1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 78 #include <trace/events/kmem.h> 79 80 #include <asm/io.h> 81 #include <asm/mmu_context.h> 82 #include <asm/pgalloc.h> 83 #include <linux/uaccess.h> 84 #include <asm/tlb.h> 85 #include <asm/tlbflush.h> 86 87 #include "pgalloc-track.h" 88 #include "internal.h" 89 90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 92 #endif 93 94 #ifndef CONFIG_NEED_MULTIPLE_NODES 95 /* use the per-pgdat data instead for discontigmem - mbligh */ 96 unsigned long max_mapnr; 97 EXPORT_SYMBOL(max_mapnr); 98 99 struct page *mem_map; 100 EXPORT_SYMBOL(mem_map); 101 #endif 102 103 /* 104 * A number of key systems in x86 including ioremap() rely on the assumption 105 * that high_memory defines the upper bound on direct map memory, then end 106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 108 * and ZONE_HIGHMEM. 109 */ 110 void *high_memory; 111 EXPORT_SYMBOL(high_memory); 112 113 /* 114 * Randomize the address space (stacks, mmaps, brk, etc.). 115 * 116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 117 * as ancient (libc5 based) binaries can segfault. ) 118 */ 119 int randomize_va_space __read_mostly = 120 #ifdef CONFIG_COMPAT_BRK 121 1; 122 #else 123 2; 124 #endif 125 126 #ifndef arch_faults_on_old_pte 127 static inline bool arch_faults_on_old_pte(void) 128 { 129 /* 130 * Those arches which don't have hw access flag feature need to 131 * implement their own helper. By default, "true" means pagefault 132 * will be hit on old pte. 133 */ 134 return true; 135 } 136 #endif 137 138 static int __init disable_randmaps(char *s) 139 { 140 randomize_va_space = 0; 141 return 1; 142 } 143 __setup("norandmaps", disable_randmaps); 144 145 unsigned long zero_pfn __read_mostly; 146 EXPORT_SYMBOL(zero_pfn); 147 148 unsigned long highest_memmap_pfn __read_mostly; 149 150 /* 151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 152 */ 153 static int __init init_zero_pfn(void) 154 { 155 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 156 return 0; 157 } 158 core_initcall(init_zero_pfn); 159 160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 161 { 162 trace_rss_stat(mm, member, count); 163 } 164 165 #if defined(SPLIT_RSS_COUNTING) 166 167 void sync_mm_rss(struct mm_struct *mm) 168 { 169 int i; 170 171 for (i = 0; i < NR_MM_COUNTERS; i++) { 172 if (current->rss_stat.count[i]) { 173 add_mm_counter(mm, i, current->rss_stat.count[i]); 174 current->rss_stat.count[i] = 0; 175 } 176 } 177 current->rss_stat.events = 0; 178 } 179 180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 181 { 182 struct task_struct *task = current; 183 184 if (likely(task->mm == mm)) 185 task->rss_stat.count[member] += val; 186 else 187 add_mm_counter(mm, member, val); 188 } 189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 191 192 /* sync counter once per 64 page faults */ 193 #define TASK_RSS_EVENTS_THRESH (64) 194 static void check_sync_rss_stat(struct task_struct *task) 195 { 196 if (unlikely(task != current)) 197 return; 198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 199 sync_mm_rss(task->mm); 200 } 201 #else /* SPLIT_RSS_COUNTING */ 202 203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 205 206 static void check_sync_rss_stat(struct task_struct *task) 207 { 208 } 209 210 #endif /* SPLIT_RSS_COUNTING */ 211 212 /* 213 * Note: this doesn't free the actual pages themselves. That 214 * has been handled earlier when unmapping all the memory regions. 215 */ 216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 217 unsigned long addr) 218 { 219 pgtable_t token = pmd_pgtable(*pmd); 220 pmd_clear(pmd); 221 pte_free_tlb(tlb, token, addr); 222 mm_dec_nr_ptes(tlb->mm); 223 } 224 225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 226 unsigned long addr, unsigned long end, 227 unsigned long floor, unsigned long ceiling) 228 { 229 pmd_t *pmd; 230 unsigned long next; 231 unsigned long start; 232 233 start = addr; 234 pmd = pmd_offset(pud, addr); 235 do { 236 next = pmd_addr_end(addr, end); 237 if (pmd_none_or_clear_bad(pmd)) 238 continue; 239 free_pte_range(tlb, pmd, addr); 240 } while (pmd++, addr = next, addr != end); 241 242 start &= PUD_MASK; 243 if (start < floor) 244 return; 245 if (ceiling) { 246 ceiling &= PUD_MASK; 247 if (!ceiling) 248 return; 249 } 250 if (end - 1 > ceiling - 1) 251 return; 252 253 pmd = pmd_offset(pud, start); 254 pud_clear(pud); 255 pmd_free_tlb(tlb, pmd, start); 256 mm_dec_nr_pmds(tlb->mm); 257 } 258 259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 260 unsigned long addr, unsigned long end, 261 unsigned long floor, unsigned long ceiling) 262 { 263 pud_t *pud; 264 unsigned long next; 265 unsigned long start; 266 267 start = addr; 268 pud = pud_offset(p4d, addr); 269 do { 270 next = pud_addr_end(addr, end); 271 if (pud_none_or_clear_bad(pud)) 272 continue; 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 274 } while (pud++, addr = next, addr != end); 275 276 start &= P4D_MASK; 277 if (start < floor) 278 return; 279 if (ceiling) { 280 ceiling &= P4D_MASK; 281 if (!ceiling) 282 return; 283 } 284 if (end - 1 > ceiling - 1) 285 return; 286 287 pud = pud_offset(p4d, start); 288 p4d_clear(p4d); 289 pud_free_tlb(tlb, pud, start); 290 mm_dec_nr_puds(tlb->mm); 291 } 292 293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 p4d_t *p4d; 298 unsigned long next; 299 unsigned long start; 300 301 start = addr; 302 p4d = p4d_offset(pgd, addr); 303 do { 304 next = p4d_addr_end(addr, end); 305 if (p4d_none_or_clear_bad(p4d)) 306 continue; 307 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 308 } while (p4d++, addr = next, addr != end); 309 310 start &= PGDIR_MASK; 311 if (start < floor) 312 return; 313 if (ceiling) { 314 ceiling &= PGDIR_MASK; 315 if (!ceiling) 316 return; 317 } 318 if (end - 1 > ceiling - 1) 319 return; 320 321 p4d = p4d_offset(pgd, start); 322 pgd_clear(pgd); 323 p4d_free_tlb(tlb, p4d, start); 324 } 325 326 /* 327 * This function frees user-level page tables of a process. 328 */ 329 void free_pgd_range(struct mmu_gather *tlb, 330 unsigned long addr, unsigned long end, 331 unsigned long floor, unsigned long ceiling) 332 { 333 pgd_t *pgd; 334 unsigned long next; 335 336 /* 337 * The next few lines have given us lots of grief... 338 * 339 * Why are we testing PMD* at this top level? Because often 340 * there will be no work to do at all, and we'd prefer not to 341 * go all the way down to the bottom just to discover that. 342 * 343 * Why all these "- 1"s? Because 0 represents both the bottom 344 * of the address space and the top of it (using -1 for the 345 * top wouldn't help much: the masks would do the wrong thing). 346 * The rule is that addr 0 and floor 0 refer to the bottom of 347 * the address space, but end 0 and ceiling 0 refer to the top 348 * Comparisons need to use "end - 1" and "ceiling - 1" (though 349 * that end 0 case should be mythical). 350 * 351 * Wherever addr is brought up or ceiling brought down, we must 352 * be careful to reject "the opposite 0" before it confuses the 353 * subsequent tests. But what about where end is brought down 354 * by PMD_SIZE below? no, end can't go down to 0 there. 355 * 356 * Whereas we round start (addr) and ceiling down, by different 357 * masks at different levels, in order to test whether a table 358 * now has no other vmas using it, so can be freed, we don't 359 * bother to round floor or end up - the tests don't need that. 360 */ 361 362 addr &= PMD_MASK; 363 if (addr < floor) { 364 addr += PMD_SIZE; 365 if (!addr) 366 return; 367 } 368 if (ceiling) { 369 ceiling &= PMD_MASK; 370 if (!ceiling) 371 return; 372 } 373 if (end - 1 > ceiling - 1) 374 end -= PMD_SIZE; 375 if (addr > end - 1) 376 return; 377 /* 378 * We add page table cache pages with PAGE_SIZE, 379 * (see pte_free_tlb()), flush the tlb if we need 380 */ 381 tlb_change_page_size(tlb, PAGE_SIZE); 382 pgd = pgd_offset(tlb->mm, addr); 383 do { 384 next = pgd_addr_end(addr, end); 385 if (pgd_none_or_clear_bad(pgd)) 386 continue; 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 388 } while (pgd++, addr = next, addr != end); 389 } 390 391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 392 unsigned long floor, unsigned long ceiling) 393 { 394 while (vma) { 395 struct vm_area_struct *next = vma->vm_next; 396 unsigned long addr = vma->vm_start; 397 398 /* 399 * Hide vma from rmap and truncate_pagecache before freeing 400 * pgtables 401 */ 402 unlink_anon_vmas(vma); 403 unlink_file_vma(vma); 404 405 if (is_vm_hugetlb_page(vma)) { 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 407 floor, next ? next->vm_start : ceiling); 408 } else { 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = vma->vm_next; 416 unlink_anon_vmas(vma); 417 unlink_file_vma(vma); 418 } 419 free_pgd_range(tlb, addr, vma->vm_end, 420 floor, next ? next->vm_start : ceiling); 421 } 422 vma = next; 423 } 424 } 425 426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 427 { 428 spinlock_t *ptl; 429 pgtable_t new = pte_alloc_one(mm); 430 if (!new) 431 return -ENOMEM; 432 433 /* 434 * Ensure all pte setup (eg. pte page lock and page clearing) are 435 * visible before the pte is made visible to other CPUs by being 436 * put into page tables. 437 * 438 * The other side of the story is the pointer chasing in the page 439 * table walking code (when walking the page table without locking; 440 * ie. most of the time). Fortunately, these data accesses consist 441 * of a chain of data-dependent loads, meaning most CPUs (alpha 442 * being the notable exception) will already guarantee loads are 443 * seen in-order. See the alpha page table accessors for the 444 * smp_rmb() barriers in page table walking code. 445 */ 446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 447 448 ptl = pmd_lock(mm, pmd); 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 450 mm_inc_nr_ptes(mm); 451 pmd_populate(mm, pmd, new); 452 new = NULL; 453 } 454 spin_unlock(ptl); 455 if (new) 456 pte_free(mm, new); 457 return 0; 458 } 459 460 int __pte_alloc_kernel(pmd_t *pmd) 461 { 462 pte_t *new = pte_alloc_one_kernel(&init_mm); 463 if (!new) 464 return -ENOMEM; 465 466 smp_wmb(); /* See comment in __pte_alloc */ 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 pmd_populate_kernel(&init_mm, pmd, new); 471 new = NULL; 472 } 473 spin_unlock(&init_mm.page_table_lock); 474 if (new) 475 pte_free_kernel(&init_mm, new); 476 return 0; 477 } 478 479 static inline void init_rss_vec(int *rss) 480 { 481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 482 } 483 484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 485 { 486 int i; 487 488 if (current->mm == mm) 489 sync_mm_rss(mm); 490 for (i = 0; i < NR_MM_COUNTERS; i++) 491 if (rss[i]) 492 add_mm_counter(mm, i, rss[i]); 493 } 494 495 /* 496 * This function is called to print an error when a bad pte 497 * is found. For example, we might have a PFN-mapped pte in 498 * a region that doesn't allow it. 499 * 500 * The calling function must still handle the error. 501 */ 502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 503 pte_t pte, struct page *page) 504 { 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 506 p4d_t *p4d = p4d_offset(pgd, addr); 507 pud_t *pud = pud_offset(p4d, addr); 508 pmd_t *pmd = pmd_offset(pud, addr); 509 struct address_space *mapping; 510 pgoff_t index; 511 static unsigned long resume; 512 static unsigned long nr_shown; 513 static unsigned long nr_unshown; 514 515 /* 516 * Allow a burst of 60 reports, then keep quiet for that minute; 517 * or allow a steady drip of one report per second. 518 */ 519 if (nr_shown == 60) { 520 if (time_before(jiffies, resume)) { 521 nr_unshown++; 522 return; 523 } 524 if (nr_unshown) { 525 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 526 nr_unshown); 527 nr_unshown = 0; 528 } 529 nr_shown = 0; 530 } 531 if (nr_shown++ == 0) 532 resume = jiffies + 60 * HZ; 533 534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 535 index = linear_page_index(vma, addr); 536 537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 538 current->comm, 539 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 540 if (page) 541 dump_page(page, "bad pte"); 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 545 vma->vm_file, 546 vma->vm_ops ? vma->vm_ops->fault : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 548 mapping ? mapping->a_ops->readpage : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The disadvantage is that pages are refcounted 590 * (which can be slower and simply not an option for some PFNMAP users). The 591 * advantage is that we don't have to follow the strict linearity rule of 592 * PFNMAP mappings in order to support COWable mappings. 593 * 594 */ 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_ops && vma->vm_ops->find_special_page) 604 return vma->vm_ops->find_special_page(vma, addr); 605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 606 return NULL; 607 if (is_zero_pfn(pfn)) 608 return NULL; 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_huge_zero_pmd(pmd)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static unsigned long 699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 if (pte_swp_uffd_wp(*src_pte)) 737 pte = pte_swp_mkuffd_wp(pte); 738 set_pte_at(src_mm, addr, src_pte, pte); 739 } 740 } else if (is_device_private_entry(entry)) { 741 page = device_private_entry_to_page(entry); 742 743 /* 744 * Update rss count even for unaddressable pages, as 745 * they should treated just like normal pages in this 746 * respect. 747 * 748 * We will likely want to have some new rss counters 749 * for unaddressable pages, at some point. But for now 750 * keep things as they are. 751 */ 752 get_page(page); 753 rss[mm_counter(page)]++; 754 page_dup_rmap(page, false); 755 756 /* 757 * We do not preserve soft-dirty information, because so 758 * far, checkpoint/restore is the only feature that 759 * requires that. And checkpoint/restore does not work 760 * when a device driver is involved (you cannot easily 761 * save and restore device driver state). 762 */ 763 if (is_write_device_private_entry(entry) && 764 is_cow_mapping(vm_flags)) { 765 make_device_private_entry_read(&entry); 766 pte = swp_entry_to_pte(entry); 767 if (pte_swp_uffd_wp(*src_pte)) 768 pte = pte_swp_mkuffd_wp(pte); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 set_pte_at(dst_mm, addr, dst_pte, pte); 773 return 0; 774 } 775 776 /* 777 * Copy a present and normal page if necessary. 778 * 779 * NOTE! The usual case is that this doesn't need to do 780 * anything, and can just return a positive value. That 781 * will let the caller know that it can just increase 782 * the page refcount and re-use the pte the traditional 783 * way. 784 * 785 * But _if_ we need to copy it because it needs to be 786 * pinned in the parent (and the child should get its own 787 * copy rather than just a reference to the same page), 788 * we'll do that here and return zero to let the caller 789 * know we're done. 790 * 791 * And if we need a pre-allocated page but don't yet have 792 * one, return a negative error to let the preallocation 793 * code know so that it can do so outside the page table 794 * lock. 795 */ 796 static inline int 797 copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm, 798 pte_t *dst_pte, pte_t *src_pte, 799 struct vm_area_struct *vma, struct vm_area_struct *new, 800 unsigned long addr, int *rss, struct page **prealloc, 801 pte_t pte, struct page *page) 802 { 803 struct page *new_page; 804 805 if (!is_cow_mapping(vma->vm_flags)) 806 return 1; 807 808 /* 809 * What we want to do is to check whether this page may 810 * have been pinned by the parent process. If so, 811 * instead of wrprotect the pte on both sides, we copy 812 * the page immediately so that we'll always guarantee 813 * the pinned page won't be randomly replaced in the 814 * future. 815 * 816 * The page pinning checks are just "has this mm ever 817 * seen pinning", along with the (inexact) check of 818 * the page count. That might give false positives for 819 * for pinning, but it will work correctly. 820 */ 821 if (likely(!atomic_read(&src_mm->has_pinned))) 822 return 1; 823 if (likely(!page_maybe_dma_pinned(page))) 824 return 1; 825 826 new_page = *prealloc; 827 if (!new_page) 828 return -EAGAIN; 829 830 /* 831 * We have a prealloc page, all good! Take it 832 * over and copy the page & arm it. 833 */ 834 *prealloc = NULL; 835 copy_user_highpage(new_page, page, addr, vma); 836 __SetPageUptodate(new_page); 837 page_add_new_anon_rmap(new_page, new, addr, false); 838 lru_cache_add_inactive_or_unevictable(new_page, new); 839 rss[mm_counter(new_page)]++; 840 841 /* All done, just insert the new page copy in the child */ 842 pte = mk_pte(new_page, new->vm_page_prot); 843 pte = maybe_mkwrite(pte_mkdirty(pte), new); 844 set_pte_at(dst_mm, addr, dst_pte, pte); 845 return 0; 846 } 847 848 /* 849 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 850 * is required to copy this pte. 851 */ 852 static inline int 853 copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 854 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 855 struct vm_area_struct *new, 856 unsigned long addr, int *rss, struct page **prealloc) 857 { 858 unsigned long vm_flags = vma->vm_flags; 859 pte_t pte = *src_pte; 860 struct page *page; 861 862 page = vm_normal_page(vma, addr, pte); 863 if (page) { 864 int retval; 865 866 retval = copy_present_page(dst_mm, src_mm, 867 dst_pte, src_pte, 868 vma, new, 869 addr, rss, prealloc, 870 pte, page); 871 if (retval <= 0) 872 return retval; 873 874 get_page(page); 875 page_dup_rmap(page, false); 876 rss[mm_counter(page)]++; 877 } 878 879 /* 880 * If it's a COW mapping, write protect it both 881 * in the parent and the child 882 */ 883 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 884 ptep_set_wrprotect(src_mm, addr, src_pte); 885 pte = pte_wrprotect(pte); 886 } 887 888 /* 889 * If it's a shared mapping, mark it clean in 890 * the child 891 */ 892 if (vm_flags & VM_SHARED) 893 pte = pte_mkclean(pte); 894 pte = pte_mkold(pte); 895 896 /* 897 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 898 * does not have the VM_UFFD_WP, which means that the uffd 899 * fork event is not enabled. 900 */ 901 if (!(vm_flags & VM_UFFD_WP)) 902 pte = pte_clear_uffd_wp(pte); 903 904 set_pte_at(dst_mm, addr, dst_pte, pte); 905 return 0; 906 } 907 908 static inline struct page * 909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 910 unsigned long addr) 911 { 912 struct page *new_page; 913 914 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 915 if (!new_page) 916 return NULL; 917 918 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 919 put_page(new_page); 920 return NULL; 921 } 922 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 923 924 return new_page; 925 } 926 927 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 929 struct vm_area_struct *new, 930 unsigned long addr, unsigned long end) 931 { 932 pte_t *orig_src_pte, *orig_dst_pte; 933 pte_t *src_pte, *dst_pte; 934 spinlock_t *src_ptl, *dst_ptl; 935 int progress, ret = 0; 936 int rss[NR_MM_COUNTERS]; 937 swp_entry_t entry = (swp_entry_t){0}; 938 struct page *prealloc = NULL; 939 940 again: 941 progress = 0; 942 init_rss_vec(rss); 943 944 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 945 if (!dst_pte) { 946 ret = -ENOMEM; 947 goto out; 948 } 949 src_pte = pte_offset_map(src_pmd, addr); 950 src_ptl = pte_lockptr(src_mm, src_pmd); 951 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 952 orig_src_pte = src_pte; 953 orig_dst_pte = dst_pte; 954 arch_enter_lazy_mmu_mode(); 955 956 do { 957 /* 958 * We are holding two locks at this point - either of them 959 * could generate latencies in another task on another CPU. 960 */ 961 if (progress >= 32) { 962 progress = 0; 963 if (need_resched() || 964 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 965 break; 966 } 967 if (pte_none(*src_pte)) { 968 progress++; 969 continue; 970 } 971 if (unlikely(!pte_present(*src_pte))) { 972 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 973 dst_pte, src_pte, 974 vma, addr, rss); 975 if (entry.val) 976 break; 977 progress += 8; 978 continue; 979 } 980 /* copy_present_pte() will clear `*prealloc' if consumed */ 981 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte, 982 vma, new, addr, rss, &prealloc); 983 /* 984 * If we need a pre-allocated page for this pte, drop the 985 * locks, allocate, and try again. 986 */ 987 if (unlikely(ret == -EAGAIN)) 988 break; 989 if (unlikely(prealloc)) { 990 /* 991 * pre-alloc page cannot be reused by next time so as 992 * to strictly follow mempolicy (e.g., alloc_page_vma() 993 * will allocate page according to address). This 994 * could only happen if one pinned pte changed. 995 */ 996 put_page(prealloc); 997 prealloc = NULL; 998 } 999 progress += 8; 1000 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1001 1002 arch_leave_lazy_mmu_mode(); 1003 spin_unlock(src_ptl); 1004 pte_unmap(orig_src_pte); 1005 add_mm_rss_vec(dst_mm, rss); 1006 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1007 cond_resched(); 1008 1009 if (entry.val) { 1010 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1011 ret = -ENOMEM; 1012 goto out; 1013 } 1014 entry.val = 0; 1015 } else if (ret) { 1016 WARN_ON_ONCE(ret != -EAGAIN); 1017 prealloc = page_copy_prealloc(src_mm, vma, addr); 1018 if (!prealloc) 1019 return -ENOMEM; 1020 /* We've captured and resolved the error. Reset, try again. */ 1021 ret = 0; 1022 } 1023 if (addr != end) 1024 goto again; 1025 out: 1026 if (unlikely(prealloc)) 1027 put_page(prealloc); 1028 return ret; 1029 } 1030 1031 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1032 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1033 struct vm_area_struct *new, 1034 unsigned long addr, unsigned long end) 1035 { 1036 pmd_t *src_pmd, *dst_pmd; 1037 unsigned long next; 1038 1039 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1040 if (!dst_pmd) 1041 return -ENOMEM; 1042 src_pmd = pmd_offset(src_pud, addr); 1043 do { 1044 next = pmd_addr_end(addr, end); 1045 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1046 || pmd_devmap(*src_pmd)) { 1047 int err; 1048 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1049 err = copy_huge_pmd(dst_mm, src_mm, 1050 dst_pmd, src_pmd, addr, vma); 1051 if (err == -ENOMEM) 1052 return -ENOMEM; 1053 if (!err) 1054 continue; 1055 /* fall through */ 1056 } 1057 if (pmd_none_or_clear_bad(src_pmd)) 1058 continue; 1059 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1060 vma, new, addr, next)) 1061 return -ENOMEM; 1062 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1063 return 0; 1064 } 1065 1066 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1067 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1068 struct vm_area_struct *new, 1069 unsigned long addr, unsigned long end) 1070 { 1071 pud_t *src_pud, *dst_pud; 1072 unsigned long next; 1073 1074 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1075 if (!dst_pud) 1076 return -ENOMEM; 1077 src_pud = pud_offset(src_p4d, addr); 1078 do { 1079 next = pud_addr_end(addr, end); 1080 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1081 int err; 1082 1083 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1084 err = copy_huge_pud(dst_mm, src_mm, 1085 dst_pud, src_pud, addr, vma); 1086 if (err == -ENOMEM) 1087 return -ENOMEM; 1088 if (!err) 1089 continue; 1090 /* fall through */ 1091 } 1092 if (pud_none_or_clear_bad(src_pud)) 1093 continue; 1094 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1095 vma, new, addr, next)) 1096 return -ENOMEM; 1097 } while (dst_pud++, src_pud++, addr = next, addr != end); 1098 return 0; 1099 } 1100 1101 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1102 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1103 struct vm_area_struct *new, 1104 unsigned long addr, unsigned long end) 1105 { 1106 p4d_t *src_p4d, *dst_p4d; 1107 unsigned long next; 1108 1109 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1110 if (!dst_p4d) 1111 return -ENOMEM; 1112 src_p4d = p4d_offset(src_pgd, addr); 1113 do { 1114 next = p4d_addr_end(addr, end); 1115 if (p4d_none_or_clear_bad(src_p4d)) 1116 continue; 1117 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1118 vma, new, addr, next)) 1119 return -ENOMEM; 1120 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1121 return 0; 1122 } 1123 1124 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1125 struct vm_area_struct *vma, struct vm_area_struct *new) 1126 { 1127 pgd_t *src_pgd, *dst_pgd; 1128 unsigned long next; 1129 unsigned long addr = vma->vm_start; 1130 unsigned long end = vma->vm_end; 1131 struct mmu_notifier_range range; 1132 bool is_cow; 1133 int ret; 1134 1135 /* 1136 * Don't copy ptes where a page fault will fill them correctly. 1137 * Fork becomes much lighter when there are big shared or private 1138 * readonly mappings. The tradeoff is that copy_page_range is more 1139 * efficient than faulting. 1140 */ 1141 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1142 !vma->anon_vma) 1143 return 0; 1144 1145 if (is_vm_hugetlb_page(vma)) 1146 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1147 1148 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1149 /* 1150 * We do not free on error cases below as remove_vma 1151 * gets called on error from higher level routine 1152 */ 1153 ret = track_pfn_copy(vma); 1154 if (ret) 1155 return ret; 1156 } 1157 1158 /* 1159 * We need to invalidate the secondary MMU mappings only when 1160 * there could be a permission downgrade on the ptes of the 1161 * parent mm. And a permission downgrade will only happen if 1162 * is_cow_mapping() returns true. 1163 */ 1164 is_cow = is_cow_mapping(vma->vm_flags); 1165 1166 if (is_cow) { 1167 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1168 0, vma, src_mm, addr, end); 1169 mmu_notifier_invalidate_range_start(&range); 1170 } 1171 1172 ret = 0; 1173 dst_pgd = pgd_offset(dst_mm, addr); 1174 src_pgd = pgd_offset(src_mm, addr); 1175 do { 1176 next = pgd_addr_end(addr, end); 1177 if (pgd_none_or_clear_bad(src_pgd)) 1178 continue; 1179 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1180 vma, new, addr, next))) { 1181 ret = -ENOMEM; 1182 break; 1183 } 1184 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1185 1186 if (is_cow) 1187 mmu_notifier_invalidate_range_end(&range); 1188 return ret; 1189 } 1190 1191 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1192 struct vm_area_struct *vma, pmd_t *pmd, 1193 unsigned long addr, unsigned long end, 1194 struct zap_details *details) 1195 { 1196 struct mm_struct *mm = tlb->mm; 1197 int force_flush = 0; 1198 int rss[NR_MM_COUNTERS]; 1199 spinlock_t *ptl; 1200 pte_t *start_pte; 1201 pte_t *pte; 1202 swp_entry_t entry; 1203 1204 tlb_change_page_size(tlb, PAGE_SIZE); 1205 again: 1206 init_rss_vec(rss); 1207 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1208 pte = start_pte; 1209 flush_tlb_batched_pending(mm); 1210 arch_enter_lazy_mmu_mode(); 1211 do { 1212 pte_t ptent = *pte; 1213 if (pte_none(ptent)) 1214 continue; 1215 1216 if (need_resched()) 1217 break; 1218 1219 if (pte_present(ptent)) { 1220 struct page *page; 1221 1222 page = vm_normal_page(vma, addr, ptent); 1223 if (unlikely(details) && page) { 1224 /* 1225 * unmap_shared_mapping_pages() wants to 1226 * invalidate cache without truncating: 1227 * unmap shared but keep private pages. 1228 */ 1229 if (details->check_mapping && 1230 details->check_mapping != page_rmapping(page)) 1231 continue; 1232 } 1233 ptent = ptep_get_and_clear_full(mm, addr, pte, 1234 tlb->fullmm); 1235 tlb_remove_tlb_entry(tlb, pte, addr); 1236 if (unlikely(!page)) 1237 continue; 1238 1239 if (!PageAnon(page)) { 1240 if (pte_dirty(ptent)) { 1241 force_flush = 1; 1242 set_page_dirty(page); 1243 } 1244 if (pte_young(ptent) && 1245 likely(!(vma->vm_flags & VM_SEQ_READ))) 1246 mark_page_accessed(page); 1247 } 1248 rss[mm_counter(page)]--; 1249 page_remove_rmap(page, false); 1250 if (unlikely(page_mapcount(page) < 0)) 1251 print_bad_pte(vma, addr, ptent, page); 1252 if (unlikely(__tlb_remove_page(tlb, page))) { 1253 force_flush = 1; 1254 addr += PAGE_SIZE; 1255 break; 1256 } 1257 continue; 1258 } 1259 1260 entry = pte_to_swp_entry(ptent); 1261 if (is_device_private_entry(entry)) { 1262 struct page *page = device_private_entry_to_page(entry); 1263 1264 if (unlikely(details && details->check_mapping)) { 1265 /* 1266 * unmap_shared_mapping_pages() wants to 1267 * invalidate cache without truncating: 1268 * unmap shared but keep private pages. 1269 */ 1270 if (details->check_mapping != 1271 page_rmapping(page)) 1272 continue; 1273 } 1274 1275 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1276 rss[mm_counter(page)]--; 1277 page_remove_rmap(page, false); 1278 put_page(page); 1279 continue; 1280 } 1281 1282 /* If details->check_mapping, we leave swap entries. */ 1283 if (unlikely(details)) 1284 continue; 1285 1286 if (!non_swap_entry(entry)) 1287 rss[MM_SWAPENTS]--; 1288 else if (is_migration_entry(entry)) { 1289 struct page *page; 1290 1291 page = migration_entry_to_page(entry); 1292 rss[mm_counter(page)]--; 1293 } 1294 if (unlikely(!free_swap_and_cache(entry))) 1295 print_bad_pte(vma, addr, ptent, NULL); 1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1297 } while (pte++, addr += PAGE_SIZE, addr != end); 1298 1299 add_mm_rss_vec(mm, rss); 1300 arch_leave_lazy_mmu_mode(); 1301 1302 /* Do the actual TLB flush before dropping ptl */ 1303 if (force_flush) 1304 tlb_flush_mmu_tlbonly(tlb); 1305 pte_unmap_unlock(start_pte, ptl); 1306 1307 /* 1308 * If we forced a TLB flush (either due to running out of 1309 * batch buffers or because we needed to flush dirty TLB 1310 * entries before releasing the ptl), free the batched 1311 * memory too. Restart if we didn't do everything. 1312 */ 1313 if (force_flush) { 1314 force_flush = 0; 1315 tlb_flush_mmu(tlb); 1316 } 1317 1318 if (addr != end) { 1319 cond_resched(); 1320 goto again; 1321 } 1322 1323 return addr; 1324 } 1325 1326 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1327 struct vm_area_struct *vma, pud_t *pud, 1328 unsigned long addr, unsigned long end, 1329 struct zap_details *details) 1330 { 1331 pmd_t *pmd; 1332 unsigned long next; 1333 1334 pmd = pmd_offset(pud, addr); 1335 do { 1336 next = pmd_addr_end(addr, end); 1337 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1338 if (next - addr != HPAGE_PMD_SIZE) 1339 __split_huge_pmd(vma, pmd, addr, false, NULL); 1340 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1341 goto next; 1342 /* fall through */ 1343 } 1344 /* 1345 * Here there can be other concurrent MADV_DONTNEED or 1346 * trans huge page faults running, and if the pmd is 1347 * none or trans huge it can change under us. This is 1348 * because MADV_DONTNEED holds the mmap_lock in read 1349 * mode. 1350 */ 1351 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1352 goto next; 1353 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1354 next: 1355 cond_resched(); 1356 } while (pmd++, addr = next, addr != end); 1357 1358 return addr; 1359 } 1360 1361 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1362 struct vm_area_struct *vma, p4d_t *p4d, 1363 unsigned long addr, unsigned long end, 1364 struct zap_details *details) 1365 { 1366 pud_t *pud; 1367 unsigned long next; 1368 1369 pud = pud_offset(p4d, addr); 1370 do { 1371 next = pud_addr_end(addr, end); 1372 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1373 if (next - addr != HPAGE_PUD_SIZE) { 1374 mmap_assert_locked(tlb->mm); 1375 split_huge_pud(vma, pud, addr); 1376 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1377 goto next; 1378 /* fall through */ 1379 } 1380 if (pud_none_or_clear_bad(pud)) 1381 continue; 1382 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1383 next: 1384 cond_resched(); 1385 } while (pud++, addr = next, addr != end); 1386 1387 return addr; 1388 } 1389 1390 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1391 struct vm_area_struct *vma, pgd_t *pgd, 1392 unsigned long addr, unsigned long end, 1393 struct zap_details *details) 1394 { 1395 p4d_t *p4d; 1396 unsigned long next; 1397 1398 p4d = p4d_offset(pgd, addr); 1399 do { 1400 next = p4d_addr_end(addr, end); 1401 if (p4d_none_or_clear_bad(p4d)) 1402 continue; 1403 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1404 } while (p4d++, addr = next, addr != end); 1405 1406 return addr; 1407 } 1408 1409 void unmap_page_range(struct mmu_gather *tlb, 1410 struct vm_area_struct *vma, 1411 unsigned long addr, unsigned long end, 1412 struct zap_details *details) 1413 { 1414 pgd_t *pgd; 1415 unsigned long next; 1416 1417 BUG_ON(addr >= end); 1418 tlb_start_vma(tlb, vma); 1419 pgd = pgd_offset(vma->vm_mm, addr); 1420 do { 1421 next = pgd_addr_end(addr, end); 1422 if (pgd_none_or_clear_bad(pgd)) 1423 continue; 1424 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1425 } while (pgd++, addr = next, addr != end); 1426 tlb_end_vma(tlb, vma); 1427 } 1428 1429 1430 static void unmap_single_vma(struct mmu_gather *tlb, 1431 struct vm_area_struct *vma, unsigned long start_addr, 1432 unsigned long end_addr, 1433 struct zap_details *details) 1434 { 1435 unsigned long start = max(vma->vm_start, start_addr); 1436 unsigned long end; 1437 1438 if (start >= vma->vm_end) 1439 return; 1440 end = min(vma->vm_end, end_addr); 1441 if (end <= vma->vm_start) 1442 return; 1443 1444 if (vma->vm_file) 1445 uprobe_munmap(vma, start, end); 1446 1447 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1448 untrack_pfn(vma, 0, 0); 1449 1450 if (start != end) { 1451 if (unlikely(is_vm_hugetlb_page(vma))) { 1452 /* 1453 * It is undesirable to test vma->vm_file as it 1454 * should be non-null for valid hugetlb area. 1455 * However, vm_file will be NULL in the error 1456 * cleanup path of mmap_region. When 1457 * hugetlbfs ->mmap method fails, 1458 * mmap_region() nullifies vma->vm_file 1459 * before calling this function to clean up. 1460 * Since no pte has actually been setup, it is 1461 * safe to do nothing in this case. 1462 */ 1463 if (vma->vm_file) { 1464 i_mmap_lock_write(vma->vm_file->f_mapping); 1465 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1466 i_mmap_unlock_write(vma->vm_file->f_mapping); 1467 } 1468 } else 1469 unmap_page_range(tlb, vma, start, end, details); 1470 } 1471 } 1472 1473 /** 1474 * unmap_vmas - unmap a range of memory covered by a list of vma's 1475 * @tlb: address of the caller's struct mmu_gather 1476 * @vma: the starting vma 1477 * @start_addr: virtual address at which to start unmapping 1478 * @end_addr: virtual address at which to end unmapping 1479 * 1480 * Unmap all pages in the vma list. 1481 * 1482 * Only addresses between `start' and `end' will be unmapped. 1483 * 1484 * The VMA list must be sorted in ascending virtual address order. 1485 * 1486 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1487 * range after unmap_vmas() returns. So the only responsibility here is to 1488 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1489 * drops the lock and schedules. 1490 */ 1491 void unmap_vmas(struct mmu_gather *tlb, 1492 struct vm_area_struct *vma, unsigned long start_addr, 1493 unsigned long end_addr) 1494 { 1495 struct mmu_notifier_range range; 1496 1497 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1498 start_addr, end_addr); 1499 mmu_notifier_invalidate_range_start(&range); 1500 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1501 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1502 mmu_notifier_invalidate_range_end(&range); 1503 } 1504 1505 /** 1506 * zap_page_range - remove user pages in a given range 1507 * @vma: vm_area_struct holding the applicable pages 1508 * @start: starting address of pages to zap 1509 * @size: number of bytes to zap 1510 * 1511 * Caller must protect the VMA list 1512 */ 1513 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1514 unsigned long size) 1515 { 1516 struct mmu_notifier_range range; 1517 struct mmu_gather tlb; 1518 1519 lru_add_drain(); 1520 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1521 start, start + size); 1522 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1523 update_hiwater_rss(vma->vm_mm); 1524 mmu_notifier_invalidate_range_start(&range); 1525 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1526 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1527 mmu_notifier_invalidate_range_end(&range); 1528 tlb_finish_mmu(&tlb, start, range.end); 1529 } 1530 1531 /** 1532 * zap_page_range_single - remove user pages in a given range 1533 * @vma: vm_area_struct holding the applicable pages 1534 * @address: starting address of pages to zap 1535 * @size: number of bytes to zap 1536 * @details: details of shared cache invalidation 1537 * 1538 * The range must fit into one VMA. 1539 */ 1540 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1541 unsigned long size, struct zap_details *details) 1542 { 1543 struct mmu_notifier_range range; 1544 struct mmu_gather tlb; 1545 1546 lru_add_drain(); 1547 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1548 address, address + size); 1549 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1550 update_hiwater_rss(vma->vm_mm); 1551 mmu_notifier_invalidate_range_start(&range); 1552 unmap_single_vma(&tlb, vma, address, range.end, details); 1553 mmu_notifier_invalidate_range_end(&range); 1554 tlb_finish_mmu(&tlb, address, range.end); 1555 } 1556 1557 /** 1558 * zap_vma_ptes - remove ptes mapping the vma 1559 * @vma: vm_area_struct holding ptes to be zapped 1560 * @address: starting address of pages to zap 1561 * @size: number of bytes to zap 1562 * 1563 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1564 * 1565 * The entire address range must be fully contained within the vma. 1566 * 1567 */ 1568 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1569 unsigned long size) 1570 { 1571 if (address < vma->vm_start || address + size > vma->vm_end || 1572 !(vma->vm_flags & VM_PFNMAP)) 1573 return; 1574 1575 zap_page_range_single(vma, address, size, NULL); 1576 } 1577 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1578 1579 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1580 { 1581 pgd_t *pgd; 1582 p4d_t *p4d; 1583 pud_t *pud; 1584 pmd_t *pmd; 1585 1586 pgd = pgd_offset(mm, addr); 1587 p4d = p4d_alloc(mm, pgd, addr); 1588 if (!p4d) 1589 return NULL; 1590 pud = pud_alloc(mm, p4d, addr); 1591 if (!pud) 1592 return NULL; 1593 pmd = pmd_alloc(mm, pud, addr); 1594 if (!pmd) 1595 return NULL; 1596 1597 VM_BUG_ON(pmd_trans_huge(*pmd)); 1598 return pmd; 1599 } 1600 1601 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1602 spinlock_t **ptl) 1603 { 1604 pmd_t *pmd = walk_to_pmd(mm, addr); 1605 1606 if (!pmd) 1607 return NULL; 1608 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1609 } 1610 1611 static int validate_page_before_insert(struct page *page) 1612 { 1613 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1614 return -EINVAL; 1615 flush_dcache_page(page); 1616 return 0; 1617 } 1618 1619 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1620 unsigned long addr, struct page *page, pgprot_t prot) 1621 { 1622 if (!pte_none(*pte)) 1623 return -EBUSY; 1624 /* Ok, finally just insert the thing.. */ 1625 get_page(page); 1626 inc_mm_counter_fast(mm, mm_counter_file(page)); 1627 page_add_file_rmap(page, false); 1628 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1629 return 0; 1630 } 1631 1632 /* 1633 * This is the old fallback for page remapping. 1634 * 1635 * For historical reasons, it only allows reserved pages. Only 1636 * old drivers should use this, and they needed to mark their 1637 * pages reserved for the old functions anyway. 1638 */ 1639 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1640 struct page *page, pgprot_t prot) 1641 { 1642 struct mm_struct *mm = vma->vm_mm; 1643 int retval; 1644 pte_t *pte; 1645 spinlock_t *ptl; 1646 1647 retval = validate_page_before_insert(page); 1648 if (retval) 1649 goto out; 1650 retval = -ENOMEM; 1651 pte = get_locked_pte(mm, addr, &ptl); 1652 if (!pte) 1653 goto out; 1654 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1655 pte_unmap_unlock(pte, ptl); 1656 out: 1657 return retval; 1658 } 1659 1660 #ifdef pte_index 1661 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1662 unsigned long addr, struct page *page, pgprot_t prot) 1663 { 1664 int err; 1665 1666 if (!page_count(page)) 1667 return -EINVAL; 1668 err = validate_page_before_insert(page); 1669 if (err) 1670 return err; 1671 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1672 } 1673 1674 /* insert_pages() amortizes the cost of spinlock operations 1675 * when inserting pages in a loop. Arch *must* define pte_index. 1676 */ 1677 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1678 struct page **pages, unsigned long *num, pgprot_t prot) 1679 { 1680 pmd_t *pmd = NULL; 1681 pte_t *start_pte, *pte; 1682 spinlock_t *pte_lock; 1683 struct mm_struct *const mm = vma->vm_mm; 1684 unsigned long curr_page_idx = 0; 1685 unsigned long remaining_pages_total = *num; 1686 unsigned long pages_to_write_in_pmd; 1687 int ret; 1688 more: 1689 ret = -EFAULT; 1690 pmd = walk_to_pmd(mm, addr); 1691 if (!pmd) 1692 goto out; 1693 1694 pages_to_write_in_pmd = min_t(unsigned long, 1695 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1696 1697 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1698 ret = -ENOMEM; 1699 if (pte_alloc(mm, pmd)) 1700 goto out; 1701 1702 while (pages_to_write_in_pmd) { 1703 int pte_idx = 0; 1704 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1705 1706 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1707 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1708 int err = insert_page_in_batch_locked(mm, pte, 1709 addr, pages[curr_page_idx], prot); 1710 if (unlikely(err)) { 1711 pte_unmap_unlock(start_pte, pte_lock); 1712 ret = err; 1713 remaining_pages_total -= pte_idx; 1714 goto out; 1715 } 1716 addr += PAGE_SIZE; 1717 ++curr_page_idx; 1718 } 1719 pte_unmap_unlock(start_pte, pte_lock); 1720 pages_to_write_in_pmd -= batch_size; 1721 remaining_pages_total -= batch_size; 1722 } 1723 if (remaining_pages_total) 1724 goto more; 1725 ret = 0; 1726 out: 1727 *num = remaining_pages_total; 1728 return ret; 1729 } 1730 #endif /* ifdef pte_index */ 1731 1732 /** 1733 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1734 * @vma: user vma to map to 1735 * @addr: target start user address of these pages 1736 * @pages: source kernel pages 1737 * @num: in: number of pages to map. out: number of pages that were *not* 1738 * mapped. (0 means all pages were successfully mapped). 1739 * 1740 * Preferred over vm_insert_page() when inserting multiple pages. 1741 * 1742 * In case of error, we may have mapped a subset of the provided 1743 * pages. It is the caller's responsibility to account for this case. 1744 * 1745 * The same restrictions apply as in vm_insert_page(). 1746 */ 1747 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1748 struct page **pages, unsigned long *num) 1749 { 1750 #ifdef pte_index 1751 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1752 1753 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1754 return -EFAULT; 1755 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1756 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1757 BUG_ON(vma->vm_flags & VM_PFNMAP); 1758 vma->vm_flags |= VM_MIXEDMAP; 1759 } 1760 /* Defer page refcount checking till we're about to map that page. */ 1761 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1762 #else 1763 unsigned long idx = 0, pgcount = *num; 1764 int err = -EINVAL; 1765 1766 for (; idx < pgcount; ++idx) { 1767 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1768 if (err) 1769 break; 1770 } 1771 *num = pgcount - idx; 1772 return err; 1773 #endif /* ifdef pte_index */ 1774 } 1775 EXPORT_SYMBOL(vm_insert_pages); 1776 1777 /** 1778 * vm_insert_page - insert single page into user vma 1779 * @vma: user vma to map to 1780 * @addr: target user address of this page 1781 * @page: source kernel page 1782 * 1783 * This allows drivers to insert individual pages they've allocated 1784 * into a user vma. 1785 * 1786 * The page has to be a nice clean _individual_ kernel allocation. 1787 * If you allocate a compound page, you need to have marked it as 1788 * such (__GFP_COMP), or manually just split the page up yourself 1789 * (see split_page()). 1790 * 1791 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1792 * took an arbitrary page protection parameter. This doesn't allow 1793 * that. Your vma protection will have to be set up correctly, which 1794 * means that if you want a shared writable mapping, you'd better 1795 * ask for a shared writable mapping! 1796 * 1797 * The page does not need to be reserved. 1798 * 1799 * Usually this function is called from f_op->mmap() handler 1800 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1801 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1802 * function from other places, for example from page-fault handler. 1803 * 1804 * Return: %0 on success, negative error code otherwise. 1805 */ 1806 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1807 struct page *page) 1808 { 1809 if (addr < vma->vm_start || addr >= vma->vm_end) 1810 return -EFAULT; 1811 if (!page_count(page)) 1812 return -EINVAL; 1813 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1814 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1815 BUG_ON(vma->vm_flags & VM_PFNMAP); 1816 vma->vm_flags |= VM_MIXEDMAP; 1817 } 1818 return insert_page(vma, addr, page, vma->vm_page_prot); 1819 } 1820 EXPORT_SYMBOL(vm_insert_page); 1821 1822 /* 1823 * __vm_map_pages - maps range of kernel pages into user vma 1824 * @vma: user vma to map to 1825 * @pages: pointer to array of source kernel pages 1826 * @num: number of pages in page array 1827 * @offset: user's requested vm_pgoff 1828 * 1829 * This allows drivers to map range of kernel pages into a user vma. 1830 * 1831 * Return: 0 on success and error code otherwise. 1832 */ 1833 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1834 unsigned long num, unsigned long offset) 1835 { 1836 unsigned long count = vma_pages(vma); 1837 unsigned long uaddr = vma->vm_start; 1838 int ret, i; 1839 1840 /* Fail if the user requested offset is beyond the end of the object */ 1841 if (offset >= num) 1842 return -ENXIO; 1843 1844 /* Fail if the user requested size exceeds available object size */ 1845 if (count > num - offset) 1846 return -ENXIO; 1847 1848 for (i = 0; i < count; i++) { 1849 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1850 if (ret < 0) 1851 return ret; 1852 uaddr += PAGE_SIZE; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /** 1859 * vm_map_pages - maps range of kernel pages starts with non zero offset 1860 * @vma: user vma to map to 1861 * @pages: pointer to array of source kernel pages 1862 * @num: number of pages in page array 1863 * 1864 * Maps an object consisting of @num pages, catering for the user's 1865 * requested vm_pgoff 1866 * 1867 * If we fail to insert any page into the vma, the function will return 1868 * immediately leaving any previously inserted pages present. Callers 1869 * from the mmap handler may immediately return the error as their caller 1870 * will destroy the vma, removing any successfully inserted pages. Other 1871 * callers should make their own arrangements for calling unmap_region(). 1872 * 1873 * Context: Process context. Called by mmap handlers. 1874 * Return: 0 on success and error code otherwise. 1875 */ 1876 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1877 unsigned long num) 1878 { 1879 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1880 } 1881 EXPORT_SYMBOL(vm_map_pages); 1882 1883 /** 1884 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1885 * @vma: user vma to map to 1886 * @pages: pointer to array of source kernel pages 1887 * @num: number of pages in page array 1888 * 1889 * Similar to vm_map_pages(), except that it explicitly sets the offset 1890 * to 0. This function is intended for the drivers that did not consider 1891 * vm_pgoff. 1892 * 1893 * Context: Process context. Called by mmap handlers. 1894 * Return: 0 on success and error code otherwise. 1895 */ 1896 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1897 unsigned long num) 1898 { 1899 return __vm_map_pages(vma, pages, num, 0); 1900 } 1901 EXPORT_SYMBOL(vm_map_pages_zero); 1902 1903 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1904 pfn_t pfn, pgprot_t prot, bool mkwrite) 1905 { 1906 struct mm_struct *mm = vma->vm_mm; 1907 pte_t *pte, entry; 1908 spinlock_t *ptl; 1909 1910 pte = get_locked_pte(mm, addr, &ptl); 1911 if (!pte) 1912 return VM_FAULT_OOM; 1913 if (!pte_none(*pte)) { 1914 if (mkwrite) { 1915 /* 1916 * For read faults on private mappings the PFN passed 1917 * in may not match the PFN we have mapped if the 1918 * mapped PFN is a writeable COW page. In the mkwrite 1919 * case we are creating a writable PTE for a shared 1920 * mapping and we expect the PFNs to match. If they 1921 * don't match, we are likely racing with block 1922 * allocation and mapping invalidation so just skip the 1923 * update. 1924 */ 1925 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1926 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1927 goto out_unlock; 1928 } 1929 entry = pte_mkyoung(*pte); 1930 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1931 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1932 update_mmu_cache(vma, addr, pte); 1933 } 1934 goto out_unlock; 1935 } 1936 1937 /* Ok, finally just insert the thing.. */ 1938 if (pfn_t_devmap(pfn)) 1939 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1940 else 1941 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1942 1943 if (mkwrite) { 1944 entry = pte_mkyoung(entry); 1945 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1946 } 1947 1948 set_pte_at(mm, addr, pte, entry); 1949 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1950 1951 out_unlock: 1952 pte_unmap_unlock(pte, ptl); 1953 return VM_FAULT_NOPAGE; 1954 } 1955 1956 /** 1957 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1958 * @vma: user vma to map to 1959 * @addr: target user address of this page 1960 * @pfn: source kernel pfn 1961 * @pgprot: pgprot flags for the inserted page 1962 * 1963 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1964 * to override pgprot on a per-page basis. 1965 * 1966 * This only makes sense for IO mappings, and it makes no sense for 1967 * COW mappings. In general, using multiple vmas is preferable; 1968 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1969 * impractical. 1970 * 1971 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1972 * a value of @pgprot different from that of @vma->vm_page_prot. 1973 * 1974 * Context: Process context. May allocate using %GFP_KERNEL. 1975 * Return: vm_fault_t value. 1976 */ 1977 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1978 unsigned long pfn, pgprot_t pgprot) 1979 { 1980 /* 1981 * Technically, architectures with pte_special can avoid all these 1982 * restrictions (same for remap_pfn_range). However we would like 1983 * consistency in testing and feature parity among all, so we should 1984 * try to keep these invariants in place for everybody. 1985 */ 1986 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1987 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1988 (VM_PFNMAP|VM_MIXEDMAP)); 1989 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1990 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1991 1992 if (addr < vma->vm_start || addr >= vma->vm_end) 1993 return VM_FAULT_SIGBUS; 1994 1995 if (!pfn_modify_allowed(pfn, pgprot)) 1996 return VM_FAULT_SIGBUS; 1997 1998 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1999 2000 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2001 false); 2002 } 2003 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2004 2005 /** 2006 * vmf_insert_pfn - insert single pfn into user vma 2007 * @vma: user vma to map to 2008 * @addr: target user address of this page 2009 * @pfn: source kernel pfn 2010 * 2011 * Similar to vm_insert_page, this allows drivers to insert individual pages 2012 * they've allocated into a user vma. Same comments apply. 2013 * 2014 * This function should only be called from a vm_ops->fault handler, and 2015 * in that case the handler should return the result of this function. 2016 * 2017 * vma cannot be a COW mapping. 2018 * 2019 * As this is called only for pages that do not currently exist, we 2020 * do not need to flush old virtual caches or the TLB. 2021 * 2022 * Context: Process context. May allocate using %GFP_KERNEL. 2023 * Return: vm_fault_t value. 2024 */ 2025 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2026 unsigned long pfn) 2027 { 2028 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2029 } 2030 EXPORT_SYMBOL(vmf_insert_pfn); 2031 2032 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2033 { 2034 /* these checks mirror the abort conditions in vm_normal_page */ 2035 if (vma->vm_flags & VM_MIXEDMAP) 2036 return true; 2037 if (pfn_t_devmap(pfn)) 2038 return true; 2039 if (pfn_t_special(pfn)) 2040 return true; 2041 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2042 return true; 2043 return false; 2044 } 2045 2046 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2047 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2048 bool mkwrite) 2049 { 2050 int err; 2051 2052 BUG_ON(!vm_mixed_ok(vma, pfn)); 2053 2054 if (addr < vma->vm_start || addr >= vma->vm_end) 2055 return VM_FAULT_SIGBUS; 2056 2057 track_pfn_insert(vma, &pgprot, pfn); 2058 2059 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2060 return VM_FAULT_SIGBUS; 2061 2062 /* 2063 * If we don't have pte special, then we have to use the pfn_valid() 2064 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2065 * refcount the page if pfn_valid is true (hence insert_page rather 2066 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2067 * without pte special, it would there be refcounted as a normal page. 2068 */ 2069 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2070 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2071 struct page *page; 2072 2073 /* 2074 * At this point we are committed to insert_page() 2075 * regardless of whether the caller specified flags that 2076 * result in pfn_t_has_page() == false. 2077 */ 2078 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2079 err = insert_page(vma, addr, page, pgprot); 2080 } else { 2081 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2082 } 2083 2084 if (err == -ENOMEM) 2085 return VM_FAULT_OOM; 2086 if (err < 0 && err != -EBUSY) 2087 return VM_FAULT_SIGBUS; 2088 2089 return VM_FAULT_NOPAGE; 2090 } 2091 2092 /** 2093 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2094 * @vma: user vma to map to 2095 * @addr: target user address of this page 2096 * @pfn: source kernel pfn 2097 * @pgprot: pgprot flags for the inserted page 2098 * 2099 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2100 * to override pgprot on a per-page basis. 2101 * 2102 * Typically this function should be used by drivers to set caching- and 2103 * encryption bits different than those of @vma->vm_page_prot, because 2104 * the caching- or encryption mode may not be known at mmap() time. 2105 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2106 * to set caching and encryption bits for those vmas (except for COW pages). 2107 * This is ensured by core vm only modifying these page table entries using 2108 * functions that don't touch caching- or encryption bits, using pte_modify() 2109 * if needed. (See for example mprotect()). 2110 * Also when new page-table entries are created, this is only done using the 2111 * fault() callback, and never using the value of vma->vm_page_prot, 2112 * except for page-table entries that point to anonymous pages as the result 2113 * of COW. 2114 * 2115 * Context: Process context. May allocate using %GFP_KERNEL. 2116 * Return: vm_fault_t value. 2117 */ 2118 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2119 pfn_t pfn, pgprot_t pgprot) 2120 { 2121 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2122 } 2123 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2124 2125 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2126 pfn_t pfn) 2127 { 2128 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2129 } 2130 EXPORT_SYMBOL(vmf_insert_mixed); 2131 2132 /* 2133 * If the insertion of PTE failed because someone else already added a 2134 * different entry in the mean time, we treat that as success as we assume 2135 * the same entry was actually inserted. 2136 */ 2137 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2138 unsigned long addr, pfn_t pfn) 2139 { 2140 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2141 } 2142 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2143 2144 /* 2145 * maps a range of physical memory into the requested pages. the old 2146 * mappings are removed. any references to nonexistent pages results 2147 * in null mappings (currently treated as "copy-on-access") 2148 */ 2149 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2150 unsigned long addr, unsigned long end, 2151 unsigned long pfn, pgprot_t prot) 2152 { 2153 pte_t *pte; 2154 spinlock_t *ptl; 2155 int err = 0; 2156 2157 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2158 if (!pte) 2159 return -ENOMEM; 2160 arch_enter_lazy_mmu_mode(); 2161 do { 2162 BUG_ON(!pte_none(*pte)); 2163 if (!pfn_modify_allowed(pfn, prot)) { 2164 err = -EACCES; 2165 break; 2166 } 2167 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2168 pfn++; 2169 } while (pte++, addr += PAGE_SIZE, addr != end); 2170 arch_leave_lazy_mmu_mode(); 2171 pte_unmap_unlock(pte - 1, ptl); 2172 return err; 2173 } 2174 2175 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2176 unsigned long addr, unsigned long end, 2177 unsigned long pfn, pgprot_t prot) 2178 { 2179 pmd_t *pmd; 2180 unsigned long next; 2181 int err; 2182 2183 pfn -= addr >> PAGE_SHIFT; 2184 pmd = pmd_alloc(mm, pud, addr); 2185 if (!pmd) 2186 return -ENOMEM; 2187 VM_BUG_ON(pmd_trans_huge(*pmd)); 2188 do { 2189 next = pmd_addr_end(addr, end); 2190 err = remap_pte_range(mm, pmd, addr, next, 2191 pfn + (addr >> PAGE_SHIFT), prot); 2192 if (err) 2193 return err; 2194 } while (pmd++, addr = next, addr != end); 2195 return 0; 2196 } 2197 2198 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2199 unsigned long addr, unsigned long end, 2200 unsigned long pfn, pgprot_t prot) 2201 { 2202 pud_t *pud; 2203 unsigned long next; 2204 int err; 2205 2206 pfn -= addr >> PAGE_SHIFT; 2207 pud = pud_alloc(mm, p4d, addr); 2208 if (!pud) 2209 return -ENOMEM; 2210 do { 2211 next = pud_addr_end(addr, end); 2212 err = remap_pmd_range(mm, pud, addr, next, 2213 pfn + (addr >> PAGE_SHIFT), prot); 2214 if (err) 2215 return err; 2216 } while (pud++, addr = next, addr != end); 2217 return 0; 2218 } 2219 2220 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2221 unsigned long addr, unsigned long end, 2222 unsigned long pfn, pgprot_t prot) 2223 { 2224 p4d_t *p4d; 2225 unsigned long next; 2226 int err; 2227 2228 pfn -= addr >> PAGE_SHIFT; 2229 p4d = p4d_alloc(mm, pgd, addr); 2230 if (!p4d) 2231 return -ENOMEM; 2232 do { 2233 next = p4d_addr_end(addr, end); 2234 err = remap_pud_range(mm, p4d, addr, next, 2235 pfn + (addr >> PAGE_SHIFT), prot); 2236 if (err) 2237 return err; 2238 } while (p4d++, addr = next, addr != end); 2239 return 0; 2240 } 2241 2242 /** 2243 * remap_pfn_range - remap kernel memory to userspace 2244 * @vma: user vma to map to 2245 * @addr: target page aligned user address to start at 2246 * @pfn: page frame number of kernel physical memory address 2247 * @size: size of mapping area 2248 * @prot: page protection flags for this mapping 2249 * 2250 * Note: this is only safe if the mm semaphore is held when called. 2251 * 2252 * Return: %0 on success, negative error code otherwise. 2253 */ 2254 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2255 unsigned long pfn, unsigned long size, pgprot_t prot) 2256 { 2257 pgd_t *pgd; 2258 unsigned long next; 2259 unsigned long end = addr + PAGE_ALIGN(size); 2260 struct mm_struct *mm = vma->vm_mm; 2261 unsigned long remap_pfn = pfn; 2262 int err; 2263 2264 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2265 return -EINVAL; 2266 2267 /* 2268 * Physically remapped pages are special. Tell the 2269 * rest of the world about it: 2270 * VM_IO tells people not to look at these pages 2271 * (accesses can have side effects). 2272 * VM_PFNMAP tells the core MM that the base pages are just 2273 * raw PFN mappings, and do not have a "struct page" associated 2274 * with them. 2275 * VM_DONTEXPAND 2276 * Disable vma merging and expanding with mremap(). 2277 * VM_DONTDUMP 2278 * Omit vma from core dump, even when VM_IO turned off. 2279 * 2280 * There's a horrible special case to handle copy-on-write 2281 * behaviour that some programs depend on. We mark the "original" 2282 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2283 * See vm_normal_page() for details. 2284 */ 2285 if (is_cow_mapping(vma->vm_flags)) { 2286 if (addr != vma->vm_start || end != vma->vm_end) 2287 return -EINVAL; 2288 vma->vm_pgoff = pfn; 2289 } 2290 2291 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2292 if (err) 2293 return -EINVAL; 2294 2295 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2296 2297 BUG_ON(addr >= end); 2298 pfn -= addr >> PAGE_SHIFT; 2299 pgd = pgd_offset(mm, addr); 2300 flush_cache_range(vma, addr, end); 2301 do { 2302 next = pgd_addr_end(addr, end); 2303 err = remap_p4d_range(mm, pgd, addr, next, 2304 pfn + (addr >> PAGE_SHIFT), prot); 2305 if (err) 2306 break; 2307 } while (pgd++, addr = next, addr != end); 2308 2309 if (err) 2310 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2311 2312 return err; 2313 } 2314 EXPORT_SYMBOL(remap_pfn_range); 2315 2316 /** 2317 * vm_iomap_memory - remap memory to userspace 2318 * @vma: user vma to map to 2319 * @start: start of the physical memory to be mapped 2320 * @len: size of area 2321 * 2322 * This is a simplified io_remap_pfn_range() for common driver use. The 2323 * driver just needs to give us the physical memory range to be mapped, 2324 * we'll figure out the rest from the vma information. 2325 * 2326 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2327 * whatever write-combining details or similar. 2328 * 2329 * Return: %0 on success, negative error code otherwise. 2330 */ 2331 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2332 { 2333 unsigned long vm_len, pfn, pages; 2334 2335 /* Check that the physical memory area passed in looks valid */ 2336 if (start + len < start) 2337 return -EINVAL; 2338 /* 2339 * You *really* shouldn't map things that aren't page-aligned, 2340 * but we've historically allowed it because IO memory might 2341 * just have smaller alignment. 2342 */ 2343 len += start & ~PAGE_MASK; 2344 pfn = start >> PAGE_SHIFT; 2345 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2346 if (pfn + pages < pfn) 2347 return -EINVAL; 2348 2349 /* We start the mapping 'vm_pgoff' pages into the area */ 2350 if (vma->vm_pgoff > pages) 2351 return -EINVAL; 2352 pfn += vma->vm_pgoff; 2353 pages -= vma->vm_pgoff; 2354 2355 /* Can we fit all of the mapping? */ 2356 vm_len = vma->vm_end - vma->vm_start; 2357 if (vm_len >> PAGE_SHIFT > pages) 2358 return -EINVAL; 2359 2360 /* Ok, let it rip */ 2361 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2362 } 2363 EXPORT_SYMBOL(vm_iomap_memory); 2364 2365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2366 unsigned long addr, unsigned long end, 2367 pte_fn_t fn, void *data, bool create, 2368 pgtbl_mod_mask *mask) 2369 { 2370 pte_t *pte; 2371 int err = 0; 2372 spinlock_t *ptl; 2373 2374 if (create) { 2375 pte = (mm == &init_mm) ? 2376 pte_alloc_kernel_track(pmd, addr, mask) : 2377 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2378 if (!pte) 2379 return -ENOMEM; 2380 } else { 2381 pte = (mm == &init_mm) ? 2382 pte_offset_kernel(pmd, addr) : 2383 pte_offset_map_lock(mm, pmd, addr, &ptl); 2384 } 2385 2386 BUG_ON(pmd_huge(*pmd)); 2387 2388 arch_enter_lazy_mmu_mode(); 2389 2390 do { 2391 if (create || !pte_none(*pte)) { 2392 err = fn(pte++, addr, data); 2393 if (err) 2394 break; 2395 } 2396 } while (addr += PAGE_SIZE, addr != end); 2397 *mask |= PGTBL_PTE_MODIFIED; 2398 2399 arch_leave_lazy_mmu_mode(); 2400 2401 if (mm != &init_mm) 2402 pte_unmap_unlock(pte-1, ptl); 2403 return err; 2404 } 2405 2406 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2407 unsigned long addr, unsigned long end, 2408 pte_fn_t fn, void *data, bool create, 2409 pgtbl_mod_mask *mask) 2410 { 2411 pmd_t *pmd; 2412 unsigned long next; 2413 int err = 0; 2414 2415 BUG_ON(pud_huge(*pud)); 2416 2417 if (create) { 2418 pmd = pmd_alloc_track(mm, pud, addr, mask); 2419 if (!pmd) 2420 return -ENOMEM; 2421 } else { 2422 pmd = pmd_offset(pud, addr); 2423 } 2424 do { 2425 next = pmd_addr_end(addr, end); 2426 if (create || !pmd_none_or_clear_bad(pmd)) { 2427 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2428 create, mask); 2429 if (err) 2430 break; 2431 } 2432 } while (pmd++, addr = next, addr != end); 2433 return err; 2434 } 2435 2436 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2437 unsigned long addr, unsigned long end, 2438 pte_fn_t fn, void *data, bool create, 2439 pgtbl_mod_mask *mask) 2440 { 2441 pud_t *pud; 2442 unsigned long next; 2443 int err = 0; 2444 2445 if (create) { 2446 pud = pud_alloc_track(mm, p4d, addr, mask); 2447 if (!pud) 2448 return -ENOMEM; 2449 } else { 2450 pud = pud_offset(p4d, addr); 2451 } 2452 do { 2453 next = pud_addr_end(addr, end); 2454 if (create || !pud_none_or_clear_bad(pud)) { 2455 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2456 create, mask); 2457 if (err) 2458 break; 2459 } 2460 } while (pud++, addr = next, addr != end); 2461 return err; 2462 } 2463 2464 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2465 unsigned long addr, unsigned long end, 2466 pte_fn_t fn, void *data, bool create, 2467 pgtbl_mod_mask *mask) 2468 { 2469 p4d_t *p4d; 2470 unsigned long next; 2471 int err = 0; 2472 2473 if (create) { 2474 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2475 if (!p4d) 2476 return -ENOMEM; 2477 } else { 2478 p4d = p4d_offset(pgd, addr); 2479 } 2480 do { 2481 next = p4d_addr_end(addr, end); 2482 if (create || !p4d_none_or_clear_bad(p4d)) { 2483 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2484 create, mask); 2485 if (err) 2486 break; 2487 } 2488 } while (p4d++, addr = next, addr != end); 2489 return err; 2490 } 2491 2492 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2493 unsigned long size, pte_fn_t fn, 2494 void *data, bool create) 2495 { 2496 pgd_t *pgd; 2497 unsigned long start = addr, next; 2498 unsigned long end = addr + size; 2499 pgtbl_mod_mask mask = 0; 2500 int err = 0; 2501 2502 if (WARN_ON(addr >= end)) 2503 return -EINVAL; 2504 2505 pgd = pgd_offset(mm, addr); 2506 do { 2507 next = pgd_addr_end(addr, end); 2508 if (!create && pgd_none_or_clear_bad(pgd)) 2509 continue; 2510 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2511 if (err) 2512 break; 2513 } while (pgd++, addr = next, addr != end); 2514 2515 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2516 arch_sync_kernel_mappings(start, start + size); 2517 2518 return err; 2519 } 2520 2521 /* 2522 * Scan a region of virtual memory, filling in page tables as necessary 2523 * and calling a provided function on each leaf page table. 2524 */ 2525 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2526 unsigned long size, pte_fn_t fn, void *data) 2527 { 2528 return __apply_to_page_range(mm, addr, size, fn, data, true); 2529 } 2530 EXPORT_SYMBOL_GPL(apply_to_page_range); 2531 2532 /* 2533 * Scan a region of virtual memory, calling a provided function on 2534 * each leaf page table where it exists. 2535 * 2536 * Unlike apply_to_page_range, this does _not_ fill in page tables 2537 * where they are absent. 2538 */ 2539 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2540 unsigned long size, pte_fn_t fn, void *data) 2541 { 2542 return __apply_to_page_range(mm, addr, size, fn, data, false); 2543 } 2544 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2545 2546 /* 2547 * handle_pte_fault chooses page fault handler according to an entry which was 2548 * read non-atomically. Before making any commitment, on those architectures 2549 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2550 * parts, do_swap_page must check under lock before unmapping the pte and 2551 * proceeding (but do_wp_page is only called after already making such a check; 2552 * and do_anonymous_page can safely check later on). 2553 */ 2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2555 pte_t *page_table, pte_t orig_pte) 2556 { 2557 int same = 1; 2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2559 if (sizeof(pte_t) > sizeof(unsigned long)) { 2560 spinlock_t *ptl = pte_lockptr(mm, pmd); 2561 spin_lock(ptl); 2562 same = pte_same(*page_table, orig_pte); 2563 spin_unlock(ptl); 2564 } 2565 #endif 2566 pte_unmap(page_table); 2567 return same; 2568 } 2569 2570 static inline bool cow_user_page(struct page *dst, struct page *src, 2571 struct vm_fault *vmf) 2572 { 2573 bool ret; 2574 void *kaddr; 2575 void __user *uaddr; 2576 bool locked = false; 2577 struct vm_area_struct *vma = vmf->vma; 2578 struct mm_struct *mm = vma->vm_mm; 2579 unsigned long addr = vmf->address; 2580 2581 if (likely(src)) { 2582 copy_user_highpage(dst, src, addr, vma); 2583 return true; 2584 } 2585 2586 /* 2587 * If the source page was a PFN mapping, we don't have 2588 * a "struct page" for it. We do a best-effort copy by 2589 * just copying from the original user address. If that 2590 * fails, we just zero-fill it. Live with it. 2591 */ 2592 kaddr = kmap_atomic(dst); 2593 uaddr = (void __user *)(addr & PAGE_MASK); 2594 2595 /* 2596 * On architectures with software "accessed" bits, we would 2597 * take a double page fault, so mark it accessed here. 2598 */ 2599 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2600 pte_t entry; 2601 2602 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2603 locked = true; 2604 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2605 /* 2606 * Other thread has already handled the fault 2607 * and update local tlb only 2608 */ 2609 update_mmu_tlb(vma, addr, vmf->pte); 2610 ret = false; 2611 goto pte_unlock; 2612 } 2613 2614 entry = pte_mkyoung(vmf->orig_pte); 2615 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2616 update_mmu_cache(vma, addr, vmf->pte); 2617 } 2618 2619 /* 2620 * This really shouldn't fail, because the page is there 2621 * in the page tables. But it might just be unreadable, 2622 * in which case we just give up and fill the result with 2623 * zeroes. 2624 */ 2625 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2626 if (locked) 2627 goto warn; 2628 2629 /* Re-validate under PTL if the page is still mapped */ 2630 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2631 locked = true; 2632 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2633 /* The PTE changed under us, update local tlb */ 2634 update_mmu_tlb(vma, addr, vmf->pte); 2635 ret = false; 2636 goto pte_unlock; 2637 } 2638 2639 /* 2640 * The same page can be mapped back since last copy attempt. 2641 * Try to copy again under PTL. 2642 */ 2643 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2644 /* 2645 * Give a warn in case there can be some obscure 2646 * use-case 2647 */ 2648 warn: 2649 WARN_ON_ONCE(1); 2650 clear_page(kaddr); 2651 } 2652 } 2653 2654 ret = true; 2655 2656 pte_unlock: 2657 if (locked) 2658 pte_unmap_unlock(vmf->pte, vmf->ptl); 2659 kunmap_atomic(kaddr); 2660 flush_dcache_page(dst); 2661 2662 return ret; 2663 } 2664 2665 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2666 { 2667 struct file *vm_file = vma->vm_file; 2668 2669 if (vm_file) 2670 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2671 2672 /* 2673 * Special mappings (e.g. VDSO) do not have any file so fake 2674 * a default GFP_KERNEL for them. 2675 */ 2676 return GFP_KERNEL; 2677 } 2678 2679 /* 2680 * Notify the address space that the page is about to become writable so that 2681 * it can prohibit this or wait for the page to get into an appropriate state. 2682 * 2683 * We do this without the lock held, so that it can sleep if it needs to. 2684 */ 2685 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2686 { 2687 vm_fault_t ret; 2688 struct page *page = vmf->page; 2689 unsigned int old_flags = vmf->flags; 2690 2691 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2692 2693 if (vmf->vma->vm_file && 2694 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2695 return VM_FAULT_SIGBUS; 2696 2697 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2698 /* Restore original flags so that caller is not surprised */ 2699 vmf->flags = old_flags; 2700 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2701 return ret; 2702 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2703 lock_page(page); 2704 if (!page->mapping) { 2705 unlock_page(page); 2706 return 0; /* retry */ 2707 } 2708 ret |= VM_FAULT_LOCKED; 2709 } else 2710 VM_BUG_ON_PAGE(!PageLocked(page), page); 2711 return ret; 2712 } 2713 2714 /* 2715 * Handle dirtying of a page in shared file mapping on a write fault. 2716 * 2717 * The function expects the page to be locked and unlocks it. 2718 */ 2719 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2720 { 2721 struct vm_area_struct *vma = vmf->vma; 2722 struct address_space *mapping; 2723 struct page *page = vmf->page; 2724 bool dirtied; 2725 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2726 2727 dirtied = set_page_dirty(page); 2728 VM_BUG_ON_PAGE(PageAnon(page), page); 2729 /* 2730 * Take a local copy of the address_space - page.mapping may be zeroed 2731 * by truncate after unlock_page(). The address_space itself remains 2732 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2733 * release semantics to prevent the compiler from undoing this copying. 2734 */ 2735 mapping = page_rmapping(page); 2736 unlock_page(page); 2737 2738 if (!page_mkwrite) 2739 file_update_time(vma->vm_file); 2740 2741 /* 2742 * Throttle page dirtying rate down to writeback speed. 2743 * 2744 * mapping may be NULL here because some device drivers do not 2745 * set page.mapping but still dirty their pages 2746 * 2747 * Drop the mmap_lock before waiting on IO, if we can. The file 2748 * is pinning the mapping, as per above. 2749 */ 2750 if ((dirtied || page_mkwrite) && mapping) { 2751 struct file *fpin; 2752 2753 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2754 balance_dirty_pages_ratelimited(mapping); 2755 if (fpin) { 2756 fput(fpin); 2757 return VM_FAULT_RETRY; 2758 } 2759 } 2760 2761 return 0; 2762 } 2763 2764 /* 2765 * Handle write page faults for pages that can be reused in the current vma 2766 * 2767 * This can happen either due to the mapping being with the VM_SHARED flag, 2768 * or due to us being the last reference standing to the page. In either 2769 * case, all we need to do here is to mark the page as writable and update 2770 * any related book-keeping. 2771 */ 2772 static inline void wp_page_reuse(struct vm_fault *vmf) 2773 __releases(vmf->ptl) 2774 { 2775 struct vm_area_struct *vma = vmf->vma; 2776 struct page *page = vmf->page; 2777 pte_t entry; 2778 /* 2779 * Clear the pages cpupid information as the existing 2780 * information potentially belongs to a now completely 2781 * unrelated process. 2782 */ 2783 if (page) 2784 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2785 2786 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2787 entry = pte_mkyoung(vmf->orig_pte); 2788 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2789 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2790 update_mmu_cache(vma, vmf->address, vmf->pte); 2791 pte_unmap_unlock(vmf->pte, vmf->ptl); 2792 count_vm_event(PGREUSE); 2793 } 2794 2795 /* 2796 * Handle the case of a page which we actually need to copy to a new page. 2797 * 2798 * Called with mmap_lock locked and the old page referenced, but 2799 * without the ptl held. 2800 * 2801 * High level logic flow: 2802 * 2803 * - Allocate a page, copy the content of the old page to the new one. 2804 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2805 * - Take the PTL. If the pte changed, bail out and release the allocated page 2806 * - If the pte is still the way we remember it, update the page table and all 2807 * relevant references. This includes dropping the reference the page-table 2808 * held to the old page, as well as updating the rmap. 2809 * - In any case, unlock the PTL and drop the reference we took to the old page. 2810 */ 2811 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2812 { 2813 struct vm_area_struct *vma = vmf->vma; 2814 struct mm_struct *mm = vma->vm_mm; 2815 struct page *old_page = vmf->page; 2816 struct page *new_page = NULL; 2817 pte_t entry; 2818 int page_copied = 0; 2819 struct mmu_notifier_range range; 2820 2821 if (unlikely(anon_vma_prepare(vma))) 2822 goto oom; 2823 2824 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2825 new_page = alloc_zeroed_user_highpage_movable(vma, 2826 vmf->address); 2827 if (!new_page) 2828 goto oom; 2829 } else { 2830 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2831 vmf->address); 2832 if (!new_page) 2833 goto oom; 2834 2835 if (!cow_user_page(new_page, old_page, vmf)) { 2836 /* 2837 * COW failed, if the fault was solved by other, 2838 * it's fine. If not, userspace would re-fault on 2839 * the same address and we will handle the fault 2840 * from the second attempt. 2841 */ 2842 put_page(new_page); 2843 if (old_page) 2844 put_page(old_page); 2845 return 0; 2846 } 2847 } 2848 2849 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2850 goto oom_free_new; 2851 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2852 2853 __SetPageUptodate(new_page); 2854 2855 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2856 vmf->address & PAGE_MASK, 2857 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2858 mmu_notifier_invalidate_range_start(&range); 2859 2860 /* 2861 * Re-check the pte - we dropped the lock 2862 */ 2863 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2864 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2865 if (old_page) { 2866 if (!PageAnon(old_page)) { 2867 dec_mm_counter_fast(mm, 2868 mm_counter_file(old_page)); 2869 inc_mm_counter_fast(mm, MM_ANONPAGES); 2870 } 2871 } else { 2872 inc_mm_counter_fast(mm, MM_ANONPAGES); 2873 } 2874 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2875 entry = mk_pte(new_page, vma->vm_page_prot); 2876 entry = pte_sw_mkyoung(entry); 2877 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2878 /* 2879 * Clear the pte entry and flush it first, before updating the 2880 * pte with the new entry. This will avoid a race condition 2881 * seen in the presence of one thread doing SMC and another 2882 * thread doing COW. 2883 */ 2884 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2885 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2886 lru_cache_add_inactive_or_unevictable(new_page, vma); 2887 /* 2888 * We call the notify macro here because, when using secondary 2889 * mmu page tables (such as kvm shadow page tables), we want the 2890 * new page to be mapped directly into the secondary page table. 2891 */ 2892 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2893 update_mmu_cache(vma, vmf->address, vmf->pte); 2894 if (old_page) { 2895 /* 2896 * Only after switching the pte to the new page may 2897 * we remove the mapcount here. Otherwise another 2898 * process may come and find the rmap count decremented 2899 * before the pte is switched to the new page, and 2900 * "reuse" the old page writing into it while our pte 2901 * here still points into it and can be read by other 2902 * threads. 2903 * 2904 * The critical issue is to order this 2905 * page_remove_rmap with the ptp_clear_flush above. 2906 * Those stores are ordered by (if nothing else,) 2907 * the barrier present in the atomic_add_negative 2908 * in page_remove_rmap. 2909 * 2910 * Then the TLB flush in ptep_clear_flush ensures that 2911 * no process can access the old page before the 2912 * decremented mapcount is visible. And the old page 2913 * cannot be reused until after the decremented 2914 * mapcount is visible. So transitively, TLBs to 2915 * old page will be flushed before it can be reused. 2916 */ 2917 page_remove_rmap(old_page, false); 2918 } 2919 2920 /* Free the old page.. */ 2921 new_page = old_page; 2922 page_copied = 1; 2923 } else { 2924 update_mmu_tlb(vma, vmf->address, vmf->pte); 2925 } 2926 2927 if (new_page) 2928 put_page(new_page); 2929 2930 pte_unmap_unlock(vmf->pte, vmf->ptl); 2931 /* 2932 * No need to double call mmu_notifier->invalidate_range() callback as 2933 * the above ptep_clear_flush_notify() did already call it. 2934 */ 2935 mmu_notifier_invalidate_range_only_end(&range); 2936 if (old_page) { 2937 /* 2938 * Don't let another task, with possibly unlocked vma, 2939 * keep the mlocked page. 2940 */ 2941 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2942 lock_page(old_page); /* LRU manipulation */ 2943 if (PageMlocked(old_page)) 2944 munlock_vma_page(old_page); 2945 unlock_page(old_page); 2946 } 2947 put_page(old_page); 2948 } 2949 return page_copied ? VM_FAULT_WRITE : 0; 2950 oom_free_new: 2951 put_page(new_page); 2952 oom: 2953 if (old_page) 2954 put_page(old_page); 2955 return VM_FAULT_OOM; 2956 } 2957 2958 /** 2959 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2960 * writeable once the page is prepared 2961 * 2962 * @vmf: structure describing the fault 2963 * 2964 * This function handles all that is needed to finish a write page fault in a 2965 * shared mapping due to PTE being read-only once the mapped page is prepared. 2966 * It handles locking of PTE and modifying it. 2967 * 2968 * The function expects the page to be locked or other protection against 2969 * concurrent faults / writeback (such as DAX radix tree locks). 2970 * 2971 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2972 * we acquired PTE lock. 2973 */ 2974 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2975 { 2976 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2977 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2978 &vmf->ptl); 2979 /* 2980 * We might have raced with another page fault while we released the 2981 * pte_offset_map_lock. 2982 */ 2983 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2984 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2985 pte_unmap_unlock(vmf->pte, vmf->ptl); 2986 return VM_FAULT_NOPAGE; 2987 } 2988 wp_page_reuse(vmf); 2989 return 0; 2990 } 2991 2992 /* 2993 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2994 * mapping 2995 */ 2996 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2997 { 2998 struct vm_area_struct *vma = vmf->vma; 2999 3000 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3001 vm_fault_t ret; 3002 3003 pte_unmap_unlock(vmf->pte, vmf->ptl); 3004 vmf->flags |= FAULT_FLAG_MKWRITE; 3005 ret = vma->vm_ops->pfn_mkwrite(vmf); 3006 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3007 return ret; 3008 return finish_mkwrite_fault(vmf); 3009 } 3010 wp_page_reuse(vmf); 3011 return VM_FAULT_WRITE; 3012 } 3013 3014 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3015 __releases(vmf->ptl) 3016 { 3017 struct vm_area_struct *vma = vmf->vma; 3018 vm_fault_t ret = VM_FAULT_WRITE; 3019 3020 get_page(vmf->page); 3021 3022 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3023 vm_fault_t tmp; 3024 3025 pte_unmap_unlock(vmf->pte, vmf->ptl); 3026 tmp = do_page_mkwrite(vmf); 3027 if (unlikely(!tmp || (tmp & 3028 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3029 put_page(vmf->page); 3030 return tmp; 3031 } 3032 tmp = finish_mkwrite_fault(vmf); 3033 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3034 unlock_page(vmf->page); 3035 put_page(vmf->page); 3036 return tmp; 3037 } 3038 } else { 3039 wp_page_reuse(vmf); 3040 lock_page(vmf->page); 3041 } 3042 ret |= fault_dirty_shared_page(vmf); 3043 put_page(vmf->page); 3044 3045 return ret; 3046 } 3047 3048 /* 3049 * This routine handles present pages, when users try to write 3050 * to a shared page. It is done by copying the page to a new address 3051 * and decrementing the shared-page counter for the old page. 3052 * 3053 * Note that this routine assumes that the protection checks have been 3054 * done by the caller (the low-level page fault routine in most cases). 3055 * Thus we can safely just mark it writable once we've done any necessary 3056 * COW. 3057 * 3058 * We also mark the page dirty at this point even though the page will 3059 * change only once the write actually happens. This avoids a few races, 3060 * and potentially makes it more efficient. 3061 * 3062 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3063 * but allow concurrent faults), with pte both mapped and locked. 3064 * We return with mmap_lock still held, but pte unmapped and unlocked. 3065 */ 3066 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3067 __releases(vmf->ptl) 3068 { 3069 struct vm_area_struct *vma = vmf->vma; 3070 3071 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3072 pte_unmap_unlock(vmf->pte, vmf->ptl); 3073 return handle_userfault(vmf, VM_UFFD_WP); 3074 } 3075 3076 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3077 if (!vmf->page) { 3078 /* 3079 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3080 * VM_PFNMAP VMA. 3081 * 3082 * We should not cow pages in a shared writeable mapping. 3083 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3084 */ 3085 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3086 (VM_WRITE|VM_SHARED)) 3087 return wp_pfn_shared(vmf); 3088 3089 pte_unmap_unlock(vmf->pte, vmf->ptl); 3090 return wp_page_copy(vmf); 3091 } 3092 3093 /* 3094 * Take out anonymous pages first, anonymous shared vmas are 3095 * not dirty accountable. 3096 */ 3097 if (PageAnon(vmf->page)) { 3098 struct page *page = vmf->page; 3099 3100 /* PageKsm() doesn't necessarily raise the page refcount */ 3101 if (PageKsm(page) || page_count(page) != 1) 3102 goto copy; 3103 if (!trylock_page(page)) 3104 goto copy; 3105 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3106 unlock_page(page); 3107 goto copy; 3108 } 3109 /* 3110 * Ok, we've got the only map reference, and the only 3111 * page count reference, and the page is locked, 3112 * it's dark out, and we're wearing sunglasses. Hit it. 3113 */ 3114 unlock_page(page); 3115 wp_page_reuse(vmf); 3116 return VM_FAULT_WRITE; 3117 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3118 (VM_WRITE|VM_SHARED))) { 3119 return wp_page_shared(vmf); 3120 } 3121 copy: 3122 /* 3123 * Ok, we need to copy. Oh, well.. 3124 */ 3125 get_page(vmf->page); 3126 3127 pte_unmap_unlock(vmf->pte, vmf->ptl); 3128 return wp_page_copy(vmf); 3129 } 3130 3131 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3132 unsigned long start_addr, unsigned long end_addr, 3133 struct zap_details *details) 3134 { 3135 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3136 } 3137 3138 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3139 struct zap_details *details) 3140 { 3141 struct vm_area_struct *vma; 3142 pgoff_t vba, vea, zba, zea; 3143 3144 vma_interval_tree_foreach(vma, root, 3145 details->first_index, details->last_index) { 3146 3147 vba = vma->vm_pgoff; 3148 vea = vba + vma_pages(vma) - 1; 3149 zba = details->first_index; 3150 if (zba < vba) 3151 zba = vba; 3152 zea = details->last_index; 3153 if (zea > vea) 3154 zea = vea; 3155 3156 unmap_mapping_range_vma(vma, 3157 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3158 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3159 details); 3160 } 3161 } 3162 3163 /** 3164 * unmap_mapping_pages() - Unmap pages from processes. 3165 * @mapping: The address space containing pages to be unmapped. 3166 * @start: Index of first page to be unmapped. 3167 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3168 * @even_cows: Whether to unmap even private COWed pages. 3169 * 3170 * Unmap the pages in this address space from any userspace process which 3171 * has them mmaped. Generally, you want to remove COWed pages as well when 3172 * a file is being truncated, but not when invalidating pages from the page 3173 * cache. 3174 */ 3175 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3176 pgoff_t nr, bool even_cows) 3177 { 3178 struct zap_details details = { }; 3179 3180 details.check_mapping = even_cows ? NULL : mapping; 3181 details.first_index = start; 3182 details.last_index = start + nr - 1; 3183 if (details.last_index < details.first_index) 3184 details.last_index = ULONG_MAX; 3185 3186 i_mmap_lock_write(mapping); 3187 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3188 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3189 i_mmap_unlock_write(mapping); 3190 } 3191 3192 /** 3193 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3194 * address_space corresponding to the specified byte range in the underlying 3195 * file. 3196 * 3197 * @mapping: the address space containing mmaps to be unmapped. 3198 * @holebegin: byte in first page to unmap, relative to the start of 3199 * the underlying file. This will be rounded down to a PAGE_SIZE 3200 * boundary. Note that this is different from truncate_pagecache(), which 3201 * must keep the partial page. In contrast, we must get rid of 3202 * partial pages. 3203 * @holelen: size of prospective hole in bytes. This will be rounded 3204 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3205 * end of the file. 3206 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3207 * but 0 when invalidating pagecache, don't throw away private data. 3208 */ 3209 void unmap_mapping_range(struct address_space *mapping, 3210 loff_t const holebegin, loff_t const holelen, int even_cows) 3211 { 3212 pgoff_t hba = holebegin >> PAGE_SHIFT; 3213 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3214 3215 /* Check for overflow. */ 3216 if (sizeof(holelen) > sizeof(hlen)) { 3217 long long holeend = 3218 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3219 if (holeend & ~(long long)ULONG_MAX) 3220 hlen = ULONG_MAX - hba + 1; 3221 } 3222 3223 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3224 } 3225 EXPORT_SYMBOL(unmap_mapping_range); 3226 3227 /* 3228 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3229 * but allow concurrent faults), and pte mapped but not yet locked. 3230 * We return with pte unmapped and unlocked. 3231 * 3232 * We return with the mmap_lock locked or unlocked in the same cases 3233 * as does filemap_fault(). 3234 */ 3235 vm_fault_t do_swap_page(struct vm_fault *vmf) 3236 { 3237 struct vm_area_struct *vma = vmf->vma; 3238 struct page *page = NULL, *swapcache; 3239 swp_entry_t entry; 3240 pte_t pte; 3241 int locked; 3242 int exclusive = 0; 3243 vm_fault_t ret = 0; 3244 void *shadow = NULL; 3245 3246 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3247 goto out; 3248 3249 entry = pte_to_swp_entry(vmf->orig_pte); 3250 if (unlikely(non_swap_entry(entry))) { 3251 if (is_migration_entry(entry)) { 3252 migration_entry_wait(vma->vm_mm, vmf->pmd, 3253 vmf->address); 3254 } else if (is_device_private_entry(entry)) { 3255 vmf->page = device_private_entry_to_page(entry); 3256 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3257 } else if (is_hwpoison_entry(entry)) { 3258 ret = VM_FAULT_HWPOISON; 3259 } else { 3260 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3261 ret = VM_FAULT_SIGBUS; 3262 } 3263 goto out; 3264 } 3265 3266 3267 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3268 page = lookup_swap_cache(entry, vma, vmf->address); 3269 swapcache = page; 3270 3271 if (!page) { 3272 struct swap_info_struct *si = swp_swap_info(entry); 3273 3274 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3275 __swap_count(entry) == 1) { 3276 /* skip swapcache */ 3277 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3278 vmf->address); 3279 if (page) { 3280 int err; 3281 3282 __SetPageLocked(page); 3283 __SetPageSwapBacked(page); 3284 set_page_private(page, entry.val); 3285 3286 /* Tell memcg to use swap ownership records */ 3287 SetPageSwapCache(page); 3288 err = mem_cgroup_charge(page, vma->vm_mm, 3289 GFP_KERNEL); 3290 ClearPageSwapCache(page); 3291 if (err) { 3292 ret = VM_FAULT_OOM; 3293 goto out_page; 3294 } 3295 3296 shadow = get_shadow_from_swap_cache(entry); 3297 if (shadow) 3298 workingset_refault(page, shadow); 3299 3300 lru_cache_add(page); 3301 swap_readpage(page, true); 3302 } 3303 } else { 3304 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3305 vmf); 3306 swapcache = page; 3307 } 3308 3309 if (!page) { 3310 /* 3311 * Back out if somebody else faulted in this pte 3312 * while we released the pte lock. 3313 */ 3314 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3315 vmf->address, &vmf->ptl); 3316 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3317 ret = VM_FAULT_OOM; 3318 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3319 goto unlock; 3320 } 3321 3322 /* Had to read the page from swap area: Major fault */ 3323 ret = VM_FAULT_MAJOR; 3324 count_vm_event(PGMAJFAULT); 3325 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3326 } else if (PageHWPoison(page)) { 3327 /* 3328 * hwpoisoned dirty swapcache pages are kept for killing 3329 * owner processes (which may be unknown at hwpoison time) 3330 */ 3331 ret = VM_FAULT_HWPOISON; 3332 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3333 goto out_release; 3334 } 3335 3336 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3337 3338 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3339 if (!locked) { 3340 ret |= VM_FAULT_RETRY; 3341 goto out_release; 3342 } 3343 3344 /* 3345 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3346 * release the swapcache from under us. The page pin, and pte_same 3347 * test below, are not enough to exclude that. Even if it is still 3348 * swapcache, we need to check that the page's swap has not changed. 3349 */ 3350 if (unlikely((!PageSwapCache(page) || 3351 page_private(page) != entry.val)) && swapcache) 3352 goto out_page; 3353 3354 page = ksm_might_need_to_copy(page, vma, vmf->address); 3355 if (unlikely(!page)) { 3356 ret = VM_FAULT_OOM; 3357 page = swapcache; 3358 goto out_page; 3359 } 3360 3361 cgroup_throttle_swaprate(page, GFP_KERNEL); 3362 3363 /* 3364 * Back out if somebody else already faulted in this pte. 3365 */ 3366 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3367 &vmf->ptl); 3368 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3369 goto out_nomap; 3370 3371 if (unlikely(!PageUptodate(page))) { 3372 ret = VM_FAULT_SIGBUS; 3373 goto out_nomap; 3374 } 3375 3376 /* 3377 * The page isn't present yet, go ahead with the fault. 3378 * 3379 * Be careful about the sequence of operations here. 3380 * To get its accounting right, reuse_swap_page() must be called 3381 * while the page is counted on swap but not yet in mapcount i.e. 3382 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3383 * must be called after the swap_free(), or it will never succeed. 3384 */ 3385 3386 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3387 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3388 pte = mk_pte(page, vma->vm_page_prot); 3389 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3390 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3391 vmf->flags &= ~FAULT_FLAG_WRITE; 3392 ret |= VM_FAULT_WRITE; 3393 exclusive = RMAP_EXCLUSIVE; 3394 } 3395 flush_icache_page(vma, page); 3396 if (pte_swp_soft_dirty(vmf->orig_pte)) 3397 pte = pte_mksoft_dirty(pte); 3398 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3399 pte = pte_mkuffd_wp(pte); 3400 pte = pte_wrprotect(pte); 3401 } 3402 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3403 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3404 vmf->orig_pte = pte; 3405 3406 /* ksm created a completely new copy */ 3407 if (unlikely(page != swapcache && swapcache)) { 3408 page_add_new_anon_rmap(page, vma, vmf->address, false); 3409 lru_cache_add_inactive_or_unevictable(page, vma); 3410 } else { 3411 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3412 } 3413 3414 swap_free(entry); 3415 if (mem_cgroup_swap_full(page) || 3416 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3417 try_to_free_swap(page); 3418 unlock_page(page); 3419 if (page != swapcache && swapcache) { 3420 /* 3421 * Hold the lock to avoid the swap entry to be reused 3422 * until we take the PT lock for the pte_same() check 3423 * (to avoid false positives from pte_same). For 3424 * further safety release the lock after the swap_free 3425 * so that the swap count won't change under a 3426 * parallel locked swapcache. 3427 */ 3428 unlock_page(swapcache); 3429 put_page(swapcache); 3430 } 3431 3432 if (vmf->flags & FAULT_FLAG_WRITE) { 3433 ret |= do_wp_page(vmf); 3434 if (ret & VM_FAULT_ERROR) 3435 ret &= VM_FAULT_ERROR; 3436 goto out; 3437 } 3438 3439 /* No need to invalidate - it was non-present before */ 3440 update_mmu_cache(vma, vmf->address, vmf->pte); 3441 unlock: 3442 pte_unmap_unlock(vmf->pte, vmf->ptl); 3443 out: 3444 return ret; 3445 out_nomap: 3446 pte_unmap_unlock(vmf->pte, vmf->ptl); 3447 out_page: 3448 unlock_page(page); 3449 out_release: 3450 put_page(page); 3451 if (page != swapcache && swapcache) { 3452 unlock_page(swapcache); 3453 put_page(swapcache); 3454 } 3455 return ret; 3456 } 3457 3458 /* 3459 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3460 * but allow concurrent faults), and pte mapped but not yet locked. 3461 * We return with mmap_lock still held, but pte unmapped and unlocked. 3462 */ 3463 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3464 { 3465 struct vm_area_struct *vma = vmf->vma; 3466 struct page *page; 3467 vm_fault_t ret = 0; 3468 pte_t entry; 3469 3470 /* File mapping without ->vm_ops ? */ 3471 if (vma->vm_flags & VM_SHARED) 3472 return VM_FAULT_SIGBUS; 3473 3474 /* 3475 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3476 * pte_offset_map() on pmds where a huge pmd might be created 3477 * from a different thread. 3478 * 3479 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3480 * parallel threads are excluded by other means. 3481 * 3482 * Here we only have mmap_read_lock(mm). 3483 */ 3484 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3485 return VM_FAULT_OOM; 3486 3487 /* See the comment in pte_alloc_one_map() */ 3488 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3489 return 0; 3490 3491 /* Use the zero-page for reads */ 3492 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3493 !mm_forbids_zeropage(vma->vm_mm)) { 3494 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3495 vma->vm_page_prot)); 3496 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3497 vmf->address, &vmf->ptl); 3498 if (!pte_none(*vmf->pte)) { 3499 update_mmu_tlb(vma, vmf->address, vmf->pte); 3500 goto unlock; 3501 } 3502 ret = check_stable_address_space(vma->vm_mm); 3503 if (ret) 3504 goto unlock; 3505 /* Deliver the page fault to userland, check inside PT lock */ 3506 if (userfaultfd_missing(vma)) { 3507 pte_unmap_unlock(vmf->pte, vmf->ptl); 3508 return handle_userfault(vmf, VM_UFFD_MISSING); 3509 } 3510 goto setpte; 3511 } 3512 3513 /* Allocate our own private page. */ 3514 if (unlikely(anon_vma_prepare(vma))) 3515 goto oom; 3516 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3517 if (!page) 3518 goto oom; 3519 3520 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3521 goto oom_free_page; 3522 cgroup_throttle_swaprate(page, GFP_KERNEL); 3523 3524 /* 3525 * The memory barrier inside __SetPageUptodate makes sure that 3526 * preceding stores to the page contents become visible before 3527 * the set_pte_at() write. 3528 */ 3529 __SetPageUptodate(page); 3530 3531 entry = mk_pte(page, vma->vm_page_prot); 3532 entry = pte_sw_mkyoung(entry); 3533 if (vma->vm_flags & VM_WRITE) 3534 entry = pte_mkwrite(pte_mkdirty(entry)); 3535 3536 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3537 &vmf->ptl); 3538 if (!pte_none(*vmf->pte)) { 3539 update_mmu_cache(vma, vmf->address, vmf->pte); 3540 goto release; 3541 } 3542 3543 ret = check_stable_address_space(vma->vm_mm); 3544 if (ret) 3545 goto release; 3546 3547 /* Deliver the page fault to userland, check inside PT lock */ 3548 if (userfaultfd_missing(vma)) { 3549 pte_unmap_unlock(vmf->pte, vmf->ptl); 3550 put_page(page); 3551 return handle_userfault(vmf, VM_UFFD_MISSING); 3552 } 3553 3554 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3555 page_add_new_anon_rmap(page, vma, vmf->address, false); 3556 lru_cache_add_inactive_or_unevictable(page, vma); 3557 setpte: 3558 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3559 3560 /* No need to invalidate - it was non-present before */ 3561 update_mmu_cache(vma, vmf->address, vmf->pte); 3562 unlock: 3563 pte_unmap_unlock(vmf->pte, vmf->ptl); 3564 return ret; 3565 release: 3566 put_page(page); 3567 goto unlock; 3568 oom_free_page: 3569 put_page(page); 3570 oom: 3571 return VM_FAULT_OOM; 3572 } 3573 3574 /* 3575 * The mmap_lock must have been held on entry, and may have been 3576 * released depending on flags and vma->vm_ops->fault() return value. 3577 * See filemap_fault() and __lock_page_retry(). 3578 */ 3579 static vm_fault_t __do_fault(struct vm_fault *vmf) 3580 { 3581 struct vm_area_struct *vma = vmf->vma; 3582 vm_fault_t ret; 3583 3584 /* 3585 * Preallocate pte before we take page_lock because this might lead to 3586 * deadlocks for memcg reclaim which waits for pages under writeback: 3587 * lock_page(A) 3588 * SetPageWriteback(A) 3589 * unlock_page(A) 3590 * lock_page(B) 3591 * lock_page(B) 3592 * pte_alloc_pne 3593 * shrink_page_list 3594 * wait_on_page_writeback(A) 3595 * SetPageWriteback(B) 3596 * unlock_page(B) 3597 * # flush A, B to clear the writeback 3598 */ 3599 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3600 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3601 if (!vmf->prealloc_pte) 3602 return VM_FAULT_OOM; 3603 smp_wmb(); /* See comment in __pte_alloc() */ 3604 } 3605 3606 ret = vma->vm_ops->fault(vmf); 3607 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3608 VM_FAULT_DONE_COW))) 3609 return ret; 3610 3611 if (unlikely(PageHWPoison(vmf->page))) { 3612 if (ret & VM_FAULT_LOCKED) 3613 unlock_page(vmf->page); 3614 put_page(vmf->page); 3615 vmf->page = NULL; 3616 return VM_FAULT_HWPOISON; 3617 } 3618 3619 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3620 lock_page(vmf->page); 3621 else 3622 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3623 3624 return ret; 3625 } 3626 3627 /* 3628 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3629 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3630 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3631 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3632 */ 3633 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3634 { 3635 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3636 } 3637 3638 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3639 { 3640 struct vm_area_struct *vma = vmf->vma; 3641 3642 if (!pmd_none(*vmf->pmd)) 3643 goto map_pte; 3644 if (vmf->prealloc_pte) { 3645 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3646 if (unlikely(!pmd_none(*vmf->pmd))) { 3647 spin_unlock(vmf->ptl); 3648 goto map_pte; 3649 } 3650 3651 mm_inc_nr_ptes(vma->vm_mm); 3652 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3653 spin_unlock(vmf->ptl); 3654 vmf->prealloc_pte = NULL; 3655 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3656 return VM_FAULT_OOM; 3657 } 3658 map_pte: 3659 /* 3660 * If a huge pmd materialized under us just retry later. Use 3661 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3662 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3663 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3664 * running immediately after a huge pmd fault in a different thread of 3665 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3666 * All we have to ensure is that it is a regular pmd that we can walk 3667 * with pte_offset_map() and we can do that through an atomic read in 3668 * C, which is what pmd_trans_unstable() provides. 3669 */ 3670 if (pmd_devmap_trans_unstable(vmf->pmd)) 3671 return VM_FAULT_NOPAGE; 3672 3673 /* 3674 * At this point we know that our vmf->pmd points to a page of ptes 3675 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3676 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3677 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3678 * be valid and we will re-check to make sure the vmf->pte isn't 3679 * pte_none() under vmf->ptl protection when we return to 3680 * alloc_set_pte(). 3681 */ 3682 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3683 &vmf->ptl); 3684 return 0; 3685 } 3686 3687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3688 static void deposit_prealloc_pte(struct vm_fault *vmf) 3689 { 3690 struct vm_area_struct *vma = vmf->vma; 3691 3692 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3693 /* 3694 * We are going to consume the prealloc table, 3695 * count that as nr_ptes. 3696 */ 3697 mm_inc_nr_ptes(vma->vm_mm); 3698 vmf->prealloc_pte = NULL; 3699 } 3700 3701 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3702 { 3703 struct vm_area_struct *vma = vmf->vma; 3704 bool write = vmf->flags & FAULT_FLAG_WRITE; 3705 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3706 pmd_t entry; 3707 int i; 3708 vm_fault_t ret; 3709 3710 if (!transhuge_vma_suitable(vma, haddr)) 3711 return VM_FAULT_FALLBACK; 3712 3713 ret = VM_FAULT_FALLBACK; 3714 page = compound_head(page); 3715 3716 /* 3717 * Archs like ppc64 need additonal space to store information 3718 * related to pte entry. Use the preallocated table for that. 3719 */ 3720 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3721 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3722 if (!vmf->prealloc_pte) 3723 return VM_FAULT_OOM; 3724 smp_wmb(); /* See comment in __pte_alloc() */ 3725 } 3726 3727 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3728 if (unlikely(!pmd_none(*vmf->pmd))) 3729 goto out; 3730 3731 for (i = 0; i < HPAGE_PMD_NR; i++) 3732 flush_icache_page(vma, page + i); 3733 3734 entry = mk_huge_pmd(page, vma->vm_page_prot); 3735 if (write) 3736 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3737 3738 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3739 page_add_file_rmap(page, true); 3740 /* 3741 * deposit and withdraw with pmd lock held 3742 */ 3743 if (arch_needs_pgtable_deposit()) 3744 deposit_prealloc_pte(vmf); 3745 3746 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3747 3748 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3749 3750 /* fault is handled */ 3751 ret = 0; 3752 count_vm_event(THP_FILE_MAPPED); 3753 out: 3754 spin_unlock(vmf->ptl); 3755 return ret; 3756 } 3757 #else 3758 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3759 { 3760 BUILD_BUG(); 3761 return 0; 3762 } 3763 #endif 3764 3765 /** 3766 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3767 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3768 * 3769 * @vmf: fault environment 3770 * @page: page to map 3771 * 3772 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3773 * return. 3774 * 3775 * Target users are page handler itself and implementations of 3776 * vm_ops->map_pages. 3777 * 3778 * Return: %0 on success, %VM_FAULT_ code in case of error. 3779 */ 3780 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3781 { 3782 struct vm_area_struct *vma = vmf->vma; 3783 bool write = vmf->flags & FAULT_FLAG_WRITE; 3784 pte_t entry; 3785 vm_fault_t ret; 3786 3787 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3788 ret = do_set_pmd(vmf, page); 3789 if (ret != VM_FAULT_FALLBACK) 3790 return ret; 3791 } 3792 3793 if (!vmf->pte) { 3794 ret = pte_alloc_one_map(vmf); 3795 if (ret) 3796 return ret; 3797 } 3798 3799 /* Re-check under ptl */ 3800 if (unlikely(!pte_none(*vmf->pte))) { 3801 update_mmu_tlb(vma, vmf->address, vmf->pte); 3802 return VM_FAULT_NOPAGE; 3803 } 3804 3805 flush_icache_page(vma, page); 3806 entry = mk_pte(page, vma->vm_page_prot); 3807 entry = pte_sw_mkyoung(entry); 3808 if (write) 3809 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3810 /* copy-on-write page */ 3811 if (write && !(vma->vm_flags & VM_SHARED)) { 3812 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3813 page_add_new_anon_rmap(page, vma, vmf->address, false); 3814 lru_cache_add_inactive_or_unevictable(page, vma); 3815 } else { 3816 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3817 page_add_file_rmap(page, false); 3818 } 3819 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3820 3821 /* no need to invalidate: a not-present page won't be cached */ 3822 update_mmu_cache(vma, vmf->address, vmf->pte); 3823 3824 return 0; 3825 } 3826 3827 3828 /** 3829 * finish_fault - finish page fault once we have prepared the page to fault 3830 * 3831 * @vmf: structure describing the fault 3832 * 3833 * This function handles all that is needed to finish a page fault once the 3834 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3835 * given page, adds reverse page mapping, handles memcg charges and LRU 3836 * addition. 3837 * 3838 * The function expects the page to be locked and on success it consumes a 3839 * reference of a page being mapped (for the PTE which maps it). 3840 * 3841 * Return: %0 on success, %VM_FAULT_ code in case of error. 3842 */ 3843 vm_fault_t finish_fault(struct vm_fault *vmf) 3844 { 3845 struct page *page; 3846 vm_fault_t ret = 0; 3847 3848 /* Did we COW the page? */ 3849 if ((vmf->flags & FAULT_FLAG_WRITE) && 3850 !(vmf->vma->vm_flags & VM_SHARED)) 3851 page = vmf->cow_page; 3852 else 3853 page = vmf->page; 3854 3855 /* 3856 * check even for read faults because we might have lost our CoWed 3857 * page 3858 */ 3859 if (!(vmf->vma->vm_flags & VM_SHARED)) 3860 ret = check_stable_address_space(vmf->vma->vm_mm); 3861 if (!ret) 3862 ret = alloc_set_pte(vmf, page); 3863 if (vmf->pte) 3864 pte_unmap_unlock(vmf->pte, vmf->ptl); 3865 return ret; 3866 } 3867 3868 static unsigned long fault_around_bytes __read_mostly = 3869 rounddown_pow_of_two(65536); 3870 3871 #ifdef CONFIG_DEBUG_FS 3872 static int fault_around_bytes_get(void *data, u64 *val) 3873 { 3874 *val = fault_around_bytes; 3875 return 0; 3876 } 3877 3878 /* 3879 * fault_around_bytes must be rounded down to the nearest page order as it's 3880 * what do_fault_around() expects to see. 3881 */ 3882 static int fault_around_bytes_set(void *data, u64 val) 3883 { 3884 if (val / PAGE_SIZE > PTRS_PER_PTE) 3885 return -EINVAL; 3886 if (val > PAGE_SIZE) 3887 fault_around_bytes = rounddown_pow_of_two(val); 3888 else 3889 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3890 return 0; 3891 } 3892 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3893 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3894 3895 static int __init fault_around_debugfs(void) 3896 { 3897 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3898 &fault_around_bytes_fops); 3899 return 0; 3900 } 3901 late_initcall(fault_around_debugfs); 3902 #endif 3903 3904 /* 3905 * do_fault_around() tries to map few pages around the fault address. The hope 3906 * is that the pages will be needed soon and this will lower the number of 3907 * faults to handle. 3908 * 3909 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3910 * not ready to be mapped: not up-to-date, locked, etc. 3911 * 3912 * This function is called with the page table lock taken. In the split ptlock 3913 * case the page table lock only protects only those entries which belong to 3914 * the page table corresponding to the fault address. 3915 * 3916 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3917 * only once. 3918 * 3919 * fault_around_bytes defines how many bytes we'll try to map. 3920 * do_fault_around() expects it to be set to a power of two less than or equal 3921 * to PTRS_PER_PTE. 3922 * 3923 * The virtual address of the area that we map is naturally aligned to 3924 * fault_around_bytes rounded down to the machine page size 3925 * (and therefore to page order). This way it's easier to guarantee 3926 * that we don't cross page table boundaries. 3927 */ 3928 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3929 { 3930 unsigned long address = vmf->address, nr_pages, mask; 3931 pgoff_t start_pgoff = vmf->pgoff; 3932 pgoff_t end_pgoff; 3933 int off; 3934 vm_fault_t ret = 0; 3935 3936 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3937 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3938 3939 vmf->address = max(address & mask, vmf->vma->vm_start); 3940 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3941 start_pgoff -= off; 3942 3943 /* 3944 * end_pgoff is either the end of the page table, the end of 3945 * the vma or nr_pages from start_pgoff, depending what is nearest. 3946 */ 3947 end_pgoff = start_pgoff - 3948 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3949 PTRS_PER_PTE - 1; 3950 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3951 start_pgoff + nr_pages - 1); 3952 3953 if (pmd_none(*vmf->pmd)) { 3954 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3955 if (!vmf->prealloc_pte) 3956 goto out; 3957 smp_wmb(); /* See comment in __pte_alloc() */ 3958 } 3959 3960 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3961 3962 /* Huge page is mapped? Page fault is solved */ 3963 if (pmd_trans_huge(*vmf->pmd)) { 3964 ret = VM_FAULT_NOPAGE; 3965 goto out; 3966 } 3967 3968 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3969 if (!vmf->pte) 3970 goto out; 3971 3972 /* check if the page fault is solved */ 3973 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3974 if (!pte_none(*vmf->pte)) 3975 ret = VM_FAULT_NOPAGE; 3976 pte_unmap_unlock(vmf->pte, vmf->ptl); 3977 out: 3978 vmf->address = address; 3979 vmf->pte = NULL; 3980 return ret; 3981 } 3982 3983 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3984 { 3985 struct vm_area_struct *vma = vmf->vma; 3986 vm_fault_t ret = 0; 3987 3988 /* 3989 * Let's call ->map_pages() first and use ->fault() as fallback 3990 * if page by the offset is not ready to be mapped (cold cache or 3991 * something). 3992 */ 3993 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3994 ret = do_fault_around(vmf); 3995 if (ret) 3996 return ret; 3997 } 3998 3999 ret = __do_fault(vmf); 4000 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4001 return ret; 4002 4003 ret |= finish_fault(vmf); 4004 unlock_page(vmf->page); 4005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4006 put_page(vmf->page); 4007 return ret; 4008 } 4009 4010 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4011 { 4012 struct vm_area_struct *vma = vmf->vma; 4013 vm_fault_t ret; 4014 4015 if (unlikely(anon_vma_prepare(vma))) 4016 return VM_FAULT_OOM; 4017 4018 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4019 if (!vmf->cow_page) 4020 return VM_FAULT_OOM; 4021 4022 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4023 put_page(vmf->cow_page); 4024 return VM_FAULT_OOM; 4025 } 4026 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4027 4028 ret = __do_fault(vmf); 4029 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4030 goto uncharge_out; 4031 if (ret & VM_FAULT_DONE_COW) 4032 return ret; 4033 4034 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4035 __SetPageUptodate(vmf->cow_page); 4036 4037 ret |= finish_fault(vmf); 4038 unlock_page(vmf->page); 4039 put_page(vmf->page); 4040 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4041 goto uncharge_out; 4042 return ret; 4043 uncharge_out: 4044 put_page(vmf->cow_page); 4045 return ret; 4046 } 4047 4048 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4049 { 4050 struct vm_area_struct *vma = vmf->vma; 4051 vm_fault_t ret, tmp; 4052 4053 ret = __do_fault(vmf); 4054 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4055 return ret; 4056 4057 /* 4058 * Check if the backing address space wants to know that the page is 4059 * about to become writable 4060 */ 4061 if (vma->vm_ops->page_mkwrite) { 4062 unlock_page(vmf->page); 4063 tmp = do_page_mkwrite(vmf); 4064 if (unlikely(!tmp || 4065 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4066 put_page(vmf->page); 4067 return tmp; 4068 } 4069 } 4070 4071 ret |= finish_fault(vmf); 4072 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4073 VM_FAULT_RETRY))) { 4074 unlock_page(vmf->page); 4075 put_page(vmf->page); 4076 return ret; 4077 } 4078 4079 ret |= fault_dirty_shared_page(vmf); 4080 return ret; 4081 } 4082 4083 /* 4084 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4085 * but allow concurrent faults). 4086 * The mmap_lock may have been released depending on flags and our 4087 * return value. See filemap_fault() and __lock_page_or_retry(). 4088 * If mmap_lock is released, vma may become invalid (for example 4089 * by other thread calling munmap()). 4090 */ 4091 static vm_fault_t do_fault(struct vm_fault *vmf) 4092 { 4093 struct vm_area_struct *vma = vmf->vma; 4094 struct mm_struct *vm_mm = vma->vm_mm; 4095 vm_fault_t ret; 4096 4097 /* 4098 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4099 */ 4100 if (!vma->vm_ops->fault) { 4101 /* 4102 * If we find a migration pmd entry or a none pmd entry, which 4103 * should never happen, return SIGBUS 4104 */ 4105 if (unlikely(!pmd_present(*vmf->pmd))) 4106 ret = VM_FAULT_SIGBUS; 4107 else { 4108 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4109 vmf->pmd, 4110 vmf->address, 4111 &vmf->ptl); 4112 /* 4113 * Make sure this is not a temporary clearing of pte 4114 * by holding ptl and checking again. A R/M/W update 4115 * of pte involves: take ptl, clearing the pte so that 4116 * we don't have concurrent modification by hardware 4117 * followed by an update. 4118 */ 4119 if (unlikely(pte_none(*vmf->pte))) 4120 ret = VM_FAULT_SIGBUS; 4121 else 4122 ret = VM_FAULT_NOPAGE; 4123 4124 pte_unmap_unlock(vmf->pte, vmf->ptl); 4125 } 4126 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4127 ret = do_read_fault(vmf); 4128 else if (!(vma->vm_flags & VM_SHARED)) 4129 ret = do_cow_fault(vmf); 4130 else 4131 ret = do_shared_fault(vmf); 4132 4133 /* preallocated pagetable is unused: free it */ 4134 if (vmf->prealloc_pte) { 4135 pte_free(vm_mm, vmf->prealloc_pte); 4136 vmf->prealloc_pte = NULL; 4137 } 4138 return ret; 4139 } 4140 4141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4142 unsigned long addr, int page_nid, 4143 int *flags) 4144 { 4145 get_page(page); 4146 4147 count_vm_numa_event(NUMA_HINT_FAULTS); 4148 if (page_nid == numa_node_id()) { 4149 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4150 *flags |= TNF_FAULT_LOCAL; 4151 } 4152 4153 return mpol_misplaced(page, vma, addr); 4154 } 4155 4156 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4157 { 4158 struct vm_area_struct *vma = vmf->vma; 4159 struct page *page = NULL; 4160 int page_nid = NUMA_NO_NODE; 4161 int last_cpupid; 4162 int target_nid; 4163 bool migrated = false; 4164 pte_t pte, old_pte; 4165 bool was_writable = pte_savedwrite(vmf->orig_pte); 4166 int flags = 0; 4167 4168 /* 4169 * The "pte" at this point cannot be used safely without 4170 * validation through pte_unmap_same(). It's of NUMA type but 4171 * the pfn may be screwed if the read is non atomic. 4172 */ 4173 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4174 spin_lock(vmf->ptl); 4175 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4176 pte_unmap_unlock(vmf->pte, vmf->ptl); 4177 goto out; 4178 } 4179 4180 /* 4181 * Make it present again, Depending on how arch implementes non 4182 * accessible ptes, some can allow access by kernel mode. 4183 */ 4184 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4185 pte = pte_modify(old_pte, vma->vm_page_prot); 4186 pte = pte_mkyoung(pte); 4187 if (was_writable) 4188 pte = pte_mkwrite(pte); 4189 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4190 update_mmu_cache(vma, vmf->address, vmf->pte); 4191 4192 page = vm_normal_page(vma, vmf->address, pte); 4193 if (!page) { 4194 pte_unmap_unlock(vmf->pte, vmf->ptl); 4195 return 0; 4196 } 4197 4198 /* TODO: handle PTE-mapped THP */ 4199 if (PageCompound(page)) { 4200 pte_unmap_unlock(vmf->pte, vmf->ptl); 4201 return 0; 4202 } 4203 4204 /* 4205 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4206 * much anyway since they can be in shared cache state. This misses 4207 * the case where a mapping is writable but the process never writes 4208 * to it but pte_write gets cleared during protection updates and 4209 * pte_dirty has unpredictable behaviour between PTE scan updates, 4210 * background writeback, dirty balancing and application behaviour. 4211 */ 4212 if (!pte_write(pte)) 4213 flags |= TNF_NO_GROUP; 4214 4215 /* 4216 * Flag if the page is shared between multiple address spaces. This 4217 * is later used when determining whether to group tasks together 4218 */ 4219 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4220 flags |= TNF_SHARED; 4221 4222 last_cpupid = page_cpupid_last(page); 4223 page_nid = page_to_nid(page); 4224 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4225 &flags); 4226 pte_unmap_unlock(vmf->pte, vmf->ptl); 4227 if (target_nid == NUMA_NO_NODE) { 4228 put_page(page); 4229 goto out; 4230 } 4231 4232 /* Migrate to the requested node */ 4233 migrated = migrate_misplaced_page(page, vma, target_nid); 4234 if (migrated) { 4235 page_nid = target_nid; 4236 flags |= TNF_MIGRATED; 4237 } else 4238 flags |= TNF_MIGRATE_FAIL; 4239 4240 out: 4241 if (page_nid != NUMA_NO_NODE) 4242 task_numa_fault(last_cpupid, page_nid, 1, flags); 4243 return 0; 4244 } 4245 4246 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4247 { 4248 if (vma_is_anonymous(vmf->vma)) 4249 return do_huge_pmd_anonymous_page(vmf); 4250 if (vmf->vma->vm_ops->huge_fault) 4251 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4252 return VM_FAULT_FALLBACK; 4253 } 4254 4255 /* `inline' is required to avoid gcc 4.1.2 build error */ 4256 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4257 { 4258 if (vma_is_anonymous(vmf->vma)) { 4259 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4260 return handle_userfault(vmf, VM_UFFD_WP); 4261 return do_huge_pmd_wp_page(vmf, orig_pmd); 4262 } 4263 if (vmf->vma->vm_ops->huge_fault) { 4264 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4265 4266 if (!(ret & VM_FAULT_FALLBACK)) 4267 return ret; 4268 } 4269 4270 /* COW or write-notify handled on pte level: split pmd. */ 4271 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4272 4273 return VM_FAULT_FALLBACK; 4274 } 4275 4276 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4277 { 4278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4279 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4280 /* No support for anonymous transparent PUD pages yet */ 4281 if (vma_is_anonymous(vmf->vma)) 4282 goto split; 4283 if (vmf->vma->vm_ops->huge_fault) { 4284 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4285 4286 if (!(ret & VM_FAULT_FALLBACK)) 4287 return ret; 4288 } 4289 split: 4290 /* COW or write-notify not handled on PUD level: split pud.*/ 4291 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4292 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4293 return VM_FAULT_FALLBACK; 4294 } 4295 4296 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4297 { 4298 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4299 /* No support for anonymous transparent PUD pages yet */ 4300 if (vma_is_anonymous(vmf->vma)) 4301 return VM_FAULT_FALLBACK; 4302 if (vmf->vma->vm_ops->huge_fault) 4303 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4305 return VM_FAULT_FALLBACK; 4306 } 4307 4308 /* 4309 * These routines also need to handle stuff like marking pages dirty 4310 * and/or accessed for architectures that don't do it in hardware (most 4311 * RISC architectures). The early dirtying is also good on the i386. 4312 * 4313 * There is also a hook called "update_mmu_cache()" that architectures 4314 * with external mmu caches can use to update those (ie the Sparc or 4315 * PowerPC hashed page tables that act as extended TLBs). 4316 * 4317 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4318 * concurrent faults). 4319 * 4320 * The mmap_lock may have been released depending on flags and our return value. 4321 * See filemap_fault() and __lock_page_or_retry(). 4322 */ 4323 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4324 { 4325 pte_t entry; 4326 4327 if (unlikely(pmd_none(*vmf->pmd))) { 4328 /* 4329 * Leave __pte_alloc() until later: because vm_ops->fault may 4330 * want to allocate huge page, and if we expose page table 4331 * for an instant, it will be difficult to retract from 4332 * concurrent faults and from rmap lookups. 4333 */ 4334 vmf->pte = NULL; 4335 } else { 4336 /* See comment in pte_alloc_one_map() */ 4337 if (pmd_devmap_trans_unstable(vmf->pmd)) 4338 return 0; 4339 /* 4340 * A regular pmd is established and it can't morph into a huge 4341 * pmd from under us anymore at this point because we hold the 4342 * mmap_lock read mode and khugepaged takes it in write mode. 4343 * So now it's safe to run pte_offset_map(). 4344 */ 4345 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4346 vmf->orig_pte = *vmf->pte; 4347 4348 /* 4349 * some architectures can have larger ptes than wordsize, 4350 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4351 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4352 * accesses. The code below just needs a consistent view 4353 * for the ifs and we later double check anyway with the 4354 * ptl lock held. So here a barrier will do. 4355 */ 4356 barrier(); 4357 if (pte_none(vmf->orig_pte)) { 4358 pte_unmap(vmf->pte); 4359 vmf->pte = NULL; 4360 } 4361 } 4362 4363 if (!vmf->pte) { 4364 if (vma_is_anonymous(vmf->vma)) 4365 return do_anonymous_page(vmf); 4366 else 4367 return do_fault(vmf); 4368 } 4369 4370 if (!pte_present(vmf->orig_pte)) 4371 return do_swap_page(vmf); 4372 4373 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4374 return do_numa_page(vmf); 4375 4376 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4377 spin_lock(vmf->ptl); 4378 entry = vmf->orig_pte; 4379 if (unlikely(!pte_same(*vmf->pte, entry))) { 4380 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4381 goto unlock; 4382 } 4383 if (vmf->flags & FAULT_FLAG_WRITE) { 4384 if (!pte_write(entry)) 4385 return do_wp_page(vmf); 4386 entry = pte_mkdirty(entry); 4387 } 4388 entry = pte_mkyoung(entry); 4389 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4390 vmf->flags & FAULT_FLAG_WRITE)) { 4391 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4392 } else { 4393 /* Skip spurious TLB flush for retried page fault */ 4394 if (vmf->flags & FAULT_FLAG_TRIED) 4395 goto unlock; 4396 /* 4397 * This is needed only for protection faults but the arch code 4398 * is not yet telling us if this is a protection fault or not. 4399 * This still avoids useless tlb flushes for .text page faults 4400 * with threads. 4401 */ 4402 if (vmf->flags & FAULT_FLAG_WRITE) 4403 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4404 } 4405 unlock: 4406 pte_unmap_unlock(vmf->pte, vmf->ptl); 4407 return 0; 4408 } 4409 4410 /* 4411 * By the time we get here, we already hold the mm semaphore 4412 * 4413 * The mmap_lock may have been released depending on flags and our 4414 * return value. See filemap_fault() and __lock_page_or_retry(). 4415 */ 4416 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4417 unsigned long address, unsigned int flags) 4418 { 4419 struct vm_fault vmf = { 4420 .vma = vma, 4421 .address = address & PAGE_MASK, 4422 .flags = flags, 4423 .pgoff = linear_page_index(vma, address), 4424 .gfp_mask = __get_fault_gfp_mask(vma), 4425 }; 4426 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4427 struct mm_struct *mm = vma->vm_mm; 4428 pgd_t *pgd; 4429 p4d_t *p4d; 4430 vm_fault_t ret; 4431 4432 pgd = pgd_offset(mm, address); 4433 p4d = p4d_alloc(mm, pgd, address); 4434 if (!p4d) 4435 return VM_FAULT_OOM; 4436 4437 vmf.pud = pud_alloc(mm, p4d, address); 4438 if (!vmf.pud) 4439 return VM_FAULT_OOM; 4440 retry_pud: 4441 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4442 ret = create_huge_pud(&vmf); 4443 if (!(ret & VM_FAULT_FALLBACK)) 4444 return ret; 4445 } else { 4446 pud_t orig_pud = *vmf.pud; 4447 4448 barrier(); 4449 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4450 4451 /* NUMA case for anonymous PUDs would go here */ 4452 4453 if (dirty && !pud_write(orig_pud)) { 4454 ret = wp_huge_pud(&vmf, orig_pud); 4455 if (!(ret & VM_FAULT_FALLBACK)) 4456 return ret; 4457 } else { 4458 huge_pud_set_accessed(&vmf, orig_pud); 4459 return 0; 4460 } 4461 } 4462 } 4463 4464 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4465 if (!vmf.pmd) 4466 return VM_FAULT_OOM; 4467 4468 /* Huge pud page fault raced with pmd_alloc? */ 4469 if (pud_trans_unstable(vmf.pud)) 4470 goto retry_pud; 4471 4472 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4473 ret = create_huge_pmd(&vmf); 4474 if (!(ret & VM_FAULT_FALLBACK)) 4475 return ret; 4476 } else { 4477 pmd_t orig_pmd = *vmf.pmd; 4478 4479 barrier(); 4480 if (unlikely(is_swap_pmd(orig_pmd))) { 4481 VM_BUG_ON(thp_migration_supported() && 4482 !is_pmd_migration_entry(orig_pmd)); 4483 if (is_pmd_migration_entry(orig_pmd)) 4484 pmd_migration_entry_wait(mm, vmf.pmd); 4485 return 0; 4486 } 4487 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4488 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4489 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4490 4491 if (dirty && !pmd_write(orig_pmd)) { 4492 ret = wp_huge_pmd(&vmf, orig_pmd); 4493 if (!(ret & VM_FAULT_FALLBACK)) 4494 return ret; 4495 } else { 4496 huge_pmd_set_accessed(&vmf, orig_pmd); 4497 return 0; 4498 } 4499 } 4500 } 4501 4502 return handle_pte_fault(&vmf); 4503 } 4504 4505 /** 4506 * mm_account_fault - Do page fault accountings 4507 * 4508 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4509 * of perf event counters, but we'll still do the per-task accounting to 4510 * the task who triggered this page fault. 4511 * @address: the faulted address. 4512 * @flags: the fault flags. 4513 * @ret: the fault retcode. 4514 * 4515 * This will take care of most of the page fault accountings. Meanwhile, it 4516 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4517 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4518 * still be in per-arch page fault handlers at the entry of page fault. 4519 */ 4520 static inline void mm_account_fault(struct pt_regs *regs, 4521 unsigned long address, unsigned int flags, 4522 vm_fault_t ret) 4523 { 4524 bool major; 4525 4526 /* 4527 * We don't do accounting for some specific faults: 4528 * 4529 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4530 * includes arch_vma_access_permitted() failing before reaching here. 4531 * So this is not a "this many hardware page faults" counter. We 4532 * should use the hw profiling for that. 4533 * 4534 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4535 * once they're completed. 4536 */ 4537 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4538 return; 4539 4540 /* 4541 * We define the fault as a major fault when the final successful fault 4542 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4543 * handle it immediately previously). 4544 */ 4545 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4546 4547 if (major) 4548 current->maj_flt++; 4549 else 4550 current->min_flt++; 4551 4552 /* 4553 * If the fault is done for GUP, regs will be NULL. We only do the 4554 * accounting for the per thread fault counters who triggered the 4555 * fault, and we skip the perf event updates. 4556 */ 4557 if (!regs) 4558 return; 4559 4560 if (major) 4561 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4562 else 4563 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4564 } 4565 4566 /* 4567 * By the time we get here, we already hold the mm semaphore 4568 * 4569 * The mmap_lock may have been released depending on flags and our 4570 * return value. See filemap_fault() and __lock_page_or_retry(). 4571 */ 4572 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4573 unsigned int flags, struct pt_regs *regs) 4574 { 4575 vm_fault_t ret; 4576 4577 __set_current_state(TASK_RUNNING); 4578 4579 count_vm_event(PGFAULT); 4580 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4581 4582 /* do counter updates before entering really critical section. */ 4583 check_sync_rss_stat(current); 4584 4585 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4586 flags & FAULT_FLAG_INSTRUCTION, 4587 flags & FAULT_FLAG_REMOTE)) 4588 return VM_FAULT_SIGSEGV; 4589 4590 /* 4591 * Enable the memcg OOM handling for faults triggered in user 4592 * space. Kernel faults are handled more gracefully. 4593 */ 4594 if (flags & FAULT_FLAG_USER) 4595 mem_cgroup_enter_user_fault(); 4596 4597 if (unlikely(is_vm_hugetlb_page(vma))) 4598 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4599 else 4600 ret = __handle_mm_fault(vma, address, flags); 4601 4602 if (flags & FAULT_FLAG_USER) { 4603 mem_cgroup_exit_user_fault(); 4604 /* 4605 * The task may have entered a memcg OOM situation but 4606 * if the allocation error was handled gracefully (no 4607 * VM_FAULT_OOM), there is no need to kill anything. 4608 * Just clean up the OOM state peacefully. 4609 */ 4610 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4611 mem_cgroup_oom_synchronize(false); 4612 } 4613 4614 mm_account_fault(regs, address, flags, ret); 4615 4616 return ret; 4617 } 4618 EXPORT_SYMBOL_GPL(handle_mm_fault); 4619 4620 #ifndef __PAGETABLE_P4D_FOLDED 4621 /* 4622 * Allocate p4d page table. 4623 * We've already handled the fast-path in-line. 4624 */ 4625 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4626 { 4627 p4d_t *new = p4d_alloc_one(mm, address); 4628 if (!new) 4629 return -ENOMEM; 4630 4631 smp_wmb(); /* See comment in __pte_alloc */ 4632 4633 spin_lock(&mm->page_table_lock); 4634 if (pgd_present(*pgd)) /* Another has populated it */ 4635 p4d_free(mm, new); 4636 else 4637 pgd_populate(mm, pgd, new); 4638 spin_unlock(&mm->page_table_lock); 4639 return 0; 4640 } 4641 #endif /* __PAGETABLE_P4D_FOLDED */ 4642 4643 #ifndef __PAGETABLE_PUD_FOLDED 4644 /* 4645 * Allocate page upper directory. 4646 * We've already handled the fast-path in-line. 4647 */ 4648 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4649 { 4650 pud_t *new = pud_alloc_one(mm, address); 4651 if (!new) 4652 return -ENOMEM; 4653 4654 smp_wmb(); /* See comment in __pte_alloc */ 4655 4656 spin_lock(&mm->page_table_lock); 4657 if (!p4d_present(*p4d)) { 4658 mm_inc_nr_puds(mm); 4659 p4d_populate(mm, p4d, new); 4660 } else /* Another has populated it */ 4661 pud_free(mm, new); 4662 spin_unlock(&mm->page_table_lock); 4663 return 0; 4664 } 4665 #endif /* __PAGETABLE_PUD_FOLDED */ 4666 4667 #ifndef __PAGETABLE_PMD_FOLDED 4668 /* 4669 * Allocate page middle directory. 4670 * We've already handled the fast-path in-line. 4671 */ 4672 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4673 { 4674 spinlock_t *ptl; 4675 pmd_t *new = pmd_alloc_one(mm, address); 4676 if (!new) 4677 return -ENOMEM; 4678 4679 smp_wmb(); /* See comment in __pte_alloc */ 4680 4681 ptl = pud_lock(mm, pud); 4682 if (!pud_present(*pud)) { 4683 mm_inc_nr_pmds(mm); 4684 pud_populate(mm, pud, new); 4685 } else /* Another has populated it */ 4686 pmd_free(mm, new); 4687 spin_unlock(ptl); 4688 return 0; 4689 } 4690 #endif /* __PAGETABLE_PMD_FOLDED */ 4691 4692 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4693 struct mmu_notifier_range *range, 4694 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4695 { 4696 pgd_t *pgd; 4697 p4d_t *p4d; 4698 pud_t *pud; 4699 pmd_t *pmd; 4700 pte_t *ptep; 4701 4702 pgd = pgd_offset(mm, address); 4703 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4704 goto out; 4705 4706 p4d = p4d_offset(pgd, address); 4707 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4708 goto out; 4709 4710 pud = pud_offset(p4d, address); 4711 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4712 goto out; 4713 4714 pmd = pmd_offset(pud, address); 4715 VM_BUG_ON(pmd_trans_huge(*pmd)); 4716 4717 if (pmd_huge(*pmd)) { 4718 if (!pmdpp) 4719 goto out; 4720 4721 if (range) { 4722 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4723 NULL, mm, address & PMD_MASK, 4724 (address & PMD_MASK) + PMD_SIZE); 4725 mmu_notifier_invalidate_range_start(range); 4726 } 4727 *ptlp = pmd_lock(mm, pmd); 4728 if (pmd_huge(*pmd)) { 4729 *pmdpp = pmd; 4730 return 0; 4731 } 4732 spin_unlock(*ptlp); 4733 if (range) 4734 mmu_notifier_invalidate_range_end(range); 4735 } 4736 4737 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4738 goto out; 4739 4740 if (range) { 4741 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4742 address & PAGE_MASK, 4743 (address & PAGE_MASK) + PAGE_SIZE); 4744 mmu_notifier_invalidate_range_start(range); 4745 } 4746 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4747 if (!pte_present(*ptep)) 4748 goto unlock; 4749 *ptepp = ptep; 4750 return 0; 4751 unlock: 4752 pte_unmap_unlock(ptep, *ptlp); 4753 if (range) 4754 mmu_notifier_invalidate_range_end(range); 4755 out: 4756 return -EINVAL; 4757 } 4758 4759 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4760 pte_t **ptepp, spinlock_t **ptlp) 4761 { 4762 int res; 4763 4764 /* (void) is needed to make gcc happy */ 4765 (void) __cond_lock(*ptlp, 4766 !(res = __follow_pte_pmd(mm, address, NULL, 4767 ptepp, NULL, ptlp))); 4768 return res; 4769 } 4770 4771 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4772 struct mmu_notifier_range *range, 4773 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4774 { 4775 int res; 4776 4777 /* (void) is needed to make gcc happy */ 4778 (void) __cond_lock(*ptlp, 4779 !(res = __follow_pte_pmd(mm, address, range, 4780 ptepp, pmdpp, ptlp))); 4781 return res; 4782 } 4783 EXPORT_SYMBOL(follow_pte_pmd); 4784 4785 /** 4786 * follow_pfn - look up PFN at a user virtual address 4787 * @vma: memory mapping 4788 * @address: user virtual address 4789 * @pfn: location to store found PFN 4790 * 4791 * Only IO mappings and raw PFN mappings are allowed. 4792 * 4793 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4794 */ 4795 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4796 unsigned long *pfn) 4797 { 4798 int ret = -EINVAL; 4799 spinlock_t *ptl; 4800 pte_t *ptep; 4801 4802 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4803 return ret; 4804 4805 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4806 if (ret) 4807 return ret; 4808 *pfn = pte_pfn(*ptep); 4809 pte_unmap_unlock(ptep, ptl); 4810 return 0; 4811 } 4812 EXPORT_SYMBOL(follow_pfn); 4813 4814 #ifdef CONFIG_HAVE_IOREMAP_PROT 4815 int follow_phys(struct vm_area_struct *vma, 4816 unsigned long address, unsigned int flags, 4817 unsigned long *prot, resource_size_t *phys) 4818 { 4819 int ret = -EINVAL; 4820 pte_t *ptep, pte; 4821 spinlock_t *ptl; 4822 4823 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4824 goto out; 4825 4826 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4827 goto out; 4828 pte = *ptep; 4829 4830 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4831 goto unlock; 4832 4833 *prot = pgprot_val(pte_pgprot(pte)); 4834 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4835 4836 ret = 0; 4837 unlock: 4838 pte_unmap_unlock(ptep, ptl); 4839 out: 4840 return ret; 4841 } 4842 4843 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4844 void *buf, int len, int write) 4845 { 4846 resource_size_t phys_addr; 4847 unsigned long prot = 0; 4848 void __iomem *maddr; 4849 int offset = addr & (PAGE_SIZE-1); 4850 4851 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4852 return -EINVAL; 4853 4854 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4855 if (!maddr) 4856 return -ENOMEM; 4857 4858 if (write) 4859 memcpy_toio(maddr + offset, buf, len); 4860 else 4861 memcpy_fromio(buf, maddr + offset, len); 4862 iounmap(maddr); 4863 4864 return len; 4865 } 4866 EXPORT_SYMBOL_GPL(generic_access_phys); 4867 #endif 4868 4869 /* 4870 * Access another process' address space as given in mm. If non-NULL, use the 4871 * given task for page fault accounting. 4872 */ 4873 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4874 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4875 { 4876 struct vm_area_struct *vma; 4877 void *old_buf = buf; 4878 int write = gup_flags & FOLL_WRITE; 4879 4880 if (mmap_read_lock_killable(mm)) 4881 return 0; 4882 4883 /* ignore errors, just check how much was successfully transferred */ 4884 while (len) { 4885 int bytes, ret, offset; 4886 void *maddr; 4887 struct page *page = NULL; 4888 4889 ret = get_user_pages_remote(mm, addr, 1, 4890 gup_flags, &page, &vma, NULL); 4891 if (ret <= 0) { 4892 #ifndef CONFIG_HAVE_IOREMAP_PROT 4893 break; 4894 #else 4895 /* 4896 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4897 * we can access using slightly different code. 4898 */ 4899 vma = find_vma(mm, addr); 4900 if (!vma || vma->vm_start > addr) 4901 break; 4902 if (vma->vm_ops && vma->vm_ops->access) 4903 ret = vma->vm_ops->access(vma, addr, buf, 4904 len, write); 4905 if (ret <= 0) 4906 break; 4907 bytes = ret; 4908 #endif 4909 } else { 4910 bytes = len; 4911 offset = addr & (PAGE_SIZE-1); 4912 if (bytes > PAGE_SIZE-offset) 4913 bytes = PAGE_SIZE-offset; 4914 4915 maddr = kmap(page); 4916 if (write) { 4917 copy_to_user_page(vma, page, addr, 4918 maddr + offset, buf, bytes); 4919 set_page_dirty_lock(page); 4920 } else { 4921 copy_from_user_page(vma, page, addr, 4922 buf, maddr + offset, bytes); 4923 } 4924 kunmap(page); 4925 put_page(page); 4926 } 4927 len -= bytes; 4928 buf += bytes; 4929 addr += bytes; 4930 } 4931 mmap_read_unlock(mm); 4932 4933 return buf - old_buf; 4934 } 4935 4936 /** 4937 * access_remote_vm - access another process' address space 4938 * @mm: the mm_struct of the target address space 4939 * @addr: start address to access 4940 * @buf: source or destination buffer 4941 * @len: number of bytes to transfer 4942 * @gup_flags: flags modifying lookup behaviour 4943 * 4944 * The caller must hold a reference on @mm. 4945 * 4946 * Return: number of bytes copied from source to destination. 4947 */ 4948 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4949 void *buf, int len, unsigned int gup_flags) 4950 { 4951 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4952 } 4953 4954 /* 4955 * Access another process' address space. 4956 * Source/target buffer must be kernel space, 4957 * Do not walk the page table directly, use get_user_pages 4958 */ 4959 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4960 void *buf, int len, unsigned int gup_flags) 4961 { 4962 struct mm_struct *mm; 4963 int ret; 4964 4965 mm = get_task_mm(tsk); 4966 if (!mm) 4967 return 0; 4968 4969 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4970 4971 mmput(mm); 4972 4973 return ret; 4974 } 4975 EXPORT_SYMBOL_GPL(access_process_vm); 4976 4977 /* 4978 * Print the name of a VMA. 4979 */ 4980 void print_vma_addr(char *prefix, unsigned long ip) 4981 { 4982 struct mm_struct *mm = current->mm; 4983 struct vm_area_struct *vma; 4984 4985 /* 4986 * we might be running from an atomic context so we cannot sleep 4987 */ 4988 if (!mmap_read_trylock(mm)) 4989 return; 4990 4991 vma = find_vma(mm, ip); 4992 if (vma && vma->vm_file) { 4993 struct file *f = vma->vm_file; 4994 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4995 if (buf) { 4996 char *p; 4997 4998 p = file_path(f, buf, PAGE_SIZE); 4999 if (IS_ERR(p)) 5000 p = "?"; 5001 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5002 vma->vm_start, 5003 vma->vm_end - vma->vm_start); 5004 free_page((unsigned long)buf); 5005 } 5006 } 5007 mmap_read_unlock(mm); 5008 } 5009 5010 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5011 void __might_fault(const char *file, int line) 5012 { 5013 /* 5014 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5015 * holding the mmap_lock, this is safe because kernel memory doesn't 5016 * get paged out, therefore we'll never actually fault, and the 5017 * below annotations will generate false positives. 5018 */ 5019 if (uaccess_kernel()) 5020 return; 5021 if (pagefault_disabled()) 5022 return; 5023 __might_sleep(file, line, 0); 5024 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5025 if (current->mm) 5026 might_lock_read(¤t->mm->mmap_lock); 5027 #endif 5028 } 5029 EXPORT_SYMBOL(__might_fault); 5030 #endif 5031 5032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5033 /* 5034 * Process all subpages of the specified huge page with the specified 5035 * operation. The target subpage will be processed last to keep its 5036 * cache lines hot. 5037 */ 5038 static inline void process_huge_page( 5039 unsigned long addr_hint, unsigned int pages_per_huge_page, 5040 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5041 void *arg) 5042 { 5043 int i, n, base, l; 5044 unsigned long addr = addr_hint & 5045 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5046 5047 /* Process target subpage last to keep its cache lines hot */ 5048 might_sleep(); 5049 n = (addr_hint - addr) / PAGE_SIZE; 5050 if (2 * n <= pages_per_huge_page) { 5051 /* If target subpage in first half of huge page */ 5052 base = 0; 5053 l = n; 5054 /* Process subpages at the end of huge page */ 5055 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5056 cond_resched(); 5057 process_subpage(addr + i * PAGE_SIZE, i, arg); 5058 } 5059 } else { 5060 /* If target subpage in second half of huge page */ 5061 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5062 l = pages_per_huge_page - n; 5063 /* Process subpages at the begin of huge page */ 5064 for (i = 0; i < base; i++) { 5065 cond_resched(); 5066 process_subpage(addr + i * PAGE_SIZE, i, arg); 5067 } 5068 } 5069 /* 5070 * Process remaining subpages in left-right-left-right pattern 5071 * towards the target subpage 5072 */ 5073 for (i = 0; i < l; i++) { 5074 int left_idx = base + i; 5075 int right_idx = base + 2 * l - 1 - i; 5076 5077 cond_resched(); 5078 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5079 cond_resched(); 5080 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5081 } 5082 } 5083 5084 static void clear_gigantic_page(struct page *page, 5085 unsigned long addr, 5086 unsigned int pages_per_huge_page) 5087 { 5088 int i; 5089 struct page *p = page; 5090 5091 might_sleep(); 5092 for (i = 0; i < pages_per_huge_page; 5093 i++, p = mem_map_next(p, page, i)) { 5094 cond_resched(); 5095 clear_user_highpage(p, addr + i * PAGE_SIZE); 5096 } 5097 } 5098 5099 static void clear_subpage(unsigned long addr, int idx, void *arg) 5100 { 5101 struct page *page = arg; 5102 5103 clear_user_highpage(page + idx, addr); 5104 } 5105 5106 void clear_huge_page(struct page *page, 5107 unsigned long addr_hint, unsigned int pages_per_huge_page) 5108 { 5109 unsigned long addr = addr_hint & 5110 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5111 5112 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5113 clear_gigantic_page(page, addr, pages_per_huge_page); 5114 return; 5115 } 5116 5117 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5118 } 5119 5120 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5121 unsigned long addr, 5122 struct vm_area_struct *vma, 5123 unsigned int pages_per_huge_page) 5124 { 5125 int i; 5126 struct page *dst_base = dst; 5127 struct page *src_base = src; 5128 5129 for (i = 0; i < pages_per_huge_page; ) { 5130 cond_resched(); 5131 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5132 5133 i++; 5134 dst = mem_map_next(dst, dst_base, i); 5135 src = mem_map_next(src, src_base, i); 5136 } 5137 } 5138 5139 struct copy_subpage_arg { 5140 struct page *dst; 5141 struct page *src; 5142 struct vm_area_struct *vma; 5143 }; 5144 5145 static void copy_subpage(unsigned long addr, int idx, void *arg) 5146 { 5147 struct copy_subpage_arg *copy_arg = arg; 5148 5149 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5150 addr, copy_arg->vma); 5151 } 5152 5153 void copy_user_huge_page(struct page *dst, struct page *src, 5154 unsigned long addr_hint, struct vm_area_struct *vma, 5155 unsigned int pages_per_huge_page) 5156 { 5157 unsigned long addr = addr_hint & 5158 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5159 struct copy_subpage_arg arg = { 5160 .dst = dst, 5161 .src = src, 5162 .vma = vma, 5163 }; 5164 5165 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5166 copy_user_gigantic_page(dst, src, addr, vma, 5167 pages_per_huge_page); 5168 return; 5169 } 5170 5171 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5172 } 5173 5174 long copy_huge_page_from_user(struct page *dst_page, 5175 const void __user *usr_src, 5176 unsigned int pages_per_huge_page, 5177 bool allow_pagefault) 5178 { 5179 void *src = (void *)usr_src; 5180 void *page_kaddr; 5181 unsigned long i, rc = 0; 5182 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5183 5184 for (i = 0; i < pages_per_huge_page; i++) { 5185 if (allow_pagefault) 5186 page_kaddr = kmap(dst_page + i); 5187 else 5188 page_kaddr = kmap_atomic(dst_page + i); 5189 rc = copy_from_user(page_kaddr, 5190 (const void __user *)(src + i * PAGE_SIZE), 5191 PAGE_SIZE); 5192 if (allow_pagefault) 5193 kunmap(dst_page + i); 5194 else 5195 kunmap_atomic(page_kaddr); 5196 5197 ret_val -= (PAGE_SIZE - rc); 5198 if (rc) 5199 break; 5200 5201 cond_resched(); 5202 } 5203 return ret_val; 5204 } 5205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5206 5207 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5208 5209 static struct kmem_cache *page_ptl_cachep; 5210 5211 void __init ptlock_cache_init(void) 5212 { 5213 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5214 SLAB_PANIC, NULL); 5215 } 5216 5217 bool ptlock_alloc(struct page *page) 5218 { 5219 spinlock_t *ptl; 5220 5221 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5222 if (!ptl) 5223 return false; 5224 page->ptl = ptl; 5225 return true; 5226 } 5227 5228 void ptlock_free(struct page *page) 5229 { 5230 kmem_cache_free(page_ptl_cachep, page->ptl); 5231 } 5232 #endif 5233