not to
341 	 * go all the way down to the bottom just to discover that.
342 	 *
343 	 * Why all these "- 1"s?  Because 0 represents both the bottom
344 	 * of the address space and the top of it (using -1 for the
345 	 * top wouldn't help much: the masks would do the wrong thing).
346 	 * The rule is that addr 0 and floor 0 refer to the bottom of
347 	 * the address space, but end 0 and ceiling 0 refer to the top
348 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 	 * that end 0 case should be mythical).
350 	 *
351 	 * Wherever addr is brought up or ceiling brought down, we must
352 	 * be careful to reject "the opposite 0" before it confuses the
353 	 * subsequent tests.  But what about where end is brought down
354 	 * by PMD_SIZE below? no, end can't go down to 0 there.
355 	 *
356 	 * Whereas we round start (addr) and ceiling down, by different
357 	 * masks at different levels, in order to test whether a table
358 	 * now has no other vmas using it, so can be freed, we don't
359 	 * bother to round floor or end up - the tests don't need that.
360 	 */
361 
362 	addr &= PMD_MASK;
363 	if (addr < floor) {
364 		addr += PMD_SIZE;
365 		if (!addr)
366 			return;
367 	}
368 	if (ceiling) {
369 		ceiling &= PMD_MASK;
370 		if (!ceiling)
371 			return;
372 	}
373 	if (end - 1 > ceiling - 1)
374 		end -= PMD_SIZE;
375 	if (addr > end - 1)
376 		return;
377 	/*
378 	 * We add page table cache pages with PAGE_SIZE,
379 	 * (see pte_free_tlb()), flush the tlb if we need
380 	 */
381 	tlb_change_page_size(tlb, PAGE_SIZE);
382 	pgd = pgd_offset(tlb->mm, addr);
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		if (pgd_none_or_clear_bad(pgd))
386 			continue;
387 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 	} while (pgd++, addr = next, addr != end);
389 }
390 
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 		unsigned long floor, unsigned long ceiling)
393 {
394 	while (vma) {
395 		struct vm_area_struct *next = vma->vm_next;
396 		unsigned long addr = vma->vm_start;
397 
398 		/*
399 		 * Hide vma from rmap and truncate_pagecache before freeing
400 		 * pgtables
401 		 */
402 		unlink_anon_vmas(vma);
403 		unlink_file_vma(vma);
404 
405 		if (is_vm_hugetlb_page(vma)) {
406 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 				floor, next ? next->vm_start : ceiling);
408 		} else {
409 			/*
410 			 * Optimization: gather nearby vmas into one call down
411 			 */
412 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 			       && !is_vm_hugetlb_page(next)) {
414 				vma = next;
415 				next = vma->vm_next;
416 				unlink_anon_vmas(vma);
417 				unlink_file_vma(vma);
418 			}
419 			free_pgd_range(tlb, addr, vma->vm_end,
420 				floor, next ? next->vm_start : ceiling);
421 		}
422 		vma = next;
423 	}
424 }
425 
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 	spinlock_t *ptl;
429 	pgtable_t new = pte_alloc_one(mm);
430 	if (!new)
431 		return -ENOMEM;
432 
433 	/*
434 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 	 * visible before the pte is made visible to other CPUs by being
436 	 * put into page tables.
437 	 *
438 	 * The other side of the story is the pointer chasing in the page
439 	 * table walking code (when walking the page table without locking;
440 	 * ie. most of the time). Fortunately, these data accesses consist
441 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 	 * being the notable exception) will already guarantee loads are
443 	 * seen in-order. See the alpha page table accessors for the
444 	 * smp_rmb() barriers in page table walking code.
445 	 */
446 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447 
448 	ptl = pmd_lock(mm, pmd);
449 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
450 		mm_inc_nr_ptes(mm);
451 		pmd_populate(mm, pmd, new);
452 		new = NULL;
453 	}
454 	spin_unlock(ptl);
455 	if (new)
456 		pte_free(mm, new);
457 	return 0;
458 }
459 
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 	pte_t *new = pte_alloc_one_kernel(&init_mm);
463 	if (!new)
464 		return -ENOMEM;
465 
466 	smp_wmb(); /* See comment in __pte_alloc */
467 
468 	spin_lock(&init_mm.page_table_lock);
469 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
470 		pmd_populate_kernel(&init_mm, pmd, new);
471 		new = NULL;
472 	}
473 	spin_unlock(&init_mm.page_table_lock);
474 	if (new)
475 		pte_free_kernel(&init_mm, new);
476 	return 0;
477 }
478 
479 static inline void init_rss_vec(int *rss)
480 {
481 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483 
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 	int i;
487 
488 	if (current->mm == mm)
489 		sync_mm_rss(mm);
490 	for (i = 0; i < NR_MM_COUNTERS; i++)
491 		if (rss[i])
492 			add_mm_counter(mm, i, rss[i]);
493 }
494 
495 /*
496  * This function is called to print an error when a bad pte
497  * is found. For example, we might have a PFN-mapped pte in
498  * a region that doesn't allow it.
499  *
500  * The calling function must still handle the error.
501  */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 			  pte_t pte, struct page *page)
504 {
505 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 	p4d_t *p4d = p4d_offset(pgd, addr);
507 	pud_t *pud = pud_offset(p4d, addr);
508 	pmd_t *pmd = pmd_offset(pud, addr);
509 	struct address_space *mapping;
510 	pgoff_t index;
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			return;
523 		}
524 		if (nr_unshown) {
525 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 				 nr_unshown);
527 			nr_unshown = 0;
528 		}
529 		nr_shown = 0;
530 	}
531 	if (nr_shown++ == 0)
532 		resume = jiffies + 60 * HZ;
533 
534 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 	index = linear_page_index(vma, addr);
536 
537 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
538 		 current->comm,
539 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 	if (page)
541 		dump_page(page, "bad pte");
542 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 		 vma->vm_file,
546 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 		 mapping ? mapping->a_ops->readpage : NULL);
549 	dump_stack();
550 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552 
553 /*
554  * vm_normal_page -- This function gets the "struct page" associated with a pte.
555  *
556  * "Special" mappings do not wish to be associated with a "struct page" (either
557  * it doesn't exist, or it exists but they don't want to touch it). In this
558  * case, NULL is returned here. "Normal" mappings do have a struct page.
559  *
560  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561  * pte bit, in which case this function is trivial. Secondly, an architecture
562  * may not have a spare pte bit, which requires a more complicated scheme,
563  * described below.
564  *
565  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566  * special mapping (even if there are underlying and valid "struct pages").
567  * COWed pages of a VM_PFNMAP are always normal.
568  *
569  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572  * mapping will always honor the rule
573  *
574  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575  *
576  * And for normal mappings this is false.
577  *
578  * This restricts such mappings to be a linear translation from virtual address
579  * to pfn. To get around this restriction, we allow arbitrary mappings so long
580  * as the vma is not a COW mapping; in that case, we know that all ptes are
581  * special (because none can have been COWed).
582  *
583  *
584  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585  *
586  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587  * page" backing, however the difference is that _all_ pages with a struct
588  * page (that is, those where pfn_valid is true) are refcounted and considered
589  * normal pages by the VM. The disadvantage is that pages are refcounted
590  * (which can be slower and simply not an option for some PFNMAP users). The
591  * advantage is that we don't have to follow the strict linearity rule of
592  * PFNMAP mappings in order to support COWable mappings.
593  *
594  */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 			    pte_t pte)
597 {
598 	unsigned long pfn = pte_pfn(pte);
599 
600 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 		if (likely(!pte_special(pte)))
602 			goto check_pfn;
603 		if (vma->vm_ops && vma->vm_ops->find_special_page)
604 			return vma->vm_ops->find_special_page(vma, addr);
605 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 			return NULL;
607 		if (is_zero_pfn(pfn))
608 			return NULL;
609 		if (pte_devmap(pte))
610 			return NULL;
611 
612 		print_bad_pte(vma, addr, pte, NULL);
613 		return NULL;
614 	}
615 
616 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617 
618 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 		if (vma->vm_flags & VM_MIXEDMAP) {
620 			if (!pfn_valid(pfn))
621 				return NULL;
622 			goto out;
623 		} else {
624 			unsigned long off;
625 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 			if (pfn == vma->vm_pgoff + off)
627 				return NULL;
628 			if (!is_cow_mapping(vma->vm_flags))
629 				return NULL;
630 		}
631 	}
632 
633 	if (is_zero_pfn(pfn))
634 		return NULL;
635 
636 check_pfn:
637 	if (unlikely(pfn > highest_memmap_pfn)) {
638 		print_bad_pte(vma, addr, pte, NULL);
639 		return NULL;
640 	}
641 
642 	/*
643 	 * NOTE! We still have PageReserved() pages in the page tables.
644 	 * eg. VDSO mappings can cause them to exist.
645 	 */
646 out:
647 	return pfn_to_page(pfn);
648 }
649 
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 				pmd_t pmd)
653 {
654 	unsigned long pfn = pmd_pfn(pmd);
655 
656 	/*
657 	 * There is no pmd_special() but there may be special pmds, e.g.
658 	 * in a direct-access (dax) mapping, so let's just replicate the
659 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 	 */
661 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 		if (vma->vm_flags & VM_MIXEDMAP) {
663 			if (!pfn_valid(pfn))
664 				return NULL;
665 			goto out;
666 		} else {
667 			unsigned long off;
668 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 			if (pfn == vma->vm_pgoff + off)
670 				return NULL;
671 			if (!is_cow_mapping(vma->vm_flags))
672 				return NULL;
673 		}
674 	}
675 
676 	if (pmd_devmap(pmd))
677 		return NULL;
678 	if (is_huge_zero_pmd(pmd))
679 		return NULL;
680 	if (unlikely(pfn > highest_memmap_pfn))
681 		return NULL;
682 
683 	/*
684 	 * NOTE! We still have PageReserved() pages in the page tables.
685 	 * eg. VDSO mappings can cause them to exist.
686 	 */
687 out:
688 	return pfn_to_page(pfn);
689 }
690 #endif
691 
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697 
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 		unsigned long addr, int *rss)
702 {
703 	unsigned long vm_flags = vma->vm_flags;
704 	pte_t pte = *src_pte;
705 	struct page *page;
706 	swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 	if (likely(!non_swap_entry(entry))) {
709 		if (swap_duplicate(entry) < 0)
710 			return entry.val;
711 
712 		/* make sure dst_mm is on swapoff's mmlist. */
713 		if (unlikely(list_empty(&dst_mm->mmlist))) {
714 			spin_lock(&mmlist_lock);
715 			if (list_empty(&dst_mm->mmlist))
716 				list_add(&dst_mm->mmlist,
717 						&src_mm->mmlist);
718 			spin_unlock(&mmlist_lock);
719 		}
720 		rss[MM_SWAPENTS]++;
721 	} else if (is_migration_entry(entry)) {
722 		page = migration_entry_to_page(entry);
723 
724 		rss[mm_counter(page)]++;
725 
726 		if (is_write_migration_entry(entry) &&
727 				is_cow_mapping(vm_flags)) {
728 			/*
729 			 * COW mappings require pages in both
730 			 * parent and child to be set to read.
731 			 */
732 			make_migration_entry_read(&entry);
733 			pte = swp_entry_to_pte(entry);
734 			if (pte_swp_soft_dirty(*src_pte))
735 				pte = pte_swp_mksoft_dirty(pte);
736 			if (pte_swp_uffd_wp(*src_pte))
737 				pte = pte_swp_mkuffd_wp(pte);
738 			set_pte_at(src_mm, addr, src_pte, pte);
739 		}
740 	} else if (is_device_private_entry(entry)) {
741 		page = device_private_entry_to_page(entry);
742 
743 		/*
744 		 * Update rss count even for unaddressable pages, as
745 		 * they should treated just like normal pages in this
746 		 * respect.
747 		 *
748 		 * We will likely want to have some new rss counters
749 		 * for unaddressable pages, at some point. But for now
750 		 * keep things as they are.
751 		 */
752 		get_page(page);
753 		rss[mm_counter(page)]++;
754 		page_dup_rmap(page, false);
755 
756 		/*
757 		 * We do not preserve soft-dirty information, because so
758 		 * far, checkpoint/restore is the only feature that
759 		 * requires that. And checkpoint/restore does not work
760 		 * when a device driver is involved (you cannot easily
761 		 * save and restore device driver state).
762 		 */
763 		if (is_write_device_private_entry(entry) &&
764 		    is_cow_mapping(vm_flags)) {
765 			make_device_private_entry_read(&entry);
766 			pte = swp_entry_to_pte(entry);
767 			if (pte_swp_uffd_wp(*src_pte))
768 				pte = pte_swp_mkuffd_wp(pte);
769 			set_pte_at(src_mm, addr, src_pte, pte);
770 		}
771 	}
772 	set_pte_at(dst_mm, addr, dst_pte, pte);
773 	return 0;
774 }
775 
776 /*
777  * Copy a present and normal page if necessary.
778  *
779  * NOTE! The usual case is that this doesn't need to do
780  * anything, and can just return a positive value. That
781  * will let the caller know that it can just increase
782  * the page refcount and re-use the pte the traditional
783  * way.
784  *
785  * But _if_ we need to copy it because it needs to be
786  * pinned in the parent (and the child should get its own
787  * copy rather than just a reference to the same page),
788  * we'll do that here and return zero to let the caller
789  * know we're done.
790  *
791  * And if we need a pre-allocated page but don't yet have
792  * one, return a negative error to let the preallocation
793  * code know so that it can do so outside the page table
794  * lock.
795  */
796 static inline int
797 copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798 		pte_t *dst_pte, pte_t *src_pte,
799 		struct vm_area_struct *vma, struct vm_area_struct *new,
800 		unsigned long addr, int *rss, struct page **prealloc,
801 		pte_t pte, struct page *page)
802 {
803 	struct page *new_page;
804 
805 	if (!is_cow_mapping(vma->vm_flags))
806 		return 1;
807 
808 	/*
809 	 * What we want to do is to check whether this page may
810 	 * have been pinned by the parent process.  If so,
811 	 * instead of wrprotect the pte on both sides, we copy
812 	 * the page immediately so that we'll always guarantee
813 	 * the pinned page won't be randomly replaced in the
814 	 * future.
815 	 *
816 	 * The page pinning checks are just "has this mm ever
817 	 * seen pinning", along with the (inexact) check of
818 	 * the page count. That might give false positives for
819 	 * for pinning, but it will work correctly.
820 	 */
821 	if (likely(!atomic_read(&src_mm->has_pinned)))
822 		return 1;
823 	if (likely(!page_maybe_dma_pinned(page)))
824 		return 1;
825 
826 	new_page = *prealloc;
827 	if (!new_page)
828 		return -EAGAIN;
829 
830 	/*
831 	 * We have a prealloc page, all good!  Take it
832 	 * over and copy the page & arm it.
833 	 */
834 	*prealloc = NULL;
835 	copy_user_highpage(new_page, page, addr, vma);
836 	__SetPageUptodate(new_page);
837 	page_add_new_anon_rmap(new_page, new, addr, false);
838 	lru_cache_add_inactive_or_unevictable(new_page, new);
839 	rss[mm_counter(new_page)]++;
840 
841 	/* All done, just insert the new page copy in the child */
842 	pte = mk_pte(new_page, new->vm_page_prot);
843 	pte = maybe_mkwrite(pte_mkdirty(pte), new);
844 	set_pte_at(dst_mm, addr, dst_pte, pte);
845 	return 0;
846 }
847 
848 /*
849  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
850  * is required to copy this pte.
851  */
852 static inline int
853 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
854 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
855 		struct vm_area_struct *new,
856 		unsigned long addr, int *rss, struct page **prealloc)
857 {
858 	unsigned long vm_flags = vma->vm_flags;
859 	pte_t pte = *src_pte;
860 	struct page *page;
861 
862 	page = vm_normal_page(vma, addr, pte);
863 	if (page) {
864 		int retval;
865 
866 		retval = copy_present_page(dst_mm, src_mm,
867 			dst_pte, src_pte,
868 			vma, new,
869 			addr, rss, prealloc,
870 			pte, page);
871 		if (retval <= 0)
872 			return retval;
873 
874 		get_page(page);
875 		page_dup_rmap(page, false);
876 		rss[mm_counter(page)]++;
877 	}
878 
879 	/*
880 	 * If it's a COW mapping, write protect it both
881 	 * in the parent and the child
882 	 */
883 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884 		ptep_set_wrprotect(src_mm, addr, src_pte);
885 		pte = pte_wrprotect(pte);
886 	}
887 
888 	/*
889 	 * If it's a shared mapping, mark it clean in
890 	 * the child
891 	 */
892 	if (vm_flags & VM_SHARED)
893 		pte = pte_mkclean(pte);
894 	pte = pte_mkold(pte);
895 
896 	/*
897 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
898 	 * does not have the VM_UFFD_WP, which means that the uffd
899 	 * fork event is not enabled.
900 	 */
901 	if (!(vm_flags & VM_UFFD_WP))
902 		pte = pte_clear_uffd_wp(pte);
903 
904 	set_pte_at(dst_mm, addr, dst_pte, pte);
905 	return 0;
906 }
907 
908 static inline struct page *
909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910 		   unsigned long addr)
911 {
912 	struct page *new_page;
913 
914 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915 	if (!new_page)
916 		return NULL;
917 
918 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919 		put_page(new_page);
920 		return NULL;
921 	}
922 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
923 
924 	return new_page;
925 }
926 
927 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929 		   struct vm_area_struct *new,
930 		   unsigned long addr, unsigned long end)
931 {
932 	pte_t *orig_src_pte, *orig_dst_pte;
933 	pte_t *src_pte, *dst_pte;
934 	spinlock_t *src_ptl, *dst_ptl;
935 	int progress, ret = 0;
936 	int rss[NR_MM_COUNTERS];
937 	swp_entry_t entry = (swp_entry_t){0};
938 	struct page *prealloc = NULL;
939 
940 again:
941 	progress = 0;
942 	init_rss_vec(rss);
943 
944 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
945 	if (!dst_pte) {
946 		ret = -ENOMEM;
947 		goto out;
948 	}
949 	src_pte = pte_offset_map(src_pmd, addr);
950 	src_ptl = pte_lockptr(src_mm, src_pmd);
951 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
952 	orig_src_pte = src_pte;
953 	orig_dst_pte = dst_pte;
954 	arch_enter_lazy_mmu_mode();
955 
956 	do {
957 		/*
958 		 * We are holding two locks at this point - either of them
959 		 * could generate latencies in another task on another CPU.
960 		 */
961 		if (progress >= 32) {
962 			progress = 0;
963 			if (need_resched() ||
964 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
965 				break;
966 		}
967 		if (pte_none(*src_pte)) {
968 			progress++;
969 			continue;
970 		}
971 		if (unlikely(!pte_present(*src_pte))) {
972 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
973 							dst_pte, src_pte,
974 							vma, addr, rss);
975 			if (entry.val)
976 				break;
977 			progress += 8;
978 			continue;
979 		}
980 		/* copy_present_pte() will clear `*prealloc' if consumed */
981 		ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
982 				       vma, new, addr, rss, &prealloc);
983 		/*
984 		 * If we need a pre-allocated page for this pte, drop the
985 		 * locks, allocate, and try again.
986 		 */
987 		if (unlikely(ret == -EAGAIN))
988 			break;
989 		if (unlikely(prealloc)) {
990 			/*
991 			 * pre-alloc page cannot be reused by next time so as
992 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
993 			 * will allocate page according to address).  This
994 			 * could only happen if one pinned pte changed.
995 			 */
996 			put_page(prealloc);
997 			prealloc = NULL;
998 		}
999 		progress += 8;
1000 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1001 
1002 	arch_leave_lazy_mmu_mode();
1003 	spin_unlock(src_ptl);
1004 	pte_unmap(orig_src_pte);
1005 	add_mm_rss_vec(dst_mm, rss);
1006 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1007 	cond_resched();
1008 
1009 	if (entry.val) {
1010 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1011 			ret = -ENOMEM;
1012 			goto out;
1013 		}
1014 		entry.val = 0;
1015 	} else if (ret) {
1016 		WARN_ON_ONCE(ret != -EAGAIN);
1017 		prealloc = page_copy_prealloc(src_mm, vma, addr);
1018 		if (!prealloc)
1019 			return -ENOMEM;
1020 		/* We've captured and resolved the error. Reset, try again. */
1021 		ret = 0;
1022 	}
1023 	if (addr != end)
1024 		goto again;
1025 out:
1026 	if (unlikely(prealloc))
1027 		put_page(prealloc);
1028 	return ret;
1029 }
1030 
1031 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1033 		struct vm_area_struct *new,
1034 		unsigned long addr, unsigned long end)
1035 {
1036 	pmd_t *src_pmd, *dst_pmd;
1037 	unsigned long next;
1038 
1039 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 	if (!dst_pmd)
1041 		return -ENOMEM;
1042 	src_pmd = pmd_offset(src_pud, addr);
1043 	do {
1044 		next = pmd_addr_end(addr, end);
1045 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 			|| pmd_devmap(*src_pmd)) {
1047 			int err;
1048 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1049 			err = copy_huge_pmd(dst_mm, src_mm,
1050 					    dst_pmd, src_pmd, addr, vma);
1051 			if (err == -ENOMEM)
1052 				return -ENOMEM;
1053 			if (!err)
1054 				continue;
1055 			/* fall through */
1056 		}
1057 		if (pmd_none_or_clear_bad(src_pmd))
1058 			continue;
1059 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1060 				   vma, new, addr, next))
1061 			return -ENOMEM;
1062 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 	return 0;
1064 }
1065 
1066 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1068 		struct vm_area_struct *new,
1069 		unsigned long addr, unsigned long end)
1070 {
1071 	pud_t *src_pud, *dst_pud;
1072 	unsigned long next;
1073 
1074 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1075 	if (!dst_pud)
1076 		return -ENOMEM;
1077 	src_pud = pud_offset(src_p4d, addr);
1078 	do {
1079 		next = pud_addr_end(addr, end);
1080 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1081 			int err;
1082 
1083 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1084 			err = copy_huge_pud(dst_mm, src_mm,
1085 					    dst_pud, src_pud, addr, vma);
1086 			if (err == -ENOMEM)
1087 				return -ENOMEM;
1088 			if (!err)
1089 				continue;
1090 			/* fall through */
1091 		}
1092 		if (pud_none_or_clear_bad(src_pud))
1093 			continue;
1094 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1095 				   vma, new, addr, next))
1096 			return -ENOMEM;
1097 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1098 	return 0;
1099 }
1100 
1101 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1103 		struct vm_area_struct *new,
1104 		unsigned long addr, unsigned long end)
1105 {
1106 	p4d_t *src_p4d, *dst_p4d;
1107 	unsigned long next;
1108 
1109 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1110 	if (!dst_p4d)
1111 		return -ENOMEM;
1112 	src_p4d = p4d_offset(src_pgd, addr);
1113 	do {
1114 		next = p4d_addr_end(addr, end);
1115 		if (p4d_none_or_clear_bad(src_p4d))
1116 			continue;
1117 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1118 				   vma, new, addr, next))
1119 			return -ENOMEM;
1120 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1121 	return 0;
1122 }
1123 
1124 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1125 		    struct vm_area_struct *vma, struct vm_area_struct *new)
1126 {
1127 	pgd_t *src_pgd, *dst_pgd;
1128 	unsigned long next;
1129 	unsigned long addr = vma->vm_start;
1130 	unsigned long end = vma->vm_end;
1131 	struct mmu_notifier_range range;
1132 	bool is_cow;
1133 	int ret;
1134 
1135 	/*
1136 	 * Don't copy ptes where a page fault will fill them correctly.
1137 	 * Fork becomes much lighter when there are big shared or private
1138 	 * readonly mappings. The tradeoff is that copy_page_range is more
1139 	 * efficient than faulting.
1140 	 */
1141 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1142 			!vma->anon_vma)
1143 		return 0;
1144 
1145 	if (is_vm_hugetlb_page(vma))
1146 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1147 
1148 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1149 		/*
1150 		 * We do not free on error cases below as remove_vma
1151 		 * gets called on error from higher level routine
1152 		 */
1153 		ret = track_pfn_copy(vma);
1154 		if (ret)
1155 			return ret;
1156 	}
1157 
1158 	/*
1159 	 * We need to invalidate the secondary MMU mappings only when
1160 	 * there could be a permission downgrade on the ptes of the
1161 	 * parent mm. And a permission downgrade will only happen if
1162 	 * is_cow_mapping() returns true.
1163 	 */
1164 	is_cow = is_cow_mapping(vma->vm_flags);
1165 
1166 	if (is_cow) {
1167 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1168 					0, vma, src_mm, addr, end);
1169 		mmu_notifier_invalidate_range_start(&range);
1170 	}
1171 
1172 	ret = 0;
1173 	dst_pgd = pgd_offset(dst_mm, addr);
1174 	src_pgd = pgd_offset(src_mm, addr);
1175 	do {
1176 		next = pgd_addr_end(addr, end);
1177 		if (pgd_none_or_clear_bad(src_pgd))
1178 			continue;
1179 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1180 					    vma, new, addr, next))) {
1181 			ret = -ENOMEM;
1182 			break;
1183 		}
1184 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1185 
1186 	if (is_cow)
1187 		mmu_notifier_invalidate_range_end(&range);
1188 	return ret;
1189 }
1190 
1191 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1192 				struct vm_area_struct *vma, pmd_t *pmd,
1193 				unsigned long addr, unsigned long end,
1194 				struct zap_details *details)
1195 {
1196 	struct mm_struct *mm = tlb->mm;
1197 	int force_flush = 0;
1198 	int rss[NR_MM_COUNTERS];
1199 	spinlock_t *ptl;
1200 	pte_t *start_pte;
1201 	pte_t *pte;
1202 	swp_entry_t entry;
1203 
1204 	tlb_change_page_size(tlb, PAGE_SIZE);
1205 again:
1206 	init_rss_vec(rss);
1207 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1208 	pte = start_pte;
1209 	flush_tlb_batched_pending(mm);
1210 	arch_enter_lazy_mmu_mode();
1211 	do {
1212 		pte_t ptent = *pte;
1213 		if (pte_none(ptent))
1214 			continue;
1215 
1216 		if (need_resched())
1217 			break;
1218 
1219 		if (pte_present(ptent)) {
1220 			struct page *page;
1221 
1222 			page = vm_normal_page(vma, addr, ptent);
1223 			if (unlikely(details) && page) {
1224 				/*
1225 				 * unmap_shared_mapping_pages() wants to
1226 				 * invalidate cache without truncating:
1227 				 * unmap shared but keep private pages.
1228 				 */
1229 				if (details->check_mapping &&
1230 				    details->check_mapping != page_rmapping(page))
1231 					continue;
1232 			}
1233 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1234 							tlb->fullmm);
1235 			tlb_remove_tlb_entry(tlb, pte, addr);
1236 			if (unlikely(!page))
1237 				continue;
1238 
1239 			if (!PageAnon(page)) {
1240 				if (pte_dirty(ptent)) {
1241 					force_flush = 1;
1242 					set_page_dirty(page);
1243 				}
1244 				if (pte_young(ptent) &&
1245 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1246 					mark_page_accessed(page);
1247 			}
1248 			rss[mm_counter(page)]--;
1249 			page_remove_rmap(page, false);
1250 			if (unlikely(page_mapcount(page) < 0))
1251 				print_bad_pte(vma, addr, ptent, page);
1252 			if (unlikely(__tlb_remove_page(tlb, page))) {
1253 				force_flush = 1;
1254 				addr += PAGE_SIZE;
1255 				break;
1256 			}
1257 			continue;
1258 		}
1259 
1260 		entry = pte_to_swp_entry(ptent);
1261 		if (is_device_private_entry(entry)) {
1262 			struct page *page = device_private_entry_to_page(entry);
1263 
1264 			if (unlikely(details && details->check_mapping)) {
1265 				/*
1266 				 * unmap_shared_mapping_pages() wants to
1267 				 * invalidate cache without truncating:
1268 				 * unmap shared but keep private pages.
1269 				 */
1270 				if (details->check_mapping !=
1271 				    page_rmapping(page))
1272 					continue;
1273 			}
1274 
1275 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1276 			rss[mm_counter(page)]--;
1277 			page_remove_rmap(page, false);
1278 			put_page(page);
1279 			continue;
1280 		}
1281 
1282 		/* If details->check_mapping, we leave swap entries. */
1283 		if (unlikely(details))
1284 			continue;
1285 
1286 		if (!non_swap_entry(entry))
1287 			rss[MM_SWAPENTS]--;
1288 		else if (is_migration_entry(entry)) {
1289 			struct page *page;
1290 
1291 			page = migration_entry_to_page(entry);
1292 			rss[mm_counter(page)]--;
1293 		}
1294 		if (unlikely(!free_swap_and_cache(entry)))
1295 			print_bad_pte(vma, addr, ptent, NULL);
1296 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 	} while (pte++, addr += PAGE_SIZE, addr != end);
1298 
1299 	add_mm_rss_vec(mm, rss);
1300 	arch_leave_lazy_mmu_mode();
1301 
1302 	/* Do the actual TLB flush before dropping ptl */
1303 	if (force_flush)
1304 		tlb_flush_mmu_tlbonly(tlb);
1305 	pte_unmap_unlock(start_pte, ptl);
1306 
1307 	/*
1308 	 * If we forced a TLB flush (either due to running out of
1309 	 * batch buffers or because we needed to flush dirty TLB
1310 	 * entries before releasing the ptl), free the batched
1311 	 * memory too. Restart if we didn't do everything.
1312 	 */
1313 	if (force_flush) {
1314 		force_flush = 0;
1315 		tlb_flush_mmu(tlb);
1316 	}
1317 
1318 	if (addr != end) {
1319 		cond_resched();
1320 		goto again;
1321 	}
1322 
1323 	return addr;
1324 }
1325 
1326 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1327 				struct vm_area_struct *vma, pud_t *pud,
1328 				unsigned long addr, unsigned long end,
1329 				struct zap_details *details)
1330 {
1331 	pmd_t *pmd;
1332 	unsigned long next;
1333 
1334 	pmd = pmd_offset(pud, addr);
1335 	do {
1336 		next = pmd_addr_end(addr, end);
1337 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1338 			if (next - addr != HPAGE_PMD_SIZE)
1339 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1340 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1341 				goto next;
1342 			/* fall through */
1343 		}
1344 		/*
1345 		 * Here there can be other concurrent MADV_DONTNEED or
1346 		 * trans huge page faults running, and if the pmd is
1347 		 * none or trans huge it can change under us. This is
1348 		 * because MADV_DONTNEED holds the mmap_lock in read
1349 		 * mode.
1350 		 */
1351 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1352 			goto next;
1353 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1354 next:
1355 		cond_resched();
1356 	} while (pmd++, addr = next, addr != end);
1357 
1358 	return addr;
1359 }
1360 
1361 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1362 				struct vm_area_struct *vma, p4d_t *p4d,
1363 				unsigned long addr, unsigned long end,
1364 				struct zap_details *details)
1365 {
1366 	pud_t *pud;
1367 	unsigned long next;
1368 
1369 	pud = pud_offset(p4d, addr);
1370 	do {
1371 		next = pud_addr_end(addr, end);
1372 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1373 			if (next - addr != HPAGE_PUD_SIZE) {
1374 				mmap_assert_locked(tlb->mm);
1375 				split_huge_pud(vma, pud, addr);
1376 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1377 				goto next;
1378 			/* fall through */
1379 		}
1380 		if (pud_none_or_clear_bad(pud))
1381 			continue;
1382 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1383 next:
1384 		cond_resched();
1385 	} while (pud++, addr = next, addr != end);
1386 
1387 	return addr;
1388 }
1389 
1390 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1391 				struct vm_area_struct *vma, pgd_t *pgd,
1392 				unsigned long addr, unsigned long end,
1393 				struct zap_details *details)
1394 {
1395 	p4d_t *p4d;
1396 	unsigned long next;
1397 
1398 	p4d = p4d_offset(pgd, addr);
1399 	do {
1400 		next = p4d_addr_end(addr, end);
1401 		if (p4d_none_or_clear_bad(p4d))
1402 			continue;
1403 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1404 	} while (p4d++, addr = next, addr != end);
1405 
1406 	return addr;
1407 }
1408 
1409 void unmap_page_range(struct mmu_gather *tlb,
1410 			     struct vm_area_struct *vma,
1411 			     unsigned long addr, unsigned long end,
1412 			     struct zap_details *details)
1413 {
1414 	pgd_t *pgd;
1415 	unsigned long next;
1416 
1417 	BUG_ON(addr >= end);
1418 	tlb_start_vma(tlb, vma);
1419 	pgd = pgd_offset(vma->vm_mm, addr);
1420 	do {
1421 		next = pgd_addr_end(addr, end);
1422 		if (pgd_none_or_clear_bad(pgd))
1423 			continue;
1424 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1425 	} while (pgd++, addr = next, addr != end);
1426 	tlb_end_vma(tlb, vma);
1427 }
1428 
1429 
1430 static void unmap_single_vma(struct mmu_gather *tlb,
1431 		struct vm_area_struct *vma, unsigned long start_addr,
1432 		unsigned long end_addr,
1433 		struct zap_details *details)
1434 {
1435 	unsigned long start = max(vma->vm_start, start_addr);
1436 	unsigned long end;
1437 
1438 	if (start >= vma->vm_end)
1439 		return;
1440 	end = min(vma->vm_end, end_addr);
1441 	if (end <= vma->vm_start)
1442 		return;
1443 
1444 	if (vma->vm_file)
1445 		uprobe_munmap(vma, start, end);
1446 
1447 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1448 		untrack_pfn(vma, 0, 0);
1449 
1450 	if (start != end) {
1451 		if (unlikely(is_vm_hugetlb_page(vma))) {
1452 			/*
1453 			 * It is undesirable to test vma->vm_file as it
1454 			 * should be non-null for valid hugetlb area.
1455 			 * However, vm_file will be NULL in the error
1456 			 * cleanup path of mmap_region. When
1457 			 * hugetlbfs ->mmap method fails,
1458 			 * mmap_region() nullifies vma->vm_file
1459 			 * before calling this function to clean up.
1460 			 * Since no pte has actually been setup, it is
1461 			 * safe to do nothing in this case.
1462 			 */
1463 			if (vma->vm_file) {
1464 				i_mmap_lock_write(vma->vm_file->f_mapping);
1465 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1466 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1467 			}
1468 		} else
1469 			unmap_page_range(tlb, vma, start, end, details);
1470 	}
1471 }
1472 
1473 /**
1474  * unmap_vmas - unmap a range of memory covered by a list of vma's
1475  * @tlb: address of the caller's struct mmu_gather
1476  * @vma: the starting vma
1477  * @start_addr: virtual address at which to start unmapping
1478  * @end_addr: virtual address at which to end unmapping
1479  *
1480  * Unmap all pages in the vma list.
1481  *
1482  * Only addresses between `start' and `end' will be unmapped.
1483  *
1484  * The VMA list must be sorted in ascending virtual address order.
1485  *
1486  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1487  * range after unmap_vmas() returns.  So the only responsibility here is to
1488  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1489  * drops the lock and schedules.
1490  */
1491 void unmap_vmas(struct mmu_gather *tlb,
1492 		struct vm_area_struct *vma, unsigned long start_addr,
1493 		unsigned long end_addr)
1494 {
1495 	struct mmu_notifier_range range;
1496 
1497 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1498 				start_addr, end_addr);
1499 	mmu_notifier_invalidate_range_start(&range);
1500 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1501 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1502 	mmu_notifier_invalidate_range_end(&range);
1503 }
1504 
1505 /**
1506  * zap_page_range - remove user pages in a given range
1507  * @vma: vm_area_struct holding the applicable pages
1508  * @start: starting address of pages to zap
1509  * @size: number of bytes to zap
1510  *
1511  * Caller must protect the VMA list
1512  */
1513 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1514 		unsigned long size)
1515 {
1516 	struct mmu_notifier_range range;
1517 	struct mmu_gather tlb;
1518 
1519 	lru_add_drain();
1520 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1521 				start, start + size);
1522 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1523 	update_hiwater_rss(vma->vm_mm);
1524 	mmu_notifier_invalidate_range_start(&range);
1525 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1526 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1527 	mmu_notifier_invalidate_range_end(&range);
1528 	tlb_finish_mmu(&tlb, start, range.end);
1529 }
1530 
1531 /**
1532  * zap_page_range_single - remove user pages in a given range
1533  * @vma: vm_area_struct holding the applicable pages
1534  * @address: starting address of pages to zap
1535  * @size: number of bytes to zap
1536  * @details: details of shared cache invalidation
1537  *
1538  * The range must fit into one VMA.
1539  */
1540 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1541 		unsigned long size, struct zap_details *details)
1542 {
1543 	struct mmu_notifier_range range;
1544 	struct mmu_gather tlb;
1545 
1546 	lru_add_drain();
1547 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1548 				address, address + size);
1549 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1550 	update_hiwater_rss(vma->vm_mm);
1551 	mmu_notifier_invalidate_range_start(&range);
1552 	unmap_single_vma(&tlb, vma, address, range.end, details);
1553 	mmu_notifier_invalidate_range_end(&range);
1554 	tlb_finish_mmu(&tlb, address, range.end);
1555 }
1556 
1557 /**
1558  * zap_vma_ptes - remove ptes mapping the vma
1559  * @vma: vm_area_struct holding ptes to be zapped
1560  * @address: starting address of pages to zap
1561  * @size: number of bytes to zap
1562  *
1563  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1564  *
1565  * The entire address range must be fully contained within the vma.
1566  *
1567  */
1568 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1569 		unsigned long size)
1570 {
1571 	if (address < vma->vm_start || address + size > vma->vm_end ||
1572 	    		!(vma->vm_flags & VM_PFNMAP))
1573 		return;
1574 
1575 	zap_page_range_single(vma, address, size, NULL);
1576 }
1577 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1578 
1579 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1580 {
1581 	pgd_t *pgd;
1582 	p4d_t *p4d;
1583 	pud_t *pud;
1584 	pmd_t *pmd;
1585 
1586 	pgd = pgd_offset(mm, addr);
1587 	p4d = p4d_alloc(mm, pgd, addr);
1588 	if (!p4d)
1589 		return NULL;
1590 	pud = pud_alloc(mm, p4d, addr);
1591 	if (!pud)
1592 		return NULL;
1593 	pmd = pmd_alloc(mm, pud, addr);
1594 	if (!pmd)
1595 		return NULL;
1596 
1597 	VM_BUG_ON(pmd_trans_huge(*pmd));
1598 	return pmd;
1599 }
1600 
1601 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1602 			spinlock_t **ptl)
1603 {
1604 	pmd_t *pmd = walk_to_pmd(mm, addr);
1605 
1606 	if (!pmd)
1607 		return NULL;
1608 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1609 }
1610 
1611 static int validate_page_before_insert(struct page *page)
1612 {
1613 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1614 		return -EINVAL;
1615 	flush_dcache_page(page);
1616 	return 0;
1617 }
1618 
1619 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1620 			unsigned long addr, struct page *page, pgprot_t prot)
1621 {
1622 	if (!pte_none(*pte))
1623 		return -EBUSY;
1624 	/* Ok, finally just insert the thing.. */
1625 	get_page(page);
1626 	inc_mm_counter_fast(mm, mm_counter_file(page));
1627 	page_add_file_rmap(page, false);
1628 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1629 	return 0;
1630 }
1631 
1632 /*
1633  * This is the old fallback for page remapping.
1634  *
1635  * For historical reasons, it only allows reserved pages. Only
1636  * old drivers should use this, and they needed to mark their
1637  * pages reserved for the old functions anyway.
1638  */
1639 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1640 			struct page *page, pgprot_t prot)
1641 {
1642 	struct mm_struct *mm = vma->vm_mm;
1643 	int retval;
1644 	pte_t *pte;
1645 	spinlock_t *ptl;
1646 
1647 	retval = validate_page_before_insert(page);
1648 	if (retval)
1649 		goto out;
1650 	retval = -ENOMEM;
1651 	pte = get_locked_pte(mm, addr, &ptl);
1652 	if (!pte)
1653 		goto out;
1654 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1655 	pte_unmap_unlock(pte, ptl);
1656 out:
1657 	return retval;
1658 }
1659 
1660 #ifdef pte_index
1661 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1662 			unsigned long addr, struct page *page, pgprot_t prot)
1663 {
1664 	int err;
1665 
1666 	if (!page_count(page))
1667 		return -EINVAL;
1668 	err = validate_page_before_insert(page);
1669 	if (err)
1670 		return err;
1671 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1672 }
1673 
1674 /* insert_pages() amortizes the cost of spinlock operations
1675  * when inserting pages in a loop. Arch *must* define pte_index.
1676  */
1677 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1678 			struct page **pages, unsigned long *num, pgprot_t prot)
1679 {
1680 	pmd_t *pmd = NULL;
1681 	pte_t *start_pte, *pte;
1682 	spinlock_t *pte_lock;
1683 	struct mm_struct *const mm = vma->vm_mm;
1684 	unsigned long curr_page_idx = 0;
1685 	unsigned long remaining_pages_total = *num;
1686 	unsigned long pages_to_write_in_pmd;
1687 	int ret;
1688 more:
1689 	ret = -EFAULT;
1690 	pmd = walk_to_pmd(mm, addr);
1691 	if (!pmd)
1692 		goto out;
1693 
1694 	pages_to_write_in_pmd = min_t(unsigned long,
1695 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1696 
1697 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1698 	ret = -ENOMEM;
1699 	if (pte_alloc(mm, pmd))
1700 		goto out;
1701 
1702 	while (pages_to_write_in_pmd) {
1703 		int pte_idx = 0;
1704 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1705 
1706 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1707 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1708 			int err = insert_page_in_batch_locked(mm, pte,
1709 				addr, pages[curr_page_idx], prot);
1710 			if (unlikely(err)) {
1711 				pte_unmap_unlock(start_pte, pte_lock);
1712 				ret = err;
1713 				remaining_pages_total -= pte_idx;
1714 				goto out;
1715 			}
1716 			addr += PAGE_SIZE;
1717 			++curr_page_idx;
1718 		}
1719 		pte_unmap_unlock(start_pte, pte_lock);
1720 		pages_to_write_in_pmd -= batch_size;
1721 		remaining_pages_total -= batch_size;
1722 	}
1723 	if (remaining_pages_total)
1724 		goto more;
1725 	ret = 0;
1726 out:
1727 	*num = remaining_pages_total;
1728 	return ret;
1729 }
1730 #endif  /* ifdef pte_index */
1731 
1732 /**
1733  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1734  * @vma: user vma to map to
1735  * @addr: target start user address of these pages
1736  * @pages: source kernel pages
1737  * @num: in: number of pages to map. out: number of pages that were *not*
1738  * mapped. (0 means all pages were successfully mapped).
1739  *
1740  * Preferred over vm_insert_page() when inserting multiple pages.
1741  *
1742  * In case of error, we may have mapped a subset of the provided
1743  * pages. It is the caller's responsibility to account for this case.
1744  *
1745  * The same restrictions apply as in vm_insert_page().
1746  */
1747 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1748 			struct page **pages, unsigned long *num)
1749 {
1750 #ifdef pte_index
1751 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1752 
1753 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1754 		return -EFAULT;
1755 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1756 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1757 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1758 		vma->vm_flags |= VM_MIXEDMAP;
1759 	}
1760 	/* Defer page refcount checking till we're about to map that page. */
1761 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1762 #else
1763 	unsigned long idx = 0, pgcount = *num;
1764 	int err = -EINVAL;
1765 
1766 	for (; idx < pgcount; ++idx) {
1767 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1768 		if (err)
1769 			break;
1770 	}
1771 	*num = pgcount - idx;
1772 	return err;
1773 #endif  /* ifdef pte_index */
1774 }
1775 EXPORT_SYMBOL(vm_insert_pages);
1776 
1777 /**
1778  * vm_insert_page - insert single page into user vma
1779  * @vma: user vma to map to
1780  * @addr: target user address of this page
1781  * @page: source kernel page
1782  *
1783  * This allows drivers to insert individual pages they've allocated
1784  * into a user vma.
1785  *
1786  * The page has to be a nice clean _individual_ kernel allocation.
1787  * If you allocate a compound page, you need to have marked it as
1788  * such (__GFP_COMP), or manually just split the page up yourself
1789  * (see split_page()).
1790  *
1791  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1792  * took an arbitrary page protection parameter. This doesn't allow
1793  * that. Your vma protection will have to be set up correctly, which
1794  * means that if you want a shared writable mapping, you'd better
1795  * ask for a shared writable mapping!
1796  *
1797  * The page does not need to be reserved.
1798  *
1799  * Usually this function is called from f_op->mmap() handler
1800  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1801  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1802  * function from other places, for example from page-fault handler.
1803  *
1804  * Return: %0 on success, negative error code otherwise.
1805  */
1806 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1807 			struct page *page)
1808 {
1809 	if (addr < vma->vm_start || addr >= vma->vm_end)
1810 		return -EFAULT;
1811 	if (!page_count(page))
1812 		return -EINVAL;
1813 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1814 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1815 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1816 		vma->vm_flags |= VM_MIXEDMAP;
1817 	}
1818 	return insert_page(vma, addr, page, vma->vm_page_prot);
1819 }
1820 EXPORT_SYMBOL(vm_insert_page);
1821 
1822 /*
1823  * __vm_map_pages - maps range of kernel pages into user vma
1824  * @vma: user vma to map to
1825  * @pages: pointer to array of source kernel pages
1826  * @num: number of pages in page array
1827  * @offset: user's requested vm_pgoff
1828  *
1829  * This allows drivers to map range of kernel pages into a user vma.
1830  *
1831  * Return: 0 on success and error code otherwise.
1832  */
1833 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1834 				unsigned long num, unsigned long offset)
1835 {
1836 	unsigned long count = vma_pages(vma);
1837 	unsigned long uaddr = vma->vm_start;
1838 	int ret, i;
1839 
1840 	/* Fail if the user requested offset is beyond the end of the object */
1841 	if (offset >= num)
1842 		return -ENXIO;
1843 
1844 	/* Fail if the user requested size exceeds available object size */
1845 	if (count > num - offset)
1846 		return -ENXIO;
1847 
1848 	for (i = 0; i < count; i++) {
1849 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1850 		if (ret < 0)
1851 			return ret;
1852 		uaddr += PAGE_SIZE;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  * vm_map_pages - maps range of kernel pages starts with non zero offset
1860  * @vma: user vma to map to
1861  * @pages: pointer to array of source kernel pages
1862  * @num: number of pages in page array
1863  *
1864  * Maps an object consisting of @num pages, catering for the user's
1865  * requested vm_pgoff
1866  *
1867  * If we fail to insert any page into the vma, the function will return
1868  * immediately leaving any previously inserted pages present.  Callers
1869  * from the mmap handler may immediately return the error as their caller
1870  * will destroy the vma, removing any successfully inserted pages. Other
1871  * callers should make their own arrangements for calling unmap_region().
1872  *
1873  * Context: Process context. Called by mmap handlers.
1874  * Return: 0 on success and error code otherwise.
1875  */
1876 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1877 				unsigned long num)
1878 {
1879 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1880 }
1881 EXPORT_SYMBOL(vm_map_pages);
1882 
1883 /**
1884  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1885  * @vma: user vma to map to
1886  * @pages: pointer to array of source kernel pages
1887  * @num: number of pages in page array
1888  *
1889  * Similar to vm_map_pages(), except that it explicitly sets the offset
1890  * to 0. This function is intended for the drivers that did not consider
1891  * vm_pgoff.
1892  *
1893  * Context: Process context. Called by mmap handlers.
1894  * Return: 0 on success and error code otherwise.
1895  */
1896 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1897 				unsigned long num)
1898 {
1899 	return __vm_map_pages(vma, pages, num, 0);
1900 }
1901 EXPORT_SYMBOL(vm_map_pages_zero);
1902 
1903 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1904 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1905 {
1906 	struct mm_struct *mm = vma->vm_mm;
1907 	pte_t *pte, entry;
1908 	spinlock_t *ptl;
1909 
1910 	pte = get_locked_pte(mm, addr, &ptl);
1911 	if (!pte)
1912 		return VM_FAULT_OOM;
1913 	if (!pte_none(*pte)) {
1914 		if (mkwrite) {
1915 			/*
1916 			 * For read faults on private mappings the PFN passed
1917 			 * in may not match the PFN we have mapped if the
1918 			 * mapped PFN is a writeable COW page.  In the mkwrite
1919 			 * case we are creating a writable PTE for a shared
1920 			 * mapping and we expect the PFNs to match. If they
1921 			 * don't match, we are likely racing with block
1922 			 * allocation and mapping invalidation so just skip the
1923 			 * update.
1924 			 */
1925 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1926 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1927 				goto out_unlock;
1928 			}
1929 			entry = pte_mkyoung(*pte);
1930 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1931 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1932 				update_mmu_cache(vma, addr, pte);
1933 		}
1934 		goto out_unlock;
1935 	}
1936 
1937 	/* Ok, finally just insert the thing.. */
1938 	if (pfn_t_devmap(pfn))
1939 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1940 	else
1941 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1942 
1943 	if (mkwrite) {
1944 		entry = pte_mkyoung(entry);
1945 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946 	}
1947 
1948 	set_pte_at(mm, addr, pte, entry);
1949 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1950 
1951 out_unlock:
1952 	pte_unmap_unlock(pte, ptl);
1953 	return VM_FAULT_NOPAGE;
1954 }
1955 
1956 /**
1957  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1958  * @vma: user vma to map to
1959  * @addr: target user address of this page
1960  * @pfn: source kernel pfn
1961  * @pgprot: pgprot flags for the inserted page
1962  *
1963  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1964  * to override pgprot on a per-page basis.
1965  *
1966  * This only makes sense for IO mappings, and it makes no sense for
1967  * COW mappings.  In general, using multiple vmas is preferable;
1968  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1969  * impractical.
1970  *
1971  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1972  * a value of @pgprot different from that of @vma->vm_page_prot.
1973  *
1974  * Context: Process context.  May allocate using %GFP_KERNEL.
1975  * Return: vm_fault_t value.
1976  */
1977 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1978 			unsigned long pfn, pgprot_t pgprot)
1979 {
1980 	/*
1981 	 * Technically, architectures with pte_special can avoid all these
1982 	 * restrictions (same for remap_pfn_range).  However we would like
1983 	 * consistency in testing and feature parity among all, so we should
1984 	 * try to keep these invariants in place for everybody.
1985 	 */
1986 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1987 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1988 						(VM_PFNMAP|VM_MIXEDMAP));
1989 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1990 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1991 
1992 	if (addr < vma->vm_start || addr >= vma->vm_end)
1993 		return VM_FAULT_SIGBUS;
1994 
1995 	if (!pfn_modify_allowed(pfn, pgprot))
1996 		return VM_FAULT_SIGBUS;
1997 
1998 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1999 
2000 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2001 			false);
2002 }
2003 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2004 
2005 /**
2006  * vmf_insert_pfn - insert single pfn into user vma
2007  * @vma: user vma to map to
2008  * @addr: target user address of this page
2009  * @pfn: source kernel pfn
2010  *
2011  * Similar to vm_insert_page, this allows drivers to insert individual pages
2012  * they've allocated into a user vma. Same comments apply.
2013  *
2014  * This function should only be called from a vm_ops->fault handler, and
2015  * in that case the handler should return the result of this function.
2016  *
2017  * vma cannot be a COW mapping.
2018  *
2019  * As this is called only for pages that do not currently exist, we
2020  * do not need to flush old virtual caches or the TLB.
2021  *
2022  * Context: Process context.  May allocate using %GFP_KERNEL.
2023  * Return: vm_fault_t value.
2024  */
2025 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2026 			unsigned long pfn)
2027 {
2028 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2029 }
2030 EXPORT_SYMBOL(vmf_insert_pfn);
2031 
2032 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2033 {
2034 	/* these checks mirror the abort conditions in vm_normal_page */
2035 	if (vma->vm_flags & VM_MIXEDMAP)
2036 		return true;
2037 	if (pfn_t_devmap(pfn))
2038 		return true;
2039 	if (pfn_t_special(pfn))
2040 		return true;
2041 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2042 		return true;
2043 	return false;
2044 }
2045 
2046 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2047 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2048 		bool mkwrite)
2049 {
2050 	int err;
2051 
2052 	BUG_ON(!vm_mixed_ok(vma, pfn));
2053 
2054 	if (addr < vma->vm_start || addr >= vma->vm_end)
2055 		return VM_FAULT_SIGBUS;
2056 
2057 	track_pfn_insert(vma, &pgprot, pfn);
2058 
2059 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2060 		return VM_FAULT_SIGBUS;
2061 
2062 	/*
2063 	 * If we don't have pte special, then we have to use the pfn_valid()
2064 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2065 	 * refcount the page if pfn_valid is true (hence insert_page rather
2066 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2067 	 * without pte special, it would there be refcounted as a normal page.
2068 	 */
2069 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2070 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2071 		struct page *page;
2072 
2073 		/*
2074 		 * At this point we are committed to insert_page()
2075 		 * regardless of whether the caller specified flags that
2076 		 * result in pfn_t_has_page() == false.
2077 		 */
2078 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2079 		err = insert_page(vma, addr, page, pgprot);
2080 	} else {
2081 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2082 	}
2083 
2084 	if (err == -ENOMEM)
2085 		return VM_FAULT_OOM;
2086 	if (err < 0 && err != -EBUSY)
2087 		return VM_FAULT_SIGBUS;
2088 
2089 	return VM_FAULT_NOPAGE;
2090 }
2091 
2092 /**
2093  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2094  * @vma: user vma to map to
2095  * @addr: target user address of this page
2096  * @pfn: source kernel pfn
2097  * @pgprot: pgprot flags for the inserted page
2098  *
2099  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2100  * to override pgprot on a per-page basis.
2101  *
2102  * Typically this function should be used by drivers to set caching- and
2103  * encryption bits different than those of @vma->vm_page_prot, because
2104  * the caching- or encryption mode may not be known at mmap() time.
2105  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2106  * to set caching and encryption bits for those vmas (except for COW pages).
2107  * This is ensured by core vm only modifying these page table entries using
2108  * functions that don't touch caching- or encryption bits, using pte_modify()
2109  * if needed. (See for example mprotect()).
2110  * Also when new page-table entries are created, this is only done using the
2111  * fault() callback, and never using the value of vma->vm_page_prot,
2112  * except for page-table entries that point to anonymous pages as the result
2113  * of COW.
2114  *
2115  * Context: Process context.  May allocate using %GFP_KERNEL.
2116  * Return: vm_fault_t value.
2117  */
2118 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2119 				 pfn_t pfn, pgprot_t pgprot)
2120 {
2121 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2122 }
2123 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2124 
2125 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2126 		pfn_t pfn)
2127 {
2128 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2129 }
2130 EXPORT_SYMBOL(vmf_insert_mixed);
2131 
2132 /*
2133  *  If the insertion of PTE failed because someone else already added a
2134  *  different entry in the mean time, we treat that as success as we assume
2135  *  the same entry was actually inserted.
2136  */
2137 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2138 		unsigned long addr, pfn_t pfn)
2139 {
2140 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2141 }
2142 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2143 
2144 /*
2145  * maps a range of physical memory into the requested pages. the old
2146  * mappings are removed. any references to nonexistent pages results
2147  * in null mappings (currently treated as "copy-on-access")
2148  */
2149 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2150 			unsigned long addr, unsigned long end,
2151 			unsigned long pfn, pgprot_t prot)
2152 {
2153 	pte_t *pte;
2154 	spinlock_t *ptl;
2155 	int err = 0;
2156 
2157 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2158 	if (!pte)
2159 		return -ENOMEM;
2160 	arch_enter_lazy_mmu_mode();
2161 	do {
2162 		BUG_ON(!pte_none(*pte));
2163 		if (!pfn_modify_allowed(pfn, prot)) {
2164 			err = -EACCES;
2165 			break;
2166 		}
2167 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2168 		pfn++;
2169 	} while (pte++, addr += PAGE_SIZE, addr != end);
2170 	arch_leave_lazy_mmu_mode();
2171 	pte_unmap_unlock(pte - 1, ptl);
2172 	return err;
2173 }
2174 
2175 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2176 			unsigned long addr, unsigned long end,
2177 			unsigned long pfn, pgprot_t prot)
2178 {
2179 	pmd_t *pmd;
2180 	unsigned long next;
2181 	int err;
2182 
2183 	pfn -= addr >> PAGE_SHIFT;
2184 	pmd = pmd_alloc(mm, pud, addr);
2185 	if (!pmd)
2186 		return -ENOMEM;
2187 	VM_BUG_ON(pmd_trans_huge(*pmd));
2188 	do {
2189 		next = pmd_addr_end(addr, end);
2190 		err = remap_pte_range(mm, pmd, addr, next,
2191 				pfn + (addr >> PAGE_SHIFT), prot);
2192 		if (err)
2193 			return err;
2194 	} while (pmd++, addr = next, addr != end);
2195 	return 0;
2196 }
2197 
2198 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2199 			unsigned long addr, unsigned long end,
2200 			unsigned long pfn, pgprot_t prot)
2201 {
2202 	pud_t *pud;
2203 	unsigned long next;
2204 	int err;
2205 
2206 	pfn -= addr >> PAGE_SHIFT;
2207 	pud = pud_alloc(mm, p4d, addr);
2208 	if (!pud)
2209 		return -ENOMEM;
2210 	do {
2211 		next = pud_addr_end(addr, end);
2212 		err = remap_pmd_range(mm, pud, addr, next,
2213 				pfn + (addr >> PAGE_SHIFT), prot);
2214 		if (err)
2215 			return err;
2216 	} while (pud++, addr = next, addr != end);
2217 	return 0;
2218 }
2219 
2220 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2221 			unsigned long addr, unsigned long end,
2222 			unsigned long pfn, pgprot_t prot)
2223 {
2224 	p4d_t *p4d;
2225 	unsigned long next;
2226 	int err;
2227 
2228 	pfn -= addr >> PAGE_SHIFT;
2229 	p4d = p4d_alloc(mm, pgd, addr);
2230 	if (!p4d)
2231 		return -ENOMEM;
2232 	do {
2233 		next = p4d_addr_end(addr, end);
2234 		err = remap_pud_range(mm, p4d, addr, next,
2235 				pfn + (addr >> PAGE_SHIFT), prot);
2236 		if (err)
2237 			return err;
2238 	} while (p4d++, addr = next, addr != end);
2239 	return 0;
2240 }
2241 
2242 /**
2243  * remap_pfn_range - remap kernel memory to userspace
2244  * @vma: user vma to map to
2245  * @addr: target page aligned user address to start at
2246  * @pfn: page frame number of kernel physical memory address
2247  * @size: size of mapping area
2248  * @prot: page protection flags for this mapping
2249  *
2250  * Note: this is only safe if the mm semaphore is held when called.
2251  *
2252  * Return: %0 on success, negative error code otherwise.
2253  */
2254 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2255 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2256 {
2257 	pgd_t *pgd;
2258 	unsigned long next;
2259 	unsigned long end = addr + PAGE_ALIGN(size);
2260 	struct mm_struct *mm = vma->vm_mm;
2261 	unsigned long remap_pfn = pfn;
2262 	int err;
2263 
2264 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2265 		return -EINVAL;
2266 
2267 	/*
2268 	 * Physically remapped pages are special. Tell the
2269 	 * rest of the world about it:
2270 	 *   VM_IO tells people not to look at these pages
2271 	 *	(accesses can have side effects).
2272 	 *   VM_PFNMAP tells the core MM that the base pages are just
2273 	 *	raw PFN mappings, and do not have a "struct page" associated
2274 	 *	with them.
2275 	 *   VM_DONTEXPAND
2276 	 *      Disable vma merging and expanding with mremap().
2277 	 *   VM_DONTDUMP
2278 	 *      Omit vma from core dump, even when VM_IO turned off.
2279 	 *
2280 	 * There's a horrible special case to handle copy-on-write
2281 	 * behaviour that some programs depend on. We mark the "original"
2282 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2283 	 * See vm_normal_page() for details.
2284 	 */
2285 	if (is_cow_mapping(vma->vm_flags)) {
2286 		if (addr != vma->vm_start || end != vma->vm_end)
2287 			return -EINVAL;
2288 		vma->vm_pgoff = pfn;
2289 	}
2290 
2291 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2292 	if (err)
2293 		return -EINVAL;
2294 
2295 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2296 
2297 	BUG_ON(addr >= end);
2298 	pfn -= addr >> PAGE_SHIFT;
2299 	pgd = pgd_offset(mm, addr);
2300 	flush_cache_range(vma, addr, end);
2301 	do {
2302 		next = pgd_addr_end(addr, end);
2303 		err = remap_p4d_range(mm, pgd, addr, next,
2304 				pfn + (addr >> PAGE_SHIFT), prot);
2305 		if (err)
2306 			break;
2307 	} while (pgd++, addr = next, addr != end);
2308 
2309 	if (err)
2310 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2311 
2312 	return err;
2313 }
2314 EXPORT_SYMBOL(remap_pfn_range);
2315 
2316 /**
2317  * vm_iomap_memory - remap memory to userspace
2318  * @vma: user vma to map to
2319  * @start: start of the physical memory to be mapped
2320  * @len: size of area
2321  *
2322  * This is a simplified io_remap_pfn_range() for common driver use. The
2323  * driver just needs to give us the physical memory range to be mapped,
2324  * we'll figure out the rest from the vma information.
2325  *
2326  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2327  * whatever write-combining details or similar.
2328  *
2329  * Return: %0 on success, negative error code otherwise.
2330  */
2331 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2332 {
2333 	unsigned long vm_len, pfn, pages;
2334 
2335 	/* Check that the physical memory area passed in looks valid */
2336 	if (start + len < start)
2337 		return -EINVAL;
2338 	/*
2339 	 * You *really* shouldn't map things that aren't page-aligned,
2340 	 * but we've historically allowed it because IO memory might
2341 	 * just have smaller alignment.
2342 	 */
2343 	len += start & ~PAGE_MASK;
2344 	pfn = start >> PAGE_SHIFT;
2345 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2346 	if (pfn + pages < pfn)
2347 		return -EINVAL;
2348 
2349 	/* We start the mapping 'vm_pgoff' pages into the area */
2350 	if (vma->vm_pgoff > pages)
2351 		return -EINVAL;
2352 	pfn += vma->vm_pgoff;
2353 	pages -= vma->vm_pgoff;
2354 
2355 	/* Can we fit all of the mapping? */
2356 	vm_len = vma->vm_end - vma->vm_start;
2357 	if (vm_len >> PAGE_SHIFT > pages)
2358 		return -EINVAL;
2359 
2360 	/* Ok, let it rip */
2361 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2362 }
2363 EXPORT_SYMBOL(vm_iomap_memory);
2364 
2365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366 				     unsigned long addr, unsigned long end,
2367 				     pte_fn_t fn, void *data, bool create,
2368 				     pgtbl_mod_mask *mask)
2369 {
2370 	pte_t *pte;
2371 	int err = 0;
2372 	spinlock_t *ptl;
2373 
2374 	if (create) {
2375 		pte = (mm == &init_mm) ?
2376 			pte_alloc_kernel_track(pmd, addr, mask) :
2377 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2378 		if (!pte)
2379 			return -ENOMEM;
2380 	} else {
2381 		pte = (mm == &init_mm) ?
2382 			pte_offset_kernel(pmd, addr) :
2383 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2384 	}
2385 
2386 	BUG_ON(pmd_huge(*pmd));
2387 
2388 	arch_enter_lazy_mmu_mode();
2389 
2390 	do {
2391 		if (create || !pte_none(*pte)) {
2392 			err = fn(pte++, addr, data);
2393 			if (err)
2394 				break;
2395 		}
2396 	} while (addr += PAGE_SIZE, addr != end);
2397 	*mask |= PGTBL_PTE_MODIFIED;
2398 
2399 	arch_leave_lazy_mmu_mode();
2400 
2401 	if (mm != &init_mm)
2402 		pte_unmap_unlock(pte-1, ptl);
2403 	return err;
2404 }
2405 
2406 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2407 				     unsigned long addr, unsigned long end,
2408 				     pte_fn_t fn, void *data, bool create,
2409 				     pgtbl_mod_mask *mask)
2410 {
2411 	pmd_t *pmd;
2412 	unsigned long next;
2413 	int err = 0;
2414 
2415 	BUG_ON(pud_huge(*pud));
2416 
2417 	if (create) {
2418 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2419 		if (!pmd)
2420 			return -ENOMEM;
2421 	} else {
2422 		pmd = pmd_offset(pud, addr);
2423 	}
2424 	do {
2425 		next = pmd_addr_end(addr, end);
2426 		if (create || !pmd_none_or_clear_bad(pmd)) {
2427 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2428 						 create, mask);
2429 			if (err)
2430 				break;
2431 		}
2432 	} while (pmd++, addr = next, addr != end);
2433 	return err;
2434 }
2435 
2436 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2437 				     unsigned long addr, unsigned long end,
2438 				     pte_fn_t fn, void *data, bool create,
2439 				     pgtbl_mod_mask *mask)
2440 {
2441 	pud_t *pud;
2442 	unsigned long next;
2443 	int err = 0;
2444 
2445 	if (create) {
2446 		pud = pud_alloc_track(mm, p4d, addr, mask);
2447 		if (!pud)
2448 			return -ENOMEM;
2449 	} else {
2450 		pud = pud_offset(p4d, addr);
2451 	}
2452 	do {
2453 		next = pud_addr_end(addr, end);
2454 		if (create || !pud_none_or_clear_bad(pud)) {
2455 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2456 						 create, mask);
2457 			if (err)
2458 				break;
2459 		}
2460 	} while (pud++, addr = next, addr != end);
2461 	return err;
2462 }
2463 
2464 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2465 				     unsigned long addr, unsigned long end,
2466 				     pte_fn_t fn, void *data, bool create,
2467 				     pgtbl_mod_mask *mask)
2468 {
2469 	p4d_t *p4d;
2470 	unsigned long next;
2471 	int err = 0;
2472 
2473 	if (create) {
2474 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2475 		if (!p4d)
2476 			return -ENOMEM;
2477 	} else {
2478 		p4d = p4d_offset(pgd, addr);
2479 	}
2480 	do {
2481 		next = p4d_addr_end(addr, end);
2482 		if (create || !p4d_none_or_clear_bad(p4d)) {
2483 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2484 						 create, mask);
2485 			if (err)
2486 				break;
2487 		}
2488 	} while (p4d++, addr = next, addr != end);
2489 	return err;
2490 }
2491 
2492 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2493 				 unsigned long size, pte_fn_t fn,
2494 				 void *data, bool create)
2495 {
2496 	pgd_t *pgd;
2497 	unsigned long start = addr, next;
2498 	unsigned long end = addr + size;
2499 	pgtbl_mod_mask mask = 0;
2500 	int err = 0;
2501 
2502 	if (WARN_ON(addr >= end))
2503 		return -EINVAL;
2504 
2505 	pgd = pgd_offset(mm, addr);
2506 	do {
2507 		next = pgd_addr_end(addr, end);
2508 		if (!create && pgd_none_or_clear_bad(pgd))
2509 			continue;
2510 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2511 		if (err)
2512 			break;
2513 	} while (pgd++, addr = next, addr != end);
2514 
2515 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2516 		arch_sync_kernel_mappings(start, start + size);
2517 
2518 	return err;
2519 }
2520 
2521 /*
2522  * Scan a region of virtual memory, filling in page tables as necessary
2523  * and calling a provided function on each leaf page table.
2524  */
2525 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526 			unsigned long size, pte_fn_t fn, void *data)
2527 {
2528 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2529 }
2530 EXPORT_SYMBOL_GPL(apply_to_page_range);
2531 
2532 /*
2533  * Scan a region of virtual memory, calling a provided function on
2534  * each leaf page table where it exists.
2535  *
2536  * Unlike apply_to_page_range, this does _not_ fill in page tables
2537  * where they are absent.
2538  */
2539 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2540 				 unsigned long size, pte_fn_t fn, void *data)
2541 {
2542 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2543 }
2544 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2545 
2546 /*
2547  * handle_pte_fault chooses page fault handler according to an entry which was
2548  * read non-atomically.  Before making any commitment, on those architectures
2549  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2550  * parts, do_swap_page must check under lock before unmapping the pte and
2551  * proceeding (but do_wp_page is only called after already making such a check;
2552  * and do_anonymous_page can safely check later on).
2553  */
2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555 				pte_t *page_table, pte_t orig_pte)
2556 {
2557 	int same = 1;
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2559 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2560 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2561 		spin_lock(ptl);
2562 		same = pte_same(*page_table, orig_pte);
2563 		spin_unlock(ptl);
2564 	}
2565 #endif
2566 	pte_unmap(page_table);
2567 	return same;
2568 }
2569 
2570 static inline bool cow_user_page(struct page *dst, struct page *src,
2571 				 struct vm_fault *vmf)
2572 {
2573 	bool ret;
2574 	void *kaddr;
2575 	void __user *uaddr;
2576 	bool locked = false;
2577 	struct vm_area_struct *vma = vmf->vma;
2578 	struct mm_struct *mm = vma->vm_mm;
2579 	unsigned long addr = vmf->address;
2580 
2581 	if (likely(src)) {
2582 		copy_user_highpage(dst, src, addr, vma);
2583 		return true;
2584 	}
2585 
2586 	/*
2587 	 * If the source page was a PFN mapping, we don't have
2588 	 * a "struct page" for it. We do a best-effort copy by
2589 	 * just copying from the original user address. If that
2590 	 * fails, we just zero-fill it. Live with it.
2591 	 */
2592 	kaddr = kmap_atomic(dst);
2593 	uaddr = (void __user *)(addr & PAGE_MASK);
2594 
2595 	/*
2596 	 * On architectures with software "accessed" bits, we would
2597 	 * take a double page fault, so mark it accessed here.
2598 	 */
2599 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2600 		pte_t entry;
2601 
2602 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2603 		locked = true;
2604 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2605 			/*
2606 			 * Other thread has already handled the fault
2607 			 * and update local tlb only
2608 			 */
2609 			update_mmu_tlb(vma, addr, vmf->pte);
2610 			ret = false;
2611 			goto pte_unlock;
2612 		}
2613 
2614 		entry = pte_mkyoung(vmf->orig_pte);
2615 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2616 			update_mmu_cache(vma, addr, vmf->pte);
2617 	}
2618 
2619 	/*
2620 	 * This really shouldn't fail, because the page is there
2621 	 * in the page tables. But it might just be unreadable,
2622 	 * in which case we just give up and fill the result with
2623 	 * zeroes.
2624 	 */
2625 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2626 		if (locked)
2627 			goto warn;
2628 
2629 		/* Re-validate under PTL if the page is still mapped */
2630 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2631 		locked = true;
2632 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2633 			/* The PTE changed under us, update local tlb */
2634 			update_mmu_tlb(vma, addr, vmf->pte);
2635 			ret = false;
2636 			goto pte_unlock;
2637 		}
2638 
2639 		/*
2640 		 * The same page can be mapped back since last copy attempt.
2641 		 * Try to copy again under PTL.
2642 		 */
2643 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2644 			/*
2645 			 * Give a warn in case there can be some obscure
2646 			 * use-case
2647 			 */
2648 warn:
2649 			WARN_ON_ONCE(1);
2650 			clear_page(kaddr);
2651 		}
2652 	}
2653 
2654 	ret = true;
2655 
2656 pte_unlock:
2657 	if (locked)
2658 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 	kunmap_atomic(kaddr);
2660 	flush_dcache_page(dst);
2661 
2662 	return ret;
2663 }
2664 
2665 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2666 {
2667 	struct file *vm_file = vma->vm_file;
2668 
2669 	if (vm_file)
2670 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2671 
2672 	/*
2673 	 * Special mappings (e.g. VDSO) do not have any file so fake
2674 	 * a default GFP_KERNEL for them.
2675 	 */
2676 	return GFP_KERNEL;
2677 }
2678 
2679 /*
2680  * Notify the address space that the page is about to become writable so that
2681  * it can prohibit this or wait for the page to get into an appropriate state.
2682  *
2683  * We do this without the lock held, so that it can sleep if it needs to.
2684  */
2685 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2686 {
2687 	vm_fault_t ret;
2688 	struct page *page = vmf->page;
2689 	unsigned int old_flags = vmf->flags;
2690 
2691 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2692 
2693 	if (vmf->vma->vm_file &&
2694 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2695 		return VM_FAULT_SIGBUS;
2696 
2697 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2698 	/* Restore original flags so that caller is not surprised */
2699 	vmf->flags = old_flags;
2700 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2701 		return ret;
2702 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2703 		lock_page(page);
2704 		if (!page->mapping) {
2705 			unlock_page(page);
2706 			return 0; /* retry */
2707 		}
2708 		ret |= VM_FAULT_LOCKED;
2709 	} else
2710 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2711 	return ret;
2712 }
2713 
2714 /*
2715  * Handle dirtying of a page in shared file mapping on a write fault.
2716  *
2717  * The function expects the page to be locked and unlocks it.
2718  */
2719 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2720 {
2721 	struct vm_area_struct *vma = vmf->vma;
2722 	struct address_space *mapping;
2723 	struct page *page = vmf->page;
2724 	bool dirtied;
2725 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2726 
2727 	dirtied = set_page_dirty(page);
2728 	VM_BUG_ON_PAGE(PageAnon(page), page);
2729 	/*
2730 	 * Take a local copy of the address_space - page.mapping may be zeroed
2731 	 * by truncate after unlock_page().   The address_space itself remains
2732 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2733 	 * release semantics to prevent the compiler from undoing this copying.
2734 	 */
2735 	mapping = page_rmapping(page);
2736 	unlock_page(page);
2737 
2738 	if (!page_mkwrite)
2739 		file_update_time(vma->vm_file);
2740 
2741 	/*
2742 	 * Throttle page dirtying rate down to writeback speed.
2743 	 *
2744 	 * mapping may be NULL here because some device drivers do not
2745 	 * set page.mapping but still dirty their pages
2746 	 *
2747 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2748 	 * is pinning the mapping, as per above.
2749 	 */
2750 	if ((dirtied || page_mkwrite) && mapping) {
2751 		struct file *fpin;
2752 
2753 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2754 		balance_dirty_pages_ratelimited(mapping);
2755 		if (fpin) {
2756 			fput(fpin);
2757 			return VM_FAULT_RETRY;
2758 		}
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 /*
2765  * Handle write page faults for pages that can be reused in the current vma
2766  *
2767  * This can happen either due to the mapping being with the VM_SHARED flag,
2768  * or due to us being the last reference standing to the page. In either
2769  * case, all we need to do here is to mark the page as writable and update
2770  * any related book-keeping.
2771  */
2772 static inline void wp_page_reuse(struct vm_fault *vmf)
2773 	__releases(vmf->ptl)
2774 {
2775 	struct vm_area_struct *vma = vmf->vma;
2776 	struct page *page = vmf->page;
2777 	pte_t entry;
2778 	/*
2779 	 * Clear the pages cpupid information as the existing
2780 	 * information potentially belongs to a now completely
2781 	 * unrelated process.
2782 	 */
2783 	if (page)
2784 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2785 
2786 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2787 	entry = pte_mkyoung(vmf->orig_pte);
2788 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2789 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2790 		update_mmu_cache(vma, vmf->address, vmf->pte);
2791 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2792 	count_vm_event(PGREUSE);
2793 }
2794 
2795 /*
2796  * Handle the case of a page which we actually need to copy to a new page.
2797  *
2798  * Called with mmap_lock locked and the old page referenced, but
2799  * without the ptl held.
2800  *
2801  * High level logic flow:
2802  *
2803  * - Allocate a page, copy the content of the old page to the new one.
2804  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2805  * - Take the PTL. If the pte changed, bail out and release the allocated page
2806  * - If the pte is still the way we remember it, update the page table and all
2807  *   relevant references. This includes dropping the reference the page-table
2808  *   held to the old page, as well as updating the rmap.
2809  * - In any case, unlock the PTL and drop the reference we took to the old page.
2810  */
2811 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2812 {
2813 	struct vm_area_struct *vma = vmf->vma;
2814 	struct mm_struct *mm = vma->vm_mm;
2815 	struct page *old_page = vmf->page;
2816 	struct page *new_page = NULL;
2817 	pte_t entry;
2818 	int page_copied = 0;
2819 	struct mmu_notifier_range range;
2820 
2821 	if (unlikely(anon_vma_prepare(vma)))
2822 		goto oom;
2823 
2824 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2825 		new_page = alloc_zeroed_user_highpage_movable(vma,
2826 							      vmf->address);
2827 		if (!new_page)
2828 			goto oom;
2829 	} else {
2830 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2831 				vmf->address);
2832 		if (!new_page)
2833 			goto oom;
2834 
2835 		if (!cow_user_page(new_page, old_page, vmf)) {
2836 			/*
2837 			 * COW failed, if the fault was solved by other,
2838 			 * it's fine. If not, userspace would re-fault on
2839 			 * the same address and we will handle the fault
2840 			 * from the second attempt.
2841 			 */
2842 			put_page(new_page);
2843 			if (old_page)
2844 				put_page(old_page);
2845 			return 0;
2846 		}
2847 	}
2848 
2849 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2850 		goto oom_free_new;
2851 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2852 
2853 	__SetPageUptodate(new_page);
2854 
2855 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2856 				vmf->address & PAGE_MASK,
2857 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2858 	mmu_notifier_invalidate_range_start(&range);
2859 
2860 	/*
2861 	 * Re-check the pte - we dropped the lock
2862 	 */
2863 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2864 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2865 		if (old_page) {
2866 			if (!PageAnon(old_page)) {
2867 				dec_mm_counter_fast(mm,
2868 						mm_counter_file(old_page));
2869 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2870 			}
2871 		} else {
2872 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2873 		}
2874 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2875 		entry = mk_pte(new_page, vma->vm_page_prot);
2876 		entry = pte_sw_mkyoung(entry);
2877 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2878 		/*
2879 		 * Clear the pte entry and flush it first, before updating the
2880 		 * pte with the new entry. This will avoid a race condition
2881 		 * seen in the presence of one thread doing SMC and another
2882 		 * thread doing COW.
2883 		 */
2884 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2885 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2886 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2887 		/*
2888 		 * We call the notify macro here because, when using secondary
2889 		 * mmu page tables (such as kvm shadow page tables), we want the
2890 		 * new page to be mapped directly into the secondary page table.
2891 		 */
2892 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2893 		update_mmu_cache(vma, vmf->address, vmf->pte);
2894 		if (old_page) {
2895 			/*
2896 			 * Only after switching the pte to the new page may
2897 			 * we remove the mapcount here. Otherwise another
2898 			 * process may come and find the rmap count decremented
2899 			 * before the pte is switched to the new page, and
2900 			 * "reuse" the old page writing into it while our pte
2901 			 * here still points into it and can be read by other
2902 			 * threads.
2903 			 *
2904 			 * The critical issue is to order this
2905 			 * page_remove_rmap with the ptp_clear_flush above.
2906 			 * Those stores are ordered by (if nothing else,)
2907 			 * the barrier present in the atomic_add_negative
2908 			 * in page_remove_rmap.
2909 			 *
2910 			 * Then the TLB flush in ptep_clear_flush ensures that
2911 			 * no process can access the old page before the
2912 			 * decremented mapcount is visible. And the old page
2913 			 * cannot be reused until after the decremented
2914 			 * mapcount is visible. So transitively, TLBs to
2915 			 * old page will be flushed before it can be reused.
2916 			 */
2917 			page_remove_rmap(old_page, false);
2918 		}
2919 
2920 		/* Free the old page.. */
2921 		new_page = old_page;
2922 		page_copied = 1;
2923 	} else {
2924 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2925 	}
2926 
2927 	if (new_page)
2928 		put_page(new_page);
2929 
2930 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2931 	/*
2932 	 * No need to double call mmu_notifier->invalidate_range() callback as
2933 	 * the above ptep_clear_flush_notify() did already call it.
2934 	 */
2935 	mmu_notifier_invalidate_range_only_end(&range);
2936 	if (old_page) {
2937 		/*
2938 		 * Don't let another task, with possibly unlocked vma,
2939 		 * keep the mlocked page.
2940 		 */
2941 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2942 			lock_page(old_page);	/* LRU manipulation */
2943 			if (PageMlocked(old_page))
2944 				munlock_vma_page(old_page);
2945 			unlock_page(old_page);
2946 		}
2947 		put_page(old_page);
2948 	}
2949 	return page_copied ? VM_FAULT_WRITE : 0;
2950 oom_free_new:
2951 	put_page(new_page);
2952 oom:
2953 	if (old_page)
2954 		put_page(old_page);
2955 	return VM_FAULT_OOM;
2956 }
2957 
2958 /**
2959  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2960  *			  writeable once the page is prepared
2961  *
2962  * @vmf: structure describing the fault
2963  *
2964  * This function handles all that is needed to finish a write page fault in a
2965  * shared mapping due to PTE being read-only once the mapped page is prepared.
2966  * It handles locking of PTE and modifying it.
2967  *
2968  * The function expects the page to be locked or other protection against
2969  * concurrent faults / writeback (such as DAX radix tree locks).
2970  *
2971  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2972  * we acquired PTE lock.
2973  */
2974 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2975 {
2976 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2977 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2978 				       &vmf->ptl);
2979 	/*
2980 	 * We might have raced with another page fault while we released the
2981 	 * pte_offset_map_lock.
2982 	 */
2983 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2984 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2985 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2986 		return VM_FAULT_NOPAGE;
2987 	}
2988 	wp_page_reuse(vmf);
2989 	return 0;
2990 }
2991 
2992 /*
2993  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2994  * mapping
2995  */
2996 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2997 {
2998 	struct vm_area_struct *vma = vmf->vma;
2999 
3000 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3001 		vm_fault_t ret;
3002 
3003 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3004 		vmf->flags |= FAULT_FLAG_MKWRITE;
3005 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3006 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3007 			return ret;
3008 		return finish_mkwrite_fault(vmf);
3009 	}
3010 	wp_page_reuse(vmf);
3011 	return VM_FAULT_WRITE;
3012 }
3013 
3014 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3015 	__releases(vmf->ptl)
3016 {
3017 	struct vm_area_struct *vma = vmf->vma;
3018 	vm_fault_t ret = VM_FAULT_WRITE;
3019 
3020 	get_page(vmf->page);
3021 
3022 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3023 		vm_fault_t tmp;
3024 
3025 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3026 		tmp = do_page_mkwrite(vmf);
3027 		if (unlikely(!tmp || (tmp &
3028 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3029 			put_page(vmf->page);
3030 			return tmp;
3031 		}
3032 		tmp = finish_mkwrite_fault(vmf);
3033 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3034 			unlock_page(vmf->page);
3035 			put_page(vmf->page);
3036 			return tmp;
3037 		}
3038 	} else {
3039 		wp_page_reuse(vmf);
3040 		lock_page(vmf->page);
3041 	}
3042 	ret |= fault_dirty_shared_page(vmf);
3043 	put_page(vmf->page);
3044 
3045 	return ret;
3046 }
3047 
3048 /*
3049  * This routine handles present pages, when users try to write
3050  * to a shared page. It is done by copying the page to a new address
3051  * and decrementing the shared-page counter for the old page.
3052  *
3053  * Note that this routine assumes that the protection checks have been
3054  * done by the caller (the low-level page fault routine in most cases).
3055  * Thus we can safely just mark it writable once we've done any necessary
3056  * COW.
3057  *
3058  * We also mark the page dirty at this point even though the page will
3059  * change only once the write actually happens. This avoids a few races,
3060  * and potentially makes it more efficient.
3061  *
3062  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3063  * but allow concurrent faults), with pte both mapped and locked.
3064  * We return with mmap_lock still held, but pte unmapped and unlocked.
3065  */
3066 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3067 	__releases(vmf->ptl)
3068 {
3069 	struct vm_area_struct *vma = vmf->vma;
3070 
3071 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3072 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3073 		return handle_userfault(vmf, VM_UFFD_WP);
3074 	}
3075 
3076 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3077 	if (!vmf->page) {
3078 		/*
3079 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3080 		 * VM_PFNMAP VMA.
3081 		 *
3082 		 * We should not cow pages in a shared writeable mapping.
3083 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3084 		 */
3085 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3086 				     (VM_WRITE|VM_SHARED))
3087 			return wp_pfn_shared(vmf);
3088 
3089 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3090 		return wp_page_copy(vmf);
3091 	}
3092 
3093 	/*
3094 	 * Take out anonymous pages first, anonymous shared vmas are
3095 	 * not dirty accountable.
3096 	 */
3097 	if (PageAnon(vmf->page)) {
3098 		struct page *page = vmf->page;
3099 
3100 		/* PageKsm() doesn't necessarily raise the page refcount */
3101 		if (PageKsm(page) || page_count(page) != 1)
3102 			goto copy;
3103 		if (!trylock_page(page))
3104 			goto copy;
3105 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3106 			unlock_page(page);
3107 			goto copy;
3108 		}
3109 		/*
3110 		 * Ok, we've got the only map reference, and the only
3111 		 * page count reference, and the page is locked,
3112 		 * it's dark out, and we're wearing sunglasses. Hit it.
3113 		 */
3114 		unlock_page(page);
3115 		wp_page_reuse(vmf);
3116 		return VM_FAULT_WRITE;
3117 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118 					(VM_WRITE|VM_SHARED))) {
3119 		return wp_page_shared(vmf);
3120 	}
3121 copy:
3122 	/*
3123 	 * Ok, we need to copy. Oh, well..
3124 	 */
3125 	get_page(vmf->page);
3126 
3127 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3128 	return wp_page_copy(vmf);
3129 }
3130 
3131 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3132 		unsigned long start_addr, unsigned long end_addr,
3133 		struct zap_details *details)
3134 {
3135 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3136 }
3137 
3138 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3139 					    struct zap_details *details)
3140 {
3141 	struct vm_area_struct *vma;
3142 	pgoff_t vba, vea, zba, zea;
3143 
3144 	vma_interval_tree_foreach(vma, root,
3145 			details->first_index, details->last_index) {
3146 
3147 		vba = vma->vm_pgoff;
3148 		vea = vba + vma_pages(vma) - 1;
3149 		zba = details->first_index;
3150 		if (zba < vba)
3151 			zba = vba;
3152 		zea = details->last_index;
3153 		if (zea > vea)
3154 			zea = vea;
3155 
3156 		unmap_mapping_range_vma(vma,
3157 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3158 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3159 				details);
3160 	}
3161 }
3162 
3163 /**
3164  * unmap_mapping_pages() - Unmap pages from processes.
3165  * @mapping: The address space containing pages to be unmapped.
3166  * @start: Index of first page to be unmapped.
3167  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3168  * @even_cows: Whether to unmap even private COWed pages.
3169  *
3170  * Unmap the pages in this address space from any userspace process which
3171  * has them mmaped.  Generally, you want to remove COWed pages as well when
3172  * a file is being truncated, but not when invalidating pages from the page
3173  * cache.
3174  */
3175 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3176 		pgoff_t nr, bool even_cows)
3177 {
3178 	struct zap_details details = { };
3179 
3180 	details.check_mapping = even_cows ? NULL : mapping;
3181 	details.first_index = start;
3182 	details.last_index = start + nr - 1;
3183 	if (details.last_index < details.first_index)
3184 		details.last_index = ULONG_MAX;
3185 
3186 	i_mmap_lock_write(mapping);
3187 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3188 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3189 	i_mmap_unlock_write(mapping);
3190 }
3191 
3192 /**
3193  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3194  * address_space corresponding to the specified byte range in the underlying
3195  * file.
3196  *
3197  * @mapping: the address space containing mmaps to be unmapped.
3198  * @holebegin: byte in first page to unmap, relative to the start of
3199  * the underlying file.  This will be rounded down to a PAGE_SIZE
3200  * boundary.  Note that this is different from truncate_pagecache(), which
3201  * must keep the partial page.  In contrast, we must get rid of
3202  * partial pages.
3203  * @holelen: size of prospective hole in bytes.  This will be rounded
3204  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3205  * end of the file.
3206  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3207  * but 0 when invalidating pagecache, don't throw away private data.
3208  */
3209 void unmap_mapping_range(struct address_space *mapping,
3210 		loff_t const holebegin, loff_t const holelen, int even_cows)
3211 {
3212 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3213 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3214 
3215 	/* Check for overflow. */
3216 	if (sizeof(holelen) > sizeof(hlen)) {
3217 		long long holeend =
3218 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219 		if (holeend & ~(long long)ULONG_MAX)
3220 			hlen = ULONG_MAX - hba + 1;
3221 	}
3222 
3223 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3224 }
3225 EXPORT_SYMBOL(unmap_mapping_range);
3226 
3227 /*
3228  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3229  * but allow concurrent faults), and pte mapped but not yet locked.
3230  * We return with pte unmapped and unlocked.
3231  *
3232  * We return with the mmap_lock locked or unlocked in the same cases
3233  * as does filemap_fault().
3234  */
3235 vm_fault_t do_swap_page(struct vm_fault *vmf)
3236 {
3237 	struct vm_area_struct *vma = vmf->vma;
3238 	struct page *page = NULL, *swapcache;
3239 	swp_entry_t entry;
3240 	pte_t pte;
3241 	int locked;
3242 	int exclusive = 0;
3243 	vm_fault_t ret = 0;
3244 	void *shadow = NULL;
3245 
3246 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3247 		goto out;
3248 
3249 	entry = pte_to_swp_entry(vmf->orig_pte);
3250 	if (unlikely(non_swap_entry(entry))) {
3251 		if (is_migration_entry(entry)) {
3252 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3253 					     vmf->address);
3254 		} else if (is_device_private_entry(entry)) {
3255 			vmf->page = device_private_entry_to_page(entry);
3256 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3257 		} else if (is_hwpoison_entry(entry)) {
3258 			ret = VM_FAULT_HWPOISON;
3259 		} else {
3260 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3261 			ret = VM_FAULT_SIGBUS;
3262 		}
3263 		goto out;
3264 	}
3265 
3266 
3267 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3268 	page = lookup_swap_cache(entry, vma, vmf->address);
3269 	swapcache = page;
3270 
3271 	if (!page) {
3272 		struct swap_info_struct *si = swp_swap_info(entry);
3273 
3274 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3275 		    __swap_count(entry) == 1) {
3276 			/* skip swapcache */
3277 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3278 							vmf->address);
3279 			if (page) {
3280 				int err;
3281 
3282 				__SetPageLocked(page);
3283 				__SetPageSwapBacked(page);
3284 				set_page_private(page, entry.val);
3285 
3286 				/* Tell memcg to use swap ownership records */
3287 				SetPageSwapCache(page);
3288 				err = mem_cgroup_charge(page, vma->vm_mm,
3289 							GFP_KERNEL);
3290 				ClearPageSwapCache(page);
3291 				if (err) {
3292 					ret = VM_FAULT_OOM;
3293 					goto out_page;
3294 				}
3295 
3296 				shadow = get_shadow_from_swap_cache(entry);
3297 				if (shadow)
3298 					workingset_refault(page, shadow);
3299 
3300 				lru_cache_add(page);
3301 				swap_readpage(page, true);
3302 			}
3303 		} else {
3304 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3305 						vmf);
3306 			swapcache = page;
3307 		}
3308 
3309 		if (!page) {
3310 			/*
3311 			 * Back out if somebody else faulted in this pte
3312 			 * while we released the pte lock.
3313 			 */
3314 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3315 					vmf->address, &vmf->ptl);
3316 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3317 				ret = VM_FAULT_OOM;
3318 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3319 			goto unlock;
3320 		}
3321 
3322 		/* Had to read the page from swap area: Major fault */
3323 		ret = VM_FAULT_MAJOR;
3324 		count_vm_event(PGMAJFAULT);
3325 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3326 	} else if (PageHWPoison(page)) {
3327 		/*
3328 		 * hwpoisoned dirty swapcache pages are kept for killing
3329 		 * owner processes (which may be unknown at hwpoison time)
3330 		 */
3331 		ret = VM_FAULT_HWPOISON;
3332 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3333 		goto out_release;
3334 	}
3335 
3336 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3337 
3338 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339 	if (!locked) {
3340 		ret |= VM_FAULT_RETRY;
3341 		goto out_release;
3342 	}
3343 
3344 	/*
3345 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3346 	 * release the swapcache from under us.  The page pin, and pte_same
3347 	 * test below, are not enough to exclude that.  Even if it is still
3348 	 * swapcache, we need to check that the page's swap has not changed.
3349 	 */
3350 	if (unlikely((!PageSwapCache(page) ||
3351 			page_private(page) != entry.val)) && swapcache)
3352 		goto out_page;
3353 
3354 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3355 	if (unlikely(!page)) {
3356 		ret = VM_FAULT_OOM;
3357 		page = swapcache;
3358 		goto out_page;
3359 	}
3360 
3361 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3362 
3363 	/*
3364 	 * Back out if somebody else already faulted in this pte.
3365 	 */
3366 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3367 			&vmf->ptl);
3368 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3369 		goto out_nomap;
3370 
3371 	if (unlikely(!PageUptodate(page))) {
3372 		ret = VM_FAULT_SIGBUS;
3373 		goto out_nomap;
3374 	}
3375 
3376 	/*
3377 	 * The page isn't present yet, go ahead with the fault.
3378 	 *
3379 	 * Be careful about the sequence of operations here.
3380 	 * To get its accounting right, reuse_swap_page() must be called
3381 	 * while the page is counted on swap but not yet in mapcount i.e.
3382 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3383 	 * must be called after the swap_free(), or it will never succeed.
3384 	 */
3385 
3386 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3387 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3388 	pte = mk_pte(page, vma->vm_page_prot);
3389 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3390 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3391 		vmf->flags &= ~FAULT_FLAG_WRITE;
3392 		ret |= VM_FAULT_WRITE;
3393 		exclusive = RMAP_EXCLUSIVE;
3394 	}
3395 	flush_icache_page(vma, page);
3396 	if (pte_swp_soft_dirty(vmf->orig_pte))
3397 		pte = pte_mksoft_dirty(pte);
3398 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3399 		pte = pte_mkuffd_wp(pte);
3400 		pte = pte_wrprotect(pte);
3401 	}
3402 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3403 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3404 	vmf->orig_pte = pte;
3405 
3406 	/* ksm created a completely new copy */
3407 	if (unlikely(page != swapcache && swapcache)) {
3408 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3409 		lru_cache_add_inactive_or_unevictable(page, vma);
3410 	} else {
3411 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3412 	}
3413 
3414 	swap_free(entry);
3415 	if (mem_cgroup_swap_full(page) ||
3416 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3417 		try_to_free_swap(page);
3418 	unlock_page(page);
3419 	if (page != swapcache && swapcache) {
3420 		/*
3421 		 * Hold the lock to avoid the swap entry to be reused
3422 		 * until we take the PT lock for the pte_same() check
3423 		 * (to avoid false positives from pte_same). For
3424 		 * further safety release the lock after the swap_free
3425 		 * so that the swap count won't change under a
3426 		 * parallel locked swapcache.
3427 		 */
3428 		unlock_page(swapcache);
3429 		put_page(swapcache);
3430 	}
3431 
3432 	if (vmf->flags & FAULT_FLAG_WRITE) {
3433 		ret |= do_wp_page(vmf);
3434 		if (ret & VM_FAULT_ERROR)
3435 			ret &= VM_FAULT_ERROR;
3436 		goto out;
3437 	}
3438 
3439 	/* No need to invalidate - it was non-present before */
3440 	update_mmu_cache(vma, vmf->address, vmf->pte);
3441 unlock:
3442 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 out:
3444 	return ret;
3445 out_nomap:
3446 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 out_page:
3448 	unlock_page(page);
3449 out_release:
3450 	put_page(page);
3451 	if (page != swapcache && swapcache) {
3452 		unlock_page(swapcache);
3453 		put_page(swapcache);
3454 	}
3455 	return ret;
3456 }
3457 
3458 /*
3459  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3460  * but allow concurrent faults), and pte mapped but not yet locked.
3461  * We return with mmap_lock still held, but pte unmapped and unlocked.
3462  */
3463 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3464 {
3465 	struct vm_area_struct *vma = vmf->vma;
3466 	struct page *page;
3467 	vm_fault_t ret = 0;
3468 	pte_t entry;
3469 
3470 	/* File mapping without ->vm_ops ? */
3471 	if (vma->vm_flags & VM_SHARED)
3472 		return VM_FAULT_SIGBUS;
3473 
3474 	/*
3475 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3476 	 * pte_offset_map() on pmds where a huge pmd might be created
3477 	 * from a different thread.
3478 	 *
3479 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3480 	 * parallel threads are excluded by other means.
3481 	 *
3482 	 * Here we only have mmap_read_lock(mm).
3483 	 */
3484 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3485 		return VM_FAULT_OOM;
3486 
3487 	/* See the comment in pte_alloc_one_map() */
3488 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3489 		return 0;
3490 
3491 	/* Use the zero-page for reads */
3492 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3493 			!mm_forbids_zeropage(vma->vm_mm)) {
3494 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3495 						vma->vm_page_prot));
3496 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3497 				vmf->address, &vmf->ptl);
3498 		if (!pte_none(*vmf->pte)) {
3499 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3500 			goto unlock;
3501 		}
3502 		ret = check_stable_address_space(vma->vm_mm);
3503 		if (ret)
3504 			goto unlock;
3505 		/* Deliver the page fault to userland, check inside PT lock */
3506 		if (userfaultfd_missing(vma)) {
3507 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3508 			return handle_userfault(vmf, VM_UFFD_MISSING);
3509 		}
3510 		goto setpte;
3511 	}
3512 
3513 	/* Allocate our own private page. */
3514 	if (unlikely(anon_vma_prepare(vma)))
3515 		goto oom;
3516 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3517 	if (!page)
3518 		goto oom;
3519 
3520 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3521 		goto oom_free_page;
3522 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3523 
3524 	/*
3525 	 * The memory barrier inside __SetPageUptodate makes sure that
3526 	 * preceding stores to the page contents become visible before
3527 	 * the set_pte_at() write.
3528 	 */
3529 	__SetPageUptodate(page);
3530 
3531 	entry = mk_pte(page, vma->vm_page_prot);
3532 	entry = pte_sw_mkyoung(entry);
3533 	if (vma->vm_flags & VM_WRITE)
3534 		entry = pte_mkwrite(pte_mkdirty(entry));
3535 
3536 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3537 			&vmf->ptl);
3538 	if (!pte_none(*vmf->pte)) {
3539 		update_mmu_cache(vma, vmf->address, vmf->pte);
3540 		goto release;
3541 	}
3542 
3543 	ret = check_stable_address_space(vma->vm_mm);
3544 	if (ret)
3545 		goto release;
3546 
3547 	/* Deliver the page fault to userland, check inside PT lock */
3548 	if (userfaultfd_missing(vma)) {
3549 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3550 		put_page(page);
3551 		return handle_userfault(vmf, VM_UFFD_MISSING);
3552 	}
3553 
3554 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3555 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3556 	lru_cache_add_inactive_or_unevictable(page, vma);
3557 setpte:
3558 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3559 
3560 	/* No need to invalidate - it was non-present before */
3561 	update_mmu_cache(vma, vmf->address, vmf->pte);
3562 unlock:
3563 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3564 	return ret;
3565 release:
3566 	put_page(page);
3567 	goto unlock;
3568 oom_free_page:
3569 	put_page(page);
3570 oom:
3571 	return VM_FAULT_OOM;
3572 }
3573 
3574 /*
3575  * The mmap_lock must have been held on entry, and may have been
3576  * released depending on flags and vma->vm_ops->fault() return value.
3577  * See filemap_fault() and __lock_page_retry().
3578  */
3579 static vm_fault_t __do_fault(struct vm_fault *vmf)
3580 {
3581 	struct vm_area_struct *vma = vmf->vma;
3582 	vm_fault_t ret;
3583 
3584 	/*
3585 	 * Preallocate pte before we take page_lock because this might lead to
3586 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3587 	 *				lock_page(A)
3588 	 *				SetPageWriteback(A)
3589 	 *				unlock_page(A)
3590 	 * lock_page(B)
3591 	 *				lock_page(B)
3592 	 * pte_alloc_pne
3593 	 *   shrink_page_list
3594 	 *     wait_on_page_writeback(A)
3595 	 *				SetPageWriteback(B)
3596 	 *				unlock_page(B)
3597 	 *				# flush A, B to clear the writeback
3598 	 */
3599 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3600 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3601 		if (!vmf->prealloc_pte)
3602 			return VM_FAULT_OOM;
3603 		smp_wmb(); /* See comment in __pte_alloc() */
3604 	}
3605 
3606 	ret = vma->vm_ops->fault(vmf);
3607 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3608 			    VM_FAULT_DONE_COW)))
3609 		return ret;
3610 
3611 	if (unlikely(PageHWPoison(vmf->page))) {
3612 		if (ret & VM_FAULT_LOCKED)
3613 			unlock_page(vmf->page);
3614 		put_page(vmf->page);
3615 		vmf->page = NULL;
3616 		return VM_FAULT_HWPOISON;
3617 	}
3618 
3619 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3620 		lock_page(vmf->page);
3621 	else
3622 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3623 
3624 	return ret;
3625 }
3626 
3627 /*
3628  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3629  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3630  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3631  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3632  */
3633 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3634 {
3635 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3636 }
3637 
3638 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3639 {
3640 	struct vm_area_struct *vma = vmf->vma;
3641 
3642 	if (!pmd_none(*vmf->pmd))
3643 		goto map_pte;
3644 	if (vmf->prealloc_pte) {
3645 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3646 		if (unlikely(!pmd_none(*vmf->pmd))) {
3647 			spin_unlock(vmf->ptl);
3648 			goto map_pte;
3649 		}
3650 
3651 		mm_inc_nr_ptes(vma->vm_mm);
3652 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3653 		spin_unlock(vmf->ptl);
3654 		vmf->prealloc_pte = NULL;
3655 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3656 		return VM_FAULT_OOM;
3657 	}
3658 map_pte:
3659 	/*
3660 	 * If a huge pmd materialized under us just retry later.  Use
3661 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3662 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3663 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3664 	 * running immediately after a huge pmd fault in a different thread of
3665 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3666 	 * All we have to ensure is that it is a regular pmd that we can walk
3667 	 * with pte_offset_map() and we can do that through an atomic read in
3668 	 * C, which is what pmd_trans_unstable() provides.
3669 	 */
3670 	if (pmd_devmap_trans_unstable(vmf->pmd))
3671 		return VM_FAULT_NOPAGE;
3672 
3673 	/*
3674 	 * At this point we know that our vmf->pmd points to a page of ptes
3675 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3676 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3677 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3678 	 * be valid and we will re-check to make sure the vmf->pte isn't
3679 	 * pte_none() under vmf->ptl protection when we return to
3680 	 * alloc_set_pte().
3681 	 */
3682 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3683 			&vmf->ptl);
3684 	return 0;
3685 }
3686 
3687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3688 static void deposit_prealloc_pte(struct vm_fault *vmf)
3689 {
3690 	struct vm_area_struct *vma = vmf->vma;
3691 
3692 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3693 	/*
3694 	 * We are going to consume the prealloc table,
3695 	 * count that as nr_ptes.
3696 	 */
3697 	mm_inc_nr_ptes(vma->vm_mm);
3698 	vmf->prealloc_pte = NULL;
3699 }
3700 
3701 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3702 {
3703 	struct vm_area_struct *vma = vmf->vma;
3704 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3705 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3706 	pmd_t entry;
3707 	int i;
3708 	vm_fault_t ret;
3709 
3710 	if (!transhuge_vma_suitable(vma, haddr))
3711 		return VM_FAULT_FALLBACK;
3712 
3713 	ret = VM_FAULT_FALLBACK;
3714 	page = compound_head(page);
3715 
3716 	/*
3717 	 * Archs like ppc64 need additonal space to store information
3718 	 * related to pte entry. Use the preallocated table for that.
3719 	 */
3720 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3721 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3722 		if (!vmf->prealloc_pte)
3723 			return VM_FAULT_OOM;
3724 		smp_wmb(); /* See comment in __pte_alloc() */
3725 	}
3726 
3727 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3728 	if (unlikely(!pmd_none(*vmf->pmd)))
3729 		goto out;
3730 
3731 	for (i = 0; i < HPAGE_PMD_NR; i++)
3732 		flush_icache_page(vma, page + i);
3733 
3734 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3735 	if (write)
3736 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3737 
3738 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3739 	page_add_file_rmap(page, true);
3740 	/*
3741 	 * deposit and withdraw with pmd lock held
3742 	 */
3743 	if (arch_needs_pgtable_deposit())
3744 		deposit_prealloc_pte(vmf);
3745 
3746 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3747 
3748 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3749 
3750 	/* fault is handled */
3751 	ret = 0;
3752 	count_vm_event(THP_FILE_MAPPED);
3753 out:
3754 	spin_unlock(vmf->ptl);
3755 	return ret;
3756 }
3757 #else
3758 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3759 {
3760 	BUILD_BUG();
3761 	return 0;
3762 }
3763 #endif
3764 
3765 /**
3766  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3767  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3768  *
3769  * @vmf: fault environment
3770  * @page: page to map
3771  *
3772  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3773  * return.
3774  *
3775  * Target users are page handler itself and implementations of
3776  * vm_ops->map_pages.
3777  *
3778  * Return: %0 on success, %VM_FAULT_ code in case of error.
3779  */
3780 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3781 {
3782 	struct vm_area_struct *vma = vmf->vma;
3783 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3784 	pte_t entry;
3785 	vm_fault_t ret;
3786 
3787 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3788 		ret = do_set_pmd(vmf, page);
3789 		if (ret != VM_FAULT_FALLBACK)
3790 			return ret;
3791 	}
3792 
3793 	if (!vmf->pte) {
3794 		ret = pte_alloc_one_map(vmf);
3795 		if (ret)
3796 			return ret;
3797 	}
3798 
3799 	/* Re-check under ptl */
3800 	if (unlikely(!pte_none(*vmf->pte))) {
3801 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3802 		return VM_FAULT_NOPAGE;
3803 	}
3804 
3805 	flush_icache_page(vma, page);
3806 	entry = mk_pte(page, vma->vm_page_prot);
3807 	entry = pte_sw_mkyoung(entry);
3808 	if (write)
3809 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3810 	/* copy-on-write page */
3811 	if (write && !(vma->vm_flags & VM_SHARED)) {
3812 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3813 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3814 		lru_cache_add_inactive_or_unevictable(page, vma);
3815 	} else {
3816 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3817 		page_add_file_rmap(page, false);
3818 	}
3819 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3820 
3821 	/* no need to invalidate: a not-present page won't be cached */
3822 	update_mmu_cache(vma, vmf->address, vmf->pte);
3823 
3824 	return 0;
3825 }
3826 
3827 
3828 /**
3829  * finish_fault - finish page fault once we have prepared the page to fault
3830  *
3831  * @vmf: structure describing the fault
3832  *
3833  * This function handles all that is needed to finish a page fault once the
3834  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3835  * given page, adds reverse page mapping, handles memcg charges and LRU
3836  * addition.
3837  *
3838  * The function expects the page to be locked and on success it consumes a
3839  * reference of a page being mapped (for the PTE which maps it).
3840  *
3841  * Return: %0 on success, %VM_FAULT_ code in case of error.
3842  */
3843 vm_fault_t finish_fault(struct vm_fault *vmf)
3844 {
3845 	struct page *page;
3846 	vm_fault_t ret = 0;
3847 
3848 	/* Did we COW the page? */
3849 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3850 	    !(vmf->vma->vm_flags & VM_SHARED))
3851 		page = vmf->cow_page;
3852 	else
3853 		page = vmf->page;
3854 
3855 	/*
3856 	 * check even for read faults because we might have lost our CoWed
3857 	 * page
3858 	 */
3859 	if (!(vmf->vma->vm_flags & VM_SHARED))
3860 		ret = check_stable_address_space(vmf->vma->vm_mm);
3861 	if (!ret)
3862 		ret = alloc_set_pte(vmf, page);
3863 	if (vmf->pte)
3864 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3865 	return ret;
3866 }
3867 
3868 static unsigned long fault_around_bytes __read_mostly =
3869 	rounddown_pow_of_two(65536);
3870 
3871 #ifdef CONFIG_DEBUG_FS
3872 static int fault_around_bytes_get(void *data, u64 *val)
3873 {
3874 	*val = fault_around_bytes;
3875 	return 0;
3876 }
3877 
3878 /*
3879  * fault_around_bytes must be rounded down to the nearest page order as it's
3880  * what do_fault_around() expects to see.
3881  */
3882 static int fault_around_bytes_set(void *data, u64 val)
3883 {
3884 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3885 		return -EINVAL;
3886 	if (val > PAGE_SIZE)
3887 		fault_around_bytes = rounddown_pow_of_two(val);
3888 	else
3889 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3890 	return 0;
3891 }
3892 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3893 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3894 
3895 static int __init fault_around_debugfs(void)
3896 {
3897 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3898 				   &fault_around_bytes_fops);
3899 	return 0;
3900 }
3901 late_initcall(fault_around_debugfs);
3902 #endif
3903 
3904 /*
3905  * do_fault_around() tries to map few pages around the fault address. The hope
3906  * is that the pages will be needed soon and this will lower the number of
3907  * faults to handle.
3908  *
3909  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3910  * not ready to be mapped: not up-to-date, locked, etc.
3911  *
3912  * This function is called with the page table lock taken. In the split ptlock
3913  * case the page table lock only protects only those entries which belong to
3914  * the page table corresponding to the fault address.
3915  *
3916  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3917  * only once.
3918  *
3919  * fault_around_bytes defines how many bytes we'll try to map.
3920  * do_fault_around() expects it to be set to a power of two less than or equal
3921  * to PTRS_PER_PTE.
3922  *
3923  * The virtual address of the area that we map is naturally aligned to
3924  * fault_around_bytes rounded down to the machine page size
3925  * (and therefore to page order).  This way it's easier to guarantee
3926  * that we don't cross page table boundaries.
3927  */
3928 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3929 {
3930 	unsigned long address = vmf->address, nr_pages, mask;
3931 	pgoff_t start_pgoff = vmf->pgoff;
3932 	pgoff_t end_pgoff;
3933 	int off;
3934 	vm_fault_t ret = 0;
3935 
3936 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3937 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3938 
3939 	vmf->address = max(address & mask, vmf->vma->vm_start);
3940 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3941 	start_pgoff -= off;
3942 
3943 	/*
3944 	 *  end_pgoff is either the end of the page table, the end of
3945 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3946 	 */
3947 	end_pgoff = start_pgoff -
3948 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3949 		PTRS_PER_PTE - 1;
3950 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3951 			start_pgoff + nr_pages - 1);
3952 
3953 	if (pmd_none(*vmf->pmd)) {
3954 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3955 		if (!vmf->prealloc_pte)
3956 			goto out;
3957 		smp_wmb(); /* See comment in __pte_alloc() */
3958 	}
3959 
3960 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3961 
3962 	/* Huge page is mapped? Page fault is solved */
3963 	if (pmd_trans_huge(*vmf->pmd)) {
3964 		ret = VM_FAULT_NOPAGE;
3965 		goto out;
3966 	}
3967 
3968 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3969 	if (!vmf->pte)
3970 		goto out;
3971 
3972 	/* check if the page fault is solved */
3973 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3974 	if (!pte_none(*vmf->pte))
3975 		ret = VM_FAULT_NOPAGE;
3976 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3977 out:
3978 	vmf->address = address;
3979 	vmf->pte = NULL;
3980 	return ret;
3981 }
3982 
3983 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3984 {
3985 	struct vm_area_struct *vma = vmf->vma;
3986 	vm_fault_t ret = 0;
3987 
3988 	/*
3989 	 * Let's call ->map_pages() first and use ->fault() as fallback
3990 	 * if page by the offset is not ready to be mapped (cold cache or
3991 	 * something).
3992 	 */
3993 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3994 		ret = do_fault_around(vmf);
3995 		if (ret)
3996 			return ret;
3997 	}
3998 
3999 	ret = __do_fault(vmf);
4000 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4001 		return ret;
4002 
4003 	ret |= finish_fault(vmf);
4004 	unlock_page(vmf->page);
4005 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006 		put_page(vmf->page);
4007 	return ret;
4008 }
4009 
4010 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4011 {
4012 	struct vm_area_struct *vma = vmf->vma;
4013 	vm_fault_t ret;
4014 
4015 	if (unlikely(anon_vma_prepare(vma)))
4016 		return VM_FAULT_OOM;
4017 
4018 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4019 	if (!vmf->cow_page)
4020 		return VM_FAULT_OOM;
4021 
4022 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4023 		put_page(vmf->cow_page);
4024 		return VM_FAULT_OOM;
4025 	}
4026 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4027 
4028 	ret = __do_fault(vmf);
4029 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4030 		goto uncharge_out;
4031 	if (ret & VM_FAULT_DONE_COW)
4032 		return ret;
4033 
4034 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4035 	__SetPageUptodate(vmf->cow_page);
4036 
4037 	ret |= finish_fault(vmf);
4038 	unlock_page(vmf->page);
4039 	put_page(vmf->page);
4040 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4041 		goto uncharge_out;
4042 	return ret;
4043 uncharge_out:
4044 	put_page(vmf->cow_page);
4045 	return ret;
4046 }
4047 
4048 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4049 {
4050 	struct vm_area_struct *vma = vmf->vma;
4051 	vm_fault_t ret, tmp;
4052 
4053 	ret = __do_fault(vmf);
4054 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4055 		return ret;
4056 
4057 	/*
4058 	 * Check if the backing address space wants to know that the page is
4059 	 * about to become writable
4060 	 */
4061 	if (vma->vm_ops->page_mkwrite) {
4062 		unlock_page(vmf->page);
4063 		tmp = do_page_mkwrite(vmf);
4064 		if (unlikely(!tmp ||
4065 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4066 			put_page(vmf->page);
4067 			return tmp;
4068 		}
4069 	}
4070 
4071 	ret |= finish_fault(vmf);
4072 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4073 					VM_FAULT_RETRY))) {
4074 		unlock_page(vmf->page);
4075 		put_page(vmf->page);
4076 		return ret;
4077 	}
4078 
4079 	ret |= fault_dirty_shared_page(vmf);
4080 	return ret;
4081 }
4082 
4083 /*
4084  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4085  * but allow concurrent faults).
4086  * The mmap_lock may have been released depending on flags and our
4087  * return value.  See filemap_fault() and __lock_page_or_retry().
4088  * If mmap_lock is released, vma may become invalid (for example
4089  * by other thread calling munmap()).
4090  */
4091 static vm_fault_t do_fault(struct vm_fault *vmf)
4092 {
4093 	struct vm_area_struct *vma = vmf->vma;
4094 	struct mm_struct *vm_mm = vma->vm_mm;
4095 	vm_fault_t ret;
4096 
4097 	/*
4098 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4099 	 */
4100 	if (!vma->vm_ops->fault) {
4101 		/*
4102 		 * If we find a migration pmd entry or a none pmd entry, which
4103 		 * should never happen, return SIGBUS
4104 		 */
4105 		if (unlikely(!pmd_present(*vmf->pmd)))
4106 			ret = VM_FAULT_SIGBUS;
4107 		else {
4108 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4109 						       vmf->pmd,
4110 						       vmf->address,
4111 						       &vmf->ptl);
4112 			/*
4113 			 * Make sure this is not a temporary clearing of pte
4114 			 * by holding ptl and checking again. A R/M/W update
4115 			 * of pte involves: take ptl, clearing the pte so that
4116 			 * we don't have concurrent modification by hardware
4117 			 * followed by an update.
4118 			 */
4119 			if (unlikely(pte_none(*vmf->pte)))
4120 				ret = VM_FAULT_SIGBUS;
4121 			else
4122 				ret = VM_FAULT_NOPAGE;
4123 
4124 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4125 		}
4126 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4127 		ret = do_read_fault(vmf);
4128 	else if (!(vma->vm_flags & VM_SHARED))
4129 		ret = do_cow_fault(vmf);
4130 	else
4131 		ret = do_shared_fault(vmf);
4132 
4133 	/* preallocated pagetable is unused: free it */
4134 	if (vmf->prealloc_pte) {
4135 		pte_free(vm_mm, vmf->prealloc_pte);
4136 		vmf->prealloc_pte = NULL;
4137 	}
4138 	return ret;
4139 }
4140 
4141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4142 				unsigned long addr, int page_nid,
4143 				int *flags)
4144 {
4145 	get_page(page);
4146 
4147 	count_vm_numa_event(NUMA_HINT_FAULTS);
4148 	if (page_nid == numa_node_id()) {
4149 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4150 		*flags |= TNF_FAULT_LOCAL;
4151 	}
4152 
4153 	return mpol_misplaced(page, vma, addr);
4154 }
4155 
4156 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4157 {
4158 	struct vm_area_struct *vma = vmf->vma;
4159 	struct page *page = NULL;
4160 	int page_nid = NUMA_NO_NODE;
4161 	int last_cpupid;
4162 	int target_nid;
4163 	bool migrated = false;
4164 	pte_t pte, old_pte;
4165 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4166 	int flags = 0;
4167 
4168 	/*
4169 	 * The "pte" at this point cannot be used safely without
4170 	 * validation through pte_unmap_same(). It's of NUMA type but
4171 	 * the pfn may be screwed if the read is non atomic.
4172 	 */
4173 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4174 	spin_lock(vmf->ptl);
4175 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4176 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4177 		goto out;
4178 	}
4179 
4180 	/*
4181 	 * Make it present again, Depending on how arch implementes non
4182 	 * accessible ptes, some can allow access by kernel mode.
4183 	 */
4184 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4185 	pte = pte_modify(old_pte, vma->vm_page_prot);
4186 	pte = pte_mkyoung(pte);
4187 	if (was_writable)
4188 		pte = pte_mkwrite(pte);
4189 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4190 	update_mmu_cache(vma, vmf->address, vmf->pte);
4191 
4192 	page = vm_normal_page(vma, vmf->address, pte);
4193 	if (!page) {
4194 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4195 		return 0;
4196 	}
4197 
4198 	/* TODO: handle PTE-mapped THP */
4199 	if (PageCompound(page)) {
4200 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4201 		return 0;
4202 	}
4203 
4204 	/*
4205 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4206 	 * much anyway since they can be in shared cache state. This misses
4207 	 * the case where a mapping is writable but the process never writes
4208 	 * to it but pte_write gets cleared during protection updates and
4209 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4210 	 * background writeback, dirty balancing and application behaviour.
4211 	 */
4212 	if (!pte_write(pte))
4213 		flags |= TNF_NO_GROUP;
4214 
4215 	/*
4216 	 * Flag if the page is shared between multiple address spaces. This
4217 	 * is later used when determining whether to group tasks together
4218 	 */
4219 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4220 		flags |= TNF_SHARED;
4221 
4222 	last_cpupid = page_cpupid_last(page);
4223 	page_nid = page_to_nid(page);
4224 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4225 			&flags);
4226 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4227 	if (target_nid == NUMA_NO_NODE) {
4228 		put_page(page);
4229 		goto out;
4230 	}
4231 
4232 	/* Migrate to the requested node */
4233 	migrated = migrate_misplaced_page(page, vma, target_nid);
4234 	if (migrated) {
4235 		page_nid = target_nid;
4236 		flags |= TNF_MIGRATED;
4237 	} else
4238 		flags |= TNF_MIGRATE_FAIL;
4239 
4240 out:
4241 	if (page_nid != NUMA_NO_NODE)
4242 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4243 	return 0;
4244 }
4245 
4246 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4247 {
4248 	if (vma_is_anonymous(vmf->vma))
4249 		return do_huge_pmd_anonymous_page(vmf);
4250 	if (vmf->vma->vm_ops->huge_fault)
4251 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4252 	return VM_FAULT_FALLBACK;
4253 }
4254 
4255 /* `inline' is required to avoid gcc 4.1.2 build error */
4256 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4257 {
4258 	if (vma_is_anonymous(vmf->vma)) {
4259 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4260 			return handle_userfault(vmf, VM_UFFD_WP);
4261 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4262 	}
4263 	if (vmf->vma->vm_ops->huge_fault) {
4264 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4265 
4266 		if (!(ret & VM_FAULT_FALLBACK))
4267 			return ret;
4268 	}
4269 
4270 	/* COW or write-notify handled on pte level: split pmd. */
4271 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4272 
4273 	return VM_FAULT_FALLBACK;
4274 }
4275 
4276 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4277 {
4278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4279 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4280 	/* No support for anonymous transparent PUD pages yet */
4281 	if (vma_is_anonymous(vmf->vma))
4282 		goto split;
4283 	if (vmf->vma->vm_ops->huge_fault) {
4284 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4285 
4286 		if (!(ret & VM_FAULT_FALLBACK))
4287 			return ret;
4288 	}
4289 split:
4290 	/* COW or write-notify not handled on PUD level: split pud.*/
4291 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4292 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4293 	return VM_FAULT_FALLBACK;
4294 }
4295 
4296 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4297 {
4298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4299 	/* No support for anonymous transparent PUD pages yet */
4300 	if (vma_is_anonymous(vmf->vma))
4301 		return VM_FAULT_FALLBACK;
4302 	if (vmf->vma->vm_ops->huge_fault)
4303 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4305 	return VM_FAULT_FALLBACK;
4306 }
4307 
4308 /*
4309  * These routines also need to handle stuff like marking pages dirty
4310  * and/or accessed for architectures that don't do it in hardware (most
4311  * RISC architectures).  The early dirtying is also good on the i386.
4312  *
4313  * There is also a hook called "update_mmu_cache()" that architectures
4314  * with external mmu caches can use to update those (ie the Sparc or
4315  * PowerPC hashed page tables that act as extended TLBs).
4316  *
4317  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4318  * concurrent faults).
4319  *
4320  * The mmap_lock may have been released depending on flags and our return value.
4321  * See filemap_fault() and __lock_page_or_retry().
4322  */
4323 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4324 {
4325 	pte_t entry;
4326 
4327 	if (unlikely(pmd_none(*vmf->pmd))) {
4328 		/*
4329 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4330 		 * want to allocate huge page, and if we expose page table
4331 		 * for an instant, it will be difficult to retract from
4332 		 * concurrent faults and from rmap lookups.
4333 		 */
4334 		vmf->pte = NULL;
4335 	} else {
4336 		/* See comment in pte_alloc_one_map() */
4337 		if (pmd_devmap_trans_unstable(vmf->pmd))
4338 			return 0;
4339 		/*
4340 		 * A regular pmd is established and it can't morph into a huge
4341 		 * pmd from under us anymore at this point because we hold the
4342 		 * mmap_lock read mode and khugepaged takes it in write mode.
4343 		 * So now it's safe to run pte_offset_map().
4344 		 */
4345 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4346 		vmf->orig_pte = *vmf->pte;
4347 
4348 		/*
4349 		 * some architectures can have larger ptes than wordsize,
4350 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4351 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4352 		 * accesses.  The code below just needs a consistent view
4353 		 * for the ifs and we later double check anyway with the
4354 		 * ptl lock held. So here a barrier will do.
4355 		 */
4356 		barrier();
4357 		if (pte_none(vmf->orig_pte)) {
4358 			pte_unmap(vmf->pte);
4359 			vmf->pte = NULL;
4360 		}
4361 	}
4362 
4363 	if (!vmf->pte) {
4364 		if (vma_is_anonymous(vmf->vma))
4365 			return do_anonymous_page(vmf);
4366 		else
4367 			return do_fault(vmf);
4368 	}
4369 
4370 	if (!pte_present(vmf->orig_pte))
4371 		return do_swap_page(vmf);
4372 
4373 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4374 		return do_numa_page(vmf);
4375 
4376 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4377 	spin_lock(vmf->ptl);
4378 	entry = vmf->orig_pte;
4379 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4380 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4381 		goto unlock;
4382 	}
4383 	if (vmf->flags & FAULT_FLAG_WRITE) {
4384 		if (!pte_write(entry))
4385 			return do_wp_page(vmf);
4386 		entry = pte_mkdirty(entry);
4387 	}
4388 	entry = pte_mkyoung(entry);
4389 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4390 				vmf->flags & FAULT_FLAG_WRITE)) {
4391 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4392 	} else {
4393 		/* Skip spurious TLB flush for retried page fault */
4394 		if (vmf->flags & FAULT_FLAG_TRIED)
4395 			goto unlock;
4396 		/*
4397 		 * This is needed only for protection faults but the arch code
4398 		 * is not yet telling us if this is a protection fault or not.
4399 		 * This still avoids useless tlb flushes for .text page faults
4400 		 * with threads.
4401 		 */
4402 		if (vmf->flags & FAULT_FLAG_WRITE)
4403 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4404 	}
4405 unlock:
4406 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4407 	return 0;
4408 }
4409 
4410 /*
4411  * By the time we get here, we already hold the mm semaphore
4412  *
4413  * The mmap_lock may have been released depending on flags and our
4414  * return value.  See filemap_fault() and __lock_page_or_retry().
4415  */
4416 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4417 		unsigned long address, unsigned int flags)
4418 {
4419 	struct vm_fault vmf = {
4420 		.vma = vma,
4421 		.address = address & PAGE_MASK,
4422 		.flags = flags,
4423 		.pgoff = linear_page_index(vma, address),
4424 		.gfp_mask = __get_fault_gfp_mask(vma),
4425 	};
4426 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4427 	struct mm_struct *mm = vma->vm_mm;
4428 	pgd_t *pgd;
4429 	p4d_t *p4d;
4430 	vm_fault_t ret;
4431 
4432 	pgd = pgd_offset(mm, address);
4433 	p4d = p4d_alloc(mm, pgd, address);
4434 	if (!p4d)
4435 		return VM_FAULT_OOM;
4436 
4437 	vmf.pud = pud_alloc(mm, p4d, address);
4438 	if (!vmf.pud)
4439 		return VM_FAULT_OOM;
4440 retry_pud:
4441 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4442 		ret = create_huge_pud(&vmf);
4443 		if (!(ret & VM_FAULT_FALLBACK))
4444 			return ret;
4445 	} else {
4446 		pud_t orig_pud = *vmf.pud;
4447 
4448 		barrier();
4449 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4450 
4451 			/* NUMA case for anonymous PUDs would go here */
4452 
4453 			if (dirty && !pud_write(orig_pud)) {
4454 				ret = wp_huge_pud(&vmf, orig_pud);
4455 				if (!(ret & VM_FAULT_FALLBACK))
4456 					return ret;
4457 			} else {
4458 				huge_pud_set_accessed(&vmf, orig_pud);
4459 				return 0;
4460 			}
4461 		}
4462 	}
4463 
4464 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4465 	if (!vmf.pmd)
4466 		return VM_FAULT_OOM;
4467 
4468 	/* Huge pud page fault raced with pmd_alloc? */
4469 	if (pud_trans_unstable(vmf.pud))
4470 		goto retry_pud;
4471 
4472 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4473 		ret = create_huge_pmd(&vmf);
4474 		if (!(ret & VM_FAULT_FALLBACK))
4475 			return ret;
4476 	} else {
4477 		pmd_t orig_pmd = *vmf.pmd;
4478 
4479 		barrier();
4480 		if (unlikely(is_swap_pmd(orig_pmd))) {
4481 			VM_BUG_ON(thp_migration_supported() &&
4482 					  !is_pmd_migration_entry(orig_pmd));
4483 			if (is_pmd_migration_entry(orig_pmd))
4484 				pmd_migration_entry_wait(mm, vmf.pmd);
4485 			return 0;
4486 		}
4487 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4488 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4489 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4490 
4491 			if (dirty && !pmd_write(orig_pmd)) {
4492 				ret = wp_huge_pmd(&vmf, orig_pmd);
4493 				if (!(ret & VM_FAULT_FALLBACK))
4494 					return ret;
4495 			} else {
4496 				huge_pmd_set_accessed(&vmf, orig_pmd);
4497 				return 0;
4498 			}
4499 		}
4500 	}
4501 
4502 	return handle_pte_fault(&vmf);
4503 }
4504 
4505 /**
4506  * mm_account_fault - Do page fault accountings
4507  *
4508  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4509  *        of perf event counters, but we'll still do the per-task accounting to
4510  *        the task who triggered this page fault.
4511  * @address: the faulted address.
4512  * @flags: the fault flags.
4513  * @ret: the fault retcode.
4514  *
4515  * This will take care of most of the page fault accountings.  Meanwhile, it
4516  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4517  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4518  * still be in per-arch page fault handlers at the entry of page fault.
4519  */
4520 static inline void mm_account_fault(struct pt_regs *regs,
4521 				    unsigned long address, unsigned int flags,
4522 				    vm_fault_t ret)
4523 {
4524 	bool major;
4525 
4526 	/*
4527 	 * We don't do accounting for some specific faults:
4528 	 *
4529 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4530 	 *   includes arch_vma_access_permitted() failing before reaching here.
4531 	 *   So this is not a "this many hardware page faults" counter.  We
4532 	 *   should use the hw profiling for that.
4533 	 *
4534 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4535 	 *   once they're completed.
4536 	 */
4537 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4538 		return;
4539 
4540 	/*
4541 	 * We define the fault as a major fault when the final successful fault
4542 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4543 	 * handle it immediately previously).
4544 	 */
4545 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4546 
4547 	if (major)
4548 		current->maj_flt++;
4549 	else
4550 		current->min_flt++;
4551 
4552 	/*
4553 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4554 	 * accounting for the per thread fault counters who triggered the
4555 	 * fault, and we skip the perf event updates.
4556 	 */
4557 	if (!regs)
4558 		return;
4559 
4560 	if (major)
4561 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4562 	else
4563 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4564 }
4565 
4566 /*
4567  * By the time we get here, we already hold the mm semaphore
4568  *
4569  * The mmap_lock may have been released depending on flags and our
4570  * return value.  See filemap_fault() and __lock_page_or_retry().
4571  */
4572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4573 			   unsigned int flags, struct pt_regs *regs)
4574 {
4575 	vm_fault_t ret;
4576 
4577 	__set_current_state(TASK_RUNNING);
4578 
4579 	count_vm_event(PGFAULT);
4580 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4581 
4582 	/* do counter updates before entering really critical section. */
4583 	check_sync_rss_stat(current);
4584 
4585 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4586 					    flags & FAULT_FLAG_INSTRUCTION,
4587 					    flags & FAULT_FLAG_REMOTE))
4588 		return VM_FAULT_SIGSEGV;
4589 
4590 	/*
4591 	 * Enable the memcg OOM handling for faults triggered in user
4592 	 * space.  Kernel faults are handled more gracefully.
4593 	 */
4594 	if (flags & FAULT_FLAG_USER)
4595 		mem_cgroup_enter_user_fault();
4596 
4597 	if (unlikely(is_vm_hugetlb_page(vma)))
4598 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4599 	else
4600 		ret = __handle_mm_fault(vma, address, flags);
4601 
4602 	if (flags & FAULT_FLAG_USER) {
4603 		mem_cgroup_exit_user_fault();
4604 		/*
4605 		 * The task may have entered a memcg OOM situation but
4606 		 * if the allocation error was handled gracefully (no
4607 		 * VM_FAULT_OOM), there is no need to kill anything.
4608 		 * Just clean up the OOM state peacefully.
4609 		 */
4610 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4611 			mem_cgroup_oom_synchronize(false);
4612 	}
4613 
4614 	mm_account_fault(regs, address, flags, ret);
4615 
4616 	return ret;
4617 }
4618 EXPORT_SYMBOL_GPL(handle_mm_fault);
4619 
4620 #ifndef __PAGETABLE_P4D_FOLDED
4621 /*
4622  * Allocate p4d page table.
4623  * We've already handled the fast-path in-line.
4624  */
4625 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4626 {
4627 	p4d_t *new = p4d_alloc_one(mm, address);
4628 	if (!new)
4629 		return -ENOMEM;
4630 
4631 	smp_wmb(); /* See comment in __pte_alloc */
4632 
4633 	spin_lock(&mm->page_table_lock);
4634 	if (pgd_present(*pgd))		/* Another has populated it */
4635 		p4d_free(mm, new);
4636 	else
4637 		pgd_populate(mm, pgd, new);
4638 	spin_unlock(&mm->page_table_lock);
4639 	return 0;
4640 }
4641 #endif /* __PAGETABLE_P4D_FOLDED */
4642 
4643 #ifndef __PAGETABLE_PUD_FOLDED
4644 /*
4645  * Allocate page upper directory.
4646  * We've already handled the fast-path in-line.
4647  */
4648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4649 {
4650 	pud_t *new = pud_alloc_one(mm, address);
4651 	if (!new)
4652 		return -ENOMEM;
4653 
4654 	smp_wmb(); /* See comment in __pte_alloc */
4655 
4656 	spin_lock(&mm->page_table_lock);
4657 	if (!p4d_present(*p4d)) {
4658 		mm_inc_nr_puds(mm);
4659 		p4d_populate(mm, p4d, new);
4660 	} else	/* Another has populated it */
4661 		pud_free(mm, new);
4662 	spin_unlock(&mm->page_table_lock);
4663 	return 0;
4664 }
4665 #endif /* __PAGETABLE_PUD_FOLDED */
4666 
4667 #ifndef __PAGETABLE_PMD_FOLDED
4668 /*
4669  * Allocate page middle directory.
4670  * We've already handled the fast-path in-line.
4671  */
4672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4673 {
4674 	spinlock_t *ptl;
4675 	pmd_t *new = pmd_alloc_one(mm, address);
4676 	if (!new)
4677 		return -ENOMEM;
4678 
4679 	smp_wmb(); /* See comment in __pte_alloc */
4680 
4681 	ptl = pud_lock(mm, pud);
4682 	if (!pud_present(*pud)) {
4683 		mm_inc_nr_pmds(mm);
4684 		pud_populate(mm, pud, new);
4685 	} else	/* Another has populated it */
4686 		pmd_free(mm, new);
4687 	spin_unlock(ptl);
4688 	return 0;
4689 }
4690 #endif /* __PAGETABLE_PMD_FOLDED */
4691 
4692 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4693 			    struct mmu_notifier_range *range,
4694 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4695 {
4696 	pgd_t *pgd;
4697 	p4d_t *p4d;
4698 	pud_t *pud;
4699 	pmd_t *pmd;
4700 	pte_t *ptep;
4701 
4702 	pgd = pgd_offset(mm, address);
4703 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4704 		goto out;
4705 
4706 	p4d = p4d_offset(pgd, address);
4707 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4708 		goto out;
4709 
4710 	pud = pud_offset(p4d, address);
4711 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4712 		goto out;
4713 
4714 	pmd = pmd_offset(pud, address);
4715 	VM_BUG_ON(pmd_trans_huge(*pmd));
4716 
4717 	if (pmd_huge(*pmd)) {
4718 		if (!pmdpp)
4719 			goto out;
4720 
4721 		if (range) {
4722 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4723 						NULL, mm, address & PMD_MASK,
4724 						(address & PMD_MASK) + PMD_SIZE);
4725 			mmu_notifier_invalidate_range_start(range);
4726 		}
4727 		*ptlp = pmd_lock(mm, pmd);
4728 		if (pmd_huge(*pmd)) {
4729 			*pmdpp = pmd;
4730 			return 0;
4731 		}
4732 		spin_unlock(*ptlp);
4733 		if (range)
4734 			mmu_notifier_invalidate_range_end(range);
4735 	}
4736 
4737 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4738 		goto out;
4739 
4740 	if (range) {
4741 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4742 					address & PAGE_MASK,
4743 					(address & PAGE_MASK) + PAGE_SIZE);
4744 		mmu_notifier_invalidate_range_start(range);
4745 	}
4746 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4747 	if (!pte_present(*ptep))
4748 		goto unlock;
4749 	*ptepp = ptep;
4750 	return 0;
4751 unlock:
4752 	pte_unmap_unlock(ptep, *ptlp);
4753 	if (range)
4754 		mmu_notifier_invalidate_range_end(range);
4755 out:
4756 	return -EINVAL;
4757 }
4758 
4759 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4760 			     pte_t **ptepp, spinlock_t **ptlp)
4761 {
4762 	int res;
4763 
4764 	/* (void) is needed to make gcc happy */
4765 	(void) __cond_lock(*ptlp,
4766 			   !(res = __follow_pte_pmd(mm, address, NULL,
4767 						    ptepp, NULL, ptlp)));
4768 	return res;
4769 }
4770 
4771 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4772 		   struct mmu_notifier_range *range,
4773 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4774 {
4775 	int res;
4776 
4777 	/* (void) is needed to make gcc happy */
4778 	(void) __cond_lock(*ptlp,
4779 			   !(res = __follow_pte_pmd(mm, address, range,
4780 						    ptepp, pmdpp, ptlp)));
4781 	return res;
4782 }
4783 EXPORT_SYMBOL(follow_pte_pmd);
4784 
4785 /**
4786  * follow_pfn - look up PFN at a user virtual address
4787  * @vma: memory mapping
4788  * @address: user virtual address
4789  * @pfn: location to store found PFN
4790  *
4791  * Only IO mappings and raw PFN mappings are allowed.
4792  *
4793  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4794  */
4795 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4796 	unsigned long *pfn)
4797 {
4798 	int ret = -EINVAL;
4799 	spinlock_t *ptl;
4800 	pte_t *ptep;
4801 
4802 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4803 		return ret;
4804 
4805 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4806 	if (ret)
4807 		return ret;
4808 	*pfn = pte_pfn(*ptep);
4809 	pte_unmap_unlock(ptep, ptl);
4810 	return 0;
4811 }
4812 EXPORT_SYMBOL(follow_pfn);
4813 
4814 #ifdef CONFIG_HAVE_IOREMAP_PROT
4815 int follow_phys(struct vm_area_struct *vma,
4816 		unsigned long address, unsigned int flags,
4817 		unsigned long *prot, resource_size_t *phys)
4818 {
4819 	int ret = -EINVAL;
4820 	pte_t *ptep, pte;
4821 	spinlock_t *ptl;
4822 
4823 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4824 		goto out;
4825 
4826 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4827 		goto out;
4828 	pte = *ptep;
4829 
4830 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4831 		goto unlock;
4832 
4833 	*prot = pgprot_val(pte_pgprot(pte));
4834 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4835 
4836 	ret = 0;
4837 unlock:
4838 	pte_unmap_unlock(ptep, ptl);
4839 out:
4840 	return ret;
4841 }
4842 
4843 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4844 			void *buf, int len, int write)
4845 {
4846 	resource_size_t phys_addr;
4847 	unsigned long prot = 0;
4848 	void __iomem *maddr;
4849 	int offset = addr & (PAGE_SIZE-1);
4850 
4851 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4852 		return -EINVAL;
4853 
4854 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4855 	if (!maddr)
4856 		return -ENOMEM;
4857 
4858 	if (write)
4859 		memcpy_toio(maddr + offset, buf, len);
4860 	else
4861 		memcpy_fromio(buf, maddr + offset, len);
4862 	iounmap(maddr);
4863 
4864 	return len;
4865 }
4866 EXPORT_SYMBOL_GPL(generic_access_phys);
4867 #endif
4868 
4869 /*
4870  * Access another process' address space as given in mm.  If non-NULL, use the
4871  * given task for page fault accounting.
4872  */
4873 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4874 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4875 {
4876 	struct vm_area_struct *vma;
4877 	void *old_buf = buf;
4878 	int write = gup_flags & FOLL_WRITE;
4879 
4880 	if (mmap_read_lock_killable(mm))
4881 		return 0;
4882 
4883 	/* ignore errors, just check how much was successfully transferred */
4884 	while (len) {
4885 		int bytes, ret, offset;
4886 		void *maddr;
4887 		struct page *page = NULL;
4888 
4889 		ret = get_user_pages_remote(mm, addr, 1,
4890 				gup_flags, &page, &vma, NULL);
4891 		if (ret <= 0) {
4892 #ifndef CONFIG_HAVE_IOREMAP_PROT
4893 			break;
4894 #else
4895 			/*
4896 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4897 			 * we can access using slightly different code.
4898 			 */
4899 			vma = find_vma(mm, addr);
4900 			if (!vma || vma->vm_start > addr)
4901 				break;
4902 			if (vma->vm_ops && vma->vm_ops->access)
4903 				ret = vma->vm_ops->access(vma, addr, buf,
4904 							  len, write);
4905 			if (ret <= 0)
4906 				break;
4907 			bytes = ret;
4908 #endif
4909 		} else {
4910 			bytes = len;
4911 			offset = addr & (PAGE_SIZE-1);
4912 			if (bytes > PAGE_SIZE-offset)
4913 				bytes = PAGE_SIZE-offset;
4914 
4915 			maddr = kmap(page);
4916 			if (write) {
4917 				copy_to_user_page(vma, page, addr,
4918 						  maddr + offset, buf, bytes);
4919 				set_page_dirty_lock(page);
4920 			} else {
4921 				copy_from_user_page(vma, page, addr,
4922 						    buf, maddr + offset, bytes);
4923 			}
4924 			kunmap(page);
4925 			put_page(page);
4926 		}
4927 		len -= bytes;
4928 		buf += bytes;
4929 		addr += bytes;
4930 	}
4931 	mmap_read_unlock(mm);
4932 
4933 	return buf - old_buf;
4934 }
4935 
4936 /**
4937  * access_remote_vm - access another process' address space
4938  * @mm:		the mm_struct of the target address space
4939  * @addr:	start address to access
4940  * @buf:	source or destination buffer
4941  * @len:	number of bytes to transfer
4942  * @gup_flags:	flags modifying lookup behaviour
4943  *
4944  * The caller must hold a reference on @mm.
4945  *
4946  * Return: number of bytes copied from source to destination.
4947  */
4948 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4949 		void *buf, int len, unsigned int gup_flags)
4950 {
4951 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4952 }
4953 
4954 /*
4955  * Access another process' address space.
4956  * Source/target buffer must be kernel space,
4957  * Do not walk the page table directly, use get_user_pages
4958  */
4959 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4960 		void *buf, int len, unsigned int gup_flags)
4961 {
4962 	struct mm_struct *mm;
4963 	int ret;
4964 
4965 	mm = get_task_mm(tsk);
4966 	if (!mm)
4967 		return 0;
4968 
4969 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4970 
4971 	mmput(mm);
4972 
4973 	return ret;
4974 }
4975 EXPORT_SYMBOL_GPL(access_process_vm);
4976 
4977 /*
4978  * Print the name of a VMA.
4979  */
4980 void print_vma_addr(char *prefix, unsigned long ip)
4981 {
4982 	struct mm_struct *mm = current->mm;
4983 	struct vm_area_struct *vma;
4984 
4985 	/*
4986 	 * we might be running from an atomic context so we cannot sleep
4987 	 */
4988 	if (!mmap_read_trylock(mm))
4989 		return;
4990 
4991 	vma = find_vma(mm, ip);
4992 	if (vma && vma->vm_file) {
4993 		struct file *f = vma->vm_file;
4994 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4995 		if (buf) {
4996 			char *p;
4997 
4998 			p = file_path(f, buf, PAGE_SIZE);
4999 			if (IS_ERR(p))
5000 				p = "?";
5001 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5002 					vma->vm_start,
5003 					vma->vm_end - vma->vm_start);
5004 			free_page((unsigned long)buf);
5005 		}
5006 	}
5007 	mmap_read_unlock(mm);
5008 }
5009 
5010 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5011 void __might_fault(const char *file, int line)
5012 {
5013 	/*
5014 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5015 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5016 	 * get paged out, therefore we'll never actually fault, and the
5017 	 * below annotations will generate false positives.
5018 	 */
5019 	if (uaccess_kernel())
5020 		return;
5021 	if (pagefault_disabled())
5022 		return;
5023 	__might_sleep(file, line, 0);
5024 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5025 	if (current->mm)
5026 		might_lock_read(&current->mm->mmap_lock);
5027 #endif
5028 }
5029 EXPORT_SYMBOL(__might_fault);
5030 #endif
5031 
5032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5033 /*
5034  * Process all subpages of the specified huge page with the specified
5035  * operation.  The target subpage will be processed last to keep its
5036  * cache lines hot.
5037  */
5038 static inline void process_huge_page(
5039 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5040 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5041 	void *arg)
5042 {
5043 	int i, n, base, l;
5044 	unsigned long addr = addr_hint &
5045 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5046 
5047 	/* Process target subpage last to keep its cache lines hot */
5048 	might_sleep();
5049 	n = (addr_hint - addr) / PAGE_SIZE;
5050 	if (2 * n <= pages_per_huge_page) {
5051 		/* If target subpage in first half of huge page */
5052 		base = 0;
5053 		l = n;
5054 		/* Process subpages at the end of huge page */
5055 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5056 			cond_resched();
5057 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5058 		}
5059 	} else {
5060 		/* If target subpage in second half of huge page */
5061 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5062 		l = pages_per_huge_page - n;
5063 		/* Process subpages at the begin of huge page */
5064 		for (i = 0; i < base; i++) {
5065 			cond_resched();
5066 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5067 		}
5068 	}
5069 	/*
5070 	 * Process remaining subpages in left-right-left-right pattern
5071 	 * towards the target subpage
5072 	 */
5073 	for (i = 0; i < l; i++) {
5074 		int left_idx = base + i;
5075 		int right_idx = base + 2 * l - 1 - i;
5076 
5077 		cond_resched();
5078 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5079 		cond_resched();
5080 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5081 	}
5082 }
5083 
5084 static void clear_gigantic_page(struct page *page,
5085 				unsigned long addr,
5086 				unsigned int pages_per_huge_page)
5087 {
5088 	int i;
5089 	struct page *p = page;
5090 
5091 	might_sleep();
5092 	for (i = 0; i < pages_per_huge_page;
5093 	     i++, p = mem_map_next(p, page, i)) {
5094 		cond_resched();
5095 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5096 	}
5097 }
5098 
5099 static void clear_subpage(unsigned long addr, int idx, void *arg)
5100 {
5101 	struct page *page = arg;
5102 
5103 	clear_user_highpage(page + idx, addr);
5104 }
5105 
5106 void clear_huge_page(struct page *page,
5107 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5108 {
5109 	unsigned long addr = addr_hint &
5110 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5111 
5112 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5113 		clear_gigantic_page(page, addr, pages_per_huge_page);
5114 		return;
5115 	}
5116 
5117 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5118 }
5119 
5120 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5121 				    unsigned long addr,
5122 				    struct vm_area_struct *vma,
5123 				    unsigned int pages_per_huge_page)
5124 {
5125 	int i;
5126 	struct page *dst_base = dst;
5127 	struct page *src_base = src;
5128 
5129 	for (i = 0; i < pages_per_huge_page; ) {
5130 		cond_resched();
5131 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5132 
5133 		i++;
5134 		dst = mem_map_next(dst, dst_base, i);
5135 		src = mem_map_next(src, src_base, i);
5136 	}
5137 }
5138 
5139 struct copy_subpage_arg {
5140 	struct page *dst;
5141 	struct page *src;
5142 	struct vm_area_struct *vma;
5143 };
5144 
5145 static void copy_subpage(unsigned long addr, int idx, void *arg)
5146 {
5147 	struct copy_subpage_arg *copy_arg = arg;
5148 
5149 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5150 			   addr, copy_arg->vma);
5151 }
5152 
5153 void copy_user_huge_page(struct page *dst, struct page *src,
5154 			 unsigned long addr_hint, struct vm_area_struct *vma,
5155 			 unsigned int pages_per_huge_page)
5156 {
5157 	unsigned long addr = addr_hint &
5158 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5159 	struct copy_subpage_arg arg = {
5160 		.dst = dst,
5161 		.src = src,
5162 		.vma = vma,
5163 	};
5164 
5165 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5166 		copy_user_gigantic_page(dst, src, addr, vma,
5167 					pages_per_huge_page);
5168 		return;
5169 	}
5170 
5171 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5172 }
5173 
5174 long copy_huge_page_from_user(struct page *dst_page,
5175 				const void __user *usr_src,
5176 				unsigned int pages_per_huge_page,
5177 				bool allow_pagefault)
5178 {
5179 	void *src = (void *)usr_src;
5180 	void *page_kaddr;
5181 	unsigned long i, rc = 0;
5182 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5183 
5184 	for (i = 0; i < pages_per_huge_page; i++) {
5185 		if (allow_pagefault)
5186 			page_kaddr = kmap(dst_page + i);
5187 		else
5188 			page_kaddr = kmap_atomic(dst_page + i);
5189 		rc = copy_from_user(page_kaddr,
5190 				(const void __user *)(src + i * PAGE_SIZE),
5191 				PAGE_SIZE);
5192 		if (allow_pagefault)
5193 			kunmap(dst_page + i);
5194 		else
5195 			kunmap_atomic(page_kaddr);
5196 
5197 		ret_val -= (PAGE_SIZE - rc);
5198 		if (rc)
5199 			break;
5200 
5201 		cond_resched();
5202 	}
5203 	return ret_val;
5204 }
5205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5206 
5207 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5208 
5209 static struct kmem_cache *page_ptl_cachep;
5210 
5211 void __init ptlock_cache_init(void)
5212 {
5213 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5214 			SLAB_PANIC, NULL);
5215 }
5216 
5217 bool ptlock_alloc(struct page *page)
5218 {
5219 	spinlock_t *ptl;
5220 
5221 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5222 	if (!ptl)
5223 		return false;
5224 	page->ptl = ptl;
5225 	return true;
5226 }
5227 
5228 void ptlock_free(struct page *page)
5229 {
5230 	kmem_cache_free(page_ptl_cachep, page->ptl);
5231 }
5232 #endif
5233